KR20240070483A - 알루미늄 전구체 및 이를 이용한 박막 형성 방법, 그리고 알루미늄 전구체의 제조방법 - Google Patents
알루미늄 전구체 및 이를 이용한 박막 형성 방법, 그리고 알루미늄 전구체의 제조방법 Download PDFInfo
- Publication number
- KR20240070483A KR20240070483A KR1020240059495A KR20240059495A KR20240070483A KR 20240070483 A KR20240070483 A KR 20240070483A KR 1020240059495 A KR1020240059495 A KR 1020240059495A KR 20240059495 A KR20240059495 A KR 20240059495A KR 20240070483 A KR20240070483 A KR 20240070483A
- Authority
- KR
- South Korea
- Prior art keywords
- formula
- precursor
- aluminum
- thin film
- compound represented
- Prior art date
Links
- 239000002243 precursor Substances 0.000 title claims abstract description 65
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title claims abstract description 31
- 229910052782 aluminium Inorganic materials 0.000 title claims abstract description 31
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 17
- 238000000034 method Methods 0.000 title claims description 25
- 150000001875 compounds Chemical class 0.000 claims abstract description 18
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims abstract description 9
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims abstract description 7
- 229910052736 halogen Inorganic materials 0.000 claims abstract description 6
- 150000002367 halogens Chemical class 0.000 claims abstract description 6
- 238000002156 mixing Methods 0.000 claims abstract description 6
- 239000010409 thin film Substances 0.000 claims description 28
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 15
- 238000006243 chemical reaction Methods 0.000 claims description 11
- 239000000758 substrate Substances 0.000 claims description 11
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 6
- 239000000463 material Substances 0.000 claims description 6
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims description 5
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 claims description 3
- DHXVGJBLRPWPCS-UHFFFAOYSA-N Tetrahydropyran Chemical compound C1CCOCC1 DHXVGJBLRPWPCS-UHFFFAOYSA-N 0.000 claims description 3
- COOGPNLGKIHLSK-UHFFFAOYSA-N aluminium sulfide Chemical compound [Al+3].[Al+3].[S-2].[S-2].[S-2] COOGPNLGKIHLSK-UHFFFAOYSA-N 0.000 claims description 3
- 238000010926 purge Methods 0.000 claims description 3
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 3
- 239000010408 film Substances 0.000 description 25
- JLTRXTDYQLMHGR-UHFFFAOYSA-N trimethylaluminium Chemical compound C[Al](C)C JLTRXTDYQLMHGR-UHFFFAOYSA-N 0.000 description 15
- 239000007789 gas Substances 0.000 description 10
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 238000005160 1H NMR spectroscopy Methods 0.000 description 6
- 238000002411 thermogravimetry Methods 0.000 description 6
- 238000000113 differential scanning calorimetry Methods 0.000 description 5
- NVJUHMXYKCUMQA-UHFFFAOYSA-N 1-ethoxypropane Chemical compound CCCOCC NVJUHMXYKCUMQA-UHFFFAOYSA-N 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 229910052593 corundum Inorganic materials 0.000 description 4
- 238000000354 decomposition reaction Methods 0.000 description 4
- IOPLHGOSNCJOOO-UHFFFAOYSA-N methyl 3,4-diaminobenzoate Chemical compound COC(=O)C1=CC=C(N)C(N)=C1 IOPLHGOSNCJOOO-UHFFFAOYSA-N 0.000 description 4
- ZERULLAPCVRMCO-UHFFFAOYSA-N sulfure de di n-propyle Natural products CCCSCCC ZERULLAPCVRMCO-UHFFFAOYSA-N 0.000 description 4
- 229910001845 yogo sapphire Inorganic materials 0.000 description 4
- 238000000151 deposition Methods 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 238000000655 nuclear magnetic resonance spectrum Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 239000006227 byproduct Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- WXEHBUMAEPOYKP-UHFFFAOYSA-N methylsulfanylethane Chemical group CCSC WXEHBUMAEPOYKP-UHFFFAOYSA-N 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 238000009834 vaporization Methods 0.000 description 2
- 230000008016 vaporization Effects 0.000 description 2
- 229910018516 Al—O Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001938 differential scanning calorimetry curve Methods 0.000 description 1
- 238000007416 differential thermogravimetric analysis Methods 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000002076 thermal analysis method Methods 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- MCULRUJILOGHCJ-UHFFFAOYSA-N triisobutylaluminium Chemical compound CC(C)C[Al](CC(C)C)CC(C)C MCULRUJILOGHCJ-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F5/00—Compounds containing elements of Groups 3 or 13 of the Periodic Table
- C07F5/06—Aluminium compounds
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/305—Sulfides, selenides, or tellurides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/34—Nitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/40—Oxides
- C23C16/403—Oxides of aluminium, magnesium or beryllium
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45523—Pulsed gas flow or change of composition over time
- C23C16/45525—Atomic layer deposition [ALD]
- C23C16/45553—Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02172—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
- H01L21/02175—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
- H01L21/02178—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing aluminium, e.g. Al2O3
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02205—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02263—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
- H01L21/02271—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
- H01L21/0228—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B12/00—Dynamic random access memory [DRAM] devices
- H10B12/01—Manufacture or treatment
- H10B12/02—Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
- H10B12/03—Making the capacitor or connections thereto
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Inorganic Chemistry (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
본 발명의 일 실시예에 의하면, 알루미늄 전구체의 제조방법은, 하기 <화학식 1>로 표시되는 화합물 1몰 내지 3몰과, 하기 <화학식 2>로 표시되는 화합물 1몰 내지 3몰을 혼합하여 형성한다.
