KR20230110703A - 무선 전력 수신기 - Google Patents

무선 전력 수신기 Download PDF

Info

Publication number
KR20230110703A
KR20230110703A KR1020230092396A KR20230092396A KR20230110703A KR 20230110703 A KR20230110703 A KR 20230110703A KR 1020230092396 A KR1020230092396 A KR 1020230092396A KR 20230092396 A KR20230092396 A KR 20230092396A KR 20230110703 A KR20230110703 A KR 20230110703A
Authority
KR
South Korea
Prior art keywords
power
wireless power
transmitter
receiver
wireless
Prior art date
Application number
KR1020230092396A
Other languages
English (en)
Inventor
박유리
권용일
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Publication of KR20230110703A publication Critical patent/KR20230110703A/ko

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/60Circuit arrangements or systems for wireless supply or distribution of electric power responsive to the presence of foreign objects, e.g. detection of living beings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R22/00Arrangements for measuring time integral of electric power or current, e.g. electricity meters
    • G01R22/06Arrangements for measuring time integral of electric power or current, e.g. electricity meters by electronic methods
    • G01R22/061Details of electronic electricity meters
    • G01R22/063Details of electronic electricity meters related to remote communication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R22/00Arrangements for measuring time integral of electric power or current, e.g. electricity meters
    • G01R22/06Arrangements for measuring time integral of electric power or current, e.g. electricity meters by electronic methods
    • G01R22/061Details of electronic electricity meters
    • G01R22/068Arrangements for indicating or signaling faults
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/1902Control of temperature characterised by the use of electric means characterised by the use of a variable reference value
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/20Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • H02J50/402Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices the two or more transmitting or the two or more receiving devices being integrated in the same unit, e.g. power mats with several coils or antennas with several sub-antennas
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00036Charger exchanging data with battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00309Overheat or overtemperature protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/79Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for data transfer in combination with power transfer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Transmitters (AREA)

Abstract

실시예에 의하면, 무선 전력 송신기로부터 전력을 전송 받는 무선 전력 수신기에 있어서, 상기 무선 전력 송신기로부터 무선 전력을 전송 받는 수신부; 및 기준 품질 인자 및 기준 피크 주파수 중 적어도 하나를 포함하는 이물질 검출 상태 패킷이 저장된 주제어부를 포함하고, 상기 주제어부는 상기 이물질 검출 상태 패킷을 상기 무선 전력 송신기로 전송하고, 상기 주제어부는 상기 무선 전력 송신기로부터 상기 이물질이 존재함을 나타내는 NAK 응답을 수신하거나, 상기 이물질이 존재하지 않음을 나타내는 ACK 응답을 수신하고, 상기 수신부는 상기 수신된 NAK 응답에 따라 상기 무선 전력 송신기로부터 제1 전력을 전송 받거나, 상기 수신된 ACK 응답에 따라 상기 무선 전력 송신기로부터 상기 제1 전력보다 큰 제2 전력을 전송 받는 무선 전력 수신기를 제공한다.

Description

무선 전력 수신기{Apparatus for Wireless Power receive}
본 발명은 무선 전력 충전 기술에 관한 것으로서, 상세하게, 무선 충전을 위한 무선 전력 수신기에 관한 것이다.
최근 정보 통신 기술이 급속도로 발전함에 따라, 정보 통신 기술을 기반으로 하는 유비쿼터스 사회가 이루어지고 있다.
언제 어디서나 정보통신 기기들이 접속되기 위해서는 사회 모든 시설에 통신 기능을 가진 컴퓨터 칩을 내장시킨 센서들이 설치되어야 한다. 따라서 이들 기기나 센서의 전원 공급 문제는 새로운 과제가 되고 있다. 또한 휴대폰뿐만 아니라 블루투스 핸드셋과 아이팟 같은 뮤직 플레이어 등의 휴대기기 종류가 급격히 늘어나면서 배터리를 충전하는 작업이 사용자에게 시간과 수고를 요구하고 됐다. 이러한 문제를 해결하는 방법으로 무선 전력 전송 기술이 최근 들어 관심을 받고 있다.
무선 전력 전송 기술(wireless power transmission 또는 wireless energy transfer)은 자기장의 유도 원리를 이용하여 무선으로 송신기에서 수신기로 전기 에너지를 전송하는 기술로서, 이미 1800년대에 전자기유도 원리를 이용한 전기 모터나 변압기가 사용되기 시작했고, 그 후로는 고주파, Microwave, 레이저 등과 같은 전자파를 방사해서 전기에너지를 전송하는 방법도 시도되었다. 우리가 흔히 사용하는 전동칫솔이나 일부 무선면도기도 실상은 전자기유도 원리로 충전된다.
현재까지 무선을 이용한 에너지 전달 방식은 크게 자기 유도 방식, 자기 공진(Electromagnetic Resonance) 방식 및 단파장 무선 주파수를 이용한 RF 전송 방식 등으로 구분될 수 있다.
자기 유도 방식은 두 개의 코일을 서로 인접시킨 후 한 개의 코일에 전류를 흘려보내면 이 때 발생한 자속(MagneticFlux)이 다른 코일에 기전력을 일으키는 현상을 사용한 기술로서, 휴대폰과 같은 소형기기를 중심으로 빠르게 상용화가 진행되고 있다. 자기 유도 방식은 최대 수백 키로와트(kW)의 전력을 전송할 수 있고 효율도 높지만 최대 전송 거리가 1센티미터(cm) 이하이므로 일반적으로 충전기나 바닥에 인접시켜야 하는 단점이 있다.
자기 공진 방식은 전자기파나 전류 등을 활용하는 대신 전기장이나 자기장을 이용하는 특징이 있다. 자기 공진 방식은 전자파 문제의 영향을 거의 받지 않으므로 다른 전자 기기나 인체에 안전하다는 장점이 있다. 반면, 한정된 거리와 공간에서만 활용할 수 있으며 에너지 전달 효율이 다소 낮다는 단점이 있다.
단파장 무선 전력 전송 방식-간단히, RF 전송 방식-은 에너지가 라디오 파(RadioWave)형태로 직접 송수신될 수 있다는 점을 활용한 것이다. 이 기술은 렉테나(rectenna)를 이용하는 RF 방식의 무선 전력 전송 방식으로서, 렉테나는 안테나(antenna)와 정류기(rectifier)의 합성어로서 RF 전력을 직접 직류 전력으로 변환하는 소자를 의미한다. 즉, RF 방식은 AC 라디오파를 DC로 변환하여 사용하는 기술로서, 최근 효율이 향상되면서 상용화에 대한 연구가 활발히 진행되고 있다.
무선 전력 전송 기술은 모바일 뿐만 아니라 IT, 철도, 가전 산업 등 산업 전반에 다양하게 활용될 수 있다.
무선 충전 가능 영역에 무선 전력 수신기가 아닌 전도체-즉, 이물질(FO:Foreign Object)-가 존재하는 경우, FO에는 무선 전력 송신기로부터 송출된 전자기 신호가 유도되어 온도가 상승할 수 있다. 일 예로, FO는 동전, 클립, 핀, 볼펜 등을 포함할 수 있다.
만약, 무선 전력 수신기와 무선 전력 송신기 사이에 FO가 존재하는 경우, 무선 충전 효율이 현저히 떨어질 뿐만 아니라 FO에 의한 주변 온도 상승으로 인해 무선 전력 수신기와 무선 전력 송신기의 온도가 함께 상승할 수 있다. 만약, 충전 영역에 위치한 FO가 제거되지 않는 경우, 전력 낭비가 초래될 뿐만 아니라 과열로 인해 무선 전력 송신기 및 무선 전력 수신기의 손상을 야기시킬 수 있다.
또한, 실제 충전 영역에 FO가 존재하지 않음에도, 무선 전력 송신기가 충전 영역에 이물질이 존재하는 것으로 잘못 판단한 경우, 충전이 중단될 수도 있다.
따라서, 충전 영역에 위치한 FO를 정확히 검출하는 것은 무선 충전 기술 분야에서 중요한 이슈로 부각되고 있다.
본 발명은 상술한 종래 기술의 문제점을 해결하기 위해 고안된 것으로, 본 발명의 목적은 무선 충전을 위한 무선 전력 수신기를 제공하는 것이다.
본 발명의 다른 목적은 보다 정확하게 이물질을 검출하는 것이 가능한 무선 전력 수신기를 제공하는 것이다.
본 발명의 또 다른 목적은 이물질 검출 오류를 최소화시킴으로써 불필요한 충전 중단을 미연에 방지하는 것이 무선 전력 수신기를 제공하는 것이다.
본 발명의 또 다른 목적은 이물질에 의한 기기 손상을 방지하고, 이물질 존재 여부에 따른 적응적 전송 전력 제어를 통해 끊김 없는 충전을 가능하게 하는 무선 전력 수신기를 제공하는 것이다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
실시예에 의하면, 무선 전력 송신기로부터 전력을 전송 받는 무선 전력 수신기에 있어서, 상기 무선 전력 송신기로부터 무선 전력을 전송 받는 수신부; 및 기준 품질 인자 및 기준 피크 주파수 중 적어도 하나를 포함하는 이물질 검출 상태 패킷이 저장된 주제어부를 포함하고, 상기 주제어부는 상기 이물질 검출 상태 패킷을 상기 무선 전력 송신기로 전송하고, 상기 주제어부는 상기 무선 전력 송신기로부터 상기 이물질이 존재함을 나타내는 NAK 응답을 수신하거나, 상기 이물질이 존재하지 않음을 나타내는 ACK 응답을 수신하고, 상기 수신부는 상기 수신된 NAK 응답에 따라 상기 무선 전력 송신기로부터 제1 전력을 전송 받거나, 상기 수신된 ACK 응답에 따라 상기 무선 전력 송신기로부터 상기 제1 전력보다 큰 제2 전력을 전송 받는 무선 전력 수신기를 제공한다.
상기 수신부는 전력 전송 환경의 변화에 기초하여 상기 제1 전력과 상기 제2 전력 사이의 제3 전력을 전송 받을 수 있다.
상기 제1 전력은 5W일 수 있다.
상기 제2 전력은 15W일 수 있다.
상기 무선 전력 송신기로부터 전력을 전송 받기 이전에 상기 이물질 검출 상태 패킷을 상기 무선 전력 송신기로 전송하여 이물질의 존재 여부를 검출하도록 할 수 있다.
상기 제2 전력을 전송 받는 동안의 전송 전력의 손실 또는 온도 변화에 기초하여 상기 이물질의 존재 여부가 더 검출될 수 있다.
상기 주제어부는 상기 무선 전력 송신기에 의해 측정된 송신 전력의 세기에 대응하는 수신 전력의 세기에 관한 정보를 상기 무선 전력 송신기로 전송하고, 상기 이물질의 존재 여부는, 상기 송신 전력의 세기와 상기 수신 전력의 세기의 차이값에 기초하여 전력 손실을 비교하여 결정될 수 있다.
상기 수신부는, 상기 수신된 NAK 응답에 응답하여 상기 무선 전력 송신기로부터 상기 무선 전력 수신기로의 전력 전송이 중단되는 것을 방지하기 위해 상기 무선 전력 송신기로부터 상기 제1 전력을 전송 받을 수 있다.
상기 제1 전력을 전송 받는 중에 상기 이물질이 존재하는 것이 다시 검출되면 상기 무선 전력 송신기로부터의 전력 전송이 중단될 수 있다.
상기 주제어부는 상기 제2전력을 전송 받는 동안에 상기 무선 전력 송신기의 상태 변화가 발생하는 경우 상기 전력 전송의 크기를 재협상할 수 있다.
상기 본 발명의 양태들은 본 발명의 바람직한 실시예들 중 일부에 불과하며, 본원 발명의 기술적 특징들이 반영된 다양한 실시예들이 당해 기술분야의 통상적인 지식을 가진 자에 의해 이하 상술할 본 발명의 상세한 설명을 기반으로 도출되고 이해될 수 있다.
본 발명에 따른 방법, 장치 및 시스템에 대한 효과에 대해 설명하면 다음과 같다.
본 발명은 무선 충전을 위한 무선 전력 수신기를 제공하는 장점이 있다.
또한, 본 발명은 보다 정확하게 이물질을 검출하는 것이 가능한 무선 전력 수신기를 제공하는 장점이 있다.
또한, 본 발명은 이물질 검출 오류를 최소화시킴으로써 불필요한 충전 중단을 미연에 방지하는 무선 전력 수신기를 제공하는 장점이 있다.
또한, 본 발명은 이물질에 의한 기기 손상을 방지하고, 이물질 존재 여부에 따른 적응적 전송 전력 제어를 통해 끊김 없는 충전을 가능하게 하는 무선 전력 수신기를 제공하는 장점이 있다.
또한, 본 발명은 수신기의 타입 및 전력 전송 환경에 따라 안정적으로 폭넓은 범위의 무선 전력을 전송하는 것이 가능한 무선 전력 수신기를 제공할 수 있는 장점이 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
도 1은 본 발명에 일 실시예에 따른 무선 충전 시스템을 설명하기 위한 블록도이다.
