JPS6160894A - Energy saving type zinc electrolysis - Google Patents

Energy saving type zinc electrolysis

Info

Publication number
JPS6160894A
JPS6160894A JP59272153A JP27215384A JPS6160894A JP S6160894 A JPS6160894 A JP S6160894A JP 59272153 A JP59272153 A JP 59272153A JP 27215384 A JP27215384 A JP 27215384A JP S6160894 A JPS6160894 A JP S6160894A
Authority
JP
Japan
Prior art keywords
zinc
solution
mol
sulfuric acid
electrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59272153A
Other languages
Japanese (ja)
Other versions
JPS6256238B2 (en
Inventor
尹 景錫
趙 炳源
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Korea Institute of Science and Technology KIST
Original Assignee
Korea Institute of Science and Technology KIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Korea Institute of Science and Technology KIST filed Critical Korea Institute of Science and Technology KIST
Publication of JPS6160894A publication Critical patent/JPS6160894A/en
Publication of JPS6256238B2 publication Critical patent/JPS6256238B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • C25C1/16Electrolytic production, recovery or refining of metals by electrolysis of solutions of zinc, cadmium or mercury
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、亜鉛電解方法特に電解所要エネルギーを節約
する亜鉛電解方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a zinc electrolytic process, and more particularly to a zinc electrolytic process that saves the energy required for electrolysis.

〔従来の技術〕[Conventional technology]

金属亜鉛を取得するためには、乾式法及び湿式法の2種
類の方法がある。
There are two methods for obtaining metallic zinc: a dry method and a wet method.

その中でも湿式法の大字は、亜鉛含有鉱石例えば硫化亜
鉛鉱を焙焼し酸化匝鉛とし、これを稀硫酸に溶解し硫酸
亜鉛溶液を掃て、この硫酸亜鉛溶液中のFe、As、C
u、Cd、Go、N−等の不純物を中和、共沈、還元等
の反応により除去し硫酸亜鉛埼浄中性液とし、この清浄
中性液を陰極としてアルミニウムを陽極として銀含有鉛
合金を用い電解哨に補給し、直i7!電流を通じ、酸性
硫酸溶液中でiaし陰極上に金属亜鉛を析出させ、生成
した硫酸は前記溶屏工程に繰返し、析出亜鈴を陰極から
剥取す1、反射炉または電気炉で溶融し鋳型に鋳造し亜
鉛インゴットを得ろ電解採取方法が路間を始め多くの国
で行なわれている。
Among them, the most common wet method is to roast zinc-containing ore, such as zinc sulfide ore, to make lead oxide, dissolve it in dilute sulfuric acid, and sweep away the zinc sulfate solution.
Impurities such as u, Cd, Go, and N- are removed by reactions such as neutralization, coprecipitation, and reduction to produce a zinc sulfate-purified neutral solution, and this clean neutral solution is used as a cathode and aluminum is used as an anode to produce a silver-containing lead alloy. Used to replenish the electrolytic sentries and direct i7! Metal zinc is precipitated on the cathode by passing an electric current through ia in an acidic sulfuric acid solution, and the generated sulfuric acid is repeated in the melting process to peel off the precipitated dumbbell from the cathode. The electrowinning method of casting and obtaining zinc ingots is practiced in many countries including Roma.

これら公知の酸性硫酸溶液中の電解に於ては、電解槽中
の陽極と陰極から夫々相異なる電気化学的反応が行なわ
れるが、その反応式と平5i状態に於ける’is電位は
、Bsttelle、^rgonnl NaLiona
lLaboratory ANL10EPM7−3.9
4  (19791によれば次の通りである。
In the electrolysis in these known acidic sulfuric acid solutions, different electrochemical reactions occur from the anode and cathode in the electrolytic cell, but the reaction formula and the 'is potential in the 5i state are as follows: , ^rgonnl NaLiona
lLaboratory ANL10EPM7-3.9
4 (According to 19791, it is as follows.

陰ffi;Zn”+2t−Zn   E、=−Q、76
V    (11陽極:  2H,O−0,+4H″″
+4 a  E、=1.23 V (21従って平衡状
態に於ける電解電圧(E、)はE、:=1.23V−(
−0,76V)=1.99Vに過ぎないが実際はこれだ
けでは電解は行われず、陽極では、より責なる電位まで
、また陰極ではより卑なる電位まで夫々もって来なけれ
ばならない。
Yinffi;Zn"+2t-Zn E, =-Q, 76
V (11 anode: 2H, O-0, +4H″″
+4 a E, = 1.23 V (21 Therefore, the electrolytic voltage (E, ) in the equilibrium state is E, := 1.23 V-(
-0.76V) = 1.99V, but in reality, electrolysis cannot be carried out with just this voltage; the anode must be brought to a more positive potential, and the cathode must be brought to a more base potential.

