KR20230137703A - Heterogeneous metal nanowire composite, manufacturing method for thereof and sensor for carbon monoxide using the same - Google Patents

Heterogeneous metal nanowire composite, manufacturing method for thereof and sensor for carbon monoxide using the same Download PDF

Info

Publication number
KR20230137703A
KR20230137703A KR1020220035484A KR20220035484A KR20230137703A KR 20230137703 A KR20230137703 A KR 20230137703A KR 1020220035484 A KR1020220035484 A KR 1020220035484A KR 20220035484 A KR20220035484 A KR 20220035484A KR 20230137703 A KR20230137703 A KR 20230137703A
Authority
KR
South Korea
Prior art keywords
metal
nanofiber composite
heterogeneous
metal oxide
carbon monoxide
Prior art date
Application number
KR1020220035484A
Other languages
Korean (ko)
Other versions
KR102712200B1 (en
Inventor
최철
정미희
안정환
김일두
안재완
고재현
Original Assignee
한국전력공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전력공사 filed Critical 한국전력공사
Priority to KR1020220035484A priority Critical patent/KR102712200B1/en
Priority claimed from KR1020220035484A external-priority patent/KR102712200B1/en
Publication of KR20230137703A publication Critical patent/KR20230137703A/en
Application granted granted Critical
Publication of KR102712200B1 publication Critical patent/KR102712200B1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D10/00Physical treatment of artificial filaments or the like during manufacture, i.e. during a continuous production process before the filaments have been collected
    • D01D10/02Heat treatment
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • G01N27/127Composition of the body, e.g. the composition of its sensitive layer comprising nanoparticles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • G01N33/004CO or CO2

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Textile Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Electrochemistry (AREA)
  • Nanotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Combustion & Propulsion (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

본 발명에 따른 이종 금속 나노섬유 복합체는 이종 금속산화물을 포함하는 중공형태의 나노섬유; 및 상기 나노섬유의 외부면과 내부면에 분산된 금속나노입자;를 포함하는 이종 금속 나노섬유 복합체이고, 상기 금속나노입자는 이종 금속 나노섬유 복합체 중 2wt% 내지 5 wt%로 포함된다.The heterogeneous metal nanofiber composite according to the present invention includes hollow nanofibers containing heterogeneous metal oxides; It is a heterogeneous metal nanofiber composite comprising; and metal nanoparticles dispersed on the outer and inner surfaces of the nanofibers, wherein the metal nanoparticles are included in 2 wt% to 5 wt% of the heterogeneous metal nanofiber composite.

Description

이종 금속 나노섬유 복합체, 이의 제조방법 및 이를 포함하는 일산화탄소 감지 센서{HETEROGENEOUS METAL NANOWIRE COMPOSITE, MANUFACTURING METHOD FOR THEREOF AND SENSOR FOR CARBON MONOXIDE USING THE SAME}Heterogeneous metal nanofiber composite, manufacturing method thereof, and carbon monoxide detection sensor comprising the same {HETEROGENEOUS METAL NANOWIRE COMPOSITE, MANUFACTURING METHOD FOR THEREOF AND SENSOR FOR CARBON MONOXIDE USING THE SAME}

본 발명은 이종 금속 나노섬유 복합체, 이의 제조방법 및 이를 포함하는 일산화탄소 감지 센서에 관한 것이다. 보다 구체적으로 나노입자의 크기가 감소되고, 비표면적이 증가된 나노입자를 포함하는 이종 금속 나노섬유 복합체, 이의 제조방법, 이를 포함하는 일산화탄소 감지 센서에 관한 것이다. The present invention relates to a heterogeneous metal nanofiber composite, a manufacturing method thereof, and a carbon monoxide detection sensor comprising the same. More specifically, it relates to a heterogeneous metal nanofiber composite containing nanoparticles with reduced nanoparticle size and increased specific surface area, a manufacturing method thereof, and a carbon monoxide detection sensor comprising the same.

변압기는 발전소 및 송전선을 통해 전달된 전기 에너지를 소비하기 용이한 형태로 변환하여 전달해주는 전기 소자로, 안정적인 장기 구동을 위해 누전을 방지해주는 절연유, 절연지, 프레스보드(press board), 베이클라이트(bakelite) 등의 액상 및 고상 절연재료를 포함하나, 변압기에 이상이 생겨 국부과열 또는 절연파괴가 일어날 경우 발생하는 열로 인해 절연재료가 분해되어 수소(H2), 아세틸렌(C2H2), 메탄(CH4), 일산화탄소(CO), 이산화탄소(CO2) 및 기타 탄화수소 가스들을 발생시킨다. A transformer is an electrical element that converts and transmits electrical energy transmitted through power plants and transmission lines into a form that is easy to consume. It consists of insulating oil, insulating paper, press board, and bakelite that prevent electric leakage for stable long-term operation. It includes liquid and solid insulating materials such as liquid and solid insulating materials, but if a problem occurs in the transformer and local overheating or insulation breakdown occurs, the insulating material decomposes due to the heat generated, causing hydrogen (H 2 ), acetylene (C 2 H 2 ), and methane (CH 4 ), carbon monoxide (CO), carbon dioxide (CO 2 ) and other hydrocarbon gases are generated.

한편 절연유에 용해되어 있는 이러한 가스들을 정성 및 정량적으로 분석하는 방법으로 변압기의 상태를 점검할 수 있다. 특히 일산화탄소는 고체 절연물이 섭씨 수백도 이상 가열되었을 때 분해되어 발생하는 것으로 알려져 있으며, 높은 일산화탄소 농도가 관찰되면 변압기에 중대한 결함이 생긴 것으로 판단할 수 있는 근거가 된다.Meanwhile, the condition of the transformer can be checked by qualitatively and quantitatively analyzing these gases dissolved in the insulating oil. In particular, carbon monoxide is known to be generated when solid insulating materials are decomposed when heated over hundreds of degrees Celsius, and if a high carbon monoxide concentration is observed, it becomes the basis for determining that a major defect has occurred in the transformer.

절연유 가스 분석을 통한 변압기 상태 진단은 일반적으로 변압기에서 가스 샘플을 채취하여 질량 분석을 진행하는 것으로 이루어지나, 시간이 오래 걸려 신속 대응에 한계가 있고, 많은 비용이 발생함과 동시에 신뢰성이 높지 않다는 단점이 있다. Transformer condition diagnosis through insulating oil gas analysis is generally done by collecting gas samples from the transformer and performing mass analysis. However, it takes a long time, which limits rapid response, incurs a lot of cost, and is not very reliable. There is.

반면에 저항변화식 감지소재로 쓰이는 금속산화물 반도체는 가스 분자와 소재 표면 간의 상호작용, 즉 흡착, 탈착을 통해 나타나는 각종 화학반응들의 결과로 소재의 전기 저항값이 변동하는 원리를 활용하며, 통상적인 절연유 내 가스 환경에서의 저항 대비 이상현상으로 특정 가스의 농도가 높아진 상태에서의 저항비를 계산하는 것으로 해당 가스를 정량적으로 관찰하는 것이 가능하다.On the other hand, metal oxide semiconductors used as resistance change sensing materials utilize the principle that the electrical resistance value of a material fluctuates as a result of various chemical reactions that occur through interaction between gas molecules and the material surface, that is, adsorption and desorption. It is possible to quantitatively observe the gas by calculating the resistance ratio when the concentration of a specific gas is increased due to an abnormal phenomenon compared to the resistance in the gas environment within the insulating oil.

특히, 금속산화물 반도체 감지소재는 나노입자, 나노튜브, 나노시트 등의 넓은 비표면적을 가지는 나노구조체로 합성을 하는 것으로 표면반응의 빈도를 극대화하여 높은 감도의 센서를 제작할 수 있다. In particular, metal oxide semiconductor sensing materials are synthesized from nanostructures with a large specific surface area such as nanoparticles, nanotubes, and nanosheets, thereby maximizing the frequency of surface reactions to produce sensors with high sensitivity.

그러나 넓은 비표면적의 나노구조체의 금속산화물 반도체 기반 가스센서 개발을 위한 지속적인 연구에도 불구하고, 특정 가스에 선택성을 보이는 가스 센서의 개발은 용이하지 않으며, 이는 일반적인 저항변화식 감지소재가 표면반응을 기반으로 하기 때문에 하나의 감지 소재가 여러 종류의 가스 분자들에 대해 저항변화를 보일 수 있어서 선택적인 감지에 어려움이 있는 것에 기인한다. However, despite ongoing research to develop a gas sensor based on a metal oxide semiconductor with a nanostructure with a large specific surface area, it is not easy to develop a gas sensor that shows selectivity for a specific gas, and this is because general resistance change sensing materials are based on surface reaction. This is because a single sensing material can show resistance changes to several types of gas molecules, making selective detection difficult.

따라서 일산화탄소의 고감도, 고선택성 센서 개발에 있어서는 저항변화에 영향을 주는 물리/화학적 기작을 고려하여 적절한 감지 소재의 개발이 시급한 실정이다. Therefore, in the development of a high-sensitivity and high-selectivity sensor for carbon monoxide, it is urgent to develop an appropriate sensing material by considering the physical/chemical mechanisms that affect resistance changes.

본 발명의 배경기술로 대한민국 공개특허공보 제10-2022-0013827호에서 알칼리 금속 및 귀금속이 기능화된 금속산화물 반도체 나노섬유 기반 가스센서용 부재 및 그 제조방법이 개시된다. As background technology for the present invention, Korean Patent Publication No. 10-2022-0013827 discloses a metal oxide semiconductor nanofiber-based gas sensor member functionalized with alkali metal and precious metal and a method for manufacturing the same.

본 발명의 목적은 넓은 비표면적을 가지는 나노구조체로 이루어진 금속산화물에서 가스 분자와 반도체 소재 표면 간의 상호작용을 증대시켜 실시간으로 변압기의 절연유 내 가스농도를 관찰할 수 있는 이종 금속 나노섬유 복합체를 제공하기 위한 것이다. The purpose of the present invention is to provide a heterogeneous metal nanofiber composite that can observe the gas concentration in the insulating oil of a transformer in real time by increasing the interaction between gas molecules and the surface of the semiconductor material in a metal oxide composed of a nanostructure with a large specific surface area. It is for.

본 발명의 다른 목적은 선택적 용매 치환 공정을 이용하여 고용량으로 농축된 이종 금속 나노섬유 복합체 제조방법을 제공하기 위한 것이다. Another object of the present invention is to provide a method for producing a high-capacity concentrated heterometal nanofiber composite using a selective solvent substitution process.

본 발명의 또 다른 목적은 이종 금속 나노섬유 복합체를 포함하는 일산화탄소 감지센서를 제공하기 위한 것이다.Another object of the present invention is to provide a carbon monoxide detection sensor comprising a heterogeneous metal nanofiber composite.

본 발명의 상기 및 기타의 목적들은 하기 설명되는 본 발명에 의하여 모두 달성될 수 있다.The above and other objects of the present invention can all be achieved by the present invention described below.

1. 본 발명의 하나의 관점은 이종 금속 나노섬유 복합체에 관한 것이다. 1. One aspect of the present invention relates to a bimetallic nanofiber composite.

상기 이종 금속 나노섬유 복합체는 이종 금속산화물을 포함하는 중공형태의 나노섬유; 및The heterogeneous metal nanofiber composite is a hollow nanofiber containing a heterogeneous metal oxide; and

상기 나노섬유의 외부면과 내부면에 분산된 금속나노입자;를 포함하는 이종 금속 나노섬유 복합체이고, It is a heterogeneous metal nanofiber composite containing metal nanoparticles dispersed on the outer and inner surfaces of the nanofibers,

상기 금속나노입자는 이종 금속 나노섬유 복합체 중 2wt% 내지 5 wt%로 포함된다. The metal nanoparticles are included in an amount of 2 wt% to 5 wt% in the heterogeneous metal nanofiber composite.

2. 상기 1 구체예에서, 상기 이종 금속산화물은 제1 금속산화물 100 중량부 및 제2 금속산화물 1 내지 30 중량부를 포함하고,2. In the first embodiment, the different metal oxide includes 100 parts by weight of the first metal oxide and 1 to 30 parts by weight of the second metal oxide,

상기 제1 금속산화물은 산화구리(CuO)이며,The first metal oxide is copper oxide (CuO),

상기 제2 금속산화물은 ZnO, SnO2, WO3, Fe2O3, Fe3O4, NiO, Co3O4, CeO2, 및 MnO2 로 이루어진 군으로부터 1종 이상 포함할 수 있다. The second metal oxide may include one or more types from the group consisting of ZnO, SnO 2 , WO 3 , Fe 2 O 3 , Fe 3 O 4 , NiO, Co 3 O 4 , CeO 2 , and MnO 2 .

