JP5719631B2 - Compound, derivative, composition, cured product, and method for producing compound and derivative - Google Patents

Compound, derivative, composition, cured product, and method for producing compound and derivative Download PDF

Info

Publication number
JP5719631B2
JP5719631B2 JP2011037712A JP2011037712A JP5719631B2 JP 5719631 B2 JP5719631 B2 JP 5719631B2 JP 2011037712 A JP2011037712 A JP 2011037712A JP 2011037712 A JP2011037712 A JP 2011037712A JP 5719631 B2 JP5719631 B2 JP 5719631B2
Authority
JP
Japan
Prior art keywords
group
compound
aromatic group
substituent
derivative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011037712A
Other languages
Japanese (ja)
Other versions
JP2012171943A (en
Inventor
博之 兵藤
博之 兵藤
秀和 小西
秀和 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Yukizai Corp
Original Assignee
Asahi Organic Chemicals Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Organic Chemicals Industry Co Ltd filed Critical Asahi Organic Chemicals Industry Co Ltd
Priority to JP2011037712A priority Critical patent/JP5719631B2/en
Publication of JP2012171943A publication Critical patent/JP2012171943A/en
Application granted granted Critical
Publication of JP5719631B2 publication Critical patent/JP5719631B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Epoxy Resins (AREA)
  • Epoxy Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

本発明は、新規な化合物、この誘導体、これらを含む組成物、硬化物、並びに上記化合物及び誘導体の製造方法に関する。   The present invention relates to a novel compound, a derivative thereof, a composition containing these, a cured product, and a method for producing the above compound and derivative.

従来、アントラセンは、木材の殺虫材や保存安定剤、塗料等の他、エポキシ樹脂やカーボンブラックの製造原料、アントラキノン染料の合成原料等の種々の用途に利用されている。このアントラセンは、ベンゼン環が3個縮合した縮合多環芳香族化合物であるため、構造的な硬さ、炭素密度の高さ、高融点、高屈折率等の有用な特性を有している。かかる特性を付加価値として更なる活用を図るべく、アントラセンの様々な応用展開が試みられている。これまでも種々のアントラセン誘導体が、多岐にわたる技術分野で付加価値の高い材料として開発されている。   Conventionally, anthracene has been used in various applications such as wood insecticides, storage stabilizers, paints, production raw materials for epoxy resins and carbon black, and synthetic raw materials for anthraquinone dyes. Since this anthracene is a condensed polycyclic aromatic compound in which three benzene rings are condensed, it has useful characteristics such as structural hardness, high carbon density, high melting point, and high refractive index. Various application developments of anthracene have been attempted in order to further utilize such characteristics as added value. Various anthracene derivatives have been developed as high value-added materials in various technical fields.

例えば、アントラセンの9,10位に(メタ)アクリレート基を導入し、重合性モノマーとすることで、光ラジカル重合の増感剤として作用する光硬化ポリマー(特開2007−99637号公報参照)や、紫外線吸収能や難燃性を有するポリマー(特開2008−1637号公報参照)を得ることができる。   For example, by introducing a (meth) acrylate group at the 9th and 10th positions of anthracene to form a polymerizable monomer, a photocuring polymer (see JP 2007-99637 A) that acts as a sensitizer for photo radical polymerization, In addition, a polymer having ultraviolet absorbing ability and flame retardancy (see JP 2008-1637 A) can be obtained.

また、フォトレジストの分野においても、アントラセン誘導体を用い、高感度、高解像性、高エッチング耐性、低昇華性などの利点を有する感放射性樹脂組成物(特開2005−346024号公報参照)や、レジスト樹脂とのインターミキシングを防止する反射防止膜(特開平7−82221号公報参照)等を得ることができる。   Also in the field of photoresists, an anthracene derivative is used, and a radiation-sensitive resin composition having advantages such as high sensitivity, high resolution, high etching resistance, and low sublimation (see JP-A-2005-346024), Further, an antireflection film (see JP-A-7-82221) for preventing intermixing with a resist resin can be obtained.

また、アントラセンが高屈折率を有するという特徴を生かして、光学材料としての利用の他、高屈折率材料、低屈折率材料及び増感色素等を混合し、露光によって干渉縞を記録するホログラム記録材料としての利用も行われている(特開平6−295151号公報参照)。   Furthermore, taking advantage of the feature that anthracene has a high refractive index, in addition to its use as an optical material, a hologram recording that mixes high refractive index material, low refractive index material, sensitizing dye, etc. and records interference fringes by exposure It is also used as a material (see JP-A-6-295151).

しかしながら、アントラセン及びこの誘導体は縮合多環芳香族化合物であるため、蛍光特性を有する。従って、アントラセン誘導体は、例えば光学材料分野においては適用が制限されるなどの不都合も有する。   However, since anthracene and this derivative are condensed polycyclic aromatic compounds, they have fluorescent properties. Therefore, anthracene derivatives also have inconveniences such as limited application in the field of optical materials.

一方、2個以上の芳香環を有するビスフェノール系化合物に注目すると、例えば、ビスフェノールフルオレンは、分子内の芳香環に結合する水酸基及び/又は該芳香環自体の反応性を利用して、新規な各種ポリマー、例えばエポキシ樹脂、ポリカーボネート樹脂、アクリレート樹脂、アリール系オリゴマー等の製造に用いられている(例えば、特開平9−328534号公報参照)。これらのビスフェノール系化合物由来の樹脂は、光学材料、電子材料等の多様な用途に適用される。このように、ビスフェノール系化合物は、反応が多様であり、多岐に亘る応用展開を可能とする汎用性を有していることから、特に注目されている。   On the other hand, when attention is focused on bisphenol compounds having two or more aromatic rings, for example, bisphenol fluorene uses a hydroxyl group bonded to an aromatic ring in the molecule and / or the reactivity of the aromatic ring itself to produce various new types. It is used for the production of polymers such as epoxy resins, polycarbonate resins, acrylate resins, aryl oligomers and the like (for example, see JP-A-9-328534). These resins derived from bisphenol compounds are applied to various uses such as optical materials and electronic materials. As described above, bisphenol compounds are attracting particular attention because they have various reactions and have versatility that enables a wide variety of applications.

以上の事情から、材料の高機能化や新たな特性の付与を可能とする新規なビスフェノール構造を有する化合物の開発が待ち望まれている。   In view of the above circumstances, the development of a compound having a novel bisphenol structure that enables high-performance materials and imparting new properties is awaited.

特開2007−99637号公報JP 2007-99637 A 特開2008−1637号公報JP 2008-1637 A 特開2005−346024号公報JP 2005-346024 A 特開平7−82221号公報JP-A-7-82221 特開平6−295151号公報JP-A-6-295151 特開平9−328534号公報JP-A-9-328534

本発明は、上述の事情に基づいてなされたものであり、蛍光特性を有さず、かつ、高融点、高光屈折性、及びビスフェノール構造に起因する反応多様性を兼ね備えた新規な化合物及びこの製造方法を提供することを目的とする。また、この化合物の誘導体、これらを含む組成物、及びこの組成物から得られる硬化物を提供することも目的とする。   The present invention has been made based on the above-mentioned circumstances, and has a novel compound that does not have fluorescence characteristics and has high melting point, high photorefractive property, and reaction diversity due to bisphenol structure, and its production It aims to provide a method. Another object of the present invention is to provide a derivative of this compound, a composition containing these, and a cured product obtained from this composition.

上記課題を解決するためになされた発明は、
下記式(1)で表される化合物である。

Figure 0005719631
(式(1)中、Xは、(n+1)価の芳香族基であり、この芳香族基が置換基を有していてもよい。Yは、(n+1)価の芳香族基であり、この芳香族基が置換基を有していてもよい。n及びnは、それぞれ独立して、1〜3の整数である。) The invention made to solve the above problems is
It is a compound represented by the following formula (1).
Figure 0005719631
(In the formula (1), X is an (n 1 +1) -valent aromatic group, and this aromatic group may have a substituent. Y is an (n 2 +1) -valent aromatic group. (This aromatic group may have a substituent. N 1 and n 2 are each independently an integer of 1 to 3).

当該化合物は、アントラセン骨格に類似するヒドロアントラセン骨格を有するため、例えば、高融点及び高光屈折性等において、アントラセン化合物と同等程度又はそれ以上の性能を備える。一方、当該化合物は、アントラセンとは異なり、中央のベンゼン環が水素化されているため、蛍光特性を有さない。当該化合物は、さらに、反応活性な水酸基及び芳香環を有することから、ビスフェノール系化合物が備える多様な反応性を有する。従って、当該化合物は、各種樹脂原料等に用いることができる等の高い汎用性を有する。   Since the compound has a hydroanthracene skeleton similar to the anthracene skeleton, the compound has performance equivalent to or higher than that of the anthracene compound in, for example, high melting point and high photorefractive property. On the other hand, unlike anthracene, the compound does not have fluorescence characteristics because the central benzene ring is hydrogenated. Since the compound further has a reactive hydroxyl group and an aromatic ring, the compound has various reactivity provided by the bisphenol compound. Therefore, the compound has high versatility such that it can be used for various resin raw materials.

上記X及びYが、それぞれ置換基として少なくとも1つのアルキル基を有するとよい。当該化合物は、X及びYが、それぞれ置換基として少なくとも1つのアルキル基を有する場合、対応するアントラセン誘導体から効率よく製造することができ、生産性に優れる。また、アルキル基の種類や数を調整することで、融点や光屈折率を細かく制御することができる。   X and Y may have at least one alkyl group as a substituent. When X and Y each have at least one alkyl group as a substituent, the compound can be efficiently produced from the corresponding anthracene derivative and is excellent in productivity. Further, the melting point and the optical refractive index can be finely controlled by adjusting the type and number of alkyl groups.

本発明の誘導体は、上記化合物の誘導体である。当該誘導体は、各種官能基を導入すること等で、更なる特有な性質が付与され、様々な樹脂を合成する樹脂原料等として用いることができる。   The derivative of the present invention is a derivative of the above compound. The derivative is imparted with more specific properties by introducing various functional groups, and can be used as a resin raw material for synthesizing various resins.

本発明の組成物は、上記化合物又は誘導体を含む組成物である。当該組成物は、高い汎用性と付加価値を有する様々な樹脂の原料組成物等として用いることができる。   The composition of the present invention is a composition containing the above compound or derivative. The composition can be used as a raw material composition for various resins having high versatility and added value.

本発明の硬化物は、上記組成物を硬化して得られる硬化物である。当該硬化物は、高融点、高光屈折性等を備えることができ、多分野へ応用可能な樹脂等として使用することができる。   The cured product of the present invention is a cured product obtained by curing the above composition. The cured product can have a high melting point, a high photorefractive property, and the like, and can be used as a resin that can be applied to various fields.

本発明の化合物の製造方法は、
非反応性含酸素有機溶媒及びオキソ酸を含む触媒の存在下、フェノール類と、アントラセン−9−カルボアルデヒドとを反応させる工程
を有する下記式(1)で表される化合物の製造方法である。

Figure 0005719631
(式(1)中、Xは、(n+1)価の芳香族基であり、この芳香族基が置換基を有していてもよい。Yは、(n+1)価の芳香族基であり、この芳香族基が置換基を有していてもよい。n及びnは、それぞれ独立して、1〜3の整数である。) The method for producing the compound of the present invention comprises:
A method for producing a compound represented by the following formula (1), which comprises a step of reacting a phenol with an anthracene-9-carbaldehyde in the presence of a catalyst containing a non-reactive oxygen-containing organic solvent and an oxo acid.
Figure 0005719631
(In the formula (1), X is an (n 1 +1) -valent aromatic group, and this aromatic group may have a substituent. Y is an (n 2 +1) -valent aromatic group. (This aromatic group may have a substituent. N 1 and n 2 are each independently an integer of 1 to 3).

当該製造方法によれば、副反応の発生を抑えることができ、また、フェノール類の種類を選択することによって、所望する当該化合物を効率よく製造することができる。   According to this production method, the occurrence of side reactions can be suppressed, and the desired compound can be produced efficiently by selecting the type of phenols.

上記フェノール類が、少なくとも1つのアルキル基を有するフェノール系化合物であるとよい。当該製造方法によれば、副反応の発生をより抑えることができ、生産性を高めることができる。   The phenols may be phenolic compounds having at least one alkyl group. According to the manufacturing method, generation of side reactions can be further suppressed, and productivity can be increased.

本発明の誘導体の製造方法は、
下記式(1)で表される化合物を酸性触媒下で反応させる工程
を有する下記式(2)で表される誘導体の製造方法である。

Figure 0005719631
(式(1)中、Xは、(n+1)価の芳香族基であり、この芳香族基が置換基を有していてもよい。Yは、(n+1)価の芳香族基であり、この芳香族基が置換基を有していてもよい。n及びnは、それぞれ独立して、1〜3の整数である。)
Figure 0005719631
(式(2)中、Xは、(n+1)価の芳香族基であり、この芳香族基が置換基を有していてもよい。Yは、(n+1)価の芳香族基であり、この芳香族基が置換基を有していてもよい。n及びnは、それぞれ独立して、1〜3の整数である。) The method for producing the derivative of the present invention comprises:
It is a manufacturing method of the derivative represented by following formula (2) which has the process of making the compound represented by following formula (1) react under an acidic catalyst.
Figure 0005719631
(In the formula (1), X is an (n 1 +1) -valent aromatic group, and this aromatic group may have a substituent. Y is an (n 2 +1) -valent aromatic group. (This aromatic group may have a substituent. N 1 and n 2 are each independently an integer of 1 to 3).
Figure 0005719631
(In the formula (2), X is an (n 1 +1) -valent aromatic group, and this aromatic group may have a substituent. Y is an (n 2 +1) -valent aromatic group. (This aromatic group may have a substituent. N 1 and n 2 are each independently an integer of 1 to 3).