도 2는 본 발명에 다른 실시예에 따른 무선 충전 시스템을 설명하기 위한 블록도이다.
도 3은 본 발명의 일 실시예에 따른 무선 충전 시스템에서의 감지 신호 전송 절차를 설명하기 위한 도면이다.
도 4는 본 발명의 일 실시예에 따른 무선 전력 전송 절차를 설명하기 위한 상태 천이도이다.
도 5는 본 발명의 일 실시예에 따른 무선 전력 전송 시스템에서의 이물질 검출 절차를 설명하기 위한 흐름도이다.
도 6은 본 발명의 일 실시 예에 따른 무선 전력 송신 장치의 구조를 설명하기 위한 블록도이다.
도 7은 본 발명의 일 실시 예에 따른 상기 도 6의 전송 안테나 구성을 설명하기 위한 도면이다.
도 8은 본 발명의 일 실시 예에 따라 상기 도 6에 따른 무선 전력 송신 장치와 연동되는 무선 전력 수신 장치의 구조를 설명하기 위한 블록도이다.
도 9는 종래 기술에 따른 무선 전력 송신기에서의 이물질 검출 여부에 따른 전력 전송 제어 방법을 설명하기 위한 도면이다.
도 10은 본 발명의 일 실시예에 따른 패킷 포맷을 설명하기 위한 도면이다.
도 11은 본 발명의 일 실시 예에 따른 무선 전력 송신기에서의 전력 전송 제어 방법을 설명하기 위한 순서도이다.
도 12는 본 발명의 다른 실시 예에 따른 무선 전력 송신기에서의 전력 전송 제어 방법을 설명하기 위한 순서도이다.
도 13은 본 발명의 또 다른 일 실시 예에 따른 무선 전력 송신기에서의 전력 전송 제어 방법을 설명하기 위한 도면이다.
도 14는 본 발명의 또 다른 일 실시 예에 따른 무선 전력 송신기에서의 전력 전송 제어 방법을 설명하기 위한 도면이다.
도 15는 본 발명의 또 다른 일 실시 예에 따른 무선 전력 송신기에서의 전력 전송 제어 방법을 설명하기 위한 도면이다.
도 16a는 송신기와 수신기의 버전이 동일할 때 이물질 검출에 따른 무선 전력 전송 제어 방법을 설명하기 위한 흐름도이다.
도 16b는 송신기와 수신기의 버전이 상이할 때 이물질 검출에 따른 무선 전력 전송 제어 방법을 설명하기 위한 흐름도이다.
도 16c는 송신기와 수신기의 버전이 동일할 때 이물질 검출에 따른 무선 전력 전송 제어 방법을 설명하기 위한 흐름도이다.
도 16d는 수신기보다 송신기가 상위 버전일 때 이물질 검출에 따른 무선 전력 전송 제어 방법을 설명하기 위한 흐름도이다.
이하, 본 발명의 실시예들이 적용되는 장치 및 다양한 방법들에 대하여 도면을 참조하여 보다 상세하게 설명한다. 이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다.
또한, 이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 하드웨어적이 구성 요소-예를 들면, 회로 소자, 마이크로 프로세서, 메모리, 센서 등을 포함함-로 구현될 수 있으나, 이는 하나의 실시예에 불과하며, 해당 구성 요소의 일부 기능 또는 전체가 소프트웨어로 구현될 수도 있다.
실시예의 설명에 있어서, 각 구성 요소의 " 상(위) 또는 하(아래)"에 형성되는 것으로 기재되는 경우에 있어, 상(위) 또는 하(아래)는 두개의 구성 요소들이 서로 직접 접촉되거나 하나 이상의 또 다른 구성 요소가 두 개의 구성 요소들 사이에 배치되어 형성되는 것을 모두 포함한다. 또한 “상(위) 또는 하(아래)”으로 표현되는 경우 하나의 구성 요소를 기준으로 위쪽 방향뿐만 아니라 아래쪽 방향의 의미도 포함할 수 있다.
실시예의 설명에 있어서, 무선 충전 시스템상에서 무선 전력을 송신하는 기능이 탑재된 장치는 설명의 편의를 위해 무선 파워 송신기, 무선 파워 송신 장치, 무선 전력 송신 장치, 무선 전력 송신기, 송신단, 송신기, 송신 장치, 송신측, 무선 파워 전송 장치, 무선 파워 전송기 등을 혼용하여 사용하기로 한다. 또한, 무선 전력 송신 장치로부터 무선 전력을 수신하는 기능이 탑재된 장치에 대한 표현으로 설명의 편의를 위해 무선 전력 수신 장치, 무선 전력 수신기, 무선 파워 수신 장치, 무선 파워 수신기, 수신 단말기, 수신측, 수신 장치, 수신기 등이 혼용되어 사용될 수 있다.
본 발명에 따른 송신기는 패드 형태, 거치대 형태, AP(Access Point) 형태, 소형 기지국 형태, 스텐드 형태, 천장 매립 형태, 벽걸이 형태 등으로 구성될 수 있으며, 하나의 송신기는 복수의 무선 전력 수신 장치에 파워를 전송할 수도 있다. 이를 위해, 송신기는 적어도 하나의 무선 파워 전송 수단을 구비할 수도 있다.
여기서, 무선 파워 전송 수단은 전력 송신단 코일에서 자기장을 발생시켜 그 자기장의 영향으로 수신단 코일에서 전기가 유도되는 전자기유도 원리를 이용하여 충전하는 전자기 유도 방식에 기반한 다양한 무전 전력 전송 표준이 사용될 수 있다. 일 예로, 무선 전력 전송 표준은 무선 충전 기술 표준 기구인 WPC(Wireless Power Consortium) Qi 및 PMA(Power Matters Alliance)에서 정의된 전자기 유도 방식의 표준 기술을 포함할 수 있으나, 이에 한정되지는 않는다.
또한, 본 발명의 일 실시예에 따른 수신기는 적어도 하나의 무선 전력 수신 수단이 구비될 수 있으며, 1개 이상의 송신기로부터 무선 파워를 수신할 수도 있다.
본 발명에 따른 수신기는 휴대폰(mobile phone), 스마트폰(smart phone), 노트북 컴퓨터(laptop computer), 디지털방송용 단말기, PDA(Personal Digital Assistants), PMP(Portable Multimedia Player), 네비게이션, MP3 player, 전동 칫솔, 전자 태그, 조명 장치, 리모콘, 낚시찌, 스마트 워치와 같은 웨어러블 디바이스 등의 소형 전자 기기 등에 사용될 수 있으나, 이에 국한되지는 아니하며 본 발명에 따른 무선 전력 수신 수단이 장착되어 배터리 충전이 가능한 기기라면 족하다.
도 1은 본 발명에 일 실시예에 따른 무선 충전 시스템을 설명하기 위한 블록도이다.
도 1을 참조하면, 무선 충전 시스템은 크게 무선으로 전력을 송출하는 무선 전력 송신단(10), 상기 송출된 전력을 수신하는 무선 전력 수신단(20) 및 수신된 전력을 공급 받는 전자기기(30)로 구성될 수 있다.
일 예로, 무선 전력 송신단(10)과 무선 전력 수신단(20)은 무선 전력 전송에 사용되는 동작 주파수와 동일한 주파수 대역을 이용하여 정보를 교환하는 인밴드(In-band) 통신을 수행할 수 있다.
인밴드 통신에 있어서, 무선 전력 송신단(10)에 의해 송출된 전력 신호(41)가 무선 전력 수신단(20)에 수신되면, 무선 전력 수신단(20)은 수신된 전력 신호를 변조하고, 변조된 신호(42)가 무선 전력 송신단(10)에 전송될 수 있다.
다른 일예로, 무선 전력 송신단(10)과 무선 전력 수신단(20)은 무선 전력 전송에 사용되는 동작 주파수와 상이한 별도의 주파수 대역을 이용하여 정보를 교환하는 대역외(Out-of-band) 통신을 수행할 수도 있다.
일 예로, 무선 전력 송신단(10)과 무선 전력 수신단(20) 사이에 교환되는 정보는 서로의 상태 정보뿐만 아니라 제어 정보도 포함될 수 있다.
여기서, 송수신단 사이에 교환되는 상태 정보 및 제어 정보는 후술할 실시예들의 설명을 통해 보다 명확해질 것이다.
상기 인밴드 통신 및 대역외 통신은 양방향 통신을 제공할 수 있으나, 이에 한정되지는 않으며, 다른 실시예에 있어서는 단방향 통신 또는 반이중 방식의 통신을 제공할 수도 있다.
일 예로, 단방향 통신은 무선 전력 수신단(20)이 무선 전력 송신단(10)으로만 정보를 전송하는 것일 수 있으나, 이에 한정되지는 않으며, 무선 전력 송신단(10)이 무선 전력 수신단(20)으로만 정보를 전송하는 것일 수도 있다.
반이중 통신 방식은 무선 전력 수신단(20)과 무선 전력 송신단(10) 사이의 양방향 통신은 가능하나, 어느 한 시점에 어느 하나의 장치에 의해서만 정보 전송이 가능한 특징이 있다.
본 발명의 일 실시예에 따른 무선 전력 수신단(20)은 전자 기기(30)의 각종 상태 정보를 획득할 수도 있다.
일 예로, 전자 기기(30)의 상태 정보는 현재 전력 사용량 정보, 실행중인 응용을 식별하기 위한 정보, CPU 사용량 정보, 배터리 충전 상태 정보, 배터리 출력 전압/전류 정보 등을 포함할 수 있으나, 이에 한정되지는 않으며, 전자 기기(30)로부터 획득 가능하고, 무선 전력 제어에 활용 가능한 정보이면 족하다.
특히, 본 발명의 일 실시예에 따른 무선 전력 송신단(10)은 고속 충전 지원 여부를 지시하는 소정 패킷을 무선 전력 수신단(20)에 전송할 수 있다.
무선 전력 수신단(20)은 접속된 무선 전력 송신단(10)이 고속 충전 모드를 지원하는 것으로 확인된 경우, 이를 전자 기기(30)에 알릴 수 있다.
전자 기기(30)는 구비된 소정 표시 수단-예를 들면, 액정 디스플레이일 수 있음-을 통해 고속 충전이 가능함을 표시할 수 있다.
도 2는 본 발명에 다른 실시예에 따른 무선 충전 시스템을 설명하기 위한 블록도이다.
일 예로, 도면 부호 200a에 도시된 바와 같이, 무선 전력 수신단(20)은 복수의 무선 전력 수신 장치로 구성될 수 있으며, 하나의 무선 전력 송신단(10)에 복수의 무선 전력 수신 장치가 연결되어 무선 충전을 수행할 수도 있다.
이때, 무선 전력 송신단(10)은 시분할 방식으로 복수의 무선 전력 수신 장치에 전력을 분배하여 송출할 수 있으나, 이에 한정되지는 않으며. 다른 일 예로, 무선 전력 송신단(10)은 무선 전력 수신 장치 별 할당된 상이한 주파수 대역을 이용하여 복수의 무선 전력 수신 장치에 전력을 분배하여 송출할 수 있다.
이때, 하나의 무선 전력 송신단(10)에 연결 가능한 무선 전력 수신 장치의 개수는 무선 전력 수신 장치 별 요구 전력량, 배터리 충전 상태, 전자 기기의 전력 소비량 및 무선 전력 송신 장치의 가용 전력량 중 적어도 하나에 기반하여 적응적으로 결정될 수 있다.
다른 일 예로, 도면 부호 200b에 도시된 바와 같이, 무선 전력 송신단(10)은 복수의 무선 전력 송신 장치로 구성될 수도 있다.
이 경우, 무선 전력 수신단(20)은 복수의 무선 전력 송신 장치와 동시에 연결될 수 있으며, 연결된 무선 전력 송신 장치들로부터 동시에 전력을 수신하여 충전을 수행할 수도 있다.
이때, 무선 전력 수신단(20)과 연결된 무선 전력 송신 장치의 개수는 무선 전력 수신단(20)의 요구 전력량, 배터리 충전 상태, 전자 기기의 전력 소비량, 무선 전력 송신 장치의 가용 전력량 등에 기반하여 적응적으로 결정될 수 있다.
도 3은 본 발명의 일 실시예에 따른 무선 충전 시스템에서의 감지 신호 전송 절차를 설명하기 위한 도면이다.
일 예로, 무선 전력 송신기는 3개의 송신 코일(111, 112, 113)이 장착될 수 있다. 각각의 송신 코일은 일부 영역이 다른 송신 코일과 서로 중첩될 수 있으며, 무선 전력 송신기는 각각의 송신 코일을 통해 무선 전력 수신기의 존재를 감지하기 위한 소정 감지 신호(117, 127)-예를 들면, 디지털 핑 신호-를 미리 정의된 순서로 순차적으로 송출한다.
