KR20240037607A - Preparation and purification method of high purity methyl 2-hydroxyisobutyrate for euv semiconductor process - Google Patents

Preparation and purification method of high purity methyl 2-hydroxyisobutyrate for euv semiconductor process Download PDF

Info

Publication number
KR20240037607A
KR20240037607A KR1020220116323A KR20220116323A KR20240037607A KR 20240037607 A KR20240037607 A KR 20240037607A KR 1020220116323 A KR1020220116323 A KR 1020220116323A KR 20220116323 A KR20220116323 A KR 20220116323A KR 20240037607 A KR20240037607 A KR 20240037607A
Authority
KR
South Korea
Prior art keywords
methyl
producing
hydroxyisobutylate
hydroxyisobutyrate
acid
Prior art date
Application number
KR1020220116323A
Other languages
Korean (ko)
Inventor
심성원
손병기
최환
신윤수
두타 수짓
최태기
정호
Original Assignee
재원산업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재원산업 주식회사 filed Critical 재원산업 주식회사
Priority to KR1020220116323A priority Critical patent/KR20240037607A/en
Publication of KR20240037607A publication Critical patent/KR20240037607A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/08Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides with the hydroxy or O-metal group of organic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/48Separation; Purification; Stabilisation; Use of additives
    • C07C67/52Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation
    • C07C67/54Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/66Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety
    • C07C69/67Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety of saturated acids
    • C07C69/675Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety of saturated acids of saturated hydroxy-carboxylic acids
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • G03F7/168Finishing the coated layer, e.g. drying, baking, soaking

Abstract

본 발명은 2-히드록시 이소부티릭산을 중간체로 메틸 2-히드록시이소부틸레이트를 제조하는 단계, 상기 메틸 2-히드록시이소부틸레이트에서 염과 수분을 제거하는 단계 및 염과 수분이 제거된 상기 메틸 2-히드록시이소부틸레이트를 증류하는 단계를 포함하는 EUV 반도체 공정용 고순도 메틸 2-히드록시이소부틸레이트의 제조 및 정제방법을 개시한다.The present invention includes the steps of producing methyl 2-hydroxyisobutyrate using 2-hydroxyisobutyric acid as an intermediate, removing salt and moisture from the methyl 2-hydroxyisobutyrate, and removing salt and moisture from the methyl 2-hydroxyisobutyrate. Disclosed is a method for producing and purifying high purity methyl 2-hydroxyisobutylate for EUV semiconductor processing, including the step of distilling the methyl 2-hydroxyisobutyrate.

Description

EUV 반도체 공정용 고순도 메틸 2-히드록시이소부틸레이트의 제조 및 정제방법{PREPARATION AND PURIFICATION METHOD OF HIGH PURITY METHYL 2-HYDROXYISOBUTYRATE FOR EUV SEMICONDUCTOR PROCESS} Manufacturing and purification method of high purity methyl 2-hydroxyisobutyrate for EUV semiconductor process {PREPARATION AND PURIFICATION METHOD OF HIGH PURITY METHYL 2-HYDROXYISOBUTYRATE FOR EUV SEMICONDUCTOR PROCESS}

본 발명은 EUV 반도체 공정용 고순도 메틸 2-히드록시이소부틸레이트의 제조 및 정제방법에 관한 것으로, 더욱 상세하게는 반도체 공정, 특히 EUV 포토레지스트 공정에서 사용되는 반도체 공정용 고순도 메틸 2-히드록시이소부틸레이트의 제조 및 정제방법에 관한 것이다.The present invention relates to a method for producing and purifying high-purity methyl 2-hydroxyisobutylate for EUV semiconductor processes, and more specifically, to high-purity methyl 2-hydroxyisobutylate for semiconductor processes used in semiconductor processes, especially EUV photoresist processes. It relates to the production and purification method of butyrate.

반도체 및 디스플레이 집적회로와 같이 미세한 회로 패턴은 기판 상에 형성된 도전성 금속막 또는 산화막 등에 감광성 화합물 및 용매를 포함하는 포토레지스트를 회전도포법에 의해 균일하게 도포한 후 노광, 현상, 식각 및 박리공정을 거쳐 목적하는 미세회로 패턴을 구현하는 방법을 통해 제조된다. Fine circuit patterns, such as semiconductor and display integrated circuits, are made by uniformly applying a photoresist containing a photosensitive compound and solvent to a conductive metal film or oxide film formed on a substrate by a rotary coating method, followed by exposure, development, etching, and peeling processes. It is manufactured through a method that implements the desired microcircuit pattern.

반도체 패턴이 미세화됨에 따라 전공정에 사용되는 화학물질의 순도 및 불순물의 함량이 매우 중요하게 되었다. 특히, 포토공정의 후속공정인 노광공정은 자외선영역의 단파장의 빛을 이용하여 도포막에 원하는 패턴을 미세하게 노광하는 방식으로 구현되기 때문에 외부 및 내부의 오염에 매우 민감하다.As semiconductor patterns become more refined, the purity and impurity content of chemicals used in the entire process become very important. In particular, the exposure process, which is a follow-up process to the photo process, is implemented by finely exposing the desired pattern to the coating film using short-wavelength light in the ultraviolet region, so it is very sensitive to external and internal contamination.

따라서, 웨이퍼에 포토레지스트를 도포할 때 기판의 가장자리부 또는 후면부에 도포된 불필요한 포토레지스트 잔사 및 기타 오염물은 후속공정인 노광 공정에서 치명적인 오염원이 될 수 있으므로 반드시 제거되어야 한다. 이러한 오염물을 제거하기 위하여 예전부터 신너가 EBR(엣지 비드 제거, edge bead removing) 공정에 사용되어 왔다.Therefore, when applying photoresist to a wafer, unnecessary photoresist residue and other contaminants applied to the edge or back of the substrate must be removed as they can become fatal sources of contamination in the subsequent exposure process. To remove these contaminants, thinner has long been used in the EBR (edge bead removal) process.

최근 들어, 반도체의 집적도가 증가하면서 미세패턴 제조기술이 필수적인 상황이 되어서 단파장인 ArF 광원 또는 극자외선(EUV) 광원이 포토레지스트 사용 공정에 적용되고 있고, 반도체 제조단가에 포토레지스트의 사용량이 미치는 영향이 상당히 커짐에 따라 원가절감을 위해 포토레지스트의 사용량을 줄이고자 하는 요구가 계속적으로 있어 왔다.Recently, as the integration of semiconductors increases, fine pattern manufacturing technology has become essential, and short-wavelength ArF light sources or extreme ultraviolet (EUV) light sources are being applied to photoresist use processes, and the impact of photoresist usage on semiconductor manufacturing costs. As this has grown significantly, there has been a continued demand to reduce the amount of photoresist used to reduce costs.

이러한 요구에 의해, 포토레지스트를 도포하기 전에 신너로 먼저 기판의 표면을 처리해 줌으로써 소량의 포토레지스트만 사용하여도 포토레지스트가 기판 전면에 고르게 도포될 수 있도록 하는 RRC(포토레지스트 절감, reducing resist consumption) 공정이 적용되어 왔다. 집적도의 증가와 함께 기판(웨이퍼)의 구경이 커지면서 RRC 공정의 중요성이 더욱 증대되고 있어, 기존의 EBR 공정을 충분히 진행할 수 있으면서 RRC 효율이 높은 신너의 개발이 요구되고 있다.In response to this requirement, the surface of the substrate is first treated with a thinner before applying the photoresist, so that the photoresist can be evenly applied to the entire surface of the substrate using only a small amount of photoresist (RRC (reducing resist consumption)). The process has been applied. The importance of the RRC process is increasing as the diameter of the substrate (wafer) increases along with the increase in integration, so the development of a thinner that can sufficiently proceed with the existing EBR process and has high RRC efficiency is required.

이러한 RRC 공정과 EBR 공정에 사용되는 포토레지스트 신너(PR Thinner) 조성물은 PGME(프로필렌글리콜 모노메틸 에테르), PGMEA(프로필렌글리콜 모노메틸 에테르 아세테이트), EEP(Ethyl 3-ethoxypropionate), HBM(Methyl 2-hydroxyisobutylate 또는 Methyl 2-hydroxy-2-methyl propionate) 등과 같은 성분을 포함하는데 이 중에서 메틸 2-히드록시이소부틸레이트(이하 HBM이라고도 표기함)는 꼭 필요한 성분 중 하나이다.Photoresist thinner (PR Thinner) compositions used in these RRC and EBR processes include PGME (Propylene Glycol Monomethyl Ether), PGMEA (Propylene Glycol Monomethyl Ether Acetate), EEP (Ethyl 3-ethoxypropionate), and HBM (Methyl 2- It contains ingredients such as hydroxyisobutylate or Methyl 2-hydroxy-2-methyl propionate), and among these, methyl 2-hydroxyisobutylate (hereinafter also referred to as HBM) is one of the essential ingredients.

