JP2000143639A - Production of dicarboxylic acid derivative and production of polybenzoxazole precursor using the derivative - Google Patents
Production of dicarboxylic acid derivative and production of polybenzoxazole precursor using the derivativeInfo
- Publication number
- JP2000143639A JP2000143639A JP24293999A JP24293999A JP2000143639A JP 2000143639 A JP2000143639 A JP 2000143639A JP 24293999 A JP24293999 A JP 24293999A JP 24293999 A JP24293999 A JP 24293999A JP 2000143639 A JP2000143639 A JP 2000143639A
- Authority
- JP
- Japan
- Prior art keywords
- dicarboxylic acid
- acid derivative
- general formula
- polybenzoxazole precursor
- producing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Materials For Photolithography (AREA)
- Polyamides (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
- Macromonomer-Based Addition Polymer (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、感光性または感放
射線性のポジ型フォトレジスト組成物、ならびにこの組
成物の耐熱性保護膜およびレリーフ構造体の製造に使用
されるポリベンゾオキサゾール前駆体の製造法とそれを
合成するための原料の製造方法に関するものである。The present invention relates to a photosensitive or radiation-sensitive positive photoresist composition, and a polybenzoxazole precursor used in the production of a heat-resistant protective film and a relief structure of the composition. The present invention relates to a production method and a method for producing a raw material for synthesizing the same.
【0002】[0002]
【従来の技術】従来、半導体素子の表面保護膜、層間絶
縁膜には耐熱性が優れ、又卓越した電気特性、機械特性
等を有するポリイミド樹脂が用いられているが、近年半
導体素子の高集積化、大型化、パッケージの薄型化、小
型化、半田リフローによる表面実装への移行等により耐
熱サイクル性、耐熱ショック性等の著しい向上の要求が
あり、更に高性能の樹脂が必要とされるようになってき
た。一方、ポリイミド樹脂自身に感光性を付与する技術
が最近注目を集めてきており、例えば下記式(III)で
示される感光性ポリイミド樹脂が挙げられる。2. Description of the Related Art Conventionally, a polyimide resin having excellent heat resistance and excellent electrical and mechanical properties has been used for a surface protective film and an interlayer insulating film of a semiconductor element. There is a demand for remarkable improvement in heat cycle resistance and heat shock resistance due to the increase in size, increase in size, thinner and smaller package, shift to surface mounting by solder reflow, etc., and further high-performance resin is required. It has become On the other hand, a technique for imparting photosensitivity to the polyimide resin itself has recently attracted attention, and examples thereof include a photosensitive polyimide resin represented by the following formula (III).
【0003】[0003]
【化7】 Embedded image
【0004】これを用いるとパターン作成工程の一部が
簡略化でき、工程短縮の効果はあるが、現像の際にN−
メチル−2−ピロリドン等の溶剤が必要となるため、安
全性、取扱い性に問題がある。そこで最近、アルカリ水
溶液で現像ができるポジ型の感光性樹脂が開発されてい
る。例えば、特公平1−46862号公報においてはポ
リベンゾオキサゾール前駆体とジアゾキノン化合物より
構成されるポジ型感光性樹脂が開示されている。これは
高い耐熱性、優れた電気特性、微細加工性を有し、ウェ
ハーコート用のみならず層間絶縁用樹脂としての可能性
も有している。このポジ型の感光性樹脂の現像メカニズ
ムは、未露光部のジアゾキノン化合物はアルカリ水溶液
に不溶であるが、露光することによりジアゾキノン化合
物が化学変化を起こし、アルカリ水溶液に可溶となる。
この露光部と未露光部との溶解性の差を利用し、露光部
を溶解除去することにより未露光部のみの塗膜パターン
の作成が可能となるものである。When this is used, a part of the pattern forming process can be simplified, which has the effect of shortening the process.
Since a solvent such as methyl-2-pyrrolidone is required, there is a problem in safety and handling. Therefore, recently, a positive photosensitive resin that can be developed with an alkaline aqueous solution has been developed. For example, Japanese Patent Publication No. 1-46862 discloses a positive photosensitive resin composed of a polybenzoxazole precursor and a diazoquinone compound. It has high heat resistance, excellent electrical properties and fine workability, and has the potential not only as a wafer coat but also as an interlayer insulating resin. The mechanism of development of the positive photosensitive resin is that the unexposed portion of the diazoquinone compound is insoluble in the aqueous alkali solution, but the exposure causes the diazoquinone compound to undergo a chemical change and become soluble in the aqueous alkaline solution.
By utilizing the difference in solubility between the exposed part and the unexposed part and dissolving and removing the exposed part, it becomes possible to form a coating film pattern of only the unexposed part.
【0005】このポジ型感光性樹脂のベースポリマーで
あるポリベンゾオキサゾール前駆体の合成法について
は、Polymer Letter.,Vol.2,pp655-659(1964)に示され
ているように、ジカルボン酸クロライドとジアミンとを
反応させるのが一般的である。ところがこの方法では、
ポリマー中に塩素イオンが残留し回路金属を腐食するた
め、半導体に用いるのは事実上困難である。A method for synthesizing a polybenzoxazole precursor, which is a base polymer of the positive photosensitive resin, is disclosed in Polymer Letter., Vol. 2, pp 655-659 (1964). And a diamine are generally reacted. However, with this method,
Since chlorine ions remain in the polymer and corrode circuit metals, it is practically difficult to use it for semiconductors.
【0006】そこで特開平9−183846号公報で
は、1−ヒドロキシベンゾトリアゾールとジカルボン酸
とを反応させたジカルボン酸誘導体を経由して、ポリベ
ンゾオキサゾール前駆体を合成する方法が開示されてい
る。この方法を用いると、上のような残留する塩素イオ
ンの問題は起こらない。さらにその反応において、アミ
ノ基への選択性は高まるが、水酸基への反応は起こりに
くいため、ゲル化が起こらないという利点がある。Japanese Patent Application Laid-Open No. 9-183846 discloses a method for synthesizing a polybenzoxazole precursor via a dicarboxylic acid derivative obtained by reacting 1-hydroxybenzotriazole with dicarboxylic acid. With this method, the problem of residual chlorine ions as described above does not occur. Further, in the reaction, the selectivity to an amino group is increased, but the reaction to a hydroxyl group is hard to occur, so that there is an advantage that gelation does not occur.