상기 도 3에 도시된 바와 같이, 무선 전력 송신기는 도면 번호 110에 도시된 1차 감지 신호 송출 절차를 통해 감지 신호(117)를 순차적으로 송출하고, 무선 전력 수신기(115)로부터 신호 세기 지시자(Signal Strength Indicator, 116)가 수신된 송신 코일(111, 112)을 식별할 수 있다.
연이어, 무선 전력 송신기는 도면 번호 120에 도시된 2차 감지 신호 송출 절차를 통해 감지 신호(127)를 순차적으로 송출하고, 신호 세기 지시자(126)가 수신된 송신 코일(111, 112) 중 전력 전송 효율(또는 충전 효율)-즉, 송신 코일과 수신 코일 사이의 정렬 상태-이 좋은 송신 코일을 식별하고, 식별된 송신 코일을 통해 전력이 송출되도록-즉, 무선 충전이 이루어지도록- 제어할 수 있다.
상기의 도 3에서 보여지는 바와 같이, 무선 전력 송신기가 2회의 감지 신호 송출 절차를 수행하는 이유는 어느 송신 코일에 무선 전력 수신기의 수신 코일이 잘 정렬되어 있는지를 보다 정확하게 식별하기 위함이다.
만약, 상기한 도 3의 도면 번호 110 및 120에 도시된 바와 같이, 제1 송신 코일(111), 제2 송신 코일(112)에 신호 세기 지시자(116, 126)가 수신된 경우, 무선 전력 송신기는 제1 송신 코일(111)과 제2 송신 코일(112) 각각에 수신된 신호 세기 지시자(126)에 기반하여 가장 정렬이 잘된 송신 코일을 선택하고, 선택된 송신 코일을 이용하여 무선 충전을 수행한다.
도 4는 본 발명의 일 실시예에 따른 무선 전력 전송 절차를 설명하기 위한 상태 천이도이다.
도 4를 참조하면, 본 발명의 일 실시예에 따른 송신기로부터 수신기로의 파워 전송은 크게 선택 단계(Selection Phase, 410), 핑 단계(Ping Phase, 420), 식별 및 구성 단계(Identification and Configuration Phase, 430), 협상 단계(Negotiation Phase, 440), 보정 단계(Calibration Phase, 450), 전력 전송 단계(Power Transfer Phase, 460) 단계 및 재협상 단계(Renegotiation Phase, 470)로 구분될 수 있다.
선택 단계(410)는 파워 전송을 시작하거나 파워 전송을 유지하는 동안 특정 오류 또는 특정 이벤트가 감지되면, 천이되는 단계-예를 들면, 도면 부호 S402, S404, S408, S410 및 S412를 포함함-일 수 있다.
여기서, 특정 오류 및 특정 이벤트는 이하의 설명을 통해 명확해질 것이다.
또한, 선택 단계(410)에서 송신기는 인터페이스 표면에 물체가 존재하는지를 모니터링할 수 있다.
만약, 송신기가 인터페이스 표면에 물체가 놓여진 것이 감지되면, 핑 단계(420)로 천이할 수 있다(S403).
일 예로, 선택 단계(410)에서 송신기는 매우 짧은 펄스의 아날로그 핑(Analog Ping) 신호를 전송하며, 송신 코일(또는 1차 코일(Primary Coil))의 전류 변화에 기반하여 인터페이스 표면의 활성 영역(Active Area)에 물체가 존재하는지를 감지할 수 있다. 여기서, 활성 영역은 수신기가 배치되어 무선 충전이 가능한 영역을 의미할 수 있다.
다른 일 예로, 선택 단계(410)에서 송신기는 구비된 센서를 이용하여 인터페이스 표면의 활성 영역(Active Area)에 물체가 존재하는지를 감지할 수도 있다.
일 예로, 센서는 홀 센서, 압력 센서, 정전 용량 센서, 전류 센서, 전압 센서, 빛 감지 센서 등을 포함할 수 있으며, 이들 중 적어도 하나의 센서를 통해 활성 영역에 배치된 물체를 감지할 수 있다.
선택 단계(410)에서 물체가 감지된 경우, 무선 전력 송신기는 구비된 LC 공진 회로-예를 들면, LC 공진 회로는 직렬로 연결된 코일(인덕터) 및 공진 캐패시터를 포함하여 구성될 수 있음-에 상응하는 품질 인자를 측정할 수 있다.
본 발명의 일 실시예에 따른 송신기는 선택단계(410)에서 물체가 감지되면, 충전 영역에 이물질과 함께 무선 전력 수신기가 배치되었는지를 판단하기 위하여 품질 인자(Quality Factor) 값을 측정할 수 있다.
여기서, 품질 인자 값은 핑 단계(420)로의 진입 이전에 측정될 수 있다. 또한, 품질 인자 값은 송신 코일을 통한 전력 전송이 일시 중단된 상태에서 측정될 수 있다.
일 예로, 품질 인자 값은 미리 정의된 기준 동작 주파수에 대해 측정될 수 있다.
다른 일 예로, 품질 인자 값은 무선 전력 전송에 사용되는 동작 주파수 대역 내에서 일정 주파수 단위로 샘플링하여 측정될 수도 있다.
본 발명의 일 실시예에 따른 송신기는 동작 주파수 대역 내 측정된 품질 인자 값 중 최대 값을 가지는 품질 인자 값에 대응되는 주파수 값을 확인하고, 이를 메모리에 저장할 수 있다. 이하 설명의 편의를 위해 동작 주파수 대역 내 품질 인자 값이 최대인 주파수를 품질 인자 피크 주파수(Quality Factor Peak Frequency) 또는 설명의 편의를 위해 간단히 피크 주파수라 명하기로 한다.
동작 주파수 대역에 상응하여 측정되는 품질 인지 값의 분포 및 품질 인자 피크 주파수는 무선 전력 송신기 타입에 따라 상이할 수 있다.
특히, 동일 동작 주파수에 대해 수신기를 인증하기 위해 사용되는 송신기-이하 설명의 편의를 위해 ‘인증용 송신기’라 명함-와 LCR 미터를 이용하여 측정된 품질 인자 값은 상용 송신기에서 측정된 품질 인자 값과 상이할 수도 있다.
무선 전력 송신기는 핑 단계(420)에서 신호 세기 패킷이 수신되면, 식별 및 구성 단계(430)로 진입할 수 있다(S403).
무선 전력 송신기는 식별 및 구성 절차가 정상적으로 완료되면, 협상 단계로(440)로 진입할 수 있다(S405).
또한, 무선 전력 송신기는 식별 및 구성 절차가 정상적으로 완료되면, 수신기의 타입에 따라 전력 전송 단계(460)로 진입할 수도 있다(S406).
무선 전력 송신기는 협상 단계(440)로 진입하면 무선 전력 수신기로부터 기준 품질 인자 값이 포함된 이물질 검출 상태 패킷(Foreign Object Detection Status Packet)을 수신할 수 있다.
무선 전력 송신기는 수신된 기준 품질 인자 값에 기반하여 품질 인자 임계 값을 결정할 수 있다.
이후, 무선 전력 송신기는 측정된 품질 인자 값과 품질 인자 임계 값을 비교하여 이물질의 존재 여부를 판단할 수 있다.
하지만, 기준 품질 인자 값에 기초하여 결정된 소정 품질 인자 임계 값과 측정된 품질 인자 값을 단순 비교하여 이물질의 존재 여부를 검출하는 이물질 검출 방법이 상용 송신기에 적용되는 경우 이물질 검출에 대한 정확도가 낮아질 수 있다.
여기서, 기준 품질 인자 값은 인증용 송신기의 충전 영역에 이물질 배치되지 않은 상태에서 측정된 기준 동작 주파수에서의 품질 인자 값을 의미한다.
협상 단계(440)에서 수신된 기준 품질 인자 값과 핑 단계(420) 이전에 측정된 기준 동작 주파수에 상응하는 품질 인자 값-이하, 설명의 편의를 위해 현재 품질 인자 값이라 명함-을 비교하여 이물질 존재 여부를 판단할 수 있다.
하지만, 기준 품질 인자 값이 측정된 송신기-즉, 인증용 송신기-와 현재 품질 인자 값이 측정된 송신기는 서로 상이할 수 있다. 따라서, 이물질 존재 여부를 판단하기 위한 결정된 품질 인자 임계 값은 정확하지 않을 수 있다.
따라서, 본 발명의 일 실시에 따른 송신기는 해당 송신기 타입에 대응하는 기준 품질 인자 값을 무선 전력 수신기로부터 수신하고, 수신된 기준 품질 인자 값에 기초하여 품질 인자 임계 값을 결정할 수도 있다.
송신 코일은 주변 환경 변화에 따라 인덕턴스 및/또는 해당 송신 코일 내 직렬 저항 성분이 감소될 수 있고, 이로 인해 해당 송신 코일에서의 공진 주파수가 변경(시프트)될 수 있다. 즉, 동작 주파수 대역 내 최대 품질 인자 값이 측정되는 주파수인 품질 인자 피크 주파수가 이동될 수 있다.
일 예로, 무선 전력 수신기는 높은 투자율을 갖는 마그네틱 실드(차폐재)를 포함하기 때문에, 높은 투자율은 송신 코일에서 측정되는 인덕턴스 값을 증가시킬 수 있다. 반면에 금속 타입의 이물질은 인덕턴스 값을 감소시킬 수 있다.
일반적으로 LC 공진 회로의 경우, 공진 주파수(f_resonant)는 1/(2π)로 계산된다.
송신기의 충전 영역에 무선 전력 수신기만이 배치되면, L값이 증가되므로 공진주파수는 작아지게 된다. 즉, 공진 주파수는 주파수 축상에서 왼쪽으로 이동(쉬프트)하게 된다.
반면, 송신기의 충전 영역에 이물질이 배치되면, L값이 감소시키므로 공진주파수는 커지게 된다. 즉, 공진 주파수는 주파수 축상에서 오른쪽으로 이동(쉬프트)하게 된다.
본 발명의 다른 일 실시예에 따른 송신기는 품질 인자 피크 주파수의 변화에 기반하여 충전 영역에 배치된 이물질의 존재 여부를 판단할 수도 있다.
송신기는 해당 송신기 타입에 대응하여 미리 설정된 품질 인자 피크 주파수-이하, 설명의 편의를 위해 ‘기준 품질 인자 피크 주파수(pf_reference)’ 또는 ‘기준 피크 주파수’라 명함-에 관한 정보를 수신기로부터 획득하거나 미리 소정 기록 영역에 유지할 수 있다.
송신기는 충전 영역에 물체가 배치되었음을 감지하면, 핑 단계(420)로의 진입 이전에 동작 주파수 대역 내 품질 인자 값을 값을 측정하고, 측정 결과에 기반하여 품질 인자 피크 주파수를 식별할 수 있다. 여기서, 식별된 품질 인자 피크 주파수를 기준 품질 인자 피크 주파수와 구분하기 위해 ‘측정 품질 인자 피크 주파수(pf_measured)’ 또는 ‘측정 피크 주파수’라 명하기로 한다.
협상 단계(430)에서 송신기는 기준 품질 인자 피크 주파수와 측정 품질 인자 피크 주파수에 기반하여 이물질의 존재 여부를 판단할 수도 있다.
만약, 기준 품질 인자 피크 주파수에 관한 정보가 수신기로부터 수신되는 경우, 식별 및 구성 단계(430) 또는 협상 단계(440)에서 소정 패킷을 통해 수신될 수 있다.
일 예로, 송신기는 식별 및 구성 단계(430)는 자신의 송신기 타입에 관한 정보를 수신기에 전송할 수 있다. 수신기는 수신된 송신기 타입 정보에 대응하여 미리 저장된 기준 품질 인자 피크 주파수를 해당 메모리에서 독출하고, 독출된 기준 품질 인자 피크 주파수에 관한 정보를 송신기에 전송할 수 있다.
본 발명의 또 다른 일 실시예에 따른 송신기는 품질 인자 피크 주파수에 기반한 이물질 검출 방법과 품질 인자 값에 기반한 이물질 검출 방법을 모두 이용하여 이물질 존재 여부를 판단할 수도 있다. 일 예로, 송신기 타입에 대응되는 기준 품질 인자 값과 측정된 품질 인자 값의 비교 결과 큰 차이가 없는 경우-예를 들면, 두 값 사이의 차이가 10% 이하인 경우-, 송신기 타입에 대응되는 기준 품질 인자 피크 주파수와 측정된 품질 인자 피크 주파수를 비교하여 이물질 존재 여부를 판단할 수도 있다. 반면, 두 품질 인자 값의 차이가 10%를 초과하는 경우, 송신기는 즉시 이물질이 존재하는 것으로 판단할 수 있다.
다른 실시 예로, 송신기 타입에 대응되는 기준 품질 인자 값에 기반하여 결정된 품질 인자 임계 값과 측정된 품질 인자 값의 비교 결과 이물질이 없다고 판단되는 경우, 송신기는 송신기 타입에 대응되는 기준 품질 인자 피크 주파수와 측정된 품질 인자 피크 주파수를 비교하여 이물질의 존재 여부를 판단할 수도 있다.