当該誘導体の製造方法によれば、上記一の工程で化合物中のヒドロキシアントラセン骨格をアントラセン骨格にすることができる。従って、当該製造方法によれば、本発明の化合物から、さらに蛍光特性等を有する有用性の高い誘導体を効率的に得ることができる。   According to the method for producing the derivative, the hydroxyanthracene skeleton in the compound can be converted to an anthracene skeleton in the above-mentioned one step. Therefore, according to the production method, a highly useful derivative having further fluorescence characteristics and the like can be efficiently obtained from the compound of the present invention.

以上説明したように、本発明の化合物は、蛍光特性を有さず、かつ、高融点、高光屈折性、及びビスフェノール構造に起因する反応多様性を兼ね備える。また、本発明の化合物からは様々な特性を有する各種誘導体を得ることができる。これらを含む本発明の組成物及び硬化物は、材料の高機能化や新たな特性の付与に極めて効果的であり、高い汎用性と付加価値を有する樹脂原料、例えば、フェノール樹脂、エポキシ樹脂原料、ポリカーボネート樹脂原料、アクリル樹脂原料、積層材、塗料等のコーティング材料、レンズ、光学シート等の光学材料、ホログラム記録材料等の記録材料、有機感光体、フォトレジスト材料、反射防止膜、半導体封止材等の高機能材料、分子磁気メモリー等の磁性材料、有機太陽電池、有機EL素子等として多岐の技術分野での応用展開をはかることができる。さらに、本発明の製造方法によれば所望する当該化合物及びその誘導体を効率的に製造することができる。   As described above, the compound of the present invention does not have fluorescence characteristics, and has a high melting point, high photorefractive properties, and reaction diversity resulting from a bisphenol structure. In addition, various derivatives having various characteristics can be obtained from the compound of the present invention. The composition and cured product of the present invention containing these are extremely effective for enhancing the functionality of the material and imparting new characteristics, and are a resin material having high versatility and added value, such as a phenol resin and an epoxy resin material. Polycarbonate resin raw material, acrylic resin raw material, laminated material, coating material such as paint, optical material such as lens and optical sheet, recording material such as hologram recording material, organic photoreceptor, photoresist material, antireflection film, semiconductor encapsulation It can be applied in various technical fields as high-functional materials such as materials, magnetic materials such as molecular magnetic memory, organic solar cells, and organic EL elements. Furthermore, according to the production method of the present invention, the desired compound and derivatives thereof can be produced efficiently.

実施例1の反応終了後のHPLCチャートである。2 is an HPLC chart after completion of the reaction in Example 1. 実施例1の目的物のH−NMRチャートである。1 is a 1 H-NMR chart of a target product of Example 1. 実施例1の目的物の13C−NMRチャートである。3 is a 13 C-NMR chart of the target product of Example 1. FIG. 実施例2の反応終了後のHPLCチャートである。2 is an HPLC chart after completion of the reaction of Example 2. 実施例2の目的物のH−NMRチャートである。2 is a 1 H-NMR chart of a target product of Example 2. 実施例2の目的物の13C−NMRチャートである。3 is a 13 C-NMR chart of the target product of Example 2. FIG. 比較例1の反応終了後のHPLCチャートである。2 is an HPLC chart after completion of the reaction of Comparative Example 1. 比較例1の目的物のH−NMRチャートである。2 is a 1 H-NMR chart of a target product of Comparative Example 1. 比較例1の目的物の13C−NMRチャートである。6 is a 13 C-NMR chart of a target product of Comparative Example 1. 比較例2の反応終了後のHPLCチャートである。4 is an HPLC chart after completion of the reaction of Comparative Example 2.

以下、本発明の実施の形態を、化合物及びこの製造方法、これを用いて得られる誘導体及びその製造方法、これらを含む組成物並びにこの硬化物の順に詳説する。   Hereinafter, embodiments of the present invention will be described in detail in the order of a compound and a production method thereof, a derivative obtained using the same, a production method thereof, a composition containing them, and a cured product thereof.

<化合物>
本発明の化合物は、上記式(1)で表される。
当該化合物は、アントラセン骨格に類似するヒドロアントラセン骨格を有するため、例えば、高融点及び高光屈折性等において、アントラセン化合物と同等程度又はそれ以上の性能を備える。当該化合物の融点としては、例えば180℃以上であり、200℃以上とすることもできる。当該化合物の光屈折率は、例えば1.650以上であり、1.660以上とすることもできる。この融点や光屈折率は、後に詳述する置換基等によって調整することができる。一方、当該化合物は、アントラセンとは異なり、中央のベンゼン環が水素化されているため、蛍光特性を有さない。
<Compound>
The compound of the present invention is represented by the above formula (1).
Since the compound has a hydroanthracene skeleton similar to the anthracene skeleton, the compound has performance equivalent to or higher than that of the anthracene compound in, for example, high melting point and high photorefractive property. As melting | fusing point of the said compound, it is 180 degreeC or more, for example, and can also be 200 degreeC or more. The refractive index of the compound is, for example, 1.650 or more, and may be 1.660 or more. This melting point and photorefractive index can be adjusted by a substituent or the like described in detail later. On the other hand, unlike anthracene, the compound does not have fluorescence characteristics because the central benzene ring is hydrogenated.

当該化合物は、さらに、反応活性な水酸基及び芳香環を有することから、ビスフェノール系化合物が備える多様な反応性を有する。例えば、当該化合物は、アリル化、グリシジル化、(メタ)アクリル化、メチロール化、ベンゾオキサジン化等されることができる。   Since the compound further has a reactive hydroxyl group and an aromatic ring, the compound has various reactivity provided by the bisphenol compound. For example, the compound can be allylated, glycidylated, (meth) acrylated, methylolated, benzoxazine and the like.

従って、当該化合物は各種樹脂原料等に用いることができる等の高い汎用性を有する。特に、当該化合物は、芳香環がヒドロアントラセン環の9位及び10位に配置されていることで、対称性が高く、また、2つ以上の水酸基により架橋すること等でポリマーの主鎖内にヒドロアントラセン骨格を導入することが可能である。従って、当該化合物によれば、ヒドロアントラセン骨格に由来する剛直さを生かした機械的特性に優れたポリマーを得ることができ、かつヒドロアントラセン骨格の短軸となる9位及び10位に芳香環が配置されているため、ポリマー骨格へ導入された際、このポリマーが極めて高い炭素密度を有する等の特有な機能が発揮される。   Therefore, the compound has high versatility such that it can be used for various resin raw materials. In particular, the compound has high symmetry because the aromatic ring is arranged at the 9th and 10th positions of the hydroanthracene ring, and it is bridged by two or more hydroxyl groups in the polymer main chain. It is possible to introduce a hydroanthracene skeleton. Therefore, according to the compound, it is possible to obtain a polymer having excellent mechanical properties utilizing the rigidity derived from the hydroanthracene skeleton, and aromatic rings at the 9th and 10th positions which are the short axes of the hydroanthracene skeleton. Due to the arrangement, when introduced into the polymer skeleton, unique functions such as the polymer having an extremely high carbon density are exhibited.

上記式(1)中、X及びYで表される芳香族基としては、それぞれ置換基を有していてもよいベンゼン、ナフタレン、アントラセン、フェナントレン、テトラセン、クリセン、トリフェニレン等の芳香族炭化水素から、芳香環上の水素原子を(n+1)個又は(n+1)個除いた基等が挙げられる。上記芳香族炭化水素の中でも、当該化合物の製造容易性及び吸光・蛍光の制御性等の点から、ベンゼン及びナフタレンが好ましく、ベンゼンがさらに好ましい。 In the above formula (1), the aromatic groups represented by X and Y are each an aromatic hydrocarbon such as benzene, naphthalene, anthracene, phenanthrene, tetracene, chrysene, triphenylene, etc., each optionally having a substituent. And groups obtained by removing (n 1 +1) or (n 2 +1) hydrogen atoms on the aromatic ring. Among the aromatic hydrocarbons, benzene and naphthalene are preferable, and benzene is more preferable, from the viewpoints of the ease of production of the compound and the controllability of light absorption and fluorescence.

上記X及びYで表される芳香族基が有していてもよい置換基としては、アルキル基、アルコキシ基、アリール基、アルケニル基、アミノ基、メルカプト基、ヒドロキシル基等が挙げられる。これらの置換基は、X及びY毎に、1又は複数であってもよい。なお、X及びYの価数としては、これらの置換基の有無及び置換基の数に依存せず、Xは(n+1)価であり、Yは(n+1)価である。すなわち、n及びnは、X及びYにおける芳香環(置換基以外の部分)に直接結合する水酸基の数となる。 Examples of the substituent that the aromatic group represented by X and Y may have include an alkyl group, an alkoxy group, an aryl group, an alkenyl group, an amino group, a mercapto group, and a hydroxyl group. One or more of these substituents may be present for each of X and Y. The valences of X and Y do not depend on the presence or absence of these substituents and the number of substituents, X is an (n 1 +1) valence, and Y is an (n 2 +1) valence. That is, n 1 and n 2 are the number of hydroxyl groups directly bonded to the aromatic rings (parts other than the substituent) in X and Y.

上記アルキル基としては、直鎖状、分岐鎖状、単環状若しくは縮合多環状アルキル基、又は1個以上の−O−で中断されている直鎖状、分岐鎖状、単環状若しくは縮合多環状アルキル基等が挙げられる。   The alkyl group may be a linear, branched, monocyclic or condensed polycyclic alkyl group, or a linear, branched, monocyclic or condensed polycyclic interrupted by one or more —O—. An alkyl group etc. are mentioned.

直鎖状、分岐鎖状、単環状又は縮合多環状アルキル基の具体例としてはメチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基、オクタデシル基、イソプロピル基、イソブチル基、イソペンチル基、sec−ブチル基、tert−ブチル基、sec−ペンチル基、tert−ペンチル基、tert−オクチル基、ネオペンチル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、アダマンチル基、ノルボルニル基、ボロニル基、4−デシルシクロヘキシル基等が挙げられる。   Specific examples of linear, branched, monocyclic or condensed polycyclic alkyl groups include methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl and decyl groups. , Dodecyl group, octadecyl group, isopropyl group, isobutyl group, isopentyl group, sec-butyl group, tert-butyl group, sec-pentyl group, tert-pentyl group, tert-octyl group, neopentyl group, cyclopropyl group, cyclobutyl group , Cyclopentyl group, cyclohexyl group, adamantyl group, norbornyl group, boronyl group, 4-decylcyclohexyl group and the like.

また、1個以上の−O−で中断されている直鎖状又は分岐鎖状アルキル基の具体例としては、−CH−O−CH、−CH−CH−O−CH−CH、−CH−CH−CH−O−CH−CH、−(CH−CH−O)m1−CH(ここでm1は1〜8の整数である)、−(CH−CH−CH−O)p1−CH(ここでp1は1〜5の整数である)、−CH−CH(CH)−O−CH−CH、−CH−CH−(OCH等が挙げられる。1個以上の−O−で中断されている単環状又は縮合多環状アルキル基としては、テトラヒドロフラニル基、テトラヒドロピラニル基、7−オキサノルボルニル基等が挙げられる。 Specific examples of the linear or branched alkyl group interrupted by one or more —O— include —CH 2 —O—CH 3 , —CH 2 —CH 2 —O—CH 2 —. CH 3 , —CH 2 —CH 2 —CH 2 —O—CH 2 —CH 3 , — (CH 2 —CH 2 —O) m1 —CH 3 (where m1 is an integer of 1 to 8), − (CH 2 —CH 2 —CH 2 —O) p1 —CH 3 (where p1 is an integer of 1 to 5), —CH 2 —CH (CH 3 ) —O—CH 2 —CH 3 , —CH 2 -CH- (OCH 3) 2, and the like. Examples of the monocyclic or condensed polycyclic alkyl group interrupted by one or more —O— include a tetrahydrofuranyl group, a tetrahydropyranyl group, and a 7-oxanorbornyl group.

上記アルコキシ基としては、直鎖状、分岐鎖状、単環状若しくは縮合多環状アルコキシ基、又は1個以上の−O−で中断されている直鎖状、分岐鎖状、単環状若しくは縮合多環状アルコキシ基等が挙げられる。   Examples of the alkoxy group include a linear, branched, monocyclic or condensed polycyclic alkoxy group, or a linear, branched, monocyclic or condensed polycyclic interrupted by one or more —O—. An alkoxy group etc. are mentioned.

直鎖状、分岐鎖状、単環状若しくは縮合多環状アルコキシ基の具体例としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、ノニルオキシ基、デシルオキシ基、ドデシルオキシ基、オクタデシルオキシ基、イソプロポキシ基、イソブトキシ基、イソペンチルオキシ基、sec−ブトキシ基、tert−ブトキシ基、sec−ペンチルオキシ基、tert−ペンチルオキシ基、tert−オクチルオキシ基、ネオペンチルオキシ基、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基、アダマンチルオキシ基、ノルボルニルオキシ基、ボロニルオキシ基、4−デシルシクロヘキシルオキシ基等を挙げることができる。   Specific examples of linear, branched, monocyclic or condensed polycyclic alkoxy groups include methoxy, ethoxy, propoxy, butoxy, pentyloxy, hexyloxy, heptyloxy, octyloxy, Nonyloxy group, decyloxy group, dodecyloxy group, octadecyloxy group, isopropoxy group, isobutoxy group, isopentyloxy group, sec-butoxy group, tert-butoxy group, sec-pentyloxy group, tert-pentyloxy group, tert- Octyloxy group, neopentyloxy group, cyclopropyloxy group, cyclobutyloxy group, cyclopentyloxy group, cyclohexyloxy group, adamantyloxy group, norbornyloxy group, boronyloxy group, 4-decylcyclohexyloxy group, etc. Door can be.

