KR20240007838A - Device for post-curing of 3d printed materials - Google Patents

Device for post-curing of 3d printed materials Download PDF

Info

Publication number
KR20240007838A
KR20240007838A KR1020220084286A KR20220084286A KR20240007838A KR 20240007838 A KR20240007838 A KR 20240007838A KR 1020220084286 A KR1020220084286 A KR 1020220084286A KR 20220084286 A KR20220084286 A KR 20220084286A KR 20240007838 A KR20240007838 A KR 20240007838A
Authority
KR
South Korea
Prior art keywords
unit
curing
post
led
printed
Prior art date
Application number
KR1020220084286A
Other languages
Korean (ko)
Inventor
심운섭
김인
Original Assignee
주식회사 그래피
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 그래피 filed Critical 주식회사 그래피
Priority to KR1020220084286A priority Critical patent/KR20240007838A/en
Priority to PCT/KR2023/009664 priority patent/WO2024010421A1/en
Publication of KR20240007838A publication Critical patent/KR20240007838A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/227Driving means
    • B29C64/241Driving means for rotary motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/245Platforms or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/364Conditioning of environment
    • B29C64/371Conditioning of environment using an environment other than air, e.g. inert gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/20Post-treatment, e.g. curing, coating or polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0827Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using UV radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • B29C64/135Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/147Processes of additive manufacturing using only solid materials using sheet material, e.g. laminated object manufacturing [LOM] or laminating sheet material precut to local cross sections of the 3D object

Abstract

본 발명은 3D 프린터물의 후경화를 위한 장치에 관한 발명으로, 보다 상세하게는 후경화 과정에서 장치 내에 질소를 공급하여 산소를 최소화하는 질소 환경을 제공하고, 이를 통해 후경화를 거친 3D 프린터물의 강도 등의 물성을 향상시키고자 한다.The present invention relates to a device for post-curing 3D printed materials. More specifically, it provides a nitrogen environment that minimizes oxygen by supplying nitrogen into the device during the post-curing process, thereby increasing the strength of the 3D printed material that has undergone post-curing. We want to improve the physical properties such as:

Description

3D 프린터물의 후경화를 위한 장치{DEVICE FOR POST-CURING OF 3D PRINTED MATERIALS}Device for post-curing 3D printed materials {DEVICE FOR POST-CURING OF 3D PRINTED MATERIALS}

본 발명은 3D 프린터물의 후경화를 위한 장치에 관한 발명으로, 보다 상세하게는 후경화 과정에서 장치 내에 질소를 공급하여 산소를 최소화하는 질소 환경을 제공하고, 이를 통해 후경화를 거친 3D 프린터물의 강도 등의 물성을 향상시키고자 한다.The present invention relates to a device for post-curing 3D printed materials. More specifically, it provides a nitrogen environment that minimizes oxygen by supplying nitrogen into the device during the post-curing process, thereby increasing the strength of the 3D printed material that has undergone post-curing. We want to improve the physical properties such as:

일반적으로 3차원의 입체 형상을 가진 성형품을 제작하기 위해서는 도면에 의존하여 수작업에 의해 이루어지는 목업(Mock up) 제작방식과 CNC 공작기계에 의한 수치제어식 자동 제작방식 등이 있다.In general, in order to manufacture molded products with a three-dimensional shape, there are two methods: a mock-up manufacturing method performed manually based on drawings, and a numerically controlled automatic manufacturing method using CNC machine tools.

그러나, 목업(Mock up) 제작방식은 수작업에 의하므로 정교한 형상가공이 어렵고 많은 시간이 소요되며, CNC 공작기계 의한 제작방식은 정교한 수치제어가 가능하지만 공구간섭에 의하여 가공할 수 있는 형상에 제약이 있다.However, the mock-up manufacturing method is manual, so it is difficult to process precise shapes and takes a lot of time, and the manufacturing method using CNC machine tools allows for sophisticated numerical control, but there are restrictions on the shapes that can be processed due to tool interference. there is.

이에 최근에는 제품의 디자이너 또는 설계자가 3차원 모델링 툴을 통해 설계된 3D 설계도면 데이터를 저장한 컴퓨터를 이용하여 3차원 입체 형상의 성형품을 제작하는 3D 프린터가 등장하였다.Accordingly, 3D printers have recently emerged that produce molded products with a three-dimensional shape using a computer that stores 3D design drawing data designed by a product designer or designer through a three-dimensional modeling tool.

상기 3D 프린터를 이용하게 되면, 제작비용과 제조시간을 대폭 단축할 수 있고, 개인 맞춤형 제조가 가능하며, 복잡한 입체 형상도 간편하게 제조할 수 있다는 장점이 있다.Using the 3D printer has the advantage that manufacturing costs and manufacturing times can be significantly reduced, personalized manufacturing is possible, and complex three-dimensional shapes can be easily manufactured.

상기한 3D 프린터는, 광경화성 수지에 레이저를 주사하여 주사된 부분이 경화되도록 하는 SLA(Stereo Lithography Apparatus)방식, 광경화성 수지가 저장된 저장조의 하부로 광을 조사하여 경화시키는 DLP(Digital Light Processing)방식, UV 광원과 LCD 패널을 이용하여 빌드 플레이트의 상부에 수지 성형품을 적층해 나가는 LCD 방식, 기능성 고분자 또는 금속분말을 사용하여 소결시키는 SLS(Selective Laser Sintering)방식, 용융 수지를 압출하여 조형하는 FDM(Fused Deposition Modeling)방식, 고출력 레이저 빔으로 금속을 직접 성형하는 DMT(Laser-aid Direct Metal Tooling)방식, 기계 접합 조형 방식인 LOM(Laminated Object Manufacturing)방식 등이 있다.The above-mentioned 3D printer uses the SLA (Stereo Lithography Apparatus) method, which injects a laser into the photocurable resin to harden the scanned area, and the DLP (Digital Light Processing) method, which irradiates light to the lower part of the reservoir where the photocurable resin is stored and hardens it. LCD method, which uses a UV light source and an LCD panel to laminate resin molded products on the top of the build plate; SLS (Selective Laser Sintering) method, which sinteres using functional polymers or metal powder; and FDM, which molds by extruding molten resin. There are the Fused Deposition Modeling (Fused Deposition Modeling) method, the DMT (Laser-aid Direct Metal Tooling) method, which directly forms metal with a high-power laser beam, and the LOM (Laminated Object Manufacturing) method, which is a mechanical joint forming method.