반도체 공정, 특히 ArF 또는 EUV 광원이 사용되는 포토레지스트 공정에 사용되는 물질은 순도, 수분, 산도, 메탈 함량 등에 있어 요구특성이 매우 엄격하다. 예컨대, 반도체급 HBM은 순도가 99.99%이상, 산도가 20 ppm 이하, 수분이 50 ppm 이하일 것이 요구된다. Materials used in semiconductor processes, especially photoresist processes using ArF or EUV light sources, have very stringent requirements in terms of purity, moisture, acidity, and metal content. For example, semiconductor-grade HBM is required to have a purity of 99.99% or more, an acidity of 20 ppm or less, and a moisture content of 50 ppm or less.

포토리소그래피 공정에서 포토레지스트 도포 전후로 사용되는 메틸 2-히드록시이소부틸레이트에 잔존하는 산(Acid)의 함량이 높을 경우, 포토레지스트 레진의 분해속도나 경화속도에 영향을 미치며, 현상액으로 사용되는 KOH, TMAH 등 수용성 알칼리용액과 반응하여 칩의 결함발생 요인으로 작용할 수 있으며, 반도체 장비를 부식시킬 수 있다.If the acid content remaining in the methyl 2-hydroxyisobutyrate used before and after photoresist application in the photolithography process is high, it affects the decomposition and curing speed of the photoresist resin, and KOH used as a developer. , it may react with water-soluble alkaline solutions such as TMAH, which may cause chip defects and may corrode semiconductor equipment.

따라서, 포토레지스트 공정에서 패턴 형성 과정의 정밀도에 미치는 영향을 최소화하기 위해서는 메틸 2-히드록시이소부틸레이트를 반도체 공정에 사용할 수 있을 정도의 고순도로 정제함과 동시에 잔존하는 산의 함량을 최소화하는 것이 매우 중요하다.Therefore, in order to minimize the impact on the precision of the pattern formation process in the photoresist process, it is important to purify methyl 2-hydroxyisobutyrate to a high purity that can be used in the semiconductor process and at the same time minimize the remaining acid content. very important.

대한민국 공개특허 특1999-0077617 (1999.10.25. 공개)Republic of Korea open patent patent 1999-0077617 (published on October 25, 1999) US 5,068,399(1991.11.26. 공개)US 5,068,399 (published on November 26, 1991)

본 발명은 저가의 아세톤을 출발물질로 사용하고 반응성이 매우 우수한 2-히드록시 이소부티릭산 중간체를 거쳐 메틸 2-히드록시 이소부틸레이트를 제조한 후, 추출 및 증류공정을 거침으로써 반도체급으로 사용가능한 EUV 반도체 공정용 고순도 메틸 2-히드록시이소부틸레이트의 제조 및 정제방법을 제공하는 것을 목적으로 한다.The present invention uses low-cost acetone as a starting material and produces methyl 2-hydroxyisobutyrate through a highly reactive 2-hydroxyisobutyric acid intermediate, followed by extraction and distillation processes to produce semiconductor grade. The purpose is to provide a method for producing and purifying high-purity methyl 2-hydroxyisobutyrate for possible EUV semiconductor processes.

본 발명의 일측면에 따르면, 하기 반응식에 의해 메틸 2-히드록시이소부틸레이트를 제조하는 단계, 상기 메틸 2-히드록시이소부틸레이트에서 염과 수분을 제거하는 단계 및 염과 수분이 제거된 상기 메틸 2-히드록시이소부틸레이트를 증류하는 단계를 포함하는 EUV 반도체 공정용 고순도 메틸 2-히드록시이소부틸레이트의 제조 및 정제방법을 제공한다.According to one aspect of the present invention, preparing methyl 2-hydroxyisobutyrate according to the following reaction formula, removing salt and moisture from the methyl 2-hydroxyisobutyrate, and removing the salt and moisture from the methyl 2-hydroxyisobutyrate Provided is a method for producing and purifying high purity methyl 2-hydroxyisobutylate for EUV semiconductor processing, including the step of distilling methyl 2-hydroxyisobutyrate.

상기 메틸 2-히드록시이소부틸레이트를 제조하는 단계에서 산촉매와 함께 불균일계 고상촉매가 사용며, 산촉매는 황산, 질산, 인산 및 염산으로 이루어진 군에서 하나 이상 선택될 수 있고, 불균일계 고상촉매는 강산성 양이온 교환수지, 폴리비닐 설폰익산-그라프티드 폴리스티렌, 실리카-황산, 실리카-차아염소산, 설페이티드 지르코늄, 보레이티드 지르코늄 및 알루미늄-폴리인산으로 이루어진 군에서 하나 이상 선택될 수 있다. 바람직하게는, 무기산 및 불균일계 고상촉매는 총 3 당량 이상 사용될 수 있다.In the step of producing methyl 2-hydroxyisobutyrate, a heterogeneous solid catalyst is used together with an acid catalyst. The acid catalyst may be one or more selected from the group consisting of sulfuric acid, nitric acid, phosphoric acid, and hydrochloric acid, and the heterogeneous solid catalyst is One or more may be selected from the group consisting of strongly acidic cation exchange resin, polyvinyl sulfonic acid-grafted polystyrene, silica-sulfuric acid, silica-hypochlorous acid, sulfated zirconium, borated zirconium, and aluminum-polyphosphoric acid. Preferably, the inorganic acid and heterogeneous solid phase catalyst may be used in a total amount of 3 equivalents or more.

상기 염과 수분을 제거하는 단계는 추출제를 이용하여 상기 메틸 2-히드록시이소부틸레이트를 추출하는 단계일 수 있으며, 이때 추출제로디클로로 메탄, 디클로로 에탄, 디클로로 프로판, 디클로로 부탄 등과 같은 유기용매가 사용될 수 있다.The step of removing the salt and moisture may be a step of extracting the methyl 2-hydroxyisobutyrate using an extractant, wherein an organic solvent such as dichloromethane, dichloroethane, dichloropropane, dichlorobutane, etc. is used as the extractant. can be used

바람직하게는, 상기 증류단계 전에, 염과 수분이 제거된 상기 메틸 2-히드록시이소부틸레이트를 Na2CO3 또는 NaHCO3에 통과시켜 산을 제거하는 단계를 더 포함할 수 있다.Preferably, before the distillation step, the step of removing the acid by passing the methyl 2-hydroxyisobutyrate from which salts and moisture have been removed may be further included through Na 2 CO 3 or NaHCO 3 .

또한, 상기 증류단계에 의해 수득한 메틸 2-히드록시이소부틸레이트를 필터에 통과시켜 메탈 또는 파티클을 제거하는 단계를 더 포함할 수 있다.In addition, the step of removing metal or particles by passing the methyl 2-hydroxyisobutyrate obtained through the distillation step through a filter may be further included.

상기 메틸 2-히드록시이소부틸레이트를 제조하는 단계에서, 각 반응단계별 반응 전환율은 각각 90% 이상, 90~99% 이상, 95~99% 이상, 97~99% 이상일 수 있다.In the step of producing methyl 2-hydroxyisobutyrate, the reaction conversion rate for each reaction step may be 90% or more, 90 to 99% or more, 95 to 99% or more, and 97 to 99% or more, respectively.

상기 증류단계에서 산화방지제를 투입하는 것이 바람직하다. 이때, 산화방지제는 BHT(Butylated hydroxyanisole), MeHQ(Hydroquinone monomethylether), TBC(4-tert.-Butylcatechol), HQ(Hydroquinone), Songnox 1010, Songnox 1076, Songnox 1135, Songnox 2450, Songnox 1035, 트리스(2,4-디-터어셔리-부틸페닐)포스파이트((2,4-di-tert-butylphenyl) phosphite)), 및 비스(2,4-디-터어셔리-부틸페닐)펜타에리트리톨 디포스파이트 ((bis(2,4-di-tert-butylphenyl pentaerythritol diphosphate)로 이루어진 군에서 하나 이상 선택될 수 있다.It is preferable to add an antioxidant in the distillation step. At this time, the antioxidants are BHT (Butylated hydroxyanisole), MeHQ (Hydroquinone monomethylether), TBC (4-tert.-Butylcatechol), HQ (Hydroquinone), Songnox 1010, Songnox 1076, Songnox 1135, Songnox 2450, Songnox 1035, Tris (2) , 4-di-tert-butylphenyl) phosphite ((2,4-di-tert-butylphenyl) phosphite)), and bis (2,4-di-tert-butylphenyl) pentaerythritol depot Spite ((bis(2,4-di-tert-butylphenyl pentaerythritol diphosphate)) may be selected from the group consisting of one or more.