【0007】この特開平9−183846号公報では、
ジカルボン酸誘導体自身を合成する方法は記載されてい
ないが、従来からの有機化学の分野では縮合剤にジシク
ロヘキシルカルボジイミドを用いることが一般的手法で
ある。ところがこの反応で合成したジカルボン酸誘導体
とジアミンとを反応させポリベンゾオキサゾール前駆体
を合成すると、次のような問題が起こる。すなわちジシ
クロヘキシルカルボジイミドは脱水反応した後、ジシク
ロヘキシルウレアになるが、これがしばしば単離したポ
リマー中に残存する。ポリベンゾオキサゾール前駆体は
溶剤に溶かして使用され、その溶液を冷凍保存すると残
存したジシクロヘキシルウレアが析出し、微細パターン
の形成を困難にするという問題を起こす。従ってジシク
ロヘキシルウレアは完全に除去し純粋に単離したジカル
ボン酸誘導体を用いることが不可欠である。In Japanese Patent Application Laid-Open No. 9-183846,
Although a method for synthesizing the dicarboxylic acid derivative itself is not described, in the field of conventional organic chemistry, it is a general method to use dicyclohexylcarbodiimide as a condensing agent. However, when the dicarboxylic acid derivative synthesized by this reaction is reacted with a diamine to synthesize a polybenzoxazole precursor, the following problems occur. That is, dicyclohexylcarbodiimide is converted into dicyclohexylurea after a dehydration reaction, which often remains in the isolated polymer. The polybenzoxazole precursor is used by dissolving it in a solvent, and when the solution is stored frozen, the remaining dicyclohexylurea precipitates, which causes a problem that it is difficult to form a fine pattern. Therefore, it is essential that dicyclohexylurea be completely removed and a purely isolated dicarboxylic acid derivative be used.
【0008】[0008]
【発明が解決しようとする課題】本発明の目的は、ポリ
ベンゾオキサゾール前駆体の合成原料であるジカルボン
酸誘導体を高純度で効率よく、高収率で合成する方法と
そのジカルボン酸誘導体とジアミンとを反応後、その分
子鎖末端を封止して得られる高純度なポリベンゾオキサ
ゾール前駆体を合成する方法を提供することにある。SUMMARY OF THE INVENTION An object of the present invention is to provide a method for synthesizing a dicarboxylic acid derivative, which is a raw material for synthesizing a polybenzoxazole precursor, with high purity, high efficiency and high yield, and a method for synthesizing the dicarboxylic acid derivative with a diamine. To provide a method for synthesizing a high-purity polybenzoxazole precursor obtained by blocking the terminal of the molecular chain after the reaction.
【0009】[0009]
【課題を解決するための手段】本発明はジフェニルエー
テル−4,4’−ジカルボン酸と1―ヒドロキシベンゾ
トリアゾールとを、縮合剤としてジシクロヘキシルカル
ボジイミドを用いて反応させた後、 OH基を含む物質
によって反応溶液から単離してなる一般式(I)で示さ
れるジカルボン酸誘導体の製造方法である。更に好まし
い態様としては、ジシクロヘキシルウレアを除いた濾液
にOH基を含む物質を投入し、析出させ、単離する一般
式(I)で示されるジカルボン酸誘導体の製造方法であ
る。また、上記のOH基を含む物質が、水、メタノー
ル、エタノール、イソプロピルアルコールからなる群よ
り選ばれてなる1種類の物質あるいは2種類以上の混合
物であり、該ジフェニルエーテル−4,4’−ジカルボ
ン酸1モルに対してジシクロヘキシルカルボジイミドを
1.9〜2.3モルの範囲で反応させるジカルボン酸誘
導体の製造方法である。According to the present invention, diphenyl ether-4,4'-dicarboxylic acid is reacted with 1-hydroxybenzotriazole using dicyclohexylcarbodiimide as a condensing agent and then reacted with a substance containing an OH group. This is a method for producing a dicarboxylic acid derivative represented by the general formula (I) isolated from a solution. A more preferred embodiment is a method for producing a dicarboxylic acid derivative represented by the general formula (I) in which a substance containing an OH group is added to a filtrate except for dicyclohexylurea, precipitated, and isolated. Further, the substance containing an OH group is one kind of substance selected from the group consisting of water, methanol, ethanol, and isopropyl alcohol or a mixture of two or more kinds thereof, and the diphenyl ether-4,4′-dicarboxylic acid This is a method for producing a dicarboxylic acid derivative in which dicyclohexylcarbodiimide is reacted in a range of 1.9 to 2.3 mol per 1 mol.
【化8】 Embedded image
【0010】また、上記のジカルボン酸誘導体と、ジア
ミンとの反応物の分子鎖末端を、アルケニル基またはア
ルキニル基を有するカルボン酸誘導体で封止してなる事
を特徴とする一般式(II)で示されるポリベンゾオキサ
ゾール前駆体の製造方法である。In the general formula (II), the molecular chain end of the reaction product of the above dicarboxylic acid derivative and diamine is sealed with a carboxylic acid derivative having an alkenyl group or an alkynyl group. It is a manufacturing method of the polybenzoxazole precursor shown.
【化9】 Embedded image
【0011】[0011]
【発明の実施の形態】一般に反応終了後の反応混合物か
ら、目的の生成物を単離する方法には、蒸留による分別
蒸留、再結晶、カラムを用いた分離、貧溶剤の使用によ
る析出などがある。これらの単離方法を検討した結果、
ジフェニルエーテル−4,4’−ジカルボン酸と1―ヒ
ドロキシベンゾトリアゾールとからなる一般式(I)の
反応物を単離する際、OH基を含む物質を用い、反応溶
液より析出させ、単離するという方法が最も簡単で高純
度、高収率であることを見いだした。DESCRIPTION OF THE PREFERRED EMBODIMENTS In general, methods for isolating a desired product from a reaction mixture after completion of a reaction include fractional distillation by distillation, recrystallization, separation using a column, and precipitation by using a poor solvent. is there. As a result of studying these isolation methods,
When isolating a reaction product of the general formula (I) consisting of diphenyl ether-4,4'-dicarboxylic acid and 1-hydroxybenzotriazole, a substance containing an OH group is used to precipitate from the reaction solution and to be isolated. The method was found to be the simplest, high purity, high yield.
【0012】一般式(I)のような物質は一般に活性エ
ステルとよばれ、例えば活性水素を有するOH基を含む
物質では分解されやすいとされているが、本発明ではジ
カルボン酸としてジフェニルエーテル−4,4’−ジカ
ルボン酸を用いているのでほとんど分解することはな
い。この理由はジフェニルエーテル−4,4’−ジカル
ボン酸と1−ヒドロキシベンゾトリアゾールからなる一
般式(I)のジカルボン誘導体は、反応性が低いため、
析出のためのOH基を含む物質によって分解されにくい
ことと、 OH基を含む物質が一般式(I)で示される
ジカルボン誘導体に対して最も貧溶剤であることによる
と考えられる。The substance represented by the general formula (I) is generally called an active ester. For example, a substance containing an OH group having active hydrogen is considered to be easily decomposed, but in the present invention, diphenyl ether-4,4 is used as a dicarboxylic acid. Since 4'-dicarboxylic acid is used, it hardly decomposes. The reason is that the dicarboxylic acid derivative of the general formula (I) comprising diphenyl ether-4,4′-dicarboxylic acid and 1-hydroxybenzotriazole has low reactivity,
This is considered to be due to the fact that it is difficult to be decomposed by a substance containing an OH group for precipitation, and that the substance containing an OH group is the poorest solvent for the dicarboxylic derivative represented by the general formula (I).
【0013】本発明では一般式(I)で示されるジカル
ボン酸誘導体を合成するにあたり、縮合剤としてジシク
ロヘキシルカルボジイミドを用いる。ジシクロヘキシル
カルボジイミドと1−ヒドロキシベンゾトリアゾールを
用いて活性エステルを作るという方法は公知であるが、
本発明ではそれをごく限られたジカルボン酸に適用し、
かつ単離において、本来使用不能とされていたOH基を
含む物質を使用するということを特徴にしている。In the present invention, in synthesizing the dicarboxylic acid derivative represented by the general formula (I), dicyclohexylcarbodiimide is used as a condensing agent. A method of making an active ester using dicyclohexylcarbodiimide and 1-hydroxybenzotriazole is known,
In the present invention, it is applied to very limited dicarboxylic acids,
Further, in the isolation, a substance containing an OH group, which was originally unusable, is used.