이 중에서 광경화성 수지를 사용하는 SLA, DLP, LCD 방식에서는, 성형품을 제조한다고 하더라도 70%정도만 경화가 이루어지기 때문에, 완전한 경화를 위해서는 후경화기를 통한 후경화 작업이 필요하다. 이러한 후경화 작업으로 인해 원하는 강도와 색상을 얻을 수 있게 된다.Among these, in SLA, DLP, and LCD methods that use photocurable resins, even if molded products are manufactured, only about 70% of the curing is achieved, so post-curing through a post-curing machine is necessary for complete curing. This post-curing process makes it possible to obtain the desired strength and color.

후경화기를 이용하지 않고, 자연 상태에서 출력물을 경화시키는 경우, 출력물의 크기가 변형되거나, 강도가 낮아지는 문제가 발생할 수 있다.If the output is cured in natural conditions without using a post-curing machine, the size of the output may be deformed or the strength may be lowered.

또한, 3D 프린터에서 프린터의 광원만으로 출력물을 경화시키는 경우, 출력물의 크기가 변형되거나, 강도가 낮아지고 세척 후 광경화 레진의 미반응 때문에 끈적거림 등 많은 문제가 발생할 수 있다.In addition, when a 3D printer cures the output using only the printer's light source, many problems may occur, such as the size of the output being deformed, its strength being lowered, and stickiness due to unreaction of the photocuring resin after washing.

상기와 같은 문제를 해결하기 위해 후경화기를 이용하고 있으나, 후경화기 내의 산소 농도로 인해 경화 효율이 떨어지는 문제점이 있었다.A post-curing machine is used to solve the above problems, but there is a problem in that curing efficiency is reduced due to the oxygen concentration in the post-curing machine.

대한민국 등록특허공보 제10-2252465호Republic of Korea Patent Publication No. 10-2252465

본 발명은 3D 프린터물의 후경화를 위한 장치에 관한 발명으로, 보다 상세하게는 후경화 과정에서 장치 내에 질소를 공급하여 산소를 최소화하는 질소 환경을 제공하고, 이를 통해 후경화를 거친 3D 프린터물의 강도 등의 물성을 향상시키고자 한다.The present invention relates to a device for post-curing 3D printed materials. More specifically, it provides a nitrogen environment that minimizes oxygen by supplying nitrogen into the device during the post-curing process, thereby increasing the strength of the 3D printed material that has undergone post-curing. We want to improve the physical properties such as:

본 발명에 따른 3D 프린터물의 후경화를 위한 장치는 케이스부; 상기 케이스부 내부에 위치되되, 3D 프린터물이 놓여지는 로딩부; 상기 로딩부를 감싸되, UV-LED를 조사하는 LED부; 및 상기 로딩부와 상기 LED부 사이에 질소를 공급하는 질소공급부;를 포함한다.An apparatus for post-curing a 3D printed object according to the present invention includes a case part; A loading part located inside the case part where a 3D printed object is placed; An LED unit surrounding the loading unit and irradiating UV-LED; and a nitrogen supply unit that supplies nitrogen between the loading unit and the LED unit.

또한, 본 발명에 따른 3D 프린터물의 후경화를 위한 장치의 상기 LED부는, 상기 로딩부의 상부에 위치되는 제1 LED부를 포함한다.In addition, the LED unit of the device for post-curing a 3D printed object according to the present invention includes a first LED unit located on an upper part of the loading unit.

또한, 본 발명에 따른 3D 프린터물의 후경화를 위한 장치의 상기 LED부는, 상기 로딩부의 측부에 위치되는 제2 LED부를 포함한다.In addition, the LED unit of the device for post-curing a 3D printed object according to the present invention includes a second LED unit located on a side of the loading unit.

또한, 본 발명에 따른 3D 프린터물의 후경화를 위한 장치의 상기 제2 LED부는 한 쌍으로 구비되어, 상기 로딩부의 양측에 위치된다.In addition, the second LED unit of the device for post-curing 3D printed material according to the present invention is provided as a pair and is located on both sides of the loading unit.

또한, 본 발명에 따른 3D 프린터물의 후경화를 위한 장치의 상기 로딩부는, 상기 3D 프린터물이 놓여지는 원형트레이부; 및 상기 원형트레이부의 중심의 하부에 결합되는 수직 방향으로 연장 형성된 로테이터부;를 포함하고, 상기 로테이터부의 회전으로 인해 상기 원형트레이부가 회전한다.In addition, the loading part of the device for post-curing the 3D printed object according to the present invention includes a circular tray part on which the 3D printed object is placed; and a rotator part coupled to a lower part of the center of the circular tray part and extending in a vertical direction, wherein the circular tray part rotates due to rotation of the rotator part.

또한, 본 발명에 따른 3D 프린터물의 후경화를 위한 장치는 상기 LED부에서 발생된 열을 발열하는 히트싱크부;를 더 포함한다.In addition, the device for post-curing a 3D printed object according to the present invention further includes a heat sink unit that generates heat generated from the LED unit.

또한, 본 발명에 따른 3D 프린터물의 후경화를 위한 장치는 상기 LED부에서 발생된 열을 발열하는 쿨러부;를 더 포함한다.In addition, the device for post-curing a 3D printed object according to the present invention further includes a cooler unit that generates heat generated from the LED unit.

또한, 본 발명에 따른 3D 프린터물의 후경화를 위한 장치는 상기 LED부가 결합되되, 상기 로딩부를 감싸는 케이지부;를 더 포함한다.In addition, the device for post-curing a 3D printed object according to the present invention further includes a cage part to which the LED part is coupled and which surrounds the loading part.

또한, 본 발명에 따른 3D 프린터물의 후경화를 위한 장치는 상기 케이지부의 일 지점에 결합되는 필터;를 더 포함한다.In addition, the device for post-curing the 3D printed object according to the present invention further includes a filter coupled to one point of the cage portion.

본 발명에 따르면, 3D 프린터물이 위치된 로딩부를 케이지부가 감싸는 구조를 형성함과 동시에, 질소를 직접적으로 연결유닛을 통해 케이지부 내부로 운반하여 케이지부 내에서 산소를 최소화하고, 질소가 최대화될 수 있는 환경을 조성하게 된다. 이를 통해, 3D 프린터물의 후경화 결과(예컨대, 강도 등의 물성 향상)가 우수하게 할 수 있다.According to the present invention, a structure is formed in which the cage part surrounds the loading part where the 3D printed object is located, and nitrogen is directly transported into the cage part through the connection unit to minimize oxygen within the cage part and maximize nitrogen. We create an environment where this can happen. Through this, the post-curing results of the 3D printed product (for example, improvement of physical properties such as strength) can be excellent.