상기 증류단계는 메틸 2-히드록시이소부틸레이트보다 비점이 낮은 불순물을 제거하는 단계와 메틸 2-히드록시이소부틸레이트보다 비점이 높은 불순물을 제거하는 단계를 포함할 수 있다.The distillation step may include removing impurities with a boiling point lower than methyl 2-hydroxyisobutylate and removing impurities with a boiling point higher than methyl 2-hydroxyisobutylate.

상기 증류단계에 의해 수득한 메틸 2-히드록시이소부틸레이트는 반도체 공정의 포토레지스트 공정에서 신너로 사용될 수 있고, 상기 반도체 공정은 EUV 광원 또는 ArF 광원을 사용하는 공정을 포함할 수 있다.Methyl 2-hydroxyisobutyrate obtained through the distillation step can be used as a thinner in a photoresist process of a semiconductor process, and the semiconductor process may include a process using an EUV light source or an ArF light source.

본 발명에 따르면, 공업용 아세톤과 시안화나트륨을 사용하고, 반응성이 매우 우수한 2-히드록시 이소부티릭산 중간체로부터 메틸 2-히드록시이소부틸레이트를 제조한 후, 추출 및 증류공정을 거쳐 최종 제품을 생산함으로써 가격경쟁력이 우수하고 반도체용 제조공정에 사용하더라도 불량률을 낮추어 반도체의 생산성을 향상시킬 수 있는 EUV 반도체 공정용 고순도 메틸 2-히드록시이소부틸레이트의 제조 및 정제방법을 제공할 수 있다.According to the present invention, methyl 2-hydroxyisobutyrate is manufactured from a highly reactive 2-hydroxyisobutyric acid intermediate using industrial acetone and sodium cyanide, and then the final product is produced through extraction and distillation processes. By doing so, it is possible to provide a method for manufacturing and purifying high-purity methyl 2-hydroxyisobutylate for the EUV semiconductor process, which has excellent price competitiveness and can improve the productivity of semiconductors by lowering the defect rate even when used in the semiconductor manufacturing process.

도 1은 본 발명의 실시예에 따른 제조 및 정제된 고순도 메틸 2-히드록시 이소부틸레이트 기체크로마토그램이다.
도 2는 본 발명의 실시예에 따라 제조 및 정제된 메틸 2-히드록시 이소부틸레이트의 NMR 차트이다.
Figure 1 is a gas chromatogram of high purity methyl 2-hydroxy isobutylate prepared and purified according to an example of the present invention.
Figure 2 is an NMR chart of methyl 2-hydroxy isobutylate prepared and purified according to an example of the present invention.

본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.In describing the present invention, if it is determined that a detailed description of a related known configuration or function may obscure the gist of the present invention, the detailed description will be omitted.

이하 본 발명의 일 실시에에 대하여 상세히 설명한다. Hereinafter, an embodiment of the present invention will be described in detail.

본 발명의 일 실시예에 따르면 본 발명은 메틸 2-히드록시이소부틸레이트를 제조하는 단계, 상기 메틸 2-히드록시이소부틸레이트를 추출제로 추출하는 단계 및 상기 추출된 메틸 2-히드록시이소부틸레이트를 증류하는 단계를 포함한다.According to one embodiment of the present invention, the present invention includes the steps of preparing methyl 2-hydroxyisobutylate, extracting the methyl 2-hydroxyisobutylate with an extractant, and extracting the extracted methyl 2-hydroxyisobutyl. and distilling the rate.

이때, 상기 메틸 2-히드록시이소부틸레이트(이하 HBM이라고도 표기함)는 하기 반응식에 의해 제조된다.At this time, the methyl 2-hydroxyisobutyrate (hereinafter also referred to as HBM) is prepared according to the following reaction formula.

본 발명에 따른 HBM은 상기 반응식과 같이 3단계에 의해 제조될 수 있다. 즉, 본 발명에 따른 HBM은 아세톤을 산촉매하에서 시안화나트륨과 반응시켜 아세톤 시아노히드린을 제조하는 제1 단계, 상기 아세톤 시아노히드린을 산촉매하에서 가수분해시켜 2-히드록시 이소부티릭산(2-hydroxy isobutyric acid; 이하 HBA라고 표기하기도 함)을 제조하는 제2 단계 및 HBA를 산촉매하에서 메탄올과 반응시켜 HBM을 제조하는 제3 단계에 의해 제조될 수 있다.HBM according to the present invention can be prepared in three steps as shown in the above reaction scheme. That is, the HBM according to the present invention is a first step of producing acetone cyanohydrin by reacting acetone with sodium cyanide under an acid catalyst, and hydrolyzing the acetone cyanohydrin under an acid catalyst to produce 2-hydroxy isobutyric acid (2-hydroxy It can be produced by a second step of producing isobutyric acid (hereinafter referred to as HBA) and a third step of producing HBM by reacting HBA with methanol in an acid catalyst.

먼저 제1 단계에 대해 살펴보면, 저가의 아세톤을 출발물질로 사용함으로써 생산원가를 절감할 수 있어 대량 생산에 매우 유리하다.First, looking at the first step, production costs can be reduced by using low-cost acetone as a starting material, which is very advantageous for mass production.

시안화 나트륨은 2~5배 무게비의 물에 용해시킨 후 사용하며, NaCN 1 당량 기준으로 아세톤은 1~3 당량, 바람직하게는 1~1.5 당량 사용될 수 있다. Sodium cyanide is used after dissolving in 2 to 5 times the weight ratio of water, and based on 1 equivalent of NaCN, 1 to 3 equivalents of acetone can be used, preferably 1 to 1.5 equivalents.

산촉매로는 황산, 질산, 인산 및 염산으로 이루어진 그룹에서 하나 이상 선택된 무기산이 사용될 수 있다. 이때, 무기산 한 종류만 사용할 경우 점도가 500~1500 cps로 높아서 원활한 교반이 어렵기 때문에 국부적으로 반응온도 차가 발생하게 되고 그 결과 반응전환율이 낮아지고 불순물이 많이 생성되는 문제점이 발생한다.As the acid catalyst, one or more inorganic acids selected from the group consisting of sulfuric acid, nitric acid, phosphoric acid, and hydrochloric acid may be used. At this time, when only one type of inorganic acid is used, the viscosity is high at 500 to 1500 cps, making smooth stirring difficult, resulting in a local reaction temperature difference, resulting in a low reaction conversion rate and the generation of many impurities.

따라서, 본 발명에서는 점도 문제를 해결하고 반응전환율을 높이기 위해 무기산과 함께 불균일계 고상촉매를 사용한다.Therefore, in the present invention, a heterogeneous solid phase catalyst is used together with an inorganic acid to solve the viscosity problem and increase the reaction conversion rate.

불균일계 고상촉매로는 강산성 양이온 교환수지, 폴리비닐 설폰익산-그라프티드 폴리스티렌, 실리카-황산, 실리카-차아염소산, 설페이티드 지르코늄, 보레이티드 지르코늄 및 알루미늄-폴리인산로 이루어진 군에서 하나 이상 선택될 수 있다.The heterogeneous solid phase catalyst may be selected from the group consisting of strongly acidic cation exchange resin, polyvinyl sulfonic acid-grafted polystyrene, silica-sulfuric acid, silica-hypochlorous acid, sulfated zirconium, borated zirconium, and aluminum-polyphosphoric acid. You can.

아세톤 1 당량 기준으로 무기산은 0.1~5 당량, 바람직하게는 0.5~3 당량 사용하고, 불균일계 고상촉매는 1~5 당량, 바람직하게는 1~3 당량 사용하며, 무기산과 불균일계 고상촉매를 합하여 3 당량 이상 사용하는 것이 바람직하다.Based on 1 equivalent of acetone, 0.1 to 5 equivalents of inorganic acid, preferably 0.5 to 3 equivalents, are used, and 1 to 5 equivalents, preferably 1 to 3 equivalents of heterogeneous solid catalyst are used. The inorganic acid and heterogeneous solid catalyst are used together. It is preferable to use 3 equivalents or more.

이와 같이 무기산과 불균일계 고상촉매, 예컨대 황산과 강산성 양이온 교환수지를 합하여 3 당량 이상 사용할 경우, 점도가 대폭 향상되어 교반이 원활하게 되고 따라서 반응 전환율 또한 95% 이상으로 향상된다.In this way, when more than 3 equivalents of an inorganic acid and a heterogeneous solid phase catalyst, such as sulfuric acid and a strongly acidic cation exchange resin, are used, the viscosity is greatly improved, stirring becomes smooth, and the reaction conversion rate also improves to 95% or more.

다음으로, 아세톤 시아노히드린을 산촉매하에서 가수분해시켜 HBA(2-hydroxy isobutyric acid)를 제조하는 제2 단계에 대해 설명한다.Next, the second step of producing HBA (2-hydroxy isobutyric acid) by hydrolyzing acetone cyanohydrin under an acid catalyst will be described.

