KR101436523B1 - Method for manufacturing refractory material using waste fire brick - Google Patents

Method for manufacturing refractory material using waste fire brick Download PDF

Info

Publication number
KR101436523B1
KR101436523B1 KR20120142668A KR20120142668A KR101436523B1 KR 101436523 B1 KR101436523 B1 KR 101436523B1 KR 20120142668 A KR20120142668 A KR 20120142668A KR 20120142668 A KR20120142668 A KR 20120142668A KR 101436523 B1 KR101436523 B1 KR 101436523B1
Authority
KR
South Korea
Prior art keywords
slurry
refractory
mgo
waste
particle size
Prior art date
Application number
KR20120142668A
Other languages
Korean (ko)
Other versions
KR20140074571A (en
Inventor
김동한
Original Assignee
(주)포스코켐텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)포스코켐텍 filed Critical (주)포스코켐텍
Priority to KR20120142668A priority Critical patent/KR101436523B1/en
Publication of KR20140074571A publication Critical patent/KR20140074571A/en
Application granted granted Critical
Publication of KR101436523B1 publication Critical patent/KR101436523B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/04Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62204Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products using waste materials or refuse
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/62615High energy or reactive ball milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Abstract

본 발명의 일측면은 종래의 내화벽돌 재생기술에 비하여 비용적 손실, 에너지 소비 및 환경오염을 방지할 수 있는 새로운 내화벽돌 재생기술을 제공하고자 한다.An aspect of the present invention is to provide a new refractory brick recovery technology that can prevent cost loss, energy consumption, and environmental pollution compared to the conventional refractory brick recovery technology.

Description

폐내화벽돌을 이용하는 내화재 원료의 제조방법{METHOD FOR MANUFACTURING REFRACTORY MATERIAL USING WASTE FIRE BRICK}TECHNICAL FIELD [0001] The present invention relates to a method for manufacturing a refractory material using a refractory brick,

본 발명은 폐내화벽돌을 이용하는 내화재 원료의 제조방법에 관한 것이다.
FIELD OF THE INVENTION The present invention relates to a method for producing refractory materials using waste refractory bricks.

내화물 원료의 가격상승에 따른 제조원가 절감과 친환경 제품 생산을 위해서 사용 후 내화물을 재활용함으로써 제조원가를 절감하는 다양한 방법들이 시도되고 있다.
Various methods of reducing the manufacturing cost by recycling the refractory after use have been attempted in order to reduce the manufacturing cost due to the rise in the price of the refractory raw material and to produce the eco-friendly product.

특히, 불소성 MgO-C벽돌에 사용되는 원료는 97%이상의 고순도 전융 MgO, Cl와 흑연이 사용되고 있고 사용 후에는 폐기처리 되거나 그 일부분이 분리되어 내화물 원료로서 재활용되고 있다.
Particularly, the raw materials used for the fluoric MgO-C brick are 97% or more of high purity MgO, Cl and graphite, and after use, they are disused or partly separated and recycled as refractory raw materials.

전로, 전기로, 래들용으로 적용되는 MgO-C(마그카본) 벽돌은 사용 후에 수화에 따른 팽창 현상과 높은 탄소함량으로 인해 재활용되는 분야가 제한적이다. 현재 수화에 따른 부피팽창을 제거하기 위하여 사용 후 벽돌을 수열처리를 실시한 후 내화물 원료로 재활용하고 있으나 그 함량이 늘어날수록 제품품질이 저하되어 적용량이 한정적이다.
MgO-C (mag carbon) bricks used for converter, electric furnace, and ladle are limited in their recycling due to the expansion phenomenon due to hydration and high carbon content after use. In order to eliminate the volume expansion due to hydration, the bricks are recycled as refractory materials after hydrothermal treatment. However, as the content of the bricks is increased, the quality of the products is decreased and the application amount is limited.

MgO-C 벽돌은 정련용 철강공정에 사용되는 대표적인 내화재로서 내화재료의 단일품목 중에서 가장 많은 양이 발생, 수거되고 있다. 사용 후 MgO-C 벽돌을 재활용하기 위해서 수열처리를 통해 분화되는 원료를 사전에 제거한 뒤 분쇄하여 MgO-C 벽돌의 원료로서 일부 적용이 가능하나 화학적인 특성이나 입도분포의 편차가 심화되어 사용량이 증대될수록 내화물의 품질이 급격히 저하된다.
MgO-C bricks are a typical refractory used in refining steel processes, and the largest amount of refractory materials is produced and collected. In order to recycle the MgO-C bricks after use, some materials can be applied as raw materials of MgO-C bricks after removing raw materials to be differentiated through hydrothermal treatment in advance and then pulverized. However, the chemical characteristics and the variation of particle size distribution are increased, The quality of the refractory material deteriorates sharply.