도 1은 본 발명에 따른 3D 프린터물의 후경화를 위한 장치의 사시도이다.
도 2는 본 발명에 따른 3D 프린터물의 후경화를 위한 장치의 경화유닛의 내부 단면도이다.
도 3은 본 발명에 따른 3D 프린터물의 후경화를 위한 장치의 경화유닛의 케이지부 부근을 확대하여 도시한 것이다.
도 4는 본 발명에 따른 3D 프린터물의 후경화를 위한 장치의 배면을 도시한 것이다.
도 5는 본 발명에 따른 3D 프린터물의 후경화를 위한 장치의 정면을 도시한 것이다.
도 6은 본 발명에 따른 3D 프린터물의 후경화를 위한 장치의 측면을 도시한 것이다.
도 7은 본 발명에 따른 3D 프린터물의 후경화를 위한 장치의 경화유닛의 케이지부 부근을 분해하여 확대 도시한 것이다.
도 8은 본 발명에 따른 3D 프린터물의 후경화를 위한 장치의 경화유닛의 케이지부 부근을 분해하여 배면에서 확대 도시한 것이다.
도 9는 종래의 일반적인 후경화 처리 방법으로 완성된 3D 프린터물의 실제 사진이다.
도 10은 본 발명에 따른 후경화 처리 방법으로 완성된 3D 프린터물의 실제 사진이다.
Figure 1 is a perspective view of a device for post-curing a 3D printed object according to the present invention.
Figure 2 is a cross-sectional view of the inside of the curing unit of the device for post-curing 3D printed objects according to the present invention.
Figure 3 is an enlarged view of the vicinity of the cage portion of the curing unit of the device for post-curing 3D printed materials according to the present invention.
Figure 4 shows the back of the device for post-curing 3D printed objects according to the present invention.
Figure 5 shows the front of a device for post-curing 3D printed objects according to the present invention.
Figure 6 shows a side view of an apparatus for post-curing a 3D printed object according to the present invention.
Figure 7 is an exploded and enlarged view of the vicinity of the cage portion of the curing unit of the device for post-curing 3D printed materials according to the present invention.
Figure 8 is an exploded, enlarged view from the back of the vicinity of the cage portion of the curing unit of the device for post-curing 3D printed materials according to the present invention.
Figure 9 is an actual photo of a 3D printed product completed using a conventional post-curing method.
Figure 10 is an actual photo of a 3D printed product completed by the post-curing method according to the present invention.

이하, 본 발명의 도면을 참고하여 상세하게 설명한다. 다음에 소개되는 실시 예들은 통상의 실시자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 예로서 제공되는 것이다. 따라서, 본 발명은 이하 설명되는 실시 예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 그리고, 도면들에 있어서, 장치의 크기 및 두께 등은 편의를 위하여 과장되어 표현될 수도 있다. 명세서 전체에 걸쳐서 동일한 참조 번호들은 동일한 구성요소들을 나타낸다.Hereinafter, the present invention will be described in detail with reference to the drawings. The embodiments introduced below are provided as examples so that the idea of the present invention can be sufficiently conveyed to ordinary practitioners. Accordingly, the present invention is not limited to the embodiments described below and may be embodied in other forms. Also, in the drawings, the size and thickness of the device may be exaggerated for convenience. Like reference numerals refer to like elements throughout the specification.

본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시 예들을 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시 예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시 예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성요소를 지칭한다. 도면에서 층 및 영역들의 크기 및 상대적인 크기는 설명의 명료성을 위해 과장될 수 있다.The advantages and features of the present invention and methods for achieving them will become clear by referring to the embodiments described in detail below along with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below and will be implemented in various different forms. These embodiments only serve to ensure that the disclosure of the present invention is complete and that common knowledge in the technical field to which the present invention pertains is provided. It is provided to fully inform those who have the scope of the invention, and the present invention is only defined by the scope of the claims. Like reference numerals refer to like elements throughout the specification. The sizes and relative sizes of layers and regions in the drawings may be exaggerated for clarity of explanation.

본 명세서에서 사용된 용어는 실시 예들을 설명하기 위한 것이며, 따라서 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다.The terminology used herein is for describing embodiments and is therefore not intended to limit the invention. As used herein, singular forms also include plural forms, unless specifically stated otherwise in the context.

도 1은 본 발명에 따른 3D 프린터물의 후경화를 위한 장치의 사시도이다.Figure 1 is a perspective view of a device for post-curing a 3D printed object according to the present invention.

본 발명에 따른 3D 프린터물의 후경화를 위한 장치는 경화유닛(100), 질소발생유닛(200) 및 연결유닛(300)을 포함한다.The device for post-curing a 3D printed object according to the present invention includes a curing unit 100, a nitrogen generating unit 200, and a connecting unit 300.

질소발생유닛(200)에서 생성된 질소는 연결유닛(300)을 통해 경화유닛(100)에 공급된다. 질소발생유닛(200)은 일 예로 압축 공기의 질소 분자와 다른 분자를 분리하여 질소를 발생시키는 것으로, 어느 하나의 질소발생장치의 형태에 국한되지 않는다.Nitrogen generated in the nitrogen generation unit 200 is supplied to the curing unit 100 through the connection unit 300. The nitrogen generation unit 200, for example, generates nitrogen by separating nitrogen molecules of compressed air from other molecules, and is not limited to any type of nitrogen generating device.

일 예로, 질소발생유닛(200)은 경화유닛(100)의 상부에 위치되는 것이 바람직하며, 도 1에 도시된 바와 같이, 질소발생유닛(200)과 경화유닛(100)은 외부로 돌출된 관 형태의 연결유닛(300)을 통해 연결된다.As an example, the nitrogen generating unit 200 is preferably located on the upper part of the curing unit 100. As shown in FIG. 1, the nitrogen generating unit 200 and the curing unit 100 are tubes protruding to the outside. It is connected through a connection unit 300 of the form.

도 2는 본 발명에 따른 3D 프린터물의 후경화를 위한 장치의 경화유닛의 내부 단면도이며, 도 3은 본 발명에 따른 3D 프린터물의 후경화를 위한 장치의 경화유닛의 케이지부 부근을 확대하여 도시한 것이며, 도 6은 본 발명에 따른 3D 프린터물의 후경화를 위한 장치의 측면을 도시한 것이며, 도 7은 본 발명에 따른 3D 프린터물의 후경화를 위한 장치의 경화유닛의 케이지부 부근을 분해하여 확대 도시한 것이다.Figure 2 is an internal cross-sectional view of the curing unit of the device for post-curing 3D printed materials according to the present invention, and Figure 3 is an enlarged view of the vicinity of the cage portion of the curing unit of the device for post-curing 3D printed materials according to the present invention. 6 shows the side of the device for post-curing 3D printed materials according to the present invention, and Figure 7 is an exploded and enlarged view of the vicinity of the cage portion of the curing unit of the device for post-curing 3D printed materials according to the present invention. It is shown.