아세톤 시아노히드린을 산촉매하에서 가수분해시킬 때, 사용되는 산의 당량에 따라 아미드(amide) 화합물이 생성될 수 있다. 예컨대, 아세톤 시아노히드린 1당량 당 1 당량 정도의 산을 사용할 경우 α-히드록시이소부티르산아미드와 같은 아미드 화합물이 주로 생성되고, 1.5 당량 정도의 산을 사용할 경우에는 아미드 화합물과 HBA의 혼합물이 생성될 수 있고, 2 당량 이상의 산이 사용될 경우 HBA가 주로 생성된다.When acetone cyanohydrin is hydrolyzed under an acid catalyst, an amide compound may be produced depending on the equivalent weight of the acid used. For example, when about 1 equivalent of acid is used per equivalent of acetone cyanohydrin, amide compounds such as α-hydroxyisobutyric acid amide are mainly produced, and when about 1.5 equivalents of acid are used, a mixture of amide compounds and HBA is produced. When more than 2 equivalents of acid is used, HBA is mainly produced.

종래 기술에서는 제2 단계에서 아미드 화합물이 주로 생성되는 것으로 개시하고 있으나, 아미드 화합물은 HBA에 비해 반응성이 훨씬 떨어지므로 공업적으로 대량생산하기에는 부적합하다.In the prior art, it is disclosed that amide compounds are mainly produced in the second step, but amide compounds are much less reactive than HBA and are therefore unsuitable for industrial mass production.

따라서, 본 발명에서는 HBM을 제조하는 단계에서 아미드 화합물이 아닌 HBA 중간체를 얻기 위하여 반응조건을 조정함과 동시에 염이나 불순물 등이 생성됨으로써 반응 점도가 높아지고 반응전환율이 저하되는 것을 방지하기 위하여 산촉매와 함께 불균일계 고상촉매를 사용한다.Therefore, in the present invention, in the step of producing HBM, the reaction conditions are adjusted to obtain an HBA intermediate rather than an amide compound, and at the same time, in order to prevent the reaction viscosity from increasing and the reaction conversion rate from decreasing due to the formation of salts or impurities, an acid catalyst is used together with the HBM. A heterogeneous solid phase catalyst is used.

이때 산촉매의 종류 및 불균일계 고상촉매의 종류 및 사용량은 제1 단계에서 설명한 것과 같다. 즉, 산촉매는 무기산일 수 있고, 무기산은 0.1~5 당량, 바람직하게는 0.5~3 당량 사용하고, 불균일계 고상촉매는 1~5 당량, 바람직하게는 1~3 당량 사용하며, 무기산과 불균일계 고상촉매를 합하여 3 당량 이상 사용하는 것이 바람직하다. 예컨대 35% HCl 2 당량 이상과 강산성 양이온 교환수지 2 당량 이상을 사용할 수 있을 것이다.At this time, the type and amount of acid catalyst and heterogeneous solid phase catalyst are the same as described in the first step. That is, the acid catalyst may be an inorganic acid, and the inorganic acid is used in an amount of 0.1 to 5 equivalents, preferably 0.5 to 3 equivalents, and the heterogeneous solid catalyst is used in an amount of 1 to 5 equivalents, preferably 1 to 3 equivalents. It is preferable to use more than 3 equivalents of the total solid catalyst. For example, more than 2 equivalents of 35% HCl and more than 2 equivalents of strongly acidic cation exchange resin may be used.

제1 단계 및 제2 단계에서 불균일계 고상촉매를 사용하지 않고 무기산만 사용할 경우에는 반응물의 점도가 500~1500 cps로 매우 높고 제1 단계 반응전환율은 90% 이하이고, 제2 단계 반응전환율은 85% 정도일 수 있다.When only inorganic acid is used in the first and second stages without using a heterogeneous solid catalyst, the viscosity of the reactant is very high at 500 to 1500 cps, the first stage reaction conversion rate is 90% or less, and the second stage reaction conversion rate is 85%. It may be around %.

하지만, 본 발명과 같이 제1 단계 및 제2 단계에서 산촉매와 불균일계 고상촉매를 합쳐서 3 당량 이상 사용할 경우에는 불균일계 고상촉매가 염(salt) 등을 걸러주므로 점도에 의해 교반이 저해될 염려가 전혀 없어 반응이 전체적으로 골고루 일어나며, 각 단계에서의 반응전환율이 95%, 바람직하게는 98%, 더욱 바람직하게는 99% 이상으로 향상될 수 있고, 중간 생성물로 아미드 화합물이 아닌 반응성이 매우 높은 HBA를 제조할 수 있는 이점이 있다.However, when using more than 3 equivalents of the acid catalyst and heterogeneous solid phase catalyst in the first and second steps as in the present invention, there is a risk that stirring will be impaired due to viscosity because the heterogeneous solid catalyst filters out salts, etc. There is no reaction at all, so the reaction occurs evenly throughout, and the reaction conversion rate in each step can be improved to 95%, preferably 98%, and more preferably 99% or more, and highly reactive HBA, not an amide compound, is used as an intermediate product. There are advantages to manufacturing it.

다음으로, HBA를 산촉매 하에서 메탄올과 반응시켜 HBM을 제조하는 제3 단계에 대해 설명한다.Next, the third step of producing HBM by reacting HBA with methanol under an acid catalyst will be described.

제3 단계에서 사용되는 산촉매 또한 제1 단계 또는 제2 단계에서 사용된 것과 같이 무기산이 사용될 수 있다. 즉, 상기 산촉매는 황산, 질산, 인산 및 염산 등으로 이루어진 군에서 하나 이상 선택된 무기산일 수 있고, HBA 1 당량 기준으로 무기산은 0.01~1 당량 사용될 수 있다.The acid catalyst used in the third step may also be an inorganic acid like that used in the first or second step. That is, the acid catalyst may be one or more inorganic acids selected from the group consisting of sulfuric acid, nitric acid, phosphoric acid, and hydrochloric acid, and 0.01 to 1 equivalent of the inorganic acid may be used based on 1 equivalent of HBA.

제3 단계에서 생성된 HBM은 열에 약하고 수분이 존재하면 가수분해가 일어나기 쉽지만 분자내에 친유성기와 친수성기를 동시에 가지고 있기 때문에 용제성이 우수하여 포토레지스트 공정의 PR 신너로 많이 사용된다.HBM produced in the third step is weak to heat and prone to hydrolysis in the presence of moisture, but has excellent solvent resistance because it has both lipophilic and hydrophilic groups in the molecule, so it is widely used as a PR thinner in the photoresist process.

상기 제1 단계 내지 제3 단계를 거쳐 제조된 최종 생성물, 즉 HBM 혼합액에는 소량의 염, 많은 양의 수분, 산, 메탈 등과 같은 불순물 존재할 수 있다. 잔존하는 불순물, 특히 산(acid)은 반도체 장비의 부식을 초래할 수 있고 포토레지스트 레진의 분해속도나 경화속도에 영향을 미칠 수 있을 뿐만 아니라 현상액에 사용되는 알칼리용액과 반응하여 칩 결함요인으로 작용하기 때문에 이를 최소화시킬 필요가 있다. The final product prepared through the first to third steps, that is, the HBM mixture, may contain impurities such as a small amount of salt, a large amount of moisture, acid, metal, etc. Remaining impurities, especially acids, can cause corrosion of semiconductor equipment and affect the decomposition or curing speed of photoresist resin, as well as reacting with the alkaline solution used in the developer to cause chip defects. Therefore, there is a need to minimize this.

특히 제3 단계는 가역반응으로서 하기와 같은 역반응에 의해 HBA와 물이 생성될 수 있는 문제점이 있으므로, 반도체 공정용으로 바로 사용하기 곤란하다.In particular, the third step is a reversible reaction, and there is a problem in that HBA and water may be generated by the reverse reaction as follows, so it is difficult to use it directly for semiconductor processing.

따라서, 본 발명에서는 상기 제1 단계 내지 제3 단계를 거쳐 제조된 HBM에서 각종 불순물을 제거하기 위하여 증류공정을 도입한다. 하지만, 메틸 2-히드록시이소부틸레이트와 수분이 공비증류를 하기 때문에 바로 증류공정을 도입할 경우 수분을 제거하기가 어렵다.Therefore, in the present invention, a distillation process is introduced to remove various impurities from HBM produced through the first to third steps. However, because methyl 2-hydroxyisobutyrate and water undergo azeotropic distillation, it is difficult to remove moisture if the distillation process is immediately introduced.

따라서, 증류공정에 앞서 염과 수분을 먼저 제거하는 단계를 도입하는 것이 바람직하다. 염과 수분을 제거하는 단계는 추출단계를 포함하거나 추출단계일 수 있다.Therefore, it is desirable to first introduce a step to remove salt and moisture prior to the distillation process. The step of removing salt and moisture may include or be an extraction step.