<화학식 1>
상기 <화학식 1>에서, X는 O이고, n=3 또는 4이며, R1 내지 R4는 각각 독립적으로 수소 원자, 탄소수 1 내지 3의 알킬기 중에서 선택된다.
<화학식 2>
상기 <화학식 2>에서, R1,R2 및 R3는 서로 상이하며, 각각 독립적으로 수소 원자, 메틸기 또는 할로겐원소 중에서 선택된다.
<화학식 1>
상기 <화학식 1>에서, X는 O이고, n=3 또는 4이며, R1 내지 R4는 각각 독립적으로 수소 원자, 탄소수 1 내지 3의 알킬기 중에서 선택된다.
<화학식 2>
상기 <화학식 2>에서, R1,R2 및 R3는 서로 상이하며, 각각 독립적으로 수소 원자, 메틸기 또는 할로겐원소 중에서 선택된다.
Description
본 발명은 알루미늄 전구체 및 이를 이용한 박막 형성 방법, 그리고 알루미늄 전구체의 제조방법에 관한 것으로, 더욱 상세하게는 안전성이 우수한 알루미늄 전구체 및 이를 이용한 박막 형성 방법, 그리고 알루미늄 전구체의 제조방법에 관한 것이다.
반도체 소자 제조에 있어서 알루미늄을 함유하는 박막은 매우 중요한 역할을 수행한다. 알루미늄을 함유하는 박막에는 알루미늄막, 알루미늄 질화물막, 알루미늄 탄화질화물막, 알루미늄 산화물막 및 알루미늄 옥시질화물막 등이 포함되며, 알루미늄 질화물막 및 알루미늄 산화물막은 패시베이션층, 층간절연막 또는 커패시터 유전층 등으로 중요한 역할을 수행한다.
현재 알루미늄을 함유하는 박막을 증착하기 위한 전구체로 트리메틸알루미늄(trimethylaluminum, TMA) 또는 트리이소부틸알루미늄이 사용되고 있으나, 이 물질들은 폭발적인 인화성이 있어 취급시 상당한 주의가 필요하다.
본 발명의 목적은 기화특성 및 열안전성이 우수한 알루미늄 전구체 및 이를 이용한 박막 형성 방법, 그리고 알루미늄 전구체의 제조방법을 제공하는 데 있다.
본 발명의 다른 목적은 매우 균일한 두께의 박막을 형성하고 두께 조절을 용이하게 할 수 있는 알루미늄 전구체 및 이를 이용한 박막 형성 방법, 그리고 알루미늄 전구체의 제조방법을 제공하는 데 있다.
본 발명의 또 다른 목적들은 다음의 상세한 설명으로부터 보다 명확해질 것이다.
본 발명의 일 실시예에 의하면, 알루미늄 전구체의 제조방법은, 하기 <화학식 1>로 표시되는 화합물 1몰 내지 3몰과, 하기 <화학식 2>로 표시되는 화합물 1몰 내지 3몰을 혼합하여 형성한다.
<화학식 1>
상기 <화학식 1>에서, X는 O이고, n=3 또는 4이며, R1 내지 R4는 각각 독립적으로 수소 원자, 탄소수 1 내지 3의 알킬기 중에서 선택된다.
<화학식 2>
상기 <화학식 2>에서, R1,R2 및 R3는 서로 상이하며, 각각 독립적으로 수소 원자, 메틸기 또는 할로겐원소 중에서 선택된다.
