KR20240037003A - 겔타입 용가재, 겔타입 용가재의 제조방법, 겔타입 용가재을 이용한 용접방법 및 용접 구조물 - Google Patents

겔타입 용가재, 겔타입 용가재의 제조방법, 겔타입 용가재을 이용한 용접방법 및 용접 구조물 Download PDF

Info

Publication number
KR20240037003A
KR20240037003A KR1020220115754A KR20220115754A KR20240037003A KR 20240037003 A KR20240037003 A KR 20240037003A KR 1020220115754 A KR1020220115754 A KR 1020220115754A KR 20220115754 A KR20220115754 A KR 20220115754A KR 20240037003 A KR20240037003 A KR 20240037003A
Authority
KR
South Korea
Prior art keywords
gel
type filler
filler metal
mol
metal
Prior art date
Application number
KR1020220115754A
Other languages
English (en)
Inventor
김영민
남상우
천현필
이형원
황인성
유지영
김동윤
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Priority to KR1020220115754A priority Critical patent/KR20240037003A/ko
Priority to PCT/KR2023/012152 priority patent/WO2024058443A1/ko
Publication of KR20240037003A publication Critical patent/KR20240037003A/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0244Powders, particles or spheres; Preforms made therefrom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3612Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with organic compounds as principal constituents

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)

Abstract

본 발명은 겔타입 용가재에 관한 것으로서, 80 내지 90 중량% 금속 분말; 5 내지 20 중량% 용매; 1 이상 5 미만 중량% 바인더를 포함하는 것일 수 있다. 또한 필요에 따라서는 1 내지 3 중량%의 첨가제를 더 포함할 수 있다. 본 발명의 겔타입 용가재는 쉽게 도포되는 접착성과 유연성을 동시에 가지며, 물체의 형상과 공간의 제약 없이 용접을 수행할 수 있다는 장점이 있다.