디클로로 메탄, 디클로로 에탄, 디클로로 프로판, 디클로로 부탄 등과 같은 유기용매 추출제를 사용하여 염과 수분이 제거된 HBM을 추출할 수 있다. 예컨대, 디클로로 메탄을 사용하여 HBM이 함유된 유기층을 얻은 후, 수층에 디클로로메탄을 다시 넣어서 수층에 함유된 HBM을 추출할 수 있을 것이다. 이때, 추출제는 메틸 2-히드록시이소부틸레이트 혼합액 무게 기준 30~300%, 바람직하게는 50~100% 사용할 수 있다.HBM from which salts and moisture have been removed can be extracted using an organic solvent extractant such as dichloromethane, dichloroethane, dichloropropane, and dichlorobutane. For example, after using dichloromethane to obtain an organic layer containing HBM, dichloromethane may be added to the water layer again to extract HBM contained in the water layer. At this time, the extractant can be used in an amount of 30 to 300%, preferably 50 to 100%, based on the weight of the methyl 2-hydroxyisobutyrate mixture.

추출공정까지 진행된 메틸 2-히드록시이소부틸레이트에는 제조공정 중에 사용된 산이 미량 잔존할 수 있고, 가수분해 반응 등에 의해 불순물이나 산이 생성될 수 있다. 따라서, 이러한 메틸 2-히드록시이소부틸레이트를 Na2CO3, NaHCO3를 통과시키면 산을 제거할 수 있다.A trace amount of the acid used during the manufacturing process may remain in methyl 2-hydroxyisobutyrate that has gone through the extraction process, and impurities or acids may be generated through hydrolysis reactions, etc. Therefore, the acid can be removed by passing methyl 2-hydroxyisobutylate through Na 2 CO 3 and NaHCO 3 .

추출공정에 얻은 HBM을 증류 정제함으로써 잔존하는 수분, 저비점 및 고비점 불순물을 추가적으로 제거할 수 있고, 파티클 필터나 메탈 필터를 사용하여 보다 정제된 고순도의 HBM을 얻을 수 있다.By distilling and purifying the HBM obtained in the extraction process, remaining moisture and low-boiling point and high-boiling point impurities can be additionally removed, and more purified, high-purity HBM can be obtained by using a particle filter or metal filter.

증류공정은 HBM보다 비점이 낮은 불순물을 제거하는 단계와 HBM보다 비점이 높은 불순물을 제거하는 단계를 포함할 수 있다. The distillation process may include removing impurities with a boiling point lower than HBM and removing impurities with a boiling point higher than HBM.

예컨대, 1차 증류타워의 온도를 HBM의 끓는점보다 낮게 유지하여 저비점 불순물을 제거하고, 2차 증류타워는 HBM보다 높은 온도를 유지하여 HBM은 기화시킨 후 냉각하여 회수하고, 고비점인 불순물은 2차 증류타워 하부로 제거할 수 있을 것이다.For example, the temperature of the primary distillation tower is maintained lower than the boiling point of HBM to remove low-boiling point impurities, and the secondary distillation tower is maintained at a temperature higher than HBM to vaporize HBM and then cool it to recover, and impurities with high boiling point are removed by 2%. It will be possible to remove it from the bottom of the tea distillation tower.

예컨대, 증류공정에서 트레이 컬럼(Tray column)이나, 팩킹 컬럼(Packed Column)을 사용할 수 있으며, -500~-600mmHg 하에서 1차 타워의 리보일러 온도를 80~140℃, 바람직하게는 80~100℃로 유지하며 증류공정을 실시하고, 2차 타워의 리보일러 온도를 140~180℃로 유지하며 증류공정을 실시할 수 있을 것이다.For example, in the distillation process, a tray column or packed column can be used, and the reboiler temperature of the first tower is set to 80 to 140 ℃ under -500 to -600 mmHg, preferably 80 to 100 ℃. The distillation process can be performed while maintaining the temperature at 140~180℃ in the reboiler of the secondary tower.

한편, 메틸 2-히드록시이소부틸레이트(HBM)는 화합물 내에 에스터(ester) 결합을 가지고 있어서 수분에 의해서 가수분해가 일어나기 쉽고 열에 의하여 산화반응이 일어나기 쉬우므로, 증류 공정 동안 불순물인 2-히드록시이소부틸릭산(HBA)이 생성될 수 있다. Meanwhile, methyl 2-hydroxyisobutyrate (HBM) has an ester bond in the compound, so it is easily hydrolyzed by moisture and oxidized by heat, so 2-hydroxy, which is an impurity, is removed during the distillation process. Isobutyric acid (HBA) may be produced.

따라서, 증류 공정 동안 가수분해를 방지하고 불순물 생성을 방지하기 위하여 산화방지제를 투입하는 것이 바람직하다. 이때, 산화방지제로 하기 1차 산화방지제와 2차 산화방지제를 조합하여 투입하거나 각각을 투입할 수 있다.Therefore, it is desirable to add an antioxidant to prevent hydrolysis and generation of impurities during the distillation process. At this time, as antioxidants, the following primary antioxidants and secondary antioxidants can be added in combination or individually.

상기 1차 산화방지제로는 페놀릭 산화방지제(Phenolic antioxidant) 계열로 대표적으로 사용되는 것은 BHT(Butylated hydroxyanisole), MeHQ(Hydroquinone monomethylether), TBC(4-tert.-Butylcatechol), HQ(Hydroquinone), Songnox 1010, Songnox 1076, Songnox 1135, Songnox 2450, Songnox 1035와 같은 제품을 사용할 수 있다.Representative examples of the primary antioxidants are phenolic antioxidants, including BHT (Butylated hydroxyanisole), MeHQ (Hydroquinone monomethylether), TBC (4-tert.-Butylcatechol), HQ (Hydroquinone), and Songnox. Products such as 1010, Songnox 1076, Songnox 1135, Songnox 2450, and Songnox 1035 are available.

상기 2차 산화방지제로는 포스파이트 산화방지제로 트리스(2,4-디-터어셔리-부틸페닐)포스파이트((2,4-di-tert-butylphenyl) phosphite)), 비스(2,4-디-터어셔리-부틸페닐)펜타에리트리톨 디포스파이트) ((bis(2,4-di-tert-butylphenyl pentaerythritol diphosphate) 등을 사용할 수 있다.The secondary antioxidants include phosphite antioxidants such as tris(2,4-di-tert-butylphenyl) phosphite ((2,4-di-tert-butylphenyl) phosphite) and bis(2,4). -di-tert-butylphenyl) pentaerythritol diphosphate) ((bis(2,4-di-tert-butylphenyl pentaerythritol diphosphate)) etc. can be used.

상기 1차 산화방지제와 2차 산화방지제는 HBM 혼합액 기준으로 10~10,000 ppm, 바람직하게는 100~2,000 ppm까지 투입할 수 있다.The primary antioxidant and secondary antioxidant can be added in an amount of 10 to 10,000 ppm, preferably 100 to 2,000 ppm, based on the HBM mixture.

증류공정 단계까지 거치면 반도체급 수준의 순도 및 산가를 유지하는 메틸 2-히드록시이소부틸레이트를 제조할 수 있지만, 보다 순도를 높이기 위해 메탈 필터나 파티클 필터를 통과시켜 최종 제품을 얻을 수 있을 것이다.By going through the distillation process, it is possible to produce methyl 2-hydroxyisobutyrate that maintains semiconductor-level purity and acid value. However, to further increase purity, the final product can be obtained by passing it through a metal filter or particle filter.

예컨대, 증류공정을 거친 메틸 2-히드록시이소부틸레이트를 Entergris사의 Pore 0.015um, 재질이 PTFE인 메탈 필터를 통과시켜서 미량의 메탈을 제거하고, 메탈 필터를 통과시킨 후 다시 Poll사 Pore size 0.1~0.04 um, 재질이 PTFE인 파티클 필터나 3M사의 Pore size 0.1~0.04 um, 재질이 Nylon인 파티클 필터를 통과시키면 보다 고순도의 반도체급 메틸 2-히드록시이소부틸레이트를 제조할 수 있다.For example, methyl 2-hydroxyisobutyrate that has gone through a distillation process is passed through a metal filter with a pore size of 0.015 um from Entergris and made of PTFE to remove trace amounts of metal. After passing through the metal filter, the methyl 2-hydroxyisobutyrate is filtered through a metal filter with a pore size of 0.1 to 0.1 um from Poll. Higher purity semiconductor grade methyl 2-hydroxyisobutyrate can be produced by passing it through a particle filter made of 0.04 um PTFE or a particle filter made by 3M with a pore size of 0.1~0.04 um and made of Nylon.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하기로 한다. 이들 실시예는 단지 본 발명을 예시하기 위한 것이므로, 본 발명의 권리범위가 이들 실시예에 의해 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail through examples. Since these examples are only for illustrating the present invention, the scope of the present invention is not limited by these examples.