3. 상기 1 또는 2 구체예에서, 금속나노입자는 금(Au), 은(Ag), 백금(Pt), 팔라듐(Pd), 로듐(Rh), 루테늄(Ru), 및 이리듐(Ir) 중 1종 이상을 포함할 수 있다. 3. In embodiment 1 or 2, the metal nanoparticles are gold (Au), silver (Ag), platinum (Pt), palladium (Pd), rhodium (Rh), ruthenium (Ru), and iridium (Ir). It may include one or more types.

4. 상기 1 내지 3 중 어느 하나의 구체예에서, 상기 이종 금속 나노섬유 복합체는 평균직경이 50 nm 내지 10 μm이고, 평균길이가 1 μm 내지 500 μm일 수 있다. 4. In any one of the embodiments of 1 to 3, the heterogeneous metal nanofiber composite may have an average diameter of 50 nm to 10 μm and an average length of 1 μm to 500 μm.

5. 본 발명의 다른 관점은 이종 금속 나노섬유 복합체의 제조방법에 관한 것이다. 5. Another aspect of the present invention relates to a method for producing a heterogeneous metal nanofiber composite.

상기 이종 금속 나노섬유 복합체 제조방법은 (a) 금속나노입자 분산액 및 제1 고분자 용액을 포함하는 제1 혼합용액을 제조하는 단계;The method for producing a heterogeneous metal nanofiber composite includes (a) preparing a first mixed solution containing a metal nanoparticle dispersion and a first polymer solution;

(b) 상기 제1 혼합용액을 증발시켜 금속나노입자 농축액을 제조하는 단계;(b) preparing a metal nanoparticle concentrate by evaporating the first mixed solution;

(c) 제1 금속산화물 전구체, 제2 금속산화물 전구체 및 제2고분자 용액을 포함하는 제2 혼합용액을 제조하는 단계;(c) preparing a second mixed solution containing a first metal oxide precursor, a second metal oxide precursor, and a second polymer solution;

(d) 상기 금속나노입자 농축액에 상기 제2 혼합용액을 혼합하여 전기방사용액을 제조하는 단계;(d) preparing an electrospinning solution by mixing the second mixed solution with the metal nanoparticle concentrate;

(e) 상기 전기방사용액을 전기방사하여 나노섬유를 제조하는 단계; 및(e) producing nanofibers by electrospinning the electrospinning solution; and

(f) 상기 나노섬유를 열처리하는 단계;를 포함한다.(f) heat treating the nanofibers.

6. 상기 5 구체예에서, 상기 금속나노입자 분산액은 은(Ag), 백금(Pt), 팔라듐(Pd), 로듐(Rh), 루테늄(Ru), 및 이리듐(Ir) 중 1종 이상을 포함할 수 있다. 6. In the above 5 embodiments, the metal nanoparticle dispersion contains one or more of silver (Ag), platinum (Pt), palladium (Pd), rhodium (Rh), ruthenium (Ru), and iridium (Ir). can do.

7. 상기 5 또는 6 구체예에서, 상기 금속나노입자 분산액은 금속나노입자 전구체가 물에 분산된 상태일 수 있다.7. In embodiment 5 or 6 above, the metal nanoparticle dispersion may be a state in which the metal nanoparticle precursor is dispersed in water.

8. 상기 5 내지 7 중 어느 하나의 구체예에서, 제1고분자 용액은 고분자 및 용매를 포함하고, 상기 용매는 N-메틸피롤리돈(N-methylpyrrolidone), 디메틸술폭사이드(Dimethyl sulfoxide), 이소프로필 미리스테이트(Isopropyl myristate), 트리클로로벤젠(Trichlorobenzene), 디클로로벤젠(Dichlorobenzene), 디메틸아세트아미드(Dimethyl acetamide), N,N'-디메틸포름아미드(N,N'-dimethylformamide), 이소아밀알코올(Isoamylalcohol), 프로필알코올(Propyl alcohol), 부틸알코올 (Butyl alcohol), 펜틸알코올(Pentyl alcohol), 에틸렌글리콜(Ethylene glycol), 메톡시에탄올(Methoxyethanol), 메틸이소부틸케톤(Methyl isobutyl ketone), 부틸아세테이트(Butyl acetate), 테트라클로로에탄(Tetrachloroethane), 펜타클로로에탄(Pentachloroethane), 클로로벤젠(Chlorobenzene), 크실렌(Xylene), 및 테트라클로로에틸렌(Tetrachloroethylene) 중에서 1종 이상을 포함할 수 있다. 8. In any one of the embodiments of 5 to 7, the first polymer solution includes a polymer and a solvent, and the solvent is N-methylpyrrolidone, dimethyl sulfoxide, iso Isopropyl myristate, Trichlorobenzene, Dichlorobenzene, Dimethyl acetamide, N,N'-dimethylformamide, Isoamyl Alcohol ( Isoamylalcohol, Propyl alcohol, Butyl alcohol, Pentyl alcohol, Ethylene glycol, Methoxyethanol, Methyl isobutyl ketone, Butyl acetate (Butyl acetate), Tetrachloroethane, Pentachloroethane, Chlorobenzene, Xylene, and Tetrachloroethylene.

9. 상기 5 내지 8 중 어느 하나의 구체예에서, 상기 제1고분자 용액은 폴리아크릴로니트릴 (Polyacrylonitrile), 폴리비닐알콜(Polyvinyl alcohol), 폴리비닐피롤리돈(Polyvinylpyrrolidone), 폴리비닐부티랄(Polyvinyl butyral), 폴리비닐리덴플로라이드(Polyvinylidene fluoride), 폴리설폰(Polysulphone), 폴리에스터설폰(Polyethersulphone), 폴리아릴설폰(Polyarylsulphone), 에폭시우레탄(Epoxypolyurethane), 폴리이미드(Polyimide), 폴리비닐클로라이드(Polyvinyl chloride), 폴리에스터케톤(Polyetherketone), 아로마틱폴리에스터(Aromatic polyester), 폴리아미도이미드(Polyamidoimide), 폴리비닐아세테이트(Polyvinylacetate), 폴리메틸메타아클레이트(Polymethylmethacrylate), 폴리스틸렌(Polystyrene), 폴리옥시메틸렌(Polyoxymethylene), 폴리아크릴릭애시드(Polyacrylic acid), 폴리우레탄 (polyurethane), 폴리에틸렌(polyethylene), 및 폴리트리메틸린 테레프탈레트(polytrimethylene terephthalate) 중 1 종 이상을 포함할 수 있다. 9. In any one of embodiments 5 to 8, the first polymer solution is polyacrylonitrile, polyvinyl alcohol, polyvinylpyrrolidone, polyvinyl butyral ( Polyvinyl butyral, polyvinylidene fluoride, polysulphone, polyethersulphone, polyarylsulphone, epoxypolyurethane, polyimide, polyvinyl chloride ( Polyvinyl chloride, Polyetherketone, Aromatic polyester, Polyamidoimide, Polyvinylacetate, Polymethylmethacrylate, Polystyrene, Polyoxy It may include one or more of polyoxymethylene, polyacrylic acid, polyurethane, polyethylene, and polytrimethylene terephthalate.

10. 상기 5 내지 9 중 어느 하나의 구체예에서, 상기 제1고분자 용액은 고분자를 5wt% 내지 20wt%를 포함할 수 있다. 10. In any one of the embodiments 5 to 9 above, the first polymer solution may contain 5 wt% to 20 wt% of the polymer.

11. 상기 5 내지 10 중 어느 하나의 구체예에서, 상기 (a) 단계에서, 상기 금속나노입자 분산액에 대하여 제1 고분자 용액을 0.05 내지 10부피부로 혼합할 수 있다.11. In any one of the embodiments 5 to 10 above, in step (a), 0.05 to 10 parts by volume of the first polymer solution may be mixed with the metal nanoparticle dispersion.

12. 상기 5 내지 11 중 어느 하나의 구체예에서, 상기 제1 금속산화물 전구체는 copper (II) nitrate trihydrate, copper (II) chloride, copper (II) nitrate, copper (II) acetate, copper (II) acetylacetonate, copper (II) sulfate 및 이들의 유도체 중 1종 이상을 포함할 수 있다. 12. In any one of embodiments 5 to 11, the first metal oxide precursor is copper (II) nitrate trihydrate, copper (II) chloride, copper (II) nitrate, copper (II) acetate, copper (II) It may include one or more of acetylacetonate, copper (II) sulfate, and their derivatives.

13. 상기 5 내지 12 중 어느 하나의 구체예에서, 상기 제2 금속산화물 전구체는 cerium (III) nitrate hexahydrate, cerium (III) chloride, cerium (III) nitrate, cerium (III) sulfate, zinc (II) chloride, zinc (II) nitrate, tin (IV) chloride, cobalt (II) chloride, cobalt (II) nitrate, nickel (II) chloride, nickel (II) nitrate, iron (II) chloride, iron (II) nitrate, ammonium metatungstate hydrate 및 이들의 유도체 중 1 종 이상을 포함할 수 있다. 13. In any one of embodiments 5 to 12, the second metal oxide precursor is cerium (III) nitrate hexahydrate, cerium (III) chloride, cerium (III) nitrate, cerium (III) sulfate, zinc (II) chloride, zinc (II) nitrate, tin (IV) chloride, cobalt (II) chloride, cobalt (II) nitrate, nickel (II) chloride, nickel (II) nitrate, iron (II) chloride, iron (II) nitrate, It may include ammonium metatungstate hydrate and one or more of its derivatives.

14. 상기 5 내지 13 중 어느 하나의 구체예에서, 상기 제1 금속산화물 전구체 100중량부에 대하여 상기 제2 금속산화물 전구체를 1 내지 30중량부로 포함할 수 있다. 14. In any one of embodiments 5 to 13, the second metal oxide precursor may be included in an amount of 1 to 30 parts by weight based on 100 parts by weight of the first metal oxide precursor.

15. 상기 5 내지 14 중 어느 하나의 구체예에서, 상기 (d) 단계의 열처리는 400 내지 800℃에서 수행될 수 있다. 15. In any one of embodiments 5 to 14 above, the heat treatment in step (d) may be performed at 400 to 800°C.

16. 본 발명의 또 다른 관점은 이종 금속 나노섬유 복합체를 포함하는 일산화탄소 감지 센서에 관한 것이다. 16. Another aspect of the present invention relates to a carbon monoxide detection sensor comprising a bimetallic nanofiber composite.

상기 일산화탄소 감지 센서는 기판; 및The carbon monoxide detection sensor includes a substrate; and

상기 기판 상에 적층되는 이종 금속 나노섬유 복합체를 포함한다. It includes a heterogeneous metal nanofiber composite laminated on the substrate.

17. 상기 16 구체예에서, 상기 일산화탄소 감지 센서는 하기 식 1에 의한 일산화탄소 반응도 증가율이 15% 이상일 수 있다. 17. In the 16th embodiment above, the carbon monoxide detection sensor may have a carbon monoxide reactivity increase rate of 15% or more according to Equation 1 below.

[식 1] [Equation 1]

일산화탄소 반응도 증가율 = [전기저항변화량(R/R0) / 가스농도(ppm)] × 100Carbon monoxide reactivity increase rate = [electrical resistance change (R/R 0 ) / gas concentration (ppm)] × 100

본 발명에 따른 이종 금속 나노섬유 복합체는 구리 산화물 기반 이종 금속산화물을 포함하는 1차원 나노섬유에 금속 촉매인 나노금속입자가 고농도로 나노섬유의 외부면 및 내부면에 분산되어 일산화탄소 가스에 대한 선택성이 탁월하다.The heterogeneous metal nanofiber composite according to the present invention is a one-dimensional nanofiber containing a copper oxide-based heterogeneous metal oxide, and nanometal particles, which are metal catalysts, are dispersed at a high concentration on the outer and inner surfaces of the nanofiber, thereby providing selectivity for carbon monoxide gas. Excellent.

또한, 이종 금속 나노섬유 복합체 제조방법은 금속나노입자 용액의 선택적 증발을 통한 용매치환으로 금속나노입자를 농축하여 나노입자간 응집없이 금속나노입자의 농도를 크게 증가시킬 수 있기 때문에 고농도 금속나노입자를 함유하는 나노섬유를 제조할 수 있다.In addition, the heterogeneous metal nanofiber composite manufacturing method concentrates the metal nanoparticles through solvent substitution through selective evaporation of the metal nanoparticle solution, which can greatly increase the concentration of metal nanoparticles without agglomeration between nanoparticles, thereby producing a high concentration of metal nanoparticles. Containing nanofibers can be manufactured.

또한, 이종 금속 나노섬유 복합체를 포함하는 이산화탄소 감지 센서는 다양한 종류의 가스 중에서 일산화탄소 가스에 대한 선택성이 있으며, 금속촉매인 금속나노입자를 포함하지 않는 경우에 대비하여 일산화탄소의 반응도가 15% 이상 증가될 수 있다. In addition, a carbon dioxide detection sensor containing a heterogeneous metal nanofiber composite has selectivity for carbon monoxide gas among various types of gases, and the reactivity of carbon monoxide can be increased by more than 15% compared to the case where metal nanoparticles, which are metal catalysts, are not included. You can.

