KR820000720B1 - 피페리딘 유도체의 제조방법 - Google Patents

피페리딘 유도체의 제조방법 Download PDF

Info

Publication number
KR820000720B1
KR820000720B1 KR7702848A KR770002848A KR820000720B1 KR 820000720 B1 KR820000720 B1 KR 820000720B1 KR 7702848 A KR7702848 A KR 7702848A KR 770002848 A KR770002848 A KR 770002848A KR 820000720 B1 KR820000720 B1 KR 820000720B1
Authority
KR
South Korea
Prior art keywords
parts
formula
triazine
tetramethyl
residue
Prior art date
Application number
KR7702848A
Other languages
English (en)
Inventor
마차엘 찰머스 알렉산더
잭 제임스
바리쿡
Original Assignee
원본미기재
시바-가이기 에이지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 원본미기재, 시바-가이기 에이지 filed Critical 원본미기재
Priority to KR7702848A priority Critical patent/KR820000720B1/ko
Application granted granted Critical
Publication of KR820000720B1 publication Critical patent/KR820000720B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D251/00Heterocyclic compounds containing 1,3,5-triazine rings
    • C07D251/02Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings
    • C07D251/12Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D251/26Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with only hetero atoms directly attached to ring carbon atoms

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

내용 없음.

Description

피페리딘 유도체의 제조방법
본 발명은 다음과 같은 구조식(I)을 갖는 안정제 화합물인 피페리딘 유도체 및 그 염류의 제법에 관한 것이다.
Figure kpo00001
여기서 ZI는 하기 구소식(II)의 잔기이다.
Figure kpo00002
여기서 R1및 R2는 같거나 상이하고 각각 탄소원자 1-4개를 갖는 직쇄 또는 측쇄의 알킬 잔기이다. x는 -0- 또는
Figure kpo00003
이다.
Y는 산소, 수소, 탄소원자 1-4개를 갖는 직쇄의 알킬잔기, 알릴 또는 벤질이다. n은 0 또는 1이며 A는 -CH2-CH2- 그룹이다. zII및 zIII는 같거나 상이하며 각각 위에서 정의된 바와 같은 구조식(II)의 피페리딘 잔기, 할로겐원자, 구조식(III)을 갖는 아미노 그룹으로서
Figure kpo00004
여기에서 R3및 R4는 같거나 상이하여 각각 수소, 직쇄 또는 측쇄의 저급 알킬잔기 또는 벤질이거나 R3및 R4가 모두 질소원자와 결합하여 모르폴리노를 형성한다. zII및 zIII는 구조식 IV를 갖는 에텔그룹으로서
Figure kpo00005
여기에서 R5는 직쇄 또는 측쇄의 저급알킬 잔기이거나 zII및 zIII는 구조식(V)을 갖는 티오메틸 그룹으로서
Figure kpo00006
여기에서 R6는 탄소원자 1-8개를 갖는 직쇄 또는 측쇄의 알킬잔기이다.
알킬치환체 R1및 R2의 예로서는 메틸, 에틸, n-프로필, 이소프로필, n-부틸 및 sec-부틸인데 가장 바람직한 것은 메틸잔기이다. Y의 예로서 수소, 산소, 알릴 및 벤질이 아닌 것으로는 메틸, 에틸, n-프로필 및 n-부틸이다. 특히 바람직한 Y치환체는 수소 및 탄소원자 1-4개를 갖는 직쇄의 알킬잔기이고 가장 바람직한 치환체는 수소 및 메틸잔기이다.
zII및/또는 zIII의 특수한 부그룹(sub-group)은 치환아민그룹 -NR3R4로서 여기에서, 치환 R3및 R4의 예로서 수소가 아닌 것으로는 메틸, 에틸, n-프로필, 이소프로필, n-부틸, sec-부틸 및 n-헥실 또는 벤질이다. 치환체 R5의 예로서는 메틸, 에틸, n-프로필, 이소프로필, n-부틸, sec-부틸 및 n-헥실이다. 치환체 R6의 예로서는 메틸, 에틸, n-프로필, 이소프로필, n-부틸, sec-부틸, n-헥실 및 n-옥틸이다. zII및 zIII는 서로 같거나 상이한 피페리딘 잔기(II)인 것이 바람직하다.
덜 바람직한 것으로 zII및/또는 zJII가 할로겐이고 그중 염소, N-알킬치환체 또는 유황-알킬 치환체가 바람직하다.
본 발명은 또한 구조식(I)의 화합물의 염류 즉 인산염, 탄산염, 황산염 및 염산염과 같은 무기산의 염류 및 아세테이트, 스테아레이트, 알레이트, 씨트레이트, 타르레이트, 옥살레이트, 벤조에이트 및 치환된 카르바인산과 같은 유기산염을 포함한다.
화합물의 바람직한 부그룹(sub-group)은 다음 구조식(IA)을 갖는 것들이다.
Figure kpo00007
여기에서 D′, D″ 및 D ″′는 같거나 상이하며 이들은 각각 염소 또는 다음 구조식(II A)의 잔기이다.
Figure kpo00008