上記fil te1式の両電極の電位と平衡電位との差
を両極の過電圧とし)い、この過電圧ならびに液抵抗に
打ち克つための電圧のために、電流密度50 mA/e
arの条件に於ける電解電圧は3.5 Vで操業されろ
The difference between the potential of both electrodes and the equilibrium potential in the above fil te 1 formula is taken as the overvoltage of both electrodes), and the current density is 50 mA/e for the voltage to overcome this overvoltage and liquid resistance.
The electrolysis voltage under ar conditions should be operated at 3.5 V.

理論的なエネルギー消′R′Ikは、電解電圧が199
Vの場合、電力原単位は1630 KWh/lであるが
前述の電解電圧3.5 Vの条件では2870 KWh
/Lになり、これに電流効率による損失、交流電流を直
流電流に転換する変流能率による損失、整流器と電解槽
間の導線挺抗によろ損失等を加算すると、電気亜鉛1ト
ン当りの電力原単位は電解のみで約3500 KWbの
エネルギーを必要とする。
The theoretical energy dissipation 'R'Ik is calculated when the electrolytic voltage is 199
In the case of V, the power consumption is 1630 KWh/l, but under the above-mentioned electrolytic voltage condition of 3.5 V, it is 2870 KWh.
/L, and if we add to this loss due to current efficiency, loss due to current transformation efficiency of converting alternating current to direct current, loss due to conductor tension between rectifier and electrolytic cell, etc., the electric power per ton of electrolytic zinc is calculated. The basic unit requires approximately 3,500 KWb of energy just for electrolysis.

以上の如き亜鉛電解方法は、純度の高い金属亜鉛を取得
する方法として、擾れた方法であるが、エネルギーを比
較的に多く必要とする欠点を有し、エネルギー価格上昇
の今日、省エネルギー型の亜鉛電解方法の開発が要請さ
れていた。
The zinc electrolysis method described above is an established method for obtaining high-purity metallic zinc, but it has the disadvantage of requiring a relatively large amount of energy. There was a request for the development of a zinc electrolysis method.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は斜上の如き、酸性硫酸亜鉛溶液の岨詫電解法の
欠点である、電力原単位の高い換言すればエネルギーを
多く消費する電解方法を改良し、省エネルギー型の亜鉛
電解方法を提供することにある。 更に低コストで電気
亜鉛を!!造するための亜鉛電解方法を開発することを
目的とするものである。  〔問題点を解決するための
手段〕本発明者等は種々研究の結果、硫酸亜鉛電解溶液
に亜硫酸気体と、亜硫酸気体酸化反応に触媒的役割りを
するヨウ素を少量添加し低電解電圧下で電解させろこと
によって前記発明の課題を解決し得ろことを確認し、本
発明に至ったものである。
The present invention provides an energy-saving zinc electrolysis method by improving the electrolysis method that consumes a large amount of energy, which is a drawback of the Dixian electrolysis method using acidic zinc sulfate solution, such as Slanting. There is a particular thing. Electrolytic zinc at even lower cost! ! The purpose of this project is to develop a zinc electrolytic method for the production of zinc. [Means for solving the problem] As a result of various studies, the present inventors added sulfurous acid gas and a small amount of iodine, which plays a catalytic role in the sulfurous acid gas oxidation reaction, to a zinc sulfate electrolytic solution and solved the problem under low electrolytic voltage. The present invention was achieved by confirming that the problems of the invention described above can be solved by electrolysis.

即ち本発明は酸性硫酸亜鉛溶液を電解するに際し、第1
図ならびに第2図に示す如く陰極室6と11iltli
室5とを隔膜4にて分離し、陰極室i2F液として、硫
酸と亜鉛とから成る亜鉛清浄中性fIl液に少量のヨウ
素イオン又はヨウ素を添加し陽極室溶液として、硫酸に
亜硫酸気体と少量の酸化触媒を添加して成る溶液を用い
る省エネルギー型匝鉛電解方法である。
That is, in the present invention, when electrolyzing an acidic zinc sulfate solution, the first
As shown in the figure and FIG.
A small amount of iodine ions or iodine is added to the zinc-cleaned neutral flI solution consisting of sulfuric acid and zinc as a cathode chamber i2F solution, and a small amount of sulfur dioxide gas is added to sulfuric acid as an anode chamber solution. This is an energy-saving lead electrolysis method that uses a solution containing an oxidation catalyst.

更に詳しくは酸化触媒としてヨウ素又はヨウ素イオンを
用いることを特徴とし、更に電解条件をヨウ素イオン濃
度0001〜01モル、硫酸4度05〜2.0モル、亜
硫酸気体濃度01〜20モル、温度20〜40℃とする
ことを特徴とし、また陽極として多孔性黒鉛Ts極を用
い、隔膜は1つ又は2つとし、更に陽極室で生成された
硫酸を石灰石又は消石灰と反応させて石膏を製造し、陽
掻室溶液のヨウ素イオンを回収して再使用することをも
特徴とするものである。
More specifically, it is characterized by using iodine or iodine ions as an oxidation catalyst, and the electrolytic conditions are as follows: iodine ion concentration: 0001-01 mol, sulfuric acid 4°C: 05-2.0 mol, sulfite gas concentration: 01-20 mol, and temperature: 20-0.0 mol. 40°C, using a porous graphite Ts electrode as an anode, having one or two diaphragms, and producing gypsum by reacting sulfuric acid produced in the anode chamber with limestone or slaked lime, Another feature is that the iodine ions in the positive rinsing chamber solution are recovered and reused.