본 발명에 따른 경화유닛(100)은 케이스부(101), 케이지부(110), 로딩부(120), LED부(130), 히트싱크부(140) 및 쿨러부(150)를 포함한다.The curing unit 100 according to the present invention includes a case portion 101, a cage portion 110, a loading portion 120, an LED portion 130, a heat sink portion 140, and a cooler portion 150.

케이스부(101)는 일 예로 중공부가 형성되는 육면체 형상인 것이 바람직하며, 전방은 개방되어 후술할 도어부(105)가 결합되는 것이 바람직하다.The case portion 101 is preferably, for example, in the shape of a hexahedron with a hollow portion formed, and the front is preferably open so that the door portion 105, which will be described later, is coupled thereto.

케이스부(101)의 상부의 양측에는 관통된 복수 개의 상부 홀(102)이 형성되며, 케이스부(101)의 하부의 양측에는 관통된 복수 개의 하부 홀(103)이 형성된다. 이는 후술할 LED부(130)에서 발생된 열을 케이스부(101)의 외부로 방열하는 역할을 한다. 이때, 상부 홀(102)과 하부 홀(103)의 형성으로 인해, 방열 효과가 극대화되게 되는데, 이는 상세히 후술하도록 한다.A plurality of penetrating upper holes 102 are formed on both sides of the upper part of the case part 101, and a plurality of penetrating lower holes 103 are formed on both sides of the lower part of the case part 101. This serves to radiate heat generated from the LED unit 130, which will be described later, to the outside of the case unit 101. At this time, the heat dissipation effect is maximized due to the formation of the upper hole 102 and the lower hole 103, which will be described in detail later.

케이지부(110)는 케이스부(101) 내부에 위치된다. 케이지부(110)는 제1 케이지부(111) 및 제2 케이지부(112)를 포함한다.The cage portion 110 is located inside the case portion 101. The cage portion 110 includes a first cage portion 111 and a second cage portion 112.

제1 케이지부(111)는 소정의 두께는 지닌 판 형상이며, 도 7과 같이 제1 케이지부(111)의 양측에 한 쌍의 제2 케이지부(112)가 연장 형성된다. 바람직하게는 제1 케이지부(111)와 제2 케이지부(112)는 직교되어 절곡 형상으로 연장 형성되는 것이 바람직하다.The first cage portion 111 has a plate shape with a predetermined thickness, and a pair of second cage portions 112 are formed extending on both sides of the first cage portion 111 as shown in FIG. 7 . Preferably, the first cage portion 111 and the second cage portion 112 are orthogonal to each other and are formed to extend in a bent shape.

제1 케이지부(111)에는 수직 방향으로 관통되는 복수 개의 제1 홀(1111)이 형성되며, 제2 케이지부(112)에는 수직 방향과 직교되는 방향으로 관통되는 복수 개의 제2 홀(1121)이 형성되는 것이 바람직하다.A plurality of first holes 1111 penetrating in the vertical direction are formed in the first cage portion 111, and a plurality of second holes 1121 penetrating in a direction perpendicular to the vertical direction are formed in the second cage portion 112. It is desirable for this to be formed.

이때, 제1 홀(1111) 및 제2 홀(1121)에는 각각 제1 LED부(131) 및 제2 LED부(132)가 결합된다. 좀 더 상세하게는, 제1 LED부(131)가 결합되는 패널이 제1 케이지부(111)의 외측면에서 결합됨과 동시에, 제1 LED부(131)가 제1 홀(1111)을 관통하며, 제2 LED부(132)가 결합되는 패널이 제2 케이지부(112)의 외측면에서 결합됨과 동시에, 제2 LED부(132)가 제2 홀(1121)을 관통한다.At this time, the first LED unit 131 and the second LED unit 132 are coupled to the first hole 1111 and the second hole 1121, respectively. More specifically, the panel to which the first LED unit 131 is coupled is coupled to the outer surface of the first cage unit 111, and at the same time, the first LED unit 131 penetrates the first hole 1111. , the panel to which the second LED unit 132 is coupled is coupled to the outer surface of the second cage unit 112, and at the same time, the second LED unit 132 penetrates the second hole 1121.

케이지부(110) 내에 3D 프린터물이 위치될 때, 상기와 같은 구조로 인해 3D 프린터물의 상부 및 측면에 모두 UV-LED가 조사되게 된다. 따라서, 3D 프린터물에 가해지는 UV-LED의 단면적이 증대되는 장점이 있으며, 후경화 효율이 극대화되는 장점이 있다.When the 3D printed object is placed in the cage portion 110, UV-LED is irradiated to both the top and sides of the 3D printed object due to the above structure. Therefore, there is an advantage that the cross-sectional area of the UV-LED applied to the 3D printed object is increased, and post-curing efficiency is maximized.

로딩부(120)는 원형트레이부(121) 및 로테이터부(122)를 포함한다. 원형트레이부(121)는 3D 프린터물을 지지한다. 일 예로 수직 방향으로 소정의 두께를 지닌 원판 형상인 것이 바람직하나, 반드시 이러한 형상에 국한되는 것이 아니다. 로테이터부(122)는 원형트레이부(121)의 중심부에 결합되며, 모터(123)와 연동되어 회전하게 된다. 따라서, 모터(123)의 제어에 따라, 원형트레이부(121)는 로테이터부(122)가 형성하는 수직 방향으로의 가상의 중심축을 기준으로 회전 운동을 하게 되며, 이로 인해 원형트레이부(121)에 놓여진 3D 프린터물 또한 회전하게 된다. 이로 인해, 3D 프린터물에 가해지는 UV-LED의 단면적이 증대되는 장점이 있으며, 후경화 효율이 극대화되는 장점이 있다.The loading unit 120 includes a circular tray unit 121 and a rotator unit 122. The circular tray unit 121 supports the 3D printed object. For example, it is desirable to have a disk shape with a predetermined thickness in the vertical direction, but it is not necessarily limited to this shape. The rotator unit 122 is coupled to the center of the circular tray unit 121 and rotates in conjunction with the motor 123. Therefore, under the control of the motor 123, the circular tray unit 121 rotates based on the virtual central axis in the vertical direction formed by the rotator unit 122, which causes the circular tray unit 121 The 3D printed object placed on the machine also rotates. This has the advantage of increasing the cross-sectional area of the UV-LED applied to the 3D printed object and maximizing post-curing efficiency.