Description

겔타입 용가재, 겔타입 용가재의 제조방법, 겔타입 용가재을 이용한 용접방법 및 용접 구조물 {Gel-type filler metal, manufacturing method of gel-type filler metal, welding method using gel-type filler metal and welded structure}
본 발명은 용접에 사용되는 용가재 및 그 제조방법에 대한 것으로서, 보다 상세하게는 접착성 및 유연성을 가지는 겔타입 용가재(gel-type filler material) 및 그 제조방법과, 겔타입 용가재를 이용한 용접방법 및 이러한 용접방법에 의해 제조된 용접 구조물에 대한 것이다.
일반적으로, 강재의 용접에 사용되는 용가재(filler material)는 분말 또는 와이어가 이용된다. 통상적으로 사용되는 용가재는 접착성이 없기 때문에 열원과 동시에 동축으로 공급해야 한다. 따라서, 열원을 제공하는 장치(레이저, 아크 등)가 분말이나 와이어의 공급 장치와 함께 용접부와 가깝게 위치되거나 접촉해야 한다. 또한, 작업부에는 흄과 스패터 등이 발생하므로 해당 장치를 장시간 사용할 경우 용접장치 내 렌즈 오염 및 노즐 등의 손상이 발생하게 되고, 용가재의 송급을 위해 고가 및 중량의 장치가 요구된다.
조선 산업에서는 대형 부품 및 후판에 적용되는 용접부가 많다. 이와 같은 접합부는 제한된 작업 공간 및 작업 자세에서 용접이 이루어진다. 따라서, 작업 공간 및 작업 자세에 제약이 없으며, 다양한 용접부의 형상에 대해 유연하게 대응할 수 있는 용가재 및 간편한 접합부 용접방법이 필요하다.
본 발명은 상술한 문제점을 해결하기 위한 것으로서, 기판에 쉽게 도포되고 접착성 및 유연성을 동시에 가지는 겔타입 용가재 및 그 제조방법과, 겔타입 용가재를 이용하여 결함이 없고 강도가 확보된 용접방법을 제공하고자 한다. 그러나 이러한 과제는 예시적인 것으로, 본 발명의 기술적 사상은 이에 한정되는 것은 아니다.
본 발명의 일 관점에 따르면 겔타입 용가재가 제공된다.
본 발명의 일 실시예에 의하면, 상기 겔타입 용가재는 80 내지 90 중량% 금속 분말; 5 초과 20 중량% 용매; 및 1 이상 5 미만 중량% 바인더를 포함할 수 있다.
본 발명의 일 실시예에 의하면, 상기 금속 분말은 15 mol% 이상 45 mol%의 미만 Cr, 10 mol% 이상 30 mol% 미만의 Ni과, 잔부가 Fe 및 불가피 불순물로 이루어지되, Cr와 Ni의 합은 25 mol%를 초과하는 범위를 가지는 Fe-Cr-Ni 합금일 수 있다.
본 발명의 일 실시예에 의하면, 상기 금속 분말은 15 mol% 내지 35 mol%의 Cr, 10 mol% 내지 20 mol%의 Ni과, 잔부가 Fe 및 불가피 불순물로 이루어지되, Cr와 Ni의 합은 25 mol%를 초과하는 범위를 가지는 Fe-Cr-Ni 합금일 수있다.
본 발명의 일 실시예에 의하면, 상기 용매는 9 내지 19 중량% 범위이고, 상기 바인더는 1 내지 4 중량% 범위일 수 있다.
본 발명의 일 실시예에 의하면, 상기 겔타입 용가재는 1 내지 3 중량% 첨가제를 더 포함할 수 있다.
본 발명의 일 실시예에 의하면, 상기 금속 분말의 입도는 35 내지 100 μm(150 ~ 400 메쉬) 범위를 가질 수 있다.
본 발명의 일 실시예에 의하면, 상기 바인더는 유기 고분자일 수 있으며, 상기 유기 고분자는 하이드록시(OH)를 포함하는 고분자을 포함할 수 있다. 예를 들어, 상기 하이드록시(OH)를 포함하는 고분자는 알코올류, 글리콜류, 글리콜 에테르류 및 글리세롤류를 포함할 수 있다. 예를 들어, 상기 유기 고분자는 PVA(poly vinyl alcohol), PMMA(Polymethyl methacrylic acid), SBR(Styrene butadiene rubber) 및 CMC(Carboxymethyl cellulose) 중 적어도 어느 하나 이상을 포함할 수 있다.
본 발명의 일 실시예에 의하면, 상기 용매는 증류수 또는 친수성 물질 중 적어도 어느 하나 이상을 포함할 수 있다.
본 발명의 일 실시예에 의하면, 상기 첨가제는 점도조절제, 탈포제, 동결안정제 또는 방부제 중 적어도 어느 하나 이상을 포함할 수 있다.
본 발명의 일 실시예에 의하면, 하이드록시 프로필 메틸 셀룰로오스(Hydroxypropyl methyl cellulose)를 포함할 수 있다.
본 발명의 다른 관점에 의하면, 용매에 바인더를 첨가하고 균일하게 혼합하여 1차 혼합물을 얻는 단계; 및 1차 혼합물에 금속 분말을 첨가하고 혼합하여 겔타입 용가재를 제조하는 단계를 포함할 수 있다.
본 발명의 일 실시예에 의하면, 상기 겔타입 용가재는 80 내지 90 중량% 금속 분말; 5 초과 20 중량% 용매; 및 1 이상 5 미만 중량% 바인더를 포함할 수 있다. 또한, 상기 금속 분말은 15 mol% 이상 45 mol%의 미만 Cr, 10 mol% 이상 30 mol% 미만의 Ni과, 잔부가 Fe 및 불가피 불순물로 이루어지되, Cr와 Ni의 합은 25 mol%를 초과하는 범위를 가지는 Fe-Cr-Ni 합금일 수 있다.
본 발명의 또 다른 관점에 의하면, 상술한 겔타입 용가재를 이용한 용접 방법이 제공될 수 있다.
본 발명의 일 실시예에 의하면, 상기 용접 방법은 모재의 적어도 일부 영역에 겔타입 용가재를 도포하는 단계; 및 모재에 도포된 겔타입 용가재 상에 열원을 조사하여 용접하는 단계;를 포함할 수 있다.
본 발명의 일 실시예에 의하면, 상기 열원은 레이저, 전기 아크, 가스 토치 중 어느 하나를 포함할 수 있다.
본 발명의 일 실시예에 의하면, 상기 모재는 강재를 포함할 수 있다.