〔作用〕[Effect]

従来公知の亜鉛電解に於て電解電圧がFll論法り遥に
高いのは、陰極反応過電圧o、 o s vで無視でき
る程度であるが、lla橿反応過電圧は0.84 Vで
相当高いためである。このような公知の亜鉛電解法にお
けろ最も脆弱点はVA極反応におけろ莫大なエネルギー
消耗にあるが、この場合該陽橿から発生する莫大な量の
酸素は用途がなく、むしろ電解溶液を蒸発させて電解ミ
ストとして環境を悪化させたり、陽極の腐食を助長せし
め析出亜鉛の純度を低下せしめる等の作用を及ぼす。
The reason why the electrolytic voltage in conventionally known zinc electrolysis is much higher than the FL theory is because the cathode reaction overvoltage o, o s v is negligible, but the cathode reaction overvoltage is 0.84 V, which is quite high. be. The weakest point in the known zinc electrolysis method is the huge amount of energy consumed in the VA electrode reaction, but in this case, the huge amount of oxygen generated from the positive electrode is of no use and is rather used in the electrolytic solution. This has the effect of evaporating the zinc into electrolytic mist, deteriorating the environment, promoting corrosion of the anode, and reducing the purity of the deposited zinc.

本発明は、このような陽極過電圧を消極性媒体として知
られているIl+−硫酸気体を酸化させることによって
減少させろことが出来る。酸性溶液から亜硫酸気体の鹸
化反応と!!I絵電解反応を見ると、A−JAppla
by  and B4’1chon、J・Electr
oanal、 Cbem−、95・59 (1979)
によると次の通りである。
The present invention can reduce such anode overvoltage by oxidizing Il+-sulfuric acid gas, which is known as a passive medium. Saponification reaction of sulfite gas from acidic solution! ! Looking at the I picture electrolytic reaction, A-Jappla
by and B4'1chon, J.Electr
oanal, Cbem-, 95, 59 (1979)
According to the following:

陽i:   So、+2Hρ→H3O−、+3H”+2
e   l、=Q、1 2V  [31陰tE[i :
 Zn + 2 e−Zn        E=−0,
76V fil従って亜硫酸気体溶液に於ける亜鉛電解
電圧は、0.12V−(−0,76V):0.88Vに
過ぎなく、従来公知の硫酸亜鉛浴におけろ電解電圧よす
1.1 V程度低く酸素過電圧も発生しない。
Positive i: So, +2Hρ→H3O-, +3H”+2
e l, = Q, 1 2V [31 Yin tE[i:
Zn + 2 e-Zn E=-0,
76V fil Therefore, the zinc electrolysis voltage in a sulfurous acid gas solution is only 0.12V-(-0.76V): 0.88V, which is about 1.1V in a conventionally known zinc sulfate bath. Low oxygen overvoltage does not occur.

本発明は、単純に亜硫酸気体溶液を酸化させる代りに、
亜硫酸気体の酸化に触媒的役割りをするヨウ素イオンと
して、ヨード加里或はヨウ素を少量添加し、より低い(
−)電位に於て亜硫酸気体の酸化が行なわれる方法であ
る。
Instead of simply oxidizing the sulfite gas solution, the present invention
A small amount of potassium iodo or iodine is added as an iodine ion that plays a catalytic role in the oxidation of sulfite gas.
-) This is a method in which oxidation of sulfite gas is carried out at a potential.

即ち本発明方法に於ては、陽極室溶液を(1モル硫酸)
+(亜硫酸気体)+(ヨウ素イオン)とし、陰11容液
を (1モル硫酸1+(0,8モル亜鉛)とし、陽極に多孔
性黒鉛電極を、陰極にアルミニウムを使用して、電流密
度を50 mA101から電解を始めれば、電解電圧は
2.0 V程度で従来公知の操業電解電圧(ζ比べれば
約1.5 Vの電圧降下を図p)得るものである。
That is, in the method of the present invention, the anode chamber solution (1 mol sulfuric acid)
+ (sulfurous acid gas) + (iodine ion), the anode 11 volume is (1 mol sulfuric acid 1 + (0.8 mol zinc)), a porous graphite electrode is used as the anode, aluminum is used as the cathode, and the current density is When electrolysis is started from 50 mA101, the electrolytic voltage is about 2.0 V, which is the conventionally known operating electrolytic voltage (compared to ζ, the voltage drop is about 1.5 V in Figure P).