また、1個以上の−O−で中断されている直鎖状又は分岐鎖状アルコキシ基の具体例としては、−O−CH−O−CH、−O−CH−CH−O−CH−CH、−O−CH−CH−CH−O−CH−CH、−O−(CH−CH−O)m2−CH(ここでm2は1〜8の整数である)、−O−(CH−CH−CH−O)p2−CH(ここでp2は1〜5の整数である)、−O−CH−CH(CH)−O−CH−CH、−O−CH−CH−(OCH等を挙げることができる。1個以上の−O−で中断されている単環状又は縮合多環状アルコキシ基としては、テトラヒドロフラニルオキシ基、テトラヒドロピラニルオキシ基、7−オキサノルボルニルオキシ基等が挙げられる。 Specific examples of the linear or branched alkoxy group interrupted by one or more —O— include —O—CH 2 —O—CH 3 , —O—CH 2 —CH 2 —O. —CH 2 —CH 3 , —O—CH 2 —CH 2 —CH 2 —O—CH 2 —CH 3 , —O— (CH 2 —CH 2 —O) m 2 —CH 3 (where m 2 is 1 to 8), —O— (CH 2 —CH 2 —CH 2 —O) p 2 —CH 3 (where p 2 is an integer of 1 to 5), —O—CH 2 —CH (CH 3 ) -O-CH 2 -CH 3, -O-CH 2 -CH- (OCH 3) may be mentioned 2. Examples of the monocyclic or condensed polycyclic alkoxy group interrupted by one or more —O— include a tetrahydrofuranyloxy group, a tetrahydropyranyloxy group, and a 7-oxanorbornyloxy group.

上記アリール基としては、置換基を有していてもよい芳香環から1個の水素原子を除いた基が挙げられ、具体例としてはフェニル基、1−ナフチル基、2−ナフチル基、1−アンスリル基、9−アンスリル基、2−フェナントリル基、3−フェナントリル基、9−フェナントリル基、1−ピレニル基、5−ナフタセニル基、1−インデニル基、2−アズレニル基、1−アセナフチル基、2−フルオレニル基、9−フルオレニル基、3−ペリレニル基、o−トリル基、m−トリル基、p−トリル基、2,3−キシリル基、2,5−キシリル基、メシチル基、p−クメニル基、p−ドデシルフェニル基、o−メトキシフェニル基、m−メトキシフェニル基、p−メトキシフェニル基、2,6−ジメトキシフェニル基、3,4−ジメトキシフェニル基、3,4,5−トリメトキシフェニル基、p−シクロヘキシルフェニル基、4−ビフェニル基、o−フルオロフェニル基、m−クロロフェニル基、p−ブロモフェニル基、p−ヒドロキシフェニル基、m−カルボキシフェニル基、o−メルカプトフェニル基、p−シアノフェニル基、m−ニトロフェニル基、m−アジドフェニル基等を挙げることができる。   Examples of the aryl group include groups in which one hydrogen atom has been removed from an aromatic ring which may have a substituent. Specific examples include a phenyl group, a 1-naphthyl group, a 2-naphthyl group, 1- Anthryl group, 9-anthryl group, 2-phenanthryl group, 3-phenanthryl group, 9-phenanthryl group, 1-pyrenyl group, 5-naphthacenyl group, 1-indenyl group, 2-azurenyl group, 1-acenaphthyl group, 2- Fluorenyl group, 9-fluorenyl group, 3-perylenyl group, o-tolyl group, m-tolyl group, p-tolyl group, 2,3-xylyl group, 2,5-xylyl group, mesityl group, p-cumenyl group, p-dodecylphenyl group, o-methoxyphenyl group, m-methoxyphenyl group, p-methoxyphenyl group, 2,6-dimethoxyphenyl group, 3,4-dimethoxyphenyl 3,4,5-trimethoxyphenyl group, p-cyclohexylphenyl group, 4-biphenyl group, o-fluorophenyl group, m-chlorophenyl group, p-bromophenyl group, p-hydroxyphenyl group, m-carboxyphenyl Group, o-mercaptophenyl group, p-cyanophenyl group, m-nitrophenyl group, m-azidophenyl group and the like.

上記アルケニル基としては、直鎖状、分岐鎖状、単環状又は縮合多環状アルケニル基等が挙げられ、それらは構造中に複数の炭素−炭素二重結合を有していてもよく、具体例としては、ビニル基、1−プロペニル基、アリル基、2−ブテニル基、3−ブテニル基、イソプロペニル基、イソブテニル基、1−ペンテニル基、2−ペンテニル基、3−ペンテニル基、4−ペンテニル基、1−ヘキセニル基、2−ヘキセニル基、3−ヘキセニル基、4−ヘキセニル基、5−ヘキセニル基、シクロペンテニル基、シクロヘキセニル基、1,3−ブタジエニル基、シクロヘキサジエニル基、シクロペンタジエニル基等を挙げることができる。   Examples of the alkenyl group include linear, branched, monocyclic or condensed polycyclic alkenyl groups, which may have a plurality of carbon-carbon double bonds in the structure. Specific examples As, vinyl group, 1-propenyl group, allyl group, 2-butenyl group, 3-butenyl group, isopropenyl group, isobutenyl group, 1-pentenyl group, 2-pentenyl group, 3-pentenyl group, 4-pentenyl group 1-hexenyl group, 2-hexenyl group, 3-hexenyl group, 4-hexenyl group, 5-hexenyl group, cyclopentenyl group, cyclohexenyl group, 1,3-butadienyl group, cyclohexadienyl group, cyclopentadienyl group Groups and the like.

これらの上記X及びYが有する置換基の中でも、アルキル基が好ましい。X及びYにおいて、置換基としてアルキル基を有する芳香族基を備える当該化合物によれば、当該化合物の反応性を低下させることなく屈折率や融点等を調整することができる。なお、この置換基としてのアルキル基は、立体配座の安定性の点から、低分子量であることが好ましく、具体的には炭素数が5以下のアルキル基が好ましく、メチル基又はエチル基がより好ましく、メチル基が特に好ましい。また、このアルキル基の数としては、X及びYそれぞれにおいて、1以上が好ましく、1〜3がより好ましく、1又は2がさらに好ましい。このアルキル基の数及び種類は、X及びYにおいて、同一でも異なっていてもよい。   Of these substituents of X and Y, an alkyl group is preferable. In X and Y, according to the compound having an aromatic group having an alkyl group as a substituent, the refractive index, the melting point, and the like can be adjusted without reducing the reactivity of the compound. The alkyl group as the substituent is preferably low molecular weight from the viewpoint of conformational stability. Specifically, an alkyl group having 5 or less carbon atoms is preferred, and a methyl group or an ethyl group is preferred. More preferred is a methyl group. The number of alkyl groups is preferably 1 or more, more preferably 1 to 3, and even more preferably 1 or 2 in each of X and Y. The number and type of the alkyl group may be the same or different in X and Y.

及びnは、それぞれ独立して、1〜3の整数である。このn及びnは、X及びYの芳香環に直接結合する水酸基の数となる。n及びnとしては、ともに1であることが合成容易性や水酸基の反応制御性等の点から好ましい。 n 1 and n 2 are each independently an integer of 1 to 3. The n 1 and n 2 are the number of hydroxyl groups directly bonded to the X and Y aromatic rings. n 1 and n 2 are both preferably 1 from the viewpoints of easiness of synthesis, reaction controllability of hydroxyl groups, and the like.

さらには、n及びnが1であり、かつ、X及びYで表される芳香族基が、置換基を有していてもよいベンゼンから、ベンゼン環上の水素原子をそれぞれ2個ずつ除いた基である場合、水酸基がヒドロアントラセン側への結合位置に対してパラ位に位置することが好ましい。加えて、上記ベンゼンが置換基としてアルキル基を有する場合、このアルキル基が、上記水酸基に対してオルト位に位置することが好ましい。当該化合物がこのような構造をとる場合、合成が容易であり生産性に優れる。また、このような場合、分子の対称性が高く、高融点化や高炭素密度化を図ることができる。 Furthermore, n 1 and n 2 are 1, and the aromatic group represented by X and Y is each optionally substituted with two hydrogen atoms on the benzene ring from benzene which may have a substituent. In the case of the excluded group, the hydroxyl group is preferably located in the para position with respect to the bonding position on the hydroanthracene side. In addition, when the benzene has an alkyl group as a substituent, the alkyl group is preferably located in the ortho position with respect to the hydroxyl group. When the compound has such a structure, synthesis is easy and productivity is excellent. In such a case, the symmetry of the molecule is high, and it is possible to increase the melting point and increase the carbon density.

本発明の化合物は、上記の構造を有するため、直接又は反応中間体として用いて、エポキシ樹脂原料、ポリカーボネート樹脂原料、アクリル樹脂原料等の各種合成樹脂原料等として用いることができる。また、合成樹脂原料以外にも、例えば農薬中間体や、医薬中間体として用いることができる。   Since the compound of the present invention has the structure described above, it can be used directly or as a reaction intermediate, and as various synthetic resin raw materials such as an epoxy resin raw material, a polycarbonate resin raw material, and an acrylic resin raw material. Moreover, besides a synthetic resin raw material, it can be used as, for example, an agrochemical intermediate or a pharmaceutical intermediate.

<化合物の製造方法>
本発明の化合物は、例えば、
非反応性含酸素有機溶媒及びオキソ酸を含む触媒の存在下、フェノール類と、アントラセン−9−カルボアルデヒドとを反応させる工程
を有する方法により製造される。この反応の反応機構は定かではないが、非反応性含酸素有機溶媒及びオキソ酸により、アントラセン−9−カルボアルデヒドの特定の炭素上の電子が局在化され、フェノール類との反応が生じること等が考えられる。なお、触媒として、オキソ酸以外の酸(例えば、塩酸)を用いると、アントラセン−9−カルボアルデヒドのアントラセン骨格が水素化されない。
<Method for producing compound>
The compounds of the present invention are, for example,
It is produced by a method comprising a step of reacting phenols with anthracene-9-carbaldehyde in the presence of a catalyst containing a non-reactive oxygen-containing organic solvent and an oxo acid. Although the reaction mechanism of this reaction is not clear, non-reactive oxygen-containing organic solvent and oxo acid can localize electrons on specific carbon of anthracene-9-carbaldehyde and cause reaction with phenols. Etc. are considered. When an acid other than oxo acid (for example, hydrochloric acid) is used as a catalyst, the anthracene skeleton of anthracene-9-carbaldehyde is not hydrogenated.

上記フェノール類とは芳香環上にヒドロキシ基を有する化合物をいい、フェノール系化合物、ナフトール系化合物等がある。   The above phenols refer to compounds having a hydroxy group on the aromatic ring, such as phenolic compounds and naphtholic compounds.

フェノール系化合物とは、フェノール及び芳香環上の水素が他の置換基に置換されたフェノールをいう。当該置換基としては、アルキル基やヒドロキシ基等が挙げられる。上記アルキル基としては、上記化合物の説明中に例示したものを挙げることができ、炭素数5以下のアルキル基が好ましく、メチル基又はエチル基がより好ましく、メチル基が特に好ましい。   The phenolic compound refers to phenol in which hydrogen on the aromatic ring is substituted with other substituents. Examples of the substituent include an alkyl group and a hydroxy group. Examples of the alkyl group include those exemplified in the description of the compound, an alkyl group having 5 or less carbon atoms is preferable, a methyl group or an ethyl group is more preferable, and a methyl group is particularly preferable.

フェノール系化合物としては例えば、フェノール、クレゾール(o−クレゾール、m−クレゾール、p−クレゾール)、キシレノール(2,3−キシレノール、2,4−キシレノール、2,5−キシレノール、2,6−キシレノール、3,4−キシレノール、3,5−キシレノール)、2,3,5−トリメチルフェノール、2,3,6−トリメチルフェノール、2−エチルフェノール、4−エチルフェノール、2−イソプロピルフェノール、4−イソプロピルフェノール、2−tert−ブチルフェノール、4−tert−ブチルフェノール、2−シクロヘキシルフェノール、4−シクロヘキシルフェノール、2−フェニルフェノール、4−フェニルフェノール、チモール、2−tert−ブチル−5−メチルフェノール、2−シクロヘキシル−5−メチルフェノール、レゾルシン、2−メチルレゾルシン、カテコール、4−メチルカテコール、ハイドロキノン、ピロガロール等が挙げられる。   Examples of phenolic compounds include phenol, cresol (o-cresol, m-cresol, p-cresol), xylenol (2,3-xylenol, 2,4-xylenol, 2,5-xylenol, 2,6-xylenol, 3,4-xylenol, 3,5-xylenol), 2,3,5-trimethylphenol, 2,3,6-trimethylphenol, 2-ethylphenol, 4-ethylphenol, 2-isopropylphenol, 4-isopropylphenol 2-tert-butylphenol, 4-tert-butylphenol, 2-cyclohexylphenol, 4-cyclohexylphenol, 2-phenylphenol, 4-phenylphenol, thymol, 2-tert-butyl-5-methylphenol, 2-cyclohexyl 5-methylphenol, resorcinol, 2-methyl resorcinol, catechol, 4-methyl catechol, hydroquinone, pyrogallol.