여기에서 X′는 -0- 또는 NH 잔기이고 Y′는 산소, 수소, 탄소원자 1-4개를 갖는 알킬잔기, 알릴 또는 벤질이다. n′는 0 또다 1이며 A′는 CH2-CH2인데 최소한 D′, D″ 및 D ″′ 중의 하나가 염소원자가 아니어야 한다. 그리고 이들 화합물의 염류도 포함한다.
구조식(IA)의 화합물 그룹내에서 바람직한 화합물은 D′, D″가 같거나 상이한 구조식(II A)의 피페리딘 잔기를 가진 화합물이다. 더 바람직한 화합물은 잔기 D′, D″ 및 D ″′가 같은 피페리딘 잔기를 (IIA)이다. 또한 X가 -0- 또는 -NH- 이고, n이 0이며 Y가 수소 또는 메틸잔기일 때 역시 바람직하다.
더욱 바람직한 구조식(I)의 화합물의 부 그룹(sub-group)으로서는 하기 구조식의 화합물들이다.
Figure kpo00009
여기에서 Y″는 수소, 탄소원자 1-4개를 갖는 직쇄 알킬그룹, 알릴 또는 벤질 및 이들 화합물의 염류이다.
구조식(I)의 화합물의 특정한 예로서 다음과 같은 것이 포함된다.
Figure kpo00010
Figure kpo00011
상기한 화합물의 4′위치에 산소 미 유황교(Bridge)를 갖고 있는 대조적인 화합물도 본 발명의 구조식(I)의 화합물의 예로서 간주된다.
구조식(IA)화합물의 특수한 예로서 다음 물질을 포함한다.
Figure kpo00012
Figure kpo00013
Figure kpo00014
5-트리아진과 동시에 전술한 구조식(IA) 화합물의 설페이트, 클로라이드, 옥사레이트 및 아세테이트염류가 포함된다.
구조식(IB) 화합물의 예로서는 다음과 같은 것이 포함된다.
Figure kpo00015
본 발명에서의 구조식(I) 화합물은 시아누린할라이드, 특히 시아누린클로라이드와 하기 구조식(VI) 화합물과 반응시켜 제조할 수 있다.
Figure kpo00016
zII및 zIII가 피페리딘 잔기일 때 구조식(I)의 화합물은 구조식(VI)의 치환기의 성질에 따라 대칭적이거나 또는 비대칭적일 수 있다. 구조식(I)의 대칭적인 화합물을 제조하기 위하여는 시아누린 할라이드 특히 시아누린클로라이드 1분자 비율당 구조식(VI)의 화합물을 적어도 3분자 비율로 사용하는 것이 좋다. 구조식(I)의 비대칭적인 화합물을 제조하기 위해서는 구조식(VI)의 비대칭적인 화합물을 순차적으로 가하므로서 한번에 한두개의 잔기를 트리아진 분자내로 도입시킬 수 있다. 이러한 방법으로 두서너개의 다른 피페리디닐 잔기를 트리아진핵내로 도입시킬 수 있다. 두개의 똑같은 피페리딘 잔기를 갖는 화합물을 제조하기 위하여 시아누린할라이드의 매분자 비율당 구조식(VI) 화합물을 적어도 2분자 비율을 사용하여 반응시킨다. 반응은 할로겐산 결합제 존재하에서 그리고 필요하면 불활성인 용매 존재하에서 항하는 것이 편리하다. 적당한 할로겐산 결합제의 예로는 트리에틸아민과 같은 유기염기, 수산화나트륨 또는 탄산나트륨과 같은 무기염기 등이 있다. 구조식(VI)의 아민 반응 물질을 과량으로 사용함으로서 할로겐 결합제로서 이용될 수도 있다. 만약 용매를 사용한다면 적당한 용매는 톨루엔이나 키실렌이다.
X가 0인 구조식(VI)의 화합물의 특별한 경우일 때 본 화합물을 알카리 금속과 먼저 반응시켜 알카리 금속염을 만든 뒤 시아누린할라이드와 반응시켜 제조할 수 있다.
zII및 zIII가 둘다 피페리딘 잔기가 아닐 때 반응은 유도된 화합물을 구조식(VII)의 아민, 구조식(VIII)의 알코올염 또는 구조식(IX)의 치오화합물과 반응시킴으로서 이루어진다.
Figure kpo00017
반응은 전술한 바와 같이 적당한 할로겐산 결합제의 존재하에서 쉽게 일어난다. 특별한 경우에는 반응 물질로서 과량의 아민(VII)을 사용할 수도 있다. 알코올(VIII)의 경우에는 반응전에 알카리 금속염을 만든 뒤 사용할 수 있다.
반면 두개의 피페리딘 잔기를 가진 화합물은 시아누린할라이드를 먼저 화합물(VII), (VIII) 및 (IX) 1분자 비율과 반응시키고 생성된 디할로겐화된 물질을 위해서 설명한 조건을 사용해서 피페리딘 화합물(VI)과 처리함으로서 제조할 수 있다.
단지 한개의 피페리딘 잔기를 갖는 화합물을 제조하기 위하여는 구조식(VI)의 1분자 비율을 위해서 설명한 조건하 비교적 저온에서 시아누릴할라이드에 가하고 생성된 디할로겐화된 물질에 (VII),(VIII) 또는 (IX) 중의 한 물질을 1 또는 2분자 비율로 처리함으로서 제조할 수 있다.
반면 화합물(VII), (VIII) 또는 (IX)의 1 또는 2분자 비율을 시아누린할라이드 1분자 비율에 가하여 생성된 디-또는 모노-할로겐화된 생성물을 피페리딘 화합물(VI)의 1분자 비율과 반응시킨다.
본 발명에 사용한 구조식(I)의 화합물중 Y가 수소가 아닌 화합물은 Y가 수소인 구조식(I)의 대응하는 화합물을 질소원자에 붙어있는 수소를 Y그룹으로 대치할 수 있는 화합물과 반응시켜 제조할 수 있다.
예로서 질소치환 반응은 알킬, 알케닐 또는 아랄킬할라이드와 같은 알킬화제, 알케닐화제 또는 아랄킬화제를 사용하므로서 달성할 수 있다.
반면 질소치환 반응응 개미산 및 적당한 알데히드나 케톤을 사용한 룩카트(Feuckart) 또는 월라크(Wallach) 반응에 위해서 실시될 수도 있다. 예를들면 대응하는 NH 화합물을 개미산 또는 포르마린과 반응시키므로 N-메틸화합물을 생성시킬 수도 있다.
Y의 1개 또는 그 이상이 산소인 구조식(I)의 화합물을 생성시키기 위해서 대응하는 치환체 Y가 수소인 구조식(I)의 대응하는 화합물과 과(過) 텅스텐산의 존재하에서 과산화수소와 같은 과산화물로서 반응시키거나 또는 과 개미산(Performic acid) 또는 과식초산(Peracetic acid)과 같은 과산류로서 산화시킨다.
본 산화 반응은 경우에 따라 출발물질로서 구조식(I)의 NH 화합물 대신 대응하는 N-저급 알킬 화합물을 채택할 수도 있다.