송신기는 품질 인자 값에 기반하여 이물질을 검출하는 것이 용이하기 않은 경우, 식별된 수신기에 해당 송신기 타입에 대응되는 기준 품질 인자 피크 주파수에 관한 정보를 요청할 수도 있다. 이 후, 송신기는 기준 품질 인자 피크 주파수에 관한 정보가 수신기로부터 수신되면, 기준 품질 인자 피크 주파수와 측정 품질 인자 피크 주파수를 이용하여 이물질의 존재 여부를 판단할 수 있다. 이를 통해, 송신기는 충전 영역에 배치된 이물질을 보다 정확하게 검출할 수 있다.
송신기는 물체를 감지하면, 핑 단계(420)에 진입하여 수신기를 활성화(Wake up)시키고, 감지된 물체가 무선 전력 수신기인지를 식별하기 위한 디지털 핑(Digital Ping)을 전송할 수 있다.
핑 단계(420)에서 송신기는 디지털 핑에 대한 응답 시그널-예를 들면, 신호 세기 패킷-을 수신기로부터 수신하지 못하면, 다시 선택 단계(410)로 천이할 수 있다.
또한, 핑 단계(420)에서 송신기는 수신기로부터 파워 전송이 완료되었음을 지시하는 신호-즉, 충전 완료 패킷-을 수신하면, 선택 단계(410)로 천이할 수도 있다.
핑 단계(420)가 완료되면, 송신기는 수신기를 식별하고 수신기 구성 및 상태 정보를 수집하기 위한 식별 및 구성 단계(430)로 천이할 수 있다.
송신기는 식별 및 구성 단계(430)에서 송신기 타입에 관한 정보를 수신기에 전송할 수도 있다.
수신기는 식별 및 구성 단계(430)에서 송신기 타입에 관한 정보를 송신기에 요구할 수도 있으며, 송신기는 수신기의 요구에 따라 송신기 타입에 관한 정보를 수신기에 전송할 수도 있다.
또한, 식별 및 구성 단계(430)에서 송신기는 원하지 않은 패킷이 수신되거나(unexpected packet), 미리 정의된 시간 동안 원하는 패킷이 수신되지 않거나(time out), 패킷 전송 오류가 있거나(transmission error), 파워 전송 계약이 설정되지 않으면(no power transfer contract) 선택 단계(410)로 천이할 수 있다.
송신기는 식별 및 구성 단계(430)에서 수신된 구성 패킷(Configuration packet)의 협상 필드(Negotiation Field) 값에 기반하여 협상 단계(440)로의 진입이 필요한지 여부를 확인할 수 있다.
확인 결과, 협상이 필요하면, 송신기는 협상 단계(440)로 진입하여 소정 FOD 검출 절차를 수행할 수 있다.
반면, 확인 결과, 협상이 필요하지 않은 경우, 송신기는 곧바로 전력 전송 단계(460)로 진입할 수도 있다.
일 실시 예에 따른 무선 전력 송신기는 식별 및 구성 단계(430)에서 해당 무선 전력 수신기가 제1 전력 전송 모드만을 지원하는 수신기로 확인된 경우, 협상 단계(440)를 수행하지 않고, 곧바로 전력 전송 단계(460)로 진입할 수 있다.
무선 전력 송신기는 전력 전송 단계(460)로의 진입 후 주기적으로 소정 이물질 검출 절차를 수행할 수 있다.
여기서, 이물질 검출 절차는 품질 인자 값에 기반한 이물질 검출 절차일 수 있으나, 이에 한정되지는 않으며, 전력 손실(Power loss)에 기반한 이물질 검출 절차가 적용될 수 있다.
전력 손실에 기반한 이물질 검출 절차는 무선 전력 송신기의 전송 전력과 무선 전력 수신기의 수신 전력의 차이를 소정 기준치와 비교하여 이물질 존재 여부를 판단하는 방법으로서 자세한 절차는 후술할 도면들의 설명을 통해 보다 명확해질 것이다.
일 예로, 협상 단계(440)에서, 송신기는 기준 품질 인자 값이 포함된 이물질 검출 상태 패킷(FOD(Foreign Object Detection) Status Packet)을 수신할 수 있다. 또는, 송신기 타입에 대응되는 기준 피크 주파수 값이 포함된 FOD Status Packet을 수신할 수 있다.
다른 일 예로, 협상 단계(440)에서 송신기는 송신기 타입에 대응되는 기준 품질 인자 값 및 기준 피크 주파수 값이 포함된 상태 패킷을 수신할 수도 있다. 이때, 송신기는 송신기 타입에 대응되는 기준 품질 인자 값에 기반하여 이물질 검출을 위한 품질 인자 임계 값을 결정할 수 있다.
송신기는 송신기 타입에 대응되는 기준 품질 인자 피크 주파수 값에 기반하여 이물질 검출을 위한 품질 인자 피크 주파수 임계 값을 결정할 수도 있다.
송신기는 결정된 품질 인자 임계 값 및(또는) 결정된 품질 인자 피크 주파수 임계 값을 측정된 품질 인자 값-핑 단계(420) 이전에 측정된 품질 인자 값을 의미함- 및(또는) 측정 품질 인자 피크 주파수 값과 비교하여 충전 영역에 배치된 이물질을 검출할 수도 있다.
송신기는 이물질 검출 결과에 따라 전력 전송을 제어할 수 있다. 일 예로, 이물질이 검출된 경우, 송신기는 이물질 검출 상태 패킷에 대한 응답으로 네거티브 응답 패킷(Negative acknowledge packet)을 수신기로 전송할 수 있다. 이에 따라, 전력 전송이 중단될 수 있으나, 이에 한정되지는 않는다.
송신기는 결정된 품질 인자 피크 주파수 임계 값 및 측정 품질 인자 피크 주파수 값을 비교하여 충전 영역에 배치된 이물질을 검출할 수 있다. 송신기는 이물질 검출 결과에 따라 전력 전송을 제어할 수 있다. 일 예로, 이물질이 검출된 경우, 송신기는 이물질 검출 상태 패킷(FOD Status Packet)에 대한 응답으로 NACK 패킷(Negative acknowledge packet)을 수신기로 전송할 수 있다. 이에 따라, 전력 전송이 중단될 수 있으나, 이에 한정되지는 않는다.
이물질이 검출된 경우, 송신기는 수신기로부터 충전 종료 메시지(End of Charge Message)를 수신할 수 있으며, 그에 따라 선택 단계(410)로 진입할 수 있다.
본 발명의 다른 실시 예에 따른 송신기는 협상 단계(440)에서 이물질이 검출된 경우, 전력 전송 단계(460)로 진입할 수도 있다(S415).
반면, 이물질이 검출되지 않은 경우, 송신기는 송신 전력에 대한 협상 단계(440)를 완료하고, 보정 단계(450)를 거쳐 전력 전송 단계(460)로 진입할 수도 있다(S407 및 S409).
상세하게, 이물질이 검출되지 않은 경우, 송신기는 보정 단계(450)에 진입하면 수신단에서 수신된 전력의 세기를 확정하고, 송신단에서 전송할 전력의 세기를 결정하기 위해 송신단과 수신단 사이의 전력 손실을 측정할 수 있다.
일 예로, 송신기는 전력 전송 중 수신단으로부터 피드백되는 수신 전력 세기 정보에 기반하여 수신기에의 수신 전력 세기를 확정할 수 있다. 즉, 송신기는 보정 단계(450)에서 송신단에서의 전송 전력과 수신단에서의 수신 전력 사이의 세기 차이에 기반하여 전력 손실을 예측(또는 산출)할 수 있다.
전력 전송 단계(460)에서, 송신기는 원하지 않은 패킷이 수신되거나(unexpected packet), 미리 정의된 시간 동안 원하는 패킷이 수신되지 않거나(time out), 기 설정된 파워 전송 계약에 대한 위반이 발생되거나(power transfer contract violation), 충전이 완료된 경우, 선택 단계(410)로 진입할 수 있다(S410).
또한, 전력 전송 단계(460)에서, 송신기는 송신기 상태 변화 등에 따라 파워 전송 계약을 재구성할 필요가 있는 경우, 재협상 단계(470)로 천이할 수 있다(S411). 이때, 재협상이 정상적으로 완료되면, 송신기는 전력 전송 단계(460)로 회귀할 수 있다(S413).
상기한 파워 전송 계약은 송신기와 수신기의 상태 및 특성 정보에 기반하여 설정될 수 있다. 일 예로, 송신기 상태 정보는 최대 전송 가능한 파워에 대한 정보, 최대 수용 가능한 수신기 개수에 대한 정보 등을 포함할 수 있으며, 수신기 상태 정보는 요구 전력에 대한 정보 등을 포함할 수 있다.
본 발명의 실시 예에 따른 무선 전력 송신기는 무선 전력 수신기에 의해 요구되는 보장 전력에 기반하여 제1 전력 전송 모드 중 제2 전력 전송 모드 중 어느 하나의 동작 모드로 동작할 수 있다.
본 발명의 다른 실시 예에 따른 무선 전력 송신기는 이물질 존재 여부에 대한 판단 결과에 기반하여 제1 전력 전송 모드 중 제2 전력 전송 모드 중 어느 하나의 동작 모드로 동작할 수 있다.
무선 전력 송신기에 연결되는 무선 전력 수신기는 제1 전력 전송 모드만을 지원하는 수신기이거나 제1 전력 전송 모드 및 제2 전력 전송 모드를 모두 지원하는 수신기일 수 있다.
여기서, 제2 전력 전송 모드에 상응하여 설정 가능한 보장 전력은 제1 전력 전송 모드에서 설정 가능한 보장 전력보다 클 수 있다.
일 예로, 제1 전력 전송 모드에서 설정 가능한 보장 전력은 제1 전력-예를 들면, 5W 또는 5W 이하-이고, 제2 전력 전송 모드에서 설정 가능한 보장 전력은 제1 전력보다 크고 제2 전력-예를 들면, 15W-보다 작을 수 있다.
도 5는 본 발명의 일 실시예에 따른 무선 전력 전송 시스템에서의 이물질 검출 절차를 설명하기 위한 흐름도이다.
상세하게 도 5는 제2 전력 전송 모드에서의 이물질 검출 절차를 설명하기 위한 도면이다.
도 5를 참조하면, 무선 전력 송신기(510)는 선택 단계에서 물체가 감지되면, 핑 단계로의 진입 이전에 소정 기준 동작 주파수에서의 품질 인자 값을 측정할 수 있다(S501). 여기서, 기준 동작 주파수는 공진 주파수(resonance frequency)일 수 있으나 이에 한정되지는 않는다. 무선 전력 송신기(510)는 측정된 품질 인자 값을 내부 메모리에 저장할 수 있다(S502).
무선 전력 송신기(510)는 핑 단계로 진입하여 상기한 도 3에서 설명된 감지 신호 전송 절차를 수행할 수 있다(S503).
무선 전력 송신기(510)는 무선 전력 수신기(520)가 감지되면, 식별 및 구성 단계로 진입하여 식별 패킷 및 구성 패킷을 수신할 수 있다(S504 및 S505).
무선 전력 송신기(510)는 협상 단계로 진입하여 이물질 검출 상태 패킷을 무선 전력 수신기(520)로부터 수신할 수 있다(S506). 여기서, 이물질 검출 상태 패킷은 기준 품질 인자 값을 포함할 수 있다.
무선 전력 수신기(510)는 이물질 검출 상태 패킷에 포함된 기준 품질 인자 값에 기반하여 이물질 존재 여부 판단을 위한 임계 값을 결정할 수 있다(S507).
일 예로, 임계 값은 기준 품질 인자 값보다 소정 비율만큼 작은 값으로 결정될 수 있다.
무선 전력 송신기(510)는 측정된 품질 인자 값과 결정된 임계 값을 비교하여 이물질을 검출할 수 있다(S508). 여기서, 측정된 품질 인자 값이 임계 값보다 작으면, 무선 전력 송신기(510)는 충전 영역에 이물질이 존재하는 것으로 판단할 수 있다.
무선 전력 송신기(510)는 이물질 검출 결과에 따라 ACK 응답 또는 NACK 응답 또는 ND(No Decision) 응답을 무선 전력 수신기(520)에 전송할 수 있다(S509).
무선 전력 수신기(520)는 무선 전력 송신기(510)로부터 NACK 응답 또는 ND 응답이 수신되면, 무선 전력 송신기(510)에 의해 전력 전송이 완전히 중단될 때까지 자신의 출력 단자를 통해 전자 기기(또는 배터리/부하)에 일정 세기 이상의 전력이 공급되지 않도록 제어할 수 있다.
여기서, 일정 세기 이상의 전력은 5W가 기준일 수 있으나, 이에 한정되지는 않으며, 당업자의 설계 및 무선 전력 수신기(510)가 탑재된 전자 기기 및(또는 무선 전력 수신기(510)와 연결된 배터리/부하)에 따라 상이하게 정의될 수 있다.