ナフトール系化合物とは、ナフトール及び芳香環上の水素が他の置換基に置換されたナフトールをいう。当該置換基としては、アルキル基やヒドロキシ基等が挙げられる。   A naphthol compound refers to naphthol in which naphthol and hydrogen on an aromatic ring are substituted with other substituents. Examples of the substituent include an alkyl group and a hydroxy group.

ナフトール系化合物としては、1−ナフトール、2−ナフトール、1,4−ジヒドロキシナフタレン、1,5−ジヒドロキシナフタレン、1,6−ジヒドロキシナフタレン、2,3−ジヒドロキシナフタレン、2,6−ジヒドロキシナフタレン、2,7−ジヒドロキシナフタレン等が挙げられる。   Examples of naphthol compounds include 1-naphthol, 2-naphthol, 1,4-dihydroxynaphthalene, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,3-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, 2 , 7-dihydroxynaphthalene and the like.

これらのフェノール類の中でも、少なくとも1つのアルキル基を有するフェノール類が好ましく、少なくとも1つのアルキル基を有するフェノール系化合物がより好ましく、クレゾール及びキシレノールがさらに好ましい。これらの化合物をフェノール類として用いることで、副反応の発生をより抑えることができ、生産性を高めることができる。   Among these phenols, phenols having at least one alkyl group are preferable, phenolic compounds having at least one alkyl group are more preferable, and cresol and xylenol are more preferable. By using these compounds as phenols, the occurrence of side reactions can be further suppressed, and productivity can be increased.

なお、これらのフェノール類は、特にこれらに限定されるものではなく、所望する上記化合物の構造に応じて適宜選択される。また、これらは単独又は2種以上を組み合わせて用いてもよい。   These phenols are not particularly limited, and are appropriately selected according to the desired structure of the compound. Moreover, you may use these individually or in combination of 2 or more types.

また、このフェノール類の配合量の下限としては、アントラセン−9−カルボアルデヒド1モルに対し2モルが好ましく、4モルがさらに好ましい。このフェノール類の配合量の上限としては、アントラセン−9−カルボアルデヒド1モルに対し100モルが好ましく、50モルがさらに好ましく、20モルが特に好ましい。フェノール類の配合量が上記下限未満では、原料の高次縮合物が生成する為精製に多大なエネルギーを要し、逆に上記上限を超えると未反応のフェノール類を除去するのに多大なエネルギーを要する為、共に非経済的である。   Moreover, as a minimum of the compounding quantity of this phenol, 2 mol is preferable with respect to 1 mol of anthracene-9-carbaldehyde, and 4 mol is more preferable. The upper limit of the amount of the phenols is preferably 100 mol, more preferably 50 mol, and particularly preferably 20 mol with respect to 1 mol of anthracene-9-carbaldehyde. If the blending amount of phenols is less than the above lower limit, a large amount of energy is required for purification because a higher-order condensate of the raw material is formed. Conversely, if the upper limit is exceeded, enormous energy is required to remove unreacted phenols. Both are uneconomical.

本製造方法においては、反応溶媒として、分子中に1以上の酸素原子を備える非反応性含酸素有機溶媒を用いる。なお「非反応性」とは、この反応系におけるフェノール類、アントラセン−9−カルボアルデヒド及び合成されるアントラセン誘導体とは反応しないことをいう。当該非反応含酸素有機溶媒としては、例えばアルコール類、多価アルコール系エーテル、環状エーテル類、多価アルコール系エステル、ケトン類、エステル類、スルホキシド類、カルボン酸類等を用いることができる。   In this production method, a non-reactive oxygen-containing organic solvent having one or more oxygen atoms in the molecule is used as the reaction solvent. The term “non-reactive” means that it does not react with phenols, anthracene-9-carbaldehyde and synthesized anthracene derivatives in this reaction system. As the non-reactive oxygen-containing organic solvent, for example, alcohols, polyhydric alcohol ethers, cyclic ethers, polyhydric alcohol esters, ketones, esters, sulfoxides, carboxylic acids and the like can be used.

アルコール類としては、例えば、メタノール、エタノール、プロパノール、ブタノール等の一価アルコール、ブタンジオール、ペンタンジオール、ヘキサンジオール、エチレングリコール、プロピレングリコール、トリメチレングリコール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、トリプロピレングリコール、ポリエチレングリコール等の二価アルコール、グリセリン等の三価アルコールが挙げられる。   Examples of alcohols include monohydric alcohols such as methanol, ethanol, propanol, and butanol, butanediol, pentanediol, hexanediol, ethylene glycol, propylene glycol, trimethylene glycol, diethylene glycol, dipropylene glycol, triethylene glycol, Examples thereof include dihydric alcohols such as propylene glycol and polyethylene glycol, and trihydric alcohols such as glycerin.

多価アルコール系エーテルとしては、例えばエチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノペンチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールエチルメチルエーテル、エチレングリコールモノフェニルエーテル等のグリコールエーテル類が挙げられる。   Examples of the polyhydric alcohol ether include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, ethylene glycol monopentyl ether, ethylene glycol dimethyl ether, ethylene glycol ethyl methyl ether, ethylene glycol mono Examples include glycol ethers such as phenyl ether.

環状エーテル類としては、例えば、1,3−ジオキサン、1,4−ジオキサン、テトラヒドロフラン等が挙げられる。多価アルコール系エステルとしては、例えば、エチレングリコールアセテート等のグリコールエステル類が挙げられる。ケトン類としては、例えばアセトン、メチルエチルケトン、メチルエチルケトンなどが挙げられる。エステル類としては、例えば、酢酸エチル、酢酸プロピル、酢酸ブチル等が挙げられる。スルホキシド類としては、例えば、ジメチルスルホキシド、ジエチルスルホキシド等が挙げられる。カルボン酸類としては、例えば、酢酸、無水酢酸等が挙げられる。   Examples of cyclic ethers include 1,3-dioxane, 1,4-dioxane, tetrahydrofuran and the like. Examples of the polyhydric alcohol ester include glycol esters such as ethylene glycol acetate. Examples of ketones include acetone, methyl ethyl ketone, and methyl ethyl ketone. Examples of the esters include ethyl acetate, propyl acetate, butyl acetate and the like. Examples of the sulfoxides include dimethyl sulfoxide and diethyl sulfoxide. Examples of carboxylic acids include acetic acid and acetic anhydride.

これらの中でもアルコール類及び多価アルコール系エーテルが好ましく、メタノール、エチレングリコール及びエチレングリコールモノメチルエーテルがさらに、メタノールが特に好ましい。   Among these, alcohols and polyhydric alcohol ethers are preferable, methanol, ethylene glycol, and ethylene glycol monomethyl ether are more preferable, and methanol is particularly preferable.

非反応性含酸素有機溶媒は、前記の例示に限定されず、また、それぞれを単独又は2種以上を混合して用いても良い。非反応性含酸素有機溶媒の配合量の下限としては、フェノール類100質量部に対して、1質量部が好ましく、5質量部が更に好ましく、10質量部が特に好ましい。また、非反応性含酸素有機溶媒の配合量の上限としては、フェノール類100質量部に対して、1000質量部が好ましく、500質量部が更に好ましく、10質量部が特に好ましい。非反応性含酸素有機溶媒の配合量が上記下限未満であると、反応副生物の生成が顕著となり、生産性が低下するおそれがある。逆に、非反応性含酸素有機溶媒の配合量が上記上限を超えると、反応速度が低下し、生産性が低下するおそれがある。   The non-reactive oxygen-containing organic solvent is not limited to the above examples, and each may be used alone or in admixture of two or more. The lower limit of the amount of the non-reactive oxygen-containing organic solvent is preferably 1 part by mass, more preferably 5 parts by mass, and particularly preferably 10 parts by mass with respect to 100 parts by mass of the phenols. Moreover, as an upper limit of the compounding quantity of a non-reactive oxygen-containing organic solvent, 1000 mass parts is preferable with respect to 100 mass parts of phenols, 500 mass parts is further more preferable, and 10 mass parts is especially preferable. When the blending amount of the non-reactive oxygen-containing organic solvent is less than the above lower limit, the production of reaction by-products becomes remarkable, and the productivity may be reduced. On the other hand, when the blending amount of the non-reactive oxygen-containing organic solvent exceeds the above upper limit, the reaction rate is lowered and the productivity may be lowered.

上記触媒としてのオキソ酸は、ある原子に水酸基とオキソ基(=O)が結合しており、かつ、その水酸基が酸性プロトンを与える化合物のことを指す。このオキソ酸としては、硫酸、亜硫酸、リン酸、亜リン酸、硝酸、過塩素酸、過臭素酸などの無機酸、カルボン酸、フタル酸、マレイン酸、パラトルエンスルホン酸、メタンスルホン酸、フェノールスルホン酸などの有機酸等を挙げることができる。これらの中でも、無機酸が好ましく、硫酸がさらに好ましい。   The oxo acid as the catalyst refers to a compound in which a hydroxyl group and an oxo group (═O) are bonded to a certain atom, and the hydroxyl group gives an acidic proton. As this oxo acid, inorganic acids such as sulfuric acid, sulfurous acid, phosphoric acid, phosphorous acid, nitric acid, perchloric acid, perbromic acid, carboxylic acid, phthalic acid, maleic acid, paratoluenesulfonic acid, methanesulfonic acid, phenol Examples thereof include organic acids such as sulfonic acid. Among these, inorganic acids are preferable, and sulfuric acid is more preferable.

これらのオキソ酸は、単独で用いても良いし、2種以上を組み合わせて用いてもよく、また、メルカプト酢酸等の反応助触媒やその他の触媒を併用しても良い。オキソ酸の使用量としては、反応が過激で危険とならない範囲でかつ反応促進の為少なすぎない量を設定すればよいが、一般的には、フェノール類の質量に対して、0.1〜20質量%である。   These oxo acids may be used singly or in combination of two or more, and a reaction promoter such as mercaptoacetic acid or other catalysts may be used in combination. The amount of oxo acid used may be set in such a range that the reaction is not extreme and dangerous and is not too small for promoting the reaction. 20% by mass.

当該化合物の製造は、上記フェノール類、アントラセン−9−カルボアルデヒド、非反応性含酸素有機溶媒及びオキソ酸を含む触媒を反応容器に投入して、所定時間撹拌して行われる。なお、上記反応容器への投入物の投入順序は問わない。   The compound is produced by adding a catalyst containing the above phenols, anthracene-9-carbaldehyde, a non-reactive oxygen-containing organic solvent and an oxo acid to a reaction vessel and stirring for a predetermined time. In addition, the order of the input of the input material into the reaction vessel is not limited.

当該製造方法の反応工程における反応温度は、通常0〜100℃、好ましくは、25〜60℃の範囲で行われる。反応温度が低すぎると、反応時間が長くなる可能性があり、一方、反応温度が高すぎると、高次縮合物及び異性体等の反応副生物の生成が助長され、当該化合物の純度が低下する可能性がある。   The reaction temperature in the reaction step of the production method is usually 0 to 100 ° C, preferably 25 to 60 ° C. If the reaction temperature is too low, the reaction time may be longer. On the other hand, if the reaction temperature is too high, formation of reaction by-products such as higher-order condensates and isomers is promoted, and the purity of the compound decreases. there's a possibility that.

当該製造方法の反応工程における反応容器内の圧力は、通常は常圧であるが、加圧又は減圧で行っても良く、具体的には内部圧力(ゲージ圧)が−0.02〜0.2MPaの範囲であることが好ましい。   The pressure in the reaction vessel in the reaction step of the production method is usually normal pressure, but may be increased or reduced, and specifically, the internal pressure (gauge pressure) is -0.02 to 0.00. The range is preferably 2 MPa.

当該製造方法の反応工程における反応時間は、用いるフェノール類、非反応性含酸素有機溶媒の種類と量、モル比、反応温度、圧力等に左右され、一概に定めることはできないが一般的には、1〜48時間の範囲であることが好ましい。   The reaction time in the reaction process of the production method depends on the phenols used, the type and amount of the non-reactive oxygen-containing organic solvent, the molar ratio, the reaction temperature, the pressure, etc. 1 to 48 hours.

当該製造方法の反応終了後、酸触媒の除去を行う。この触媒除去の方法としては、一般的には、メチルエチルケトン、メチルイソブチルケトン等の非水溶性有機溶媒に生成物を溶解し、水洗により除去を行うが、その他中和処理を行った後析出した中和塩を濾別する方法や、イオン交換樹脂等の樹脂酸を直接濾別除去する方法、アニオン製充填剤の詰まったカラムに反応液を通過させる方法等、特に制限はない。   After completion of the reaction of the production method, the acid catalyst is removed. As a method for removing the catalyst, generally, the product is dissolved in a water-insoluble organic solvent such as methyl ethyl ketone and methyl isobutyl ketone, and is removed by washing with water. There are no particular restrictions, such as a method of filtering out a salt, a method of directly removing a resin acid such as an ion exchange resin, or a method of passing a reaction solution through a column packed with an anionic packing material.

当該製造方法においては触媒除去後、精製により当該化合物を取り出す。一般的には、目的物に対して貧溶媒として作用し、その他の副生成物や未反応原料には良溶媒として作用する有機溶媒を添加し、析出させた後濾別、乾燥する方法によって目的物である当該化合物を得ることができる。   In the production method, after removing the catalyst, the compound is removed by purification. In general, an organic solvent that acts as a poor solvent for the target product, and acts as a good solvent for other by-products and unreacted raw materials, is precipitated, filtered, and dried. The compound which is a product can be obtained.