【0014】この方法を、例えば最も一般的な酸である
イソフタル酸に適応した場合、イソフタル酸と1−ヒド
ロキシベンゾトリアゾールとがジシクロヘキシルカルボ
ジイミドによって縮合され、活性エステルは得られる。
しかし、それを単離するためにOH基を含む物質とし
て、例えば水を添加すると加水分解を起こし、生成物の
一部がイソフタル酸と1−ヒドロキシベンゾトリアゾー
ルに分解してしまう。When this method is applied to, for example, isophthalic acid, which is the most common acid, isophthalic acid and 1-hydroxybenzotriazole are condensed with dicyclohexylcarbodiimide to obtain an active ester.
However, when a substance containing an OH group, such as water, is added to isolate it, hydrolysis occurs, and a part of the product is decomposed into isophthalic acid and 1-hydroxybenzotriazole.
【0015】本発明における一般式(I)の合成にあた
っては、あらかじめジフェニルエーテル−4,4’−ジ
カルボン酸と1−ヒドロキシベンゾトリアゾールを溶剤
に溶かしておき、−5〜10℃の低温下でジシクロヘキ
シルカルボジイミドを加え、さらに20〜80℃で、好
ましくは20〜50℃で攪拌する。反応終了後、 OH
基を含む物質によりジカルボン酸誘導体の単離を行い目
的とする物質を得る。更に好ましい手順としては、析出
したジシクロヘキシルカルボジウレアをろ過して取り除
き、OH基を含む物質で濾液を処理する場合、OH基を
含む物質を攪拌しながらそれに濾液を投入して目的とす
る沈殿物であるジカルボン酸誘導体を得る方法と、濾液
を攪拌しながらそれにOH基を含む物質を投入して目的
とする沈殿物であるジカルボン酸誘導体を得る方法とが
あるが、後者の方が好ましい。後者の方が不純物の含有
量が少ないため収率が高く、これを用いた製品の歩留ま
りも良好になる。この方法では、OH基を含む物質に対
してもっとも溶解性が低い目的物のジカルボン酸誘導体
が先ず析出し、不純物である未反応ジシクロヘキシルカ
ルボジイミド、ジシクロヘキシルウレアなどは析出しに
くい。In the synthesis of the general formula (I) in the present invention, diphenyl ether-4,4'-dicarboxylic acid and 1-hydroxybenzotriazole are dissolved in a solvent in advance, and dicyclohexylcarbodiimide is dissolved at a low temperature of -5 to 10 ° C. And further stirred at 20 to 80 ° C, preferably at 20 to 50 ° C. After the reaction,
The dicarboxylic acid derivative is isolated from the group-containing substance to obtain the desired substance. As a more preferable procedure, when the precipitated dicyclohexylcarbodiurea is removed by filtration, and the filtrate is treated with a substance containing an OH group, the filtrate is charged into the target precipitate while stirring the substance containing an OH group. There are a method of obtaining a certain dicarboxylic acid derivative, and a method of adding a substance containing an OH group to the filtrate while stirring the filtrate to obtain a dicarboxylic acid derivative as a desired precipitate, the latter being more preferable. In the latter case, the yield is higher because the content of impurities is smaller, and the yield of products using the latter is also better. In this method, a target dicarboxylic acid derivative having the lowest solubility in a substance containing an OH group is deposited first, and impurities such as unreacted dicyclohexylcarbodiimide and dicyclohexylurea are hardly deposited.
【0016】また本発明ではその反応においてジフェニ
ルエーテル−4,4’−ジカルボン酸1モルに対してジ
シクロヘキシルカルボジイミドを1.9〜2.3モル反
応させることを特徴としている。ジシクロヘキシルカル
ボジイミドが1.9モル未満であると目的物のジカルボ
ン酸誘導体の収率が低くなり、また2.3モルを越える
と未反応で残ったジシクロヘキシルカルボジイミドが多
くなり、これがジシクロヘキシルウレアになっものが不
純物として残存しやすくなるため好ましくない。The present invention is characterized in that 1.9 to 2.3 moles of dicyclohexylcarbodiimide is reacted with 1 mole of diphenyl ether-4,4'-dicarboxylic acid in the reaction. When the amount of dicyclohexylcarbodiimide is less than 1.9 mol, the yield of the desired dicarboxylic acid derivative is reduced. When the amount exceeds 2.3 mol, unreacted remaining dicyclohexylcarbodiimide increases, and this becomes dicyclohexylurea. It is not preferable because it easily remains as an impurity.
【0017】OH基を含む物質としては水、メタノー
ル、エタノール、イソプロピルアルコール等を使用する
ことができる。またそれらを2種類以上の混合物として
使用する事もできる。これらの中で収率の観点より好ま
しいのは水を50%以上含む液状化合物であり、最も好
ましいものは水である。反応に用いることができる溶剤
としてはN―メチル−2−ピロリドン、N、N−ジメチ
ルアセトアミド、ジメチルホルムアミドなどが挙げれる
がこれらに特に限定されない。As a substance containing an OH group, water, methanol, ethanol, isopropyl alcohol and the like can be used. They can also be used as a mixture of two or more. Among these, preferred from the viewpoint of yield are liquid compounds containing 50% or more of water, and most preferred is water. Solvents that can be used for the reaction include, but are not particularly limited to, N-methyl-2-pyrrolidone, N, N-dimethylacetamide, dimethylformamide, and the like.
【0018】本発明の方法で合成、単離した一般式
(I)で示されるジカルボン酸誘導体は次にジアミンと
溶剤中で反応させ、ポリベンゾオキサゾール前駆体を合
成する。ジカルボン酸誘導体とジアミンとの反応温度は
20〜150℃の温度が有効である。更にこの反応終了
前に酸無水物のようなカルボン酸誘導体を加え、前駆体
の末端アミンを封止する。反応終了後、反応溶液を室温
まで冷却し、更に適当な沈殿剤に投入して反応生成物を
沈殿させる。濾過して得られた沈殿物を乾燥し目的とす
る式(II)で示されるポリベンゾオキサゾール前駆体を
得る。沈殿剤としては水及び水とエタノール及びイソプ
ロパノールのようなアルコールとの混合物が適してい
る。反応に用いることができる溶剤としてはN―メチル
−2−ピロリドン、 N、N−ジメチルアセトアミド、
ジメチルホルムアミドなとが挙げることができがこれら
に特に限定されない。The dicarboxylic acid derivative represented by the general formula (I) synthesized and isolated by the method of the present invention is then reacted with a diamine in a solvent to synthesize a polybenzoxazole precursor. The reaction temperature of the dicarboxylic acid derivative and the diamine is preferably 20 to 150 ° C. Further, before the completion of the reaction, a carboxylic acid derivative such as an acid anhydride is added to block the terminal amine of the precursor. After the completion of the reaction, the reaction solution is cooled to room temperature, and further poured into a suitable precipitant to precipitate a reaction product. The precipitate obtained by filtration is dried to obtain the desired polybenzoxazole precursor represented by the formula (II). Suitable precipitants are water and mixtures of water with alcohols such as ethanol and isopropanol. Solvents that can be used for the reaction include N-methyl-2-pyrrolidone, N, N-dimethylacetamide,
Dimethylformamide can be mentioned, but is not particularly limited thereto.