도 6는 본 발명의 일 실시 예에 따른 무선 전력 송신 장치의 구조를 설명하기 위한 블록도이다.
도 6을 참조하면, 무선 전력 송신 장치(600)는 제어기(610), 게이트 드라이버(Gate Driver, 620), 인버터(Invertor, 630), 전송 안테나(640), 전원(650), 전력공급기(Power Supply, 660), 센서(670) 및 복조기(680)을 포함하여 구성될 수 있다.
전력공급기(660)는 전원(650)로부터 인가되는 직류 전력 또는 교류 전력을 변환하여 인버터(630)에 제공할 수 있다. 이하, 설명의 편의를 위해, 전력 공급기(660)로부터 인버터(630)에 공급되는 전압을 인버터 입력 전압 또는 브이 레일(V_rail)이라 명하기로 한다.
전력 공급기(660)는 전원(650)으로부터 인가되는 전력의 타입에 따라, 교류/직류 변환기(AC/DC Converter) 및 직류/직류 변환기(DC/DC Converter) 중 적어도 하나를 포함하여 구성될 수 있다.
일 예로, 전력 공급기(660)는 스위칭 모드 전력 공급기(Switching Mode Power Supply, SMPS)일 수 있으며, 스위칭 트랜지스터, 필터 및 정류기 등을 이용하여 교류 전원을 직류 전원으로 변환하는 스위치 제어 방식을 사용할 수 있다. 여기서, 정류기 및 필터가 독립적으로 구성되어 AC 전원과 SMPS 사이에 배치될 수도 있다.
SMPS는 반도체 스위치 소자의 온/오프(on/off) 시간 비율을 제어하여 출력이 안정화된 직류 전원을 해당 디바이스, 또는 회로 소자에 공급하는 전원 장치로서, 고효율, 소형 및 경량화가 가능하여 대부분의 전자기기 및 장비 등에 널리 사용되고 있다.
전원의 품질에 따라 전자 회로 동작의 안정성이나 정밀도가 좌우되는 경우가 많다. 일반적으로 배터리 및 상용 AC 전원으로부터 안정적 전원을 변환하여 공급하는 방식에는 크게 선형 제어(series regulator) 방식과 스위치 모드(switched mode) 방식이 있다.
TV 수상기나 CRT 모니터 등에 사용되는 선형 제어 방식은 주위 회로가 간단하고 가격이 저렴하지만, 열 발생이 많고 전원 효율이 낮으며 부피가 크다는 단점이 있다.
반면, 스위칭 모드 방식은 열 발생이 거의 없고 전력 효율이 높으며 부피가 작다는 장점이 있는 반면, 가격이 비싸고 회로가 복잡하며 고주파 스위칭에 의한 출력 노이즈와 전자파 간섭이 발생될 수 있는 단점이 있다.
다른 일 예로, 전력공급기(660)는 가변 SMPS(Variable Switching Mode Power Supply)가 사용될 수 있다. 가변 SMPS는 교류 전원(AC Power Supply)으로부터 출력되는 수십 Hz 대역의 AC 전압을 스위칭 및 정류하여 DC 전압을 생성한다.
가변 SMPS(Variable SMPS)는 일정한 레벨의 DC 전압을 출력하거나 송신 제어기(Tx Controller)의 소정 제어에 따라 DC 전압의 출력 레벨을 조정할 수도 있다. 가변 SMPS는 무선 전력 송신기의 전력 증폭기가 항상 효율이 높은 포화 영역에서 동작할 수 있도록, 전력 증폭기-즉, 인버터(530)-의 출력 전력 레벨에 따라 공급 전압을 제어하여, 모든 출력 레벨에서 최대 효율을 유지하게 할 수 있다.
가변 SMPS 대신에 일반적으로 사용되는 상용 SMPS를 사용하는 경우에는, 추가적으로 가변 DC/DC 변환기(Variable DC/DC)를 사용할 수 있다. 상용 SMPS와 가변 DC/DC 변환기는 전력 증폭기가 효율이 높은 포화 영역에서 동작할 수 있도록, 전력 증폭기의 출력 전력 레벨에 따라 공급 전압을 제어하여, 모든 출력 레벨에서 최대효율을 유지하게 할 수 있다. 일 실시예에서, 전력 증폭기는 Class E 타입이 사용될 수 있으나, 이에 한정되지는 않는다.
인버터(630)는 게이트 드라이버(620)를 통해 수신되는 수 MHz ~ 수십 MHz 대역의 스위칭 펄스 신호-즉, 펄스 폭 변조(Pulse Width Modulated) 신호-에 의하여 일정한 레벨의 DC 전압(V_rail)을 AC 전압으로 변환함으로써 무선으로 전송될 교류 전력을 생성할 수 있다.
이때, 게이트 드라이버(620)는 제어기(610)로부터 공급되는 레퍼런스 클락(Ref_CLK) 신호를 이용하여 인버터(630)에 포함된 복수의 스위치를 제어하기 위한 복수의 PWM 신호(SC_0 ~ SC_N)를 생성할 수 있다.
여기서, 인버터(630)가 하프 브릿지 회로를 포함하는 경우, N은 1이고, 인버터(630)가 풀 브릿지 회로를 포함하는 경우, N은 3일 수 있으나, 이에 한정되지는 않으며, 인버터(630)의 설계 형태에 따라 인버터 타입 별 상이한 개수의 PWM 신호가 공급될 수도 있다.
예를 들면, 도 6의 실시 예에서 인버터(630)가 4개의 스위치를 포함하는 풀 브릿지 회로를 포함하는 경우, 인버터(630)는 각각의 스위치를 제어하기 위한 4개의 PWM 신호(SC_0, SC_1, SC_2, SC_3)를 게이트 드라이버(620)로부터 수신할 수 있다.
반면, 도 6의 실시 예에서 인버터(630)가 2개의 스위치를 포함하는 하프 브릿지 회로를 포함하는 경우, 인버터(630)는 각각의 스위치를 제어하기 위한 2개의 PWM 신호(SC_0, SC_1)를 게이트 드라이버(620)로부터 수신할 수 있다.
전송 안테나(640)는 인버터(630)로부터 수신되는 교류 전력 신호를 무선으로 전송하기 위한 적어도 하나의 전력 전송 안테나(미도시)-예를 들면, LC 공진 회로- 및 임피던스 매칭을 위한 매칭 회로(미도시)를 포함하여 구성될 수 있다.
또한, 전송 안테나(640)에 복수의 송신 코일이 구비되는 경우, 전송 안테나(640)는 복수의 송신 코일 중 무선 전력 전송에 사용될 송신 코일을 선택하기 위한 코일 선택 회로(미도시)가 더 포함될 수도 있다.
센서(670)는 인버터(630)로부터 입력되는 전력/전압/전류의 세기 또는(및) 전송 안테나(640)에 구비된 송신 코일에 흐르는 전력/전압/전류의 세기, 무선 전력 송신기의 내부 특정 위치-예를 들면, 송신 코일, 충전 베드, 제어 회로 기판 등을 포함할 수 있음-에서의 온도 및(또는) 온도 변화 등을 측정하기 위한 각종 센싱 회로를 포함하여 구성될 수 있다. 여기서, 센서(670)에 의해 센싱된 정보는 제어기(610)로 전달될 수 있다.
또한, 센서(670)는 선택 단계(410, 510)에서 아날로그 핑이 전송되는 동안 송신 코일을 흐르는 전류의 세기를 측정하여 제어기(610)에 전달할 수 있다. 제어기(610)는 선택 단계에서 송신 코일에 흐르는 전력의 세기 정보와 소정 기준치를 비교하여 충전 영역에 배치된 물체의 존재 여부를 감지할 수 있다.
무선 전력 송신기(600)가 무선 전력 수신기와 인밴드 통신을 수행하는 경우, 무선 전력 송신기(600)는 전송 안테나(640)와 연결된 복조기(680)를 포함할 수 있다.
복조기(680)는 진폭 변조된 인밴드 신호를 복조하여 제어기(610)에 전달할 수 있다.
일 예로, 제어기(610)는 복조기(680)로부터 수신된 복조 신호에 기반하여 전송한 디지털 핑에 대응하는 신호 세기 지시자(Signal Strength Indicator)의 수신 여부를 확인할 수 있다.
제어기(610)는 선택 단계(410)에서 충전 영역에 배치된 물체를 감지하면, 핑 단계(420)로 진입하여 전송 안테나(640)를 통해 디지털 핑이 전송되도록 제어할 수 있다.
제어기(610)는 선택 단계(410)에서 충전 영역에 배치된 물체를 감지하면, 핑 단계로 진입하기 이전에 전력 전송을 일시 중단하고 품질 인자 값을 측정할 수 있다. 여기서, 측정된 품질인자 값은 무선 전력 송신기(600)에 구비된 소정 메모리(미도시)에 유지될 수 있다.
제어기(610)는 핑 단계에서 신호 세기 지시자의 수신이 확인되면, 디지털 핑 전송을 중단하고 식별 및 구성 단계(430)로 진입하여 식별 패킷 및 구성 패킷을 수신할 수 있다.
제어기(610)는 전력 전송 단계(460)로의 진입 후 전력 전송 종료 패킷이 수신되면, 전력 전송을 중단하고, 선택 단계(410)로 진입할 수 있다.
또한, 제어기(610)는 충전 영역에 이물질이 존재하는 경우, 전력 전송을 중단하고 선택 단계(410)로 진입할 수도 있다.
일 실시 예에 따른, 제어기(610)는 무선 전력 수신기로부터 수신되는 수신 신호 세기 패킷에 기반하여 무선 전력 전송 경로상의 전력 손실을 산출(또는 추정)할 수 있다. 제어기(610)는 산출(또는 추정)된 전력 손실에 기반하여 이물질의 존재 여부를 판단할 수도 있다.
다른 실시 예에 따른, 제어기(610)는 센서(670)로부터 수신된 온도 센싱 정보 또는 무선 전력 수신기로부터 수신되는 온도 측정 정보에 기반하여 온도 변화를 측정할 수 있다. 제어기(610)는 측정된 온도 변화에 기반하여 이물질의 존재 여부를 판단할 수도 있다.
또 다른 실시 예에 따른, 제어기(610)는 전력 손실을 추정하고, 추정된 전력 손실에 기반한 이물질 존재 여부 판단 결과에 따라 온도 변화에 기반한 이물질 존재 여부 판단 절차를 수행할 수도 있다.
또 다른 실시 예에 따른, 제어기(610)는 온도 변화에 기반한 이물질 존재 여부 판단 결과에 따라 전력 손실에 기반한 이물질 존재 여부 판단 절차를 수행할 수도 있다.
또한, 본 발명에 따른 제어기(610)는 협상 단계(440)에서 FOD 상태 패킷을 수신하면, 수신된 FOD 상태 패킷에 기반하여 이물질 검출을 위한 임계 값을 결정하고, 결정된 임계 값에 기반하여 이물질 존재 여부를 판단할 수도 있다.
여기서, FOD 상태 패킷은 기준 품질 인자 값, 공진 주파수, 공진 주파수에서의 품질 인자 값 중 적어도 하나를 포함할 수 있다.
제어기(610)는 전력 전송 단계(460)에서 복조기(680)을 통해 리핑 코드 또는 과열 코드가 포함된 전력 전송 종료 패킷이 수신되는 경우, 전력 전송을 중단하고, 선택 단계(410)로 진입하여 리핑 타이머를 구동시킬 수도 있다.
제어기(610)는 구동된 리핑 타이머가 만료될 때까지 아날로그 핑 전송 및 비프 신호 출력을 억제시킬 수 있다. 이후, 리핑 타이머가 만료되면, 제어기(610)는 핑 단계(420)로 진입하여 전송 안테나(640)를 통해 디지털 핑이 전송되도록 제어할 수 있다.
제어기(610)는 감지된 수신기에 대한 식별 및 구성이 완료된 후 리핑 코드 또는 과열 코드가 포함된 전력 전송 종료 패킷이 수신되면, 리핑 시간을 재설정한 후 선택 단계(410)로 회귀할 수 있다.
본 발명의 실시 예에 따른 무선 전력 송신기(600)의 동작 모드는 제1 전력 전송 모드 및 제2 전력 전송 모드를 포함할 수 있다.
제어기(610)는 협상 단계(440)에서의 이물질 존재 여부에 대한 판단 결과에 기초하여 제1 전력 전송 모드와 제2 전력 전송 모드 중 어느 하나의 동작 모드로 동작할 수 있다.
여기서, 제2 전력 전송 모드에서의 보장 전력은 제1 전력 전송 모드의 보장 전력(또는 최대 전송 전력)보다 클 수 있다.
일 예로, 제1 전력 전송 모드에서의 보장 전력은 5W-이하, 제1 전력이라 명함-이고, 제2 전력 전송 모드에서의 보장 전력은 15W-이하, 제2 전력이라 명함-일 수 있다.