<当該化合物の誘導体>
本発明の誘導体は、本発明の上記化合物の誘導体である。当該誘導体は、上記化合物を公知の方法により、グリシジル化、(メタ)アクリル化、アリル化、メチロール化、ベンゾオキサジン化等を行うことで得ることができる。
<Derivatives of the compound>
The derivative of the present invention is a derivative of the above compound of the present invention. The derivative can be obtained by subjecting the above compound to glycidylation, (meth) acrylation, allylation, methylolation, benzoxazine formation and the like by a known method.

上記グリシジル化は、例えば当該化合物とエピクロロヒドリンとを反応させることで行うことができる。また、上記(メタ)アクリル化は、例えば当該化合物と(メタ)アクリロイルハライド(例えばアクリロイルクロライド等)とを反応させることで行うことができる。   The glycidylation can be performed, for example, by reacting the compound with epichlorohydrin. Moreover, the said (meth) acrylation can be performed by making the said compound and (meth) acryloyl halide (for example, acryloyl chloride etc.) react, for example.

このようにして得られた各誘導体は、エポキシ樹脂原料、アクリル樹脂原料等の樹脂原料として用いることができる。当該誘導体も、高融点、高光屈折性等の優れた特性を有することができる。   Each derivative thus obtained can be used as a resin raw material such as an epoxy resin raw material or an acrylic resin raw material. The derivative can also have excellent characteristics such as a high melting point and high photorefractive properties.

当該誘導体としては、アントラセン骨格を有する誘導体も挙げられる。このような誘導体としては、上記式(2)で表される誘導体を挙げることができる。上記式(2)中の、X、Y、n及びnの定義は上記式(1)と同様である。この式(2)で表される誘導体は、アントラセン骨格を有するため、アントラセン特有の諸特性、例えば、高炭素密度、高屈折率及び紫外線に対する蛍光性能等を備える。 Examples of the derivatives include derivatives having an anthracene skeleton. An example of such a derivative is a derivative represented by the above formula (2). The definitions of X, Y, n 1 and n 2 in the above formula (2) are the same as those in the above formula (1). Since the derivative represented by the formula (2) has an anthracene skeleton, it has various characteristics peculiar to anthracene, such as a high carbon density, a high refractive index, and fluorescence performance with respect to ultraviolet rays.

<上記式(2)で表される誘導体(以下、「特定誘導体」ともいう。)の製造方法>
上記特定誘導体は、下記式(1)で表される化合物を酸性触媒下で反応させる工程を有する方法で製造することができる。
<Method for producing derivative represented by formula (2) (hereinafter also referred to as “specific derivative”)>
The said specific derivative can be manufactured by the method which has the process of making the compound represented by following formula (1) react under an acidic catalyst.

具体的には、当該化合物を溶媒に溶解し、酸性触媒を添加することで、当該化合物が上記特定誘導体に変換する。上記溶媒としては特に限定されないが、例えば上記段落0051〜0054に記載の非反応性含酸素有機溶媒、フェノール類等が挙げられ、これらを単独又は2種以上を混合して用いることができる。これらの溶媒の中でも、フェノール類が好ましく、クレゾールがさらに好ましい。   Specifically, the compound is converted into the specific derivative by dissolving the compound in a solvent and adding an acidic catalyst. Although it does not specifically limit as said solvent, For example, the non-reactive oxygen-containing organic solvent described in the said paragraphs 0051-0054, phenols, etc. are mentioned, These can be used individually or in mixture of 2 or more types. Among these solvents, phenols are preferable, and cresol is more preferable.

上記酸性触媒も特に限定されないが、上記変換反応の反応性の点から、上述したオキソ酸以外の酸、例えばハロゲン水素酸(HF、HCl、HBr、HI)が好ましく、HCl(塩酸)がさらに好ましい。反応後は、公知の方法で精製等を行うことで、上記特定誘導体を抽出することができる。   The acidic catalyst is not particularly limited, but from the viewpoint of the reactivity of the conversion reaction, acids other than the above-mentioned oxo acids, for example, halogen hydroacids (HF, HCl, HBr, HI) are preferable, and HCl (hydrochloric acid) is more preferable. . After the reaction, the specific derivative can be extracted by purification or the like by a known method.

<組成物>
当該化合物、又はこの化合物を中間体として得られる誘導体を含む組成物は、エポキシ樹脂原料、ポリカーボネート樹脂原料、アクリル樹脂原料等の樹脂原料や、接着剤、塗料等に用いることができる。当該組成物における他の成分としては、各樹脂を製造する際に使用される公知のものが挙げられる。この他の成分としては、硬化剤、硬化促進剤、溶媒、無機充填剤、顔料、揺変性付与剤、流動性向上剤、他のモノマー等を挙げることができる。
<Composition>
The compound or a composition containing a derivative obtained using this compound as an intermediate can be used for resin raw materials such as epoxy resin raw materials, polycarbonate resin raw materials, acrylic resin raw materials, adhesives, paints, and the like. As another component in the said composition, the well-known thing used when manufacturing each resin is mentioned. Examples of the other components include a curing agent, a curing accelerator, a solvent, an inorganic filler, a pigment, a thixotropic agent, a fluidity improver, and other monomers.

上記硬化剤としては、一般のエポキシ樹脂用の硬化剤が用いられ、例えば、多価フェノール類、酸無水物類、アミン類、イミダゾール類等を挙げることができる。   As said hardening | curing agent, the hardening | curing agent for general epoxy resins is used, For example, polyhydric phenols, acid anhydrides, amines, imidazoles etc. can be mentioned.

上記多価フェノール類としては、レゾルシン、カテコール、ハイドロキノン、ビスフェノール−F、ビスフェノール−A、ビフェノール、フェノールノボラック類、クレゾールノボラック類、キシレノールノボラック類、ビスフェノール−Aノボラック類、トリスフェノールメタン類、テトラキスフェノールエタン類、アラルキルポリフェノール類、ジシクロペンタジエンポリフェノール類、環化ポリブタジエンポリフェノール類などが挙げられる。   Examples of the polyphenols include resorcin, catechol, hydroquinone, bisphenol-F, bisphenol-A, biphenol, phenol novolacs, cresol novolacs, xylenol novolacs, bisphenol-A novolacs, trisphenol methanes, tetrakisphenol ethane Aralkyl polyphenols, dicyclopentadiene polyphenols, cyclized polybutadiene polyphenols and the like.

上記酸無水物類としては、無水メチルヘキサヒドロ酢酸、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水テトラヒドロフタル酸、無水メチルテトラヒドロフタル酸、無水ヘキサヒドロフタル酸、無水メチルヘキサヒドロフタル酸、無水メチルエンドメチレンテトラヒドロフタル酸、無水ドデセニルコハク酸、無水トリアルキルテトラヒドロフタル酸等が挙げられる。   Examples of the acid anhydrides include methylhexahydroacetic anhydride, phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, and methylhexahydrophthalic anhydride. Examples include acid, methylendomethylenetetrahydrophthalic anhydride, dodecenyl succinic anhydride, and trialkyltetrahydrophthalic anhydride.

上記アミン類としては、ビス(4−アミノシクロヘキシル)メタン、ビス(アミノメチル)シクロヘキサン、m−キシリレンジアミン、3,9−ビス(3−アミノプロピル)−2,4,8,10−テトラスピロ[5.5]ウンデカン等の脂肪族及び脂環族アミン類、メタフェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン等の芳香族アミン類、ベンジルジメチルアミン、2,4,6−トリス(ジメチルアミノメチル)フェノール、1,8−ジアザビシクロ[5.4.0]ウンデセン−7、1,5−アザビシクロ[4.3.0]−ノネン−7等の3級アミン類及びその塩類などが挙げられ、またこれらのBF錯体化合物も挙げることができる。 Examples of the amines include bis (4-aminocyclohexyl) methane, bis (aminomethyl) cyclohexane, m-xylylenediamine, 3,9-bis (3-aminopropyl) -2,4,8,10-tetraspiro [ 5.5] Aliphatic and alicyclic amines such as undecane, aromatic amines such as metaphenylenediamine, diaminodiphenylmethane, diaminodiphenylsulfone, benzyldimethylamine, 2,4,6-tris (dimethylaminomethyl) phenol , Tertiary amines such as 1,8-diazabicyclo [5.4.0] undecene-7, 1,5-azabicyclo [4.3.0] -nonene-7 and salts thereof, and the like. Mention may also be made of BF 3 complex compounds.

上記イミダゾール類としては、2−メチルイミダゾール、2−エチル−4−メチルイミダゾール等が挙げられる。
また、その他の硬化剤として、アジピン酸、セバシン酸、テレフタル酸、トリメリット酸等が挙げられる。
Examples of the imidazoles include 2-methylimidazole and 2-ethyl-4-methylimidazole.
Examples of other curing agents include adipic acid, sebacic acid, terephthalic acid, trimellitic acid, and the like.

上記硬化促進剤としては、2−メチルイミダゾール、2−エチルイミダゾール、1−(2−シアノエチル)−2−エチル−4−メチルイミダゾール、2−エチル−4−メチルイミダゾール、1−(2−シアノエチル)−2−エチル−4−メチルイミダゾール、1,8−ジアザビシクロ[5.4.0]ウンデセン−7、トリフェニルホスフィン、オクチル酸スズ等が挙げられる。   Examples of the curing accelerator include 2-methylimidazole, 2-ethylimidazole, 1- (2-cyanoethyl) -2-ethyl-4-methylimidazole, 2-ethyl-4-methylimidazole, 1- (2-cyanoethyl). -2-ethyl-4-methylimidazole, 1,8-diazabicyclo [5.4.0] undecene-7, triphenylphosphine, tin octylate and the like.

上記溶媒としては、組成物構成によって異なるが、例えば、エーテル類、ジエチレングリコールアルキルエーテル類、エチレングリコールアルキルエーテルアセテート類、プロピレングリコールモノアルキルエーテル類、プロピレングリコールモノアルキルエーテルアセテート類、プロピレングリコールモノアルキルエーテルプロピオネート類、芳香族炭化水素類、ケトン類、エステル類等を挙げることができる。   The solvent varies depending on the composition of the composition. For example, ethers, diethylene glycol alkyl ethers, ethylene glycol alkyl ether acetates, propylene glycol monoalkyl ethers, propylene glycol monoalkyl ether acetates, propylene glycol monoalkyl ether pro Pionates, aromatic hydrocarbons, ketones, esters and the like can be mentioned.

また、無機充填剤としては、球状あるいは破砕状の溶融シリカ、結晶シリカ等のシリカ粉末、アルミナ粉末、ガラス粉末、マイカ、タルク、炭酸カルシウム、アルミナ、水和アルミナ等が挙げられ、また、顔料としては、有機系又は無機系の体質顔料、鱗片状顔料等が挙げられる。揺変性付与剤としては、シリコン系、ヒマシ油系、脂肪族アマイドワックス、酸化ポリエチレンワックス、有機ベントナイト系等を挙げることができ、流動性向上剤としては、フェニルグリシジルエーテル、ナフチルグリシジルエーテル等を挙げることができる。   Examples of the inorganic filler include silica powder such as spherical or crushed fused silica and crystalline silica, alumina powder, glass powder, mica, talc, calcium carbonate, alumina, hydrated alumina, and the like. Includes organic or inorganic extender pigments, scaly pigments, and the like. Examples of the thixotropic agent include silicon-based, castor oil-based, aliphatic amide wax, oxidized polyethylene wax, and organic bentonite. Examples of the fluidity improver include phenyl glycidyl ether, naphthyl glycidyl ether, and the like. be able to.

<硬化物>
また、この組成物を硬化して得られる硬化物は各種樹脂として使用することができる。これらの硬化物は、ヒドロアントラセン骨格に由来する高融点、光高屈折性といった様々な特性を付与する高汎用性の材料として様々な用途に用いることができる。なお、当該硬化物は、上記の組成物を光照射、加熱等の各組成に対応した公知の方法を用いることによって得ることができる。
<Hardened product>
Moreover, the hardened | cured material obtained by hardening | curing this composition can be used as various resin. These hardened | cured material can be used for various uses as a highly versatile material which provides various characteristics, such as a high melting point derived from a hydroanthracene skeleton, and high optical refraction. In addition, the said hardened | cured material can be obtained by using the well-known method corresponding to each composition, such as light irradiation and a heating, said composition.

これらの硬化物は、フェノール樹脂、エポキシ樹脂、ポリカーボネート樹脂、アクリル樹脂等の各種合成樹脂として、更には、機能性を活かしてレンズ、光学シート等の光学材料、ホログラム記録材料等の記録材料、有機感光体、フォトレジスト材料、反射防止膜、半導体封止材等の高機能材料等として用いることができる。   These cured products are various synthetic resins such as phenol resin, epoxy resin, polycarbonate resin, acrylic resin, and further, taking advantage of functionality, optical materials such as lenses and optical sheets, recording materials such as hologram recording materials, and organic materials. It can be used as a highly functional material such as a photoreceptor, a photoresist material, an antireflection film, and a semiconductor encapsulant.

次に、本発明を実施例によりさらに詳細に説明するが、本発明は、本実施例によってなんら限定されるものではない。なお、測定は、下記測定機器及び測定方法により行った。   EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by this Example. In addition, the measurement was performed with the following measuring equipment and measuring method.