본 발명의 또 다른 관점에 의하면, 상술한 겔타입 용가재를 이용하여 제조한 용접 구조물이 제공된다.
본 발명의 일 실시예에 의하면, 상기 용접 구조물은 강재로 이루어진 모재 및 상기 모재의 적어도 일부 영역에 형성된 용착금속부를 포함하고, 상기 용착금속부는 결정립계의 적어도 일부에 페라이트 상이 형성되어 그물망 네트워크를 형성하고, 결정립 내부의 적어도 일부에는 침상의 마르텐사이트 상이 형성되는 미세조직을 가질 수 있다.
본 발명에 의해 제조된 겔타입 용가재를 이용하면 물체의 형상과 공간의 제약없이 용접할 수 있고 결함이 적은 우수한 물성을 가지는 접합부를 제공할 수 있다. 상술한 본 발명의 효과들은 예시적으로 기재되었고, 이러한 효과들에 의해 본 발명의 범위가 한정되는 것은 아니다.
도 1은 본 발명의 일실시예에 의해 제조된 겔타입 용가재를 이용하여 용접하는 단계를 도시한 순서도이다.
도 2는 본 발명의 실시예 및 비교예의 겔타입 용가재를 이용하여 용접한 용착금속부의 경도 특성을 나타낸 그래프이다.
도 3은 본 발명의 실시예에 따른 용가재 및 상기 용가재를 이용하여 용접한 용착금속부의 XRD 분석 결과이다.
도 4은 본 발명의 실시예에 따른 겔타입 용가재를 이용하여 용접한 용착금속부의 경도 특성을 나타낸 그래프이다.
도 5는 본 발명의 비교예에 따른 겔타입 용가재를 이용하여 용접한 용착금속부의 경도 특성을 나타낸 그래프이다.
도 6는 본 발명의 실시예에 따른 겔타입 용가재를 이용하여 용접한 용착금속부의 미세조직 사진이다.
도 7은 본 발명의 비교예에 따른 겔타입 용가재를 이용하여 용접한 용착금속부의 미세조직 사진이다.
도 8은 본 발명의 실시예 및 비교예에 따른 겔타입 용가재를 이용하여 용접한 용착금속부의 XRD 분석 결과이다.
이하, 첨부된 도면들을 참조하여 본 발명의 실시예를 상세히 설명하면 다음과 같다. 그러나 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있는 것으로, 이하의 실시예는 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. 다르게 정의되지 않는 한, 여기에 사용된 모든 용어들은 해당기술 분야에서 통상의 지식을 가진 자에 의해서 통상적으로 이해되는 것과 같은 의미로 사용된다.
본 발명에 있어서 겔타입 용가재는 금속 분말, 용매, 및 바인더를 포함하며, 선택적으로 첨가제를 더 포함할 수 있다.
금속 분말은 철계 합금 분말로서 Fe, Cr, Ni이 포함된 합금 분말일 수 있다.
상기 금속 분말은 15 mol% 이상 45 mol%의 미만 Cr, 10 mol% 이상 30 mol% 미만의 Ni과, 잔부가 Fe 및 불가피 불순물로 이루어지되, Cr와 Ni의 합은 25 mol%를 초과하는 범위를 가지는 Fe-Cr-Ni 합금일 수 있다. 바람직하게는 상기 금속 분말은 15 mol% 내지 35 mol%의 Cr, 10 mol% 내지 20 mol%의 Ni과, 잔부가 Fe 및 불가피 불순물로 이루어지되, Cr와 Ni의 합은 25 mol%를 초과하는 범위를 가질 수 있다.
용매는 바인더와 균일하게 혼합될 수 있는 물질이라면 종류에 제한이 없으나, 일반적으로 증류수 또는 친수성 물질인 것이 바람직하다.
바인더는 금속 분말을 겔타입으로 만들 수 있는 것이라면 종류에 제한이 없으나, 일반적으로 유기 고분자인 것을 사용할 수 있다. 상기 바인더는 고분자 소재를 포함할 수 있다. 이러한 고분자 소재는 하이드록시기(OH)를 포함하는 고분자로서, 알코올류, 글리콜류, 글리콜 에테르류, 글리세롤류를 포함할 수 있다. 예를 들어, 수용성 고분자인 PVA(poly vinyl alcohol)를 포함할 수 있다.
다른 예로서, 바인더용 고분자인 PMMA(Polymethyl methacrylic acid), SBR(Styrene butadiene rubber), CMC(Carboxymethyl cellulose) 중 적어도 어느 하나 이상을 포함할 수 있다.
첨가제는 작업 환경에 따라 필요에 의해 선택적으로 첨가할 수 있는 물질로서 종류에 제한이 없으나, 일반적으로 점도조절제, 탈포제, 동결 안정제, 방부제 등을 포함할 수 있다.
본 발명의 겔타입 용가재는 용매에 바인더를 혼합하여 교반하고, 선택적으로 점도조절제, 탈포제, 동결안정제, 방부제와 같은 첨가제들을 선택적으로 혼합시켜 교반하여 1차 혼합액을 제조한다. 용매는 50-90℃로 가열된 것일 수 있다. 금속 분말과 상기 1차 혼합액을 혼합한 후 교반하여 겔타입 용가재를 제조한다.
이러한 겔타입 용가재를 이용한 용접 방법은 도 1을 참조하면 다음과 같다. 우선 용접의 대상이 되는 모재를 준비하고, 모재의 용접부에 겔타입 용가재를 도포한다(S100).
다음, 모재에 도포된 겔타입 용가재 상에 열원을 투입하여 용접을 수행한다(S200). 이때 열원은 용접의 방식에 따라 다양하게 선택될 수 있다. 예를 들어 레이저 열원을 이용하거나 아크 용접에 사용되는 전기 아크가 선택될 수 있다. 혹은 화염이 방사되는 가스 토치를 열원으로 선택할 수 있다.
열원이 조사됨에 따라 용가재와 모재의 용접부가 용융된 후 응고되어 용가재가 도포된 영역에 용착금속부가 형성되게 된다(S300)
본 발명의 겔타입 용가재는 금속의 용접, 예를 들어 강재의 용접에 사용될 수 있다. 본 발명의 겔타입 용가재는 접착성 및 유연성을 가지므로 다양한 방식으로 시공될 수 있다. 수작업뿐만 아니라 닥터 블레이드로 일정 높이로 채워질 수 있으며, 닥터 블레이드 기능이 있는 전용 장치가 이용될 수 있다. 겔 시공량 및 시공 높이를 제어하여 용접부 초층 두께를 제어할 수 있다. 또한, 디스펜서 장치를 활용하여 정량 도포될 수 있다.