다른 일 예로, 제1 전력 전송 모드에서의 보장 전력은 5W이고, 제2 전력 전송 모드에서의 보장 전력은 제1 전력과 제2 전력 사이의 값일 수 있으나, 이에 한정되지는 않으며, 당업자의 설계에 따라 각각의 동작 모드에 대응하는 보장 전력은 상이하게 설정될 수도 있음을 주의해야 한다.
협상 단계(440)에서의 이물질 존재 여부에 대한 판단 결과 이물질이 존재하면, 제어기(610)는 보장 전력의 레벨을 제2 전력 전송 모드에 상응하는 제2 레벨로부터 제1 전력 전송 모드에 상응하는 제1 레벨로 변경시킬 수 있다.
즉, 제어기(610)는 협상 단계(440)에서 이물질이 존재하는 것으로 판단하면, 보장 전력을 하향 조절할 수 있다. 이를 통해, 고전력 전송 시 이물질에 의한 과열로 기기가 손상되는 것을 미연에 방지할 수 있다.
제어기(610)는 제1 전력 전송 모드에 진입하면, 상기한 도 4의 보정 단계(450)가 수행되지 않도록 제어할 수 있다.
만약, 충전 영역에 이물질이 존재함에도 불구하고 제1 전력 전송 모드에서 보정 단계(450)가 수행되는 경우, 상기 전력 손실에 기반한 이물질 검출 방법은 정확도가 떨어지는 문제점이 있다.
일반적으로 보정 단계(450)는 이물질이 존재하지 않는다는 가정하게 수행되는 절차이다. 따라서, 충전 영역에 이물질이 존재함에도 불구하고 보정 단계(450)가 수행되면, 전력 손실에 기반한 이물질 검출 방법은 그 정확도가 떨어져 신뢰할 수 없는 문제점이 있다.
만약, 제1 전력 전송 모드로의 진입 후 상기 전력 손실에 기반한 이물질 검출 방법 및(또는) 상기 온도 변화에 기반한 이물질 검출 방법을 통해 이물질이 검출되지 않은 경우, 제어기(610)는 상기한 도 4의 재협상 단계(470)로 진입할 수 있다.
제어기(610)는 무선 전력 수신기와의 재협상 결과에 따라 전력 전송 계약이 확정되면, 확정된 전력 전송 계약에 따라 동작 모드를 변경할 수도 있다.
일 예로, 전력 전송 계약은 보장 전력을 포함할 수 있으며, 제어기(610)는 무선 전력 수신기와의 재협상 절차를 통해 보장 전력을 변경 설정할 수 있다.
만약, 재협상 결과 무선 전력 수신기에 의해 요구되는 보장 전력이 제1 전력 전송 모드에 상응하는 제1 보장 전력에서 제2 전력 전송 모드에 상응하는 제2 보장 전력으로 변경된 경우, 제어기(610)는 동작 모드를 제1 전력 전송 모드에서 제2 전력 전송 모드로 전환시킬 수도 있다.
이상의 실시 예에서 설명한 바와 같이, 본 발명에 따른 무선 전력 송신기(600)는 실제 이물질이 존재하지 않음에도 불구하고, 이물질이 존재하는 것으로 판별한 경우에도 지속적으로 충전을 진행할 수 있는 장점이 있다.
상세하게, 무선 전력 송신기(600)는 초기 제2 전력 전송 모드로 동작 중 실제 이물질이 존재하지 않음에도 불구하고, 이물질이 존재하는 것으로 판단한 경우, 즉시 충전을 중단하지 하지 않고, 전력 전송 모드를 제2 전력 전송 모드에서 제1 전력 전송 모드로 전환시켜 충전을 유지시킬 수 있다.
일 예로, 무선 전력 송신기(600)는 충전 영역에 이물질 없이 무선 전력 수신기가 배치된 상태인 경우에도, 송신 코일과 수신 코일 사이의 정렬 상태에 따라 충전 영역에 이물질이 존재하는 것으로 판단할 수도 있다.
본 발명에 따른 무선 전력 송신기(600)는 제1 전력 전송 모드로의 전환 이후에도 추가적인 이물질 검출 절차를 수행함으로써, 보다 정확하게 이물질을 검출할 수 있는 장점이 있다. 여기서, 추가적인 이물질 검출 절차는 전력 손실에 기반한 이물질 검출 절차 및 온도 변화에 기반한 이물질 검출 절차 중 적어도 하나를 포함할 수 있다.
도 7은 본 발명의 일 실시 예에 따른 상기 도 6의 전송 안테나 구성을 설명하기 위한 도면이다.
도 7을 참조하면, 전송 안테나(640)는 코일 선택 회로(710), 코일 어셈블리(720) 및 공진 캐패시터(730)를 포함하여 구성될 수 있다.
코일 어셈블리(720)는 적어도 하나의 송신 코일-즉, 제1 내지 제N 코일-을 포함하여 구성될 수 있다.
코일 선택 회로(710)는 코일 어셈블리(720)에 포함된 송신 코일 중 어느 하나 또는 적어도 어느 하나에 인버터(630) 출력 전류(I_coil)가 전달되도록 구성된 스위칭 회로를 포함하여 구성될 수 있다.
일 예로, 코일 선택 회로(710)는 그것의 일단이 인버터 출력단에 연결되고 타단이 그것에 대응되는 코일에 연결된 제1 내지 제N 스위치를 포함하여 구성될 수 있다.
코일 어셈블리(720)에 포함된 제1 내지 제N 코일은 그것의 일단이 코일 선택 회로(710)의 대응되는 스위치에 연결되고, 그것의 타단이 공진 캐패시터(730)와 연결될 수 있다.
복조기(680)는 코일 어셈블리(720)와 공진 캐피시터(730) 사이의 신호-여기서, 신호는 진폭 변조된 신호임-를 복조하여 제어기(610)에 전달할 수 있다.
도 8은 본 발명의 일 실시 예에 따라 상기 도 6에 따른 무선 전력 송신 장치와 연동되는 무선 전력 수신 장치의 구조를 설명하기 위한 블록도이다.
도 8을 참조하면, 무선 전력 수신기(800)는 수신 안테나(810), 정류기(820), 직류/직류 변환기(DC/DC Converter, 830), 스위치(840), 부하(850), 센싱부(860), 변조부(870), 주제어부(870)를 포함하여 구성될 수 있다.
상기한 도 8의 예에 도시된 무선 전력 수신기(800)는 인밴드 통신을 통해 무선 전력 송신기와 정보를 교환할 수 있다.
수신 안테나(810)는 인덕터와 적어도 하나의 캐패시터를 포함하여 구성될 수 있다.
무선 전력 송신기(600)에 의해 전송된 AC 전력은 수신 안테나(810)을 통해 정류기(820)에 전달할 수 있다. 정류기(820)는 수신 안테나(810)를 통해 전달 받은 AC 전력을 DC 전력으로 변환하여 직류/직류 변환기(830)에 전송할 수 있다.
직류/직류 변환기(830)는 정류기(820)의 출력 DC 전력의 세기를 부하(850)에 의해 요구되는 특정 세기로 DC 전력으로 변환할 수 있다.
센싱부(840)는 정류기(820)의 출력 DC 전력 세기를 측정하고, 측정 결과를 주제어부(880)에 제공할 수 있다.
주제어부(880)는 정류기(820)의 출력 DC 전력에 기반하여 전력 제어를 수행할 수 있다.
또한, 센싱부(840)는 무선 전력 수신에 따라 수신 안테나(810)에 인가되는 전류의 세기를 측정하고, 측정 결과를 주제어부(880)에 전송할 수도 있다.
또한, 센싱부(840)는 무선 전력 수신기(800) 또는 무선 전력 수신기(800)가 장착된 전자 기기의 내부 온도를 측정하고, 측정된 온도 값을 주제어부(880)에 제공할 수도 있다.
일 예로, 주제어부(880)는 측정된 정류기 출력 DC 전력의 세기를 소정 기준치와 비교하여 과전압 발생 여부를 판단할 수 있다. 판단 결과, 과전압이 발생된 경우, 주제어부(880)는 과전압이 발생되었음을 알리는 소정 패킷을 변조부(870)를 통해 무선 전력 송신기(600)에 전송할 수 있다.
변조부(870)는 주제어부(880)로부터 패킷이 수신되면, 수신 안테나(810)를 통해 수신된 AC 전력 및 구비된 스위치를 이용하여 수신된 패킷에 상응하는 진폭 변조 신호를 생성할 수 있다. 이때, 무선 전력 송신기(600)는 무선 전력 수신기(800)에 의해 진폭 변조된 신호를 구비된 복조기(680)을 통해 복조할 수 있다.
일 예로, 변조부(870)는 핑 단계에서 주제어부(880)로부터 신호 세기 패킷이 수신되면, 수신 안테나(1010)를 통해 수신된 디지털 핑을 수신된 신호 세기 패킷에 상응하게 진폭 변조할 수 있다.
일 실시 예에 따른 변조부(870)는 수신 안테나(810)를 통해 수신된 교류 전력 신호를 진폭 변조하기 위한 변조 스위치가 구비될 수 있다. 이 경우, 주제어부(880)는 전송 대상 패킷에 대응하는 펄스 폭 변조 신호를 변조부(870)에 전송하여 변조 스위치를 직접 제어할 수도 있다.
또한, 주제어부(880)는 정류기 출력 DC 전력의 세기가 소정 기준치 이상인 경우, 감지 신호-예를 들면, 디지털 핑-가 수신된 것으로 판단할 수 있으며, 감지 신호 수신 시, 해당 감지 신호에 대응되는 신호 세기 패킷이 변조부(870)를 통해 무선 전력 송신기에 전송될 수 있도록 제어할 수 있다.
일 예로, 주제어부(880)는 내부 온도가 소정 기준치를 초과하면, 스위치(840)를 제어-예를 들면, 스위치 OFF-하여 직류/직류 변환기(830)의 출력 DC 전력이 부하(850)에 전달되지 않도록 제어할 수도 있다. 이때, 주제어부(880)는 과열 코드가 포함된 전력 전송 중단 패킷을 변조부(1070)를 통해 무선 전력 송신기(600)에 전송할 수 있다.
다른 일 예로, 주제어부(880)는 무선 전력 수신기(800)가 장착된 전자 기기의 내부 전력을 제어하는 전력 관리 소자-예를 들면, PMIC(Power Management IC)와 연동될 수 있다.
이 경우, 직류/직류 변환기(1030)의 출력 DC 전력은 스위치(840)를 통해 전력 관리 소자로 전달될 수 있으며, 전력 관리 소자는 배터리 충전 및 전자 기기 내부 부품으로의 전력 공급을 제어할 수 있다.
전력 관리 소자는 배터리 충전 상태 정보를 주제어부(880)에 제공할 수 있다. 주제어부(880)는 배터리 충전 상태 정보 및 내부 온도 정보에 기반하여 충전의 진행 여부를 판단할 수 있다.
본 발명의 일 실시 예에 따른 무선 전력 수신기(800)는 협상 단계(440)에 진입하면, 이물질 검출 상태 패킷을 생성하여 무선 전력 송신기(600)에 전송할 수 있다.
일 예로, 이물질 검출 상태 패킷은 기준 품질 인자 값을 포함할 수 있다.
다른 일 예로, 이물질 검출 패킷은 기준 품질 인자 값 및 해당 무선 전력 수신기에 대응하는 공진 주파수를 포함할 수 있다.
또 다른 일 예로, 이물질 검출 패킷은 공진 주파수 및 공진 주파수에 대응하는 품질 인자 값을 포함할 수도 있다.
무선 전력 송신기(600)는 이물질 검출 상태 패킷에 포함된 기준 품질 인자 값에 기반하여 이물질 존재 여부를 판단하기 위한 소정 임계 값을 결정할 수 있다.
이상의 도 8의 실시 예에 따른 무선 전력 수신기(800)는 무선 전력 송신기(600)가 전송한 패킷을 복조하기 위한 복조부(미도시)를 더 포함하여 구성될 수도 있다.
이를 통해, 무선 전력 송신기(600)와 무선 전력 수신기(800)는 양방향 통신을 수행할 수도 있다. 일 실시 예로, 양방향 통신은 무선 전력 송신기에서의 패킷 전송 가능 시간과 무선 전력 수신기에서의 패킷 전송 가능 시간이 구분된 시분할 통신일 수 있으나 이에 한정되지는 않는다.
도 9는 종래 기술에 따른 무선 전력 송신기에서의 이물질 검출 여부에 따른 전력 전송 제어 방법을 설명하기 위한 도면이다.
무선 전력 송신기는 무선 전력 수신기로부터 협상 요구 패킷을 수신하면, 승인 패킷(Grant Packet)을 전송하여 협상 단계(440)로 진입할 수 있다.
도 9를 참조하면, 협상 단계(440)에서 무선 전력 송신기는 무선 전력 수신기로부터 이물질 검출 상태 패킷(FOD(Foreign Object Detection) Status Packet)을 수신할 수 있다(S901).