이론적으로 본 방법은 Y 중의 하나가 산소인 구조식(I)의 화합물을 생성시키는데 사용될 수 있지만 실제로는 Y의 모두가 산소가 되도록 산화반응을 항할 때 더 바람직하다. 그렇게 안하면 여러 가지 복합물이 생성되는데 구조식(I)의 부분적인 N-옥실을 분리하기가 힘들다.
[실시예 1]
키실렌 200부에 2,2,6,6-테트라메틸피페리딘 4-올 28.2부를 용해시킨 액에 나트륨 4.2부를 가하였다. 이 혼합물을 18시간 동안 환류 가열한 뒤 냉각하였다. 이 액에 시아누린클로라이드 10.1부를 조금씩 가하고 환류온도에서 1시간 동안 가열하였다. 감압하에서 용매를 증발하고 건조시킨 뒤, 삭크레트 추출기를 사용하여 석유 에테르로(비점 : 60-80℃)추출하였다. 진공 증발 결과 불순물 2,2,6,6-테트라메틸 피페리딘-4-을 섞인 생성물을 얻었다. 진공하에서 승하시켜서 불순물을 제거하고 무색의 잔류 고체는 석유에테르(비점 : 60-80℃)로 결정화하여 융점이 198-200℃인 2,4,6-트리스[2′,2′,6′,6′-테트라메틸피페리디닐-4′-옥시]-1,3,5-트리아진 23.7부를 얻었다. 이 물질을 원소 분석한 결과, 다음과 같은 결과를 얻었다.
Figure kpo00018
[실시예 2]
시아누린 클로라이드 18.5부를 물 600부와 섞어 슬러리를 만들고 4-아미노-2,2,6,6-테트라메틸 피페리딘 31.4부로 처리하였다. 거기에 물 20부에 가성소다 8부 희석시킨 용액을 조심스럽게 가하고, 혼탁된 액을 실온에서 30분 동안 교반하였다. 현탁액을 16시간 동안 90℃에서 가열한 뒤 냉각시키면 무색의 고체인 2-클로로-4,6-비스-(2′,2′,6′,6′-테트라메틸 피페리디닐-4′-아미노)-1,3,5-트리아진 39.5부가 생성되는데, 이를 여과한 뒤 물로 세척하고 진공하에서 건조시켰다. 이 물질의 융점은 277-278℃였다.
그 원소분석 결과는 다음과 같이 나타났다.
Figure kpo00019
[실시예 3]
실시예 4에서 얻어진 얻은 물질 12부에 에탄올 920부와 물 190부를 썩은 것을 가하여 따뜻하게 해준 용액에 4-아미노-2,2,6,6-테트라메틸 피페리딘 9부를 가한 뒤 6시간 동안 한류 가열하였다. 용매를 증발시키고 잔여물을 건조한 뒤 물 200부로 처리하였다. 여과하여 무색의 고체인 2,4,6-트리스 2′,2′,6′,6′-테트라메틸 피페리디닐-4′-아미노-1,3,5-트리아진 모노 하이드레이트 14.0부를 얻고 이를 석유 에테르(비점 60-80℃)를 사용하여 싹스레트 추출기로서 정제하였다. 잔유물질은 융점이 213-215℃였고 그 원소분석 결과는 다음과 같았다.
Figure kpo00020
진공하에서 이 물질을 더 가열하여 융점이 217-219℃인 무수물질을 얻었다.
[실시예 4]
실시예 1에서 제조한 물질 8.19부를 이소프로판을 60부에 용해시키고, 물에서 냉각시키면서 요오도메틸 9부를 가했다. 120시간 후 고체를 여과하여 분리시키고 디메틸 에테르로서 세척하였다. 얻어진 고체를 소량의 물에 용해시키고 이 용액이 염기성이 될 때까지 탄산 나트륨을 가하였다. 클로로폼으로 추출하여 2,4,6-트리스[1′,2′,2′,6′,6′-펜타메틸피페리디닐-4′-옥시)-1,3,5-트리아진을 얻었다. 이 물질을 클로로폼과 에탄올 1:1의 혼합액으로 결정화하여 융점이 254-247℃인 무색의 고체를 얻었다. 이의 원소분석 결과는 다음과 같다.
Figure kpo00021
[실시예 5]
4-하이드록실-2,2,6,6-테트라메틸 피페리딘-1-옥사이드 25.8부와 수산화칼륨 8.4부를 물 500부에 용해시켰다. 거기에 시아누린 클로라이드 9.2부를 조심스럽게 가하고 용액을 2시간 동안 환류가열하였다. 여과하여 고체 5부를 얻고 물 20부 및 비등 석유 에테르(비점, 80-100℃)로서 차례로 세척하였다. 이 물질을 건조시킨 후 융점이 192-194℃인 2,4,6-트리스[1′-옥실-2′,2′,6′,6′-테트라메틸 핏페리디닐-4′-옥시]-1,3,5-트리아진을 얻으며, 원소분석 결과는 다음과 같았다.
Figure kpo00022
[실시예 6]
2,2,6,6-테트라 메틸 피페리딘-4-올 25부와 중탄산 나트륨 13.5부를 물 250부에 융해시킨 혼합물에, 시아누린 클로라이드 14.75부를 조심스럽게 가했다. 혼합물을 교반하면서 용액이 투명해질 때까지 가열하였다. 6시간 후 무색의 침전이 생성되었으며 냉각시킨 후에 여과하였다. 얻어진 고체를 물 100부로서 3회 세척하고 진공 오븐에서 건조하여 2-클로로-4,6-비스(2′,2′,6′,6′-테트라 메틸 피페리디닐-4′-옥시]-1,3,5-트리아진 모노하이드레이트 13.5부를 얻었다.
이 물질의 융점은 225-225℃였으며 원소분석 결과는 다음과 같다.
Figure kpo00023
[실시예 7]
무수벤젠 160부에 4-하이드록시-2,2,6,6-테트라메틸 피페리딘-1-옥사이드 10.4분를 혼합시킨 용액에 소디움 1.38부를 조금씩 가하였다. 이 혼합물을 18시간 동안 환류 가열한 뒤 냉각시켰다. 시아누린 클로라이드 3.7부를 조심스럽게 가하고 혼합물을 18시간 동안 환류 가열하였다. 냉각시키면서 무기염을 여과 제거하고, 여과액을 진공하에서 증발시켰다. 진공하에서 잔류 고체를 승화시켜 미반응의 4-하이드록시-2,2,6,6-테트라메틸 피페리딘-1-옥사이드를 제거하고, 잔유물을 무수에탄올로 3번 재결정시켜 융점이 197-199℃인 2-클로로-4,6-비스(1′-옥실-2′,2′,6′,6′-테트라메틸-페리디닐-4′-옥시)-1,3,5-트리아진을 얻었다.
본 화합물의 원소분석치는 다음과 같았다.
Figure kpo00024
[실시예 8]