폐MgO-C 벽돌을 재생시켜 다시 내화벽돌로 재활용할 수 있는 종래의 대표적인 정제기술로서 폐MgO-C 벽돌내에 대기 중에 수분과 만나서 부피팽창을 일으키는 Al4C3 물질을 수화반응을 통해 Al(OH)3를 생성시킨 뒤 고온에서 열처리함으로써 사전에 제거하는 기술을 들 수 있다.
As a conventional refining technology capable of recovering waste MgO-C bricks and recycling them as refractory bricks, Al (OH) 3 is introduced into the waste MgO-C bricks through the hydration reaction of Al4C3 material, And then removing it by heat treatment at a high temperature.

상기 기술은 부피팽창을 일으키는 물질인 Al4C3를 제거하기 위해서 폐MgO-C 벽돌 가동면에 부착되어 있는 변질층을 제거하고 100℃ 온도의 물에 7~8시간 숙성시키고 숙성된 벽돌을 200℃ 온도에서 열풍 건조로에 투입하여 수분함량 1% 미만으로 건조시키는 공정으로 이루어진다.
In order to remove Al4C3, which is a cause of volume expansion, the above technique removes the damaged layer adhering to the working surface of the waste MgO-C brick, ages it in water at 100 ° C for 7 to 8 hours and ages the brick at 200 ° C And a step of putting it into a hot-air drying furnace to dry it at a moisture content of less than 1%.

이러한 공정으로 통해 얻어진 내화용 원료는 부피팽창은 양호하게 제어할 수 있으나 MgO와 C이 혼합되어 있어 내화용 벽돌에 첨가되어 사용될 경우 조직이 열화되어 다량으로 사용될 수 없는 한계를 가질 수밖에 없다.
The refractory raw material obtained through this process can control the volume expansion well but MgO and C are mixed, and when used in refractory bricks, the structure is deteriorated and can not be used in large quantities.

최근에는 특허문헌 1에서는 열처리 온도를 높여 탄소를 산화 처리하여 제거하는 탈탄공정을 통해서 내화재료로서 더욱 안정한 물질인 스피넬을 형성시킴으로써, 원료로서 재활용할 수 있는 기술을 제안하고 있다.
In recent years, Patent Document 1 proposes a technology capable of recycling as a raw material by forming spinel which is a more stable material as a refractory material through a decarburization process in which carbon is oxidized and removed by increasing the heat treatment temperature.

탈탄공정을 통해서는 폐MgO-C내 Al4C3 및 탄소가 제거되고 생성된 Al2O3가 내화물의 MgO와 반응하여 MgO. Al2O3의 안정한 스피넬을 형성함으로써 새로운 형태의 내화물 원료로 사용이 가능하다. 하지만, 탈탄공정을 위해서 1100℃ 이상의 고온에서 소성을 해야 하기 때문에 많은 에너지가 소요되어 경제성이 없다.
Through the decarburization process is closed-MgO-C within Al4C3 and carbon has been removed is generated Al 2 O 3 reacts with a refractory MgO MgO. By forming stable spinel of Al 2 O 3 , it can be used as a new type of refractory raw material. However, since it is necessary to perform calcination at a high temperature of 1100 DEG C or more for decarburization, it takes a lot of energy and is not economical.

따라서, 기존의 불소성 MgO-C 벽돌에 수처리된 재활용 MgO-C 원료를 적용하는 것은 원가절감에 유리하나 제품의 품질저하로 인하여 적용량에 한계가 있다.
Therefore, applying recycled MgO-C raw material that is water-treated to the existing fluoric MgO-C bricks is advantageous in cost reduction but there is a limit in the application amount due to the deterioration of the product quality.

한국 특허공개번호 10-2011-0124661호Korean Patent Publication No. 10-2011-0124661

본 발명의 일측면은 종래의 내화벽돌 재생기술에 비하여 비용적 손실, 에너지 소비 및 환경오염을 방지할 수 있는 새로운 내화벽돌 재생기술을 제공하고자 한다.
An aspect of the present invention is to provide a new refractory brick recovery technology that can prevent cost loss, energy consumption, and environmental pollution compared to the conventional refractory brick recovery technology.