상기 <화학식 1>로 표시되는 화합물은 테트라하이드로퓨란일 수 있다.
상기 <화학식 1>로 표시되는 화합물은 테트라하이드로파이란일 수 있다.
상기 <화학식 1>로 표시되는 화합물은 2-메틸테트라하이드로퓨란일 수 있다.
본 발명의 일 실시예에 의하면, 알루미늄 전구체는, 하기 <화학식 1>로 표시되는 화합물 1몰 내지 3몰과, 하기 <화학식 2>로 표시되는 화합물 1몰 내지 3몰을 혼합하여 형성된다.
<화학식 1>
상기 <화학식 1>에서, X는 O이고, n=3 또는 4이며, R1 내지 R4는 각각 독립적으로 수소 원자, 탄소수 1 내지 3의 알킬기 중에서 선택된다.
<화학식 2>
상기 <화학식 2>에서, R1,R2 및 R3는 서로 상이하며, 각각 독립적으로 수소 원자, 메틸기 또는 할로겐원소 중에서 선택된다.
본 발명의 일 실시예에 의하면, 박막 형성 방법은, 상기 알루미늄 전구체를 기판이 놓여진 챔버의 내부에 공급하는 전구체 공급 단계; 상기 챔버의 내부를 퍼지하는 단계; 그리고 상기 챔버의 내부에 반응 물질을 공급하여 상기 전구체와 반응하고 박막을 형성하는 박막 형성 단계를 포함한다.
상기 박막은 알루미늄 산화물, 알루미늄 질화물, 알루미늄 황화물 중 어느 하나일 수 있다.
상기 박막 형성 방법은 50 내지 700℃에서 진행될 수 있다.
본 발명의 일 실시예에 의하면, 휘발성 메모리 소자의 제조방법은 상기 박막 형성 방법을 포함할 수 있다.
본 발명의 일 실시예에 의하면, 비휘발성 메모리 소자의 제조방법은 상기 박막 형성 방법을 포함할 수 있다.
본 발명의 일 실시예에 의하면, 알루미늄 전구체가 공기 중 노출에 의해 자연발화하는 현상을 방지할 수 있으며, 열안전성이 우수하여 안정한 기체상으로 기판 표면까지 전달가능하다.
특히, 기존 전구체에 비교할 때, 사이클 당 증착 두께를 낮춰 두께 조절을 용이하게 할 수 있으며, 증착된 박막은 균일도(uniformity) 및 스텝 커버리지(step coverage)가 개선될 수 있다.
도 1은 본 발명의 실시예1에 따른 전구체 X1의 1H-NMR 그래프이다.
도 2는 본 발명의 실시예2에 따른 전구체 X2의 1H-NMR 그래프이다.
도 3은 본 발명의 실시예3에 따른 전구체 Y2의 1H-NMR 그래프이다.
도 4 내지 도 9는 실시예1 내지 3에 대한 시차주사 열량분석(DSC) 시험결과 및 열중량분석(TGA) 시험결과를 나타내는 그래프이다.
도 10은 실시예1 내지 3에 대한 외기노출 테스트 결과를 나타낸 사진이다.
도 11은 실시예2 및 3에 대한 외기노출 후 무게변화를 나타내는 그래프이다.
도 2는 본 발명의 실시예2에 따른 전구체 X2의 1H-NMR 그래프이다.
도 3은 본 발명의 실시예3에 따른 전구체 Y2의 1H-NMR 그래프이다.
도 4 내지 도 9는 실시예1 내지 3에 대한 시차주사 열량분석(DSC) 시험결과 및 열중량분석(TGA) 시험결과를 나타내는 그래프이다.
도 10은 실시예1 내지 3에 대한 외기노출 테스트 결과를 나타낸 사진이다.
도 11은 실시예2 및 3에 대한 외기노출 후 무게변화를 나타내는 그래프이다.
이하, 본 발명의 바람직한 실시예들을 첨부된 도 1 내지 도 13을 참고하여 더욱 상세히 설명한다. 본 발명의 실시예들은 여러 가지 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 설명하는 실시예들에 한정되는 것으로 해석되어서는 안 된다. 본 실시예들은 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 본 발명을 더욱 상세하게 설명하기 위해서 제공되는 것이다. 따라서 도면에 나타난 각 요소의 형상은 보다 분명한 설명을 강조하기 위하여 과장될 수 있다.