키실렌 100부에 1-벤질-2,2,6,6-테트라메틸 피페리딘-4-올 4.94g를 용해시킨 용액에 소디움 0.8부를 조금씩 가하였다. 이 혼합물을 18시간 동안 환류 가열한 뒤, 냉각시켰다. 과량의 소디움을 제거한 뒤, 시아누린 클로라이드 1.2부를 조심스럽게 가하였다. 혼합물을 3시간 동안 환류 교반한 후, 진공하에서 용매를 증발시키고 석유 에테르(비점 80-100℃)를 사용하여 삭크레트에서 추출하면 엷은 황색 고체 1.7부가 생긴다. 실리카겔상에서 이 물질을 칼럼크로마토그라피하여 2,4,6-트리(1′-벤질-2′,2′,6′,6′-테트라메틸 피페리디닐-4′-옥시)-1,3,5-트리아진을 얻었다. 이 물질의 융점은 125-129℃였고 분광분석적으로 확인되었다(적외선, 헥자기공명 스펙트로 스코피 및 mass 스펙트로메트리).
[실시예 9]
2-클로로-4,6-비스(2′,2′,6′,6′-테트라메틸 피페리딘-4′-아미노-1,3,5-트리아진 4.8부를 톨루엔 300부와 4급 부틸 알코올 200부의 혼합물에 따뜻하게 해주면서 용해시켰다. 다음에 톨루엔 40부에 2,2,6,6-테트라메틸 피페리딘-4-올의 소디움 염 4부를 용해시킨 용액(상기 실시예에서와 같이 제조함)을 적가하고 18시간 동안 혼합물을 환류 가열하였다.
용액을 증발시키고 잔유물을 물15부로 세척하고 여과하여 진공에서 건조시킨 후 무색의 고체 4부를 얻었다. 이 물질이 2,4-비스 [2′,2′,6′,6′-테트라메틸 피페리디닐-4′-아미노]-6-[2″,2″,6″,6″-테트라메틸 피페리디닐-4″-옥시]-1,3,5-트리아진였으며 메탄올 및 물 혼합물로 결정화시킨 결과 융점이 186.5-187.5℃인 결정을 획득했다.
이 물질의 원소분석 결과는 다음과 같다.
Figure kpo00025
[실시예 10]
이소프로판올 100부에 2,4,6-트리스[2′,2′,6′,6′-테트라메틸 피페리딘-4′-아미노]-1,3,5-트리아진 4부를 용해시킨 용액에, 5℃에서 요오드메탄 6.4부와 처리시켰다. 이 혼합물을 실온에서 3일간 정치한 뒤 진공하에서 증발시켜 남은 잔유물을 탄산나트륨 포화용액과 처리시켰다. 이 처리물을 여과하고 진공하에서 건조시켜 무색의 고체를 얻었는데 이것을 분광기에 의한 방법으로 측정한 결과 부분적으로 메틸화된 것이 확인되었다.
이 물질을 이소프로판올 180부에 녹인 뒤 요오드메탄 4부와 처리하였다. 처리된 혼합물을 실온에서 3일간 정치한 뒤 진공하에서 증발시키고 탄산나트륨 포화용액과 처리하면 무색의 고체 2,4,6-트리스(1′,2′,6′,6′-펜타메틸피페리디닐-4′-아미노)-1,3,5-트리아진을 얻었는데 이 생성물을 여과하여 진공하에서 건조시켰다. 이 물질을 알루미나 상에서 칼럼 크로마토그라피하고 메탄올 및 물 혼합액으로 재결정하여 융점이 235-240℃인 물질을 얻었다.
이 화합물의 원소분석 결과는 다음과 같다.
Figure kpo00026
[실시예 11]
에탄올 100부와 물 20부 혼합물에 2-클로로-4,6-비스(2′,2′,6′,6′-테트라메틸 피페리디닐-4′-이미노)-1,3,5-트리아진 4.8부를 녹인 용액에 4-(β-아미노에틸)-1,2,6,6-테트라메틸 피페리딘 4부를 가하였다.
용액을 8시간 동안 환류 교반한 뒤 진공하에서 증발시켰다. 잔류물을 클로로 폼 25부에 녹인 후 물 50부로 세척하였다. 클로로 폼 상(Phase)을 건조 증발하여 융점이 75℃인 무색의 고체 6.0부를 얻었다. 이 품질을 알루미나상에서 칼럼크로마토그라피하여 융점이 96-99℃인 2,4-비스(2′,2′,6′,6′-테트라메틸 피페리디닐-4′-아미노)-6-(2″,2″,6″,6″-테트라메틸 피페리디닐-4″-에틸렌아미노]-1,3,5-트리아진을 얻었다.
이 물질을 원소분석하여 다음과 같은 결과를 얻었다.
Figure kpo00027
[실시예 12]
톨루엔 100부에 1-아릴-2,2,6,6-테트라메틸 피페리딘-4-올 3.94부를 혼합한 용액에 소디움 0.8부를 가했다. 이 혼합물을 18시간 동안 환류 가열한 후 과량의 비반응의 소디움을 제거했다. 다음에 시아누린 클로라이드 1.24부를 조심스럽게 가하고 용액을 4.5시간 동안 환류 교반하였다.
용매를 진공하에서 증발시키고 잔류물을 알루미나상에서 칼럼 크로마토그라피하여 융점이 167-170℃인 2-클로로-4,6-비스(1′-알릴-2′,2′,6′,6′-테트라메틸 피페리디닐-4′-옥시)-1,3,5-트리아진을 얻었다.
원소분석 결과는 다음과 같다.
Figure kpo00028
[실시예 13]
톨루엔 100부(용량으로)에 2-(2′,2′,6′,6′-테트라메틸 피페리디닐-4′)에틸 알코올 5.6부(중량으로) 및 소디움 1.4부(중량으로)를 혼합하여 24시간 동안 환류 가열하였다.
생성된 용액에 시아누린 클로라이드 1.8부(중량으로)를 톨루엔 30부(용량으로)에 용해시킨 것을 20분 이상 가한 뒤 계속하여 18시간 동안 환류 가열하였다. 감압증류에 의하여 톨루엔을 제거하고 물에 현탁된 고체를 에테르(3×50용량부)로 추출하고, 추출된 물질을 황산 마그네시움상에서 건조시켰다. 에테르를 증류 제거한 후 잔유물을 석유 에테르로 미세 분말시킨 후 여과하여 고체를 얻었다. 이것을 에틸알코올 20부(용량으로)에 용해시키고 물 100부(용량으로)를 가하여 재침전시켰다.
이렇게 하여 융점이 104-106℃인 순수한 2,4,6-트리스[2′,2′,6′,6′-테트라메틸 피페리디닐-4′-에틸렌옥시]-1,3,5-트리아진을 얻었으며 원소분석 결과는 다음과 같다.
Figure kpo00029
[실시예 14]
시아누린 클로라이드 1.8부(중량으로) 및 2-(2′,2′,6′,6′-테트라메틸 피페리디닐-4′)에틸아민 11.0부(중량으로)를 160℃에서 4시간 동안 교반하여 주면서 가열하였다. 생성된 덩어리를 냉각시키고 유상분을 따르어버리고, 물 100부로서 희석시킨 다음 실온에서 24시간 동안 정치하여 두었다. 침전으로 된 고체를 여과하여 건조한 후 에틸아세테이트 50부로 재결정하여 융점이 169℃이며 순수한 2,4,6-트리스[2′,2′,6′,6′-테트라메틸 피페리디닐-4′-에틸렌아미노]-1,3,5-트리아진을 얻었다.