본 발명의 일측면인 폐내화벽돌을 이용하는 내화재 원료의 제조방법은 내화벽돌로 사용이 끝난 폐 마그카본을 분쇄하는 단계, 상기 분쇄된 폐 마그카본과 물을 혼합하여 슬러리를 제조하는 단계, 습식 싸이클론을 이용하여 상기 슬러리 중 조립의 슬러리를 분리하는 단계 및 수분함량이 1중량% 미만이 될 때까지 상기 분리된 조립의 슬러리를 건조하는 단계를 포함한다.
A method of manufacturing a refractory material using waste refractory bricks, which is an aspect of the present invention, comprises the steps of crushing spent waste mica carbon used as refractory bricks, preparing a slurry by mixing the pulverized waste carbon and water, Separating the slurry of the assembly from the slurry using a clone, and drying the slurry of the separated assembly until the moisture content is less than 1 wt%.

덧붙여 상기한 과제의 해결수단은, 본 발명의 특징을 모두 열거한 것은 아니다. 본 발명의 다양한 특징과 그에 따른 장점과 효과는 아래의 구체적인 실시형태를 참조하여 보다 상세하게 이해될 수 있을 것이다.
In addition, the solution of the above-mentioned problems does not list all the features of the present invention. The various features of the present invention and the advantages and effects thereof will be more fully understood by reference to the following specific embodiments.

본 발명에 따르면, 습식싸이클론을 이용하여 폐 마그카본 중에서 조립 즉, MgO 클링커만 간단히 선별분리할 수 있다. 상기 분리된 클링커는 특별한 추가 공정 없이 내화벽돌로 재활용될 수 있으므로 환경개선에 기여하는 효과가 있을 뿐만 아니라, 수열처리와 탈탄공정 등을 요하는 종래 방법에 비하여 에너지 비용을 최소화 할 수 있다.
According to the present invention, it is possible to simply sort out the MgO clinker in the waste magic carbon using the wet cyclone. Since the separated clinker can be recycled as a refractory brick without any additional process, it contributes to the improvement of the environment, and energy cost can be minimized as compared with the conventional method which requires a hydrothermal treatment and decarburization process.

본 발명의 발명자들은 내화벽돌로서 사용된 후의 내화물을 다시 전로, 전기로, 래들용 등의 내장 벽돌로 사용하는 경우 크랙이 발생하여 용강 침투 및 외관품질 불량 등의 문제 발생을 해결하기 위하여 연구를 행한 결과, 사용된 마그카본 내화벽돌을 파쇄할 경우에는 입도가 큰 MgO 클링커와 입도가 작은 탄소로 분리됨을 발견하고, 입도분리할 경우에는 간단한 과정만으로도 MgO클링커를 선별할 수 있음을 발견하고 본 발명에 이르게 된 것이다.
The inventors of the present invention conducted studies to solve problems such as cracking and molten steel penetration and poor appearance quality when the refractory after being used as refractory bricks is used as interior bricks such as converters, electric furnaces and ladles again As a result, it has been found that MgO clinker having a large particle size and carbon having a small particle size are separated when the used magnesium carbide refractory brick is crushed, and it is found that MgO clinker can be selected only by a simple process in case of particle separation. It is now.

이하, 본 발명의 일측면인 폐내화벽돌을 이용하는 내화재 원료의 제조방법에 대하여 상세히 설명한다.
Hereinafter, a method of manufacturing a refractory material using waste refractory bricks, which is one aspect of the present invention, will be described in detail.

본 발명의 일측면인 폐내화벽돌을 이용하는 내화재 원료의 제조방법은 내화벽돌로 사용이 끝난 폐 마그카본을 분쇄하는 단계, 상기 분쇄된 폐 마그카본과 물을 혼합하여 슬러리를 제조하는 단계, 습식 싸이클론을 이용하여 상기 슬러리 중 조립의 슬러리를 분리하는 단계 및 수분함량이 1중량% 미만이 될 때까지 상기 분리된 조립의 슬러리를 건조하는 단계를 포함한다.
A method of manufacturing a refractory material using waste refractory bricks, which is an aspect of the present invention, comprises the steps of crushing spent waste mica carbon used as refractory bricks, preparing a slurry by mixing the pulverized waste carbon and water, Separating the slurry of the assembly from the slurry using a clone, and drying the slurry of the separated assembly until the moisture content is less than 1 wt%.