도 1은 본 발명의 다른 관점에 따른 이종 나노섬유 복합체 제조방법의 공정 순서도이다.
도 2는 본 발명의 한 구체예에 있어서, 회전증발농축기에서 금 나노입자 수용액과 제1 고분자용액이 혼합된 혼합용액 150mL가 담기 플라스크 및 용매치환된 농축액의 사진이다.
도 3은 본 발명의 한 구체예에 있어서, 용매치환된 농축액의 투과주사전자현미경 사진이다.
도 4는 본 발명의 한 구체예에 따른 이종 나노섬유 복합체의 주사전자현미경 사진이다.
도 5는 본 발명의 한 구체예에 따른 금 나노입자를 포함하는 이종 금속 나노섬유 복합체를 포함하는 일산화탄소 가스 감지 센서의 가스농도에 따른 전기저항변화량(R/R0)을 나타낸 그래프이다.
Figure 1 is a process flow chart of a heterogeneous nanofiber composite manufacturing method according to another aspect of the present invention.
Figure 2 is a photograph of a flask containing 150 mL of a mixed solution of an aqueous gold nanoparticle solution and a first polymer solution in a rotary evaporator and a solvent-exchanged concentrate in one embodiment of the present invention.
Figure 3 is a transmission scanning electron microscope photograph of a solvent-exchanged concentrate according to one embodiment of the present invention.
Figure 4 is a scanning electron microscope photograph of a heterogeneous nanofiber composite according to one embodiment of the present invention.
Figure 5 is a graph showing the amount of change in electrical resistance (R/R 0 ) according to gas concentration of a carbon monoxide gas detection sensor including a heterogeneous metal nanofiber composite containing gold nanoparticles according to an embodiment of the present invention.

이하, 첨부된 도면을 참조하여 본 발명을 보다 구체적으로 설명한다. 다만, 하기 도면은 본 발명에 대한 이해를 돕기 위해 제공되는 것일 뿐, 본 발명이 하기 도면에 의해 한정되는 것은 아니다. 또한, 도면에 개시된 형상, 크기, 비율, 각도, 개수 등은 예시적인 것이므로 본 발명이 도시된 사항에 한정되는 것은 아니다. Hereinafter, the present invention will be described in more detail with reference to the attached drawings. However, the following drawings are provided only to aid understanding of the present invention, and the present invention is not limited by the following drawings. In addition, the shape, size, ratio, angle, number, etc. disclosed in the drawings are illustrative and the present invention is not limited to the matters shown.

명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다. 또한, 본 발명을 설명함에 있어서, 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명은 생략한다. Like reference numerals refer to like elements throughout the specification. Additionally, in describing the present invention, if it is determined that a detailed description of related known technologies may unnecessarily obscure the gist of the present invention, the detailed description will be omitted.

본 명세서 상에서 언급한 '포함한다', '갖는다', '이루어진다' 등이 사용되는 경우 '~만'이 사용되지 않는 이상 다른 부분이 추가될 수 있다. 구성 요소를 단수로 표현한 경우에 특별히 명시적인 기재 사항이 없는 한 복수를 포함하는 경우를 포함한다.When 'includes', 'has', 'consists of', etc. mentioned in this specification are used, other parts may be added unless 'only' is used. When a component is expressed in the singular, the plural is included unless specifically stated otherwise.

구성 요소를 해석함에 있어서, 별도의 명시적 기재가 없더라도 오차 범위를 포함하는 것으로 해석한다.When interpreting a component, it is interpreted to include the margin of error even if there is no separate explicit description.

~상에', '~상부에', '~하부에', '~옆에' 등으로 두 부분의 위치 관계가 설명되는 경우, '바로' 또는 '직접'이 사용되지 않는 이상 두 부분 사이에 하나 이상의 다른 부분이 위치할 수 있다.When the positional relationship between two parts is described as ‘on’, ‘at the top’, ‘at the bottom’, ‘next to’, etc., unless ‘immediately’ or ‘directly’ is used, there is no difference between the two parts. One or more different parts may be located.

'상부', '상면', '하부', '하면' 등과 같은 위치 관계는 도면을 기준으로 기재된 것일 뿐, 절대적인 위치 관계를 나타내는 것은 아니다. 즉, 관찰하는 위치에 따라, '상부'와 '하부' 또는 '상면'과 '하면'의 위치가 서로 변경될 수 있다. Positional relationships such as 'upper', 'top', 'lower', 'lower', etc. are only written based on the drawings, and do not represent absolute positional relationships. In other words, depending on the observation position, the positions of 'top' and 'bottom' or 'top' and 'bottom' may change.

본 명세서에서, 수치범위를 나타내는 "a 내지 b"는 "≥a 이고 ≤b"으로 정의한다.In this specification, “a to b” indicating a numerical range is defined as “≥a and ≤b”.

본 발명의 하나의 관점은 이종 금속 나노섬유 복합체에 관한 것이다. One aspect of the present invention relates to bimetallic nanofiber composites.

상기 이종 금속 나노섬유 복합체는 나노섬유 및 금속나노입자를 포함한다. The heterogeneous metal nanofiber composite includes nanofibers and metal nanoparticles.

상기 나노섬유는 중공형태이며, 이종 금속산화물을 포함한다. The nanofibers are hollow and contain different metal oxides.

상기 이종 금속산화물은 하나 이상의 상이한 금속산화물을 포함할 수 있다. The heterogeneous metal oxide may include one or more different metal oxides.

한 구체예에서 상기 이종 금속산화물은 제1 금속산화물과 제2 금속산화물을 포함할 수 있다. In one embodiment, the different metal oxide may include a first metal oxide and a second metal oxide.

상기 제1 금속산화물은 산화구리(CuO)를 포함한다. The first metal oxide includes copper oxide (CuO).

상기 이종 금속산화물이 산화구리를 포함하여 전기방사로 1차원 나노섬유를 형성할 수 있으며, 구리산화물과 같은 p형 금속산화물은 n형 금속산화물과 계면에서 p-n 접합을 형성할 수 있고, 이 때 형성된 p-n 접합 계면은 효율적인 정공 생성이 가능하여 일산화탄소 기체가 가해지면 우수한 전자전도도를 나타낼 수 있다. The heterogeneous metal oxide can contain copper oxide and form a one-dimensional nanofiber by electrospinning, and a p-type metal oxide such as copper oxide can form a p-n junction at the interface with the n-type metal oxide, which is formed at this time. The p-n junction interface is capable of efficient hole generation and can exhibit excellent electronic conductivity when carbon monoxide gas is added.

상기 제 2금속산화물은 ZnO, SnO2, WO3, Fe2O3, Fe3O4, NiO, Co3O4, CeO2, 및 MnO2 로 이루어진 군으로부터 1종 이상 포함할 수 있다. The second metal oxide may include one or more types from the group consisting of ZnO, SnO 2 , WO 3 , Fe 2 O 3 , Fe 3 O 4 , NiO, Co 3 O 4 , CeO 2 , and MnO 2 .

상기 나노섬유는 상기 제1 금속산화물 100중량부에 대하여 제 2 금속산화물 1 내지 30중량부로 포함할 수 있다.The nanofiber may contain 1 to 30 parts by weight of the second metal oxide based on 100 parts by weight of the first metal oxide.

상기 범위 내에서 제1 금속산화물과 제2 금속산화물을 포함하여 구리산화물 기반 이종 금속산화물로 이루어진 1차원 나노섬유를 제조할 수 있고, 상기 범위 내에서 나노 섬유 내의 p-n접합이 균일하게 형성되어 일산화탄소 감지 센서로 활용할 수 있다. Within the above range, one-dimensional nanofibers made of copper oxide-based heterogeneous metal oxides including the first metal oxide and the second metal oxide can be manufactured, and within the above range, the p-n junction within the nanofiber is formed uniformly to detect carbon monoxide. It can be used as a sensor.

상기 나노섬유 외부면과 내부면에 금속나노입자가 분산될 수 있다. Metal nanoparticles may be dispersed on the outer and inner surfaces of the nanofiber.

상기 나노섬유가 1차원 중공형태이므로, 상기 나노섬유의 외부면과 내부면에 금속나노입자가 분산될 수 있다. Since the nanofiber is one-dimensional and hollow, metal nanoparticles can be dispersed on the outer and inner surfaces of the nanofiber.

상기 금속나노입자는 금(Au), 은(Ag), 백금(Pt), 팔라듐(Pd), 로듐(Rh), 루테늄(Ru), 및 이리듐(Ir) 중 1종 이상일 수 있다. The metal nanoparticle may be one or more of gold (Au), silver (Ag), platinum (Pt), palladium (Pd), rhodium (Rh), ruthenium (Ru), and iridium (Ir).

상기 종류의 금속나노입자는 금속산화물 표면에서 가스에 대한 분해 반응의 촉매로 작용하며, 분해되어 생성된 생성물을 스필오버(spill over) 현상을 통해 금속산화물 표면으로 옮겨 저항변화 효과를 증가시킬 수 있다. The above type of metal nanoparticles act as a catalyst for the decomposition reaction of gases on the surface of the metal oxide, and the products produced by decomposition can be transferred to the surface of the metal oxide through a spill over phenomenon to increase the resistance change effect. .

구체적으로 상기 금속나노입자가 금(Au)로 선택되는 경우 일산화탄소와 강한 상호작용으로 저항변화 효과를 증가시켜 매우 바람직하다. Specifically, when the metal nanoparticle is selected as gold (Au), it is highly desirable because it increases the resistance change effect through strong interaction with carbon monoxide.

한 구체예에서, 상기 금속나노입자는 2wt% 내지 5wt%로 포함된다. In one embodiment, the metal nanoparticles are included in an amount of 2wt% to 5wt%.

상기 이종 금속 나노섬유 복합체는 상기 금속나노입자를 상기 범위 내로 포함하여 가스 반응도를 증가시킬 수 있다. 상기 범위에 미치지 못하면 저항변화가 작아서 가스 반응도를 증가시키기 어려우며, 일산화탄소에 대한 선택성이 감소되고, 상기 범위를 초과하는 경우 금속나노입자의 응집을 방지하면서 이종 금속산화물 표면에서 분산시켜 나노섬유의 외부면과 내부면에 균일하게 분산되기 어렵다. The heterogeneous metal nanofiber composite can increase gas reactivity by including the metal nanoparticles within the above range. If it is less than the above range, the change in resistance is small, making it difficult to increase the gas reactivity, and the selectivity to carbon monoxide is reduced. If it exceeds the above range, it is dispersed on the surface of the heterogeneous metal oxide while preventing agglomeration of the metal nanoparticles, and the outer surface of the nanofiber. It is difficult to distribute uniformly on the inner surface.

한 구체예에서, 상기 이종 나노섬유 복합체는 평균직경이 50 nm 내지 10 μm이고, 평균길이가 1 μm 내지 500 μm일 수 있다. In one embodiment, the heterogeneous nanofiber composite may have an average diameter of 50 nm to 10 μm and an average length of 1 μm to 500 μm.

상기 이종 나노섬유 복합체는 전기방사로 형성되어 상기 범위 내의 치수를 가지며, 다양한 가스, 특히 일산화탄소에 대하여 선택적인 반응 결합이 가능하여 저항 변화를 유도할 수 있다. The heterogeneous nanofiber composite is formed by electrospinning and has dimensions within the above range, and is capable of selective reaction bonding to various gases, especially carbon monoxide, to induce a change in resistance.

본 발명의 다른 관점은 이종 금속 나노섬유 복합체의 제조방법에 관한 것이다. Another aspect of the present invention relates to a method for producing a heterogeneous metal nanofiber composite.

도 1은 본 발명의 다른 관점에 따른 이종 나노섬유 복합체 제조방법의 공정 순서도이다. Figure 1 is a process flow chart of a heterogeneous nanofiber composite manufacturing method according to another aspect of the present invention.

도 1을 참조하면, 상기 이종 금속 나노섬유 복합체 제조방법은 (a) 금속나노입자 분산액 및 제1고분자 용액을 포함하는 제1 혼합용액을 제조하는 단계;Referring to Figure 1, the method for producing a heterogeneous metal nanofiber composite includes (a) preparing a first mixed solution containing a metal nanoparticle dispersion and a first polymer solution;

(b) 상기 제1 혼합용액을 증발시켜 금속나노입자 농축액을 제조하는 단계;(b) preparing a metal nanoparticle concentrate by evaporating the first mixed solution;

(c) 제1 금속산화물 전구체, 제2 금속산화물 전구체 및 제2고분자 용액을 포함하는 제2 혼합용액을 제조하는 단계;(c) preparing a second mixed solution containing a first metal oxide precursor, a second metal oxide precursor, and a second polymer solution;

(d) 상기 금속나노입자 농축액에 상기 제2 혼합용액을 혼합하여 전기방사용액을 제조하는 단계;(d) preparing an electrospinning solution by mixing the second mixed solution with the metal nanoparticle concentrate;

(e) 상기 전기방사용액을 전기방사하여 나노섬유를 제조하는 단계; 및(e) producing nanofibers by electrospinning the electrospinning solution; and

(f) 상기 나노섬유를 열처리하는 단계;를 포함한다.(f) heat treating the nanofibers.