원소분석 결과는 다음과 같다.
Figure kpo00030
[실시예 15]
시아누린 클로라이드 3.7부를 에탄올 120부 및 물 120부의 혼합물에 가하고 온도를 -15℃로 유지하면서 교반하였다. 이 온도에서 4-아미노-2,2,6,6-테트라메틸 피페리딘 23.12부를 가하였다. 2시간 후, 무색의 고체가 침전되었다. 이 물질을 여과 분리하여 진공하에서 건조한 뒤, 2,4-클로로-6-(2′,2′,6′,6′-테트라메틸 피페리디닐-4′-아미노]-1,3,5-트리아진 염산염을 얻었다.
이 염의 융점은 275℃ 이상이였으며 원소분석 결과는 다음과 같았다.
Figure kpo00031
[실시예 16]
톨루엔 20부에(용량으로) 2-(2′,2′,6′,6′-테트라메틸 피페리디닐-4′) 에틸아민 7.4부(중량으로)를 녹인 용액에, 시아누린 클로라이드 1.85부(중량)를 톨루엔 20부(용량으로) 녹인 용액을 조금씩 가했다.
생성된 현탁액을 실온에서 24시간 동안 교반시켰다. 그런 후 생성된 과체를 여과하여 모으고 가성소다 10% 수용액으로 12시간 더 처리하였다. 고체를 여과하여 세척된 수용액의 폐하가 6-7이 될 때까지 반복하여 세척하고 60℃에서 건조시켰다. 이것을 석유에테르(비점 60-80℃)를 가하여 클로로포름 용액으로부터 재침전시켜 정제하여 융점이 168℃인 2-클로로-4,6-디[2′,2′,6′,6′-테트라메틸-피페리디닐-4′-에틸렌아미노]-1,3,5-트리아진을 얻었다.
원소분석 결과는 다음과 같다.
Figure kpo00032
[실시예 17]
물 300부에 2-에틸아미노-4,6-디클로로-1,3,5-트리아진 5,6부를 가하여 슬러리를 만들어 55℃의 온도로 가열하였다. 여기서 4-아미노-2,2,6,6-테트라메틸 피페리딘 4.8부 및 1N 수산화나트륨 30부를 가하였다. 혼합물을 6시간 동안 55℃에서 교반한 뒤 생성된 무색의 고체를 여과하여 온수 700부로서 세척하여 융점이 189-191℃인 2-에틸아미노-4-클로로-6-(2′,2′,6′,6′-테트라메틸피페리디닐-4′-아미노)-1,3,5-트리아진을 얻었다. 원소분석 결과는 다음과 같다.
Figure kpo00033
[실시예 18]
실시예 17과 동일한 조건하에서, 2-이소프로필아미노-4,6-디클로로-1,3,5-트리아진 6.2부와 4-아미노-2,2,6,6-테트라메틸 피페리딘 4.8부를 4-아미노-2,2,6,6-테트라메틸 피페리딘 4부와 반응시켜 2-이소프로필아미노-4-클로로-6-(2′,2′,6′,6′-테트라메틸 피페리디닐-4′-아미노)-1,3,5-트리아진 7부를 얻었다. 이 생성물의 융점은 174-176℃였으며 원소분석 결과는 다음과 같았다.
Figure kpo00034
[실시예 19]
실시예 17과 동일한 조건하에서 2-n-옥틸티오-4,6-디클로로-1,3,5-트리아진 6.7부를 4-아미노-2,2,6,6-테트라메틸 피페리딘 3.55부와 반응시켜 2-n-옥틸티오-4-클로로-6-(2′,2′,6′,6′-테트라메틸 피페리디닐-4′-아미노)-1,3,5-트리아진 9.1부를 얻었다. 이 물질의 융점은 79-81℃었으며 원소분석 결과는 다음과 같았다.
Figure kpo00035
[실시예 20]
톨루엔에 1,2,3,6,6-펜타메틸 피페리딘-4-올 3,6부와 소디움 0.6부를 가하고 환류 온도까지 가열하였다. 16시간 후에 용액을 냉각시키고 미반응의 소디움을 제거시킨 후 2-클로로-4,6-디메틸티오-1,3,5-트리아진 4.1부와 처리하였다. 용액을 다시 환류온도에서 18시간 동안 더 가열하여 준 다음 냉각시키고 염화나트륨을 여과 제거했다. 여과액을 감압하에서 증발시켜 용매를 제거한 뒤, 잔유물을 석유 에테르(비점 60-80℃)로 결정화시켜 융점이 143-145℃인 2,4-디메틸티오-6-[1′,2′,2′,6′,6′-펜타메틸피페리디닐-4′-옥시]-1,3,5-트리아진 2부를 얻었다.
원소분석 결과는 다음과 같다.
Figure kpo00036
[실시예 21]
2-클로로-4,6-비스[2′,2′,6′,6′-테트라메틸-피페리디닐-4′-아미노]1,3,5-트리아진 2.4부를, 이소프로필아민 1.2부를 물 40부에 섞은 용액과 처리했다. 용액을 실온에서 18시간 동안 교반한 뒤 다시 환류온도에서 4시간 동안 더 교반하여 준 후 냉각시키고 증발하여 물질 1.6부를 얻었다. 이 잔류물을 묽은 수산화나트륨 10부와 처리하고 클로로포름 50부로 두번 추출하였다. 건조 후, 용매를 제거하고 반-고상 물질을 얻었다. 상기 반-고상물질에 메탄올 2부를 가하여 무색의 고체 2-이소프로필아미노-4,6-비스-[2′,2′,6′,6′-테트라메틸 피페리디닐-4′-아미노)-1,3,5-트리아진을 얻었다. 이 물질의 융점은 120-122℃였으며 원소분석 결과는 다음과 같았다.
Figure kpo00037
[실시예 22]
에탄올 150부에 소디움 0.36부를 가한 용액에 2-클로로-4,6-비스-[2′,2′,6′,6′-테트라메틸 피페리디닐-4′-아미노]-1,3,5-트리아진 6.6부를 처리하였다. 혼합물을 16시간 동안 환류 가열한 후, 냉각시켜 여과하였다. 진공하에서 여액을 증발하여 무색의 고체 6.6부를 얻은 뒤 알루미나 칼럼상에서 크로마토그라피하여 융점이 189-191℃인 2-에톡시-4,6-비스(2′,2′,6′,6′-테트라메틸 피페리디닐-4′-아미노)-1,3,5-트리아진을 얻었다.
원소분석 결과는 다음과 같았다.
Figure kpo00038
[실시예 23]
4-아미노-2,2,6,6-테트라메틸 피페리딘 6.28부를 톨루엔 100부에 녹인 용액에, 2-클로로-4,6-디(메틸티오)-1,3,5-트리아진 4.1부를 조심스럽게 가하였다. 이 용액을 6시간 동안 환류 교반한 후 얻은 고체 6부를 여과 건조시켰다.