본원 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
본 발명의 일 실시예에 의하면, 박막 형성 방법은, 알루미늄 전구체를 기판이 놓여진 챔버의 내부에 공급하는 전구체 공급 단계; 상기 챔버의 내부를 퍼지하는 단계; 그리고 상기 챔버의 내부에 반응 물질을 공급하여 상기 전구체와 반응하고 박막을 형성하는 박막 형성 단계를 포함한다.
이때, 전구체 공급 단계 및 박막 형성 단계는 50 내지 700℃에서 진행된다. 또한, 상기 박막은 알루미늄 산화물, 알루미늄 질화물, 알루미늄 황화물 중 어느 하나일 수 있다.
본 발명의 일 실시예에 의하면, 알루미늄 전구체의 제조방법은, 하기 <화학식 1>로 표시되는 화합물 1몰 내지 3몰과, 하기 <화학식 2>로 표시되는 화합물 1몰 내지 3몰을 혼합하여 형성한다.
<화학식 1>
상기 <화학식 1>에서, X는 O이고, n=3 또는 4이며, R1 내지 R4는 각각 독립적으로 수소 원자, 탄소수 1 내지 3의 알킬기 중에서 선택된다.
<화학식 2>
상기 <화학식 2>에서, R1,R2 및 R3는 서로 상이하며, 각각 독립적으로 수소 원자, 메틸기 또는 할로겐원소 중에서 선택된다.
상기 <화학식 1>에서, n=3, R1 내지 R4가 수소원자인 경우, 테트라하이드로퓨란(Tetrahydrofuran)에 해당한다.
상기 <화학식 1>에서, n=4, R1 내지 R4가 수소원자인 경우, 테트라하이드로파이란(Tetrahydropyran)에 해당한다.
상기 <화학식 1>에서, n=3, R1은 메틸기, R2 내지 R4가 수소원자인 경우, 2-메틸테트라하이드로퓨란(2-Methyl Tetrahydrofuran)에 해당한다.
- 실시예1
실온의 글러브박스 내에서 500ml 둥근 플라스크에 에틸 메틸 설파이드 5.28g(0.069mol)을 첨가하고 트리메틸 알루미늄 5g(0.069mol)을 매우 천천히 투입하여 전구체 X1를 얻었다.
도 1은 본 발명의 실시예1에 따른 전구체 X1의 1H-NMR 그래프이며, 실시예1/에틸 메틸 설파이드/트리메틸 알루미늄의 NMR 스펙트럼을 나타낸다.
에틸 메틸 설파이드에서 유래하는 화학적 이동 δ=2.19ppm, 1.76ppm, 1.20ppm의 피크는 전구체 X1 형성 후에도 피크의 모양이 변하지 않고 각각 1.92ppm, 1.41ppm, 0.69ppm 으로 이동하였다.
트리메틸 알루미늄에서 유래하는 화학적 이동 δ=-0.36ppm의 피크 또한 전구체 X1 형성 후 모양이 변하지 않고 미세하게 이동하여 안정한 전구체를 형성함을 확인할 수 있다. Ha(9H) : Hb(3H)의 적분비는 9:2.8 정도로 에틸 메틸 설파이드 1분자가 전구체를 형성함을 확인할 수 있다.
- 실시예2
실온의 글러브박스 내에서 500ml 둥근 플라스크에 에틸 메틸 설파이드 10.56g(0.139mol)을 첨가하고 트리메틸 알루미늄 5g(0.069mol)을 매우 천천히 투입하여 전구체 X2를 얻었다.
도 2는 본 발명의 실시예2에 따른 전구체 X2의 1H-NMR 그래프이며, 실시예2/에틸 메틸 설파이드/트리메틸 알루미늄의 NMR 스펙트럼을 나타낸다.
에틸 메틸 설파이드에서 유래하는 화학적 이동 δ=2.19ppm, 1.76ppm, 1.20ppm의 피크는 전구체 X2 형성 후에도 피크의 모양이 변하지 않고 각각 2.05ppm, 1.58ppm, 0.85ppm 으로 이동하였다.
트리메틸 알루미늄에서 유래하는 화학적 이동 δ=-0.36ppm의 피크 또한 전구체 X2 형성 후 모양이 변하지 않고 미세하게 이동하여 안정한 전구체를 형성함을 확인할 수 있다. Ha(9H) : Hb(3H)의 적분비는 9:5.7 정도로 에틸 메틸 설파이드 2분자가 전구체를 형성함을 확인할 수 있다.
- 실시예3
실온의 글러브박스 내에서 500ml 둥근 플라스크에 에틸 프로필 에테르 12.23g(0.139mol)을 첨가하고 트리메틸 알루미늄 5g(0.069mol)을 매우 천천히 투입하여 전구체 Y2를 얻었다.