【0019】本発明のポリベンゾオキサゾール前駆体
(II)のXは、例えば、X in the polybenzoxazole precursor (II) of the present invention is, for example,
【0020】[0020]
【化10】 Embedded image
【0021】等であるがこれらに限定されるものではな
い。この中で特に好ましいものとしては、However, the present invention is not limited to these. Among them, particularly preferred are:
【0022】[0022]
【化11】 Embedded image
【0023】より選ばれるものである。又式(II)のZ
は、例えば、It is selected more. Z of the formula (II)
Is, for example,
【0024】[0024]
【化12】 等であるがこれらに限定されるものではない。Embedded image Etc., but are not limited to these.
【0025】式(II)のZは、基板などに対する高い密
着性が必要な場合に用い、その使用割合bは最大40モ
ル%まで使用することができる。40モル%を越えると
樹脂の溶解性が極めて低下し、現像残り(スカム)が発
生し、パターン加工ができない。Z in the formula (II) is used when high adhesion to a substrate or the like is required, and its use ratio b can be up to 40 mol%. If it exceeds 40 mol%, the solubility of the resin is extremely reduced, and undeveloped portions (scum) are generated, so that pattern processing cannot be performed.
【0026】本発明における式(II)のEは、一般式
(I)のジカルボン酸誘導体とジアミンを反応させポリ
ベンゾオキサゾール前駆体を合成した後、末端のアミノ
基をアルケニル基又はアルキニル基を少なくとも1個有
するカルボン酸誘導体、例えば酸無水物を用いて末端を
封止するものである。酸無水物としては無水マレイン
酸、5−ノルボルネン−2,3−ジカルボン酸無水物等
が有効であるが、特に5−ノルボルネン−2,3−ジカ
ルボン酸無水物が有効である。なお、これらX、Z、E
の使用にあたっては、それぞれ1種類であっても2種類
以上の混合物であっても構わない。In the present invention, E of the formula (II) is obtained by reacting a dicarboxylic acid derivative of the general formula (I) with a diamine to synthesize a polybenzoxazole precursor, and then converting the terminal amino group to at least an alkenyl group or an alkynyl group. The terminal is sealed with a carboxylic acid derivative having one, for example, an acid anhydride. As the acid anhydride, maleic anhydride, 5-norbornene-2,3-dicarboxylic anhydride and the like are effective, and particularly, 5-norbornene-2,3-dicarboxylic anhydride is effective. In addition, these X, Z, E
In the use of, one kind or a mixture of two or more kinds may be used.
【0027】本発明の一般式(I)で示されるジカルボ
ン酸誘導体は、ポリベンゾオキサゾール前駆体を合成す
る以外に一般的なポリアミド、ポリエステルなどを合成
する原料としても使用することができる。The dicarboxylic acid derivative represented by the general formula (I) of the present invention can be used as a raw material for synthesizing a general polyamide, polyester and the like in addition to synthesizing a polybenzoxazole precursor.
【0028】[0028]
【実施例】以下、実施例により本発明を具体的に説明す
る。 《実施例1》 *ジカルボン酸誘導体の合成 ジフェニルエーテル−4、4’−ジカルボン酸258.
2g(1モル)と1−ヒドロキシベンゾトリアゾール2
70.3g(2モル)とをN−メチル−2−ピロリドン
1500gに溶解した後、 N−メチル−2−ピロリド
ン500gに溶解したジシクロヘキシルカルボジイミド
412.7g(2モル)を反応系の温度を0〜5℃に冷
却しながら滴下する。滴下終了後、反応系の温度を室温
に戻し、そのまま12時間攪拌した。反応終了後、析出
したジシクロヘキシルカルボジウレアをろ過を行うこと
によって取り除き、次ぎに濾液に純水2000gを滴下
する。沈殿物を濾集し、イソプロピルアルコールで充分
に洗浄した後、真空乾燥を行った。赤外吸収スペクトル
で分析したところ1780cm-1にエステル結合由来の
吸収がみられることにより、これが目的物のジカルボン
酸誘導体であり、かつ分解していないことが確認でき
た。このときの収率は95%と高い値を示した。The present invention will be described below in detail with reference to examples. << Example 1 >> * Synthesis of dicarboxylic acid derivative Diphenyl ether-4,4'-dicarboxylic acid 258.
2 g (1 mol) and 1-hydroxybenzotriazole 2
70.3 g (2 mol) was dissolved in 1500 g of N-methyl-2-pyrrolidone, and then 412.7 g (2 mol) of dicyclohexylcarbodiimide dissolved in 500 g of N-methyl-2-pyrrolidone was brought to a reaction system temperature of 0 to 0. Add dropwise while cooling to 5 ° C. After the addition, the temperature of the reaction system was returned to room temperature, and the mixture was stirred for 12 hours. After completion of the reaction, the precipitated dicyclohexylcarbodiurea is removed by filtration, and then 2,000 g of pure water is dropped into the filtrate. The precipitate was collected by filtration, washed sufficiently with isopropyl alcohol, and dried in vacuum. Analysis by an infrared absorption spectrum showed that absorption derived from an ester bond was observed at 1780 cm -1 , which confirmed that this was the target dicarboxylic acid derivative and was not decomposed. At this time, the yield was as high as 95%.
【0029】*ポリベンゾオキサゾール前駆体の合成 得られたジカルボン酸誘導体147.7g(0.3モ
ル)とヘキサフルオロ−2,2−ビス(3−アミノ−4
−ヒドロキシフェニル)プロパン120.9g(0.3
3モル)を N−メチル−2−ピロリドン1000gに
溶解した。その後反応系を75℃にして12時間反応し
た。次ぎにN−メチル−2−ピロリドン50gに溶解し
た5−ノルボルネン−2,3−ジカルボン酸無水物1
1.5g(0.07モル)を加えて、更に12時間反応
した。反応混合液を水/メタノール=3/1の溶液に投
入、沈殿物を回収し純水で充分に洗浄した後、真空下で
乾燥しポリベンゾオキサゾール前駆体を得た。次ぎに1
H―NMRよりジシクロヘキシルカルボジウレアの残留
量を調べた所、0.2wt%と非常に少なかった。* Synthesis of polybenzoxazole precursor The obtained dicarboxylic acid derivative (147.7 g, 0.3 mol) was mixed with hexafluoro-2,2-bis (3-amino-4).
-Hydroxyphenyl) propane 120.9 g (0.3
3 mol) was dissolved in 1000 g of N-methyl-2-pyrrolidone. Thereafter, the reaction system was heated to 75 ° C. and reacted for 12 hours. Next, 5-norbornene-2,3-dicarboxylic anhydride 1 dissolved in 50 g of N-methyl-2-pyrrolidone
1.5 g (0.07 mol) was added, and the mixture was further reacted for 12 hours. The reaction mixture was poured into a solution of water / methanol = 3/1, the precipitate was collected, washed sufficiently with pure water, and dried under vacuum to obtain a polybenzoxazole precursor. Next one
When the residual amount of dicyclohexylcarbodiurea was examined by 1 H-NMR, it was as low as 0.2 wt%.