陽極室溶液に触媒としてヨウ素イオン[11を注入せず
に電解を実施しても電解電圧は2.5■程度となり、従
来公知の電屏法の操業電圧に比べて約1.0■の電圧降
下を図ることが出来る。
Even if electrolysis is carried out without injecting iodine ions [11] as a catalyst into the anode chamber solution, the electrolysis voltage will be about 2.5 µ, which is about 1.0 µ compared to the operating voltage of the conventionally known electric folding method. You can plan your descent.

従って少量の触媒を添加することによって、単純に・亜
硫酸気体を溶液に添加使用する時よりも約0.5■の電
圧降下を図ることが出来る。
Therefore, by adding a small amount of catalyst, it is possible to achieve a voltage drop of about 0.5 μ compared to when sulfurous acid gas is simply added to the solution.

これは触媒添加溶液から亜硫酸気体の酸化反応は、低い
(−)電位から次に示す+41 +51式により生成さ
れた3ヨウ素イオン++;+とヨウ素(+2)が亜硫酸
気体の酸化に触媒的約割りをする為めである。
This means that the oxidation reaction of sulfite gas from a catalyst-added solution is caused by the catalytic approx. It is for the purpose of

G−5−Calabrase &、 M−5,Wrig
hcon−J−A−C−5・103 (2116273
F19811に依れば31−−1−+2 e    E
 =0.536V    14121”−1+2 e 
    E =0.621V   [5lSO3+zH
2o+t;→H2So4+2J(”+31    [6
1So2+2H,O+I;−H2so、+zH”4−z
ピ (7)亜硫酸気体の酸化反応に於て、適切な電解作
業条件は、ヨウ素イオン濃度0001〜041モル。
G-5-Calabrace & M-5, Wrig
hcon-J-A-C-5・103 (2116273
According to F19811, 31--1-+2 e E
=0.536V 14121"-1+2 e
E =0.621V [5lSO3+zH
2o+t;→H2So4+2J(”+31 [6
1So2+2H,O+I;-H2so,+zH"4-z
(7) In the oxidation reaction of sulfite gas, suitable electrolytic working conditions are an iodine ion concentration of 0001 to 041 mol.

硫酸濃度05〜′2..0モル、亜硫酸気体濃度01〜
2.0モル、温度20〜40℃である。
Sulfuric acid concentration 05~'2. .. 0 mol, sulfite gas concentration 01~
2.0 mol, temperature 20-40°C.

触媒をヨードカリウムの代りにヨウ素イオンの単位重量
に対して低価格のヨウ素を用いるとヨウ素が亜硫酸気体
を酸化させて、ヨウ素イオンに還元され、30.、 l
−状態に存在することになるので、ヨードカリウムを使
用する方法と同一な効果を1’:jることが出来、触媒
費用も節減することができる。
When iodine, which is inexpensive relative to the unit weight of iodide ions, is used as a catalyst instead of potassium iodo, the iodine oxidizes sulfite gas and is reduced to iodide ions.30. , l
- state, the same effect as the method using potassium iodo can be obtained, and the catalyst cost can also be reduced.

なお、隔膜は陽極室と陰極室の溶液を分離させろことに
よって、陰極に於ける炬硫N溶散の還元反応を防止し陰
極の効率を高めろためのものである。さらに隔膜を二重
に設けた場合ζよ陽極室から陰極室へ亜硫酸溶液の流入
を完全に遮断し得て、場合によってはこの中間室に陽極
を別途に設置することによって流入された亜硫酸溶液を
除去ずろことが出来る。
The purpose of the diaphragm is to separate the solutions in the anode and cathode chambers, thereby preventing the reduction reaction of the sulfur N dissolved in the cathode and increasing the efficiency of the cathode. Furthermore, if a double diaphragm is provided, it is possible to completely block the inflow of sulfite solution from the anode chamber to the cathode chamber, and in some cases, by separately installing an anode in this intermediate chamber, the inflow of sulfite solution can be blocked. It can be removed.

本発明方法に於ける電1[圧は2. OVで、エネルギ
ー消費量としての電力原単位は1640 KWb/(に
なり、電流能率、変流能率、及び整流諾と電解槽間の導
線抵抗による電力損失等を加算しても、析出金属亜鉛1
屯当り電解に約2000 KWhの電力を要するに過ぎ
ないこととなる。
In the method of the present invention, the voltage is 1 [voltage is 2. With OV, the electric power consumption as energy consumption is 1640 KWb/(, and even if you add the current efficiency, current transformation efficiency, power loss due to the resistance of the conductor between the rectifier and the electrolytic cell, etc., the precipitated metal zinc 1
This means that only about 2000 KWh of electricity is required for electrolysis per tonne.

この電力原単位は従来公知の方法における電力原単位に
比すると約57%程度で、析出金属亜鉛1屯当り約15
00 KWhの電解所要エネルギーが節減されろ。
This electric power unit is about 57% compared to the electric power unit of conventionally known methods, and is about 15% per ton of deposited metal zinc.
00 KWh of energy required for electrolysis will be saved.