<실시예 1><Example 1>

1. HBM 제조공정1. HBM manufacturing process

(1) 아세톤 시아노히드린 제조(1) Acetone cyanohydrin production

교반기가 달린 반응기에 시안화 나트륨(NaCN, 4.08당량) 200g과 물 440g을 넣고 교반하여 용해시킨 후, 반응기 온도를 5℃ 이하로 유지하면서 아세톤 236.97g(4.08 당량)을 천천히 투입하고 2시간 동안 교반한다. 교반이 완료되면, 반응기 온도를 10℃ 이하로 유지하면서 황산 99.9g을 천천히 투입하고, 반응액을 삼양사 강산성 양이온 교환수지인 SCR-BH 3리터를 포함하는 Vessel에 2시간 동안 순환시켜서 반응시킨다. 반응이 완료되면, 아세톤 시아노히드린을 얻을 수 있고 GC(Gas cromatoghaphy)를 사용하여 분석한 결과 전환율이 99.0% 이상이었다. Add 200 g of sodium cyanide (NaCN, 4.08 equivalent) and 440 g of water to a reactor equipped with a stirrer and stir to dissolve them. Then, while maintaining the reactor temperature below 5°C, slowly add 236.97 g (4.08 equivalent) of acetone and stir for 2 hours. . When stirring is completed, 99.9 g of sulfuric acid is slowly added while maintaining the reactor temperature below 10°C, and the reaction solution is circulated in a vessel containing 3 liters of SCR-BH, a strong acidic cation exchange resin from Samyang Corporation, for 2 hours to react. When the reaction was completed, acetone cyanohydrin could be obtained, and analysis using GC (Gas cromatoghaphy) showed that the conversion rate was over 99.0%.

(2) HBA 제조(2) HBA manufacturing

반응이 완료된 아세톤 시아노히드린에 35% 염산(Hydrochloric acid) 85 g을 천천히 투입한 후, 반응액을 삼양사 강산성 양이온 교환수지인 SCR-BH 3리터를 포함하는 Vessel을 70~80℃ 유지하면 3~5시간 순환시키면 2-히드록시기 이소부틸릭산을 얻을 수 있다. GC를 사용하여 분석한 결과 전환율이 98%이상이었다. After slowly adding 85 g of 35% hydrochloric acid to the acetone cyanohydrin where the reaction was completed, the reaction solution was placed in a vessel containing 3 liters of SCR-BH, a strong acidic cation exchange resin from Samyang Corporation, and maintained at 70~80℃ for 3~ By circulating for 5 hours, 2-hydroxy isobutyric acid can be obtained. As a result of analysis using GC, the conversion rate was over 98%.

(3) HBM 제조(3) HBM manufacturing

반응이 완료된 2-히드록시 이소부틸릭산에 메탄올(MeOH) 200g과 황산 0.5g을 투입하고 70~80℃에서 6시간 반응시키면 메틸 2-히드록시 이소부틸레이트를 얻을 수 있다. GC를 사용하여 분석한 결과 전환율이 97% 이상이었다.Methyl 2-hydroxy isobutylate can be obtained by adding 200 g of methanol (MeOH) and 0.5 g of sulfuric acid to the completed 2-hydroxy isobutyric acid and reacting at 70-80°C for 6 hours. As a result of analysis using GC, the conversion rate was over 97%.

2. 추출단계2. Extraction step

반응이 완료된 메틸 2-히드록시기 이소부틸레이트에 디클로메탄 300g을 넣고 충분히 흔들어서 층분리시킨 후, 제품을 포함하고 있는 하층(디클로로 메탄+메틸 2-히드록시기 이소부틸레이트)을 얻고, 물층에 디클로로 메탄 300g을 넣고 충분히 흔든 후에, 하층에서 메틸 2-히드록시기 이소부틸레이트를 추출한다. 추출 공정까지 진행된 메틸 2-히드록시이소부틸레이트에 Na2CO3, NaHCO3를 통과시키면 잔존하는 산을 추가적으로 제거할 수 있다. After the reaction was completed, add 300 g of dichloromethane to the methyl 2-hydroxy isobutyrate, shake sufficiently to separate the layers, obtain the lower layer containing the product (dichloromethane + methyl 2-hydroxy isobutylate), and add 300 g of dichloromethane to the water layer. After adding and shaking sufficiently, methyl 2-hydroxy isobutyrate is extracted from the lower layer. Remaining acids can be additionally removed by passing Na 2 CO 3 and NaHCO 3 through methyl 2-hydroxyisobutyrate that has undergone the extraction process.

3. 증류단계3. Distillation step

수분이 제거된 메틸 2-히드록시이소부틸레이트는 1차 증류 컬럼을 사용하여 탑 상부로 비점이 낮은 미반응 메탄올, 추출제인 디클로로 메탄, 기타 비점이 낮은 불순물을 제거하고 2차 증류타워에서는 고비점 불순물을 제거하여 고순도 메틸 2-히드록시이소부틸레이트을 얻을수 있다. 증류컬럼은 50단 트레이 컬럼(Tray column)를 사용하고, 리보일러 온도는 1차 증류타워는 80~100℃, 2차 증류타워는 140~180℃, 진공도는 -500~-600mmHg에서 증류하였다. 1차, 2차 타워 모두 산화방지제인 BHT 1,000ppm을 투입하고 증류를 하였다. Methyl 2-hydroxyisobutyrate from which moisture has been removed uses a primary distillation column to remove low-boiling unreacted methanol, dichloromethane as an extractant, and other low-boiling impurities from the top of the tower, and uses a secondary distillation tower to remove high-boiling point impurities. By removing impurities, high purity methyl 2-hydroxyisobutyrate can be obtained. A 50-stage tray column was used as the distillation column, and the reboiler temperature was 80 to 100°C for the first distillation tower, 140 to 180°C for the second distillation tower, and distillation was performed at a vacuum level of -500 to -600 mmHg. 1,000 ppm of BHT, an antioxidant, was added to both the first and second towers and distillation was performed.

4. 메탈 및 파티클 제거단계4. Metal and particle removal step

앞에서 증류된 고순도 메틸 2-히드록시이소부틸레이트를 Entergris사의 Pore 0.015um, 재질이 PTFE인 메탈 필터를 통과 시킨후, Poll사 Pore size 0.04um, 재질이 PTFE인 파티클 필터를 통과시켜서 반도체급으로 사용가능한 고순도의 메틸 2-히드록시이소부틸레이트를 얻었다.The high purity methyl 2-hydroxyisobutyrate previously distilled is passed through a metal filter made by Entergris with a pore size of 0.015um and made of PTFE, and then passed through a particle filter made by Poll with a pore size of 0.04um and made of PTFE to be used as a semiconductor grade. Methyl 2-hydroxyisobutylate of the highest possible purity was obtained.

<비교예 1><Comparative Example 1>

1. HBM 제조공정1. HBM manufacturing process

(1) 아세톤 시아노히드린 제조(1) Acetone cyanohydrin production

강산성 양이온 교환수지를 사용하지 않고 황산 239.9g을 사용한 점을 제외하고 실시예 1의 아세톤 시아노히드린 제조방법과 동일하다. GC(Gas cromatoghaphy)를 사용하여 분석한 결과 전환율이 88~90%로 낮고, 점도(Viscosity)가 500~800 cps이었다. The method for producing acetone cyanohydrin in Example 1 was the same, except that 239.9 g of sulfuric acid was used instead of using a strongly acidic cation exchange resin. As a result of analysis using GC (Gas cromatoghaphy), the conversion rate was low at 88-90% and the viscosity was 500-800 cps.

(2) HBA 제조(2) HBA manufacturing

강산성 양이온 교환수지를 사용하지 않고 35% 염산 500g을 천천히 투입하여 50~60℃에서 5~7시간 반응을 시킨 점을 제외하면 실시예 1의 HBA 제조공정과 동일하다. GC를 사용하여 분석한 결과 전환율이 82~85%론 낮고 점도가 더욱 높아져서 1000 cps 이상이었다.The HBA manufacturing process of Example 1 was the same as that of Example 1, except that 500 g of 35% hydrochloric acid was slowly added and the reaction was carried out at 50-60°C for 5-7 hours without using a strong acid cation exchange resin. As a result of analysis using GC, the conversion rate was low at 82-85% and the viscosity was further increased to over 1000 cps.

(3) HBM 제조(3) HBM manufacturing

상기에서 제조된 HBA를 사용하여 실시예 1과 동일한 방법으로 HBM을 제조하였다. GC를 사용하여 분석한 결과 전환율이 78~79%로 낮았고 Acetone에서 기인된 디아세톤 알콜 및 메시틸 옥사이드와 같은 불순물이 다량 존재하였다. HBM was prepared in the same manner as Example 1 using the HBA prepared above. As a result of analysis using GC, the conversion rate was low at 78-79%, and a large amount of impurities such as diacetone alcohol and mesityl oxide originating from Acetone were present.