도 3은 본 발명의 실시예3에 따른 전구체 Y2의 1H-NMR 그래프이며, 실시예3/에틸 프로필 에테르/트리메틸 알루미늄의 NMR 스펙트럼을 나타낸다.
에틸 프로필 에테르에서 유래하는 화학적 이동 δ=0.89ppm, 1.12ppm, 1.55ppm의 피크는 전구체 Y2 형성 후에도 피크의 모양이 변하지 않고 각각 0.65ppm, 0.89ppm, 1.35ppm 으로 이동하였다.
트리메틸 알루미늄에서 유래하는 화학적 이동 δ=-0.36ppm의 피크 또한 전구체 Y2 형성 후 모양이 변하지 않고 미세하게 이동하여 안정한 전구체를 형성함을 확인할 수 있다. Ha(9H) : Hb(3H)의 적분비는 9:5.7 정도로 에틸 프로필 에테르 2분자가 전구체를 형성함을 확인할 수 있다.
- 열분석
도 4 내지 도 9는 실시예1 내지 3에 대한 시차주사 열량분석(DSC) 시험결과 및 열중량분석(TGA) 시험결과를 나타내는 그래프이다. 실시예1 내지 3에서 얻은 X1,X2,Y2에 대하여 시차주사 열량분석(DSC) 시험 및 열중량분석(TGA) 시험을 실시하였으며, 각 시험에서 열분해 온도를 측정하기 위한 열분석 시험조건은 아래와 같다.
이송가스 : 아르곤(Ar) 가스
이송가스 유량 : 200ml/min
가열 프로파일 : 30℃에서 500℃로 10℃/min의 승온 속도로 가열함
DSC 시험에서 열분해 온도는 DSC 열곡선(thermogram)에서 승온시 열흐름량이 갑자기 상승하는 지점의 온도로 결정하였다.
아래 [표 1]을 참조하면, X1과 X2 모두 기화특성이 우수하면서 잔류 성분량이 0.1% 이하인 것으로 확인되어 박막에 불순물(impurity)를 남기지 않음을 알 수 있다. 또한, 분해 온도는 340℃ 이상으로 나타나 TMA 단독 사용 대비 분해온도가 높아 열안정성이 개선된 특성을 보이며, 안정한 기체상으로 기판 표면까지 전달 가능함을 확인할 수 있다.
T1/2(℃) | TGA Residue(%) | DSC 분해온도(℃) | |
TMA | 66 | < 0.1 | 319 |
X1 | 103 | < 0.1 | 346 |
X2 | 99 | < 0.1 | 343 |
Y2 | 113 | 1.1 | 344 |
또한, X2가 X1 대비 분자량이 커졌음에도 기화특성이 더 개선되는 것으로 보아 유기 물질 2분자가 TMA 간의 Al-Al interaction을 효과적으로 블로킹(blocking) 하는 것으로 보이며, 안정성 면에서 X2를 활용하는 것이 더 적합하다고 할 수 있다.
또한, Y2 또한 2분자 블로킹(blocking) 효과로 ALD 전구체로 사용할 만한 기화특성을 가지는 것으로 확인되며, 분해 온도는 344℃ 이상으로 나타나 TMA 단독 사용 대비 분해온도가 높아 열안정성이 개선된 특성을 보이며, 안정한 기체상으로 기판 표면까지 전달 가능함을 확인할 수 있다.
- 외기노출 테스트
도 10은 실시예1 내지 3에 대한 외기노출 테스트 결과를 나타낸 사진이다. 실시예1 내지 3에서 얻은 X1,X2,Y2 동량을 상온/상압에 노출하였다. X1의 경우 피펫 상태로 노출되자 마자 발화하였으나, X2/Y2의 경우 미세 흄(fume)만 발생하였으며 발화하지 않았다. 대기 중에서 인화성이 극히 감소되어 공기 중에서도 발화하지 않음을 확인할 수 있다. X1 대비 X2/Y2의 자연발화가 억제되는 것은 Al의 empty P orbital을 2분자가 완전히 블로킹(blocking) 함으로써 매우 안정한 물질을 형성한 효과로 볼 수 있다.
도 11은 실시예2 및 3에 대한 외기노출 후 무게변화를 나타내는 그래프이다. X2/Y2 동량을 외기노출한 결과, Y2의 경우 빠르게 무게가 감소하여 5시간 경과시 모두 고체화되어 더 이상 무게변화가 발생하지 않았으나, X2의 경우 비교적 무게 감소 속도가 느리며 7시간 경과후부터 모두 고체화되어 더 이상 무게변화가 발생하지 않았다.