즉, 본 발명에서는 MgO 클링커를 탄소와 용이하게 분리하기 위해서 폐내화물을 분쇄한 후, 습식 싸이클론을 이용하여 분리하는 과정을 포함한다. 습식 싸이클론은 분쇄된 폐내화물의 입도 분급에 유리할 뿐만 아니라, 마그카본질 폐내화물에 다량 포함된 Al4C3이 수분과 반응하여 Al(OH)3와 같은 물질을 형성하도록 함으로써 용이하게 제거될 수 있도록 하는 효과도 얻을 수 있다.
That is, in order to easily separate the MgO clinker from carbon, the present invention includes a process of pulverizing the waste refractory material and then separating the pulverized material using a wet cyclone. The wet cyclone is advantageous for particle size classification of the pulverized waste refractory material and is easily removed by allowing Al 4 C 3, which is abundantly contained in the mag- netic waste refractory material, to react with water to form a material such as Al (OH) 3 The effect can be obtained.

또한, 습식 싸이클론을 이용함으로써, 대기중의 수분과 반응하여 분화되는 물질이 제거되었기 때문에 폐 마그카본벽돌의 재활용 가능한 원료를 많은 양 확보하는데 유리하다.
In addition, the use of a wet cyclone is advantageous in securing a large amount of recyclable raw materials of the waste carbon-containing masonry bricks because the material that reacts with moisture in the atmosphere to be differentiated is removed.

따라서, 본 발명에서는 폐내화물을 재활용하기 위해 우선 폐내화물을 분쇄하는 단계가 선행한다.
Therefore, in the present invention, in order to recycle the waste refractory, a step of crushing the waste refractory is preceded.

상기 분쇄는 폐마그카본 내화물이 평균입도가 4㎜이하가 되도록 하는 것이 바람직하다. 상기와 같이 입도가 4㎜ 이하로 분쇄함으로써, 물리적 강도가 취약한 부분을 미리 분쇄함으로써 재사용시 골재의 추가적인 미분화현상을 방지할 수 있고 안정적인 입도를 유지하는 것이 가능하다. 또한, 내화물 속에 골재로 포함되어 있는 MgO의 입도가 통상 5㎜ 이하이므로, 상기 입도로 골재로 분쇄할 경우에는 골재들끼리의 결합을 최대한 방지할 수 있어, 골재의 순도를 높일 수 있다는 장점이 있다.
It is preferable that the pulverization is such that the waste magnesium carbide refractory has an average particle size of 4 mm or less. By crushing the particles having a particle size of not more than 4 mm as described above, it is possible to prevent further undifferentiation of the aggregate upon reuse and to maintain a stable particle size. In addition, since the particle size of MgO contained in the refractory as aggregate is usually 5 mm or less, when the aggregate is crushed with the above-mentioned particle size, the aggregates can be prevented from bonding to each other as much as possible and the purity of the aggregate can be increased .

이후, 상기 분쇄된 폐 마그카본 내화물을 습식 싸이클론으로 분리하기 위해서 상기 분쇄된 폐 마그카본 내화물에 물을 첨가하여 슬러리를 제조하는 과정이 필요하다.
Thereafter, in order to separate the pulverized waste carbonaceous refractory material into a wet cyclone, a process of preparing slurry by adding water to the pulverized waste carbonaceous refractory material is required.

이때, 슬러리 중 고형분의 함량은 1~40중량%가 바람직하다. 즉, 원활한 입도 분리를 위해서는 슬러리 중 고형분의 함량이 높지 않은 것이 바람직하나, 너무 낮을 경우에는 공정효율이 감소하므로 상기 고형분의 함량은 1중량% 이상으로 규정한다. 또한, 고형분의 함량이 높을 경우에는 입도 분리가 용이하지 않으므로 그 함량의 상한을 40중량%로 제한한다. 보다 바람직한 고형분의 함량은 5~30중량%이다.
At this time, the content of the solid content in the slurry is preferably 1 to 40% by weight. That is, although it is preferable that the solid content of the slurry is not high for smooth particle separation, if it is too low, the process efficiency is decreased, so that the content of the solid content is defined as 1% by weight or more. In addition, when the solid content is high, the particle size separation is not easy, so the upper limit of the content is limited to 40 wt%. More preferably, the solid content is 5 to 30% by weight.