【0030】*析出物有無の評価 ポリベンゾオキサゾール前駆体30gをN−メチル−2
−ピロリドン70gに溶解した後、0.2μmのフィル
ターで濾過を行った。それを−20℃の冷凍庫に1週間
保管したが、析出物等は観察されなかった。* Evaluation of Presence or Absence of Precipitate 30 g of polybenzoxazole precursor was added to N-methyl-2.
After dissolving in 70 g of pyrrolidone, the solution was filtered through a 0.2 μm filter. It was stored in a freezer at −20 ° C. for one week, but no precipitate or the like was observed.
【0031】[0031]
【化13】 Embedded image
【0032】《実施例2》実施例1のジカルボン酸誘導
体の合成において、析出に用いた純水2000gの代わ
りに、純水/メタノール=1/1の混合液を3000g
使用して製造し、生成物を分析したところ、赤外吸収ス
ペクトルで1780cm-1にエステル結合由来の吸収が
みられることより、これが目的物であり、分解していな
いことが確認できた。このときの収率は90%と高い値
を示した。実施例1と同様にポリベンゾオキサゾール前
駆体の合成を行い、1H―NMRよりジシクロヘキシル
カルボジウレアの残留量を調べた所、0.1wt%と非
常に少なかった。また析出物有無の評価においても析出
物等は観察されなかった。Example 2 In the synthesis of the dicarboxylic acid derivative of Example 1, 3000 g of a mixed solution of pure water / methanol = 1/1 was used instead of 2000 g of pure water used for the precipitation.
When the product was analyzed using an infrared absorption spectrum, an absorption derived from an ester bond was observed at 1780 cm −1 , confirming that this was the target substance and was not decomposed. At this time, the yield was as high as 90%. A polybenzoxazole precursor was synthesized in the same manner as in Example 1, and the residual amount of dicyclohexylcarbodiurea was examined by 1 H-NMR. As a result, it was as low as 0.1 wt%. No precipitate or the like was observed in the evaluation of the presence or absence of the precipitate.
【0033】《実施例3》実施例1のジカルボン酸誘導
体の合成において析出の際、用いた純水2000gの代
わりに、純水/エタノール=1/1の混合液を3000
g使用して製造し、生成物を分析したところ、赤外吸収
スペクトルで1780cm-1にエステル結合由来の吸収
がみられることより、これが目的物であり、分解してい
ないことが確認できた。このときの収率は86%と高い
値を示した。実施例1と同様にポリベンゾオキサゾール
前駆体合成を行い、1H―NMRよりジシクロヘキシル
カルボジウレアの残留量を調べた所、0.2wt%と非
常に少なかった。また析出物有無の評価においても析出
物等は観察されなかった。Example 3 In the synthesis of the dicarboxylic acid derivative in Example 1, 3000 g of a mixed solution of pure water / ethanol = 1/1 was used instead of 2000 g of pure water used for precipitation.
g, and the product was analyzed. Infrared absorption spectrum showed absorption at 1780 cm -1 derived from an ester bond, confirming that this was the desired product and had not been decomposed. At this time, the yield was as high as 86%. A polybenzoxazole precursor was synthesized in the same manner as in Example 1, and the residual amount of dicyclohexylcarbodiurea was examined by 1 H-NMR. As a result, it was very small, 0.2 wt%. No precipitate or the like was observed in the evaluation of the presence or absence of the precipitate.
【0034】《実施例4》実施例1のジカルボン酸誘導
体の合成においてジフェニルエーテル−4、4’−ジカ
ルボン酸258.2g(1モル)に対してジシクロヘキ
シルカルボジイミド474.6g(2.3モル)を反応
させた他は実施例1と同様の操作を行った。生成物を分
析したところ、赤外吸収スペクトルで1780cm-1に
エステル結合由来の吸収がみられることより、これが目
的物であり、分解していないことが確認できた。このと
きの収率は97%と高い値を示した。実施例1と同様に
ポリベンゾオキサゾール前駆体合成を行い、1H―NM
Rよりジシクロヘキシルカルボジウレアの残留量を調べ
た所、0.4wt%と少なかった。また析出物有無の評
価においても析出物等は観察されなかった。Example 4 In the synthesis of the dicarboxylic acid derivative of Example 1, dicyclohexylcarbodiimide (474.6 g, 2.3 mol) was reacted with diphenylether-4,4'-dicarboxylic acid, 258.2 g (1 mol). Other than that, the same operation as in Example 1 was performed. When the product was analyzed, an absorption derived from an ester bond was observed at 1780 cm -1 in an infrared absorption spectrum, and thus it was confirmed that this was the target substance and was not decomposed. The yield at this time was as high as 97%. A polybenzoxazole precursor was synthesized in the same manner as in Example 1, and 1H-NM was synthesized.
When the residual amount of dicyclohexylcarbodiurea was examined from R, it was as low as 0.4 wt%. No precipitate or the like was observed in the evaluation of the presence or absence of the precipitate.
【0035】《実施例5》実施例1のジカルボン酸誘導
体の合成においてジフェニルエーテル−4、4’−ジカ
ルボン酸258.2g(1モル)に対してジシクロヘキ
シルカルボジイミド515.8g(2.5モル)を反応
させた他は実施例1と同様の操作を行った。生成物を分
析したところ、赤外吸収スペクトルで1780cm-1に
エステル結合由来の吸収がみられることより、これが目
的物であり、分解していないことが確認できた。このと
きの収率は98%と高い値を示した。実施例1と同様に
ポリベンゾオキサゾール前駆体合成を行い、1H―NM
Rよりジシクロヘキシルカルボジウレアの残留量を調べ
た所、0.7wt%であった。また析出物有無の評価に
おいても析出物等は観察されなかった。EXAMPLE 5 In the synthesis of the dicarboxylic acid derivative of Example 1, 255.8 g (1 mol) of diphenyl ether-4,4'-dicarboxylic acid was reacted with 515.8 g (2.5 mol) of dicyclohexylcarbodiimide. Other than that, the same operation as in Example 1 was performed. When the product was analyzed, an absorption derived from an ester bond was observed at 1780 cm -1 in an infrared absorption spectrum, and thus it was confirmed that this was the target substance and was not decomposed. At this time, the yield was as high as 98%. A polybenzoxazole precursor was synthesized in the same manner as in Example 1, and 1H-NM was synthesized.
When the residual amount of dicyclohexylcarbodiurea was examined from R, it was 0.7 wt%. No precipitate or the like was observed in the evaluation of the presence or absence of the precipitate.