이 물질을 포화 탄산소다 용액 30부와 처리한 뒤, 클로로포름 300부로 추출하였다. 유기추출물을 건조시킨 후, 증발하여 무색 접착성의 고체를 얻었다. 이 생성물을 알루미나상에서 칼럼크로마토그라피하여 순수한 2-(2′,2′,6′,6′-테트라메틸 피페리디닐-4′-아미노)-4,6-디(메틸티오)-1,3,5-트리아진을 얻었다. 이 물질을 에탄올로부터 재결정하여 융점이 173-175℃인 생성물을 얻었으며 원소분석 결과는 다음과 같다.
Figure kpo00039
[실시예 24]
소디움 1.4부와 2,2,6,6-테트라메틸 피페리딘-4-올 6.28부를 톨루엔 100부에 용해시키고 24시간 동안 환류 가열하였다. 이 용액을 냉각시킨 뒤 2-에틸아미노-4,6-디클로로-1,3,5-트리아진 3.86부를 가한 다음 2시간 더 환류 가열하였다. 용매를 진공하에서 증발하고 옥사레이트 추출기를 사용해서 클로로포름으로 추출하여 물질을 얻었다. 이 추출물을 증발하여 무색의 고체를 얻고 알루미나 칼럼상에서 크로마토그라피하고 에틸 아세테이트로 결정화하여 융점이 189.5-190.5℃인 순수한 2-에틸아미노-4,6-비스 2′,2′,6′,6′-테트라에틸-피페리디닐-4′-옥시-1,3,5-트리아진을 얻엇다.
이 물질을 원소분석하여 다음과 같은 결과를 얻었다.
Figure kpo00040
[실시예 25]
2,4-디클로로-6-(2′,2′,6′,6′-테트라메틸 피페리디닐-4′-아미노)-1,3,5-트리아진 염산염 3부를 에탄올 및 물 1:2의 혼합물 400부에 용해시킨 후 n-프로필아민 1.18부를 가한 후 용액을 18시간 동안 환류 가열하였다. 용매를 증발하여 무색의 고체를 얻은 뒤 메탄올/석유에테르(비점범위 60-80℃/에틸 아세테이트 혼합 용매로 재결정하여 융점이 270℃ 이상인 순수한 2-클로로-4-n-프로필아민-6-(2′,2′,6′,6′-테트라메틸피페리딜-4′-아미노)-1,3,5-트리아진 염산염을 얻었다.
원소분석 결과는 다음과 같았다.
Figure kpo00041
[실시예 26]
2-클로로-4,6-디(메틸티오)-1,3,5-트리아진 2.76(중량) 및 2(1′,2′,6′,6′-펜타메틸 피페리디닐-4′)-에틸아민 4.0부(중량)를 톨루엔 50부(용량)에 용해시킨 용액을 4시간 동안 환류 가열한 뒤 여과하고 감압하에서 증류하여 톨루엔을 제거하고 유사 잔유물을 얻었다. 이를 석유에테르(비점범위 40-60℃)로 미세분말시킨 뒤 흰 고체를 얻었으며 석유에테르(60-80℃) 25부(용량)로 재결정하여 융점이 119℃인 순수한 2-(1′,2′,6′,6′-펜타메틸 피페리디닐-4′-에틸렌아미노)-4,6-디(메틸티오)-1,3,5-트리아진을 얻었다. 원소분석 결과는 다음과 같았다.
Figure kpo00042
[실시예 27]
2-클로로-4,6-비스(2′,2′,6′,6′-테트라메틸 피페리디닐-4′-아미노)-1,3,5-트리아진 1.5부를 에탄올 물 5:1의 혼합물 130부 녹인 용액에 디메틸아민 4부를 33% 에탄올에 용해시킨 용액을 가했다. 이 혼합물을 교반 고압기에 넣고 20 질소 기압하 100℃에서 24시간 동안 반응시켰다. 용액을 여과하고 여액을 진공하에서 증발한 후 미갈색의 고체를 얻었다. 이 물질을 활성탄으로 처리하여 색을 제거하고 삭스레트 추출기를 사용하여 석유 에테르(비점범위 60-80℃)로 추출하여 무색의 고체인 2-디메틸아미노-4,6-비스(2′,2′,6′,6′-테트라메틸 피페리디닐-4′-아미노)-1,3,5-트리아진 모노하이드레이트를 얻었다.
이 물질의 융점은 230-230℃였으며 mass 스펙트로 메트리에 의한 분있량은 432였고 그 원소분석 결과는 다음과 같았다.
Figure kpo00043
[실시예 28]
2-클로로-4,6-비스[2′,2′,6′,6′-테트라메틸 피페리딘-일-4′-아미노]-1,3,5-트리아진 3부를 에탄올 225부와 물 46부로 교반 가열하면서 녹인 후, 물포린 1.26부를 가한 뒤 24시간 동안 환류 가열하였다. 용액을 진공하에서 증발시키고 물 50부를 가했다. 30분간 교반한 후 용액을 여과하고 여과된 물질을 포화 탄산나트륨 용액 50부로 처리한 후 클로로포름 200부로 추출하였다. 이 추출물을 건조한 뒤 진공하에서 증발시켜 융점이 197-181℃인 2-몰포리노-4,6-비스(2′,2′,6′,6′-테트라메틸 피페리디닐-4′-아미노)-1,3,5-트리아진 디하이드레인트일 무색의 고체를 얻었다. 이 물질을 mass 스펙트로메트리에 의하여 분자량을 측정한 결과 분자량은 474였으며 그 원소분석 결과는 다음과 같았다.
Figure kpo00044
[실시예 29]
2-클로로-4,6-비스[2′,2′,6′,6′-테트라메틸 피페리디닐-4′-아미노]-1,3,5-트리아진 2.2부와 벤질아민 1.07부를 에탄올 150부와 물 30부의 혼합물에 용해시키고 18시간 동안 환류 가열하였다. 용매를 증발시킨 후 알루미나 칼럼상에서 크로마토그라피하여 고체를 얻은 후 물로 결정화하여 융점이 98-100℃인 무색의 고체 2-벤젠아미노-4,6-비스(2′,2′,6′,6′-테트라메틸 피페리디닐-4′-아미노)-1,3,5-트리아진 모노하이드레이트를 얻었다. 이 물질의 원소분석 결과는 다음과 같다.
Figure kpo00045
[실시예 30]
2-클로로-4,6-비스(2′,2′,6′,6′-테트라메틸 피페리디닐-4′-옥시)-1,3,5-트리아진 2부와 4-아미노-2,2,6,6-테트라메틸 피페리딘 2.48부를 에탄올 42부와 물 20부의 혼합물에 용해시키고 18시간 동안 환류 가열하였다.
용액을 여과하여 순수한 무색 고체를 얻었으며 이의 융점은 280℃였고 mass 스펙트로메트리에 의한 분자량은 406이었다. 이 물질이 2-아미노-4,6-비스(2′,2′,6′,6′-테트라메틸 피페리디닐-4′-아미노)-1,3,5-트리아진의 염산염이었고 원소분석시킨 결과 다음과 같은 결과를 얻었다.
Figure kpo00046