이후, 습식 싸이클론을 이용하여 상기 슬러리 중 MgO를 분리하는 것이 바람직하다. 즉, 싸이클론은 원심력의 차이를 이용하여 조립과 미립의 입자를 분리하는 장치로서, 조립의 입자에 주로 포함되는 MgO 성분을 용이하게 분리할 수 있다. 이때, 본 발명에서는 0.3~4㎜의 평균입도를 포함하는 곳을 조립으로 하고, 0.3㎜이하의 평균입도를 포함하는 곳을 미립으로 정한다.
It is then preferable to separate MgO in the slurry using a wet cyclone. That is, the cyclone is a device for separating the granules and the granules using the difference in centrifugal force, and it is possible to easily separate the MgO component mainly contained in the granules of the granules. At this time, in the present invention, a portion including an average particle size of 0.3 to 4 mm is assembled, and a portion including an average particle size of 0.3 mm or less is defined as a fine particle.

상기 조립에 포함된 MgO 성분을 최대화할 수 있는 방향으로 제어하는 것이 바람직하다. 보다 바람직하게는 습식 싸이클론에 투입되는 슬러리의 압력을 제어한다. It is preferable to control the MgO component included in the assembly in a direction that maximizes the MgO content. More preferably, the pressure of the slurry introduced into the wet cyclone is controlled.

습식 싸이클론에 투입되는 슬러리의 압력은 0.2~3MPa인 것이 바람직하다. 상기 슬러리의 압력이 0.2MPa 미만인 경우에는 회수되는 조립의 양이 적어 분리효율이 저하된다. 반면에, 3MPa를 초과하는 경우에는 미분과 조립의 분리가 이루어지지 않고 배출되어 요구하는 입도분리를 얻을 수 없다.
The pressure of the slurry to be introduced into the wet cyclone is preferably 0.2 to 3 MPa. When the pressure of the slurry is less than 0.2 MPa, the amount of the recovered granules is small and the separation efficiency is lowered. On the other hand, if it exceeds 3 MPa, the separation of the fine particles and the granules is not carried out, and the discharged granules can not be obtained.

본 발명이 제안한 바와 같이 습식싸이클론을 이용하여 입도분리를 행하는 경우에는 조립 입자를 전체 조립입자 대비 50~95%중량% 정도로 순도가 우수하면서도 효율 좋게 분리할 수 있다.
When the wet granulation is carried out using a wet cyclone as proposed by the present invention, the granulated granules can be efficiently separated at a purity of about 50 to 95% by weight based on the total granulated granules.

이후, 분리된 조립의 입자에 다량 포함된 MgO 성분을 내화물의 원료로 재활용 할 수 있도록 건조하는 단계가 후속될 수 있다.
Thereafter, a step of drying may be followed to recycle the MgO component, which is abundant in the particles of the separated granules, as a raw material of the refractory.

이때, 여과 및 건조하는 방법으로서는 공지된 모든 방법을 사용할 수 있으므로 이에 대해서는 본 발명에서는 특별히 한정하지 않는다.
At this time, any known method may be used as a method of filtration and drying, so that the present invention is not particularly limited.

다만, 재활용의 원료로 사용되기 위해서는 조립의 수분함량이 1중량% 미만까지 건조하는 것이 바람직하다.
However, in order to be used as a raw material for recycling, it is preferable that the moisture content of the granulation is dried to less than 1% by weight.

이를 위해서, 200℃ 이상의 온도에서 건조하는 것이 바람직하다. 상기 건조 온도가 200℃ 이상인 경우에는 슬러리 과정에서 형성된 Al(OH)3가 분해되어 H2O를 제거하여 내화물 원료로 충분히 활용될 수 있는 물성을 가지게 되며, 그 적용량 또한 향상시킬 수 있다.
For this, it is preferable to dry at a temperature of 200 ° C or higher. When the drying temperature is 200 ° C or higher, Al (OH) 3 formed in the slurry process is decomposed to remove H 2 O, thereby having sufficient physical properties to be utilized as a refractory raw material.

이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명하고자 한다. 다만, 하기의 실시예는 본 발명을 예시하여 보다 상세하게 설명하기 위한 것일 뿐, 본 발명의 권리범위를 한정하기 위한 것이 아니라는 점에 유의할 필요가 있다. 본 발명의 권리범위는 특허청구범위에 기재된 사항과 이로부터 합리적으로 유추되는 사항에 의해 결정되는 것이기 때문이다.
Hereinafter, the present invention will be described more specifically by way of examples. It should be noted, however, that the following examples are intended to illustrate the invention in more detail and not to limit the scope of the invention. The scope of the present invention is determined by the matters set forth in the claims and the matters reasonably inferred therefrom.