【0036】《実施例6》実施例1のジカルボン酸誘導
体の合成においてジフェニルエーテル−4、4’−ジカ
ルボン酸258.2g(1モル)に対してジシクロヘキ
シルカルボジイミド392.0g(1.9モル)を反応
させた他は実施例1と同様の操作を行った。生成物を分
析したところ、赤外吸収スペクトルで1780cm-1に
エステル結合由来の吸収がみられることより、これが目
的物であり、分解していないことが確認できた。このと
きの収率は89%と高かった。実施例1と同様にポリベ
ンゾオキサゾール前駆体合成を行い、1H―NMRより
ジシクロヘキシルカルボジウレアの残留量を調べた所、
0.1wt%以下であった。また析出物有無の評価にお
いても析出物等は観察されなかった。Example 6 In the synthesis of the dicarboxylic acid derivative of Example 1, 392.0 g (1.9 mol) of dicyclohexylcarbodiimide was reacted with 258.2 g (1 mol) of diphenyl ether-4,4'-dicarboxylic acid. Other than that, the same operation as in Example 1 was performed. When the product was analyzed, an absorption derived from an ester bond was observed at 1780 cm -1 in an infrared absorption spectrum, and thus it was confirmed that this was the target substance and was not decomposed. At this time, the yield was as high as 89%. A polybenzoxazole precursor was synthesized in the same manner as in Example 1, and the residual amount of dicyclohexylcarbodiurea was examined by 1 H-NMR.
It was 0.1 wt% or less. No precipitate or the like was observed in the evaluation of the presence or absence of the precipitate.
【0037】《実施例7》 *ジカルボン酸誘導体の合成 ジフェニルエーテル−4、4’−ジカルボン酸258.
2g(1モル)と1−ヒドロキシベンゾトリアゾール2
70.3g(2モル)とをN−メチル−2−ピロリドン
1500gに溶解した後、 N−メチル−2−ピロリド
ン500gに溶解したジシクロヘキシルカルボジイミド
412.7g(2モル)を反応系の温度を0〜5℃に冷
却しながら滴下する。滴下終了後、反応系の温度を室温
に戻し、そのまま12時間攪拌した。反応終了後、析出
したジシクロヘキシルカルボジウレアをろ過を行うこと
によって取り除き、次ぎにこの濾液を純水2000gに
投入した。沈殿物を濾集し、イソプロピルアルコールで
充分に洗浄した後、真空乾燥を行った。赤外吸収スペク
トルで分析したところ1780cm-1にエステル結合由
来の吸収がみられることにより、これがジカルボン酸誘
導体であり、かつ分解していないことが確認できた。こ
のときの収率は72%であった。Example 7 * Synthesis of dicarboxylic acid derivative Diphenyl ether-4,4'-dicarboxylic acid 258.
2 g (1 mol) and 1-hydroxybenzotriazole 2
70.3 g (2 mol) was dissolved in 1500 g of N-methyl-2-pyrrolidone, and then 412.7 g (2 mol) of dicyclohexylcarbodiimide dissolved in 500 g of N-methyl-2-pyrrolidone was brought to a reaction system temperature of 0 to 0. Add dropwise while cooling to 5 ° C. After the addition, the temperature of the reaction system was returned to room temperature, and the mixture was stirred for 12 hours. After completion of the reaction, the precipitated dicyclohexylcarbodiurea was removed by filtration, and the filtrate was then poured into 2000 g of pure water. The precipitate was collected by filtration, washed sufficiently with isopropyl alcohol, and dried in vacuum. When analyzed by infrared absorption spectrum, absorption derived from an ester bond was observed at 1780 cm -1 , which confirmed that this was a dicarboxylic acid derivative and was not decomposed. At this time, the yield was 72%.
【0038】*ポリベンゾオキサゾール前駆体の合成 得られたジカルボン酸誘導体147.7g(0.3モ
ル)とヘキサフルオロ−2,2−ビス(3−アミノ−4
−ヒドロキシフェニル)プロパン120.9g(0.3
3モル)を N−メチル−2−ピロリドン1000gに
溶解した。その後反応系を75℃にして12時間反応し
た。次ぎにN−メチル−2−ピロリドン50gに溶解し
た5−ノルボルネン−2,3−ジカルボン酸無水物1
1.5g(0.07モル)を加えて、更に12時間反応
した。反応混合液を水/メタノール=3/1の溶液に投
入、沈殿物を回収し純水で充分に洗浄した後、真空下で
乾燥しポリベンゾオキサゾール前駆体を得た。次ぎに1
H―NMRよりジシクロヘキシルカルボジウレアの残留
量を調べた所、1.1wt%とやや多かった。* Synthesis of polybenzoxazole precursor The obtained dicarboxylic acid derivative (147.7 g, 0.3 mol) was mixed with hexafluoro-2,2-bis (3-amino-4).
-Hydroxyphenyl) propane 120.9 g (0.3
3 mol) was dissolved in 1000 g of N-methyl-2-pyrrolidone. Thereafter, the reaction system was heated to 75 ° C. and reacted for 12 hours. Next, 5-norbornene-2,3-dicarboxylic anhydride 1 dissolved in 50 g of N-methyl-2-pyrrolidone
1.5 g (0.07 mol) was added, and the mixture was further reacted for 12 hours. The reaction mixture was poured into a solution of water / methanol = 3/1, the precipitate was collected, washed sufficiently with pure water, and dried under vacuum to obtain a polybenzoxazole precursor. Next one
When the residual amount of dicyclohexylcarbodiurea was examined by 1 H-NMR, it was found to be 1.1 wt%, which was slightly large.
【0039】*析出物有無の評価 ポリベンゾオキサゾール前駆体30gをN−メチル−2
−ピロリドン70gに溶解した後、0.2μmのフィル
ターで濾過を行った。それを−20℃の冷凍庫に1週間
保管した結果、析出物等が僅かに観察された。* Evaluation of Presence or Absence of Precipitate 30 g of polybenzoxazole precursor was added to N-methyl-2
After dissolving in 70 g of pyrrolidone, the solution was filtered through a 0.2 μm filter. As a result of storing it in a freezer at -20 ° C for one week, precipitates and the like were slightly observed.
【0040】《比較例1》実施例1のジカルボン酸誘導
体の合成において、ジフェニルエーテル−4、4’−ジ
カルボン酸の代わりにイソフタル酸を用いて合成を行っ
た。得られた沈殿物を分析したところ、エステル結合由
来(1780cm-1)のピークの他に、一部分解したと
考えられる吸収(1720cm-1)が見られ、混合物で
あることが確認された。この時の回収率は62%と低い
値を示した。Comparative Example 1 In the synthesis of the dicarboxylic acid derivative of Example 1, the synthesis was performed using isophthalic acid instead of diphenyl ether-4,4′-dicarboxylic acid. When the obtained precipitate was analyzed, in addition to the peak derived from the ester bond (1780 cm -1 ), an absorption (1720 cm -1 ) considered to be partially decomposed was observed, and it was confirmed that the mixture was a mixture. At this time, the recovery rate was as low as 62%.