따라서, 비교예 1의 각 단계를 거쳐 HBM 제조시 반응전환율이 본 발명 대비 현저히 낮고 점도가 높아서 공업적 생산공정에 적용하기에 어렵다는 것을 알 수 있다.Therefore, it can be seen that the reaction conversion rate when producing HBM through each step of Comparative Example 1 is significantly lower and the viscosity is higher than that of the present invention, making it difficult to apply it to an industrial production process.

이하, 첨부된 도면을 참조하여 본 발명에 따라 제조된 HBM의 순도 및 메탈 함량 등을 살펴본다.Hereinafter, the purity and metal content of HBM manufactured according to the present invention will be examined with reference to the attached drawings.

도 1은 본 발명의 실시예에 따라 제조된 HBM의 기체크로마토그램이고, 하기 표 1은 도 1에 나타난 피크의 머무름 시간, 면적, 면적% 및 표지를 나타낸 것이다.Figure 1 is a gas chromatogram of HBM prepared according to an example of the present invention, and Table 1 below shows the retention time, area, area %, and label of the peaks shown in Figure 1.

[표 1][Table 1]

도 1 및 표 1을 살펴보면, 4개의 피크가 관찰되는데, 머무름 시간(retention time) 8.097에서 크게 나타난 피크의 면적이 99.991이었다. 따라서, 본 발명에 따라 제조 및 정제된 HBM의 순도가 99.991%로서 반도체 공정, 특히 EUV 광원이 사용되는 반도체 공정에 사용될 수 있을 정도로 고순도임을 알 수 있다.Looking at Figure 1 and Table 1, four peaks were observed, and the area of the peak that appeared large at a retention time of 8.097 was 99.991. Therefore, it can be seen that the purity of HBM manufactured and purified according to the present invention is 99.991%, which is high enough to be used in semiconductor processes, especially semiconductor processes using EUV light sources.

도 2는 본 발명의 실시예에 따라 제조된 HBM의 양성자(proton) NMR 차트이다. Figure 2 is a proton NMR chart of HBM prepared according to an embodiment of the present invention.

도 2를 살펴보면, δH(ppm)가 1.275, 3.386, 3.616 값에서 피크가 관찰되는데, 이들 피크의 면적(integration)은 각각 6:1:3이었다. 따라서, 생성물이 HBM 분자에 상응하는 피크임을 확인할 수 있었다.Looking at Figure 2, peaks were observed at δ H (ppm) values of 1.275, 3.386, and 3.616, and the areas (integration) of these peaks were 6:1:3, respectively. Therefore, it was confirmed that the product was a peak corresponding to the HBM molecule.

하기 표 2는 본 발명의 실시예에 따라 제조된 HBM에 잔존하는 메탈 양을 분석한 표이다. 메탈 함량은 ICP-mass를 이용하여 분석하였다.Table 2 below is a table analyzing the amount of metal remaining in HBM manufactured according to an example of the present invention. Metal content was analyzed using ICP-mass.

[표 2][Table 2]

상기 표 2를 통해 본 발명의 실시예에 따라 제조된 제품은 메탈스펙에 맞는 메틸 2-히드록시이소부틸레이트임을 확인할 수 있다.Through Table 2 above, it can be confirmed that the product manufactured according to the embodiment of the present invention is methyl 2-hydroxyisobutylate that meets the metal specifications.

이상의 설명은 본 발명을 예시적으로 설명한 것에 불과한 것으로, 본 발명에 속하는 기술분야에서 통상의 지식을 가지는 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 변형이 가능할 것이다. 따라서, 본 명세서에 개시된 실시예는 본 발명을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 보호범위가 한정되는 것은 아니다. 본 발명의 보호범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내의 모든 기술은 본 발명의 권리범위에 포함하는 것으로 해석되어야 할 것이다.The above description is merely an illustrative description of the present invention, and those skilled in the art will be able to make various modifications without departing from the essential characteristics of the present invention. Accordingly, the embodiments disclosed in this specification are not intended to limit the present invention, but rather to explain the present invention, and the scope of protection of the present invention is not limited by these embodiments. The scope of protection of the present invention should be interpreted in accordance with the claims below, and all technologies within the equivalent scope should be interpreted as being included in the scope of rights of the present invention.

Claims (15)

하기 반응식에 의해 메틸 2-히드록시이소부틸레이트를 제조하는 단계;

상기 메틸 2-히드록시이소부틸레이트에서 염과 수분을 제거하는 단계; 및
염과 수분이 제거된 상기 메틸 2-히드록시이소부틸레이트를 증류하는 단계를 포함하는 EUV 반도체 공정용 고순도 메틸 2-히드록시이소부틸레이트의 제조 및 정제방법.
Preparing methyl 2-hydroxyisobutyrate according to the following reaction formula;