<GPC純度>
GPC純度は、東ソー社製HLC−8220型GPC、RI検出器、TSK−Gel SuperHZ2000+HZ1000+HZ1000(4.6mmφ×150mm)カラムを用い、展開溶媒としてテトラヒドロフランを0.35ml/分で送液し、目的物ピークの面積比によって求めた。
<GPC purity>
GPC purity was measured by using HLC-8220 GPC manufactured by Tosoh Corporation, RI detector, TSK-Gel SuperHZ2000 + HZ1000 + HZ1000 (4.6 mmφ × 150 mm) column, and tetrahydrofuran was fed at 0.35 ml / min as a developing solvent. The area ratio was determined.

<HPLC純度>
HPLC純度及び反応の終点確認は、島津製作所社製HPLC Promineceシリーズ、UV検出器SPD−20A(246nm)、GLサイエンス社製ODS−3(4.6mmφ×250mm)カラムを用いた。展開溶媒としては、実施例1、3、4及び比較例1は水/アセトニトリル=25/75を、実施例2及び比較例2は水/アセトニトリル=20/80を、実施例6は水/アセトニトリル=40/60を用い、1.0ml/分で送液し、目的物ピークの面積比によって求めた。
<HPLC purity>
The HPLC purity and the end point of the reaction were confirmed using HPLC Promince series manufactured by Shimadzu Corporation, UV detector SPD-20A (246 nm), and ODS-3 (4.6 mmφ × 250 mm) column manufactured by GL Science. As developing solvents, Examples 1, 3, 4 and Comparative Example 1 were water / acetonitrile = 25/75, Example 2 and Comparative Example 2 were water / acetonitrile = 20/80, and Example 6 was water / acetonitrile. = 40/60 was used, the solution was fed at 1.0 ml / min, and the ratio of the peak of the target product was obtained.

<融点及びガラス転移温度(Tg)>
融点は、リガク社製DSC8230型示差走査熱量計にて、窒素雰囲気下5℃/分の昇温速度によるピークトップ法にて求めた。また、ガラス転移温度は同様の条件で測定し、中点ガラス転移温度を求めた。
<Melting point and glass transition temperature (Tg)>
Melting | fusing point was calculated | required by the peak top method by the temperature increase rate of 5 degree-C / min in nitrogen atmosphere with the DSC8230 type | mold differential scanning calorimeter by Rigaku. Moreover, the glass transition temperature was measured on the same conditions, and the midpoint glass transition temperature was calculated | required.

H−NMR及び13C−NMR>
H−NMR及び13C−NMRは、バリアン社製UNITY−INOVA 400MHzを用い、TMSを基準物質としてDMSO−d6溶媒で測定した。
<1 H-NMR and 13 C-NMR>
1 H-NMR and 13 C-NMR were measured with DMSO-d6 solvent using TUN as a reference substance, using UNITY-INOVA 400 MHz manufactured by Varian.

<屈折率>
屈折率は、京都電子工業社製RA−520N型屈折率計を用い、25℃にて1質量%、5質量部及び10質量%の各濃度でプロピレングリコールモノメチルエーテルアセテート(PGMEA)に溶解して測定し、検量線を作成して100質量%時の換算屈折率を求めた。
<Refractive index>
The refractive index was dissolved in propylene glycol monomethyl ether acetate (PGMEA) at concentrations of 1 mass%, 5 mass parts, and 10 mass% at 25 ° C. using an RA-520N refractometer manufactured by Kyoto Electronics Industry Co., Ltd. Measurement was made to create a calibration curve, and the converted refractive index at 100% by mass was determined.

<吸収スペクトル及び蛍光スペクトル>
吸収スペクトルは、日本分光社製分光光度計V−570を用いて1×10−5mol/L濃度でDMSOに溶解して、250nmから600nmの波長範囲にて測定を行った。蛍光スペクトルは、日立ハイテクノロジーズ社製蛍光分光光度計F−4010を用い、1×10−5mol/L濃度でDMSOに溶解して極大波長で励起させて測定を行った。また、アズワン社製ハンディーUVランプSLUV−4を用いて、365nmの紫外線を照射し、発光の有無を観察した。
<Absorption spectrum and fluorescence spectrum>
The absorption spectrum was dissolved in DMSO at a concentration of 1 × 10 −5 mol / L using a spectrophotometer V-570 manufactured by JASCO Corporation and measured in the wavelength range of 250 nm to 600 nm. The fluorescence spectrum was measured using a fluorescence spectrophotometer F-4010 manufactured by Hitachi High-Technologies Corporation, dissolved in DMSO at a concentration of 1 × 10 −5 mol / L and excited at a maximum wavelength. Moreover, the presence or absence of light emission was observed by irradiating 365 nm ultraviolet rays using a handy UV lamp SLUV-4 manufactured by ASONE.

<線膨張率係数>
線膨張係数は、寸法安定性を確認するための測定であり、硬化物を2.5mm×3.0mm×15.0mmの試験片に切り出し、リガク製TMA8141BS型熱機械測定装置にて、Air雰囲気下5℃/分の昇温速度で300℃までの試験片の長さの測定を行い、30℃〜280℃の範囲の平均熱膨張率(ppm/℃)を求めた。
<Linear expansion coefficient>
The coefficient of linear expansion is a measurement for confirming dimensional stability. A cured product is cut into a 2.5 mm × 3.0 mm × 15.0 mm test piece, and the air atmosphere is measured with a RMA TMA8141BS type thermomechanical measuring device. The length of the test piece up to 300 ° C. was measured at a rate of temperature increase of 5 ° C./min, and the average coefficient of thermal expansion (ppm / ° C.) in the range of 30 ° C. to 280 ° C. was determined.

<吸水率>
吸水率は、硬化物を10mm×10mm×2.5mmの試験片に切り出し、8時間熱水中で煮沸した後の質量増加量(質量%)を測定して求めた。
<Water absorption rate>
The water absorption was determined by measuring the mass increase (mass%) after cutting the cured product into 10 mm × 10 mm × 2.5 mm test pieces and boiling it in hot water for 8 hours.

<残炭率>
残炭率と酸素指数とは比例関係があり、一般的に難燃性の高い樹脂は残炭率が高いと言われている(下記文献1参照)。この文献を参照し、難燃性の指標として残炭率を測定した。測定方法は、リガク製TG8230型示差熱天秤にて、窒素雰囲気下10℃/分の昇温速度で830℃までの測定を行い、質量減少率(%)を100%から減じた数値で求めた。
<Remaining charcoal rate>
There is a proportional relationship between the residual carbon ratio and the oxygen index, and it is generally said that a resin with high flame retardancy has a high residual carbon ratio (see Document 1 below). With reference to this document, the residual carbon ratio was measured as an index of flame retardancy. The measurement method was a TG8230 type differential thermobalance made by Rigaku, measured up to 830 ° C. at a rate of temperature increase of 10 ° C./min in a nitrogen atmosphere, and obtained by subtracting the mass reduction rate (%) from 100%. .

(文献1)『Krevelen酸素指数と高分子の炭化の程度(Char Residue)に直線関係がある事を確認した。D.W.van Krevelen,polymer,16,p615(1975)D.W.van Krevelen,Chimia,28,p504(1974)』   (Reference 1) “It was confirmed that there was a linear relationship between the Krevelen oxygen index and the degree of carbonization of the polymer (Char Residue). D. W. van Krevelen, polymer, 16, p615 (1975) D. W. van Krevelen, Chimia, 28, p504 (1974)

[実施例1]ビスクレゾールヒドロアントラセンの合成
300mLの環流管付き反応容器にo−クレゾール(108.0g,1.0mol)、アントラセン−9−カルボアルデヒド(41.2g,0.2mol)及びメタノール(108.0g)を入れ、40℃にて溶解した。98%濃硫酸(5.4g)を投入し、40℃で24時間反応を行い、HPLCにて、アントラセン−9−カルボアルデヒドピークの消失と、主として目的物が生成していることを確認した。反応終点のHPLCチャートを図1に示す。次いで、反応液をメチルイソブチルケトン(216.0g)に溶解し、蒸留水(108.0g)にて水洗を数回行って触媒を除去した。減圧下にて、メチルイソブチルケトン及びo−クレゾールを留去した後、トルエン(324.0g)及びシクロヘキサン(21.8g)を投入して10℃で攪拌した。析出した結晶を濾別後、減圧乾燥を行って、赤褐色結晶54.2g(収率67.0%)を得た。
[Example 1] Synthesis of biscresol hydroanthracene In a 300 mL reaction vessel with a reflux tube, o-cresol (108.0 g, 1.0 mol), anthracene-9-carbaldehyde (41.2 g, 0.2 mol) and methanol ( 108.0 g) was added and dissolved at 40 ° C. 98% concentrated sulfuric acid (5.4 g) was added, and the reaction was carried out at 40 ° C. for 24 hours. It was confirmed by HPLC that the anthracene-9-carbaldehyde peak had disappeared and that the target product was mainly produced. The HPLC chart of the reaction end point is shown in FIG. Next, the reaction solution was dissolved in methyl isobutyl ketone (216.0 g), and washed with distilled water (108.0 g) several times to remove the catalyst. After distilling off methyl isobutyl ketone and o-cresol under reduced pressure, toluene (324.0 g) and cyclohexane (21.8 g) were added and stirred at 10 ° C. The precipitated crystals were separated by filtration and dried under reduced pressure to obtain 54.2 g (yield 67.0%) of reddish brown crystals.

得られた結晶は、GPC純度99.3%、HPLC純度99.0%、融点188℃、換算屈折率1.666(25℃)であり、H−NMR(400MHz,DMSO−d6,δ,ppm/2.0,2.1,6H,−C /6.9,1H,−C =/6.6,6.7,6.9,7.0,6H,Phenyl−/5.2,7.1,7.2,7.3,7.4,9H,Hydroxyanthryl−/9.2,9.5,2H,−O/)及び13C−NMR(400MHz,DMSO−d6,δ,ppm/16.3,16.4,−/129.6,−=/114.7,114.8,123.7,124.0,125.4,125.6,126.7,127.5,127.8,133.2,153.9,155.1,−Phenyl/50.9,123.8,126.8,127.0,127.6,128.0,128.4,128.6,131.6,134.5,135.5,138.5,139.3,141.3,−Hydroanthryl)にて9−(3−メチル−4−ヒドロキシベンジリデン)−10−(3−メチル−4−ヒドロキシフェニル)−10−ヒドロアントラセン(下記式で表される化合物)であることを確認した。図2にH−NMRチャート、図3に13C−NMRチャートを示す。また、UVランプ(365nm)照射時の発光が無い事を目視にて確認した。 The obtained crystal had GPC purity of 99.3%, HPLC purity of 99.0%, melting point of 188 ° C., converted refractive index of 1.666 (25 ° C.), 1 H-NMR (400 MHz, DMSO-d6, δ, ppm / 2.0, 2.1, 6H, -C H 3 /6.9, 1H , -C H 1 = / 6.6, 6.7, 6.9, 7.0, 6H, Phenyl- H /5.2,7.1,7.2,7.3,7.4,9H,Hydroxyanthryl- H /9.2,9.5,2H,-O H /) and 13 C-NMR (400MHz, DMSO-d6, δ, ppm / 16.3,16.4, - C H 3 /129.6,- C H 1 = / 114.7,114.8,123.7,124.0,125.4 , 125.6, 126.7, 127.5, 127.8, 133.2, 153.9, 155. , - Phenyl /50.9,123.8,126.8,127.0,127.6,128.0,128.4,128.6,131.6,134.5,135.5,138. 5, 139.3, 141.3, -Hydroanthryl ) 9- (3-methyl-4-hydroxybenzylidene) -10- (3-methyl-4-hydroxyphenyl) -10-hydroanthracene (shown by the following formula) Compound). FIG. 2 shows a 1 H-NMR chart, and FIG. 3 shows a 13 C-NMR chart. Further, it was visually confirmed that there was no light emission upon irradiation with a UV lamp (365 nm).

Figure 0005719631
Figure 0005719631

[実施例2]ビスキシレノールヒドロアントラセンの合成
実施例1において、オルソクレゾールを2,6−キシレノール(12.2g)とした以外は、実施例1と同様の操作を行い、白色結晶49.0g(収率56.6%)を得た。反応終点のHPLCチャートを図4に示す。
[Example 2] Synthesis of bisxylenol hydroanthracene The same operation as in Example 1 was performed except that orthocresol was changed to 2,6-xylenol (12.2 g) in Example 1, and 49.0 g of white crystals ( Yield 56.6%). The HPLC chart of the reaction end point is shown in FIG.