두 경우 모두 산화반응은 일어나지만 그로 인한 발화는 발생하지 않아 취급시 안정성이 매우 증가하였으며 사고 위험을 대폭 감소시킬 수 있다.
도 10 및 도 11의 외기노출 테스트는 표면에서 전구체가 흡착하는 화학반응과 유사하다고 볼 수 있다. 외기 노출 시 전구체는 대기 중의 H2O 와 반응하여 Al-C 결합이 끊어지고 Al-O 결합으로 대체되는 화학반응을 거치게 되는데 이는 산화막의 -OH* 종결된 표면과 전구체가 만나 리간드가 떨어지며 흡착하는 반응과 매우 유사하기 때문이다.
도 10 및 도 11의 결과에서 실시예의 X2, Y2 전구체는 모두 Al의 empty P orbital 이 유기물질로 완전히 블로킹(blocking) 되어 외기 노출시에도 산화반응이 매우 느리게 일어나 반응성이 매우 감소했음을 확인할 수 있다. 도 12의 모식도에서 완전히 블로킹된 전구체의 낮은 반응성을 확인할 수 있다.
또한 X2 전구체의 직경은 대략 6.6Å 정도로 TMA 직경인 4.1Å 대비 크기가 매우 증가한다. 이는 X2 전구체의 Al center와 표면 -OH*의 접근성을 더욱 감소시킬 뿐만 아니라 표면 상에 일부 흡착된 전구체가 존재할 때 입체 장애(Steric hindrance)가 더 크게 작용하므로 사이클당 증착 두께를 감소시킨다. 도 13의 X2 전구체를 활용한 증착결과를 통해 확인할 수 있다.
이와 동일하게 X2, Y2 전구체는 표면의 -OH* 종결그룹과 반응성이 감소하여 이로 인한 고착계수(Sticking Coefficient) 감소, 표면에서의 확산 증가로 균일한 막을 형성할 수 있으며 최종적으로 균일도(uniformity) 및 스텝 커버리지(step coverage)를 개선할 수 있다.
- 비교예 1
실리콘 기판 상에 알루미늄 산화막을 형성하였다. ALD 공정을 통해 알루미늄 산화막을 형성하였으며, ALD 공정 온도는 250 내지 400℃, 반응 물질은 O3 가스를 사용하였다.
ALD 공정을 통한 알루미늄 산화막 형성 과정은 아래와 같으며, 아래 과정을 1사이클로 하여 진행하였다.
1) Ar을 캐리어 가스로 하여, 상온에서 알루미늄 전구체 TMA (Trimethylaluminium)를 반응 챔버에 공급하고 기판에 알루미늄 전구체를 흡착
2) 반응 챔버 내에 Ar 가스를 공급하여 미흡착 알루미늄 전구체 또는 부산물을 제거
3) O3 가스를 반응 챔버에 공급하여 모노레이어를 형성
4) 반응 챔버 내에 Ar 가스를 공급하여 미반응물질 또는 부산물을 제거
위와 같은 과정에 의해 얻어진 알루미늄 산화막의 두께를 측정한 결과, ALD 공정의 1사이클마다 얻어진 알루미늄 산화막의 두께는 250 내지 400℃에서 약 0.9Å/사이클이었다.
도 13은 본 발명의 비교예1 및 실시예2에 따른 알루미늄 산화막의 GPC(주기당 성장률, Growth Per Cycle)를 공정온도에 따라 나타낸 그래프이다. 도 13에 도시한 바와 같이, 기판의 온도 250 내지 400℃인 범위 내에서 기판의 온도 상승에 따른 GPC 변화가 거의 없는 이상적인 ALD 거동을 보였다. DRAM의 ZrO2/Al2O3/ZrO2 복합유전막에서 유전막 전체 두께를 50Å, 비교예1의 Al2O3를 3 cycle 정도 사용한다고 가정하면, 유전막의 EOT = 5.93Å 이다.
- 실시예 2
본 발명의 실시예2에 따른 전구체 X2를 사용하여 실리콘 기판 상에 알루미늄 산화막을 형성하였다. 전구체를 변경하는 것을 제외하고, 비교예 1과 동일한 방법으로 알루미늄 산화막을 형성하였다.
위와 같은 과정에 의해 얻어진 알루미늄 산화막의 두께를 측정한 결과, ALD 공정의 1사이클마다 얻어진 알루미늄 산화막의 두께는 250 내지 400℃에서 약 0.7Å/사이클이었다.