Claims (1)

  1. 시아누린 할라리드를 다음 구조식(VI) 화합물과 반응시키거나 반응 생성물을 일반식
    Figure kpo00047
    을 갖는 아민, 일반식 HOR5를 갖는 알코올 및 일반식 HSR6을 갖는 티올로 구성된 기중에서 선택된 화합물과 반응시킴을 특징으로 하는 다음 구조식(I)을 갖는 안정제 화합물인 피페리딘 유도체의 제조방법.
    Figure kpo00048
    상기식에서 zI은 상기 구조식(II)를 갖는 잔기(본 구조식(II)에서 R1및 R2는 같거나 상이하고 이들은 각각 탄소원자 1-4개를 갖는 직쇄 또는 분지쇄의 알킬잔기이며 X는
    Figure kpo00049
    잔기이고 zII및 zIII는 같거나 상이하며 이들은 각각 위에서 정의한 바와 같은 구조식(II)의 피페리딘 잔기, 할로겐원자, 일반식
    Figure kpo00050
    은 갖는 아미노기이거나(본 일반식에서 R4및 R3는 같거나 상이하며 각각 수소, 직쇄 또는 분지쇄의 저급알킬 잔기 또는 벤질이거나 또는 R3및 R4가 모두 질소원자와 결합하여 모르폴리노를 형성한다) 또는 일반식 -OR5을 갖는 에텔기(본 일반식에서 R5는 직쇄 또는 분지쇄의 저급알킬잔기이다) 또는 일반식 -SR6을 갖는 티오에텔기이며(본 일반식에서 R6은 탄소원자 1-8개를 갖는 직쇄 또는 분지쇄의 알킬잔기이다.)
    Y는 0, 수소, 탄소원자 1-4개를 갖는 직쇄의 알킬잔기이거나 알킬 또는 벤질이며 n은 0 또는 1이고 A는 -CH2-CH2-기이다.
KR7702848A 1973-02-03 1977-12-06 피페리딘 유도체의 제조방법 KR820000720B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR7702848A KR820000720B1 (ko) 1973-02-03 1977-12-06 피페리딘 유도체의 제조방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
GB546973 1973-02-03
GB5469 1973-02-03
KR1019730001349 1973-08-20
KR7702848A KR820000720B1 (ko) 1973-02-03 1977-12-06 피페리딘 유도체의 제조방법