우선 금속나노입자 분산액 및 제1고분자 용액을 포함하는 제1 혼합용액을 제조한다(S100).First, prepare a first mixed solution containing a metal nanoparticle dispersion and a first polymer solution (S100).

한 구체예에서, 상기 금속나노입자 전구체는 은(Ag), 백금(Pt), 팔라듐(Pd), 로듐(Rh), 루테늄(Ru), 및 이리듐(Ir) 중 1종 이상을 포함할 수 있다. In one embodiment, the metal nanoparticle precursor may include one or more of silver (Ag), platinum (Pt), palladium (Pd), rhodium (Rh), ruthenium (Ru), and iridium (Ir). .

상기 종류의 금속은 나노입자로 형성될 수 있으며, 금속산화물 표면에서 가스 분해 반응의 촉매로 사용될 수 있다. The above types of metals can be formed into nanoparticles and used as catalysts for gas decomposition reactions on the surface of metal oxides.

상기 금속나노입자 분산액은 금속나노입자 0.001wt% 내지 0.1wt%를 포함할 수 있다.The metal nanoparticle dispersion may contain 0.001 wt% to 0.1 wt% of metal nanoparticles.

상기 금속나노입자 분산액은 금속나노입자 전구체가 물에 분산된 상태이다. 상기 금속나노입자 분산액이 상기 금속나노입자를 상기 함량 범위로 포함하며, 금속나노입자 분산액을 고농도로 농축할 수 있으며, 상기 범위를 초과하는 경우에는 금속나노입자의 응집이 발생될 수 있다. The metal nanoparticle dispersion is a state in which metal nanoparticle precursors are dispersed in water. The metal nanoparticle dispersion contains the metal nanoparticles within the above content range, and the metal nanoparticle dispersion can be concentrated to a high concentration. If the content exceeds the above range, aggregation of the metal nanoparticles may occur.

상기 제1 고분자 용액은 상기 금속나노입자 분산액의 용매인 물을 치환하여 금속나노입자의 농도를 높이기 위한 것이다. The first polymer solution is intended to increase the concentration of metal nanoparticles by replacing water, which is the solvent of the metal nanoparticle dispersion.

한 구체예에서, 상기 제1 고분자 용액은 고분자 및 용매를 포함하고, 상기 용매는 N-메틸피롤리돈(N-methylpyrrolidone), 디메틸술폭사이드(Dimethyl sulfoxide), 이소프로필 미리스테이트(Isopropyl myristate), 트리클로로벤젠(Trichlorobenzene), 디클로로벤젠(Dichlorobenzene), 디메틸아세트아미드(Dimethyl acetamide), N,N'-디메틸포름아미드(N,N'-dimethylformamide), 이소아밀알코올(Isoamylalcohol), 프로필알코올(Propyl alcohol), 부틸알코올 (Butyl alcohol), 펜틸알코올(Pentyl alcohol), 에틸렌글리콜(Ethylene glycol), 메톡시에탄올(Methoxyethanol), 메틸이소부틸케톤(Methyl isobutyl ketone), 부틸아세테이트(Butyl acetate), 테트라클로로에탄(Tetrachloroethane), 펜타클로로에탄(Pentachloroethane), 클로로벤젠(Chlorobenzene), 크실렌(Xylene), 및 테트라클로로에틸렌(Tetrachloroethylene) 중에서 1종 이상을 포함할 수 있다. In one embodiment, the first polymer solution includes a polymer and a solvent, and the solvent is N-methylpyrrolidone, dimethyl sulfoxide, isopropyl myristate, Trichlorobenzene, Dichlorobenzene, Dimethyl acetamide, N,N'-dimethylformamide, Isoamylalcohol, Propyl alcohol ), Butyl alcohol, Pentyl alcohol, Ethylene glycol, Methoxyethanol, Methyl isobutyl ketone, Butyl acetate, Tetrachloroethane It may include one or more of Tetrachloroethane, Pentachloroethane, Chlorobenzene, Xylene, and Tetrachloroethylene.

상기 종류의 용매는 상기 금속나노입자 전구체의 용매인 물(H2O) 보다 증기압이 낮아서 진공에 가깝게 감압하였을 때 증발하지 않기 때문에 상기 물을 치환하여 금속나노입자의 농도를 증가시킬 수 있다. This type of solvent has a lower vapor pressure than water (H 2 O), which is the solvent for the metal nanoparticle precursor, and does not evaporate when the pressure is reduced to close to a vacuum, so the concentration of metal nanoparticles can be increased by replacing the water.

상기 제1고분자 용액은 폴리아크릴로니트릴 (Polyacrylonitrile), 폴리비닐알콜(Polyvinyl alcohol), 폴리비닐피롤리돈(Polyvinylpyrrolidone), 폴리비닐부티랄(Polyvinyl butyral), 폴리비닐리덴플로라이드(Polyvinylidene fluoride), 폴리설폰(Polysulphone), 폴리에스터설폰(Polyethersulphone), 폴리아릴설폰(Polyarylsulphone), 에폭시우레탄(Epoxypolyurethane), 폴리이미드(Polyimide), 폴리비닐클로라이드(Polyvinyl chloride), 폴리에스터케톤(Polyetherketone), 아로마틱폴리에스터(Aromatic polyester), 폴리아미도이미드(Polyamidoimide), 폴리비닐아세테이트(Polyvinylacetate), 폴리메틸메타아클레이트(Polymethylmethacrylate), 폴리스틸렌(Polystyrene), 폴리옥시메틸렌(Polyoxymethylene), 폴리아크릴릭애시드(Polyacrylic acid), 폴리우레탄 (polyurethane), 폴리에틸렌(polyethylene), 및 폴리트리메틸린 테레프탈레트(polytrimethylene terephthalate) 중 1 종 이상을 포함할 수 있다. The first polymer solution contains polyacrylonitrile, polyvinyl alcohol, polyvinylpyrrolidone, polyvinyl butyral, polyvinylidene fluoride, Polysulphone, Polyethersulphone, Polyarylsulphone, Epoxypolyurethane, Polyimide, Polyvinyl chloride, Polyetherketone, Aromatic Polyester (Aromatic polyester), Polyamidoimide, Polyvinylacetate, Polymethylmethacrylate, Polystyrene, Polyoxymethylene, Polyacrylic acid, poly It may include one or more of urethane, polyethylene, and polytrimethylene terephthalate.

상기 종류의 고분자는 상기 제1 고분자 용액의 용매에 용해되어 균일한 제1 고분자 용액을 형성할 수 있으며, 전기방사로 1차원 나노섬유를 제조하기 매우 유리하다. The above type of polymer can be dissolved in the solvent of the first polymer solution to form a uniform first polymer solution, and is very advantageous for producing one-dimensional nanofibers by electrospinning.

한 구체예에서, 상기 제1 고분자 용액은 고분자를 5wt% 내지 20wt%를 포함할 수 있다. In one embodiment, the first polymer solution may include 5wt% to 20wt% of the polymer.

상기 범위 내에서 상기 고분자를 포함하여 전기방사로 1차원 나노섬유를 제조할 수 있으며, 열처리하여 상기 고분자를 효율적으로 제거할 수 있다. Within the above range, one-dimensional nanofibers can be manufactured by electrospinning including the polymer, and the polymer can be efficiently removed by heat treatment.

한 구체예에서, 상기 S100에서, 상기 금속나노입자 전구체에 대하여 제1고분자 용액을 0.05 내지 10부피부로 혼합할 수 있다.In one embodiment, in S100, 0.05 to 10 parts by volume of the first polymer solution may be mixed with the metal nanoparticle precursor.

상기 제1 고분자 용액은 상기 금속나노입자 전구체 대비 적은 양을 첨가하며, 상기 금속나노입자 분산액의 용매는 이후 농축 공정에서 소멸되므로, 상기 고분자 용액이 금속나노입자 농축액의 부피의 대부분을 차지하게 되므로, 전기방사 시 제2 고분자 용액의 부피를 고려하여 제1 고분자 용액의 첨가량을 결정할 수 있다. The first polymer solution is added in a small amount compared to the metal nanoparticle precursor, and the solvent of the metal nanoparticle dispersion disappears in the subsequent concentration process, so the polymer solution occupies most of the volume of the metal nanoparticle concentrate, During electrospinning, the amount of the first polymer solution added can be determined by considering the volume of the second polymer solution.

상기 제1 고분자 용액이 첨가되지 않은 금속나노입자 전구체로 전기방사용액을 제조하여 전기방사하는 경우에는 금속나노입자의 응집 현상이 일어나게 되나, 상기 범위 내에서 제1 고분자 용액을 첨가하는 경우 금속나노입자의 응집을 방지하면서도 금속나노입자 전구체의 용매인 물을 증발시켜 금속나노입자 농축액을 효과적으로 제조할 수 있다. When an electrospinning solution is prepared and electrospun using a metal nanoparticle precursor to which the first polymer solution is not added, agglomeration of metal nanoparticles occurs, but when the first polymer solution is added within the above range, the metal nanoparticles While preventing agglomeration, a metal nanoparticle concentrate can be effectively produced by evaporating water, which is a solvent for the metal nanoparticle precursor.

상기 제1 혼합용액을 증발시켜 금속나노입자 농축액을 제조한다(S200).The first mixed solution is evaporated to prepare a metal nanoparticle concentrate (S200).

금속나노입자를 촉매로 활용하는 금속산화물 나노섬유 기판 감지 소재의 경우 금속나노입자를 전기방사용액에 그대로 첨가하여 나노섬유의 외부면과 내부면에 분산시키는 경우에는 높은 균일도와 작은 크기를 가지는 금속나노입자를 사용하기 때문에 전기방사용액과 금속나노입자 용액의 종류가 상이하여 전기방사 효율이 매우 감소될 뿐만 아니라, 금속나노입자간 응집이 발생되어 금속나노입자의 함량을 1wt% 이상으로 증가시키기 어렵다. In the case of a metal oxide nanofiber substrate sensing material using metal nanoparticles as a catalyst, metal nanoparticles are added as is to the electrospinning solution and dispersed on the outer and inner surfaces of the nanofiber, resulting in a metal nanofiber with high uniformity and small size. Because particles are used, the types of electrospinning solution and metal nanoparticle solution are different, which not only greatly reduces electrospinning efficiency, but also causes agglomeration between metal nanoparticles, making it difficult to increase the content of metal nanoparticles above 1 wt%.

상기 금속나노입자 분산액의 용매인 물을 증발시키면서 제1 고분자 용액 내의 용매로 치환하는 경우 금속나노입자의 농도를 효과적으로 증가시킬 수 있으며, 최종적으로 나노섬유에 포함되는 금속나노입자의 함량을 2wt% 이상으로 증가시킬 수 있다. When water, which is the solvent of the metal nanoparticle dispersion, is evaporated and replaced with the solvent in the first polymer solution, the concentration of metal nanoparticles can be effectively increased, and the final content of metal nanoparticles contained in the nanofibers is reduced to 2 wt% or more. can be increased.

구체적으로 상기 S200에서, 상기 금속나노입자 분산액의 증발은 회전증발농축기를 사용하되, 농축기 내부를 감압하여 진공에 가까운 분위기를 형성하면, 상기 금속나노입자 분산액 중의 용매인 물을 증발시키고, 상기 물 보다 증기압이 낮은 상기 제1고분자 용액의 용매는 잔류되어 용매치환이 발생될 수 있다.Specifically, in S200, a rotary evaporation concentrator is used to evaporate the metal nanoparticle dispersion, and when the inside of the concentrator is depressurized to form an atmosphere close to a vacuum, water, which is a solvent in the metal nanoparticle dispersion, is evaporated and more than the water. The solvent in the first polymer solution, which has a low vapor pressure, may remain and cause solvent displacement.

상기 진공에 가까운 분위기를 형성하기 위하여 물의 증기압 보다는 낮고, 상기 제1 고분자 용액의 증기압 보다는 높은 압력을 유지하는 것이 바람직하며, 상기 농축액의 부피가 50 내지 99% 범위로 감소되는 경우 회전증발농축기로부터 농축액을 분리하여 금속나노입자 농축액 제조단계를 완료할 수 있으며, 이 경우에는 상기 용매치환에 의한 농축과정에서 금속나노입자의 응집이나 반응없이 농축이 가능하다.In order to form an atmosphere close to the vacuum, it is preferable to maintain a pressure lower than the vapor pressure of water and higher than the vapor pressure of the first polymer solution, and when the volume of the concentrate is reduced to the range of 50 to 99%, the concentrate from the rotary evaporator The metal nanoparticle concentrate preparation step can be completed by separating, and in this case, concentration is possible without agglomeration or reaction of the metal nanoparticles in the concentration process by solvent substitution.