(실시예)(Example)

표 1에 기재한 조성의 폐 마그카본 내화물을 준비한 후, 입도 4㎜ 이하로 분쇄한 후, 수분을 공급하여 고형분 함량 10, 15 및 30중량%의 슬러리를 제조하였다. 제조한 슬러리를 습식 싸이클론을 이용하여 조립과 미립으로 분리하였다. 분리된 각각의 입자의 조성을 분석하여 표 2에 나타내었으며, 입도분포는 표 3에 나타내었다.
The waste magnesium carbonaceous refractory having the composition shown in Table 1 was prepared, ground to a particle size of 4 mm or less, and then water was supplied to prepare a slurry having solid contents of 10, 15 and 30 wt%. The prepared slurry was separated into granules and granules by using a wet cyclone. The composition of each separated particle was analyzed and shown in Table 2, and the particle size distribution is shown in Table 3.

상기 분리된 슬러리 중 조립의 슬러리를 여과하고 건조하여 내화재 원료를 얻을 수 있었다. 충분한 건조를 위하여 슬러리를 200℃에서 24시간 유지하도록 하였다. The granulated slurry of the separated slurry was filtered and dried to obtain a refractory raw material. The slurry was maintained at 200 ° C for 24 hours for sufficient drying.

시료명 Name of sample 이글로스
(lg-loss)
Eagles
(lg-loss)
SiO2 SiO 2 Al2O3 Al 2 O 3 Fe2O3 Fe 2 O 3 CaO CaO MgO MgO 수분 moisture
분리전Before separation 20.020.0 1.11.1 5.95.9 0.80.8 0.80.8 70.870.8 0.60.6

성분ingredient 조립부Assembly part 미분부Differential part 분리전Before separation 10%10% 15%15% 30%30% 10%10% 15%15% 30%30% 이그로스
(lg-loss)
This gross
(lg-loss)
6.66.6 10.010.0 11.011.0 29.129.1 26.726.7 34.734.7 20.020.0
SiO2 SiO 2 0.80.8 0.90.9 0.90.9 1.31.3 1.21.2 1.61.6 1.11.1 Al2O3 Al 2 O 3 2.82.8 3.23.2 3.63.6 9.09.0 7.27.2 9.49.4 5.95.9 Fe2O3 Fe 2 O 3 0.70.7 0.90.9 0.80.8 0.60.6 0.70.7 0.80.8 0.80.8 CaOCaO 0.30.3 0.80.8 1.11.1 0.60.6 0.80.8 1.11.1 0.80.8 MgOMgO 88.788.7 84.184.1 82.582.5 58.958.9 62.862.8 51.851.8 70.870.8 수분moisture 0.10.1 0.10.1 0.10.1 0.40.4 0.50.5 0.60.6 0.60.6

구분division 조립부Assembly part 미립부Fine particle 분리전Before separation 10%10% 15%15% 30%30% 10%10% 15%15% 30%30% 입도
(㎜)
Granularity
(Mm)
2.80 이상2.80 or higher 77 9.19.1 10.810.8 -- 7.37.3 6.96.9 25.125.1
2.80~1.02.80 to 1.0 39.139.1 48.648.6 46.846.8 1212 24.324.3 19.219.2 37.137.1 1.0~0.31.0 to 0.3 38.938.9 3333 30.430.4 18.418.4 27.327.3 25.525.5 20.220.2 0.3~0.0750.3 to 0.075 14.214.2 8.48.4 10.410.4 38.138.1 26.526.5 31.331.3 10.210.2 0.075이하0.075 or less 0.80.8 1.11.1 1.61.6 31.531.5 14.614.6 17.117.1 7.47.4 수율(%)yield(%) 80%80% 85%85% 90%90% 20%20% 15%15% 10%10% --

또한, 본 발명에 따른 방법의 효과와 대비하기 위하여 상기 표 1에 기재한 조성과 동일한 조성의 폐 마그카본 내화물을 분쇄한 후 1㎜ 스크린을 이용하여 조립과 미립으로 건식 분리한 경우의 결과를 표 4 및 5에 나타내었다. In order to compare with the effect of the method according to the present invention, the results of the case of pulverizing the waste mica carbon refractory having the same composition as the composition shown in Table 1, 4 and 5, respectively.