LED부(130)는 제1 LED부(131) 및 제2 LED부(132)를 포함한다. LED부(130)는 UV-LED를 조사하는 것이 바람직하다. 또한, 전술한 바와 같이, 제1 LED부(131)는 제1 홀(1111)을 관통하여 결합되며, 제2 LED부(132)는 제2 홀(1121)을 관통하여 결합된다.The LED unit 130 includes a first LED unit 131 and a second LED unit 132. It is desirable that the LED unit 130 irradiates UV-LED. Additionally, as described above, the first LED unit 131 is coupled through the first hole 1111, and the second LED unit 132 is coupled through the second hole 1121.

히트싱크부(140) 및 쿨러부(150)는 LED부(130)의 외측면에 결합된다. 따라서, 제1 LED부(131)의 상부 및 제2 LED부(132)의 측부에 결합된다. 히트싱크부(140) 및 쿨러부(150)는 LED부(130)에서 발생되는 열을 발열하는 역할을 한다. 히트싱크 및 쿨러는 방열 역할을 하며, 부품 자체에 대한 역할을 공지기술인 바, 상세한 설명은 생략하도록 한다.The heat sink unit 140 and the cooler unit 150 are coupled to the outer surface of the LED unit 130. Therefore, it is coupled to the upper part of the first LED part 131 and the side part of the second LED part 132. The heat sink unit 140 and the cooler unit 150 serve to generate heat generated from the LED unit 130. The heat sink and cooler play a role in dissipating heat, and since the role of the parts themselves is known technology, detailed description will be omitted.

LED부(130)에서 발생되는 열이 경화유닛(100) 내에 지속적으로 존재하는 경우, 내부 부품 손상 및 후경화를 거친 3D 프린터물의 물성에 악영향을 끼칠 수 있다. 따라서, 본 발명의 히트싱크부(140) 및 쿨러부(150)의 구성으로 인해 케이스부(101) 내의 발열이 이루어지면, 본 발명의 부품 손상을 최소화하고, 후경화를 거친 3D 프린터물의 물성에 악영향을 끼칠 수 있는 요소를 최소화할 수 있는 장점이 있다.If the heat generated from the LED unit 130 continues to exist within the curing unit 100, it may damage internal components and adversely affect the physical properties of the 3D printed product that has undergone post-curing. Therefore, when heat is generated in the case part 101 due to the configuration of the heat sink part 140 and the cooler part 150 of the present invention, damage to the parts of the present invention is minimized and the physical properties of the post-cured 3D printed product are improved. It has the advantage of minimizing factors that may have a negative impact.

이때, 제2 LED부(132)에 결합된 히트싱크부(140) 및 쿨러부(150)는 도 2와같이 케이스부(101)에 형성된 하부 홀(103)과 인접하는 것이 바람직하다. 이로 인해, 제2 LED부(132)에서 발생된 열이 신속하게 하부 홀(103)을 통해 배출될 수 있으며, 냉각 효율이 극대화되는 구조가 된다.At this time, the heat sink unit 140 and the cooler unit 150 coupled to the second LED unit 132 are preferably adjacent to the lower hole 103 formed in the case unit 101 as shown in FIG. 2. Because of this, heat generated in the second LED unit 132 can be quickly discharged through the lower hole 103, resulting in a structure in which cooling efficiency is maximized.

상기 발명의 특징을 도 2를 참조하여 요약하자면, 후경화를 위해 로딩부(120)에 놓여진 3D 프린터물의 상부 및 측부에 UV LED가 조사되며, 이와 동시에 로딩부(120)가 회전되어 3D 프린터물에 가해지는 UV LED 조사 단면적이 극대화된다. 따라서, 후경화를 통한 물성의 향상이 이루어져 후경화 효율이 극대화되는 장점이 있다.To summarize the features of the invention with reference to FIG. 2, UV LED is irradiated to the top and sides of the 3D printed object placed on the loading unit 120 for post-curing, and at the same time, the loading unit 120 is rotated to produce a 3D printed object. The cross-sectional area of UV LED irradiation is maximized. Therefore, there is an advantage in that post-curing efficiency is maximized by improving physical properties through post-curing.

도 5는 본 발명에 따른 3D 프린터물의 후경화를 위한 장치의 정면을 도시한 것이다.Figure 5 shows the front of a device for post-curing 3D printed objects according to the present invention.

본 발명에 따른 3D 프린터물의 후경화를 위한 장치의 경화유닛(100)은 도어부(105) 및 LCD 패널부(106)를 더 포함한다.The curing unit 100 of the device for post-curing 3D printed objects according to the present invention further includes a door portion 105 and an LCD panel portion 106.

경화유닛(100)의 케이스부(101)는 전방 일부가 개방되었고, 도어부(105)가 연동되어 결합된다. 도어부(105)는 개폐가 가능하며, 이를 통해 후경화 과정에서는 도어부(105)는 클로즈되며, 로딩부(120)에 3D 프린터물을 넣거나, 후경화가 끝난 3D 프린터물을 꺼내는 과정에서는 도어부(105)는 오픈된다. 따라서, 작업 효율성이 증대되는 장점이 있다.The front portion of the case portion 101 of the curing unit 100 is partially open, and the door portion 105 is linked and coupled thereto. The door part 105 can be opened and closed, and through this, the door part 105 is closed during the post-curing process, and the door is closed during the process of inserting the 3D printed object into the loading part 120 or removing the 3D printed object that has completed post-curing. Part 105 is open. Therefore, there is an advantage in that work efficiency is increased.

LCD 패널부(106)는 후술하겠지만, 케이스부(101) 내부의 질소 농도, 산도 농도, 조사되는 UV-LED의 양 등이 수치화되어 표현될 수 있다. 이를 통해 실시간으로 후경화작업을 모니터링할 수 있는 장점이 있다.As will be described later in the LCD panel unit 106, the nitrogen concentration, acidity concentration, amount of UV-LED irradiated, etc. inside the case unit 101 can be expressed in numbers. This has the advantage of being able to monitor post-curing work in real time.

도 2를 참조하면, 본 발명에 따른 3D 프린터물의 후경화를 위한 장치의 경화유닛(100)은 에어벤트부(160)를 더 포함할 수 있다.Referring to FIG. 2, the curing unit 100 of the device for post-curing a 3D printed object according to the present invention may further include an air vent unit 160.