일 예로, 무선 전력 송신기는 하기의 도 10에 도시된 바와 같이, 메시지 필드(1030)에 기준 품질 인자 값(Reference Quality Factor Value,1031)이 포함된 이물질 검출 상태 패킷을 수신할 수 있다.
무선 전력 송신기는 이물질 존재 여부를 판단할 수 있다(S902). 여기서, 무선 전력 송신기는 선택 단계(410)에서의 물체 감지 후 핑 단계(420)로의 진입 이전에 측정된 품질 인자 값과 협상 단계(440)에서 수신된 기준 품질 인자 값에 기반하여 결정한 품질 인자 임계 값을 비교하여 이물질 존재 여부를 판단할 수 있다.
이하의 실시 예에서는 협상 단계(44)로의 진입 후 이물질을 검출하는 방법으로 품질 인자 값에 기반한 이물질 검출 방법을 예를 들어 설명하나, 이는 하나의 실시 예에 불과하며, 협상 단계에서의 이물질 검출 방법은 당업자에 설계 또는 표준 정의에 따라 상이한 방법이 적용될 수도 있음을 주의해야 한다.
판단 결과, 이물질이 존재하지 않으면, 무선 전력 송신기는 해당 무선 전력 수신기로 ACK 신호를 전송할 수 있다(S903).
이 후, 무선 전력 송신기는 무선 전력 수신기에 의해 요구되는 보장 전력에 관한 정보가 포함된 보장 전력 패킷을 수신할 수 있다(S904).
무선 전력 송신기는 무선 전력 수신기로부터 협상 종료 패킷을 수신할 수 있다(S905).
무선 전력 송신기는 협상 종료 패킷이 수신되면, 협상 단계(440)에서 보정 단계(450) 단계로 진입할 수 있다.
무선 전력 송신기는 보정 단계(450)로 진입하여 소정 보정 절차를 수행할 수 있다(S906).
무선 전력 송신기는 보정 절차를 통해 전력 전송 계약이 완료되면, 전력 전송 단계(460)로 진입하여 충전을 개시할 수 있다(S907).
만약, 상기한 902 단계의 판단 결과, 이물질이 존재하면, 무선 전력 송신기는 이물질 검출 상태 패킷에 대한 응답으로 NACK 신호를 전송할 수 있다(S908).
무선 전력 수신기는 이물질 검출 상태 패킷에 대한 응답으로 NACK 신호가 수신되면, 무선 전력 송신기로부터 수신되는 전력 신호가 완전히 제거될 때까지, 자신의 출력단에서의 전력이 소정 기준치-예를 들면, 5W일 수 있으나, 이에 한정되지는 않음-를 초과하지 않도록 제어할 수 있다.
무선 전력 송신기는 NACK 신호 전송 후 미리 정의된 시간 이내-예를 들면, 5초일 수 있음-에 전력 전송을 중단시킬 수 있다(S909).
전력 전송이 중단되면, 무선 전력 송신기는 선택 단계(410)로 진입할 수 있다(S910).
충전 영역에 이물질이 배치된 상태에서 제2 전력 전송 모드에 상응하는 전력을 전송하는 것은 기기의 발열 위험성을 높일 수 있다.
따라서, 종래의 무선 전력 송신기는 이물질이 존재하는 것으로 판단하면, 전력 전송 단계(460)로의 진입을 차단하고 미리 정의된 시간 이내에 전력 전송을 중단한 후 선택 단계(410)로 진입하였다.
하지만, 무선 전력 송신기는 구비된 LCR Meter의 측정 오차, 무선 전력 송신기 및 무선 전력 수신기의 기구 설계 및 각각에 장착되는 코일의 디자인 차이로 인한 품질 인자 상호 보정 오차(Quality Factor Cross Calibration Error), 송신 코일과 수신 코일 사이의 이격 거리-즉, Z distance- 및 충전 영역에 배치되는 무선 전력 수신기의 위치-즉, XY displacement- 등에 의해 실제 이물질이 존재하지 않으나 이물질이 존재하는 것으로 오판할 수 있다.
만약, 실제 이물질이 없음에도 불구하고, 무조건 전력 전송을 중단한 후 선택 단계로 회귀하는 것은 심각한 사용자의 불편을 초래할 수 있다.
특히, 스마트폰 등에 적용되는 무선 전력 수신기는 해당 제품의 두께를 줄이기 위해 투자율이 높은 차폐제를 적용하고, 수신 코일의 두께가 최대한 작아지도록 설계될 수 있다.
이 경우, 저항 R은 매우 커지고, 품질 인자 Q는 매우 작아질 수 있다. 또한, 해당 제품에 금속 재질의 하우징이 적용되는 경우 품질 인자 Q는 더욱 낮아지게 될 수 있다.
이는 무선 전력 송신기에서의 이물질 존재 여부 판단에 대한 오류 확률을 증가시킬 수 있다.
예를 들면, 이물질 존재 판단에 대한 오류가 발생하는 경우는 스마트폰이 충전 영역에 배치되었음에도 불구하고, 품질 인자 Q가 낮게 측정되어 이물질로 판단하는 상황, 이물질뿐만 아니라 스마트폰도 함께 충전 영역에 배치된 상황 등을 포함할 수 있다.
따라서, 상기한 종래 기술의 문제점을 해결하기 위해 과열로 인한 기기 손상을 방지하면서, 사용자 불편을 최소화시킬 수 있는 무선 전력 송신기에서의 전력 전송 제어 방법이 요구되고 있다.
도 10은 본 발명의 일 실시예에 따른, 패킷 포맷을 설명하기 위한 도면이다.
본 발명의 실시 예에 따른 무선 전력 송신단(10)과 무선 전력 수신단(20)은 인밴드 통신을 통해 패킷을 교환할 수 있으나, 이는 하나의 실시 예에 불과하며, 대역외 통신을 통해 해당 패킷을 교환할 수도 있다.
도 10을 참조하면, 무선 전력 송신단(10)과 무선 전력 수신단(20) 사이의 정보 교환에 사용되는 패킷 포맷(1000)은 해당 패킷의 복조를 위한 동기 획득 및 해당 패킷의 정확한 시작 비트를 식별하기 위한 프리엠블(Preamble, 1010) 필드, 해당 패킷에 포함된 메시지의 종류를 식별하기 위한 헤더(Header, 1020) 필드, 해당 패킷의 내용(또는 페이로드(Payload))를 전송하기 위한 메시지(Message, 1030) 필드 및 해당 패킷에 오류가 발생되었는지 여부를 확인하기 위한 체크썸(Checksum, 1040) 필드를 포함하여 구성될 수 있다.
패킷 수신단은 헤더(1020) 값에 기반하여 해당 패킷에 포함된 메시지(1030)의 크기를 식별할 수도 있다.
또한, 상기한 도 4의 단계 별 전송 가능한 패킷의 종류는 헤더(1020) 값에 의해 정의될 수 있으며, 일부, 헤더(1020) 값은 무선 전력 전송 절차의 서로 다른 단계에서 공용될 수 있도록 정의될 수 있다. 일 예로, 핑 단계(420) 및 전력 전송 단계(460)에서 무선 전력 송신기의 전력 전송을 중단시키기 위한 전력 전송 종료(End Power Transfer) 패킷이 동일한 헤더(1020)으로 정의될 수 있다.
메시지(1030)는 해당 패킷의 송신단에서 전송하고자 하는 데이터를 포함한다. 일 예로, 메시지(1030) 필드에 포함되는 데이터는 상대방에 대한 보고 사항(report), 요청 사항(request) 또는 응답 사항(response)일 수 있으나, 이에 한정되지는 않는다.
본 발명의 다른 일 실시예에 따른 패킷 포맷(1000)은 해당 패킷을 전송한 송신단을 식별하기 위한 송신단 식별 정보, 해당 패킷을 수신할 수신단을 식별하기 위한 수신단 식별 정보 중 적어도 하나를 더 포함할 수도 있다.
여기서, 송신단 식별 정보 및 수신단 식별 정보는 IP 주소 정보, MAC(Medium Access Control) 주소 정보, 제품 식별 정보 등을 포함할 수 있으나, 이에 한정되지는 않으며, 무선 충전 시스템상에서 수신단 및 송신단을 구분할 수 있는 정보이면 족하다.
본 발명의 또 다른 일 실시예에 따른 패킷 포맷(1000)은 해당 패킷이 복수의 장치에 의해 수신되어야 하는 경우, 해당 수신 그룹을 식별하기 위한 소정 그룹 식별 정보를 더 포함할 수도 있다.
도 11은 본 발명의 일 실시 예에 따른 무선 전력 송신기에서의 전력 전송 제어 방법을 설명하기 위한 순서도이다.
무선 전력 송신기는 무선 전력 수신기로부터 협상 요구 패킷을 수신하면, 승인 패킷(Grant Packet)을 전송하여 협상 단계(440)로 진입할 수 있다.
도 11을 참조하면, 협상 단계(440)에서 무선 전력 송신기는 무선 전력 수신기로부터 이물질 검출 상태 패킷(FOD(Foreign Object Detection) Status Packet)을 수신할 수 있다(S1110).
일 예로, 무선 전력 송신기는 상기의 도 10에 도시된 바와 같이, 메시지 필드(1030)에 기준 품질 인자 값(Reference Quality Factor Value,1031)이 포함된 이물질 검출 상태 패킷을 수신할 수 있다.
협상 단계(440)에서의 이물질 검출은 수신기로부터 수신한 기준값과 측정값을 비교하는 절차이며, 기준 값과 측정값은 다양한 종류의 파라미터 일 수 있다.
예를 들어, 기준 값과 측정값은 공진주파수, 저항, 인덕턴스 등이 포함될 수 있으나 이에 한정되지는 않는다.
무선 전력 송신기(710)는 기 저장된 측정 피크 주파수(PF_measured)와 측정 품질 인자 값(Q_measured)을 이용하여 측정 등가 직렬 저항(Measured ESR(Equivalent Series Resistance), ESR_measured)을 계산할 수 있다(S707).
여기서, ESR은 RLC 직렬 회로에서 캐패시터 등에 기생하는 직렬 저항 성분이다. 전기 회로에 사용되는 실제 커패시터 및 인덕터는 커패시턴스 또는 인덕턴스만 있는 이상적인 부품이 아니다. 그러나 저항과 직렬로 연결되면 매우 근사적으로 이상적인 캐패시터 및 인덕터로 간주될 수 있다. 이 저항은 등가 직렬 저항(ESR)로 정의된다.
무선 전력 송신기(710)는 수신된 기준 피크 주파수(PF_reference)와 기준 품질 인자 값(Q_reference)을 이용하여 기준 등가 직렬 저항(Reference ESR, ESR_reference)을 계산할 수 있다(S708).
무선 전력 송신기(710)는 ESR_measured와 ESR_reference을 이용하여 이물질을 검출할 수 있다(S709). 일 예로, 무선 전력 송신기(710)는 ESR_reference와 ESR_measured의 비율을 소정 임계 값과 비교하여 이물질의 존재 여부를 판단할 수 있다.
무선 전력 송신기는 이물질 검출 결과에 따라 ACK 응답 또는 NACK 응답을 무선 전력 수신기에 전송할 수 있다.
무선 전력 송신기로부터 NACK 응답이 수신되면, 무선 전력 수신기는 무선 전력 송신기가 전력 전송을 완전히 중단할 때까지 출력 단자를 통해 전자 기기(또는 배터리/부하)에 일정 세기 이상의 전력이 공급되지 않도록 제어할 수 있다. 여기서, 일정 세기 이상의 전력은 5W가 기준일 수 있으나, 이에 한정되지는 않는다.
이하에서는 ESR과 품질 인자 값(Q) 및 주파수의 관계를 설명하기로 한다.
이상적인 RLC 직렬 회로 및 TRF 수신기(Tuned Radio Frequency Receiver)에서의 품질 인자 값 Q는 하기의 수식 1:
(수식 1)
여기서, R, L 및 C는 각각 저장, 인덕턴스, 캐패시턴스를 의미하고, 이고, 는 공진 주파수를 의미한다.
이므로, 이 된다.
*ESR은 항상 표준 주파수에서 측정된 AC 저항이고, 높은 ESR은 부품의 노화, 발열 및 리플 전류를 증가시킬 수 있다.
로 계산될 수 있다.
따라서, 상기 실시예에서 ESR_reference는 로 계산되고, ESR_measured는 로 계산될 수 있다.
: 무선충전기가 측정한 Q-factor
: 무선 충전기가 측정한 Peak frequency
: 무선충전기 타입 코일에서의 기준 Q-factor(수신기 배치, 이물질 없는 상태)
: 무선충전기 타입 코일에서의 기준 Peak frequency(수신기 배치, 이물질 없는 상태)
: 무선충전기의 공진 캐패시터의 캐패시턴스
이때, ESR_referenc와 ESR_measured의 비율은 하기와 같이 계산될 수 있다.