また本発明に依ると、陽8iI室において+61 (7
1式により、亜硫酸気体が酸化され、硫酸が生成され硫
酸濃度が増加するので、第2図に示す如く、この陽極室
溶液を石灰6或(よ焼石灰を装入した反応槽に導入し、
反応させ石膏を生成せしめた。後石膏を分離し、分gI
!液をミードイオン回収槽に導いてヨウ素イオンを回収
し、亜硫酸気体溶解槽に添加し、再び陽極室溶液として
繰返し使用する。即ち本発明方法によれば石膏を生産す
るばかりでなく、ヨウ素イオンの消耗なしに連続的な工
程にて亜鉛電解工程を継続することが出来ろ。
According to the present invention, +61 (7
In formula 1, sulfur dioxide gas is oxidized, sulfuric acid is produced, and the sulfuric acid concentration increases.As shown in Fig. 2, this anode chamber solution is introduced into a reaction tank charged with lime (burnt lime).
The reaction produced gypsum. After separating the plaster, min gI
! The liquid is led to a Mead ion recovery tank to recover iodine ions, added to a sulfite gas dissolution tank, and used repeatedly as an anode chamber solution. That is, according to the method of the present invention, it is possible not only to produce gypsum, but also to continue the zinc electrolysis process in a continuous process without wasting iodine ions.

石膏の生成反応をM−Grayson and DIE
clcrothK: RK−Othar a゛ncyc
lopedia of chemicaltechno
logy、 4443 (1978)によって示すとH
,So、+Caco、−”Ca So、+GO,+82
0H2So、+Ca (OHI 2−Ca5O,−28
,O・・(81又陽極室溶液中の亜硫酸気体は反応槽で
、消石灰と反応し次の+91 +11式によゆ石膏が生
成されるので、生成された硫酸中の亜硫酸気体は問題と
はならない。
Gypsum production reaction by M-Grayson and DIE
clcrothK: RK-Other aincyc
ropedia of chemical technology
H. logic, 4443 (1978)
,So,+Caco,-”Ca So,+GO,+82
0H2So, +Ca (OHI 2-Ca5O, -28
, O... (81Also, the sulfite gas in the anode chamber solution reacts with slaked lime in the reaction tank, and gypsum is produced according to the following +91 +11 formula, so the sulfite gas in the sulfuric acid produced is not a problem. No.

So、+Ca (OHI 2→Ca5O,・1/2H2
0=1912CaSO,=1/2H20+O,−2Ca
SO,・2H20・−(+1陰極室溶液に少量のヨウ素
イオンを添加して電解を実施した後、電解析出された亜
鉛の表面状態を観察すると、無添加時、析出亜鉛に見ら
れろピンホール孔がなかったばかりでなく、電流効率も
無添加時より向上した。
So, +Ca (OHI 2→Ca5O,・1/2H2
0=1912CaSO,=1/2H20+O,-2Ca
SO,・2H20・−(+1) After electrolysis was carried out by adding a small amount of iodine ions to the cathode chamber solution, when the surface condition of the electrolytically deposited zinc was observed, it was found that no pins were observed on the deposited zinc when no additive was added. Not only were there no holes, but the current efficiency was also improved compared to when no additives were added.

本発明に於て、電流密度を公知方法の操業電流密度の2
倍である1 00 mA/cIllに上げて操業すると
、浴電圧は2.2 V程度であるが、公知の酸性硫酸亜
鉛電解浴電解1稈に於ては、)業電流密度を100 m
A/lajに高めろと、浴電圧(よ3.8 Vに大きく
上昇するばかりでなく、浴電圧が高いのでPb−Ag陽
極が一部崩壊しpb−イオンが陰極に電着するので製品
の純度を不良にする。
In the present invention, the current density is set to 2 of the operating current density of the known method.
If the bath voltage is increased to 100 mA/cIll, which is twice as high as that of 100 mA/cIll, the bath voltage will be about 2.2 V.
If the voltage is increased to A/laj, not only will the bath voltage (to 3.8 V) significantly increase, but the high bath voltage will partially collapse the Pb-Ag anode and cause pb- ions to be electrodeposited on the cathode, resulting in damage to the product. Impairs purity.

又陽極電位が高くなるので、陽極にMnO2がより多く
電着され、電厖の電気伝導度を低下させて電圧上昇の原
因となる。これに反して本発明は、電流密度による陽極
過電圧が少なく陽8ii電位が低下するので、黒鉛陽極
の溶解とMnO□の電着がなされない。このように本発
明による操業電流密度を2倍に増加させた場合、生産性
も2倍に向上され、公知の電解方法と比べて、装置設備
及び其の他のai費を半分に切下げろことができろ。
Furthermore, since the anode potential becomes higher, more MnO2 is electrodeposited on the anode, lowering the electrical conductivity of the electrode and causing an increase in voltage. On the other hand, in the present invention, the anode overvoltage due to current density is small and the anode potential is lowered, so that the graphite anode is not dissolved and MnO□ is not electrodeposited. In this way, when the operating current density is doubled according to the present invention, the productivity is also doubled, and the equipment and other AI costs can be cut in half compared to the known electrolysis method. Be able to do it.