겔타입 용가재는 접착성을 가지므로 시공단계와 용착금속부(용접부)를 형성하기 위하여 열원을 투입하는 용접단계를 분리하여 진행할 수 있다. 레이저, 전기 아크, 가스 토치 등 열원에 의하여 겔타입 용가재는 발화되어 피용접재인 모재 이음부에 용착금속부를 형성한다. 레이저를 이용할 경우 원거리에서 작업이 가능하므로, 용가재를 사용하는 용접에서 발생하는 다량의 흄 및 스패터에 의한 오염을 방지할 수 있다.
이하 본 발명의 이해를 돕기 위한 실험결과를 제시한다. 이러한 실험결과는 본 발명의 이해를 돕기 위한 예시적인 것으로 본 발명이 이에 한정되지 않은 것은 물론이다.
표 1에는 본 발명의 실시예 및 비교예에 해당되는 겔타입 용가재의 조성이 나타나 있다. 본 발명의 실시예를 기술함에 있어서, 1차 혼합액은 용매와 바인더를 혼합한 것이며, 겔타입 용가재는 준비된 1차 혼합액 및 금속 분말을 혼합하여 제조한다. 사용된 금속 분말의 입도는 35 내지 100μm 범위(150 ~ 400 메쉬)를 가지는 것이었다. 금속 분말을 구성하는 각 원소의 아래 첨자는 몰비(molar ratio)를 의미한다.
Figure pat00001
<실시예 1>
(1) 1차 혼합액 준비
용매로 증류수를, 바인더로 폴리 비닐 알코올(PVA, poly vinyl alcohol)을 사용하였다. 온도가 70 내지 80 ℃로 유지된 증류수에 폴리 비닐 알코올(Poly vinyl alchohol)을 첨가하여 1차 혼합액을 제조하였다. 첨가된 폴리 비닐 알코올은 1차 혼합액에 대하여 5 중량%가 되도록 하였고, 증류수에 폴리 비닐 알코올이 완전히 용해될 때까지 교반하였다. 위 과정을 통해 1차 혼합액을 얻었다.
(2) 겔타입 용가재 제조
준비된 1차 혼합액에 금속 분말을 첨가한 후 충분히 혼합되도록 교반하여 겔타입 용가재를 제조하였다. 사용된 금속 분말은 Fe0.70Cr0.18Ni0.12 합금 분말이었다. 겔타입 용가재의 총 중량 대비 금속 분말은 80 중량%를 사용하였고 1차 혼합액은 20 중량%를 사용하였다(바인더는 겔타입 용가재의 총 중량 대비 1 중량%에 해당됨).
<실시예 2>
폴리 비닐 알코올이 1차 혼합액에 대하여 20 중량%(바인더는 겔타입 용가재의 총 중량 대비 4 중량%에 해당)가 되도록 한 것을 제외하고는, 실시예 1의 제조 과정과 동일하다.
<실시예 3>
1차 혼합액을 제조하기 위하여, 증류수를 70내지 80 ℃ 정도 유지한 후에 폴리 비닐 알코올(Poly vinyl alchohol)의 바인더를 용액의 100중량에 대하여 20중량% 되도록 혼합하였다. 완전히 용해될까지 20 내지 30분 정도 교반하였다. 겔타입 용가재에 사용된 합금분말은 Fe0.70Cr0.18Ni0.12의 조성으로 제조하였으며, 시브(sieve)를 사용하여 35 μm 내지 100 μm의 크기를 갖는 입자를 분리하여 사용하였다. 겔타입 용가재를 구성하는 총 중량에 대해서 합금 분말 80%중량과 상기 준비된 1차 혼합액을 19중량%과 첨가제로 하이드록시 프로필 메틸 셀룰로오스(Hydroxypropyl methyl cellulose)를 사용하여 1중량% 비율로 충분히 혼합되도록 5분 이상 교반하여 준비하였다.
<실시예 4>
폴리 비닐 알코올이 1차 혼합액에 대하여 10 중량%가 되도록 한 것을 제외하고는 실시예 1의 1차 혼합액 준비 과정과 동일하며, 겔타입 용가재의 총 중량 대비 금속 분말은 90 중량%를 사용하였고 준비된 1차 혼합액은 10 중량%를 사용한 것(바인더는 겔타입 용가재의 총 중량 대비 1 중량%에 해당)을 제외하면 실시예 1의 겔타입 용가재 제조 과정과 동일하다.
<실시예 5>
폴리 비닐 알코올이 1차 혼합액에 대하여 10 중량%가 되도록 한 것(바인더는 겔타입 용가재의 총 중량 대비 2 중량%에 해당)과 금속 분말로 Fe0.65Cr0.25Ni0.10를 사용한 것을 제외하고, 실시예 1의 제조 과정과 동일하다.
<실시예 6> 내지 <실시예 9>
실시예 6, 7, 8 및 9는 각각 금속 분말로 Fe0.65Cr0.15Ni0.20, Fe0.55Cr0.35Ni0.10, Fe0.55Cr0.25Ni0.20 및 Fe0.45Cr0.35Ni0.20를 사용한 것을 제외하고, 실시예 5의 제조 과정과 동일하다.
<비교예 1>
폴리 비닐 알코올이 1차 혼합액에 대하여 25 중량%(바인더는 겔타입 용가재의 총 중량 대비 5 중량%에 해당)가 되도록 한 것을 제외하고는, 실시예 1의 제조 과정과 동일하다.
<비교예 2> 내지 <비교예 8>
비교예 2, 3, 4, 5, 6, 7 및 8은 각각 금속 분말로 Fe, Fe0.82Cr0.18, Fe0.88Cr0.12, Fe0.75Cr0.15Ni0.10, Fe0.55Cr0.15Ni0.30, Fe0.45Cr0.45Ni0.10 및 Fe0.45Cr0.25Ni0.30를 사용한 것을 제외하고는 실시예 5의 제조 과정과 동일하다.
실시예 1 내지 9 및 비교예 1 내지 9에 의해 제조된 겔타입 용가재를 이용하여 용접을 수행한 후 용접 성능을 평가하였다.
먼저 모재를 준비하고, 모재의 용접부에 본 발명의 실시예 또는 비교예에 의해 제조된 겔타입 용가재를 도포한 후, 도포된 겔타입 용가재 상에 열원을 조사하여 용접한다.
용접 성능을 평가하기 위해 사용된 모재는 15 mm의 두께의 SM490를 이용하였다. SM490의 미세조직은 페라이트와 펄라이트로 구성된다. 용접 이음부는 맞대기 용접 이음을 적용하였으며, 용접부의 형상은 홈의 각도(groove angle)가 60 도 이고 루트 간격 및 루트면은 0 mm으로 고정하였다. 준비된 겔타입 용가재는 홈의 바닥에서부터 6 mm의 높이로 채워졌으며, 일정한 높이로 도포하기 위해 닥터 블레이드 방식을 사용하였다. 발화를 위한 열원은 디스크 레이저(Trudisk3002, Trumpf)를 이용하였으며, 빔의 형상은 원형이고 빔의 크기는 겔타입 용가재가 도포된 폭과 일치하도록 디포커싱하였다. 레이저의 출력은 3 kW로 설정하였고, 1.5 mm/s의 용접 속도로 레이저를 조사하여 용접하였다.