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1019730001349 Division 1973-02-03 1973-08-20

Publications (1)

Publication Number Publication Date
KR820000720B1 true KR820000720B1 (ko) 1982-04-30

Family

ID=27254633

Family Applications (1)

Application Number Title Priority Date Filing Date
KR7702848A KR820000720B1 (ko) 1973-02-03 1977-12-06 피페리딘 유도체의 제조방법

Country Status (1)

Country Link
KR (1) KR820000720B1 (ko)

Similar Documents

Publication Publication Date Title
US3925376A (en) Piperidine derivatives
US4670559A (en) 2-amino-4-cyclopropyl-1,3,5-triazines as intermediates for the production of herbicidally active N-(cyclopropyl-triazinyl)-N'-arylsulfonyl ureas
Schaefer et al. Cyanuric chloride derivatives. IV. Aryloxy-s-triazines
EP0172413B1 (en) Process for producing piperidine derivatives
KR0130901B1 (ko) 2,2,6,6-테트라메틸피페리딘기를 함유하는 트리아진 화합물의 메틸화 방법
KR820000720B1 (ko) 피페리딘 유도체의 제조방법
JPH0458468B2 (ko)
GRUNDMANN et al. New 1, 2, 4-Triazine Derivatives1a
CN114621184B (zh) 一种阿帕他胺的制备方法
KR920010926B1 (ko) 라니티딘 및 그의 히드로클로라이드의 제조방법
Gilbert et al. Simplified preparation of aliphatic thio amides
EP0488209B1 (en) Process for producing benzylphthalazinone derivatives and salts thereof
HU191682B (en) Process for preparing 1-benzyl-azetidin-3-ol derivatives
KR920009884B1 (ko) 2,3-티오모르폴린디온-2-옥심유도체 및 이것의 제조방법
EP0644192A1 (en) A process for making a benzothiadiazole derivative
US3729468A (en) Triazine derivatives and process for their preparation
US6632944B2 (en) Process for isolation of monophenolic-bisaryl triazines
US2867621A (en) Methyl triazines
Schaefer et al. Cyanuric chloride derivatives. VI. Rearrangement reactions of 2, 4-dialkoxy-6-amino-s-triazines
US3412093A (en) New adenine derivatives and method for their preparation
KR920000375B1 (ko) 치환된 구아닐티오우레아의 제조방법
US3906042A (en) Multifunctional hydroxy compounds
SU999967A3 (ru) Способ получени 6-N-замещенных 6-амино-3-пиридазинилгидразинов или их солей
EP0165006B1 (en) Processes for preparing substituted halomethyl-s-triazines
KR870001625B1 (ko) N-피롤릴 피리다진아민 유도체의 제조방법