또한, 도 13에 도시한 바와 같이, 기판의 온도 250 내지 400℃인 범위 내에서 기판의 온도 상승에 따른 GPC 변화가 거의 없는 이상적인 ALD 거동을 보였으며, 비교예 1에 비해 약 20%의 감소효과를 나타내고 있다. DRAM의 ZrO2/Al2O3/ZrO2 복합유전막에서 유전막 전체 두께를 50Å, 비교예1의 Al2O3를 3 cycle 정도 사용한다고 가정하면, 유전막의 EOT = 5.72Å 이며, 비교예 1에 비해 약 4%의 scaling down을 실현할 수 있다.
이상에서 본 발명을 실시예를 통하여 상세하게 설명하였으나, 이와 다른 형태의 실시예들도 가능하다. 그러므로, 이하에 기재된 청구항들의 기술적 사상과 범위는 실시예들에 한정되지 않는다.
Claims (10)
- 하기 <화학식 1>로 표시되는 화합물 1몰 내지 3몰과, 하기 <화학식 2>로 표시되는 화합물 1몰 내지 3몰을 혼합하여 형성하는, 알루미늄 전구체의 제조방법.
<화학식 1>
상기 <화학식 1>에서, X는 O이고, n=3 또는 4이며, R1 내지 R4는 각각 독립적으로 수소 원자, 탄소수 1 내지 3의 알킬기 중에서 선택된다.
<화학식 2>
상기 <화학식 2>에서, R1,R2 및 R3는 서로 상이하며, 각각 독립적으로 수소 원자, 메틸기 또는 할로겐원소 중에서 선택된다. - 제1항에 있어서,
상기 <화학식 1>로 표시되는 화합물은 테트라하이드로퓨란인, 알루미늄 전구체의 제조방법. - 제1항에 있어서,
상기 <화학식 1>로 표시되는 화합물은 테트라하이드로파이란인, 알루미늄 전구체의 제조방법. - 제1항에 있어서,
상기 <화학식 1>로 표시되는 화합물은 2-메틸테트라하이드로퓨란인, 알루미늄 전구체의 제조방법. - 하기 <화학식 1>로 표시되는 화합물 1몰 내지 3몰과, 하기 <화학식 2>로 표시되는 화합물 1몰 내지 3몰을 혼합하여 형성된, 알루미늄 전구체.
<화학식 1>
상기 <화학식 1>에서, X는 O이고, n=3 또는 4이며, R1 내지 R4는 각각 독립적으로 수소 원자, 탄소수 1 내지 3의 알킬기 중에서 선택된다.
<화학식 2>
상기 <화학식 2>에서, R1,R2 및 R3는 서로 상이하며, 각각 독립적으로 수소 원자, 메틸기 또는 할로겐원소 중에서 선택된다. - 제5항에 기재된 알루미늄 전구체를 기판이 놓여진 챔버의 내부에 공급하는 전구체 공급 단계;
상기 챔버의 내부를 퍼지하는 단계; 및
상기 챔버의 내부에 반응 물질을 공급하여 상기 전구체와 반응하고 박막을 형성하는 박막 형성 단계를 포함하는, 박막 형성 방법. - 제6항에 있어서,
상기 박막은 알루미늄 산화물, 알루미늄 질화물, 알루미늄 황화물 중 어느 하나인, 박막 형성 방법. - 제6항에 있어서,
상기 박막 형성 방법은 50 내지 700℃에서 진행되는, 박막 형성 방법. - 제6항에 기재된 박막 형성 방법을 포함하는, 휘발성 메모리 소자의 제조방법.