에어벤트부(160)는 케이스부(101)의 내부에서, 케이스부(101)의 상부의 내면에 결합되는 것이 바람직하다. 에어벤트부(160)는 제1 에어벤트(161) 및 제2 에어벤트(162)를 포함하는 것이 바람직하다. 제1 에어벤트(161)는 판넬 형상이되, 중심부가 하방으로 돌출되어, 중심부의 양단이 꺾여 절곡된 형상인 것이 바람직하며, 제1 에어벤트(161)의 양단에서 판넬 형상의 한 쌍의 제2 에어벤트(162)가 각각 연장 형성되는 것이 바람직하다.The air vent unit 160 is preferably coupled to the inner surface of the upper part of the case unit 101, inside the case unit 101. The air vent unit 160 preferably includes a first air vent 161 and a second air vent 162. The first air vent 161 is preferably in the shape of a panel, with the center protruding downward and both ends of the center bent. A pair of panel-shaped devices is provided at both ends of the first air vent 161. It is preferable that the two air vents 162 each extend.

또한, 에어벤트부(160)가 형성된 위치의 양단의 케이스부(101)에는 상부 홀(102)이 각각 형성되는 것이 바람직하다.In addition, it is preferable that upper holes 102 are formed in the case portion 101 at both ends of the position where the air vent portion 160 is formed.

따라서, 도 2를 참조하면, 제1 LED부(131)에서 발생된 열은 히트싱크부(140) 및 쿨러부(150)를 거쳐 케이스부(101)의 상부로 이동되는데, 이때, 에어벤트부(160)와 열이 맞닿는 경우, 돌출 및 절곡된 제1 에어벤트(161) 및 상부 홀(102) 방향으로 흐름을 유도하는 제2 에어벤트(162)의 구성으로 인해, 열이 제1 에어벤트(161) 및 제2 에어벤트(162)를 따라 순차적으로 흘러가 상부 홀(102)로 배출된다. 따라서, 열이 케이스부(101)의 내부에 갇히지 않고, 상부 홀(102)로 빠르게 배출되어 냉각 효율이 극대화되는 장점이 있으며, 후경화된 3D 프린터물의 물성 향상에 도움을 준다.Therefore, referring to FIG. 2, the heat generated in the first LED unit 131 moves to the upper part of the case unit 101 through the heat sink unit 140 and the cooler unit 150. At this time, the air vent unit When heat contacts (160), due to the configuration of the protruding and bent first air vent (161) and the second air vent (162) that guides the flow in the direction of the upper hole (102), the heat is transferred to the first air vent (160). It sequentially flows through (161) and the second air vent (162) and is discharged into the upper hole (102). Therefore, heat is not trapped inside the case portion 101 and is quickly discharged through the upper hole 102, which has the advantage of maximizing cooling efficiency and helping to improve the physical properties of the post-cured 3D printed object.

도면에는 미도시 되었지만, 케이지부(110) 내부에는 UV 감지 센서(미도시)가 결합되는 것이 바람직하다. 이를 통해, 케이지부(110) 내부에 위치된 3D 프린터물에 가해지는 UV LED양을 실시간으로 모니터링할 수 있어 퀄리티 컨트롤이 용이하다는 장점이 있다.Although not shown in the drawing, it is preferable that a UV detection sensor (not shown) be coupled to the inside of the cage portion 110. Through this, the amount of UV LED applied to the 3D printed object located inside the cage unit 110 can be monitored in real time, which has the advantage of facilitating quality control.

도 4는 본 발명에 따른 3D 프린터물의 후경화를 위한 장치의 배면을 도시한 것이며, 도 8은 본 발명에 따른 3D 프린터물의 후경화를 위한 장치의 경화유닛의 케이지부 부근을 분해하여 배면에서 확대 도시한 것이다.Figure 4 shows the back of the device for post-curing 3D printed materials according to the present invention, and Figure 8 is an enlarged view of the rear disassembled vicinity of the cage portion of the curing unit of the device for post-curing 3D printed materials according to the present invention. It is shown.

먼저, 연결유닛(300)을 설명하도록 한다.First, the connection unit 300 will be described.

질소발생유닛(200)에서 발생된 질소는 연결유닛(300)을 따라 경화유닛(100) 내부로 유입된다. 특히, 질소발생유닛(200)과 경화유닛(100)의 외부로 돌출된 연결관(310, 도 4 참조)을 통해 질소가 이동된다.Nitrogen generated in the nitrogen generating unit 200 flows into the curing unit 100 along the connecting unit 300. In particular, nitrogen is moved through the nitrogen generating unit 200 and the connection pipe 310 (see FIG. 4) protruding to the outside of the curing unit 100.

이동된 질소는 경화유닛(100)의 케이스부(101) 내부에 위치된 질소공급부(320)로 이동하게 된다.The moved nitrogen moves to the nitrogen supply unit 320 located inside the case part 101 of the curing unit 100.

질소공급부(320)의 일측은 연결관(310)과 연장 형성되고, 타측은 두 개의 유로로 분기되어 각각 한 쌍의 케이지 분기홀(1131)에 관통 결합된다. 이와 같이, 단일 유로가 아닌 두 개의 유로로 분기되어 케이스부(101) 내부에 질소 공급 효율을 극대화시킬 수 있다.One side of the nitrogen supply unit 320 extends from the connection pipe 310, and the other side is branched into two flow paths and respectively coupled through a pair of cage branch holes 1131. In this way, the nitrogen supply efficiency inside the case portion 101 can be maximized by branching into two flow paths instead of a single flow path.

이때, 도 8을 참조하면, 케이지부(110)는 제3 케이지부(113)를 더 포함한다. 제3 케이지부(113)는 제1 케이지부(111) 및 제2 케이지부(112)와 같이 소정의 두께를 지닌 판 형상이며, 제1 케이지부(111)의 배면에서 직교되어 절곡 형상으로 연장 형성되는 것이 바람직하다. 따라서, 제3 케이지부(113)의 정면에 로딩부(120) 및 로딩부(120)에 놓여진 3D 프린터물이 위치된다.At this time, referring to FIG. 8, the cage portion 110 further includes a third cage portion 113. The third cage portion 113 has a plate shape with a predetermined thickness like the first cage portion 111 and the second cage portion 112, and extends at right angles to the back of the first cage portion 111 in a bent shape. It is desirable to form Accordingly, the loading unit 120 and the 3D printed object placed on the loading unit 120 are located in front of the third cage unit 113.

제3 케이지부(113)는 한 쌍의 케이지 분기홀(1131)이 소정의 간격을 두고 이격되어 형성되는 것이 바람직하다.The third cage portion 113 is preferably formed by a pair of cage branch holes 1131 spaced apart at a predetermined distance.

따라서, 질소공급부(320)의 단부는 케이지 분기홀(1131)을 관통하여 케이지부(110) 내부에 질소를 직접적으로 공급하는 구조가 형성된다.Accordingly, the end of the nitrogen supply unit 320 passes through the cage branch hole 1131 to form a structure that directly supplies nitrogen to the inside of the cage unit 110.