〔実施例〕〔Example〕

以下本発明の実施例である1〜4について述べろ。 Examples 1 to 4 of the present invention will be described below.

実施例1 第1図(a)に示す如く、電解槽1内に多孔性黒餡陽極
2とアルミニウム製陰極3を極間距離5 cmに固定し
設け、陰陽極間に!電池用隔膜を丈用し隔膜4にて陽極
室5と陰極室6に仕切る。
Example 1 As shown in FIG. 1(a), a porous black bean paste anode 2 and an aluminum cathode 3 are fixedly provided in an electrolytic cell 1 with a distance of 5 cm between the anode and cathode. A long battery diaphragm is used to partition the battery into an anode chamber 5 and a cathode chamber 6 with a diaphragm 4.

斯ろ構成の電解装置の陽極室5溶液として1,5モル硫
酸と1モル亜硫酸気体及び001モルヨウ素イオンから
成る溶液を、更に陰極室6溶液として1.5モル硫酸と
08モル亜鉛から成る溶液を用い、電流密度50 mA
lcdにて20時間電解を実施した。
In the anode chamber 5 of the electrolytic device having this configuration, a solution consisting of 1.5 mol sulfuric acid, 1 mol sulfite gas and 0.001 mol iodine ions is used as the solution, and a solution consisting of 1.5 mol sulfuric acid and 0.8 mol zinc as the cathode chamber 6 solution. using a current density of 50 mA
Electrolysis was carried out using LCD for 20 hours.

尚この際陽極室5及び陰極室6の溶rαは矢視する如く
液中の亜硫酸気体と亜鉛濃度の低下を防止するために連
続的に循環を行なった。
At this time, the solution rα in the anode chamber 5 and the cathode chamber 6 was continuously circulated as shown by the arrow in order to prevent the concentration of sulfite gas and zinc in the solution from decreasing.

以上の結果、電解電圧は2.Ovで電流効率89%で亜
鉛が陰極3に析出された。
As a result of the above, the electrolytic voltage is 2. Zinc was deposited on the cathode 3 at a current efficiency of 89%.

実施例2゜ 第1図(a)に示す電解装置に、陽極室5の溶液として
15モル硫酸と1モル亜硫酸気体及び01モルヨウ素イ
オンから成る溶液を用い、陰極室6の溶液組成及び電解
条件並に電解方法を実Ii!1例1と同様にして電解を
実施した。
Example 2 In the electrolysis apparatus shown in FIG. 1(a), a solution consisting of 15 mol sulfuric acid, 1 mol sulfite gas and 0.1 mol iodine ions was used as the solution in the anode chamber 5, and the solution composition and electrolytic conditions in the cathode chamber 6 were changed. In addition, the electrolysis method is practiced! Electrolysis was carried out in the same manner as in Example 1.

その結果、電解電圧は1.9 Vで電流効率89%で亜
鉛が陰極3に析出された。
As a result, zinc was deposited on the cathode 3 at an electrolytic voltage of 1.9 V and a current efficiency of 89%.

実施例3゜ 陽8Fl室5のm?l!として15モル硫酸と1モル亜
硫酸気体及び01モルヨウ素イオンから成る溶液を、陰
極室6の溶液として1.5モル硫酸と08モル亜鉛及び
001モルのヨウ素イオンを実施例1と同様に第1図(
a)に示す電解装置を用い同じ電解条件及び電解方法で
電解を実施した。
Example 3゜Sun 8Fl room 5 m? l! As in Example 1, a solution consisting of 15 mol sulfuric acid, 1 mol sulfite gas and 0.1 mol iodine ions was prepared, and as the solution in the cathode chamber 6, 1.5 mol sulfuric acid, 0.8 mol zinc and 0.01 mol iodine ions were prepared in the same manner as in Example 1. (
Electrolysis was carried out using the electrolytic apparatus shown in a) under the same electrolytic conditions and method.

その結果は電解電圧は2. OVで電流効率91%で亜
鉛が陰極3に析出されヨードイオンを添加した場合、析
出亜鉛状態はピンホール等の孔は見られず良好であった
The result is that the electrolytic voltage is 2. When zinc was deposited on the cathode 3 with OV at a current efficiency of 91% and iodine ions were added, the state of the deposited zinc was good with no holes such as pinholes observed.

実施例4 第1図(blに示す如く、電解槽1内に多孔性黒餡陽極
2とアルミニウム製陰極3を極間距Q 6 c+nに固
定し設は陰陽極間に実施例1と同様の隔膜4a及び4b
にて、陽極室5.中間室7.陰極室6に仕切った。
Example 4 As shown in Figure 1 (bl), a porous black bean paste anode 2 and an aluminum cathode 3 are fixed in an electrolytic cell 1 with a distance between the electrodes Q 6 c+n, and a diaphragm similar to that in Example 1 is installed between the cathode and anode. 4a and 4b
In the anode chamber 5. Intermediate room7. It was partitioned into 6 cathode chambers.