【0041】《比較例2》ジフェニルエーテル−4、
4’−ジカルボン酸258.2g(1モル)と1−ヒド
ロキシベンゾトリアゾール270.3g(2モル)とを
N−メチル−2−ピロリドン1500gに溶解した後、
N−メチル−2−ピロリドン500gに溶解したジシ
クロヘキシルカルボジイミド412.7g(2モル)を
反応系の温度を0〜5℃に冷却しながら滴下した。滴下
終了後、反応系の温度を室温に戻し、そのまま12時間
攪拌した。反応終了後、析出したジシクロヘキシルカル
ボジウレアを取り除いた後、ただちにヘキサフルオロ−
2,2−ビス(3−アミノ−4−ヒドロキシフェニル)
プロパン402.9g(1.1モル)を加え、反応系の
温度を75℃にして12時間反応した。次ぎにN−メチ
ル−2−ピロリドン50gに溶解した5−ノルボルネン
−2,3−ジカルボン酸無水物32.8g(0.2モ
ル)を加えて、更に12時間反応した。反応混合液を水
/メタノール=3/1の溶液に投入、沈殿物を回収し純
水で充分に洗浄した後、真空下で乾燥しポリベンゾオキ
サゾール前駆体を得た。1H―NMRよりジシクロヘキ
シルカルボジウレアの残留量を調べた所、3.1wt%
と非常に多く含まれていることが判った。次ぎに実施例
1と同様に保存性の評価を行ったところ、−20℃の冷
凍庫に1週間保管すると析出物が観察された。Comparative Example 2 Diphenyl ether-4,
After dissolving 258.2 g (1 mol) of 4'-dicarboxylic acid and 270.3 g (2 mol) of 1-hydroxybenzotriazole in 1500 g of N-methyl-2-pyrrolidone,
412.7 g (2 mol) of dicyclohexylcarbodiimide dissolved in 500 g of N-methyl-2-pyrrolidone was added dropwise while cooling the temperature of the reaction system to 0 to 5 ° C. After the addition, the temperature of the reaction system was returned to room temperature, and the mixture was stirred for 12 hours. After completion of the reaction, the precipitated dicyclohexylcarbodiurea was removed, and hexafluoro-
2,2-bis (3-amino-4-hydroxyphenyl)
402.9 g (1.1 mol) of propane was added, and the reaction was carried out at a temperature of 75 ° C. for 12 hours. Next, 32.8 g (0.2 mol) of 5-norbornene-2,3-dicarboxylic anhydride dissolved in 50 g of N-methyl-2-pyrrolidone was added, and the mixture was further reacted for 12 hours. The reaction mixture was poured into a solution of water / methanol = 3/1, the precipitate was collected, washed sufficiently with pure water, and dried under vacuum to obtain a polybenzoxazole precursor. When the residual amount of dicyclohexylcarbodiurea was examined by 1H-NMR, it was found to be 3.1% by weight.
And it was found to be very much included. Next, the storage stability was evaluated in the same manner as in Example 1. As a result, a precipitate was observed when stored in a freezer at −20 ° C. for one week.
【0042】《比較例3》実施例1のジカルボン酸誘導
体の合成において、純水の代わりに酢酸エチルを使用し
たところ、析出する物がなく、目的物は取り出せなかっ
た。Comparative Example 3 In the synthesis of the dicarboxylic acid derivative of Example 1, when ethyl acetate was used instead of pure water, no precipitate was found and the target product could not be taken out.
【0043】《比較例4》実施例1のジカルボン酸誘導
体の合成において、純水の代わりにプロピレングリコー
ルモノメチルエーテルアセテートを使用したが、析出す
る物がなく、目的物は取り出せなかった。Comparative Example 4 In the synthesis of the dicarboxylic acid derivative of Example 1, propylene glycol monomethyl ether acetate was used in place of pure water, but there was no precipitate and the target product could not be taken out.
【0044】[0044]
【発明の効果】本発明によればポリベンゾオキサゾール
前駆体を合成する際に使用するジカルボン酸誘導体を高
純度で、効率よく高収率で合成する方法とその合成方法
で合成したジカルボン酸誘導体から得られる高純度なポ
リベンゾオキサゾール前駆体を提供することができる。Industrial Applicability According to the present invention, a method for synthesizing a dicarboxylic acid derivative used for synthesizing a polybenzoxazole precursor with high purity, high efficiency and high yield, and a method for synthesizing the dicarboxylic acid derivative synthesized by the synthesis method The obtained highly pure polybenzoxazole precursor can be provided.
Claims (11)
ボン酸と1−ヒドロキシベンゾトリアゾールとを、縮合
剤にジシクロヘキシルカルボジイミドを用いて反応させ
た後、OH基を含む物質によって反応溶液から単離して
なることを特徴とする一般式(I)で示されるジカルボ
ン酸誘導体の製造方法。 【化1】 1. A method comprising reacting diphenyl ether-4,4'-dicarboxylic acid with 1-hydroxybenzotriazole using dicyclohexylcarbodiimide as a condensing agent, and then isolating from the reaction solution with a substance containing an OH group. A method for producing a dicarboxylic acid derivative represented by the general formula (I), characterized in that: Embedded image
ボン酸と1−ヒドロキシベンゾトリアゾールとを、縮合
剤にジシクロヘキシルカルボジイミドを用いて反応させ
た後、ジシクロヘキシルウレアを除去した濾液にOH基
を含む物質を投入し、析出させ、単離してなることを特
徴とする一般式(I)で示されるジカルボン酸誘導体の
製造方法。2. After reacting diphenyl ether-4,4'-dicarboxylic acid with 1-hydroxybenzotriazole using dicyclohexylcarbodiimide as a condensing agent, a substance containing an OH group is added to the filtrate from which dicyclohexylurea has been removed. A method for producing a dicarboxylic acid derivative represented by the general formula (I), comprising:
質が、水、メタノール、エタノール、イソプロピルアル
コールからなる群より選ばれてなる1種類の物質あるい
は2種類以上の混合物である一般式(I)で示されるジ
カルボン酸誘導体の製造方法。3. A general formula wherein the substance containing an OH group according to claim 1 or 2 is one kind of substance selected from the group consisting of water, methanol, ethanol and isopropyl alcohol, or a mixture of two or more kinds. A method for producing the dicarboxylic acid derivative represented by (I).
質が、50%以上の水を含んでなる物質である一般式
(I)で示されるジカルボン酸誘導体の製造方法。4. A method for producing a dicarboxylic acid derivative represented by the general formula (I), wherein the substance containing an OH group according to claim 1 or 2 is a substance containing 50% or more of water.
む物質が、水である一般式(I)で示されるジカルボン
酸誘導体の製造方法。5. A method for producing a dicarboxylic acid derivative represented by the general formula (I), wherein the substance containing an OH group according to claim 1, 2, or 3 is water.
ルボン酸1モルに対してジシクロヘキシルカルボジイミ
ドを1.9〜2.3モルの範囲で反応させることを特徴
とする請求項1又は2記載の一般式(I)で示されるジ
カルボン酸誘導体の製造方法。6. The general formula according to claim 1, wherein dicyclohexylcarbodiimide is reacted in an amount of 1.9 to 2.3 mol with respect to 1 mol of the diphenyl ether-4,4'-dicarboxylic acid. A method for producing the dicarboxylic acid derivative represented by (I).