용접부에 대한 용접 성능은 용접부의 외관 및 단면부의 결함 유무를 확인하는 것과, 마이크로 비커스 경도계로 경도를 측정하는 것으로 평가하였다. 단면부의 결함에 있어 상면 및 이면의 험핑비드(humping bead)와 단면의 기공 및 균열의 형성 유무를 관찰하였으며, 이러한 결함이 발견되지 않았을 때 결함이 없는 것으로 평가하였다. 용접부의 경도는 용착금속부의 평균 경도 값을 사용하였다.
표 2는 실시예 1 내지 4와, 비교예 1 내지 4에 대한 용접 성능을 평가한 결과이다.
실시예 결함 용착금속부 경도(HV0.3)
실시예1 없음 436
실시예2 없음 494
실시예3 없음 503
실시예4 없음 398
비교예1 있음 534
비교예2 있음 187
비교예3 있음 522
비교예4 있음 507
도 2는 실시예 1, 2, 비교예 1 내지 4의 용가재를 사용하여 용접한 경우, 용착금속부로부터 모상까지의 경도분포를 나타낸 그래프이다. X축(Distance)는 용착금속부 중심으로부터 모재 쪽으로의 거리를 나타낸다. 도 2에 도시된 용착금속부 내 경도를 평균한 값이 표 2에 나타낸 용착금속부 경도에 해당된다.
실시예 1, 실시예 2 및 비교예 1은 동일한 금속 분말(Fe0.70Cr0.18Ni0.12)을 사용하였으며, 겔타입 용가재에서 바인더가 차지하는 중량 비율이 각각 1 중량%, 4 중량%, 5 중량%가 되도록 하였다. 용접 성능을 평가한 결과, 실시예 1 및 실시예 2에서는 바인더의 함량이 증가할수록 용착금속부의 경도가 증가하는 것으로 나타났다. 바인더의 함량이 4 중량%일 때까지는 외관 및 단면상에 결함이 없는 것을 확인할 수 있었으나, 바인더의 함량이 5 중량%로 증가하자 상면에 험핑비드가 발생하였고, 이면 비드는 불연속적으로 나는 것을 확인할 수 있었다. 따라서, 바인더의 함량은 5 중량% 미만으로 제어되는 것이 바람직하다.
실시예 3은 실시예 1과 동일한 금속 분말(Fe0.70Cr0.18Ni0.12)을 사용하였으며, 바인더 및 용매 외에도 추가적으로 첨가제를 더 포함하였다. 첨가제로 사용된 물질은 하이드록시프로필메틸 셀룰로오스(Hydroxypropylmethyl cellulose)이었다. 하이드록시프로필메틸 셀룰로오스는 겔타입 용가재의 점도를 조절할 수 있으며, 바인더와는 반대로 온도의 증가에 따라 점도가 증가하는 특성이 있다. 이와 같은 특성은 용접하는 온도 환경에 따라 접착력을 조절할 수 있게 해주어 작업성 향상을 돕는다. 실시예 3의 용접 성능을 평가한 결과, 외관 및 단면 상의 결함은 없었으며 용착금속부 경도는 실시예 2와 유사하였다. 따라서, 겔타입 용가재 제조시 첨가제를 추가함으로써 작업성을 조절하는 것이 가능하다.
실시예 4는 실시예 1과 동일한 금속 분말(Fe0.70Cr0.18Ni0.12)을 사용하였으며, 겔타입 용가재에서 금속 분말이 차지하는 중량 비율이 90 중량%이 되도록 증가시켰다. 실시예4의 용접 성능을 평가한 결과, 외관 및 단면 상의 결함은 없었으며 용착금속부 경도는 모재보다 높은 398 HV의 경도를 확보하였다. 만일 금속 분말의 중량 비율이 90 중량%를 초과하게 되는 경우, 모재와의 부착력이 감소하여 시공시 작업성이 저하되는 문제가 발생할 수 있다. 따라서 겔타입 용가재 내에 금속 분말의 중량 비율을 90 중량% 이하로 제한하는 것이 바람직하다.
비교예 2 내지 4는 실시예 1 내지 9의 금속 분말과는 다른 금속 분말을 사용하였다. 비교예 2는 Fe, 비교예 3은 Fe0.82Cr0.18, 비교예 4는 Fe0.88Cr0.12인 것을 사용하였다. 용접 성능을 평가한 결과, 비교예 2는 외관 및 단면 상의 결함이 없었으나, 용착금속부 경도가 187 HV로(표 3 참조) 일반적인 탄소강보다 낮은 경도 수준으로 제조되는 것을 알 수 있었다. 비교예 3 및 4는 Fe-Cr 합금 금속 분말로, 일반적으로 Fe-Cr 합금을 사용할 경우 용접 후 마르텐사이트 상이 형성되어 높은 경도를 확보할 수 있다. 용접 성능을 평가한 결과, 비교예 3 및 4의 용착금속부 경도는 500 HV 이상으로 높은 경도를 갖는다는 것을 확인할 수 있었다. 그러나 비교예 3 및 4는 외관 및 단면 상의 결함에 있어 높은 취성으로 인한 균열 결함이 발생한 것을 확인할 수 있었다. 따라서, 모재보다 강도가 높고 결함 없는 용접부를 형성하기 위해서는 실시예1 내지 8와 같이 Fe, Cr, Ni을 포함한 합금 금속 분말을 사용하는 것이 바람직하다.
도 3에는 실시예 1의 겔타입 용가재의 XRD 결과(A)와, 이를 이용하여 용접한 후 용접부위에 해당되는 용착금속부에서의 XRD 상 분석 결과(C)가 나타나 있다. 이와 함께 모재인 SM490 강재의 XRD 결과(B)도 같이 나타내었다.
도 3을 참조하면, 겔타입 용가재(A)는 합금분말의 상으로서 오스테나이트 상(γ)에 해당되는 XRD 피크(peak)가 관찰되었다. 그러나 용착금속부(C)는 페라이트 상(F)에 해당되는 XRD 피크가 관찰되었다. 다만, 후술하는 용착금속부의 미세조직 관찰 결과로부터 용착금속부는 페라이트 상과 마르텐사이트 상이 같이 형성되는 것을 확인할 수 있었다. 페라이트 상과 마르텐사이트 상의 XRD 피크에 해당되는 각도(2 theta)가 실질적으로 동일하다는 점에서 도 3의 XRD 피크는 페라이트 상과 마르텐사이트 상이 같이 나타난 것으로 해석된다. 즉, 겔타입 용가재는 오스테나이트 상을 나타내나 용접 후에 레이저 입열에 의해 모재와 함께 용융되면서 모재와 희석되고 급냉되는 과정에서 용착금속부는 페라이트 상 및 마르텐사이의 혼합 조직으로 변태되며, 이에 대한 자세한 내용은 후술하기로 한다.