断る構成の電解装置の陽極室5の溶液として、15モル
硫酸と1モルir[!1ji8酸気体及び0.01モル
ヨウ素イオンから成る溶液を、更に陰極室6の溶液とし
て15モル硫酸と08モルm B3から成る溶液を、中
間室7の溶液として5モル硫酸から成る溶液を用い電流
密度50 mA/cdにて20時間電解を実施した。
As a solution in the anode chamber 5 of the electrolyzer configured to refuse, 15 mol sulfuric acid and 1 mol ir [! Using a solution consisting of 1ji8 acid gas and 0.01 mol iodine ions, a solution consisting of 15 mol sulfuric acid and 0.8 mol mB3 as the solution in the cathode chamber 6, and a solution consisting of 5 mol sulfuric acid as the solution in the intermediate chamber 7, a current is applied. Electrolysis was carried out for 20 hours at a density of 50 mA/cd.

尚この際実施例1と同様に陽i室5の溶液と陰極室6の
溶液を亜硫酸気体と亜鉛9度低下を防止するため矢視す
る如く連続的に循環せしめた。
At this time, as in Example 1, the solution in the anode chamber 5 and the solution in the cathode chamber 6 were continuously circulated as shown by the arrow in order to prevent the sulfite gas and zinc from decreasing by 9 degrees.

以上の結果電解電圧は2. I Vで、電流効率91%
で亜鉛が陰極3に析出された。
As a result of the above, the electrolytic voltage is 2. IV, current efficiency 91%
Zinc was deposited on the cathode 3.

〔発明の効果〕〔Effect of the invention〕

本発明の亜鉛電解方法に依れば、従来の公知電解方法に
比して、亜鉛電解に所要する電力を大巾に減少させるこ
とが出来ろばかりでなく、陽極で製造される硫酸をもっ
て石膏を副成させ、12!業電流密度を従来の2倍に増
加させ得る結果、電解設備投資を節減し得て、生産性を
2倍に向上せしめる利点を有するものである。
According to the zinc electrolysis method of the present invention, not only can the electric power required for zinc electrolysis be greatly reduced compared to conventional known electrolysis methods, but also the sulfuric acid produced at the anode can be used to remove gypsum. Make it a subsidiary, 12! As a result of being able to increase the industrial current density to twice that of the conventional method, it has the advantage of reducing investment in electrolysis equipment and doubling productivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の電解装置を示す模式図、第2図(
ま本発明方法の工程図である。 1、電解槽、2:多孔性黒鉛陽極、3ニアルミニウム製
陰極、4:FfA5り、5・陽極室、6 陰極室、7.
中間室。 なお図面中間符号は同一または同じ機能を示すものであ
る。 代理人 弁理士  木 村 三 朗 舅 1 回 (b)
Figure 1 is a schematic diagram showing the electrolyzer for the method of the present invention, Figure 2 (
It is a process diagram of the method of the present invention. 1. Electrolytic cell, 2: Porous graphite anode, 3 Nialuminum cathode, 4: FfA5, 5. Anode chamber, 6 Cathode chamber, 7.
intermediate room. Note that the symbols in the drawings indicate the same or the same functions. Agent: Patent attorney Sanro Kimura 1 time (b)

Claims (6)