得られたジカルボン酸誘導体とジアミンとの反応物の分
子鎖末端を、アルケニル基またはアルキニル基を有する
カルボン酸誘導体で封止してなる事を特徴とする一般式
(II)で示されるポリベンゾオキサゾール前駆体の製造
方法。 【化2】 7. A reaction product of a dicarboxylic acid derivative and a diamine obtained according to any one of claims 1 to 6, wherein a molecular chain terminal of the reaction product is sealed with a carboxylic acid derivative having an alkenyl group or an alkynyl group. A method for producing a polybenzoxazole precursor represented by the general formula (II). Embedded image
記構造であるポリベンゾオキサゾール前駆体の製造方
法。 【化3】 8. A method for producing a polybenzoxazole precursor according to claim 7, wherein X in the general formula (II) has the following structure. Embedded image
が、下記構造であるポリベンゾオキサゾール前駆体の製
造方法。 【化4】 9. X of the general formula (II) according to claim 7 or 8
Is a method for producing a polybenzoxazole precursor having the following structure. Embedded image
下記構造であるポリベンゾオキサゾール前駆体の製造方
法。 【化5】 10. E in the general formula (II) according to claim 7,
A method for producing a polybenzoxazole precursor having the following structure. Embedded image
構造であるポリベンゾオキサゾール前駆体の製造方法。 【化6】 11. A method for producing a polybenzoxazole precursor according to claim 7, wherein the general formula (II) has the following structure. Embedded image
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24293999A JP4556257B2 (en) | 1998-09-09 | 1999-08-30 | Method for producing dicarboxylic acid derivative and method for producing polybenzoxazole precursor using the same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10-254820 | 1998-09-09 | ||
JP25482098 | 1998-09-09 | ||
JP24293999A JP4556257B2 (en) | 1998-09-09 | 1999-08-30 | Method for producing dicarboxylic acid derivative and method for producing polybenzoxazole precursor using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000143639A true JP2000143639A (en) | 2000-05-26 |
JP4556257B2 JP4556257B2 (en) | 2010-10-06 |
Family
ID=26535996
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24293999A Expired - Fee Related JP4556257B2 (en) | 1998-09-09 | 1999-08-30 | Method for producing dicarboxylic acid derivative and method for producing polybenzoxazole precursor using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4556257B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001206879A (en) * | 2000-01-26 | 2001-07-31 | Sumitomo Bakelite Co Ltd | Method for producing dicarboxylic acid derivative and polybenzoxazole resin using the method |
JP2002069187A (en) * | 2000-08-25 | 2002-03-08 | Sumitomo Bakelite Co Ltd | Interlayer insulating film for multilayer wiring and method of producing resin used therefor |
JP2005255612A (en) * | 2004-03-11 | 2005-09-22 | Sumitomo Bakelite Co Ltd | Aromatic dicarboxylic acid ester having ethynyl group and method for producing the same |
JP2006257031A (en) * | 2005-03-17 | 2006-09-28 | Air Water Inc | Method for producing dicarboxylic acid derivative |
WO2011152063A1 (en) * | 2010-06-04 | 2011-12-08 | 日本化薬株式会社 | Polybenzoxazole resin, and precursor resin thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09183846A (en) * | 1995-08-31 | 1997-07-15 | Siemens Ag | Production of poly-o-hydroxyamide and poly-o-mercaptoamide |
JPH09194431A (en) * | 1995-08-31 | 1997-07-29 | Siemens Ag | Dicarboxylic acid derivative and its production |
-
1999
- 1999-08-30 JP JP24293999A patent/JP4556257B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09183846A (en) * | 1995-08-31 | 1997-07-15 | Siemens Ag | Production of poly-o-hydroxyamide and poly-o-mercaptoamide |
JPH09194431A (en) * | 1995-08-31 | 1997-07-29 | Siemens Ag | Dicarboxylic acid derivative and its production |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001206879A (en) * | 2000-01-26 | 2001-07-31 | Sumitomo Bakelite Co Ltd | Method for producing dicarboxylic acid derivative and polybenzoxazole resin using the method |
JP2002069187A (en) * | 2000-08-25 | 2002-03-08 | Sumitomo Bakelite Co Ltd | Interlayer insulating film for multilayer wiring and method of producing resin used therefor |
JP2005255612A (en) * | 2004-03-11 | 2005-09-22 | Sumitomo Bakelite Co Ltd | Aromatic dicarboxylic acid ester having ethynyl group and method for producing the same |
JP2006257031A (en) * | 2005-03-17 | 2006-09-28 | Air Water Inc | Method for producing dicarboxylic acid derivative |
JP4716764B2 (en) * | 2005-03-17 | 2011-07-06 | エア・ウォーター株式会社 | Method for producing dicarboxylic acid derivative |
WO2011152063A1 (en) * | 2010-06-04 | 2011-12-08 | 日本化薬株式会社 | Polybenzoxazole resin, and precursor resin thereof |
JP2011256219A (en) * | 2010-06-04 | 2011-12-22 | Nippon Kayaku Co Ltd | Polybenzoxazole resin, and precursor resin thereof |
Also Published As
Publication number | Publication date |
---|---|
JP4556257B2 (en) | 2010-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5096999A (en) | Catalytic preparation of hydroxypolyamides | |
WO2006129574A1 (en) | Calixresorcinarene compound, photoresist base comprising the same, and composition thereof | |
EP2077291A1 (en) | Bis(aminophenol) derivative, process for producing the same, polyamide resin, positive photosensitive resin compositions, protective film, interlayer dielectric, semiconductor device, and display element | |
JP3311600B2 (en) | Process for producing poly-o-hydroxyamide and poly-o-mercaptoamide | |
JP4556257B2 (en) | Method for producing dicarboxylic acid derivative and method for producing polybenzoxazole precursor using the same | |
US8487068B2 (en) | Method of manufacturing polybenzoxazole precursor | |
US20020086968A1 (en) | Polybenzoxazole precursors, photoresist solution, polybenzoxazole, and process for preparing a polybenzoxazole precursor | |
JPH11158128A (en) | O-amino(thio)phenol carboxylic acid and its production | |
JP2002201210A (en) | Method for producing solid resin | |
JP3093630B2 (en) | Method for producing polybenzoxazole precursor and resist solution | |
JPH10168173A (en) | Production of polybenzoxazole and polybenzothiazole precursors | |
JP3154470B2 (en) | Process for producing poly-o-hydroxyamide and poly-o-mercaptoamide | |
JPH0339054B2 (en) | ||
JP2676902B2 (en) | Triphenylmethane derivative and process for producing the same | |
JP3533850B2 (en) | Method for producing resin having acid-cleavable protecting group | |
JP2004026831A (en) | Monomer for insulating material used in aluminum technology and copper technology | |
JP2001206879A (en) | Method for producing dicarboxylic acid derivative and polybenzoxazole resin using the method | |
JP3449931B2 (en) | Positive photosensitive resin composition | |
JP4206718B2 (en) | Method for producing photosensitive polyamide resin composition | |
JP4716764B2 (en) | Method for producing dicarboxylic acid derivative | |
JP4475315B2 (en) | Method for producing isophthalic acid derivative | |
JP3355981B2 (en) | Method for producing naphthoquinonediazide photosensitive agent | |
JP3787868B2 (en) | Method for producing tetraphenolic compound | |
JP2001356475A (en) | Positive type photosensitive resin composition and semiconductor device using the same | |
JPH11171810A (en) | Phenol compound and its production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060413 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091201 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100201 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100629 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100712 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4556257 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130730 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |