KR20230166632A - Method for recovering of high purity mma from waste artificial marble - Google Patents

Method for recovering of high purity mma from waste artificial marble Download PDF

Info

Publication number
KR20230166632A
KR20230166632A KR1020220066845A KR20220066845A KR20230166632A KR 20230166632 A KR20230166632 A KR 20230166632A KR 1020220066845 A KR1020220066845 A KR 1020220066845A KR 20220066845 A KR20220066845 A KR 20220066845A KR 20230166632 A KR20230166632 A KR 20230166632A
Authority
KR
South Korea
Prior art keywords
mma
pmma
artificial marble
waste artificial
acrylic resin
Prior art date
Application number
KR1020220066845A
Other languages
Korean (ko)
Inventor
김항성
서지훈
Original Assignee
주식회사 루소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 루소 filed Critical 주식회사 루소
Priority to KR1020220066845A priority Critical patent/KR20230166632A/en
Publication of KR20230166632A publication Critical patent/KR20230166632A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/80Destroying solid waste or transforming solid waste into something useful or harmless involving an extraction step
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B5/00Operations not covered by a single other subclass or by a single other group in this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/06Recovery or working-up of waste materials of polymers without chemical reactions
    • C08J11/08Recovery or working-up of waste materials of polymers without chemical reactions using selective solvents for polymer components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/12Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by dry-heat treatment only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • B29B2017/0213Specific separating techniques
    • B29B2017/0293Dissolving the materials in gases or liquids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2333/10Homopolymers or copolymers of methacrylic acid esters
    • C08J2333/12Homopolymers or copolymers of methyl methacrylate

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

본 발명은 폐인조대리석으로부터 고순도 MMA를 회수하는 방법에 관한 발명으로, 폐인조대리석 분쇄물을 솔벤트 용제로 추출하여 고상의 무기물을 분리하고 아크릴 수지가 함유된 액상추출물을 수득하는 액상분리단계(S10)와, 액상분리단계(S10)에서 수득한 액상추출물을 테트라하이드로퓨란 용매로 반응하여 PMMA를 수득하는 PMMA수득단계(S20)와, PMMA수득단계(S20)에서 수득한 PMMA를 진공해중합 반응에 의해 정제하여 재생 MMA를 수득하는 재생MMA수득단계(S30)를 포함하고, 재생MMA수득단계(S30)에서 수득한 재생 MMA를 유화중합 반응하여 아크릴계 고분자 가공조제를 제조하는 고분자가공조제제조단계(S40)를 더 포함하여 구성함에 따라 고순도 MMA를 분리하여 고분자 가공조제의 제조에 재활용할 수 있는 것이 특징이다.The present invention relates to a method for recovering high purity MMA from waste artificial marble, and involves extracting crushed waste artificial marble with a solvent to separate solid inorganic substances and obtaining a liquid extract containing acrylic resin (S10). ) and a PMMA acquisition step (S20) in which PMMA is obtained by reacting the liquid extract obtained in the liquid phase separation step (S10) with a tetrahydrofuran solvent, and the PMMA obtained in the PMMA acquisition step (S20) is subjected to a vacuum depolymerization reaction. A regenerated MMA obtaining step (S30) of purifying and obtaining regenerated MMA, and a polymer self-processing aid manufacturing step (S40) of producing an acrylic polymer processing aid by performing an emulsion polymerization reaction on the regenerated MMA obtained in the regenerated MMA obtaining step (S30). It is characterized by being able to separate high-purity MMA and recycle it for the manufacture of polymer processing aids.

Description

폐인조대리석으로부터 고순도 MMA를 회수하는 방법{METHOD FOR RECOVERING OF HIGH PURITY MMA FROM WASTE ARTIFICIAL MARBLE}Method for recovering high purity MMA from waste artificial marble {METHOD FOR RECOVERING OF HIGH PURITY MMA FROM WASTE ARTIFICIAL MARBLE}

본 발명은 폐인조대리석으로부터 고순도 MMA를 회수하는 방법에 관한 발명으로, 더욱 상세하게는 인조대리석의 제조 공정에서 발생하는 폐인조대리석에 함유된 성분으로부터 고순도 MMA를 분리하여 고분자 가공조제의 제조에 재활용하도록 하는 방법에 관한 것이다.The present invention relates to a method for recovering high-purity MMA from waste artificial marble, and more specifically, to separate high-purity MMA from components contained in waste artificial marble generated in the manufacturing process of artificial marble and recycle it for the production of polymer processing aids. It's about how to do it.

일반적으로, 인조대리석은 천연의 광석분 또는 합성 무기 재료 분말을 필러로 하여 수지로 경화시킨 후 압축 프레스로 제조한다. 가압 성형에 의해 무기공으로 치밀한 조직이 얻어지므로 천연 대리석에서 볼 수 없는 색조와 모양을 형성하여 널리 활용되고 있다.In general, artificial marble is manufactured by using natural ore powder or synthetic inorganic material powder as a filler, hardening it with resin, and then using a compression press. Since a dense structure with inorganic pores is obtained through pressure molding, it is widely used to form color shades and shapes that cannot be found in natural marble.

인조대리석의 제조 공정에서 필러로 사용되는 재료로는 수산화알루미늄, 황산바륨, 탄산바륨, 탄산칼슘, 실리카(규사), 화강암, 어영(御影)석분 등이 있으며, 수지 재료로는 열경화성 불포화 폴리에스테르 및 열가소성 메틸메타아크릴계 수지(이하, MMA)가 사용된다.Materials used as fillers in the manufacturing process of artificial marble include aluminum hydroxide, barium sulfate, barium carbonate, calcium carbonate, silica (silica sand), granite, and stone dust. Resin materials include thermosetting unsaturated polyester and Thermoplastic methyl methacrylic resin (hereinafter MMA) is used.

인조대리석의 제조 공정을 개략적으로 살펴보면, 알루미늄옥사이드, 메틸메타아크릴제이트, 가교제, 개시제, 착색제 등 원료를 배합하는 단계와, 배합된 원료를 승온/가압하여 원하는 크기와 형상으로 압축하는 단계와, 제품별 크기 규격별로 재단하는 단계와, 표면 광택을 내는 샌딩 단계와, 고객의 요구 사양에 맞춰 외형을 제작하는 가공 단계로 이루어는바, 각 단계를 거치면서 대량의 폐기물이 발생하게 된다.Briefly looking at the manufacturing process of artificial marble, it includes the steps of mixing raw materials such as aluminum oxide, methyl methacrylate, crosslinking agent, initiator, and colorant; heating and pressurizing the mixed raw materials to compress them into the desired size and shape; It consists of a cutting stage according to the size standard for each product, a sanding stage to polish the surface, and a processing stage to create an appearance according to the customer's specifications. A large amount of waste is generated during each stage.

예컨대, 배합 단계에서 제품의 교체 생산 시 반응기 내부를 MMA원료로 청소하는 과정에서 MMA가 포함된 슬러지 형태의 배합물이나 용액상태의 MMA가 발생하는바, 슬러지 형태는 전량 폐기 처리하고 있는 실정이다.For example, in the process of cleaning the inside of the reactor with MMA raw materials when replacing products in the mixing stage, MMA in the form of a sludge or solution containing MMA is generated, and the entire amount of the sludge is disposed of.

또한, 압축 단계에서 각종 불량이 발생하거나 재단 시 절단된 대리석은 파쇄 및 분쇄를 통해 일정 크기의 입자로 제조하여 무늬용 비드로 일부 재사용하고는 있으나 대부분의 미사용분이나 반성형 및 미분 입자는 전량 폐기 처리하고 있으며, 표면광택을 위해 샌딩 및 브러싱하는 단계에서 습식 슬러지 형태 및 건식 미분 형태로 발생하는 폐기물이나, 제품별 외형을 가공하는 단계에서 막대형 조각 등으로 발생하는 폐기물 역시 전량 폐기 처리하고 있는 실정이다.In addition, marble that has various defects in the compression stage or is cut during cutting is manufactured into particles of a certain size through crushing and pulverization and is partially reused as pattern beads, but most of the unused portion or semi-shaped and fine particles are discarded. Waste generated in the form of wet sludge and dry fine powder during sanding and brushing for surface gloss, as well as waste generated in the form of stick-shaped pieces during the processing of the appearance of each product, are all being disposed of. am.

이와 같은 인조대리석 폐기물의 처리 문제로 인해 최근에는 폐인조대리석을 효과적으로 처리하기 위한 다양한 기술의 개발이 시도되고 있다.Due to the problem of disposing of artificial marble waste, attempts have recently been made to develop various technologies to effectively dispose of waste artificial marble.

일례로서, 한국등록특허 제 10 - 0891378 호에는 MMA와 수산화알루미늄으로 제조된 인조대리석의 스크랩을 파쇄기를 통해 파쇄하는 과정과, 파쇄물과 인조대리석 분진을 스크류피더에 의해 전기에 의해 가열되는 열분해로로 정량공급하여 열분해하는 수평이송열분해과정과, 수평이송열분해과정에서 발생된 기체성분을 공급받아 응축기로 응축시켜 액상화하고 원심분리기와 유수분리기로 분리하여 물과 불순물을 제거한 MMA성분을 수취하는 MMA회수과정과, 수평이송열분해과정의 잔재물을 소성로에서 가열하여 유기물질을 완전연소제거하는 소성과정과, 소정과정의 잔재물인 알루미나를 냉각기로 냉각시켜 수취하는 알루미나 회수과정을 포함하는 폐인조대리석으로부터 MMA와 알루미나의 회수방법을 구성한다.As an example, Korean Patent No. 10-0891378 describes a process of crushing scraps of artificial marble made of MMA and aluminum hydroxide through a crusher, and sending the crushed material and artificial marble dust into a pyrolysis furnace heated by electricity by a screw feeder. A horizontal transfer pyrolysis process that pyrolyzes by supplying a fixed amount, and an MMA recovery process in which the gas components generated in the horizontal transfer pyrolysis process are supplied, condensed in a condenser, liquefied, and separated with a centrifuge and an oil-water separator to receive MMA components with water and impurities removed. MMA and alumina from waste artificial marble, including a calcination process of completely burning and removing organic substances by heating the residues of the horizontal transfer pyrolysis process in a calcination furnace, and an alumina recovery process of collecting the alumina, which is the residue of the predetermined process, by cooling it with a cooler. Configure the recovery method.

다른 예로서, 한국등록특허 제 10 - 1466011 호에는 폐인조대리석으로부터 유산소 저온 열분해를 이용하여 아크릴 수지 및 무정형의 슈도-뵈마이트를 회수하는 단계와, 무정형의 슈도-뵈마이트를 가성소다에 용해하여 소듐알루미네이트 용액을 제조하는 단계와, 소듐알루미네이트 용액의 불순물을 제거한 뒤 석출하여 고백색의 수산화알루미늄을 제조하는 단계와, 고백색의 수산화알루미늄을 고온 소성하여 고순도의 알루미나를 얻는 단계를 포함하는 폐인조대리석으로부터 아크릴 수지 및 알루미나를 제조하는 방법을 구성한다.As another example, Korean Patent No. 10-1466011 discloses the steps of recovering acrylic resin and amorphous pseudo-boehmite from waste artificial marble using aerobic low-temperature pyrolysis, and dissolving the amorphous pseudo-boehmite in caustic soda. Preparing a sodium aluminate solution, removing impurities from the sodium aluminate solution and then precipitating it to produce white-colored aluminum hydroxide, and calcining the white-colored aluminum hydroxide at a high temperature to obtain high-purity alumina. A method for producing acrylic resin and alumina from waste artificial marble is provided.

한국등록특허 제 10 - 0891378 호 (2009.04.02)Korean Patent No. 10 - 0891378 (2009.04.02) 한국등록특허 제 10 - 1466011 호 (2014.11.27)Korean Patent No. 10 - 1466011 (2014.11.27) 한국공개실용신안 제 20 - 2015 - 0003122 호 (2015.08.19)Korea Public Utility Model No. 20 - 2015 - 0003122 (2015.08.19) 한국공개특허 제 10 - 2008 - 0078241 호 (2008.08.27)Korean Patent Publication No. 10 - 2008 - 0078241 (2008.08.27)

상기와 같은 종래 기술이 적용되는 폐인조대리석으로부터 MMA를 회수하는 방법은 열분해 기술을 통하여 아크릴 수지를 회수하고 잔류물을 열처리하여 알루미나를 제조하는 형태로 이루어진다.The method of recovering MMA from waste artificial marble using the above-described prior art involves recovering acrylic resin through thermal decomposition technology and heat-treating the residue to produce alumina.

그러나, 종래 기술에 따른 폐인조대리석의 열분해 기술은 공기의 유입 없이 수행되기 때문에 열분해 온도를 500℃ 이상으로 유지해야만 MMA의 회수가 가능한바, 폐인조대리석이 500℃ 이상에서 열분해되는 과정에서 가스의 발화에 따라 킬른 내부에 화염이 발생하고 회수하고자 하는 아크릴 수지의 손실이 발생하는 문제가 있다.However, since the thermal decomposition technology of waste artificial marble according to the prior art is performed without the introduction of air, recovery of MMA is possible only when the pyrolysis temperature is maintained above 500°C. In the process of thermal decomposition of waste artificial marble above 500°C, gas is released. There is a problem that flames occur inside the kiln due to ignition and loss of the acrylic resin to be recovered occurs.

또한, 500℃ 이상에서 열분해가 진행될 경우 혼합물 충전제로 사용된 수산화알루미늄의 열분해가 빠르게 진행되면서 깁사이트(gibbsite)에서 감마-알루미나(γ-Al2O3)로 상변이가 일어나게 되어, 결국 수율을 크게 저하시키는 요인으로 작용하게 되는 문제가 있다.In addition, when thermal decomposition proceeds above 500℃, the thermal decomposition of aluminum hydroxide used as a mixture filler progresses rapidly, causing a phase transition from gibbsite to gamma-alumina (γ-Al2O3), which ultimately significantly reduces the yield. There is a problem that acts as a factor.

특히, 종래 기술에 따른 열분해 방법에 의해 폐인조대리석으로부터 회수된 PMMA와 MMA에는 상당량의 불순물을 함유하고 있으므로, 고순도 원료로 재사용하기 위해서는 별도의 정제공정이 불가피하며, 공정 자체의 상용화에도 한계가 있는 실정이다.In particular, PMMA and MMA recovered from waste artificial marble by thermal decomposition method according to the prior art contain a significant amount of impurities, so a separate purification process is inevitable in order to be reused as a high-purity raw material, and there are limits to the commercialization of the process itself. This is the situation.

아울러, 다른 예로든 종래 기술에 따른 유산소 저온 열분해를 이용한 폐인조대리석으로부터 아크릴 수지 및 알루미나를 제조하는 방법에서는 연속식 로타리 킬른 구간에 적정량의 공기를 투입하여 350~450℃에서 열분해가 가능한 유산소 저온 열분해를 통해 폐인조대리석으로부터 아크릴 수지 및 무정형의 슈도-뵈마이트를 회수하도록 구성한다.In addition, in another example of a method of producing acrylic resin and alumina from waste artificial marble using aerobic low-temperature pyrolysis according to the prior art, aerobic low-temperature pyrolysis capable of pyrolysis at 350 to 450°C is achieved by injecting an appropriate amount of air into the continuous rotary kiln section. It is configured to recover acrylic resin and amorphous pseudo-boehmite from waste artificial marble.

그러나, 상기 종래 기술 역시 폐인조대리석으로부터 회수된 PMMA와 MMA에 다량의 불순물이 상존하는 문제점을 근본적으로 해결하는 방법을 제시하지 못하고 있으며, 열분해를 위해 로터리 킬른에 고온을 유지함에 따라 에너지 비용의 과다 소모가 발생하는 문제점이 있다.However, the above-described prior art also does not provide a way to fundamentally solve the problem of a large amount of impurities existing in PMMA and MMA recovered from waste artificial marble, and excessive energy costs are incurred as high temperatures are maintained in the rotary kiln for pyrolysis. There is a problem with consumption.

이에 본 발명에서는 상술한 바와 같은 종래 기술의 문제점을 해결하기 위하여 발명한 것으로서,Accordingly, the present invention was invented to solve the problems of the prior art as described above.

폐인조대리석 분쇄물을 솔벤트 용제로 추출하여 고상의 무기물을 분리하고 아크릴 수지가 함유된 액상추출물을 수득하는 액상분리단계(S10)와,A liquid phase separation step (S10) of extracting the pulverized waste artificial marble with a solvent to separate solid inorganic substances and obtain a liquid extract containing acrylic resin;

상기 액상분리단계(S10)에서 수득한 액상추출물을 테트라하이드로퓨란 용매로 반응하여 PMMA를 수득하는 PMMA수득단계(S20)와,A PMMA obtaining step (S20) in which PMMA is obtained by reacting the liquid extract obtained in the liquid phase separation step (S10) with a tetrahydrofuran solvent,

상기 PMMA수득단계(S20)에서 수득한 PMMA를 진공해중합 반응에 의해 정제하여 재생 MMA를 수득하는 재생MMA수득단계(S30)를 포함하고,It includes a regenerated MMA obtaining step (S30) of purifying the PMMA obtained in the PMMA obtaining step (S20) by vacuum depolymerization to obtain regenerated MMA,

상기 재생MMA수득단계(S30)에서 수득한 재생 MMA를 유화중합 반응하여 아크릴계 고분자 가공조제를 제조하는 고분자가공조제제조단계(S40)를 더 포함하여 구성함으로써 고순도 MMA를 분리하여 고분자 가공조제의 제조에 재활용할 수 있는 목적 달성이 가능하다.By further comprising a polymer self-processing aid manufacturing step (S40) of producing an acrylic polymer processing aid by emulsion polymerizing the recycled MMA obtained in the recycled MMA obtaining step (S30), high purity MMA is separated and used for the production of a polymer processing aid. It is possible to achieve the purpose of recycling.

본 발명은 인조대리석의 제조 공정에서 발생하는 폐인조대리석에 함유된 성분으로부터 고순도 MMA를 분리하여 고분자 가공조제의 제조에 재활용하도록 하는 방법을 제공한다.The present invention provides a method for separating high-purity MMA from components contained in waste artificial marble generated in the manufacturing process of artificial marble and recycling it for the production of polymer processing aids.

특히, 본 발명은 종래 기술에 비해 매우 낮은 온도에서 처리가 이루어지므로 기존의 고온 열처리 과정에서 발생하는 문제점인 부반응에 따른 순도 및 수율 저하 문제를 극복할 수 있는 이점이 있다.In particular, the present invention has the advantage of overcoming the problems of lower purity and yield due to side reactions, which are problems that occur in the existing high-temperature heat treatment process, because the treatment is performed at a very low temperature compared to the prior art.

또한, 본 발명은 종래에 폐인조대리석 100% 중량 전부를 고온 열분해하는 방식에 비해 용매 추출로 회수한 아크릴 수지만을 저온에서 열분해함으로써 에너지를 현저히 절감하고 생산성 향상에 기여할 수 있는 효과가 있다.In addition, the present invention has the effect of significantly saving energy and contributing to improved productivity by pyrolyzing only the acrylic resin recovered through solvent extraction at low temperature compared to the conventional method of pyrolyzing 100% of the entire waste artificial marble by weight at high temperature.

아울러, 본 발명은 회수된 고순도 아크릴 단량체(MMA)를 유화중합을 통해 고분자 가공조제 또는 아크릴계 수지를 제조할 수 있으므로 기존에 고분자 가공 조제 수입을 대체할 수 있는 효과는 물론, 기술 집약적 고부가가치 산업을 창출할 수 있는 효과가 있다.In addition, the present invention can produce polymer processing aids or acrylic resins through emulsion polymerization of recovered high-purity acrylic monomer (MMA), so it not only has the effect of replacing the existing import of polymer processing aids, but also creates a technology-intensive high value-added industry. There is an effect that can be created.

도 1 및 도 2는 본 발명에 따른 폐인조대리석으로부터 고순도 MMA를 회수하는 방법의 공정 흐름도.
도 3은 본 발명에 따른 폐인조대리석으로부터 고순도 MMA를 회수하는 방법의 PMMA수득단계 내지 재생MMA수득단계의 개략적인 공정 모식도.
도 4는 본 발명에 따른 폐인조대리석으로부터 고순도 MMA를 회수하는 방법의 고분자가공조제제조단계의 개략적인 공정 모식도.
도 5는 본 발명에 따른 폐인조대리석으로부터 고순도 MMA를 회수하는 방법에 의한 고분자 가공조제의 분자량 시험 그래프.
Figures 1 and 2 are process flow diagrams of a method for recovering high purity MMA from waste artificial marble according to the present invention.
Figure 3 is a schematic process diagram of the PMMA acquisition step to the recycled MMA acquisition step of the method for recovering high purity MMA from waste artificial marble according to the present invention.
Figure 4 is a schematic process diagram of the polymer self-processing manufacturing step of the method for recovering high purity MMA from waste artificial marble according to the present invention.
Figure 5 is a molecular weight test graph of a polymer processing aid by the method for recovering high purity MMA from waste artificial marble according to the present invention.

이하, 본 발명의 폐인조대리석으로부터 고순도 MMA를 회수하는 방법의 바람직한 실시 예에 따른 구성과 작용을 첨부 도면을 참조하여 상세히 설명하면 다음과 같다. 하기의 설명에서 당해 기술분야의 통상의 기술자가 용이하게 구현할 수 있는 부분에 대한 구체적인 설명은 생략될 수 있다. 아울러 하기의 설명은 본 발명에 대하여 바람직한 실시 예를 들어 설명하는 것이므로 본 발명은 하기 실시 예에 의해 한정되는 것이 아니며 본 발명의 범주를 벗어나지 않는 범위 내에서 다양한 변형이 제공될 수 있음은 당연하다 할 것이다.Hereinafter, the structure and operation of a preferred embodiment of the method for recovering high purity MMA from waste artificial marble of the present invention will be described in detail with reference to the accompanying drawings. In the following description, detailed descriptions of parts that can be easily implemented by those skilled in the art may be omitted. In addition, since the following description describes the present invention with preferred embodiments, the present invention is not limited by the following examples, and it is natural that various modifications may be made without departing from the scope of the present invention. will be.

도 1 및 도 2는 본 발명에 따른 폐인조대리석으로부터 고순도 MMA를 회수하는 방법의 공정 흐름도, 도 3은 본 발명에 따른 폐인조대리석으로부터 고순도 MMA를 회수하는 방법의 PMMA수득단계 내지 재생MMA수득단계의 개략적인 공정 모식도, 도 4는 본 발명에 따른 폐인조대리석으로부터 고순도 MMA를 회수하는 방법의 고분자가공조제제조단계의 개략적인 공정 모식도, 도 5는 본 발명에 따른 폐인조대리석으로부터 고순도 MMA를 회수하는 방법에 의한 고분자 가공조제의 분자량 시험 그래프를 도시한 것이다.Figures 1 and 2 are process flow charts of the method for recovering high-purity MMA from waste artificial marble according to the present invention, and Figure 3 is a PMMA obtaining step to the recycled MMA obtaining step of the method for recovering high-purity MMA from waste artificial marble according to the present invention. Figure 4 is a schematic process diagram of the polymer self-processing agent manufacturing step of the method for recovering high-purity MMA from waste artificial marble according to the present invention, and Figure 5 is a schematic process diagram of recovering high-purity MMA from waste artificial marble according to the present invention. This shows a graph of the molecular weight test of the polymer processing aid by the following method.

본 발명의 기술이 적용되는 폐인조대리석으로부터 고순도 MMA를 회수하는 방법은 인조대리석의 제조 공정에서 발생하는 폐인조대리석에 함유된 성분으로부터 고순도 MMA를 분리하고, 고분자 가공조제의 제조에 재활용하도록 하는 기술에 관한 것임을 주지한다.The method of recovering high-purity MMA from waste artificial marble to which the technology of the present invention is applied is a technology that separates high-purity MMA from components contained in waste artificial marble generated in the manufacturing process of artificial marble and recycles it for the production of polymer processing aids. Please note that it is about.

이를 위한 본 발명의 폐인조대리석으로부터 고순도 MMA를 회수하는 방법은 크게 액상분리단계(S10)와, PMMA수득단계(S20)와, 재생MMA수득단계(S30)와, 고분자가공조제제조단계(S40)를 포함하여 이루어지며, 구체적으로는 하기와 같다.For this purpose, the method of recovering high purity MMA from waste artificial marble of the present invention largely includes a liquid phase separation step (S10), a PMMA acquisition step (S20), a recycled MMA acquisition step (S30), and a polymer self-processing preparation step (S40). It includes, and specifically, is as follows.

상기 액상분리단계(S10)는 폐인조대리석 분쇄물을 솔벤트 용제로 추출하여 고상의 무기물을 분리하고 아크릴 수지가 함유된 액상추출물을 수득하는 단계이다.The liquid phase separation step (S10) is a step of extracting the pulverized waste artificial marble with a solvent to separate solid inorganic substances and obtain a liquid extract containing acrylic resin.

상기 PMMA수득단계(S20)는 상기 액상분리단계(S10)에서 수득한 액상추출물을 테트라하이드로퓨란(THF) 용매로 반응하여 PMMA를 수득하는 단계이다.The PMMA obtaining step (S20) is a step of obtaining PMMA by reacting the liquid extract obtained in the liquid phase separation step (S10) with a tetrahydrofuran (THF) solvent.

상기 PMMA수득단계(S20)에 사용하는 THF는 산소 하나를 포함하는 포화된 오각 헤테로고리 유기화합물(C4H8O)로서 물과 섞이며 유기 화학 반응시 비양성자성 극성 용매로 사용한다. 비점(끓는점)이 66℃로서 폐인조대리석에 함유되는 아크릴계 수지를 회수하기 위한 용매로 사용한다.THF used in the PMMA obtaining step (S20) is a saturated pentagonal heterocyclic organic compound (C 4 H 8 O) containing one oxygen, which is miscible with water and is used as an aprotic polar solvent during organic chemical reactions. It has a boiling point of 66°C and is used as a solvent to recover acrylic resin contained in waste artificial marble.

상기 PMMA수득단계(S20)는 1차용해단계(S21)와, 2차용해단계(S22)와, PMMA회수단계(S23)로 이루어진다.The PMMA acquisition step (S20) consists of a first dissolution step (S21), a second dissolution step (S22), and a PMMA recovery step (S23).

상기 1차용해단계(S21)에서는 상기 액상분리단계(S10)에서 수득한 액상추출물에 테트라하이드로퓨란 용매를 1차 반응하여 아크릴 수지를 회수하는 단계이다.In the first dissolution step (S21), the acrylic resin is recovered by first reacting the liquid extract obtained in the liquid phase separation step (S10) with a tetrahydrofuran solvent.

상기 1차용해단계(S21)에서는 상기 THF와 액상추출물을 반응하여 비중이 THF보다 높은 무기종인 수산화알루미늄은 침강, 분리하고 상등액으로부터 아크릴 수지를 회수하도록 구성한다.In the first dissolution step (S21), the THF and the liquid extract are reacted to precipitate and separate aluminum hydroxide, an inorganic species with a specific gravity higher than THF, and recover the acrylic resin from the supernatant.

상기 2차용해단계(S22)는 상기 1차용해단계(S21)에서 회수한 아크릴 수지에 테트라하이드로퓨란 용매를 2차 반응하여 저분자 유기화합물을 용해하고 불용된 아크릴 수지를 회수하는 단계이다.The secondary dissolution step (S22) is a step of dissolving low molecular weight organic compounds and recovering the undissolved acrylic resin by secondary reaction of tetrahydrofuran solvent to the acrylic resin recovered in the first dissolution step (S21).

상기 2차용해단계(S22)에서는 폐인조대리석에 함유된 착색제 등 저분자 유기 화학종은 용해하여 불순물을 제거하도록 구성한다.In the second dissolution step (S22), low-molecular organic chemical species such as colorants contained in the waste artificial marble are dissolved to remove impurities.

상기 1차용해단계(S21) 및 2차용해단계(S22)에서는, 반응 온도를 테트라하이드로퓨란 용매의 비등점인 66℃ 온도로 승온하고 반응기 상부로 증발하여 응축되는 용매와 아크릴 수지를 회수하도록 이루어진다. 상기 1차용해단계(S21) 및 2차용해단계(S22)에서는 환류냉각장치를 이용해 증발되는 THF 기체를 응축시켜 반응기로 환원함으로써 추출 효율을 극대화하도록 구성한다.In the first dissolution step (S21) and the second dissolution step (S22), the reaction temperature is raised to 66°C, which is the boiling point of the tetrahydrofuran solvent, and the solvent and acrylic resin that evaporate and condense to the top of the reactor are recovered. In the first dissolution step (S21) and the second dissolution step (S22), the evaporated THF gas is condensed using a reflux cooling device and returned to the reactor to maximize extraction efficiency.

상기 PMMA회수단계(S23)는 상기 2차용해단계(S22)에서 회수한 아크릴 수지를 분별 증류하여 불순물을 층분리하고 PMMA를 회수하는 단계이다.The PMMA recovery step (S23) is a step of fractionating the acrylic resin recovered in the secondary dissolution step (S22) to separate impurities and recover PMMA.

상기 PMMA회수단계(S23)에서는, 아크릴 수지에 증류수 및 CaCl, NaCl을 투입하고 60 ~ 65℃ 온도에서 분별 증류하여 물 및 수산화알루미늄과, 용매 및 PMMA를 상분리하고 PMMA를 회수하도록 이루어진다. 상분리 과정에서 THF가 물에 일부 용해되는 경향이 있으므로 소량의 CaCl, NaCl을 투입하여 물의 극성을 올림으로써 THF의 용해를 방지하도록 구성한다.In the PMMA recovery step (S23), distilled water, CaCl, and NaCl are added to the acrylic resin and subjected to fractional distillation at a temperature of 60 to 65° C. to phase separate water and aluminum hydroxide, the solvent, and PMMA, and recover PMMA. Since THF tends to partially dissolve in water during the phase separation process, a small amount of CaCl and NaCl are added to increase the polarity of water to prevent dissolution of THF.

상기 재생MMA수득단계(S30)는 상기 PMMA수득단계(S20)에서 수득한 PMMA를 진공해중합 반응에 의해 정제하여 재생 MMA를 수득하는 단계이다.The regenerated MMA obtaining step (S30) is a step of purifying the PMMA obtained in the PMMA obtaining step (S20) by vacuum depolymerization to obtain regenerated MMA.

상기 재생MMA수득단계(S30)에서는 상기 PMMA수득단계(S20)에 의해 회수한 아크릴 수지를 진공상태를 유지하는 진공해중합을 통해 열분해하여 이종 화학종을 제거하고 고분자 가공조제의 원료 단량체로 사용하기에 적합한 순도 97% 이상의 아크릴 단량체인 고순도 재생 MMA를 수득하도록 이루어진다.In the recycled MMA acquisition step (S30), the acrylic resin recovered in the PMMA acquisition step (S20) is pyrolyzed through vacuum depolymerization while maintaining a vacuum state to remove heterogeneous chemical species and to use it as a raw material monomer for a polymer processing aid. This is done to obtain high purity regenerated MMA, which is an acrylic monomer of a suitable purity of at least 97%.

상기 재생MMA수득단계(S30)는 MMA가스회수단계(S31)와, 응축MMA회수단계(S32)와, MMA회수단계(S33)를 포함한다.The regenerated MMA acquisition step (S30) includes an MMA gas recovery step (S31), a condensed MMA recovery step (S32), and an MMA recovery step (S33).

상기 MMA가스회수단계(S31)는 상기 PMMA수득단계(S20)에서 수득한 PMMA를 진공해중합 반응하여 가스상의 MMA를 회수하는 단계이다.The MMA gas recovery step (S31) is a step of recovering gaseous MMA by vacuum depolymerizing the PMMA obtained in the PMMA obtaining step (S20).

상기 MMA가스회수단계(S31)에서는 진공챔버에 PMMA를 투입하고 0.1Torr 이하의 진공 상태에서 200 ~ 250℃ 온도에서 분해 반응하여 가스상의 MMA를 회수하도록 이루어진다.In the MMA gas recovery step (S31), PMMA is introduced into a vacuum chamber and decomposed at a temperature of 200 to 250°C in a vacuum of 0.1 Torr or less to recover gaseous MMA.

상기 MMA가스회수단계(S31)에서는 진공 저온 해중합 조건에서 분해 반응을 진행함으로써, 기존에 500℃ 이상의 고온 열분해 시 인조대리석의 혼합물 충전제로 사용된 수산화알루미늄의 열분해가 빠르게 진행되면서 깁사이트(gibbsite)에서 감마-알루미나(γ-Al2O3)로 상변이가 일어나게 되어 아크릴 수지의 수율을 크게 저하시키는 문제를 배제하도록 구성한다.In the MMA gas recovery step (S31), the decomposition reaction proceeds under vacuum low-temperature depolymerization conditions, so that the thermal decomposition of aluminum hydroxide, which was previously used as a mixture filler for artificial marble during high-temperature pyrolysis above 500°C, progresses rapidly and gibbsite is formed. It is designed to eliminate the problem of significantly reducing the yield of acrylic resin due to phase transition to gamma-alumina (γ-Al2O3).

상기 응축MMA회수단계(S32)는 상기 MMA가스회수단계(S31)에서 회수한 가스상의 MMA를 가열 증류하여 응축 MMA를 회수하는 단계이다.The condensed MMA recovery step (S32) is a step of recovering condensed MMA by heating and distilling the gaseous MMA recovered in the MMA gas recovery step (S31).

상기 응축MMA회수단계(S32)에서는 증류장치에서 MMA의 비등점인 101℃ 온도에서 가열하여 물과 함께 증류되는 응축 MMA를 회수하도록 이루어진다.In the condensed MMA recovery step (S32), condensed MMA distilled together with water is recovered by heating at a temperature of 101° C., which is the boiling point of MMA, in a distillation device.

상기 MMA회수단계(S33)는 상기 응축MMA회수단계(S32)에서 회수한 응축 MMA를 분별 증류하여 물을 층분리하고 정제된 재생 MMA를 회수하는 단계이다.The MMA recovery step (S33) is a step of fractionating the condensed MMA recovered in the condensed MMA recovery step (S32) to separate the water layers and recovering the purified recycled MMA.

상기 MMA회수단계(S33)에서는 응축 MMA를 95 ~ 100℃ 온도에서 분별 증류하여 물과 MMA를 층분리하고 상층부에 정제된 재생 MMA를 회수하도록 이루어진다.In the MMA recovery step (S33), the condensed MMA is fractionally distilled at a temperature of 95 to 100° C. to separate water and MMA, and the purified recycled MMA is recovered in the upper layer.

상기 재생MMA수득단계(S30)에서 수득한 재생 MMA는 유화중합 반응에 의해 아크릴계 고분자 가공조제를 제조하는 고분자가공조제제조단계(S40)를 더 포함한다.The regenerated MMA obtained in the regenerated MMA obtaining step (S30) further includes a polymer self-processing aid manufacturing step (S40) of producing an acrylic polymer processing aid by an emulsion polymerization reaction.

상기 고분자가공조제제조단계(S40)에서는 상기 재생MMA수득단계(S30)에서 수득한 순도 97%이상의 재생 MMA를 이용해 바닥재, 창호, 조경 등 각종 건축 자재로 사용되는 아크릴계 고분자 가공조제 분말을 제조하도록 구성한다.In the polymer processing aid manufacturing step (S40), acrylic polymer processing aid powder used in various building materials such as flooring, windows, and landscaping is manufactured using recycled MMA with a purity of 97% or higher obtained in the recycled MMA acquisition step (S30). do.

상기 고분자가공조제제조단계(S40)는는 유화액조성단계(S41)와, 유화중합단계(S42)와, 응집단계(S43)와, 분말화단계(S44)를 포함한다.The polymer self-processing preparation step (S40) includes an emulsion composition step (S41), an emulsion polymerization step (S42), an aggregation step (S43), and a powdering step (S44).

상기 유화액조성단계(S41)는 반응기에 물과 재생 MMA를 1 : 1~5중량비로 투입하고 유화제를 첨가한 후 교반하여 유화액을 조성하는 단계이다.The emulsion composition step (S41) is a step of forming an emulsion by adding water and regenerated MMA to the reactor at a weight ratio of 1:1 to 5, adding an emulsifier, and stirring.

상기 유화액조성단계(S41)에서는 물 및 재생 MMA를 혼합하고 OLEIC, STEARIC, FATTY, LAURYL, RESIN 등 친유성 유화제를 0.5 ~ 5중량부 첨가하여 유화액을 조성한다. In the emulsion composition step (S41), water and regenerated MMA are mixed and 0.5 to 5 parts by weight of a lipophilic emulsifier such as OLEIC, STEARIC, FATTY, LAURYL, and RESIN is added to form an emulsion.

상기 재생 MMA의 순도에 따라서 가공조제의 분자량은 높아지며, 상기 물의 함량이 재생 MMA 대비 증가할 수록 유화중합단계(S42)에서 온도의 제어가 용이하여 가공조제의 분자량을 증대하기 용이하므로 상기 범위에서 조절할 수 있다.Depending on the purity of the regenerated MMA, the molecular weight of the processing aid increases. As the water content increases compared to the regenerated MMA, it is easier to control the temperature in the emulsion polymerization step (S42), making it easier to increase the molecular weight of the processing aid, so it can be adjusted within the above range. You can.

상기 유화제의 함량이 높을수록 가공조제의 입자 크기가 작아지고 분자량은 높아지므로 상기 범위에서 조절할 수 있다.The higher the content of the emulsifier, the smaller the particle size of the processing aid and the higher the molecular weight, so it can be adjusted within the above range.

상기 유화중합단계(S42)는 유화액에 개시제를 투입하고 30 ~ 80℃로 승온하여 유화중합 반응에 의해 고분자 유화액을 조성하는 단계이다.The emulsion polymerization step (S42) is a step of forming a polymer emulsion through an emulsion polymerization reaction by adding an initiator to the emulsion and raising the temperature to 30 to 80°C.

상기 유화중합단계(S42)에서 중합온도는 30 ~ 80℃, 바람직하게는 60 ~ 80℃에서 실시하도록 구성한다.In the emulsion polymerization step (S42), the polymerization temperature is 30 to 80°C, preferably 60 to 80°C.

상기 개시제는 황산칼륨(KPS)을 사용하며 0.01 ~ 1중량부를 첨가한다. 개시제의 함량이 많을수록 가공조제의 분자량이 낮아지므로 상기 범위 내에서 조절할 수 있다.The initiator uses potassium sulfate (KPS) and adds 0.01 to 1 part by weight. As the content of the initiator increases, the molecular weight of the processing aid decreases, so it can be adjusted within the above range.

상기 응집단계(S43)는 고분자 유화액에 응집제를 투입하여 고분자 가공조제를 응집하는 단계이다.The coagulation step (S43) is a step of coagulating the polymer processing aid by adding a coagulant to the polymer emulsion.

상기 응집단계(S43)에서는 CaCl2 15중량%와 물 85중량%를 혼합하여 조성한 응집제를 고분자 유화액에 투입하여 물과 고분자 물질을 분리하고 슬러리 상태의 고분자 가공조제를 조성하도록 이루어진다.In the coagulation step (S43), a coagulant prepared by mixing 15% by weight of CaCl 2 and 85% by weight of water is added to the polymer emulsion to separate water and polymer materials and form a slurry-like polymer processing aid.

상기 분말화단계(S44)는 응집된 고분자 가공조제를 진공 및 원심분리에 의해 탈수 및 건조하고 목적하는 입도의 고분자 가공조제 분말을 수득하는 단계이다.The powdering step (S44) is a step of dehydrating and drying the aggregated polymer processing aid by vacuum and centrifugation to obtain a polymer processing aid powder of the desired particle size.

상기 분말화단계(S44)에서는 슬러리 상태의 고분자 가공조제를 진공건조, 원심분리에 의해 수분을 제거하고 열풍 또는 스프레이 드라이어 공정을 통해 수분 함량이 1% 이내의 고분자 가공조제 분말을 수득하도록 구성한다.In the powdering step (S44), moisture is removed from the slurry-state polymer processing aid by vacuum drying and centrifugation, and a polymer processing aid powder with a moisture content of less than 1% is obtained through a hot air or spray dryer process.

이하에서는 전술한 바와 같은 구성으로 이루어지는 본 발명을 포함하는 실시 예를 구성하고 그에 따른 효과에 대해서 면밀하게 파악하고자 한다.Hereinafter, an embodiment including the present invention configured as described above will be constructed and the resulting effects will be closely examined.

<시험 예 1><Test Example 1>

본 발명에 따른 폐인조대리석으로부터 고순도 MMA를 회수하는 방법에서 사용하는 THF 용매의 효과를 파악하기 위하여, 폐인조대리석 내 아크릴 수지를 용해시킬 수 있는 용매 후보군(THF, Toluen, MEK, Acetone)을 선정하고 용매 별 PMMA 용해 반응시간 측정 시험을 실시한다. 반응 온도는 60℃, 용해 농도 20%에서 시험하였으며, 그 결과는 하기 표 1과 같이 THF > MEK > Acetone > Toluen 순으로 용매 반응 시간이 빠른 것을 확인하였다.In order to determine the effect of the THF solvent used in the method of recovering high purity MMA from waste artificial marble according to the present invention, solvent candidates (THF, Toluen, MEK, Acetone) that can dissolve the acrylic resin in waste artificial marble were selected. And conduct a test to measure the PMMA dissolution reaction time for each solvent. The reaction temperature was tested at 60°C and a dissolution concentration of 20%, and the results showed that the solvent reaction time was fast in the order of THF > MEK > Acetone > Toluen, as shown in Table 1 below.

THFTHF ToluenToluen MekMek AcetonAceton 1차(반응시간)1st (reaction time) 105105 150150 128128 132132 2차(반응시간)2nd (reaction time) 110110 152152 117117 129129

<시험 예 2><Test Example 2>

본 발명에 따른 폐인조대리석으로부터 고순도 MMA를 회수하는 방법에서 THA 용매에 의해 추출되는 PMMA의 점도를 측정하여 분자량 예상치를 확인하였다. 점도 측정은 THA와 PMMA가 혼합된 상태에서 1/10으로 희석하여 용해도 별로 1차 내지 5차에 걸쳐 측정하였으며 그 결과는 하기 표 2와 같다.In the method of recovering high purity MMA from waste artificial marble according to the present invention, the viscosity of PMMA extracted by THA solvent was measured to confirm the estimated molecular weight. The viscosity was measured 1 to 5 times according to solubility by diluting the mixture of THA and PMMA to 1/10, and the results are shown in Table 2 below.

용해도solubility 1차Primary 2차Secondary 3차3rd 4차4th 5차5th 1%One% 12.27"12.27" 12.55"12.55" 12.34"12.34" 12.36"12.36" 12.46"12.46" 2%2% 16.94"16.94" 16.86"16.86" 16.37"16.37" 16.16"16.16" 16.15"16.15" 3%3% 25.31"25.31" 24.97"24.97" 24.74"24.74" 24.99"24.99" 24.81"24.81" 5%5% 39.13"39.13" 39.58"39.58" 39.98"39.98" 39.22"39.22" 39.44"39.44" 7%7% 69.34"69.34" 69.38"69.38" 71.88"71.88" 70.46"70.46" 39.35"39.35" 10%10% 166.51"166.51" 164.44"164.44" 167.77"167.77" 167.54"167.54" 166.49"166.49" 15%15% 507.58"507.58" 526.20"526.20" 480.08"480.08" 461.75"461.75" 479.72"479.72"

<시험 예 3><Test Example 3>

본 발명에 따른 폐인조대리석으로부터 고순도 MMA를 회수하는 방법의 고분자가공조제제조단계(S40)에서 반응 조건 및 원료의 함량 별(표 3)로 1차 내지 6차에 걸쳐 고분자 가공조제의 점도를 측정(표 4)하여 분자량 예상치를 확인하였다.In the polymer processing aid manufacturing step (S40) of the method for recovering high-purity MMA from waste artificial marble according to the present invention, the viscosity of the polymer processing aid is measured from the first to the sixth time according to reaction conditions and content of raw materials (Table 3). (Table 4) confirmed the molecular weight estimate.

1차Primary 2차Secondary 3차3rd 4차4th 5차5th 6차6th 온도(℃)Temperature (℃) 8080 6060 8080 6060 6060 6060 물(ml)water (ml) 500500 500500 500500 500500 10001000 10001000 MMA(ml)MMA(ml) 500500 500500 500500 500500 500500 500500 개시제(g)Initiator (g) 0.020.02 0.020.02 0.040.04 0.040.04 0.020.02 0.040.04 응집제(g)Coagulant (g) 1010 1010 1010 1010 1010 1010 교반속도Stirring speed 250250 250250 250250 250250 250250 250250

1차Primary 2차Secondary 3차3rd 4차4th 5차5th 6차6th 점도1Viscosity 1 137.42137.42 170.12170.12 85.1285.12 102.14102.14 190.06190.06 115.08115.08 점도2Viscosity 2 142.36142.36 175.43175.43 88.4288.42 109.70109.70 185.42185.42 116.42116.42 평균average 139.89139.89 172.77172.77 86.7786.77 105.92105.92 187.74187.74 115.75115.75 분자량(예상)Molecular weight (estimated) 400만4 million 500만5 million 250만2.5 million 300만3 million 550만5.5 million 350만3.5 million

상기 표 3 및 표 4에서와 같이 중합 온도가 높을수록, 개시제의 양이 많아질 수록 분자량이 낮아지며, 물의 양이 많아질수록 분자량이 상승하였다. 따라서 전체적인 반응 속도를 늦추고 적정 온도에서 중합반응을 시키는 것이 고분자 가공조제를 얻는데 유리한 것을 확인할 수 있다. As shown in Tables 3 and 4, the higher the polymerization temperature and the larger the amount of initiator, the lower the molecular weight, and the higher the amount of water, the higher the molecular weight. Therefore, it can be seen that slowing down the overall reaction rate and conducting the polymerization reaction at an appropriate temperature is advantageous in obtaining a polymer processing aid.

또한, 도 5에는 고분자 가공조제 기성품(pa828, pa912, pa932, pa950, pa970)과 본 발명에 따른 고분자 가공조제를 중합 온도 40℃를 기준으로 1차 내지 5차에 걸쳐 점도와, 상대점도를 측정하여 비교한 그래프를 도시한 바, 본 발명에 따른 고분자 가공조제의 평균 점도가 68.594로 측정되어 예상 분자량으로 환산 시 1000만 정도 수준의 고분자 가공조제로 제조되는 것을 확인할 수 있다.In addition, Figure 5 shows the viscosity and relative viscosity of ready-made polymer processing aids (pa828, pa912, pa932, pa950, pa970) and the polymer processing aid according to the present invention over the first to fifth rounds based on a polymerization temperature of 40°C. As shown in the comparison graph, the average viscosity of the polymer processing aid according to the present invention was measured to be 68.594, and it can be confirmed that it is manufactured as a polymer processing aid of about 10 million when converted to the expected molecular weight.

<시험 예 4><Test Example 4>

종래 기술에 따른 폐인조대리석으로부터 아크릴 수지 및 알루미나의 제조 공정과, 본 발명에 따른 폐인조대리석으로부터 고순도 MMA를 회수하는 방법에 의한 고분자 가공조제의 수율(전환율) 계산 시험을 실시하고, 그 결과를 비교한다.A yield (conversion rate) calculation test was conducted for polymer processing aids using the manufacturing process of acrylic resin and alumina from waste artificial marble according to the prior art and the method for recovering high purity MMA from waste artificial marble according to the present invention, and the results were reported. Compare.

1) 종래 기술에 따른 MMA 회수 공정은 크게 폐인조대리석→유산소 저온 열분해→무정형 슈도-뵈마이트→용해→불순물제거→여과→석출 공정으로 이루어진다.1) The MMA recovery process according to the prior art largely consists of the following processes: waste artificial marble → aerobic low-temperature pyrolysis → amorphous pseudo-boehmite → dissolution → impurity removal → filtration → precipitation.

원료물질로서 폐인조대리석 360kg 중에서 45%를 차지하는 아크릴 수지 162kg 및 55%를 차지하는 수산화알루미늄 198kg으로 구성되어 있다.The raw material consists of 162 kg of acrylic resin, which accounts for 45% of 360 kg of waste artificial marble, and 198 kg of aluminum hydroxide, which accounts for 55%.

유산소 저온 열분해에서 주탱크 및 출구포집탱크에 각각 약 36L 및 6L의 기체상 아크릴 수지가 존재하여 총 42L의 기체상 아크릴 수지가 수득된다. 이를 아크릴 수지의 비중(0.956g/L)으로 환산 시, 수득된 아크릴 수지는 40kg으로 계산되어 원료인 폐인조대리석 내에 존재하는 162kg의 아크릴 수지 대비 약 25% 수득률을 나타낸다.In aerobic low-temperature pyrolysis, about 36 L and 6 L of gaseous acrylic resin are present in the main tank and outlet collection tank, respectively, so that a total of 42 L of gaseous acrylic resin is obtained. When converted to the specific gravity of the acrylic resin (0.956 g/L), the obtained acrylic resin is calculated to be 40 kg, which represents a yield of about 25% compared to the 162 kg of acrylic resin present in the waste artificial marble, which is the raw material.

이후 단계에서 얻은 응축수 183L에 2%로 포함된 아크릴 수지(4L)까지 포함 시에는 약 27% 수득률로 계산될 수 있다. 수득되지 않은 아크릴 수지 중 94kg은 집진처리 시 대기 방출된 것이고, 24kg은 배관라인 및 원료에 수용된 것으로 판단된다.When 2% acrylic resin (4L) is included in 183L of condensate obtained in the subsequent step, the yield can be calculated to be about 27%. Of the unobtained acrylic resin, 94 kg was released into the atmosphere during dust collection, and 24 kg was believed to have been contained in pipelines and raw materials.

폐인조대리석을 유산소 저온 열분해 반응을 통해 기체상 아크릴 수지가 제거된 무정형 슈도 뵈마이트를 용해→불순물제거→여과→석출 공정을 거쳐 고백색 수산화알루미늄을 수득하였으며, 이 수산화알루미늄을 고온 소성공정을 통해 약 125kg의 Al2O3 분말이 포집되었다.Through an aerobic low-temperature pyrolysis reaction of waste artificial marble, amorphous pseudoboehmite with gaseous acrylic resin removed was dissolved → impurities removed → filtration → precipitation → white-colored aluminum hydroxide was obtained, and this aluminum hydroxide was subjected to a high-temperature sintering process. Approximately 125 kg of Al 2 O 3 powder was collected.

이는 약 63%의 수율에 해당하지만, 원료인 폐인조대리석 내에 존재하는 수산화알루미늄 198kg 중에서 소성과정에서 2Al(OH)2 -> Al2O3 + 3H2O 반응에 의해 증발한 수분(H2O)은 35% 수준이며, 순수 분진으로 빠져나간 Al2O3 3.7kg를 제외하고 계산된 수득률은 약 95%이다. 또한, 공정 전체에서 총 183L의 응축수가 포집되었으며 이 중 외부 공기로부터 흡수된 수분에 해당하는 약 60%를 제외하면 실제 원료로부터 수득된 수분은 약 71L로 파악되어, 원료인 폐인조대리석의 총 중량 360kg의 약 19.5%에 해당하는 양으로 수분이 포집되었음을 알 수 있다.(이 중 2%는 아크릴 수지를 포함)This corresponds to a yield of about 63% , but among 198 kg of aluminum hydroxide present in the waste artificial marble, which is the raw material, the moisture ( H 2 O ) is at the level of 35%, and the calculated yield is about 95%, excluding 3.7 kg of Al 2 O 3 that escaped as pure dust. In addition, a total of 183L of condensate was collected throughout the process. Excluding about 60% of this, which corresponds to moisture absorbed from the external air, the actual moisture obtained from the raw materials was found to be about 71L, which is the total weight of waste artificial marble, which is the raw material. It can be seen that moisture was captured in an amount equivalent to about 19.5% of 360kg (2% of this includes acrylic resin).

즉, 폐인조대리석 360kg을 투입할 경우, 이로부터 최종적으로 포집된 양은 아크릴 수지 40kg, Al2O3 분말 125kg, 응축수 71kg이므로, 결과적으로, 폐인조대리석 360kg 으로부터 총 165kg의 재활용 원료(아크릴 수지 및 Al2O3 분말)가 수득되어, 전체 수율은 약 45.8%로 산출된다.In other words, when 360 kg of waste artificial marble is input, the final collected amount is 40 kg of acrylic resin, 125 kg of Al 2 O 3 powder, and 71 kg of condensate. As a result, a total of 165 kg of recycled raw materials (acrylic resin and Al 2 O 3 powder) was obtained, and the overall yield was calculated to be about 45.8%.

2) 전술한 바와 같은 본 발명에 의한 폐인조대리석으로부터 고순도 MMA를 회수하는 방법에 따라서 액상분리단계(S10)→PMMA수득단계(S20)→재생MMA수득단계(S30)→고분자가공조제제조단계(S40)를 실시하고 수율을 계산한다. 고분자가공조제제조단계(S40)에서 투입되는 원료의 함량은 물 300Kg, MMA 100Kg , 개시제 1Kg, 유화제 2Kg이다.2) According to the method of recovering high purity MMA from waste artificial marble according to the present invention as described above, liquid phase separation step (S10) → PMMA acquisition step (S20) → recycled MMA acquisition step (S30) → polymer self-processing agent manufacturing step ( S40) is performed and the yield is calculated. The content of raw materials input in the polymer processing agent manufacturing step (S40) is 300 kg of water, 100 kg of MMA, 1 kg of initiator, and 2 kg of emulsifier.

수율 측정 방법은 Net Total(총투입량) × TSC(total solid content) - (유화제+개시제) = (물+개시제+유화제+MMA) × (개시제+유화제+PA) / (물+개시제+유화제+MMA) - (유화제+개시제)와 같다. TSC는 채취된 시료를 105℃에서 물과 MMA단량체를 날려보내고 고형분만 남았을 때의 고형분의 비율이다.The yield measurement method is Net Total (total input) × TSC (total solid content) - (emulsifier + initiator) = (water + initiator + emulsifier + MMA) × (initiator + emulsifier + PA) / (water + initiator + emulsifier + MMA ) - Same as (emulsifier + initiator). TSC is the solid content ratio when water and MMA monomer are blown away from the sample collected at 105°C and only the solid content remains.

따라서, 예컨대 중간시료채취(A=100g), 채취고형분(B=24g) 일 때, TSC는 B/A = 0.24이므로, 수율(전환율) = 403Kg × 0.24 - (1+2) = 93.72%로 산출되므로, 종래 기술에 비해 본 발명에 의한 수율이 현저히 높은 것을 확인하였다.Therefore, for example, when intermediate sample collection (A = 100g) and collected solids (B = 24g), TSC is B/A = 0.24, so yield (conversion rate) = 403Kg × 0.24 - (1+2) = 93.72%. Therefore, it was confirmed that the yield according to the present invention was significantly higher than that of the prior art.

이상에서와 같은 본 발명에 따른 폐인조대리석으로부터 고순도 MMA를 회수하는 방법은 폐인조대리석에 함유된 성분으로부터 고순도 MMA를 분리하고 고분자 가공조제의 제조에 재활용하도록 하는 방법을 제공한다.The method for recovering high-purity MMA from waste artificial marble according to the present invention as described above provides a method for separating high-purity MMA from components contained in waste artificial marble and recycling it for the production of polymer processing aids.

본 발명은 종래 기술에 비해 매우 낮은 온도에서 처리가 이루어지므로 기존의 고온 열처리 과정에서 발생하는 문제점인 순도 및 수율 저하 문제를 극복할 수 있는 이점이 있다.Since the present invention is processed at a very low temperature compared to the prior art, it has the advantage of overcoming the problems of reduced purity and yield that occur in the existing high temperature heat treatment process.

또한, 본 발명은 종래에 폐인조대리석 100% 중량 전부를 고온 열분해하는 방식에 비해 용매 추출로 회수한 아크릴 수지만을 저온에서 열분해함으로써 에너지를 현저히 절감하고 생산성 향상에 기여할 수 있는 효과가 있다.In addition, the present invention has the effect of significantly saving energy and contributing to improved productivity by pyrolyzing only the acrylic resin recovered through solvent extraction at low temperature compared to the conventional method of pyrolyzing 100% of the entire waste artificial marble by weight at high temperature.

아울러, 본 발명은 재생 MMA를 유화중합을 통해 고분자 가공조제 또는 아크릴계 수지를 제조할 수 있으므로 기존에 고분자 가공 조제 수입을 대체할 수 있는 등의 다양한 효과가 있으므로 산업상 이용 가능성이 매우 클 것으로 기대된다.In addition, the present invention can produce polymer processing aids or acrylic resins through emulsion polymerization of recycled MMA, so it has various effects such as replacing the existing imports of polymer processing aids, so it is expected to have great industrial applicability. .

S10: 액상분리단계
S20: PMMA수득단계
S21: 1차용해단계
S22: 2차용해단계
S23: PMMA회수단계
S30: 재생MMA수득단계
S31: MMA가스회수단계
S32: 응축MMA회수단계
S33: MMA회수단계
S40: 고분자가공조제제조단계
S41: 유화액조성단계
S42: 유화중합단계
S43: 응집단계
S44: 분말화단계
S10: Liquid phase separation step
S20: PMMA acquisition step
S21: First dissolution step
S22: Secondary dissolution step
S23: PMMA recovery step
S30: Regenerative MMA acquisition stage
S31: MMA gas recovery step
S32: Condensed MMA recovery step
S33: MMA recovery stage
S40: Polymer self-processing manufacturing stage
S41: Emulsion composition step
S42: Emulsion polymerization step
S43: Aggregation step
S44: Powdering step

Claims (7)

폐인조대리석 분쇄물을 솔벤트 용제로 추출하여 고상의 무기물을 분리하고 아크릴 수지가 함유된 액상추출물을 수득하는 액상분리단계(S10)와,
상기 액상분리단계(S10)에서 수득한 액상추출물을 테트라하이드로퓨란 용매로 반응하여 PMMA를 수득하는 PMMA수득단계(S20)와,
상기 PMMA수득단계(S20)에서 수득한 PMMA를 진공해중합 반응에 의해 정제하여 재생 MMA를 수득하는 재생MMA수득단계(S30)를 포함하는 것을 특징으로 하는 폐인조대리석으로부터 고순도 MMA를 회수하는 방법.
A liquid phase separation step (S10) of extracting the pulverized waste artificial marble with a solvent to separate solid inorganic substances and obtain a liquid extract containing acrylic resin;
A PMMA obtaining step (S20) in which PMMA is obtained by reacting the liquid extract obtained in the liquid phase separation step (S10) with a tetrahydrofuran solvent,
A method for recovering high purity MMA from waste artificial marble, comprising a regenerated MMA obtaining step (S30) of purifying the PMMA obtained in the PMMA obtaining step (S20) by a vacuum depolymerization reaction to obtain recycled MMA.
제 1 항에 있어서,
상기 PMMA수득단계(S20)는,
액상분리단계(S10)에서 수득한 액상추출물에 테트라하이드로퓨란 용매를 1차 반응하여 아크릴 수지를 회수하는 1차용해단계(S21)와,
1차용해단계(S21)에서 회수한 아크릴 수지에 테트라하이드로퓨란 용매를 2차 반응하여 저분자 유기화합물을 용해하고 불용된 아크릴 수지를 회수하는 2차용해단계(S22)와,
2차용해단계(S22)에서 회수한 아크릴 수지를 분별 증류하여 불순물을 층분리하고 PMMA를 회수하는 PMMA회수단계(S23)를 포함하는 것을 특징으로 하는 폐인조대리석으로부터 고순도 MMA를 회수하는 방법.
According to claim 1,
In the PMMA acquisition step (S20),
A primary dissolution step (S21) in which the acrylic resin is recovered by first reacting the liquid extract obtained in the liquid phase separation step (S10) with a tetrahydrofuran solvent,
A secondary dissolution step (S22) in which the acrylic resin recovered in the first dissolution step (S21) is subjected to a secondary reaction with a tetrahydrofuran solvent to dissolve low-molecular-weight organic compounds and recover the undissolved acrylic resin,
A method for recovering high-purity MMA from waste artificial marble, comprising a PMMA recovery step (S23) of fractionating the acrylic resin recovered in the secondary dissolution step (S22) to separate impurities and recovering PMMA.
제 2 항에 있어서,
상기 1차용해단계(S21) 및 2차용해단계(S22)에서는,
반응 온도를 테트라하이드로퓨란 용매의 비등점인 66℃ 온도로 승온하고 반응기 상부로 증발하여 응축되는 용매와 아크릴 수지를 회수하도록 이루어지고,
상기 PMMA회수단계(S23)에서는,
아크릴 수지에 증류수 및 CaCl, NaCl을 투입하고 60 ~ 65℃ 온도에서 분별 증류하여 물 및 수산화알루미늄과, 용매 및 PMMA를 상분리하고 PMMA를 회수하도록 이루어지는 것을 특징으로 하는 폐인조대리석으로부터 고순도 MMA를 회수하는 방법.
According to claim 2,
In the first dissolution step (S21) and the second dissolution step (S22),
The reaction temperature is raised to 66°C, which is the boiling point of the tetrahydrofuran solvent, and the solvent and acrylic resin that evaporate and condense to the top of the reactor are recovered.
In the PMMA recovery step (S23),
A process for recovering high-purity MMA from waste artificial marble, characterized in that distilled water, CaCl, and NaCl are added to acrylic resin and fractionated distillation is performed at a temperature of 60 ~ 65 ℃ to phase separate water and aluminum hydroxide, solvent, and PMMA and recover PMMA. method.
제 1 항에 있어서,
상기 재생MMA수득단계(S30)는,
PMMA수득단계(S20)에서 수득한 PMMA를 진공해중합 반응하여 가스상의 MMA를 회수하는 MMA가스회수단계(S31)와,
MMA가스회수단계(S31)에서 회수한 가스상의 MMA를 가열 증류하여 응축 MMA를 회수하는 응축MMA회수단계(S32)와,
응축MMA회수단계(S32)에서 회수한 응축 MMA를분별 증류하여 물을 층분리하고 정제된 재생 MMA를 회수하는 MMA회수단계(S33)를 포함하는 것을 특징으로 하는 폐인조대리석으로부터 고순도 MMA를 회수하는 방법.
According to claim 1,
In the regenerative MMA acquisition step (S30),
An MMA gas recovery step (S31) in which gaseous MMA is recovered by vacuum depolymerization of PMMA obtained in the PMMA acquisition step (S20),
A condensed MMA recovery step (S32) in which condensed MMA is recovered by heating and distilling the gaseous MMA recovered in the MMA gas recovery step (S31),
Recovering high-purity MMA from waste artificial marble, comprising an MMA recovery step (S33) of fractionating the condensed MMA recovered in the condensed MMA recovery step (S32) to separate the water layers and recovering purified recycled MMA. method.
제 4 항에 있어서,
상기 MMA가스회수단계(S31)에서는,
진공챔버에 PMMA를 투입하고 0.1Torr 이하의 진공 상태에서 200 ~ 250℃ 온도에서 분해 반응하여 가스상의 MMA를 회수하고,
상기 응축MMA회수단계(S32)에서는,
증류장치에서 MMA의 비등점인 101℃ 온도에서 가열하여 물과 함께 증류되는 응축 MMA를 회수하도록 이루어지고,
상기 MMA회수단계(S33)에서는,
응축 MMA를 95 ~ 100℃ 온도에서 분별 증류하여 물과 MMA를 층분리하고 상층부에 정제된 재생MMA를 회수하도록 이루어지는 것을 특징으로 하는 폐인조대리석으로부터 고순도 MMA를 회수하는 방법.
According to claim 4,
In the MMA gas recovery step (S31),
PMMA is put into a vacuum chamber and decomposed at a temperature of 200 to 250°C in a vacuum of 0.1 Torr or less to recover gaseous MMA.
In the condensed MMA recovery step (S32),
In the distillation device, the condensed MMA that is distilled together with water is recovered by heating at a temperature of 101°C, which is the boiling point of MMA,
In the MMA recovery step (S33),
A method for recovering high purity MMA from waste artificial marble, comprising the steps of fractionating condensed MMA at a temperature of 95 to 100°C to separate water and MMA and recovering purified recycled MMA in the upper layer.
제 1 항에 있어서,
상기 재생MMA수득단계(S30)에서 수득한 재생 MMA를 유화중합 반응하여 아크릴계 고분자 가공조제를 제조하는 고분자가공조제제조단계(S40)를 더 포함하는 것을 특징으로 하는 폐인조대리석으로부터 고순도 MMA를 회수하는 방법.
According to claim 1,
Recovering high purity MMA from waste artificial marble further comprising a polymer self-processing aid manufacturing step (S40) of producing an acrylic polymer processing aid by emulsion polymerizing the recycled MMA obtained in the recycled MMA obtaining step (S30). method.
제 6 항에 있어서,
상기 고분자가공조제제조단계(S40)는,
반응기에 물과 재생 MMA를 1 : 1~5중량비로 투입하고 유화제를 첨가한 후 교반하여 유화액을 조성하는 유화액조성단계(S41)와,
유화액에 개시제를 투입하고 30 ~ 80℃로 승온하여 유화중합 반응에 의해 고분자 유화액을 조성하는 유화중합단계(S42)와,
고분자 유화액에 응집제를 투입하여 고분자 가공조제를 응집하는 응집단계(S43)와,
응집된 고분자 가공조제를 진공 및 원심분리에 의해 탈수 및 건조하고 목적하는 입도의 고분자 가공조제 분말을 수득하는 분말화단계(S44)를 포함하는 것을 특징으로 하는 폐인조대리석으로부터 고순도 MMA를 회수하는 방법.
According to claim 6,
In the polymer self-processing preparation step (S40),
An emulsion composition step (S41) in which water and regenerated MMA are added to the reactor at a weight ratio of 1:1 to 5, an emulsifier is added, and then stirred to form an emulsion;
An emulsion polymerization step (S42) in which an initiator is added to the emulsion and the temperature is raised to 30 to 80° C. to form a polymer emulsion through an emulsion polymerization reaction;
A coagulation step (S43) in which a coagulant is added to the polymer emulsion to coagulate the polymer processing aid,
A method for recovering high purity MMA from waste artificial marble, comprising a powdering step (S44) of dehydrating and drying the aggregated polymer processing aid by vacuum and centrifugation to obtain polymer processing aid powder of the desired particle size. .
KR1020220066845A 2022-05-31 2022-05-31 Method for recovering of high purity mma from waste artificial marble KR20230166632A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220066845A KR20230166632A (en) 2022-05-31 2022-05-31 Method for recovering of high purity mma from waste artificial marble

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220066845A KR20230166632A (en) 2022-05-31 2022-05-31 Method for recovering of high purity mma from waste artificial marble

Publications (1)

Publication Number Publication Date
KR20230166632A true KR20230166632A (en) 2023-12-07

Family

ID=89163755

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220066845A KR20230166632A (en) 2022-05-31 2022-05-31 Method for recovering of high purity mma from waste artificial marble

Country Status (1)

Country Link
KR (1) KR20230166632A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080078241A (en) 2007-02-22 2008-08-27 주식회사 엘지화학 A flooring material comprising ground products of artificial marble wastes and a preparation method thereof
KR100891378B1 (en) 2008-08-27 2009-04-02 (주)알앤이 Recovering method of methyl methacrylate and alumina from waste artificial marvel
KR101466011B1 (en) 2014-06-13 2014-11-27 주식회사 한국열기술 Preparation of acrylic resin and alumina from waste-scagliola by low-temperature pyrolysis under oxygen atmosphere
KR20150003122U (en) 2014-02-10 2015-08-19 박진효 Recovery Method Of MMA And Aluminium Compound From Waste Artificial Marble

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080078241A (en) 2007-02-22 2008-08-27 주식회사 엘지화학 A flooring material comprising ground products of artificial marble wastes and a preparation method thereof
KR100891378B1 (en) 2008-08-27 2009-04-02 (주)알앤이 Recovering method of methyl methacrylate and alumina from waste artificial marvel
KR20150003122U (en) 2014-02-10 2015-08-19 박진효 Recovery Method Of MMA And Aluminium Compound From Waste Artificial Marble
KR101466011B1 (en) 2014-06-13 2014-11-27 주식회사 한국열기술 Preparation of acrylic resin and alumina from waste-scagliola by low-temperature pyrolysis under oxygen atmosphere

Similar Documents

Publication Publication Date Title
CN103726074B (en) Method for producing aluminum electrolyte by using aluminum electrolysis waste materials and recycling carbon
CN106238439B (en) The method that defluorinate is evaporated in vacuo in aluminium electrolytic tank
JP2013532232A (en) Metal extraction from aluminum-containing iron ore and titanium-containing iron ore and residues
CN108675911B (en) Calcium carbide acetylene production process capable of reducing generation of calcium carbide slag
KR20090083042A (en) Pyrolysis disposal system for waste-scagliola and method using the same
WO2016134455A1 (en) Process for making high-purity aluminum oxide
RU2005109907A (en) HYDROEXTRACTION OF KEROGEN IN SUPERCRITICAL CONDITIONS AND WATER EXTRACTION OF ALUMINUM OXIDE AND CALCINATED SODA WITH RECEIVING THE RESIDUE FOR PRODUCTION OF PORTLAND CEMENT
CN109265026B (en) Dechlorination method of titanium extraction tailings, product of titanium extraction tailings, slag micro powder, application of slag micro powder and product of slag micro powder
KR100982728B1 (en) Recovering method of methyl methacrylate and aluminum compound from waste scagliola by acids treatment
CN114590822A (en) Method for refining waste salt containing organic matters
KR20230166632A (en) Method for recovering of high purity mma from waste artificial marble
CN1803589A (en) Method for producing feed grade dicalcium phosphate and industrial grade phosphoric acid by phosphate ore hydrochloric acid reclamation process
KR101466011B1 (en) Preparation of acrylic resin and alumina from waste-scagliola by low-temperature pyrolysis under oxygen atmosphere
WO2011145774A1 (en) Method for processing waste scagliola
CN111994937A (en) Method for recovering calcium fluoride from fluorine-containing sludge
KR101436523B1 (en) Method for manufacturing refractory material using waste fire brick
CN1302993C (en) Production of light magnesium carbonate or light magnesium oxide
KR101145280B1 (en) Recovering method of methyl methacrylate and aluminum compound from waste scagliola by alkali treatment
KR101550136B1 (en) Recovery Method Of Aluminium Compound And PMMA From Waste Artificial Marble By Physical And Chemical Treatment
CN1315784C (en) Industrial production of natural capsaicin crystal by molecular distilling and washing method
KR101414355B1 (en) Recovering apparatus of Methyl MethAcrylate and Alumina from Waste Artificial Marvel and method using the same
JP4752777B2 (en) Plastic disassembly / recovery method
CN102976306A (en) Carbon high-temperature calcination method
CN106673055A (en) Method for recycling waste mercury catalyst from polyvinyl chloride production based on calcium carbide method
KR101174203B1 (en) Recovering Method of Methyl MethAcrylate from Waste Artificial Marvel