【特許請求の範囲】[Claims] (1)硫酸に亜硫酸気体と少量の酸化触媒を添加して成
る陽極室溶液と、硫酸と亜鉛溶液に少量のヨウ素イオン
又はヨウ素を添加して成る陰極室溶液とを隔膜にて前記
両液を分離電解することを特徴とするエネルギー節約型
亜鉛電解方法。
(1) An anode chamber solution made of sulfuric acid with the addition of sulfite gas and a small amount of oxidation catalyst, and a cathode chamber solution made of sulfuric acid and zinc solution with a small amount of iodine ions or iodine, separated by a membrane. An energy-saving zinc electrolysis method characterized by separate electrolysis.
(2)前記酸化触媒として、ヨウ素イオン又はヨウ素を
使用することを特徴とする特許請求の範囲第1項記載の
亜鉛電解方法。
(2) The zinc electrolysis method according to claim 1, wherein iodine ions or iodine is used as the oxidation catalyst.
(3)前記溶液がヨウ素イオン濃度が0.001〜0.
1モル、硫酸濃度0.5〜2.0モル、亜硫酸気体濃度
0.1〜2.0モルから成り電解液温度を20〜40℃
にて電解することを特徴とする特許請求の範囲第1項記
載の亜鉛電解方法。
(3) The solution has an iodine ion concentration of 0.001 to 0.
1 mol, sulfuric acid concentration 0.5-2.0 mol, sulfite gas concentration 0.1-2.0 mol, and the electrolyte temperature is 20-40℃.
2. The zinc electrolytic method according to claim 1, wherein the zinc electrolysis is carried out in a.
(4)前記隔膜が1つ又は2つであることを特徴とする
特許請求の範囲第1項記載の亜鉛電解方法。
(4) The zinc electrolysis method according to claim 1, characterized in that the number of said diaphragms is one or two.
(5)前記電解方法において、多孔性黒鉛電極を陽極と
することを特徴とする特許請求の範囲第1項記載の亜鉛
電解方法。
(5) The zinc electrolysis method according to claim 1, wherein in the electrolysis method, a porous graphite electrode is used as an anode.
(6)前記陽極室で生成された硫酸を石灰石又は焼石灰
と反応させ石膏を製造し、陽極室溶液中のヨウ素イオン
を回収し、該ヨウ素イオンを繰返し使用することを特徴
とする特許請求の範囲第1項記載の亜鉛電解方法。
(6) The sulfuric acid produced in the anode chamber is reacted with limestone or burnt lime to produce gypsum, the iodine ions in the anode chamber solution are recovered, and the iodine ions are repeatedly used. Zinc electrolysis method according to scope 1.
JP59272153A 1984-08-30 1984-12-25 Energy saving type zinc electrolysis Granted JPS6160894A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR84-5302 1984-08-30
KR1019840005302A KR870002075B1 (en) 1984-08-30 1984-08-30 Zinc electrolysis method of saving energy

Publications (2)

Publication Number Publication Date
JPS6160894A true JPS6160894A (en) 1986-03-28
JPS6256238B2 JPS6256238B2 (en) 1987-11-25

Family

ID=19235244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59272153A Granted JPS6160894A (en) 1984-08-30 1984-12-25 Energy saving type zinc electrolysis

Country Status (4)

Country Link
JP (1) JPS6160894A (en)
KR (1) KR870002075B1 (en)
AU (1) AU561640B2 (en)
CA (1) CA1289509C (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0357521A (en) * 1989-07-24 1991-03-12 Yoshitsuka Seiki:Kk Linear feeder of press apparatus
JPH04238634A (en) * 1990-12-28 1992-08-26 Kanai Hiroyuki Positioning and transporting device for wheel disk for automobile
KR100397296B1 (en) * 1998-12-21 2004-02-11 주식회사 포스코 Manufacturing method of electro galvanized steel sheet with excellent surface appearance
CN104911630A (en) * 2015-05-11 2015-09-16 北京工业大学 Low bath voltage zinc electrolysis method

Also Published As

Publication number Publication date
JPS6256238B2 (en) 1987-11-25
KR860001903A (en) 1986-03-24
AU561640B2 (en) 1987-05-14
CA1289509C (en) 1991-09-24
AU4226485A (en) 1986-04-10
KR870002075B1 (en) 1987-12-03

Similar Documents

Publication Publication Date Title
CN106676270B (en) A method of Whote-wet method extracts lead from lead plaster and concentrate of lead sulfide ore
US2273798A (en) Electrolytic process
JP6604466B2 (en) Copper manufacturing method and copper manufacturing apparatus
CN102534661A (en) Method for refining crude lead
US3994789A (en) Galvanic cementation process
CN106756008B (en) The method that two sections of adverse current atmospheric pressure oxidations of sulfonic acid solutions leach lead in concentrate of lead sulfide ore
WO2018014748A1 (en) Process for preparing lead with ammonia electroreduction in ammonium chloride
EP0043854A1 (en) Aqueous electrowinning of metals.
CN106834679B (en) The method that lead in concentrate of lead sulfide ore is leached in two sections of adverse current pressure oxidations of sulfonic acid solutions
JPS6160894A (en) Energy saving type zinc electrolysis
JP5077788B2 (en) Method for recovering battery electrode material
KR890005181B1 (en) Production of zinc from ores and concentrates
WO2019056837A1 (en) Clean extraction method for metal silver
WO2019071642A1 (en) Method for recovering lead from waste lead-acid battery lead paste in wet process
CN102849802A (en) Preparation method of manganese sulfate solution with ultralow calcium and magnesium impurity concentration
EP1601818B1 (en) Method for copper electrowinning in hydrochloric solution
JP5432978B2 (en) High efficiency ruthenium recovery equipment
US3878071A (en) Copper extraction
JP4966460B2 (en) Collection method of valuable metals
CN1188548C (en) Process for directly producing metal zinc by suspension electrolysing high-iron sphalerite
JPS6133918B2 (en)
CN209537588U (en) It is a kind of for separating the electrolysis installation of high cobalt nickel material containing zinc
KR101630087B1 (en) Process for electrorefining of gold by non-aqueous electrolysis
CN114016083B (en) Method for regenerating alkali metal reducing agent in process of preparing metal by alkali metal thermal reduction of metal oxide
KR0146392B1 (en) Process for heavy metal electrowinning