제1 금속산화물 전구체, 제2 금속산화물 전구체 및 제2 고분자 용액을 포함하는 제2 혼합용액을 제조한다(S300). A second mixed solution containing a first metal oxide precursor, a second metal oxide precursor, and a second polymer solution is prepared (S300).

상기 제1 금속산화물 전구체와 제2 금속산화물 전구체는 무기 금속염이며, 서로 상이한 금속산화물 전구체가 혼합되어 금속산화물 나노섬유를 형성할 수 있다. The first metal oxide precursor and the second metal oxide precursor are inorganic metal salts, and different metal oxide precursors can be mixed to form metal oxide nanofibers.

한 구체예에서 상기 제1 금속산화물 전구체는 copper (II) nitrate trihydrate, copper (II) chloride, copper (II) nitrate, copper (II) acetate, copper (II) acetylacetonate, copper (II) sulfate 및 이들의 유도체 중 1종 이상일 수 있다. In one embodiment, the first metal oxide precursor is copper (II) nitrate trihydrate, copper (II) chloride, copper (II) nitrate, copper (II) acetate, copper (II) acetylacetonate, copper (II) sulfate, and these. It may be one or more types of derivatives.

상기 제1 금속산화물 전구체는 구리 산화물을 형성하여 1차원 나노섬유를 형성할 수 있다. The first metal oxide precursor may form copper oxide to form one-dimensional nanofibers.

한 구체예에서, 상기 제2 금속산화물 전구체는 상기 제1 금속산화물 전구체와 상이한 금속염이며, 구체적으로 cerium (III) nitrate hexahydrate, cerium (III) chloride, cerium (III) nitrate, cerium (III) sulfate, zinc (II) chloride, zinc (II) nitrate, tin (IV) chloride, cobalt (II) chloride, cobalt (II) nitrate, nickel (II) chloride, nickel (II) nitrate, iron (II) chloride, iron (II) nitrate, ammonium metatungstate hydrate 및 이들의 유도체 중 1 종 이상을 포함할 수 있다. In one embodiment, the second metal oxide precursor is a metal salt different from the first metal oxide precursor, and specifically, cerium (III) nitrate hexahydrate, cerium (III) chloride, cerium (III) nitrate, cerium (III) sulfate, zinc (II) chloride, zinc (II) nitrate, tin (IV) chloride, cobalt (II) chloride, cobalt (II) nitrate, nickel (II) chloride, nickel (II) nitrate, iron (II) chloride, iron ( II) It may contain one or more of nitrate, ammonium metatungstate hydrate, and their derivatives.

상기 종류의 금속염이 첨가되어 이종 금속 나노섬유를 형성할 수 있다. The above types of metal salts can be added to form heterogeneous metal nanofibers.

한 구체예에서, 상기 제2 고분자 용액은 상기 제1 금속산화물 전구체 100중량부에 대하여 상기 제2 금속산화물 전구체를 1 내지 30중량부로 포함할 수 있다. In one embodiment, the second polymer solution may include 1 to 30 parts by weight of the second metal oxide precursor based on 100 parts by weight of the first metal oxide precursor.

상기 범위 내에서 이종 금속산화물 전구체를 포함하는 경우 전기방사하여 p-n 접합이 형성된 이종 나노섬유 복합체를 제조할 수 있다. If a heterogeneous metal oxide precursor is included within the above range, a heterogeneous nanofiber composite in which a p-n junction is formed can be produced by electrospinning.

한편, 상기 제1 금속산화물 전구체와 제2 금속산화물 전구체를 포함하는 제2고분자 용액은 상기 제1고분자 용액과 동일한 용매와 고분자를 포함하는 것이 바람직하다. Meanwhile, the second polymer solution containing the first metal oxide precursor and the second metal oxide precursor preferably contains the same solvent and polymer as the first polymer solution.

상기 제2 고분자 용액이 상기 제1 고분자 용액과 동일한 용매와 고분자를 포함하는 경우에는 상기 농축액에 잔류되는 용매 및 고분자와 혼합이 용이하기 때문에 상기 제2 고분자 용액과 상기 금속나노입자 농축액을 혼합하여 전기방사용액을 제조할 수 있다. When the second polymer solution contains the same solvent and polymer as the first polymer solution, it is easy to mix with the solvent and polymer remaining in the concentrate, so the second polymer solution and the metal nanoparticle concentrate are mixed to conduct electricity. A spinning solution can be prepared.

상기 금속나노입자 농축액에 상기 제2 혼합용액을 혼합하여 전기방사용액을 제조한다(S400).An electrospinning solution is prepared by mixing the second mixed solution with the metal nanoparticle concentrate (S400).

상기 금속나노입자 농축액에 상기 제2 혼합용액을 혼합하여 전기방사용액을 제조할 수 있다. An electrospinning solution can be prepared by mixing the second mixed solution with the metal nanoparticle concentrate.

상기 전기방사용액을 전기방사하여 나노섬유를 제조한다(S500).Nanofibers are manufactured by electrospinning the electrospinning solution (S500).

상기 전기방사용액은 금속나노입자가 농축되어 있으며, 이종 금속산화물을 포함하여 이종 금속 나노섬유를 형성한다.The electrospinning solution is concentrated in metal nanoparticles and contains heterogeneous metal oxides to form heterogeneous metal nanofibers.

상기 나노섬유를 열처리한다(S600).The nanofibers are heat treated (S600).

상기 (d) 단계의 열처리는 400 내지 800℃에서 수행될 수 있다.The heat treatment in step (d) may be performed at 400 to 800°C.

상기 열처리 온도는 상기 제1 및 제2고분자 용액 내의 고분자의 열분해 온도 이상으로 상기 고분자를 열분해하여 제거하고, 1차원 나노섬유를 형성할 수 있다. The heat treatment temperature is higher than the thermal decomposition temperature of the polymer in the first and second polymer solutions, so that the polymer can be thermally decomposed and removed, forming one-dimensional nanofibers.

본 발명의 또 다른 관점은 이종 금속 나노섬유 복합체를 포함하는 일산화탄소 감지 센서에 관한 것이다. Another aspect of the present invention relates to a carbon monoxide detection sensor comprising a bimetallic nanofiber composite.

상기 일산화탄소 감지 센서는 기판; 및The carbon monoxide detection sensor includes a substrate; and

상기 기판 상에 적층되는 이종 금속 나노섬유 복합체를 포함한다. It includes a heterogeneous metal nanofiber composite laminated on the substrate.

구체적으로 상기 기판은 알루미나이며, 상면에 일정 간격을 두고 인터디지트형(interdigited) 금 전극이 형성된 것일 수 있다. Specifically, the substrate may be alumina, and interdigitated gold electrodes may be formed on the upper surface at regular intervals.

상기 일산화탄소 감지 센서는 하기 식 1에 의한 일산화탄소 반응도가 15% 이상 증가될 수 있다. The carbon monoxide detection sensor can increase carbon monoxide reactivity by more than 15% according to Equation 1 below.

[식 1] [Equation 1]

일산화탄소 반응도 증가율 = [전기저항변화량(R/R0) / 가스농도(ppm)] × 100Carbon monoxide reactivity increase rate = [electrical resistance change (R/R 0 ) / gas concentration (ppm)] × 100

상기 일산화탄소 감지 센서는 다양한 가스 중에서 일산화탄소에 대한 선택성이 있으며, 금속나노입자가 첨가량이 증가되어 금속나노입자를 첨가하지 않는 경우와 비교하여 반응도 증가율이 15% 이상 증가될 수 있다. The carbon monoxide detection sensor has selectivity for carbon monoxide among various gases, and the increased amount of metal nanoparticles can increase the reactivity increase rate by more than 15% compared to the case where metal nanoparticles are not added.

따라서 본 발명에 따른 이종 금속 나노섬유 복합체는 금속나노입자가 응집되지 않도록 용매치환 방법으로 형성된 농축액을 포함하는 전기방사용액으로 형성되어 1차원 나노섬유 외부면과 내부면에 금속나노입자가 균일하게 분산되어 가스 분해 반응 효율을 증가시킬 수 있으며, 특히 일산화탄소에 대한 선택성과 가스 반응도가 증가되어 일산화탄소 감지 센서로 활용할 수 있다. Therefore, the heterogeneous metal nanofiber composite according to the present invention is formed from an electrospinning solution containing a concentrate formed by a solvent substitution method to prevent metal nanoparticles from agglomerating, so that the metal nanoparticles are uniformly dispersed on the outer and inner surfaces of the one-dimensional nanofiber. This can increase the gas decomposition reaction efficiency, and in particular, the selectivity for carbon monoxide and gas reactivity are increased, so it can be used as a carbon monoxide detection sensor.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. Hereinafter, preferred examples are presented to aid understanding of the present invention. However, the following examples are merely illustrative of the present invention and the scope of the present invention is not limited to the following examples.

실시예 1: 이종 금속 나노섬유 복합체 제조Example 1: Preparation of heterogeneous metal nanofiber composite

(1) 금속나노입자 농축액 제조(1) Manufacturing metal nanoparticle concentrate

금 나노입자가 높은 용량으로 첨가되는 이종 나노섬유 복합체로 구리-세륨산화물 복합 나노섬유를 제조하였다. Copper-cerium oxide composite nanofibers were manufactured as a heterogeneous nanofiber composite in which gold nanoparticles were added at a high dose.

먼저 금 나노입자 분산액을 준비하기 위해서, 2.2 mM 농도의 구연산 나트륨(Sodium citrate tribasic dihydrate) 수용액 150 mL, 2.5 mM 농도의 탄닌산(Tannic acid) 수용액 0.1 mL, 150 mM 농도의 탄산칼륨(K2CO3) 수용액 1 mL를 준비하여 250 mL의 둥근 플라스크 안에 혼합하고, 온도 조절이 가능한 자석 교반기를 사용해 260 RPM의 속도로 교반을 하며 혼합액의 온도가 70℃가 될 때까지 가열하였다.First, to prepare a gold nanoparticle dispersion, 150 mL of a 2.2mM aqueous solution of sodium citrate tribasic dihydrate, 0.1 mL of a 2.5mM aqueous solution of tannic acid, and 150mM potassium carbonate (K 2 CO 3 ) 1 mL of aqueous solution was prepared and mixed in a 250 mL round flask, stirred at a speed of 260 RPM using a temperature-controllable magnetic stirrer, and heated until the temperature of the mixture reached 70°C.

상기 혼합액이 70℃에 도달하면 교반이 진행중인 상태에서 25 mM 농도의 염화 금산(chloroauric acid trihydrate) 수용액 1 mL를 첨가하였다. 이 때 용액은 투명한 상태에서 즉시 어두운 갈색을 띄었으며, 약 5분 후 금 입자의 성장이 완료되어 용액이 밝은 적색을 띄는 금 나노입자 분산액을 제조하였다. 플라스크를 교반기에서 꺼낸 뒤 흐르는 물에 담가서 상온까지 식혀 추가 반응을 막아 응집 등을 방지하였다.When the mixed solution reached 70°C, 1 mL of 25 mM chloroauric acid trihydrate aqueous solution was added while stirring was in progress. At this time, the solution went from being transparent to immediately turning dark brown, and after about 5 minutes, the growth of the gold particles was completed, producing a gold nanoparticle dispersion with a bright red color. After removing the flask from the stirrer, it was immersed in running water and cooled to room temperature to prevent further reaction and agglomeration.

분자량 40,000의 폴리비닐피롤리돈(polyvinylpyrrolidone; 이하 'PVP')을 N,N'-디메틸포름아미드(N,N'-dimethylformamide; 이하 'DMF') 용매에 동일 질량비로 섞어 용해시킨 제1고분자 용액을 준비하고 상기 금 나노입자 수용액과 혼합하였다. The first polymer solution in which polyvinylpyrrolidone (hereinafter referred to as 'PVP') with a molecular weight of 40,000 was mixed and dissolved in an N,N'-dimethylformamide (N,N'-dimethylformamide (hereinafter referred to as 'DMF') solvent at the same mass ratio. was prepared and mixed with the gold nanoparticle aqueous solution.

1 mL의 제1고분자 용액을 약 150 mL의 금나노입자 수용액에 첨가하고, 상온에서 260 RPM의 속도로 10분간 교반을 진행하여 혼합용액을 제조하였다. 1 mL of the first polymer solution was added to about 150 mL of aqueous gold nanoparticle solution, and stirred at room temperature at a speed of 260 RPM for 10 minutes to prepare a mixed solution.

혼합용액이 담긴 둥근 플라스크를 회전증발농축기에 장착하였으며, 회전증발농축기의 중탕 수조는 40℃로 유지시켰다. 장착된 플라스크는 60 RPM의 속도로 회전하며, 50 mBar의 진공 압력을 걸어 증발을 유도하였다. The round flask containing the mixed solution was mounted on a rotary evaporator, and the water bath of the rotary evaporator was maintained at 40°C. The mounted flask rotated at a speed of 60 RPM, and evaporation was induced by applying a vacuum pressure of 50 mBar.