得られた結晶は、GPC純度99.6%、HPLC純度99.4%、融点226℃、換算屈折率1.669(25℃)であり、H−NMR(400MHz,DMSO−d6,δ,ppm/2.0,2.1,12H,−C /6.9,1H,−C =/6.8,7.0,4H,Phenyl−/5.2,7.0,7.1〜7.2,7.2〜7.3,7.3〜7.4,7.4〜7.7,9H,Hydroanthryl−/7.8〜8.2,8.2〜8.7,2H,−OH/)及び13C−NMR(400MHz,DMSO−d6,δ,ppm/16.94,16.98−/129.1,−=/123.6,124.3,125.3,126.6,127.2,133.3,151.7,152.9,−Phenyl/50.8,124.2,126.7,126.9,127.7,127.9,128.1,128.4,128.6,134.7,135.7,138.3,139.5,141.1,−Hydroanthryl)にて9−(3,5−ジメチル−4−ヒドロキシベンジリデン)−10−(3,5−ジメチル−4−ヒドロキシフェニル)−10−ヒドロアントラセン(下記式で表される化合物)であることを確認した。図5にH−NMRチャート、図6に13C−NMRチャートを示す。UVランプ(365nm)照射時の発光が無いことを目視にて確認した。 The obtained crystal had a GPC purity of 99.6%, an HPLC purity of 99.4%, a melting point of 226 ° C., a converted refractive index of 1.669 (25 ° C.), and 1 H-NMR (400 MHz, DMSO-d6, δ, ppm / 2.0,2.1,12H, -C H 3 /6.9,1H,-C H 1 = / 6.8,7.0,4H, Phenyl- H /5.2,7.0 7.1-7.2, 7.2-7.3, 7.3-7.4, 7.4-7.7, 9H, Hydroanthryl- H / 7.8-8.2, 8.2. ˜8.7, 2H, —OH /) and 13 C-NMR (400 MHz, DMSO-d6, δ, ppm / 16.94, 16.98- C H 3 /129.1, -C H 1 = / 123 .6,124.3,125.3,126.6,127.2,133.3,151.7,152.9, - P enyl /50.8,124.2,126.7,126.9,127.7,127.9,128.1,128.4,128.6,134.7,135.7,138.3, 13-9.5,141.1, -Hydroanthryl ) 9- (3,5-dimethyl-4-hydroxybenzylidene) -10- (3,5-dimethyl-4-hydroxyphenyl) -10-hydroanthracene It was confirmed that it was a compound represented by FIG. 5 shows a 1 H-NMR chart, and FIG. 6 shows a 13 C-NMR chart. It was visually confirmed that there was no light emission when irradiated with a UV lamp (365 nm).

Figure 0005719631
Figure 0005719631

[比較例1]ビスクレゾールアントラセンの合成
実施例1において、98%硫酸を35%塩酸(10.8g)とした以外は、実施例1と同様の操作を行い、淡黄色結晶45.1g(収率55.7%)を得た。反応終点のHPLCチャートを図7に示す。
[Comparative Example 1] Synthesis of biscresol anthracene The same operation as in Example 1 was carried out except that 98% sulfuric acid was changed to 35% hydrochloric acid (10.8 g). Rate 55.7%). An HPLC chart of the reaction end point is shown in FIG.

得られた結晶は、GPC純度99.4%、HPLC純度99.6%、融点168℃、換算屈折率1.692(25℃)でありUVランプ(365nm)照射時の青色の発光を目視にて確認した。H−NMR(400MHz,DMSO−d6,δ,ppm/2.0,2.1−C /4.9,2H,−C −/6.6,6.7,6.9,7.0,6H,Phenyl−/7.3,7.4,7.6,8.3,8H,Anthryl−/9.1,9.6,2H,−O)及び13C−NMR(400MHz,DMSO−d6,δ,ppm/16.3,−/32.1,−−/114.7,114.8,123.8,124.2,126.2,129.4,129.7,130.2,132.6,133.3,153.7,155.1,−Phenyl/125.1,125.2,125.7,127.6,128.6,130.3,131.3,136.7,−Anthryl)にて9−(3−メチル−4−ヒドロキシベンジル)−10−(3−メチル−4−ヒドロキシフェニル)アントラセン(下記式で表される化合物)であることを確認した。図8にH−NMRチャート、図9に13C−NMRチャートを示す。 The obtained crystals had a GPC purity of 99.4%, an HPLC purity of 99.6%, a melting point of 168 ° C., a converted refractive index of 1.682 (25 ° C.), and visually observed blue light emission when irradiated with a UV lamp (365 nm). Confirmed. 1 H-NMR (400MHz, DMSO -d6, δ, ppm / 2.0,2.1-C H 3 /4.9,2H,-C H 2 - / 6.6,6.7,6.9 , 7.0,6H, Phenyl- H /7.3,7.4,7.6,8.3,8H,Anthryl- H /9.1,9.6,2H,-O H) and 13 C -NMR (400MHz, DMSO-d6, δ, ppm / 16.3, - C H 3 /32.1,- C H 2 - / 114.7,114.8,123.8,124.2,126. 2,129.4,129.7,130.2,132.6,133.3,153.7,155.1, - Phenyl /125.1,125.2,125.7,127.6,128 .6,130.3,131.3,136.7, - Anthryl) at 9- (3-methyl - - it was confirmed that hydroxybenzyl) is -10- (3-methyl-4-hydroxyphenyl) anthracene (compound represented by the following formula). FIG. 8 shows a 1 H-NMR chart, and FIG. 9 shows a 13 C-NMR chart.

Figure 0005719631
Figure 0005719631

[比較例2]ビスキシレノールヒドロアントラセンの合成
実施例2において、98%硫酸を35%塩酸(12.2g)とした以外は、実施例1と同様の操作を行い、淡黄色結晶49.1g(収率56.8%)を得た。反応終点のHPLCチャートを図10に示す。本化合物は、9−(3,5−ジメチル−4−ヒドロキシベンジル)−10−(3,5−ジメチル−4−ヒドロキシフェニル)アントラセン(下記式で表される化合物)であると推定される。
[Comparative Example 2] Synthesis of bisxylenol hydroanthracene Except that 98% sulfuric acid was changed to 35% hydrochloric acid (12.2 g) in Example 2, the same procedure as in Example 1 was performed to obtain 49.1 g of pale yellow crystals ( Yield 56.8%). The HPLC chart of the reaction end point is shown in FIG. This compound is presumed to be 9- (3,5-dimethyl-4-hydroxybenzyl) -10- (3,5-dimethyl-4-hydroxyphenyl) anthracene (compound represented by the following formula).

Figure 0005719631
Figure 0005719631

得られた結晶は、GPC純度99.0%、HPLC純度98.6%、融点190℃、換算屈折率1.685(25℃)でありUVランプ(365nm)照射時の青色の発光を目視にて確認した。   The obtained crystals had a GPC purity of 99.0%, an HPLC purity of 98.6%, a melting point of 190 ° C., a converted refractive index of 1.485 (25 ° C.), and visually observed blue light emission when irradiated with a UV lamp (365 nm). Confirmed.

[実施例3]誘導体1の合成(ビスクレゾールヒドロアントラセンのアクリル体)
300mLの環流管付き反応容器に実施例1で得られたビスクレゾールヒドロアントラセン(10.1g,0.025mol)、メチルイソブチルケトン(90.4g)及びトリエチルアミン(6.3g)を入れ、撹拌溶解した。25℃としたこの溶液にアクリロイルクロリド(5.2g)を滴下投入した。40℃で5時間反応後、メタノール(10.1g)を加えて反応を終了させた。反応液を10%NaCl水(100g)で洗浄後、次いで蒸留水(100g)にて水洗を数回行った。減圧下にて、メチルイソブチルケトンを留去した後、メタノール(60.1g)を加えて10℃で晶析した。析出した結晶を濾別後、減圧乾燥を行って、ビスクレゾールヒドロアントラセンのアクリル体である薄黄褐色結晶7.9g(収率61.7%)を得た。得られた結晶は、GPC純度97.0%、HPLC純度99.1%、換算屈折率1.619(25℃)であった。
[Example 3] Synthesis of derivative 1 (acrylic form of biscresol hydroanthracene)
Biscresol hydroanthracene (10.1 g, 0.025 mol), methyl isobutyl ketone (90.4 g) and triethylamine (6.3 g) obtained in Example 1 were placed in a 300 mL reaction vessel with a reflux tube, and dissolved by stirring. . Acryloyl chloride (5.2 g) was added dropwise to this solution at 25 ° C. After reacting at 40 ° C. for 5 hours, methanol (10.1 g) was added to terminate the reaction. The reaction solution was washed with 10% NaCl water (100 g), and then washed several times with distilled water (100 g). Methyl isobutyl ketone was distilled off under reduced pressure, methanol (60.1 g) was added, and crystallization was performed at 10 ° C. The precipitated crystals were separated by filtration and dried under reduced pressure to obtain 7.9 g (yield 61.7%) of light tan crystals, which are acrylic bodies of biscresol hydroanthracene. The obtained crystals had a GPC purity of 97.0%, an HPLC purity of 99.1%, and a converted refractive index of 1.619 (25 ° C.).

[実施例4]誘導体2の合成(ビスクレゾールヒドロアントラセンのエポキシ体)
300mLの環流管付き反応容器に実施例1で得られたビスクレゾールヒドロアントラセン(30.3g,0.074mol)、メタノール(30.3g)及びエピクロロヒドリン(109.8g)を入れ、撹拌溶解した。40℃としたこの溶液に苛性ソーダ(5.9g)を投入し、60℃まで昇温した。60℃で3時間反応後、メチルエチルケトン(93.2g)を加えて撹拌溶解させ、蒸留水(60g)にて水洗を数回行った。減圧下にて、有機層を濃縮し、樹脂状の目的物を得た。放置冷却した樹脂状物を、乳鉢にて粗砕し、メタノール(321.3g)とともに撹拌して結晶を析出させ、濾過、乾燥して淡黄色の結晶24.2gを得た。得られた結晶は、GPC純度97.1%、HPLC純度95.3%、換算屈折率1.629(25℃)であった。
Example 4 Synthesis of Derivative 2 (Biscresol Hydroanthracene Epoxy Compound)
Into a 300 mL reaction vessel with a reflux tube, the biscresol hydroanthracene (30.3 g, 0.074 mol), methanol (30.3 g) and epichlorohydrin (109.8 g) obtained in Example 1 were placed and dissolved by stirring. did. Caustic soda (5.9 g) was added to this solution at 40 ° C., and the temperature was raised to 60 ° C. After reacting at 60 ° C. for 3 hours, methyl ethyl ketone (93.2 g) was added and dissolved by stirring, followed by washing with distilled water (60 g) several times. The organic layer was concentrated under reduced pressure to obtain a resinous target product. The resin-like material which had been allowed to cool was crushed in a mortar and stirred with methanol (321.3 g) to precipitate crystals, which were filtered and dried to obtain 24.2 g of pale yellow crystals. The obtained crystals had a GPC purity of 97.1%, an HPLC purity of 95.3%, and a converted refractive index of 1.629 (25 ° C.).

[実施例5]ビスクレゾールヒドロアントラセンのエポキシ体硬化物
実施例4で得られた結晶20.0g、硬化剤として無水メチルヘキサヒドロ酢酸(14.4g)を量り取り、180熱板上で溶融混合した。さらに硬化促進剤として1−(2−シアノエチル)−2−エチル−4−メチルイミダゾール(0.1g)を加え、充分に撹拌、脱泡してエポキシ体組成物を得た。得られた液体を金型に流し込み、100℃で45分間減圧脱気した後、常圧で0.01kgf/cmの圧力をかけ、100℃(3時間)、150℃(5時間)かけて硬化させた後、220℃で3時間アフターキュアを行ってエポキシ体硬化物を得た。
[Example 5] Epoxy cured product of biscresol hydroanthracene 20.0 g of the crystals obtained in Example 4 and methylhexahydroacetic anhydride (14.4 g) as a curing agent are weighed and melt mixed on a 180 hot plate. did. Furthermore, 1- (2-cyanoethyl) -2-ethyl-4-methylimidazole (0.1 g) was added as a curing accelerator, and the mixture was sufficiently stirred and degassed to obtain an epoxy composition. The obtained liquid was poured into a mold, degassed under reduced pressure at 100 ° C. for 45 minutes, and then subjected to a pressure of 0.01 kgf / cm 2 at normal pressure, over 100 ° C. (3 hours) and 150 ° C. (5 hours). After curing, aftercuring was performed at 220 ° C. for 3 hours to obtain a cured epoxy product.

得られた硬化物を前述した各種測定方法のサイズに切り取り、特性の評価を行った。ガラス転移温度174℃、線膨張係数111ppm/℃、吸水率0.55質量%、残炭率9.29%であった。   The obtained cured product was cut into the sizes of the various measurement methods described above, and the characteristics were evaluated. The glass transition temperature was 174 ° C., the linear expansion coefficient was 111 ppm / ° C., the water absorption was 0.55 mass%, and the residual carbon ratio was 9.29%.

[実施例6]ビスクレゾールヒドロアントラセンのビスクレゾールアントラセンへの変換反応
300mLの環流管付き反応容器に、実施例1で得られたビスクレゾールヒドロアントラセン(8.13g,0.02mol)及びo−クレゾール(21.6g)を入れ、50℃にて溶解した。30℃以下に冷却後、35%濃塩酸(2.08g)を投入し、60℃まで昇温させた。HPLCにてヒドロアントラセンのピークの消失と、主として目的物が生成していることを確認した。次いで、反応液に48%NaOHを加え、pH6〜7に調整した後、蒸留水(100.0g)にて水洗を数回行って中和塩を除去した。減圧下にて、残留している純水を留去した後、冷却しメタノール(124.0g)及び蒸留水(24.0g)を投入して10℃で晶析した。晶析した結晶を濾別後、減圧乾燥を行って、黄色結晶5.6g(収率68.9%)を得た。
[Example 6] Conversion reaction of biscresol hydroanthracene to biscresol anthracene In a 300 mL reactor equipped with a reflux tube, biscresol hydroanthracene obtained in Example 1 (8.13 g, 0.02 mol) and o-cresol (21.6 g) was added and dissolved at 50 ° C. After cooling to 30 ° C. or lower, 35% concentrated hydrochloric acid (2.08 g) was added, and the temperature was raised to 60 ° C. It was confirmed by HPLC that the hydroanthracene peak disappeared and that the desired product was mainly produced. Next, 48% NaOH was added to the reaction solution to adjust the pH to 6 to 7, and then washed with distilled water (100.0 g) several times to remove neutralized salts. The remaining pure water was distilled off under reduced pressure, followed by cooling and adding methanol (124.0 g) and distilled water (24.0 g) to crystallize at 10 ° C. The crystallized crystals were separated by filtration and dried under reduced pressure to obtain 5.6 g (yield 68.9%) of yellow crystals.