표 3은 실시예 5 내지 9와, 비교예 5 내지 9에 대한 용접 성능을 평가한 결과이다.
실시예 결함 용착금속부 경도(HV0.3)
실시예5 없음 503
실시예6 없음 450
실시예7 없음 417
실시예8 없음 374
실시예9 없음 455
비교예5 있음 577
비교예6 없음 198
비교예7 있음 402
비교예8 없음 219
비교예9 없음 171
도 4에는 실시예 5 내지 9의 용가재를 사용하여 용접한 용착금속부의 경도 측정 결과가 나타나 있으며, 용착금속부의 평균 경도는 표 3에 나타내었다. 도 4을 참조하면, 용착금속부의 경도는 350 HV 내지 520 HV 범위를 가짐을 알 수 있다.
도 5에는 비교예 5 내지 9의 용가재를 사용하여 용접한 용착금속부의 경도 측정 결과가 나타나 있으며, 용착금속부의 평균 경도는 표 3에 나타내었다. 도 5를 참조하면, 도 4에 나타난 결과와 달리 용접부의 경도가 600 HV에 달하거나 용융선 근처에서 급격한 경도 변화가 관찰된다.
실시예 5, 6, 7, 8, 및 9의 겔타입 용가재를 사용하여 용접한 용착금속부의 미세조직을 SEM으로 관찰한 결과를 도 6의 (a), (b), (c), (d) 및 (e)에 나타내었다. 또한 비교예 5, 6, 7, 8, 및 9의 겔타입 용가재를 사용하여 용접한 용착금속부의 미세조직을 SEM으로 관찰한 결과를 도 7의 (a), (b), (c), (d) 및 (e)에 나타내었다.
비교예 5는 금속 분말의 조성이 Fe0.75Cr0.15Ni0.10인 것을 사용하였으며, 용접성능을 평가한 결과 높은 경도로 인한 취성때문에 균열이 발생한 것을 확인할 수 있었다. 따라서, Fe는 75 mol% 미만인 것이 바람직하며, 이는 합금 내에서 Cr 및 Ni의 총합이 25 mol%를 초과해야함을 의미한다.
비교예 6, 8 및 9는 금속 분말의 조성이 각각 Fe0.55Cr0.15Ni0.30, Fe0.45Cr0.25Ni0.30 및 Fe0.45Cr0.15Ni0.40인 것을 사용하였다. 이들은 모두 Ni 함량이 30 mol% 이상을 함유한다는 공통점이 있다. 용접 성능을 평가한 결과 비교예 6, 8 및 9는 모두 오스테나이트 상의 발달로 용착금속부의 경도가 모재보다 낮아지는 문제가 발생하였다. 따라서, Ni은 30 mol% 미만인 것이 바람직하다.
비교예 7은 금속 분말의 조성이 Fe0.45Cr0.45Ni0.10인 것을 사용하였으며, 용접 성능을 평가한 결과 균열 결함이 발생한 것을 확인할 수 있었다. 따라서 Cr은 45 mol% 미만인 것이 바람직하다. 도 5 및 도 7c를 참조하면, 이는 결정립 계면에 페라이트 상이 사라지고, 용융선 근처에서 경도 값의 변화가 크게 나타나기 때문으로 판단된다.
도 6를 참조하면, 실시예 5 내지 9의 용가재를 사용하는 경우, 용착금속부는 페라이트 상(도 6d의 F)이 결정립계에 잔류하여 그물망 같은 네트워크을 구성하며, 결정립 내부는 침상의 마르텐사이트 상(도 6d의 α')이 형성되는 미세조직을 나타내었다.
결정립계의 페라이트 상은 곡선으로 이뤄진 그물망 형태로 존재하여, 응력이 집중되거나 균열이 전파되는 것을 방지할 수 있으며, 불순물 원소에 대한 고용도가 높아 고온 균열을 억제하는 효과가 있다. 반면, 결정립 내부의 마르텐사이트 상은 높은 강도를 가지므로, 용접부의 강도를 향상시키는 효과가 있다. 따라서, 마르텐사이트 상은 용접부의 강도를 향상시키고, 페라이트 상은 균열 및 파괴를 방지하는 역할을 한다. 성분분석 결과, 페라이트 상은 결정립 내부의 마르텐사이트 상보다 많은 Cr, Ni을 함유하고 있었다.
도 8에는 실시예 5 및 8 및 용가재를 사용한 용착금속부의 XRD 분석 결과가 각각 F 및 E로 나타나있다. 도 8을 참조하면, 실시예 5 및 8의 경우, XRD에서 검출되는 주요 피크들은 페라이트 상 및 마르텐사이트 상에 해당되는 것으로 해석되었다. 상술한 바와 같이 페라이트와 마르텐사이트의 경우 XRD 분석시 피크의 위치가 중복되기 때문에 구분하기가 어려운 문제가 있다. 그러나, 도 6에 도시된 SEM 관찰 결과로부터 페라이트 상과 마르텐사이트 상이 모두 검출된 것으로 해석될 수 있다. 한편 실시예 8의 용가재를 사용한 경우에는 잔류 오스테나이트 상이 미량 검출되었으며 이러한 미량의 잔류 오스테나이트는 인성 향상에 기여할 수 있다.
도 7의 (a) 및 (c)를 참조하면, 비교예 5 및 7의 용가재를 사용하는 경우에는, 결정립계에 페라이트 상이 치밀하게 형성되지 않거나(비교예 5), 형성되지 않아(비교예 7) 결정립이 정확하게 구분되지 않고, 이를 가로지르는 침상의 마르텐사이트가 발달한다. 이러한 특징으로 높은 취성이 나타나며 용접부에서 균열이 발생하게 된다.
또한, 비교예 6, 8 및 9의 용가재는 Ni 함량이 30 mol% 이상으로서, 실시예 5 내지 9 보다 상대적으로 많은 Ni 함량을 포함하고 있다. 따라서 이를 사용한 경우 용착금속부은 오스테나이트 상을 주된 상으로 함유하게 된다. 도 8에는 비교예 6의 겔타입 용가재를 사용한 용착금속부의 XRD 결과를 (D)로 나타내었다. 도 8에 도시된 비교예 6의 XRD 결과(D)로부터 검출되는 주요 피크들은 오스테나이트 상임을 확인할 수 있다. 따라서 비교예 6, 8 및 9의 경우에는 결정립 계면에 그물망 형상의 미세조직이 형성되더라도 결정립 내부에 마르텐사이트 상이 형성되지 않으므로, 용접부에 경도가 200 HV이하로 모재보다 낮은 경도 값을 나타낸다.
본 발명은 도면을 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.