상압으로부터 50 mBar까지는 천천히 감압하여 혼합용액이 끓어 넘치는 것을 방지하였으며, 40℃에서는 물은 72 mBar에서 증발이 되지만 DMF는 11 mBar에서 증발이 되므로, 50 mBar 조건에서 물이 선택적으로 증발되고 DMF가 잔류하게 되어 용매치환 하여 농축액을 제조하였다. 이 때, 첨가된 PVP 고분자가 금 나노입자의 분산제 역할을 하므로 선택적 증발이 일어나는 중에도 금 나노입자간 응집을 방지하였다. The pressure was slowly reduced from normal pressure to 50 mBar to prevent the mixed solution from boiling over. At 40°C, water evaporates at 72 mBar, but DMF evaporates at 11 mBar, so water selectively evaporates under 50 mBar conditions and DMF remains. Then, the solvent was replaced to prepare a concentrate. At this time, the added PVP polymer served as a dispersant for the gold nanoparticles, preventing aggregation between gold nanoparticles even during selective evaporation.

상기 조건에서는 용액 4 mL의 증발을 위해 약 15분이 소요되었다. Under the above conditions, it took about 15 minutes to evaporate 4 mL of solution.

(2) 이종 금속 나노섬유 제조(2) Manufacturing of heterogeneous metal nanofibers

먼저 DMF 용매 4.72 g에 질산화구리 수화물(copper(II) nitrate trihydrate) 0.435 g과 질산화세륨 수화물(cerium(III) nitrate hexahydrate) 0.087 g을 용해시키고, 분자량 1,300,000의 PVP를 0.655 g 첨가해 자석 막대를 통해 교반하여 제2 고분자 용액을 제조하였다. 제2 고분자 용액에 0.94 mL의 금 나노입자 농축액을 첨가하여 자석 막대를 통해 상온에서 300 RPM의 속도로 5시간 동안 교반하여 전기방사용액을 제조하였다.First, 0.435 g of copper(II) nitrate trihydrate and 0.087 g of cerium(III) nitrate hexahydrate were dissolved in 4.72 g of DMF solvent, and 0.655 g of PVP with a molecular weight of 1,300,000 was added and dissolved through a magnetic bar. A second polymer solution was prepared by stirring. An electrospinning solution was prepared by adding 0.94 mL of gold nanoparticle concentrate to the second polymer solution and stirring it for 5 hours at room temperature at a speed of 300 RPM using a magnetic bar.

상기 금 나노입자 농축액 1.45 mL은 금 나노입자의 수율을 100%로 설정하면 약 17.24 mM의 농도를 가지게 되는데, 이를 기반으로 농축액 중 약 0.94 mL을 전기방사용액에 혼합할 경우 최종 생성되는 구리-세륨산화물 이종 나노섬유의 무게 대비 약 2 wt%의 함량으로 금 나노입자를 포함시킬 수 있다. 따라서 금 나노입자 농축액에 비례하기 때문에 농축액의 첨가량을 조절하는 것으로 이종 나노섬유에서 금 나노입자의 함량을 조절할 수 있는 것을 확인하였다. 1.45 mL of the gold nanoparticle concentrate has a concentration of about 17.24 mM when the yield of gold nanoparticles is set to 100%. Based on this, when about 0.94 mL of the concentrate is mixed with the electrospinning solution, the final copper-cerium produced is Gold nanoparticles may be included in an amount of about 2 wt% based on the weight of the oxide heterogeneous nanofiber. Therefore, it was confirmed that the content of gold nanoparticles in heterogeneous nanofibers could be controlled by adjusting the amount of concentrate added because it was proportional to the gold nanoparticle concentrate.

교반된 전기방사용액은 전기방사를 위해 주사기에 담아 시린지 펌프(Henke-Sass Wolf, 10 mL NORMJECT)에 연결하여, 0.01 mL/min의 토출 속도로 전기방사용액을 토출하고, 전기방사용액이 토출되는 스테인레스 주사바늘(needle, 21 gauge)과 15 cm의 간격을 두고 위치한 스테인레스 집전판(SUS, 0.5 T) 사이에 15 kV의 전압을 인가하는 것으로 전기방사를 수행하였다. 집전판은 100 RPM의 속도로 회전하며 전기방사된 나노섬유를 포집하였다.The stirred electrospinning solution is placed in a syringe for electrospinning and connected to a syringe pump (Henke-Sass Wolf, 10 mL NORMJECT), and the electrospinning solution is discharged at a discharge rate of 0.01 mL/min. Electrospinning was performed by applying a voltage of 15 kV between a stainless steel needle (21 gauge) and a stainless steel current collector (SUS, 0.5 T) placed at a distance of 15 cm. The current collector plate rotated at a speed of 100 RPM and collected the electrospun nanofibers.

이어서 상기 나노섬유를 소형 전기로(Ney, Vulcan 3-550)를 활용해 공기 분위기에서 열처리하였다. 550℃의 온도까지 분당 5℃의 승온 속도로 가열하여 2시간동안 유지시킨 후 상온까지 자연적으로 냉각하는 것으로 열처리를 진행하였다. 이 때 나노섬유를 구성하는 PVP와, 금 나노입자 제작 시 첨가된 구연산과 탄닌산 등 유기물은 열분해되어 제거되었으며, 구리 전구체와 세륨 전구체는 산화되어 각각 구리산화물과 세륨산화물을 형성하였으며, 최종적으로 금 나노입자가 다량 결착되어 있는 구리-세륨의 이종 금속 나노섬유 복합체를 제조하였다.The nanofibers were then heat-treated in an air atmosphere using a small electric furnace (Ney, Vulcan 3-550). Heat treatment was performed by heating to a temperature of 550°C at a temperature increase rate of 5°C per minute, maintaining it for 2 hours, and then naturally cooling to room temperature. At this time, PVP, which constitutes the nanofiber, and organic substances such as citric acid and tannic acid added during the production of gold nanoparticles were thermally decomposed and removed, and the copper precursor and cerium precursor were oxidized to form copper oxide and cerium oxide, respectively, and finally, gold nanoparticles were removed. A copper-cerium heterogeneous metal nanofiber composite with a large amount of particles bound was manufactured.

실험예 1: 금속나노입자 농축액 확인Experimental Example 1: Confirmation of metal nanoparticle concentrate

도 2는 본 발명의 한 구체예에 있어서, 회전증발농축기에서 금 나노입자 수용액과 제1고분자용액이 혼합된 혼합용액 150mL가 담기 플라스크 및 용매치환된 농축액의 사진이다. Figure 2 is a photograph of a flask containing 150 mL of a mixed solution of an aqueous gold nanoparticle solution and a first polymer solution in a rotary evaporator and a solvent-exchanged concentrate in one embodiment of the present invention.

도 2를 참조하면, 도 2를 참조하면, 약 10 시간의 공정 이후 150 mL의 금 나노입자 수용액이 최종적으로 1.45 mL의 농축액으로 변화된 것을 확인하였다. Referring to Figure 2, it was confirmed that 150 mL of gold nanoparticle aqueous solution was finally changed to 1.45 mL of concentrated solution after a process of about 10 hours.

특히 색깔의 큰 차이 없이 약 100배 이상으로 농축이 가능한 것을 확인하였다.In particular, it was confirmed that it was possible to concentrate more than 100 times without significant difference in color.

도 3은 본 발명의 한 구체예에 있어서, 용매치환된 농축액의 투과주사전자현미경 사진이다. Figure 3 is a transmission scanning electron microscope photograph of a solvent-exchanged concentrate according to one embodiment of the present invention.

도 3을 참조하면, 다양한 배율에서 분석한 결과 용매치환에 의한 농축이후에도 금 나노입자들이 고른 분포와 작은 크기를 가지고 있으며, 응집없이 균일한 크기로 존재하는 것을 확인하였다. Referring to Figure 3, as a result of analysis at various magnifications, it was confirmed that the gold nanoparticles had an even distribution and small size even after concentration by solvent replacement, and existed in a uniform size without agglomeration.

또한 고배율 이미지의 격자 배열을 분석한 결과 금 나노입자가 형성되는 것을 확인하였다. Additionally, as a result of analyzing the lattice arrangement of the high-magnification image, it was confirmed that gold nanoparticles were formed.

실험예 2. 이종 금속 나노섬유 복합체 확인Experimental Example 2. Confirmation of heterogeneous metal nanofiber composite

도 4는 본 발명의 한 구체예에 따른 이종 나노섬유 복합체의 주사전자현미경 사진이다. Figure 4 is a scanning electron microscope photograph of a heterogeneous nanofiber composite according to one embodiment of the present invention.

도 4를 참조하면, 산화 분위기에서 고온 열처리 과정으로 고분자는 열분해 되어 제거되었으며, 구리를 포함하는 금속산화물 전구체는 완전 산화되어 1차원 구조의 구리산화물 기반 이종 금속산화물을 포함하는 구리-세륨산화물의 복합체 나노섬유가 형성되었으며, 외부면과 내부면에 금 나노입자가 분산되어 분포되는 것을 확인하였다. Referring to FIG. 4, the polymer was thermally decomposed and removed through a high-temperature heat treatment process in an oxidizing atmosphere, and the metal oxide precursor containing copper was completely oxidized to form a copper-cerium oxide complex containing a one-dimensional copper oxide-based heterogeneous metal oxide. Nanofibers were formed, and it was confirmed that gold nanoparticles were dispersed and distributed on the outer and inner surfaces.

제조예 1. 금속나노입자 미포함 나노섬유 Manufacturing Example 1. Nanofiber without metal nanoparticles

고용량의 금 나노입자가 일산화탄소 감지 성능에 미치는 영향을 확인하기 위하여 실시예에서 제조된 금 나노입자가 다량 결착된 구리-세륨 이종 금속 나노섬유 복합체와 비교하여 금 나노입자가 첨가되지 않은 구리-세륨 이종 금속 나노섬유를 각각 제조하였다.In order to confirm the effect of high-capacity gold nanoparticles on carbon monoxide detection performance, the copper-cerium heterometal nanofiber composite with a large amount of gold nanoparticles bound to it prepared in the example was compared with the copper-cerium heterometal nanofiber composite to which no gold nanoparticles were added. Metal nanofibers were prepared separately.

금 나노입자가 첨가되지 않은 구리-세륨 이종 금속 나노섬유를 제조하기 위해 실시예 2에서 제조한 방법과 동일하게 수행하되, 금 나노입자 농축액을 첨가하지 않았다. To prepare copper-cerium bimetallic nanofibers without gold nanoparticles, the same method as prepared in Example 2 was performed, but without adding gold nanoparticle concentrate.

실시예 2. 일산화탄소 감지 센서 제조Example 2. Manufacturing of carbon monoxide detection sensor

실시예 1에서 제조된 구리-세륨 이종 금속 나노섬유 복합체의 일산화탄소에 대한 고선택성 및 고감도를 확인하기 위하여 감지 센서를 제조하였다. A detection sensor was manufactured to confirm the high selectivity and sensitivity to carbon monoxide of the copper-cerium bimetallic nanofiber composite prepared in Example 1.

금 나노입자가 결착된 구리-세륨 금속 나노섬유 복합체를 에탄올에 분산시킨 후 10분간 초음파를 가해 나노섬유를 고르게 분쇄하는 공정을 진행하였다. 분쇄된 나노섬유는 면적이 3 mm × 3 mm인 알루미나 (Al2O3) 기판 위에 150μm의 간격을 두고 두께 25μm, 길이 345μm되는 인터디지트형(interdigitated) 금 전극이 형성되어 있는 센서 기판 위에 드랍캐스팅(drop-casting) 방식으로 코팅하였다. 코팅 방법은 상기 분쇄된 나노섬유 혼합액 4μL을 센서 기판위에 도포한 후, 열판에서 60℃의 온도로 건조하였으며, 감지 소재가 금 전극 사이에 빈틈없이 도포되도록 3 내지 5회 반복하여 실시하였다. 센서 기판의 하부에는 마이크로 히터를 부착하여 인가 전압에 따라 기판의 온도를 조절할 수 있도록 하였다.The copper-cerium metal nanofiber composite with gold nanoparticles bound was dispersed in ethanol and then ultrasonic waves were applied for 10 minutes to evenly pulverize the nanofibers. The pulverized nanofibers were drop casted on an alumina (Al 2 O 3 ) substrate with an area of 3 mm It was coated using the (drop-casting) method. The coating method was performed by applying 4 μL of the pulverized nanofiber mixture onto the sensor substrate, drying it on a hot plate at a temperature of 60°C, and repeating the process 3 to 5 times to ensure that the sensing material was tightly applied between the gold electrodes. A micro heater was attached to the bottom of the sensor board to control the temperature of the board according to the applied voltage.