得られた結晶は、GPC純度98.9%、HPLC純度99.2%、融点168.2℃、換算屈折率1.692(25℃)であった。また、UVランプ(365nm)照射時の青色の発光を目視にて確認した。H−NMR及び13C−NMRにて9−(3−メチル−4−ヒドロキシベンジル)−10−(3−メチル−4−ヒドロキシフェニル)アントラセン(比較例1で得られた化合物と同一)であることを確認した。 The obtained crystals had a GPC purity of 98.9%, an HPLC purity of 99.2%, a melting point of 168.2 ° C, and a converted refractive index of 1.692 (25 ° C). Moreover, the blue light emission at the time of UV lamp (365 nm) irradiation was confirmed visually. 9- (3-Methyl-4-hydroxybenzyl) -10- (3-methyl-4-hydroxyphenyl) anthracene (same as the compound obtained in Comparative Example 1) by 1 H-NMR and 13 C-NMR I confirmed that there was.

[比較例3]一般のエポキシ体
ビスフェノール−A型エポキシ樹脂の市販品であるアデカレジンEP−4100[商品名:株式会社ADEKA製/エポキシ当量190]を入手し、換算屈折率を測定したところ、1.572(25℃)であった。
[Comparative Example 3] General epoxy body Adeka Resin EP-4100 [trade name: manufactured by ADEKA Corporation / epoxy equivalent 190], which is a commercially available product of bisphenol-A type epoxy resin, was measured and its converted refractive index was measured. 572 (25 ° C.).

[比較例4]一般のエポキシ体硬化物
実施例5において、実施例4で得られた結晶(20.0g)を比較例3で測定したEP−4100(20.0g)とし、無水メチルヘキサヒドロ酢酸(12.2g)を(15.9g)とした以外は実施例5と同様の操作を行い、エポキシ体硬化物を得た。
[Comparative Example 4] General epoxy cured product In Example 5, the crystal (20.0 g) obtained in Example 4 was used as EP-4100 (20.0 g) measured in Comparative Example 3, and anhydrous methylhexahydro Except that acetic acid (12.2 g) was changed to (15.9 g), the same operation as in Example 5 was performed to obtain a cured epoxy product.

得られた硬化物を前述した各種測定方法のサイズに切り取り、特性の評価を行った。ガラス転移温度150℃、線膨張係数118ppm/℃、吸水率0.68質量%、残炭率2.57%であった。   The obtained cured product was cut into the sizes of the various measurement methods described above, and the characteristics were evaluated. The glass transition temperature was 150 ° C., the linear expansion coefficient was 118 ppm / ° C., the water absorption was 0.68 mass%, and the residual carbon ratio was 2.57%.

各測定値を以下の表にまとめて示す。なお、対比を容易にするため、実施例及び比較例を並び替えている。   Each measured value is summarized in the following table. In order to facilitate comparison, the examples and comparative examples are rearranged.

Figure 0005719631
Figure 0005719631

表1に示されるように、本発明の化合物は対応する比較例のアントラセン化合物(実施例1と比較例1及び実施例2と比較例2)と比較して、高い融点及び屈折率を有する。また、これらの化合物から得られる誘導体も優れた屈折率を有する。さらには、本発明の硬化物は、比較例のエポキシ硬化物と比べて優れた諸性能を有していることが分かる。   As shown in Table 1, the compound of the present invention has a higher melting point and refractive index than the corresponding comparative anthracene compounds (Example 1, Comparative Example 1, Example 2, and Comparative Example 2). In addition, derivatives obtained from these compounds also have an excellent refractive index. Furthermore, it turns out that the hardened | cured material of this invention has various performances compared with the epoxy hardened | cured material of the comparative example.

本発明の化合物及びこれを中間体として得られる誘導体は、高融点、高光屈折性などの様々な特性を付与する高汎用性材料を提供することができ、例えばエポキシ樹脂原料、ポリカーボネート樹脂原料、アクリル樹脂原料等の樹脂原料に用いることができる。これらの当該化合物等を原料とした樹脂等は、例えば積層材、塗料等のコーティング材料、レンズ、光学シート等の光学材料、ホログラム記録材料等の記録材料、有機感光体、フォトレジスト材料、反射防止膜、半導体封止材等の高機能材料、分子磁気メモリー等の磁性材料等に用いることができ、これらは、例えば有機太陽電池、有機EL素子、液晶表示素子などの材料として使用することができる。また、本発明の化合物は、樹脂原料のみならず、例えば医薬品中間体や染料中間体として利用することもできる。   The compound of the present invention and a derivative obtained using this as an intermediate can provide a highly versatile material that imparts various properties such as a high melting point and a high photorefractive property, such as an epoxy resin raw material, a polycarbonate resin raw material, and an acrylic resin. It can be used for resin raw materials such as resin raw materials. Resins using these compounds as raw materials include, for example, laminate materials, coating materials such as paints, optical materials such as lenses and optical sheets, recording materials such as hologram recording materials, organic photoreceptors, photoresist materials, and antireflections. It can be used for highly functional materials such as films and semiconductor encapsulants, magnetic materials such as molecular magnetic memory, etc., and these can be used as materials for organic solar cells, organic EL elements, liquid crystal display elements, etc. . The compound of the present invention can be used not only as a resin raw material but also as, for example, a pharmaceutical intermediate or a dye intermediate.

Claims (8)

下記式(1)で表される化合物。
Figure 0005719631
(式(1)中、Xは、(n+1)価の芳香族基であり、この芳香族基が置換基を有していてもよい。Yは、(n+1)価の芳香族基であり、この芳香族基が置換基を有していてもよい。n及びnは、それぞれ独立して、1〜3の整数である。)
A compound represented by the following formula (1).
Figure 0005719631
(In the formula (1), X is an (n 1 +1) -valent aromatic group, and this aromatic group may have a substituent. Y is an (n 2 +1) -valent aromatic group. (This aromatic group may have a substituent. N 1 and n 2 are each independently an integer of 1 to 3).
上記X及びYが、それぞれ置換基として少なくとも1つのアルキル基を有する請求項1に記載の化合物。   The compound according to claim 1, wherein X and Y each have at least one alkyl group as a substituent. 請求項1又は請求項2に記載の化合物をグリシジル化、(メタ)アクリル化、アリル化、メチロール化又はベンゾオキサジン化して得られる誘導体。 A derivative obtained by glycidylation, (meth) acrylation, allylation, methylolation or benzoxazine conversion of the compound according to claim 1 or claim 2. 請求項1若しくは請求項2に記載の化合物又は請求項3に記載の誘導体を含む組成物。   A composition comprising the compound according to claim 1 or claim 2 or the derivative according to claim 3. 請求項4に記載の組成物を硬化して得られる硬化物。   Hardened | cured material obtained by hardening | curing the composition of Claim 4. 非反応性含酸素有機溶媒及びオキソ酸を含む触媒の存在下、フェノール類と、アントラセン−9−カルボアルデヒドとを反応させる工程
を有する下記式(1)で表される化合物の製造方法。
Figure 0005719631
(式(1)中、Xは、(n+1)価の芳香族基であり、この芳香族基が置換基を有していてもよい。Yは、(n+1)価の芳香族基であり、この芳香族基が置換基を有していてもよい。n及びnは、それぞれ独立して、1〜3の整数である。)
The manufacturing method of the compound represented by following formula (1) which has the process of making phenols and anthracene-9-carbaldehyde react in presence of the catalyst containing a non-reactive oxygen-containing organic solvent and oxo acid.
Figure 0005719631
(In the formula (1), X is an (n 1 +1) -valent aromatic group, and this aromatic group may have a substituent. Y is an (n 2 +1) -valent aromatic group. (This aromatic group may have a substituent. N 1 and n 2 are each independently an integer of 1 to 3).
上記フェノール類が、少なくとも1つのアルキル基を有するフェノール系化合物である請求項6に記載の化合物の製造方法。   The method for producing a compound according to claim 6, wherein the phenol is a phenolic compound having at least one alkyl group. 下記式(1)で表される化合物を酸性触媒下で反応させる工程
を有する下記式(2)で表される誘導体の製造方法。
Figure 0005719631
(式(1)中、Xは、(n+1)価の芳香族基であり、この芳香族基が置換基を有していてもよい。Yは、(n+1)価の芳香族基であり、この芳香族基が置換基を有していてもよい。n及びnは、それぞれ独立して、1〜3の整数である。)
Figure 0005719631
(式(2)中、Xは、(n+1)価の芳香族基であり、この芳香族基が置換基を有していてもよい。Yは、(n+1)価の芳香族基であり、この芳香族基が置換基を有していてもよい。n及びnは、それぞれ独立して、1〜3の整数である。)
The manufacturing method of the derivative represented by following formula (2) which has the process of making the compound represented by following formula (1) react under an acidic catalyst.
Figure 0005719631
(In the formula (1), X is an (n 1 +1) -valent aromatic group, and this aromatic group may have a substituent. Y is an (n 2 +1) -valent aromatic group. (This aromatic group may have a substituent. N 1 and n 2 are each independently an integer of 1 to 3).
Figure 0005719631
(In the formula (2), X is an (n 1 +1) -valent aromatic group, and this aromatic group may have a substituent. Y is an (n 2 +1) -valent aromatic group. (This aromatic group may have a substituent. N 1 and n 2 are each independently an integer of 1 to 3).
JP2011037712A 2011-02-23 2011-02-23 Compound, derivative, composition, cured product, and method for producing compound and derivative Active JP5719631B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011037712A JP5719631B2 (en) 2011-02-23 2011-02-23 Compound, derivative, composition, cured product, and method for producing compound and derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011037712A JP5719631B2 (en) 2011-02-23 2011-02-23 Compound, derivative, composition, cured product, and method for producing compound and derivative

Publications (2)

Publication Number Publication Date
JP2012171943A JP2012171943A (en) 2012-09-10
JP5719631B2 true JP5719631B2 (en) 2015-05-20

Family

ID=46975163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011037712A Active JP5719631B2 (en) 2011-02-23 2011-02-23 Compound, derivative, composition, cured product, and method for producing compound and derivative

Country Status (1)

Country Link
JP (1) JP5719631B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5817524B2 (en) * 2011-12-28 2015-11-18 三菱瓦斯化学株式会社 Radiation sensitive composition and resist pattern forming method
JP7021559B2 (en) * 2017-03-06 2022-02-17 三菱ケミカル株式会社 Method for manufacturing bisphenol and method for manufacturing polycarbonate resin
JP7135610B2 (en) * 2018-09-04 2022-09-13 三菱ケミカル株式会社 Method for producing bisphenol and method for producing polycarbonate resin

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05222153A (en) * 1992-02-12 1993-08-31 Nippon Steel Chem Co Ltd New anthracene-based epoxy resin and its production
EP1435894A4 (en) * 2001-07-23 2005-07-06 Galileo Pharmaceuticals Inc Cytoprotective compounds, pharmaceutical and cosmetic formulations, and methods

Also Published As

Publication number Publication date
JP2012171943A (en) 2012-09-10

Similar Documents

Publication Publication Date Title
JP5567889B2 (en) Anthracene derivative, compound using the same, composition, cured product, and method for producing the same
JP5778462B2 (en) Anthracene derivative and method for producing the same, curable composition, and cured product
TWI572623B (en) Radical-curable compound, method for fabricating radical-curable compound, radical-curable composition, cured product of the same and composition for resist material
TWI583668B (en) A composition containing a phenolic hydroxyl group, a resin containing a (meth) acryloyl group, a hardened composition, a hardened product and a
JP2009155256A (en) Epoxy compound having fluorene skeleton
JP6087738B2 (en) Fluorene compound having phenolic hydroxyl group and epoxy compound thereof
JP5635786B2 (en) Anthracene derivative, resin, curable composition and cured product
JP5662234B2 (en) Phenolic resin, curable composition containing the same, and cured product
JP5552357B2 (en) Anthracene derivative, curable composition and cured product thereof
EP2684900B1 (en) Radically curable compound, cured product of same, and method for producing same
JP5719631B2 (en) Compound, derivative, composition, cured product, and method for producing compound and derivative
JP5186200B2 (en) Epoxy compound having fluorene skeleton
JP2008274000A (en) Thermosetting resin composition and its cured material
TW201038523A (en) Adamantane compound
JPWO2016194644A1 (en) Photo-curable composition for nanoimprint
JP5731818B2 (en) Anthracene derivative, curable composition, cured product, and method for producing anthracene derivative
JP5580712B2 (en) Anthracene derivative, curable composition and cured product
JP6671958B2 (en) Phenol resin, epoxy resin, epoxy resin composition, prepreg and cured product thereof
JP6537261B2 (en) Resin raw material, phenolic resin and method for producing anthracene derivative
KR20160118208A (en) Epoxy resin, curable resin composition, and cured product thereof
KR20150032746A (en) Curing agent for episulfide compounds, curable composition, cured product of episulfide compound, and method for curing episulfide compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150323

R150 Certificate of patent or registration of utility model

Ref document number: 5719631

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250