Claims (17)

  1. 80 내지 90 중량% 금속 분말;
    5 초과 20 중량% 용매; 및
    1 이상 5 미만 중량% 바인더를 포함하고,
    상기 금속 분말은 15 mol% 이상 45 mol%의 미만 Cr, 10 mol% 이상 30 mol% 미만의 Ni과, 잔부가 Fe 및 불가피 불순물로 이루어지되, Cr와 Ni의 합은 25 mol%를 초과하는 범위를 가지는 Fe-Cr-Ni 합금인,
    겔타입 용가재.
  2. 제 1 항에 있어서,
    상기 용매는 9 내지 19 중량% 범위이고, 상기 바인더는 1 내지 4 중량% 범위인,
    겔타입 용가재.
  3. 제 1 항 또는 제 2 항에 있어서,
    1 내지 3 중량% 첨가제를 더 포함하는,
    겔타입 용가재.
  4. 제 1 항에 있어서,
    상기 금속 분말은 15 mol% 내지 35 mol%의 Cr, 10 mol% 내지 20 mol%의 Ni과, 잔부가 Fe 및 불가피 불순물로 이루어지되, Cr와 Ni의 합은 25 mol%를 초과하는 범위를 가지는 Fe-Cr-Ni 합금인,
    겔타입 용가재.
  5. 제 1 항에 있어서,
    상기 금속 분말의 입도는 35 내지 100 μm(150 ~ 400 메쉬) 범위를 가지는,
    겔타입 용가재.
  6. 제 1 항에 있어서,
    상기 바인더는 유기 고분자인,
    겔타입 용가재.
  7. 제 6 항에 있어서,
    상기 유기 고분자는 하이드록시(OH)를 포함하는 고분자인,
    겔타입 용가재.
  8. 제 7 항에 있어서,
    상기 하이드록시(OH)를 포함하는 고분자는 알코올류, 글리콜류, 글리콜 에테르류 및 글리세롤류를 포함하는,
    겔타입 용가재.
  9. 제 6 항에 있어서,
    상기 유기 고분자는 PVA(poly vinyl alcohol), PMMA(Polymethyl methacrylic acid), SBR(Styrene butadiene rubber) 및 CMC(Carboxymethyl cellulose) 중 적어도 어느 하나 이상을 포함하는,
    겔타입 용가재.
  10. 제 1 항에 있어서,
    상기 용매는 증류수 또는 친수성 물질 중 적어도 어느 하나 이상을 포함하는,
    겔타입 용가재.
  11. 제 3 항에 있어서,
    상기 첨가제는 점도조절제, 탈포제, 동결안정제 또는 방부제 중 적어도 어느 하나 이상을 포함하는,
    겔타입 용가재.
  12. 제 11 항에 있어서,
    상기 첨가제는
    하이드록시 프로필 메틸 셀룰로오스(Hydroxypropyl methyl cellulose)를 포함하는,
    겔타입 용가재.
  13. 용매에 바인더를 첨가하고 균일하게 혼합하여 1차 혼합물을 얻는 단계; 및
    1차 혼합물에 금속 분말을 첨가하고 혼합하여 겔타입 용가재를 제조하는 단계를 포함하되,
    상기 겔타입 용가재는
    80 내지 90 중량% 금속 분말;
    5 초과 20 중량% 용매; 및
    1 이상 5 미만 중량% 바인더를 포함하고,
    상기 금속 분말은 15 mol% 이상 45 mol%의 미만 Cr, 10 mol% 이상 30 mol% 미만의 Ni과, 잔부가 Fe 및 불가피 불순물로 이루어지되, Cr와 Ni의 합은 25 mol%를 초과하는 범위를 가지는 Fe-Cr-Ni 합금인,
    겔타입 용가재 제조방법.
  14. 제 1 항 내지 제 12 항 중 어느 한 항의 겔타입 용가재를 이용한 용접 방법으로서,
    모재의 적어도 일부 영역에 겔타입 용가재를 도포하는 단계; 및
    모재에 도포된 겔타입 용가재 상에 열원을 조사하여 용접하는 단계;를 포함하는,
    겔타입 용가재를 이용한 용접 방법.
  15. 제 14 항에 있어서,
    상기 열원은 레이저, 전기 아크, 가스 토치 중 어느 하나를 포함하는,
    겔타입 용가재를 이용한 용접 방법.
  16. 제 14 항에 있어서,
    상기 모재는 강재를 포함하는,
    겔타입 용가재를 이용한 용접 방법.
  17. 제 1 항 내지 제 10 항 중 어느 한 항의 겔타입 용가재를 이용하여 제조한 용접 구조물로서,
    상기 용접구조물은 강재로 이루어진 모재 및 상기 모재의 적어도 일부 영역에 형성된 용착금속부를 포함하고,
    상기 용착금속부는 결정립계의 적어도 일부에 페라이트 상이 형성되어 그물망 네트워크를 형성하고, 결정립 내부의 적어도 일부에는 침상의 마르텐사이트 상이 형성되는 미세조직을 가지는,
    용접구조물.