따라서, 본 발명을 3D 프린터물이 위치된 로딩부(120)를 케이지부(110)가 감싸는 구조를 형성함과 동시에, 질소를 직접적으로 연결유닛(300)을 통해 케이지부(110) 내부로 운반하여 케이지부(110) 내에서 산소를 최소화하고, 질소가 최대화될 수 있는 환경을 조성하게 된다.Therefore, the present invention forms a structure in which the cage part 110 surrounds the loading part 120 where the 3D printed object is located, and at the same time, nitrogen is directly transported into the cage part 110 through the connection unit 300. This creates an environment in which oxygen can be minimized and nitrogen can be maximized within the cage portion 110.

산소를 최소화하고 질소를 최대화하면 3D 프린터물의 후경화 결과(예컨대, 강도 등의 물성 향상)가 우수하다. 따라서, 본 발명에 따르면, 3D 프린터물을 고립시키되, 고립된 공간에 질소를 최대한으로 공급하여 3D 프린터물의 물성을 향상시켜 제품 품질을 증대시킬 수 있게 된다.Minimizing oxygen and maximizing nitrogen provides excellent post-cure results (e.g., improved physical properties such as strength) of 3D printed materials. Therefore, according to the present invention, it is possible to isolate the 3D printed object and maximize the supply of nitrogen to the isolated space to improve the physical properties of the 3D printed object and increase product quality.

좀 더 상세하게는, 질소가 최대한으로 공급되는 환경에서 후경화를 거치는 경우, 종래의 일반적인 후경화 처리 방법과 완성된 3D 프린터물의 색상을 비교할 때, 활택도가 향상되는 것을 확인할 수 있다. 또한, Glazing 처리 시 표면 코팅력이 향상되는 효과가 있다. 또한, 표면 거칠기가 향상되는 효과가 있으며, Polishing 작업성이 향상되는 효과가 있다. 또한, 전환율 측면에서 종래의 일반적인 방식에 따른 3D 프린터물은 약 96%이며, 본 발명에 따른 경우 약 99%이다. 즉, 본 발명에 따르면 잔류물을 최소화하여 안전성을 향상시킬 수 있는 장점이 있다.More specifically, when post-curing is performed in an environment where nitrogen is supplied to the maximum, it can be seen that the lubricity is improved when comparing the color of the finished 3D printed product with the conventional general post-curing processing method. Additionally, glazing treatment has the effect of improving surface coating power. In addition, surface roughness is improved and polishing workability is improved. In addition, in terms of conversion rate, the 3D printed material according to the conventional general method is about 96%, and according to the present invention, it is about 99%. In other words, according to the present invention, there is an advantage of improving safety by minimizing residues.

도 9는 종래의 일반적인 후경화 처리 방법으로 완성된 3D 프린터물의 실제 사진이며, 도 10은 본 발명에 따른 후경화 처리 방법으로 완성된 3D 프린터물의 실제 사진이다. 활택도 측면만 보아도 확연히 개선됨을 확인할 수 있다.Figure 9 is an actual photo of a 3D printed product completed by a conventional post-curing processing method, and Figure 10 is an actual photograph of a 3D printed product completed by a post-curing processing method according to the present invention. You can see that the lubrication has clearly improved just by looking at the side.

이때, 제3 케이지부(113)에 케이지 결합홀(1132)이 형성된다. 산소센서(미도시)가 케이지 결합홀(1132)을 관통하여 결합된다. 이를 통해, 케이지부(110) 내부의 산소의 양을 즉각적으로 모니터링할 수 있는 장점이 있다.At this time, a cage coupling hole 1132 is formed in the third cage portion 113. An oxygen sensor (not shown) is coupled through the cage coupling hole 1132. Through this, there is an advantage of being able to immediately monitor the amount of oxygen inside the cage portion 110.

또한, 도 8을 참조하면, 제2 케이지부(112)의 일 지점에 벤트홀(1121a)가 형성되는 것이 바람직하다. 또한, 벤트홀(1121a)에는 배출팬(170) 및 필터(171)가 결합되는 것이 바람직하다. 필터(171)는 일 예로 카본 필터인 것이 바람직하다.Additionally, referring to FIG. 8 , it is preferable that a vent hole 1121a is formed at one point of the second cage portion 112. Additionally, it is preferable that the exhaust fan 170 and filter 171 are coupled to the vent hole 1121a. The filter 171 is preferably a carbon filter, for example.

이와 같이, 제2 케이지부(112)의 일 지점에 상기와 같은 배출 시스템이 형성되므로 인해, UV 경화 시 케이지부(110) 내부에서 발생할 수 있는 유해가스를 케이지부(110)의 외부로 배출할 수 있어 후경화 작업의 효율을 높이고, 후경화를 거친 3D 프린터물의 품질을 향상시킬 수 있는 장점이 있다.In this way, since the above-mentioned discharge system is formed at one point of the second cage portion 112, harmful gases that may be generated inside the cage portion 110 during UV curing can be discharged to the outside of the cage portion 110. This has the advantage of increasing the efficiency of post-curing work and improving the quality of 3D printed products that have undergone post-curing.

설명한 본 발명의 상세한 설명에서는 본 발명의 바람직한 실시 예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자 또는 해당 기술분야에 통상의 지식을 갖는 자라면 후술할 특허청구범위에 기재된 본 발명의 사상 및 기술 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. 따라서, 본 발명의 기술적 범위는 명세서의 상세한 설명에 기재된 내용으로 한정되는 것이 아니라 특허청구범위에 의해 정하여져야만 할 것이다.Although the detailed description of the present invention has been described with reference to preferred embodiments of the present invention, those skilled in the art or those skilled in the art will understand the spirit and scope of the present invention as described in the claims to be described later. It will be understood that various modifications and changes can be made to the present invention without departing from the technical scope. Therefore, the technical scope of the present invention should not be limited to what is described in the detailed description of the specification, but should be defined by the scope of the patent claims.

100 : 경화유닛,
200 : 질소발생유닛,
300 : 연결유닛.
100: hardening unit,
200: nitrogen generation unit,
300: Connection unit.