비교예 1. 금 나노입자 미포함 일산화탄소 감지 센서 제조Comparative Example 1. Manufacturing of a carbon monoxide detection sensor without gold nanoparticles

제조예 1에 따라 금속나노입자 미포함 나노섬유를 제조하고, 실시예 2의 방법으로 가스 감지 센서를 제조하였다. Nanofibers without metal nanoparticles were prepared according to Preparation Example 1, and a gas detection sensor was manufactured by the method of Example 2.

실험예 3. 가스 선택성 확인Experimental Example 3. Confirmation of gas selectivity

변압기 내부 절연유에서 동작하는 조건을 상정하여 선택적인 일산화탄소 감지 양상을 확인하고자 가스 감지 센서 특성 평가 장치는 상시 2%의 산소(O2) 농도를 가지도록 설정되었고, 절연유에서 발생하는 대표적인 가스인 아세틸렌(C2H2), 일산화탄소(CO), 수소(H2)의 농도를 각각 1-10 ppm, 100-180 ppm, 10-100 ppm의 범위 안에서 변화시키면서, 센서 구동 온도 300℃에서 각 가스에 대한 반응도 특성을 평가하였다.In order to check the selective carbon monoxide detection pattern by assuming operating conditions in the insulating oil inside the transformer, the gas detection sensor characteristic evaluation device was set to have an oxygen (O 2 ) concentration of 2% at all times, and acetylene (acetylene), a representative gas generated from insulating oil, was set to have a constant oxygen (O 2 ) concentration of 2%. While changing the concentrations of C 2 H 2 ), carbon monoxide (CO), and hydrogen (H 2 ) within the range of 1-10 ppm, 100-180 ppm, and 10-100 ppm, respectively, the Responsiveness characteristics were evaluated.

센서의 감도는 각각의 특정 가스를 흘려줄 때 변하는 저항값을 Agilent사의 34972A 모델을 이용하여 감지하였으며, 각각의 가스에 대한 반응도 (Response: R/R0 저항의 변화, R: 측정 가스를 흘려줄 때의 저항, R0: 측정 분위기 내에서의 기저 저항)를 분석하여 감도 특성을 확인하였다. 특히, R0의 설정에 있어 2% 산소, 98% 질소로 가득찬 분위기를 기본 조건으로 하는데, 이는 변압기 내 저산소 분위기를 최대한 모사하기 위한 것이다.The sensitivity of the sensor was measured by using Agilent's 34972A model to detect the resistance value that changes when each specific gas is flowed, and the reactivity to each gas (Response: R/R 0 change in resistance, R: the amount of change in resistance through which the measurement gas is flowing). The sensitivity characteristics were confirmed by analyzing the resistance (R 0 : base resistance in the measurement atmosphere). In particular, when setting R 0 , an atmosphere filled with 2% oxygen and 98% nitrogen is set as the basic condition, which is intended to simulate the hypoxic atmosphere in the transformer as much as possible.

도 5는 본 발명의 한 구체예에 따른 금 나노입자를 포함하는 이종 금속 나노섬유 복합체를 포함하는 일산화탄소 가스 감지 센서의 가스농도에 따른 전기저항변화량(R/R0)을 나타낸 그래프이다. Figure 5 is a graph showing the amount of change in electrical resistance (R/R 0 ) according to gas concentration of a carbon monoxide gas detection sensor including a heterogeneous metal nanofiber composite containing gold nanoparticles according to an embodiment of the present invention.

도 5를 참조하면, 실시예 2와 비교예 1에 따라 제조된 구리-세륨 이종 금속 나노섬유와 금 나노입자가 분산된 구리-세륨 이종 금속 나노섬유 복합체를 포함하여 구성된 가스 센서의 테스트 결과를 나타내었다. Referring to FIG. 5, test results of a gas sensor composed of copper-cerium bimetallic nanofibers prepared according to Example 2 and Comparative Example 1 and copper-cerium bimetallic nanofiber composites in which gold nanoparticles are dispersed are shown. It was.

좌측 그래프부터 300℃에서 각각 아세틸렌 가스의 농도가 1, 5, 10 ppm으로 증가할 때의 반응도, 일산화탄소 가스의 농도가 100, 150, 180 ppm으로 증가할 때의 반응도, 수소 가스의 농도가 10, 50, 100 ppm으로 증가할 때의 반응도를 시간에 따라 나타내었다.From the left graph, the reactivity at 300°C when the concentration of acetylene gas increases to 1, 5, and 10 ppm, the reactivity when the concentration of carbon monoxide gas increases to 100, 150, and 180 ppm, and the concentration of hydrogen gas at 10, The reactivity when increasing to 50 and 100 ppm was shown over time.

금 나노입자가 포함되어 있지 않은 감지 센서(CC_ref)에 대해서는 아세틸렌 및 수소 가스에 대해서 비교적 높은 반응도를 보여주며, 일산화탄소의 반응도 수준과 비슷하여 선택성이 없는 것을 볼 수 있다. 그러나 금 나노입자가 다량 포함된 소재, 즉 금 나노입자의 첨가량이 약 2wt%까지 증가했을 때 일산화탄소에 대한 반응도가 모든 농도 구간에서 최대 15% 정도 상승하였고, 그에 반해 아세틸렌과 수소에 대한 감도는 모든 농도 구간에서 최대 40%와 75%정도 감소하여 일산화탄소에 대한 선택적인 반응을 보이는 것을 확인하였다. The detection sensor (CC_ref) that does not contain gold nanoparticles shows relatively high reactivity to acetylene and hydrogen gas, and is similar to the reactivity level of carbon monoxide, showing no selectivity. However, when the amount of gold nanoparticles was increased to about 2 wt% for materials containing a large amount of gold nanoparticles, the reactivity to carbon monoxide increased by up to 15% in all concentration ranges, while the sensitivity to acetylene and hydrogen increased at all levels. It was confirmed that the concentration range was reduced by up to 40% and 75%, showing a selective response to carbon monoxide.

반면, 금 나노입자가 조금 포함된 소재, 즉 0.5 wt%나 1 wt% 첨가된 소재의 경우 아세틸렌과 수소에 대한 감도가 낮아지는 경향은 동일하나 일산화탄소에 대한 감도가 같이 감소하는 것을 확인할 수 있으며, 따라서 금 나노입자를 다량 첨가하는 것에 대해 일산화탄소의 선택적 감지를 위한 분명한 효과를 나타낼 수 있는 것을 확인하였다. On the other hand, in the case of materials containing a small amount of gold nanoparticles, that is, materials added at 0.5 wt% or 1 wt%, the tendency for the sensitivity to acetylene and hydrogen to decrease is the same, but the sensitivity to carbon monoxide also decreases. Therefore, it was confirmed that adding a large amount of gold nanoparticles can have a clear effect for selective detection of carbon monoxide.

따라서 본 발명에 다른 이종 금속 나노섬유 복합체를 이종 금속산화물을 이용하여 나노섬유를 제조하되, 용매치환을 이용한 금속나노입자의 함량을 증가시켜 나노섬유의 외부면과 내부면에 균일하게 분산시킬 수 있으며, 금속나노입자의 함량이 2wt%에 달하는 경우 일산화탄소 가스에 대한 선택성이 있으며, 가스 반응도 또한 15% 이상 증가하여 변압기 내부 절연유에서 발생하는 일산화탄소 감지 센서로 활용할 수 있는 것을 확인하였다. Therefore, the heterogeneous metal nanofiber composite according to the present invention can be used to manufacture nanofibers using heterogeneous metal oxides, but by increasing the content of metal nanoparticles using solvent substitution, they can be uniformly dispersed on the outer and inner surfaces of the nanofibers. , when the content of metal nanoparticles reached 2wt%, there was selectivity for carbon monoxide gas, and the gas reaction also increased by more than 15%, confirming that it could be used as a sensor for detecting carbon monoxide generated from insulating oil inside a transformer.

이제까지 본 발명에 대하여 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로, 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.So far, the present invention has been examined focusing on the embodiments. A person skilled in the art to which the present invention pertains will understand that the present invention can be implemented in a modified form without departing from the essential characteristics of the present invention. Therefore, the disclosed embodiments should be considered from an illustrative rather than a restrictive perspective. The scope of the present invention is indicated in the claims rather than the foregoing description, and all differences within the equivalent scope should be construed as being included in the present invention.

Claims (17)