시료명 Name of sample 이글로스
(lg-loss)
Eagles
(lg-loss)
SiO2 SiO 2 Al2O3 Al 2 O 3 Fe2O3 Fe 2 O 3 CaO CaO MgO MgO 수분 moisture
조립부Assembly part 9.8 9.8 0.8 0.8 3.4 3.4 0.7 0.7 0.9 0.9 84.2 84.2 0.3 0.3 미립부Fine particle 22.3 22.3 1.1 1.1 7.6 7.6 0.8 0.8 0.6 0.6 67.3 67.3 0.3 0.3

구분division 분리전Before separation 조립부Assembly part 미립부Fine particle 입도(㎜)Particle size (mm) 2.8 이상2.8 or higher 25.125.1 20.820.8 -- 1.0~2.81.0 to 2.8 37.137.1 68.868.8 0.10.1 0.3~1.00.3 to 1.0 20.220.2 10.410.4 48.148.1 0.075~0.30.075 to 0.3 10.210.2 -- 38.238.2 0.075 이하0.075 or less 7.47.4 -- 13.613.6 수율(%)yield(%) -- 60%60% 40%40%

본 발명이 제안한 바와 같이 습식싸이클론을 이용하여 입도분리를 행하는 경우에는 슬러리 과정에서 형성된 Al(OH)3가 분해되어 H2O를 충분히 제거하였기 때문에 건식 입도분리를 행하는 경우와 대비하여 조립의 수율이 높은 것을 상기 표 2 및 3와 표 4 및 5를 대비함으로써 확인할 수 있었다.
In the case of performing the particle size separation using the wet cyclone as proposed by the present invention, since Al (OH) 3 formed in the slurry process is decomposed to sufficiently remove H 2 O, the yield of the granulation Can be confirmed by comparing Tables 2 and 3 with Tables 4 and 5 above.

이상 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.It will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined in the appended claims. It will be possible.

Claims (5)

내화벽돌로 사용이 끝난 폐 마그카본을 분쇄하는 단계;
상기 분쇄된 폐 마그카본과 물을 혼합하여 슬러리를 제조하는 단계;
습식 싸이클론을 이용하여 상기 슬러리 중 조립의 슬러리를 분리하는 단계; 및
수분함량이 1중량% 미만이 될 때까지 상기 분리된 조립의 슬러리를 건조하는 단계를 포함하고,
상기 조립의 슬러리를 분리하는 단계는 0.3~4㎜의 평균입도를 갖는 조립의 슬러리와 0.3㎜ 이하의 평균입도를 갖는 미립의 슬러리로 분리하는 것인 내화벽돌을 이용하여 내화재 원료의 제조방법.
Crushing spent waste mag carbon as a refractory brick;
Mixing the pulverized waste carbon with water to prepare a slurry;
Separating the slurry of the assembly from the slurry using a wet cyclone; And
Drying the slurry of the separated assembly until the moisture content is less than 1% by weight,
Wherein the step of separating the slurry of the assembly comprises separating the slurry into a granulate having an average particle size of 0.3 to 4 mm and a fine slurry having an average particle size of 0.3 mm or less.
제 1항에 있어서,
상기 분쇄된 폐 마그카본의 입도는 4㎜이하인 내화재 원료의 제조방법.
The method according to claim 1,
And the particle size of the pulverized waste carbon is 4 mm or less.
제 1항에 있어서,
상기 슬러리 중 고형분의 함량은 1~40중량%인 내화재 원료의 제조방법.
The method according to claim 1,
The solid content of the slurry is 1 to 40 wt%.
삭제delete 제 1항에 있어서,
상기 건조하는 단계는 200℃ 이상의 온도에서 행하는 내화재 원료의 제조방법.
The method according to claim 1,
Wherein the drying is performed at a temperature of 200 캜 or higher.
KR20120142668A 2012-12-10 2012-12-10 Method for manufacturing refractory material using waste fire brick KR101436523B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20120142668A KR101436523B1 (en) 2012-12-10 2012-12-10 Method for manufacturing refractory material using waste fire brick

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20120142668A KR101436523B1 (en) 2012-12-10 2012-12-10 Method for manufacturing refractory material using waste fire brick

Publications (2)

Publication Number Publication Date
KR20140074571A KR20140074571A (en) 2014-06-18
KR101436523B1 true KR101436523B1 (en) 2014-09-01

Family

ID=51127633

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20120142668A KR101436523B1 (en) 2012-12-10 2012-12-10 Method for manufacturing refractory material using waste fire brick

Country Status (1)