KR1020220115754A 2022-09-14 2022-09-14 겔타입 용가재, 겔타입 용가재의 제조방법, 겔타입 용가재을 이용한 용접방법 및 용접 구조물 KR20240037003A (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020220115754A KR20240037003A (ko) 2022-09-14 2022-09-14 겔타입 용가재, 겔타입 용가재의 제조방법, 겔타입 용가재을 이용한 용접방법 및 용접 구조물
PCT/KR2023/012152 WO2024058443A1 (ko) 2022-09-14 2023-08-17 겔타입 용가재, 겔타입 용가재의 제조방법, 겔타입 용가재를 이용한 용접방법 및 용접 구조물

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220115754A KR20240037003A (ko) 2022-09-14 2022-09-14 겔타입 용가재, 겔타입 용가재의 제조방법, 겔타입 용가재을 이용한 용접방법 및 용접 구조물

Publications (1)

Publication Number Publication Date
KR20240037003A true KR20240037003A (ko) 2024-03-21

Family

ID=90275229

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220115754A KR20240037003A (ko) 2022-09-14 2022-09-14 겔타입 용가재, 겔타입 용가재의 제조방법, 겔타입 용가재을 이용한 용접방법 및 용접 구조물

Country Status (2)

Country Link
KR (1) KR20240037003A (ko)
WO (1) WO2024058443A1 (ko)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5443658A (en) * 1994-06-08 1995-08-22 Praxair S.T. Technology, Inc. Braze filler metal alloy paste
US20110020166A1 (en) * 2008-04-18 2011-01-27 Katsunori Otobe Iron-base heat- and corrosion-resistant brazing material
KR101568487B1 (ko) * 2013-12-06 2015-11-11 주식회사 포스코 스테인리스강의 레이저 용접용 용접재료, 이를 이용한 레이저 용접이음부 및 이를 위한 용접방법
CN110238562A (zh) * 2019-06-28 2019-09-17 华中科技大学 一种微纳米复合金属焊膏制备方法、产品及应用
KR102314236B1 (ko) * 2020-09-22 2021-10-19 엘티메탈 주식회사 고온 안정성을 가진 접합 페이스트 및 그의 제조방법

Also Published As

Publication number Publication date
WO2024058443A1 (ko) 2024-03-21

Similar Documents

Publication Publication Date Title
RU2322529C2 (ru) Низколегированная сталь сварного шва и сварочная проволока с флюсовым сердечником
EP2174746A1 (en) Low-Hydrogen coated electrode
JP4528089B2 (ja) 耐脆性破壊発生特性を有する船体用大入熱突合せ溶接継手
CA2929359C (en) Friction stir welding method for high-strength steel sheets or plates
JP6927304B2 (ja) 鋼板のガスシールドアーク溶接方法
Chen et al. Microstructure and mechanical properties of HSLA thick plates welded by novel double-sided gas metal arc welding
Frank Flux-free laser joining of aluminum and galvanized steel
JP2008178910A (ja) 耐疲労き裂発生特性に優れた隅肉溶接継手
Lei et al. Mechanism of the crack formation and suppression in laser-MAG hybrid welded 30CrMnSiA joints
KR20240037003A (ko) 겔타입 용가재, 겔타입 용가재의 제조방법, 겔타입 용가재을 이용한 용접방법 및 용접 구조물
JP5968934B2 (ja) 亜鉛めっき鋼板の溶接方法
KR101008078B1 (ko) 하이브리드 용접 방법
Zhang et al. Properties of welded joint for narrow gap laser welding of austenitic stainless steels
Hama-Saleh et al. Formability analysis of micro-alloyed sheet metals reinforced by additive manufacturing
JP4319886B2 (ja) 耐脆性破壊発生特性を有する大入熱突合せ溶接継手
JP6776798B2 (ja) 多層サブマージアーク溶接方法
Wahba et al. Microstructure and Mechanical Properties of Hybrid Welded Joints with Laser and CO 2-Shielded Arc
JP2006281303A (ja) 高強度鋼板のサブマージアーク溶接方法
Łomzik Mechanical properties of joints made in steel S1300QL using various welding methods
Purwaningrum et al. Effect of shielding gas mixture on gas metal arc welding (GMAW) of low carbon steel (LR grade A)
Guo Laser welding of high strength steels
Strasse et al. Quality improvement of laser welds on thick duplex plates by laser cladded buttering
JPH10263881A (ja) 片面サブマージアーク溶接開先用鋼充填材
Hadzihafizovic Welding Inspector Question and Answer
JP7485250B1 (ja) 片面サブマージアーク溶接方法および溶接継手の製造方法