이종 금속산화물을 포함하는 중공형태의 나노섬유; 및
상기 나노섬유의 외부면과 내부면에 분산된 금속나노입자;를 포함하는 이종 금속 나노섬유 복합체이고,
상기 금속나노입자는 이종 금속 나노섬유 복합체 중 2wt% 내지 5 wt%로 포함되는 것인,
이종 금속 나노섬유 복합체.
Hollow nanofibers containing different metal oxides; and
It is a heterogeneous metal nanofiber composite containing metal nanoparticles dispersed on the outer and inner surfaces of the nanofibers,
The metal nanoparticles are contained in 2 wt% to 5 wt% of the heterogeneous metal nanofiber composite,
Bimetallic nanofiber composite.
제1항에 있어서, 상기 이종 금속산화물은 제1 금속산화물 100 중량부 및 제2 금속산화물 1 내지 30 중량부를 포함하고,
상기 제1 금속산화물은 산화구리(CuO)이며,
상기 제2 금속산화물은 ZnO, SnO2, WO3, Fe2O3, Fe3O4, NiO, Co3O4, CeO2, 및 MnO2 로 이루어진 군으로부터 1종 이상 포함하는 것인, 이종 금속 나노섬유 복합체.
The method of claim 1, wherein the different metal oxides include 100 parts by weight of the first metal oxide and 1 to 30 parts by weight of the second metal oxide,
The first metal oxide is copper oxide (CuO),
The second metal oxide is a heterogeneous metal oxide containing one or more types from the group consisting of ZnO, SnO 2 , WO 3 , Fe 2 O 3 , Fe 3 O 4 , NiO, Co 3 O 4 , CeO 2 , and MnO 2 . Metal nanofiber composite.
제1항에 있어서, 상기 금속나노입자는 금(Au), 은(Ag), 백금(Pt), 팔라듐(Pd), 로듐(Rh), 루테늄(Ru), 및 이리듐(Ir) 중 1종 이상을 포함하는 것인, 이종 금속 나노섬유 복합체.
The method of claim 1, wherein the metal nanoparticles are one or more of gold (Au), silver (Ag), platinum (Pt), palladium (Pd), rhodium (Rh), ruthenium (Ru), and iridium (Ir). A heterogeneous metal nanofiber composite comprising a.
제1항에 있어서, 상기 이종 나노섬유 복합체는 평균직경이 50 nm 내지 10 μm이고, 평균길이가 1 μm 내지 500 μm인 것을 특징으로 하는, 이종 금속 나노섬유 복합체.
The heterogeneous metal nanofiber composite of claim 1, wherein the heterogeneous nanofiber composite has an average diameter of 50 nm to 10 μm and an average length of 1 μm to 500 μm.
(a) 금속나노입자 분산액 및 제1 고분자 용액을 포함하는 제1 혼합용액을 제조하는 단계;
(b) 상기 제1 혼합용액을 증발시켜 금속나노입자 농축액을 제조하는 단계;
(c) 제1 금속산화물 전구체, 제2 금속산화물 전구체 및 제2 고분자 용액을 포함하는 제2 혼합용액을 제조하는 단계;
(d) 상기 금속나노입자 농축액에 상기 제2 혼합용액을 혼합하여 전기방사용액을 제조하는 단계;
(e) 상기 전기방사용액을 전기방사하여 나노섬유를 제조하는 단계; 및
(f) 상기 나노섬유를 열처리하는 단계;를 포함하는,
이종 금속 나노섬유 복합체 제조방법.
(a) preparing a first mixed solution containing a metal nanoparticle dispersion and a first polymer solution;
(b) preparing a metal nanoparticle concentrate by evaporating the first mixed solution;
(c) preparing a second mixed solution containing a first metal oxide precursor, a second metal oxide precursor, and a second polymer solution;
(d) preparing an electrospinning solution by mixing the second mixed solution with the metal nanoparticle concentrate;
(e) producing nanofibers by electrospinning the electrospinning solution; and
(f) heat treating the nanofibers; including,
Method for manufacturing heterogeneous metal nanofiber composite.
제5항에 있어서, 상기 금속나노입자 전구체는 은(Ag), 백금(Pt), 팔라듐(Pd), 로듐(Rh), 루테늄(Ru), 및 이리듐(Ir) 중 1종 이상을 포함하는 것인, 이종 금속 나노섬유 복합체 제조방법.
The method of claim 5, wherein the metal nanoparticle precursor contains one or more of silver (Ag), platinum (Pt), palladium (Pd), rhodium (Rh), ruthenium (Ru), and iridium (Ir). Phosphorus, bimetallic nanofiber composite manufacturing method.
제5항에 있어서, 상기 금속나노입자 분산액은 금속나노입자 전구체가 물에 분산된 상태인 것인, 이종 금속 나노섬유 복합체 제조방법.
The method of claim 5, wherein the metal nanoparticle dispersion is a state in which the metal nanoparticle precursor is dispersed in water.
제5항에 있어서, 상기 제1 고분자 용액은 고분자 및 용매를 포함하고, 상기 용매는 N-메틸피롤리돈(N-methylpyrrolidone), 디메틸술폭사이드(Dimethyl sulfoxide), 이소프로필 미리스테이트(Isopropyl myristate), 트리클로로벤젠(Trichlorobenzene), 디클로로벤젠(Dichlorobenzene), 디메틸아세트아미드(Dimethyl acetamide), N,N'-디메틸포름아미드(N,N'-dimethylformamide), 이소아밀알코올(Isoamylalcohol), 프로필알코올(Propyl alcohol), 부틸알코올 (Butyl alcohol), 펜틸알코올(Pentyl alcohol), 에틸렌글리콜(Ethylene glycol), 메톡시에탄올(Methoxyethanol), 메틸이소부틸케톤(Methyl isobutyl ketone), 부틸아세테이트(Butyl acetate), 테트라클로로에탄(Tetrachloroethane), 펜타클로로에탄(Pentachloroethane), 클로로벤젠(Chlorobenzene), 크실렌(Xylene), 및 테트라클로로에틸렌(Tetrachloroethylene) 중에서 1종 이상을 포함하는 것인, 이종 금속 나노섬유 복합체 제조방법.
The method of claim 5, wherein the first polymer solution includes a polymer and a solvent, and the solvent is N-methylpyrrolidone, dimethyl sulfoxide, and isopropyl myristate. , Trichlorobenzene, Dichlorobenzene, Dimethyl acetamide, N,N'-dimethylformamide, Isoamylalcohol, Propyl Alcohol alcohol), Butyl alcohol, Pentyl alcohol, Ethylene glycol, Methoxyethanol, Methyl isobutyl ketone, Butyl acetate, Tetrachloro A method for producing a heterogeneous metal nanofiber composite comprising one or more of ethane, pentachloroethane, chlorobenzene, xylene, and tetrachloroethylene.
제5항에 있어서, 상기 제1 고분자 용액은 폴리아크릴로니트릴 (Polyacrylonitrile), 폴리비닐알콜(Polyvinyl alcohol), 폴리비닐피롤리돈(Polyvinylpyrrolidone), 폴리비닐부티랄(Polyvinyl butyral), 폴리비닐리덴플로라이드(Polyvinylidene fluoride), 폴리설폰(Polysulphone), 폴리에스터설폰(Polyethersulphone), 폴리아릴설폰(Polyarylsulphone), 에폭시우레탄(Epoxypolyurethane), 폴리이미드(Polyimide), 폴리비닐클로라이드(Polyvinyl chloride), 폴리에스터케톤(Polyetherketone), 아로마틱폴리에스터(Aromatic polyester), 폴리아미도이미드(Polyamidoimide), 폴리비닐아세테이트(Polyvinylacetate), 폴리메틸메타아클레이트(Polymethylmethacrylate), 폴리스틸렌(Polystyrene), 폴리옥시메틸렌(Polyoxymethylene), 폴리아크릴릭애시드(Polyacrylic acid), 폴리우레탄 (polyurethane), 폴리에틸렌(polyethylene), 및 폴리트리메틸린 테레프탈레트(polytrimethylene terephthalate) 중 1 종 이상을 포함하는 것인, 이종 금속 나노섬유 복합체 제조방법.
The method of claim 5, wherein the first polymer solution is polyacrylonitrile, polyvinyl alcohol, polyvinylpyrrolidone, polyvinyl butyral, and polyvinylidene fluoride. Polyvinylidene fluoride, polysulphone, polyethersulphone, polyarylsulphone, epoxypolyurethane, polyimide, polyvinyl chloride, polyester ketone ( Polyetherketone, Aromatic polyester, Polyamidoimide, Polyvinylacetate, Polymethylmethacrylate, Polystyrene, Polyoxymethylene, Polyacrylic acid A method for producing a heterogeneous metal nanofiber composite comprising one or more of (polyacrylic acid), polyurethane, polyethylene, and polytrimethylene terephthalate.
제5항에 있어서, 상기 제1 고분자 용액은 고분자를 5wt% 내지 20wt%를 포함하는 것인, 이종 금속 나노섬유 복합체 제조방법.
The method of claim 5, wherein the first polymer solution contains 5 wt% to 20 wt% of the polymer.
제5항에 있어서, 상기 (a) 단계에서, 상기 금속나노입자 분산액에 대하여 제1고분자 용액을 0.05 내지 10부피부로 혼합하는 것인, 이종 금속 나노섬유 복합체 제조방법.
The method of claim 5, wherein in step (a), 0.05 to 10 parts by volume of the first polymer solution is mixed with the metal nanoparticle dispersion.
제5항에 있어서, 상기 제1 금속산화물 전구체는 copper (II) nitrate trihydrate, copper (II) chloride, copper (II) nitrate, copper (II) acetate, copper (II) acetylacetonate, copper (II) sulfate 및 이들의 유도체 중 1종 이상을 포함하는 것인, 이종 금속 나노섬유 복합체 제조방법.
The method of claim 5, wherein the first metal oxide precursor is copper (II) nitrate trihydrate, copper (II) chloride, copper (II) nitrate, copper (II) acetate, copper (II) acetylacetonate, copper (II) sulfate, and A method for producing a heterogeneous metal nanofiber composite, comprising one or more of these derivatives.
제5항에 있어서, 상기 제2 금속산화물 전구체는 cerium (III) nitrate hexahydrate, cerium (III) chloride, cerium (III) nitrate, cerium (III) sulfate, zinc (II) chloride, zinc (II) nitrate, tin (IV) chloride, cobalt (II) chloride, cobalt (II) nitrate, nickel (II) chloride, nickel (II) nitrate, iron (II) chloride, iron (II) nitrate, ammonium metatungstate hydrate 및 이들의 유도체 중 1 종 이상을 포함하는 것인, 이종 금속 나노섬유 복합체 제조방법.
The method of claim 5, wherein the second metal oxide precursor is cerium (III) nitrate hexahydrate, cerium (III) chloride, cerium (III) nitrate, cerium (III) sulfate, zinc (II) chloride, zinc (II) nitrate, Among tin (IV) chloride, cobalt (II) chloride, cobalt (II) nitrate, nickel (II) chloride, nickel (II) nitrate, iron (II) chloride, iron (II) nitrate, ammonium metatungstate hydrate and their derivatives A method for producing a heterogeneous metal nanofiber composite comprising one or more types.
제5항에 있어서, 상기 제2 고분자 용액은 상기 제1 금속산화물 전구체 100중량부에 대하여 상기 제2 금속산화물 전구체를 1 내지 30중량부로 첨가하는 것인, 이종 금속 나노섬유 복합체 제조방법.
The method of claim 5, wherein the second polymer solution adds 1 to 30 parts by weight of the second metal oxide precursor based on 100 parts by weight of the first metal oxide precursor.
제5항에 있어서, 상기 열처리는 400 내지 800℃에서 수행되는 것을 특징으로 하는, 이종 금속 나노섬유 복합체 제조방법.
The method of claim 5, wherein the heat treatment is performed at 400 to 800°C.
기판; 및
상기 기판 상에 적층되며, 제1항 내지 제4항 중 어느 한 항의 이종 금속 나노섬유 복합체;를 포함하는 일산화탄소 감지 센서.
Board; and
A carbon monoxide detection sensor comprising a heterogeneous metal nanofiber composite of any one of claims 1 to 4, which is laminated on the substrate.
제16항에 있어서, 상기 일산화탄소 감지 센서는 하기 식 1에 의한 일산화탄소 반응도 증가율이 15% 이상인, 일산화탄소 감지 센서:
[식 1]
일산화탄소 반응도 증가율 = [전기저항변화량(R/R0) / 가스농도(ppm)] × 100
The carbon monoxide detection sensor of claim 16, wherein the carbon monoxide detection sensor has a carbon monoxide reactivity increase rate of 15% or more according to the following equation 1:
[Equation 1]
Carbon monoxide reactivity increase rate = [electrical resistance change (R/R 0 ) / gas concentration (ppm)] × 100
KR1020220035484A 2022-03-22 Heterogeneous metal nanowire composite, manufacturing method for thereof and sensor for carbon monoxide using the same KR102712200B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220035484A KR102712200B1 (en) 2022-03-22 Heterogeneous metal nanowire composite, manufacturing method for thereof and sensor for carbon monoxide using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220035484A KR102712200B1 (en) 2022-03-22 Heterogeneous metal nanowire composite, manufacturing method for thereof and sensor for carbon monoxide using the same

Related Child Applications (2)

Application Number Title Priority Date Filing Date
KR1020240130036A Division KR20240144076A (en) 2024-09-25 Heterogeneous metal nanowire composite
KR1020240130880A Division KR20240144881A (en) 2024-09-26 Manufacturing method for heterogeneous metal nanowire composite

Publications (2)

Publication Number Publication Date
KR20230137703A true KR20230137703A (en) 2023-10-05
KR102712200B1 KR102712200B1 (en) 2024-10-04

Family

ID=

Similar Documents

Publication Publication Date Title
Yang et al. 1D metal oxide semiconductor materials for chemiresistive gas sensors: a review
US11099147B2 (en) Member for gas sensor, having a metal oxide semiconductor tube wall with micropores and macropores, gas sensor, and method for manufacturing same
Chen et al. Well-tuned surface oxygen chemistry of cation off-stoichiometric spinel oxides for highly selective and sensitive formaldehyde detection
KR101633554B1 (en) Gas sensor and member using metal oxide semiconductor nanofibers including nanoparticle catalyst functionalized by bifunctional nano-catalyst included within apoferritin, and manufacturing method thereof
US10533987B2 (en) Porous semiconductor metal oxide complex nanofibers including nanoparticle catalyst functionalized by nano-catalyst included within metal-organic framework, gas sensor and member using the same, and method of manufacturing the same
Neri et al. Ethanol sensors based on Pt-doped tin oxide nanopowders synthesised by gel-combustion
KR20180065493A (en) Gas sensor and member using metal oxide nanotubes including nanoscale heterogeneous catalysts by using metal-organic framework, and manufacturing method thereof
Zhao et al. Facile synthesis of tortoise shell-like porous NiCo2O4 nanoplate with promising triethylamine gas sensing properties
Ou et al. Anchoring platinum clusters onto oxygen vacancy-modified In2O3 for ultraefficient, low-temperature, highly sensitive, and stable detection of formaldehyde
KR20150018920A (en) Gas sensor and member using porous metal oxide semiconductor nano structure including nano-catalyst from ferritin, and manufacturing method thereof
KR101719422B1 (en) Porous Metal Oxide Composite Nanofibers including Nanoparticle Catalysts Functionalized by using Nanoparticle Dispersed Emulsion Solution, Gas Sensors using the same and Manufacturing Method thereof
KR101552326B1 (en) Gas sensor member using metal oxide semiconductor nanofiber and dual catalysts, and manufacturing method thereof
Mandal et al. Organo-di-benzoic-acidified ZnO nanohybrids for highly selective detection of CO at low temperature
Fu et al. Advances in the development of MOS-based sensors for detection of ethanol: A review
WO2016105012A1 (en) Member for gas sensor, having a metal oxide semiconductor tube wall with micropores and macropores, gas sensor, and method for manufacturing same
Xu et al. Hydrothermal synthesis of one-dimensional α-MoO3 nanomaterials and its unique sensing mechanism for ethanol
KR101714961B1 (en) Gas Sensor Fabrication method of catalyst-loaded porous metal oxide nanofiber metal oxide nanofiber networks prepared by transferring of catalyst-coated polymeric sacrificial colloid template, and gas sensors using the same
Cui et al. Pt-decorated NiWO4/WO3 heterostructure nanotubes for highly selective sensing of acetone
Kim et al. Highly selective and sensitive detection of carcinogenic benzene using a raisin bread-structured film comprising catalytic Pd-Co3O4 and gas-sensing SnO2 hollow spheres
KR102014603B1 (en) Porous Metal Oxide Nanotube, Gas Sensing Layers Using the Same, and Their Fabrication Method
KR101684738B1 (en) Gas Sensor Fabrication method of catalyst-loaded porous metal oxide nanofiber metal oxide nanofiber networks prepared by transferring of catalyst-coated polymeric sacrificial colloid template, and gas sensors using the same
KR102712200B1 (en) Heterogeneous metal nanowire composite, manufacturing method for thereof and sensor for carbon monoxide using the same
KR20230137703A (en) Heterogeneous metal nanowire composite, manufacturing method for thereof and sensor for carbon monoxide using the same
KR102092452B1 (en) Gas sensor and mebber using metal oxide nanofibers including nanoscale catalysts and multichannel, and manufacturing method thereof
KR20240144076A (en) Heterogeneous metal nanowire composite

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right