Country Link
KR (1) KR101436523B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101703844B1 (en) * 2015-11-16 2017-02-08 주식회사 금강알씨 The abandoned magnesia carbon recycling system
KR20220052643A (en) 2020-10-21 2022-04-28 김승혁 the block of extinguishing agent

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101663204B1 (en) * 2015-02-24 2016-10-07 주식회사 금강알씨 Method for manufacturing refractory mending materials and itself

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06219853A (en) * 1993-01-29 1994-08-09 Nisshin Steel Co Ltd Treatment of magnesia-carbon brick chip and magnesia castable
KR100250027B1 (en) 1997-12-30 2000-03-15 신승근 Manufacturing method of recovered magnesia clinker and the recovered magnesia clinker
JP2000117225A (en) 1998-10-16 2000-04-25 Ishikawajima Harima Heavy Ind Co Ltd Making-harmless treatment of solid material containing organic chlorine compound
JP2000117226A (en) * 1998-10-16 2000-04-25 Ishikawajima Harima Heavy Ind Co Ltd Treatment for rendering organic chlorine compound- containing solid matter harmless

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06219853A (en) * 1993-01-29 1994-08-09 Nisshin Steel Co Ltd Treatment of magnesia-carbon brick chip and magnesia castable
KR100250027B1 (en) 1997-12-30 2000-03-15 신승근 Manufacturing method of recovered magnesia clinker and the recovered magnesia clinker
JP2000117225A (en) 1998-10-16 2000-04-25 Ishikawajima Harima Heavy Ind Co Ltd Making-harmless treatment of solid material containing organic chlorine compound
JP2000117226A (en) * 1998-10-16 2000-04-25 Ishikawajima Harima Heavy Ind Co Ltd Treatment for rendering organic chlorine compound- containing solid matter harmless

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101703844B1 (en) * 2015-11-16 2017-02-08 주식회사 금강알씨 The abandoned magnesia carbon recycling system
KR20220052643A (en) 2020-10-21 2022-04-28 김승혁 the block of extinguishing agent

Also Published As

Publication number Publication date
KR20140074571A (en) 2014-06-18

Similar Documents

Publication Publication Date Title
CN105272163B (en) A kind of preparation method of enviroment protective ceramic brick green compact, enviroment protective ceramic brick and the Ceramic Tiles
CN104529312B (en) Large dosage high-strength nickel slag brick and preparation method thereof
CN102898156A (en) Ladle slag line magnesia carbon brick and preparation method thereof
CN110272292A (en) A kind of magnesia coating of tundish and preparation method thereof
KR101309713B1 (en) the ceramic to manufacture using waste of Masato and method for the same
CN103864443B (en) Cement kiln siliceous mullite brick and preparation method thereof
KR101436523B1 (en) Method for manufacturing refractory material using waste fire brick
CN107353032B (en) Foamed ceramic insulation board taking industrial inorganic hazardous wastes and refractory clay tailings as raw materials and preparation method thereof
US2399225A (en) Vitreous cellular materials
CN104926319B (en) Blast furnace mud method is prepared using refractory raw material is regenerated
KR101964801B1 (en) Red Mud Ceramics and Manufacturing Method Thereof
CN111004043A (en) Method for preparing Si-Si3N4-SiC composite material by utilizing polycrystalline silicon waste material
KR101191743B1 (en) Method for Leaching Magnesium from Ferronickel Slag
CN106430982A (en) Recycling method of glass ceramic material
CN107793132B (en) Ceramic tile based on ceramic polishing slag and preparation method thereof
CN103896606A (en) Fire-resistant material for blast furnace ceramic cup
CN110950643A (en) Method for preparing water permeable brick by using LF refining tailings
CN107500800B (en) Porous ceramic material containing copper tailings and preparation method thereof
CN107973586A (en) Handle the method and Ceramic Tiles of ferrochrome slag
KR101187245B1 (en) Manufacturing method of moulding sand using slag
KR101602334B1 (en) METHOD FOR REGENERATING REFRACTORIES CONTAINING Al4C3
CN114956799A (en) Dry-method powder-making ceramic tile/board and preparation method thereof
CN111118238B (en) Method for preparing steelmaking furnace burden by using blast furnace gas ash zinc extraction kiln slag
CN111620671A (en) Red mud-based water permeable brick and preparation method thereof
CN111393176A (en) Production method of novel composite corundum brick for blast furnace

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
FPAY Annual fee payment

Payment date: 20170705

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180802

Year of fee payment: 5