Claims (9)

케이스부;
상기 케이스부 내부에 위치되되, 3D 프린터물이 놓여지는 로딩부;
상기 로딩부를 감싸되, UV-LED를 조사하는 LED부; 및
상기 로딩부와 상기 LED부 사이에 질소를 공급하는 질소공급부;를 포함하는
3D 프린터물의 후경화를 위한 장치.
case department;
A loading part located inside the case part where a 3D printed object is placed;
An LED unit surrounding the loading unit and irradiating UV-LED; and
A nitrogen supply unit that supplies nitrogen between the loading unit and the LED unit.
A device for post-curing 3D printed materials.
제1항에 있어서,
상기 LED부는,
상기 로딩부의 상부에 위치되는 제1 LED부를 포함하는 것인
3D 프린터물의 후경화를 위한 장치.
According to paragraph 1,
The LED part,
Comprising a first LED unit located on the upper part of the loading unit
A device for post-curing 3D printed materials.
제1항에 있어서,
상기 LED부는,
상기 로딩부의 측부에 위치되는 제2 LED부를 포함하는 것인
3D 프린터물의 후경화를 위한 장치.
According to paragraph 1,
The LED part,
It includes a second LED unit located on the side of the loading unit.
A device for post-curing 3D printed materials.
제3항에 있어서,
상기 제2 LED부는 한 쌍으로 구비되어, 상기 로딩부의 양측에 위치되는 것인
3D 프린터물의 후경화를 위한 장치.
According to paragraph 3,
The second LED unit is provided as a pair and is located on both sides of the loading unit.
A device for post-curing 3D printed materials.
제1항에 있어서,
상기 로딩부는,
상기 3D 프린터물이 놓여지는 원형트레이부; 및
상기 원형트레이부의 중심의 하부에 결합되는 수직 방향으로 연장 형성된 로테이터부;를 포함하고,
상기 로테이터부의 회전으로 인해 상기 원형트레이부가 회전하는 것인
3D 프린터물의 후경화를 위한 장치.
According to paragraph 1,
The loading unit,
A circular tray on which the 3D printed object is placed; and
It includes a rotator part extending in the vertical direction coupled to the lower part of the center of the circular tray part,
The circular tray part rotates due to the rotation of the rotator part.
A device for post-curing 3D printed materials.
제1항에 있어서,
상기 LED부에서 발생된 열을 발열하는 히트싱크부;를 더 포함하는 것인
3D 프린터물의 후경화를 위한 장치.
According to paragraph 1,
It further includes a heat sink unit that generates heat generated from the LED unit.
A device for post-curing 3D printed materials.
제1항에 있어서,
상기 LED부에서 발생된 열을 발열하는 쿨러부;를 더 포함하는 것인
3D 프린터물의 후경화를 위한 장치.
According to paragraph 1,
It further includes a cooler unit that generates heat generated from the LED unit.
A device for post-curing 3D printed materials.
제1항에 있어서,
상기 LED부가 결합되되, 상기 로딩부를 감싸는 케이지부;를 더 포함하는
3D 프린터물의 후경화를 위한 장치.
According to paragraph 1,
The LED unit is combined, and further includes a cage unit surrounding the loading unit.
A device for post-curing 3D printed materials.
제8항에 있어서,
상기 케이지부의 일 지점에 결합되는 필터;를 더 포함하는 것인
3D 프린터물의 후경화를 위한 장치.
According to clause 8,
Further comprising a filter coupled to one point of the cage portion.
A device for post-curing 3D printed materials.
KR1020220084286A 2022-07-08 2022-07-08 Device for post-curing of 3d printed materials KR20240007838A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020220084286A KR20240007838A (en) 2022-07-08 2022-07-08 Device for post-curing of 3d printed materials
PCT/KR2023/009664 WO2024010421A1 (en) 2022-07-08 2023-07-07 Device for post-curing of 3d-printed product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220084286A KR20240007838A (en) 2022-07-08 2022-07-08 Device for post-curing of 3d printed materials

Publications (1)

Publication Number Publication Date
KR20240007838A true KR20240007838A (en) 2024-01-17

Family

ID=89453806

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220084286A KR20240007838A (en) 2022-07-08 2022-07-08 Device for post-curing of 3d printed materials

Country Status (2)

Country Link
KR (1) KR20240007838A (en)
WO (1) WO2024010421A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102252465B1 (en) 2019-11-28 2021-05-14 주식회사 그래피 Post-curing process and its apparatus for 3D printed-output

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4118826B2 (en) * 2004-03-01 2008-07-16 リオン株式会社 Method and apparatus for manufacturing hearing aid case and the like
KR102034885B1 (en) * 2017-11-14 2019-10-21 주식회사 그래피 A post curing device with adjustment the light and illuminated structure of high intensity
KR102024908B1 (en) * 2019-05-02 2019-09-24 (주)쓰리디테크놀로지 A post-processing device of 3D printer sculpture
KR102215698B1 (en) * 2019-10-23 2021-02-18 (주)유브이솔루션즈 Surface curing apparatus and method of sample manufactured by 3-dimensional printer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102252465B1 (en) 2019-11-28 2021-05-14 주식회사 그래피 Post-curing process and its apparatus for 3D printed-output

Also Published As

Publication number Publication date
WO2024010421A1 (en) 2024-01-11

Similar Documents

Publication Publication Date Title
Gibson et al. Development of additive manufacturing technology
US20170015066A1 (en) Additive manufacturing system and method for performing additive manufacturing on thermoplastic sheets
US10011074B2 (en) Color three-dimensional printing apparatus and color three-dimensional printing method
US5458825A (en) Utilization of blow molding tooling manufactured by sterolithography for rapid container prototyping
US10723071B2 (en) Device and method for generatively producing a three-dimensional object
WO2015145844A1 (en) Laser powder lamination shaping device, laser powder lamination shaping method, and 3d lamination shaping device
JP2018530457A (en) Additive manufacturing system and system, modular build platform and build platform unit
JP2002001827A (en) Method for selective control of mechanical characteristics by constitution of molding style for stereolithography
KR20160126801A (en) LED lighting heat sink manufacturing method using the 3D printer
KR101669627B1 (en) Anti-fall device for 3D printer of the DLP method
KR20160126800A (en) LED lighting PCB manufacturing method using the 3D printer
WO2017022144A1 (en) Method for producing three-dimensionally shaped moulded article, and three-dimensionally shaped moulded article
KR20240007838A (en) Device for post-curing of 3d printed materials
Ferretti et al. Production readiness assessment of low cost, multi-material, polymeric 3D printed moulds
KR20240007839A (en) Device for post-curing of 3d printed materials
Luca Design and manufacture of optimized continuous composite fiber filament using additive manufacturing systems
US8137604B2 (en) Methods of creating soft formed hoses and molds
JP2004122489A (en) Apparatus for manufacturing three-dimensional shaped article and mold manufacturing method using same
KR102348367B1 (en) Precision-Workable 3D Printing Complex System
KR101940515B1 (en) 3D printer system and 3D printing method using it
KR102094954B1 (en) Curing Apparatus for 3D Printing Product
JPH05318606A (en) Method and device for forming three-dimensional shape
Choong Additive manufacturing for digital transformation
KR100848707B1 (en) mold for injection molding
KR102078571B1 (en) 3 Dimension Printer