Removing salt and moisture from the methyl 2-hydroxyisobutyrate; and
A method for producing and purifying high purity methyl 2-hydroxyisobutylate for the EUV semiconductor process, comprising the step of distilling the methyl 2-hydroxyisobutylate from which salt and moisture have been removed.
제 1항에 있어서,
상기 메틸 2-히드록시이소부틸레이트를 제조하는 단계에서 산촉매와 함께 불균일계 고상촉매가 사용되는 것을 특징으로 하는 EUV 반도체 공정용 고순도 메틸 2-히드록시이소부틸레이트의 제조 및 정제방법.
According to clause 1,
A method for producing and purifying high purity methyl 2-hydroxyisobutylate for the EUV semiconductor process, characterized in that a heterogeneous solid phase catalyst is used along with an acid catalyst in the step of producing methyl 2-hydroxyisobutylate.
제 1항에 있어서,
상기 염과 수분을 제거하는 단계는 추출제를 이용하여 상기 메틸 2-히드록시이소부틸레이트를 추출하는 단계인 것을 특징으로 하는 EUV 반도체 공정용 고순도 메틸 2-히드록시이소부틸레이트의 제조 및 정제방법.
According to clause 1,
Method for producing and purifying high purity methyl 2-hydroxyisobutylate for EUV semiconductor process, characterized in that the step of removing the salt and moisture is a step of extracting the methyl 2-hydroxyisobutylate using an extractant. .
제 3항에 있어서,
상기 추출제는 유기용매인 것을 특징으로 하는 EUV 반도체 공정용 고순도 메틸 2-히드록시이소부틸레이트의 제조 및 정제방법.
According to clause 3,
A method for producing and purifying high purity methyl 2-hydroxyisobutylate for EUV semiconductor processing, wherein the extractant is an organic solvent.
제 1항에 있어서,
상기 증류단계 전에, 염과 수분이 제거된 상기 메틸 2-히드록시이소부틸레이트를 Na2CO3 또는 NaHCO3에 통과시켜 산을 제거하는 단계를 더 포함하는 EUV 반도체 공정용 고순도 메틸 2-히드록시이소부틸레이트의 제조 및 정제방법.
According to clause 1,
Before the distillation step, high purity methyl 2-hydroxyisobutyrate for the EUV semiconductor process further includes the step of removing acid by passing the methyl 2-hydroxyisobutyrate from which salts and moisture have been removed through Na 2 CO 3 or NaHCO 3 Method for producing and purifying isobutyrate.
제 1항에 있어서,
상기 증류단계에 의해 수득한 메틸 2-히드록시이소부틸레이트를 필터에 통과시켜 메탈 또는 파티클을 제거하는 단계를 더 포함하는 EUV 반도체 공정용 고순도 메틸 2-히드록시이소부틸레이트의 제조 및 정제방법.
According to clause 1,
A method for producing and purifying high purity methyl 2-hydroxyisobutylate for the EUV semiconductor process, further comprising passing the methyl 2-hydroxyisobutyrate obtained through the distillation step through a filter to remove metal or particles.
제 1항에 있어서,
상기 메틸 2-히드록시이소부틸레이트를 제조하는 단계에서 사용된 산촉매는 황산, 질산, 인산 및 염산으로 이루어진 군에서 하나 이상 선택되는 것을 특징으로 하는 EUV 반도체 공정용 고순도 메틸 2-히드록시이소부틸레이트의 제조 및 정제방법.
According to clause 1,
The acid catalyst used in the step of producing methyl 2-hydroxyisobutylate is a high-purity methyl 2-hydroxyisobutylate for EUV semiconductor process, characterized in that at least one selected from the group consisting of sulfuric acid, nitric acid, phosphoric acid, and hydrochloric acid. Manufacturing and purification method.
제 2항에 있어서,
상기 불균일계 고상촉매는 강산성 양이온 교환수지, 폴리비닐 설폰익산-그라프티드 폴리스티렌, 실리카-황산, 실리카-차아염소산, 설페이티드 지르코늄, 보레이티드 지르코늄 및 알루미늄-폴리인산으로 이루어진 군에서 하나 이상 선택되는 것을 특징으로 하는 EUV 반도체 공정용 고순도 메틸 2-히드록시이소부틸레이트의 제조 및 정제방법.
According to clause 2,
The heterogeneous solid phase catalyst is one or more selected from the group consisting of strongly acidic cation exchange resin, polyvinyl sulfonic acid-grafted polystyrene, silica-sulfuric acid, silica-hypochlorous acid, sulfated zirconium, borated zirconium, and aluminum-polyphosphoric acid. A method for producing and purifying high purity methyl 2-hydroxyisobutyrate for EUV semiconductor processing.
제 2항에 있어서,
상기 무기산 및 불균일계 고상촉매는 총 3 당량 이상 사용되는 것을 특징으로 하는 고순도의 메틸 2-히드록시이소부틸레이트의 제조방법.
According to clause 2,
A method for producing high purity methyl 2-hydroxyisobutyrate, characterized in that the inorganic acid and the heterogeneous solid phase catalyst are used in a total amount of 3 equivalents or more.
제 1항에 있어서,
상기 메틸 2-히드록시이소부틸레이트를 제조하는 단계에서, 각 반응단계별 반응 전환율이 각각 90% 이상인 것을 특징으로 하는 EUV 반도체 공정용 고순도 메틸 2-히드록시이소부틸레이트의 제조 및 정제방법.
According to clause 1,
In the step of producing methyl 2-hydroxyisobutyrate, a method for producing and purifying high purity methyl 2-hydroxyisobutylate for the EUV semiconductor process, characterized in that the reaction conversion rate for each reaction step is 90% or more.
제 1항에 있어서,
상기 증류단계에서 산화방지제를 투입하는 것을 특징으로 하는 EUV 반도체 공정용 고순도 메틸 2-히드록시이소부틸레이트의 제조 및 정제방법.
According to clause 1,
A method for producing and purifying high-purity methyl 2-hydroxyisobutyrate for the EUV semiconductor process, characterized in that an antioxidant is added in the distillation step.
제 11항에 있어서,
상기 산화방지제는 BHT(Butylated hydroxyanisole), MeHQ(Hydroquinone monomethylether), TBC(4-tert.-Butylcatechol), HQ(Hydroquinone), Songnox 1010, Songnox 1076, Songnox 1135, Songnox 2450, Songnox 1035, 트리스(2,4-디-터어셔리-부틸페닐)포스파이트((2,4-di-tert-butylphenyl) phosphite)), 및 비스(2,4-디-터어셔리-부틸페닐)펜타에리트리톨 디포스파이트 ((bis(2,4-di-tert-butylphenyl pentaerythritol diphosphate)로 이루어진 군에서 하나 이상 선택되는 것을 특징으로 하는 EUV 반도체 공정용 고순도 메틸 2-히드록시이소부틸레이트의 제조 및 정제방법.
According to clause 11,
The antioxidants include BHT (Butylated hydroxyanisole), MeHQ (Hydroquinone monomethylether), TBC (4-tert.-Butylcatechol), HQ (Hydroquinone), Songnox 1010, Songnox 1076, Songnox 1135, Songnox 2450, Songnox 1035, Tris (2, 4-di-tert-butylphenyl) phosphite ((2,4-di-tert-butylphenyl) phosphite), and bis (2,4-di-tert-butylphenyl) pentaerythritol diphosphite. ((Method for producing and purifying high purity methyl 2-hydroxyisobutylate for EUV semiconductor process, characterized in that at least one selected from the group consisting of bis(2,4-di-tert-butylphenyl pentaerythritol diphosphate).
제 1항에 있어서,
상기 증류단계는 메틸 2-히드록시이소부틸레이트보다 비점이 낮은 불순물을 제거하는 단계와 메틸 2-히드록시이소부틸레이트보다 비점이 높은 불순물을 제거하는 단계를 포함하는 것을 특징으로 하는 EUV 반도체 공정용 고순도 메틸 2-히드록시이소부틸레이트의 제조 및 정제방법.
According to clause 1,
The distillation step includes removing impurities with a boiling point lower than methyl 2-hydroxyisobutylate and removing impurities with a boiling point higher than methyl 2-hydroxyisobutylate. Method for producing and purifying high purity methyl 2-hydroxyisobutyrate.
제 1항에 있어서,
상기 증류단계에 의해 수득한 메틸 2-히드록시이소부틸레이트는 반도체 공정의 포토레지스트 공정에서 신너로 사용되는 것을 특징으로 하는 EUV 반도체 공정용 고순도 메틸 2-히드록시이소부틸레이트의 제조 및 정제방법.
According to clause 1,
A method for producing and purifying high purity methyl 2-hydroxyisobutylate for the EUV semiconductor process, wherein the methyl 2-hydroxyisobutyrate obtained through the above distillation step is used as a thinner in the photoresist process of the semiconductor process.
제 14항에 있어서,
상기 반도체 공정은 EUV 광원 또는 ArF 광원을 사용하는 공정을 포함하는 것을 특징으로 하는 EUV 반도체 공정용 고순도 메틸 2-히드록시이소부틸레이트의 제조 및 정제방법.
According to clause 14,
A method for producing and purifying high purity methyl 2-hydroxyisobutylate for the EUV semiconductor process, wherein the semiconductor process includes a process using an EUV light source or an ArF light source.
KR1020220116323A 2022-09-15 2022-09-15 Preparation and purification method of high purity methyl 2-hydroxyisobutyrate for euv semiconductor process KR20240037607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220116323A KR20240037607A (en) 2022-09-15 2022-09-15 Preparation and purification method of high purity methyl 2-hydroxyisobutyrate for euv semiconductor process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220116323A KR20240037607A (en) 2022-09-15 2022-09-15 Preparation and purification method of high purity methyl 2-hydroxyisobutyrate for euv semiconductor process

Publications (1)

Publication Number Publication Date
KR20240037607A true KR20240037607A (en) 2024-03-22

Family

ID=90481255

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220116323A KR20240037607A (en) 2022-09-15 2022-09-15 Preparation and purification method of high purity methyl 2-hydroxyisobutyrate for euv semiconductor process

Country Status (1)

Country Link
KR (1) KR20240037607A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5068399A (en) 1989-11-28 1991-11-26 Mitsubishi Gas Chemical Company, Inc. Process for preparing unsaturated carboxylic acid ester
KR19990077617A (en) 1998-03-11 1999-10-25 오오히라 아키라 Method of producing methyl methacrylate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5068399A (en) 1989-11-28 1991-11-26 Mitsubishi Gas Chemical Company, Inc. Process for preparing unsaturated carboxylic acid ester
KR19990077617A (en) 1998-03-11 1999-10-25 오오히라 아키라 Method of producing methyl methacrylate

Similar Documents

Publication Publication Date Title
CN102667625B (en) Positive type photosensitive organic compound, the cured film formed by said composition and there is the element of cured film
JP2002226436A (en) (meth)acrylate having cyclic skeleton
CN112142574B (en) Synthesis method of 9, 9-bis [4- (2-hydroxyethoxy) phenyl ] fluorene
KR101005586B1 (en) Purification method for organic solvent
KR20240037607A (en) Preparation and purification method of high purity methyl 2-hydroxyisobutyrate for euv semiconductor process
KR101282799B1 (en) Refining method of organic solvent to recycle pma
JP4648066B2 (en) Method for producing tertiary alcohol
JP5719631B2 (en) Compound, derivative, composition, cured product, and method for producing compound and derivative
KR102598771B1 (en) Purification method of akylene glycol monoalkyl ether carboxylic acid ester having hihg-purity used in phtoto resist process
KR101427397B1 (en) Treatment method of Propyleneglycol monomethylether acetate
KR100615931B1 (en) Precess of the preparation of high-purity alkyladamantyl esters
CN114276263B (en) High-purity photoacid inhibitor with diester structure and synthesis method thereof
JP2022061763A (en) Novel polythiol compound
US5426214A (en) Propylene glycol monomethyl ether butyrates and isomers, and the process for the preparation thereof
JP3823305B2 (en) Phenol compound and method for producing the same
CN1704846A (en) Positive resist composition and compound used therein
CN103080067B (en) Method for purifying organic solvents
KR100243924B1 (en) Propylene glycol monomethyl ether butyrates and isomers, and the process for the preparation thereof
CN108997182A (en) Photodegradation alkali, containing its photoetching compositions and preparation method thereof
US5239111A (en) Propylene glycol monomethyl ether propionate compound and the process for the preparation thereof
CN112898185B (en) Fluorine-containing compound for immersion photoresist, preparation method thereof and photoresist
JP2000143639A (en) Production of dicarboxylic acid derivative and production of polybenzoxazole precursor using the derivative
JP2992440B2 (en) Propylene glycol monomethyl ether butyrate, its isomer and its production method
JP2007223932A (en) Method for producing highly pure adamanthyl (meth)acrylate compounds
JP2641684B2 (en) Propylene glycol monomethyl ether propionate solvent