- 제6항에 기재된 박막 형성 방법을 포함하는, 비휘발성 메모리 소자의 제조방법.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20220057133 | 2022-05-10 | ||
KR1020220057133 | 2022-05-10 | ||
KR1020220113688A KR20230157843A (ko) | 2022-05-10 | 2022-09-07 | 알루미늄 전구체 및 이를 이용한 박막 형성 방법, 그리고 알루미늄 전구체의 제조방법 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020220113688A Division KR20230157843A (ko) | 2020-05-10 | 2022-09-07 | 알루미늄 전구체 및 이를 이용한 박막 형성 방법, 그리고 알루미늄 전구체의 제조방법 |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20240070483A true KR20240070483A (ko) | 2024-05-21 |
Family
ID=91320597
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020240059495A KR20240070483A (ko) | 2022-05-10 | 2024-05-04 | 알루미늄 전구체 및 이를 이용한 박막 형성 방법, 그리고 알루미늄 전구체의 제조방법 |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20240070483A (ko) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060046471A1 (en) | 2004-08-27 | 2006-03-02 | Kirby Kyle K | Methods for forming vias of varying lateral dimensions and semiconductor components and assemblies including same |
-
2024
- 2024-05-04 KR KR1020240059495A patent/KR20240070483A/ko active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060046471A1 (en) | 2004-08-27 | 2006-03-02 | Kirby Kyle K | Methods for forming vias of varying lateral dimensions and semiconductor components and assemblies including same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI463032B (zh) | 含鑭系元素前驅物的製備和含鑭系元素薄膜的沈積 | |
KR101502251B1 (ko) | 유전체 필름의 형성 방법, 신규 전구체 및 그의 반도체 제조에서의 용도 | |
JP5469037B2 (ja) | 金属含有フィルムのための第四族金属前駆体 | |
KR101284664B1 (ko) | 실릴아민 리간드가 포함된 유기금속화합물, 및 이를 전구체로 이용한 금속 산화물 또는 금속-규소 산화물의 박막 증착 방법 | |
KR20080101040A (ko) | 금속 박막 또는 세라믹 박막 증착용 유기 금속 전구체화합물 및 이를 이용한 박막 증착 방법 | |
JP2018503247A (ja) | ジルコニウム含有膜を蒸着するためのジルコニウム含有膜形成組成物 | |
TW202202511A (zh) | 用於薄膜沉積的第5族金屬化合物和使用該化合物形成含第5族金屬的薄膜的方法 | |
KR102259874B1 (ko) | 사이클로펜타디엔이 도입된 유기금속 화합물 전구체를 이용한 유전체 필름의 형성 방법 및 그의 반도체 제조에서의 용도 | |
KR101569447B1 (ko) | 지르코늄 산화물 박막 형성용 전구체 화합물, 이의 제조방법 및 이를 이용한 박막의 제조방법 | |
KR20240070483A (ko) | 알루미늄 전구체 및 이를 이용한 박막 형성 방법, 그리고 알루미늄 전구체의 제조방법 | |
KR20230157843A (ko) | 알루미늄 전구체 및 이를 이용한 박막 형성 방법, 그리고 알루미늄 전구체의 제조방법 | |
KR102224067B1 (ko) | 표면 보호 물질을 이용한 박막 형성 방법 | |
US20230287014A1 (en) | Aluminum precursor, method of forming a thin layer using the same, method of manufacturing the same, and method of manufacturing memory device | |
KR20210089015A (ko) | 이트륨 화합물, 이를 포함하는 박막의 형성 방법 및 이로부터 제조된 반도체 기판 | |
TWI593820B (zh) | 含鑭系元素前驅物的製備和含鑭系元素薄膜的沈積 | |
TWI777318B (zh) | 有機金屬化合物、沉積薄膜的組成物、製造薄膜的方法、有機金屬化合物薄膜及半導體裝置 | |
CN117026207A (zh) | 铝前驱体及其制造方法、薄层及存储装置制造方法 | |
KR102678334B1 (ko) | 유기금속 화합물, 유기금속 화합물을 포함하는 박막 증착용 조성물, 박막 증착용 조성물을 이용한 박막의 제조 방법, 박막 증착용 조성물로부터 제조된 박막, 및 박막을 포함하는 반도체 소자 | |
KR102639298B1 (ko) | 유기금속 화합물을 포함하는 박막 증착용 조성물, 박막 증착용 조성물을 이용한 박막의 제조 방법, 박막 증착용 조성물로부터 제조된 박막, 및 박막을 포함하는 반도체 소자 | |
JP7168624B2 (ja) | 薄膜蒸着用組成物、薄膜蒸着用組成物を用いた薄膜の製造方法、薄膜蒸着用組成物から製造された薄膜、および薄膜を含む半導体素子 | |
KR102472597B1 (ko) | η6 보라타 벤젠 리간드가 도입된 4족 유기금속 전구체 화합물, 그 제조방법 및 상기 전구체 화합물을 이용한 박막 형성 방법 | |
JP2023167012A (ja) | 薄膜形成方法およびそれを含むメモリ素子の製造方法 | |
KR20230117368A (ko) | 인듐 화합물, 박막 형성용 원료, 박막 및 그 제조 방법 | |
TW202225173A (zh) | 稀土前驅體、製備其的方法和使用其形成薄膜的方法 | |
KR20220033590A (ko) | 4족 금속 원소-함유 화합물, 이를 포함하는 전구체 조성물, 및 이를 이용한 박막의 제조 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A107 | Divisional application of patent |