일 실시예에 따른 무선 전력 송신기는 ESR_referenc와 ESR_measured의 비율이 미리 정의된 비율 임계 값을 초과하면 이물질이 존재하는 것으로 판단할 수 있다. 여기서, 비율 임계 값은 실험 결과에 의해 결정될 수 있다. 일 예로,이 0.2보다 크면 이물질이 존재하는 것으로 판단할 수 있다.
이하의 설명에서는 무선 전력 송신기가 측정된 품질 인자 값과 결정된 품질 인자 임계 값에 기반하여 이물질 존재 여부를 판단하는 실시 예를 중심으로 설명하기로 한다.
무선 전력 송신기는 이물질 존재 여부를 판단할 수 있다(S1120). 여기서, 무선 전력 송신기는 선택 단계(410)에서의 물체 감지 후 핑 단계(420)로의 진입 이전에 측정된 품질 인자 값과 협상 단계(440)에서 수신된 기준 품질 인자 값에 기반하여 결정한 품질 인자 임계 값을 비교하여 이물질 존재 여부를 판단할 수 있다.
판단 결과, 이물질이 존재하지 않으면, 무선 전력 송신기는 해당 무선 전력 수신기로 제1 응답 신호를 전송할 수 있다(S1130). 여기서, 제1 응답 신호는 ACK 신호일 수 있다.
무선 전력 송신기는 제1 응답 신호 전송 후 제1 전력 전송 제어 절차를 수행할 수 있다(S1140).
상기한 1120 단계의 판단 결과, 이물질이 존재하면, 무선 전력 송신기는 제2 응답 신호를 전송할 수 있다(S1150). 여기서, 제2 응답 신호는 NACK 신호일 수 있다.
무선 전력 송신기는 제2 응답 신호 전송 후 제2 전력 전송 제어 절차를 수행할 수 있다(S1160).
여기서, 제1 전력 전송 제어 절차와 제2 전력 전송 제어 절차의 세부 구성은 후술할 도면의 설명을 통해 보다 명확해질 것이다.
도 12는 본 발명의 다른 실시 예에 따른 무선 전력 송신기에서의 전력 전송 제어 방법을 설명하기 위한 순서도이다.
무선 전력 송신기는 무선 전력 수신기로부터 협상 요구 패킷을 수신하면, 승인 패킷(Grant Packet)을 전송하여 협상 단계(440)로 진입할 수 있다.
도 12를 참조하면, 협상 단계(440)에서 무선 전력 송신기는 무선 전력 수신기로부터 이물질 검출 상태 패킷(FOD(Foreign Object Detection) Status Packet)을 수신할 수 있다(S1201). 일 예로, 무선 전력 송신기는 하기의 도 10에 도시된 바와 같이, 메시지 필드(1030)에 기준 품질 인자 값(Reference Quality Factor Value,1031)을 포함된 이물질 검출 상태 패킷을 수신할 수 있다.
무선 전력 송신기는 이물질 존재 여부를 판단할 수 있다(S1202). 여기서, 무선 전력 송신기는 선택 단계(410)에서의 물체 감지 후 핑 단계(420)로의 진입 이전에 측정된 품질 인자 값과 협상 단계(440)에서 수신된 기준 품질 인자 값에 기반하여 결정한 품질 인자 임계 값을 비교하여 이물질 존재 여부를 판단할 수 있다.
판단 결과, 이물질이 존재하지 않으면, 무선 전력 송신기는 해당 무선 전력 수신기로 제1 응답 신호를 전송할 수 있다(S1203). 여기서, 제1 응답 신호는 ACK 신호일 수 있다.
무선 전력 송신기는 제1 응답 신호가 수신되면, 제1 전력 전송 제어 절차(S1140)를 수행할 수 있다.
이하에서는 제1 전력 전송 제어 절차(S1140)를 상세히 설명하기로 한다.
무선 전력 송신기는 이물질이 없다고 판단하는 경우 보장 전력을 최대 전력(Maximum or potential power)까지 설정할 수 있다. 일 예로, 최대 전력은 15W일 수 있으나, 이에 한정되지는 않으며, 무선 충전기의 구성 태양 및 설계에 따라 그보다 클 수도 있다.
협상단계에서 무선 전력 송신기는 설정된 보장전력을 포함하는 송신기 전력 능력 패킷을 무선 전력 수신기로 전송할 수 있다. 이에 무선전력 수신기는 송신기의 보장전력 내에서 요구 전력을 결정할 수 있다.
무선 전력 송신기는 무선 전력 수신기에 의해 요구되는 보장 전력(또는 요구 전력)에 관한 정보가 포함된 보장 전력 패킷을 수신할 수 있다(S1204).
무선 전력 송신기는 무선 전력 수신기로부터 협상 종료 패킷을 수신할 수 있다(S1205).
무선 전력 송신기는 협상 종료 패킷이 수신되면, 협상 단계(440)에서 보정 단계(450)로 진입할 수 있다.
무선 전력 송신기는 보정 단계(450)로 진입하여 보정 절차를 수행할 수 있다(S1206).
무선 전력 송신기는 보정 절차가 완료되면, 전력 전송 단계(460)로 진입하여 충전을 개시할 수 있다(S1207).
만약, 상기한 S1202 단계의 판단 결과, 이물질이 존재하면, 무선 전력 송신기는 이물질 검출 상태 패킷에 대한 응답으로 제2 응답 신호를 전송할 수 있다(S1208). 여기서, 제2 응답 신호는 NACK 신호일 수 있다.
무선 전력 수신기는 이물질 검출 상태 패킷에 대한 응답으로 제2 응답 신호가 수신되면, 제2 전력 전송 제어 절차(S1160)을 수행할 수 있다.
이하에서는 제2 전력 전송 제어 절차(S1160)를 상세히 설명하기로 한다.
무선 전력 송신기는 이물질이 존재한다고 판단되는 경우 보장 전력을 제1 전력-즉, 최소 보장 전력(예를 들어 5W)-으로 제한하여 전력을 전송할 수 있다(S1209). 무선 전력 송신기는 이물질이 존재하는 것으로 판단하여 보장 전력을 5W로 설정한 상태에서는 미리 설정된 전력 손실에 대한 경계값(또는 기준값)을 기준으로 이물질 존재 여부를 판단할 수 있다. 여기서, 5W는 송수신기간 미리 정해진 최소 전력이므로, 무선 전력 송신기는 솔리드한 기준치를 설정하여 이물질을 판단할 수 있다. 전력 손실에 기반한 이물질 검출 방식과 다른 방식의 이물질 검출 방법이 적용될 수도 있다.
여기서, 제1 전력은 제1 전력 전송 모드에 상응하는 보장 전력일 수 있다. 일 예로, 제1전력은 5W로 설정될 수 있으나, 이에 한정되지는 않으며, 5W보다 작은 특정 전력으로 설정될 수도 있다. 이때, 무선 전력 송신기는 무선 전력 신호의 전송을 중단하지 않음을 주의해야 한다.
무선 전력 송신기는 보장 전력 패킷을 수신할 수 있다(S1210). 여기서, 보장 전력 패킷은 무선 전력 수신기가 무선 전력 송신기의 가용한 보장 전력 내에서 결정한 요구 전력에 관한 정보를 포함할 수 있다.
무선 전력 송신기는 무선 전력 수신기로부터 협상 종료 패킷이 수신되면, 협상 단계(440)를 종료하고, 전력 전송 단계(S460)로 진입하여 기 설정된 제1 전력으로 충전을 수행할 수 있다(S1212).
상기한 도 12의 실시 예에서는 무선 전력 송신기가 제2 전력 전송 제어 절차(S1160) 수행 중 보장 전력 패킷 및 협상 종료 패킷을 수신하는 것으로 설명되어 있으나, 이는 하나의 실시 예에 불과하며, 다른 실시 예는 무선 전력 송신기에 보장 전력 패킷 및 협상 종료 패킷 중 적어도 하나가 수신되지 않을 수도 있다.
본 발명의 실시 예에 따른 무선 전력 송신기는 제2 전력 전송 제어 절차(S1160) 수행 중 보정 단계(450)를 수행하지 않을 수 있다.
여기서, 보정 단계(450)는 송신기와 수신기 사이의 전송 전력과 수신 전력 그리고 전력 손실에 대한 값을 정확히 측정하도록 송신기의 전송 전력과 수신기의 수신 전력을 비교하는 과정을 의미할 수 있다.
이 때, 보장 전력이 5W 이상인 제2 전력 전송 모드에서는 전송 전력이 커질수록 전력 손실이 달라질 수 있기 때문에 이를 미리 예측(계산)하고, 전송 전력이 달라질 때에 미리 예측한 값을 반영함으로써 전력 손실을 보다 정확하게 계산할 수 있다. 그러나 보장 전력을 최소 전력인 5W로 설정하는 제1 전력 전송 모드에서는 고정된 전력을 타겟으로 설정하여 동작하기 때문에 별도의 보정 단계(450)가 수행될 필요가 없다.
또한, 이물질이 존재하는 상태에서 송신 전력 또는 수신 전력, 손실 전력 중 적어도 하나를 보정할 경우, 이물질에 의한 영향이 포함되어 보정이 이루어지기 때문에 실제 이물질이 존재함에도 불구하고 무선 전력 송신기가 이물질이 존재하지 않은 것으로 판단할 확률을 높일 수 있다. 즉, 이물질 판단에 대한 정확도가 낮아질 수 있다.
본 발명은 제2 전력 전송 제어 절차(S1160) 수행 중 보정 단계(450)가 수행되지 않도록 제어함으로써, 이물질 검출 정확도를 향상시킬 수 있다.
도 13은 본 발명의 또 다른 일 실시 예에 따른 무선 전력 송신기에서의 전력 전송 제어 방법을 설명하기 위한 도면이다.
도 13을 참조하면, 무선 전력 송신기는 제2 전력 전송 제어 절차(S1160)가 완료되어 전력 전송 단계(460)로 진입할 수 있다(S1310).
무선 전력 송신기는 전력 전송 단계(460)에서의 전력 전송-즉, 충전- 중 수신되는 수신 전력 패킷(Received Power Packet)에 기반하여 전력 손실을 측정(또는 산출 또는 추정)할 수 있다(S1320).
이하, 설명의 편의를 위해 무선 전력 송신기가 전력 손실을 측정하는 것으로 설명하나, 이는 하나의 실시 예에 불과하며, 무선 전력 송신단에서의 전송 전력 측정 결과와 무선 전력 수신단으로부터 수신된 수신 전력 측정 결과에 기초하여 전력 손실을 산출 또는 추정할 수 있음을 주의해야 한다.
일 예로, 전력 전송 단계(460)에서 충전 중 소정 시간 동안 무선 전력 수신기로부터 피드백되는 수신 전력 패킷(Received Power Packet)에 기반하여 전력 손실을 측정(또는 추정)할 수 있다.
여기서, 전력 손실은 무선 전력 수신기가 배터리(또는 부하)와 연결되지 않은 상태에서 측정된 제1 수신 전력 값에 기반하여 측정된 제1 전력 손실과 무선 전력 수신기가 배터리(또는 부하)와 연결된 상태에서 측정된 제2 수신 전력 값에 기반하여 측정된 제2 전력 손실 중 적어도 하나를 포함할 수 있다.
일 예로, 무선 전력 송신기는 소정 시간-예를 들면, 10분일 수 있음- 도안 수신 전력 패킷이 수신될 때마다 전력 손실을 측정하고, 측정된 전력 손실의 평균 값(또는 가장 작은 값 또는 가장 큰 값)을 최종 전력 손실로 확정할 수 있다.
다른 일 예로, 무선 전력 송신기는 전력 전송 단계(460)로의 진입 후 연속적으로 수신되는 N개의 수신 전력 패킷에 대응하여 전력 손실을 측정할 수도 있다.
무선 전력 송신기는 측정된 전력 손실에 기반하여 이물질 존재 여부를 판단할 수 있다(S1330).
일 예로, 무선 전력 송신기는 측정된 전력 손실이 소정 전력 손실 임계치를 초과하면 이물질이 존재하는 것으로 판단할 수 있다. 반면, 측정된 전력 손실이 소정 전력 손실 임계치 이하이면, 이물질이 존재하지 않은 것으로 판단할 수 있다.
다른 일 예로, 무선 전력 송신기는 전력 전송 단계로의 진입 후 연속적으로 수신되는 N개의 수신 전력 패킷에 대응하여 추정된 전력 손실이 모두 소정 전력 손실 임계치 이내이면, 이물질이 존재하지 않는 것으로 판단할 수 있다. 특정 시간 동안 임계치 이내인 경우, 또는 특정 시간 초과 후 전력 손실이 임계치 이내인 경우에도 이물질이 없는 것으로 판단할 수 있다.
반면, 전력 전송 단계로의 진입 후 연속적으로 수신되는 N개의 수신 전력 패킷 중 적어도 하나의 수신 전력 패킷에 대응하여 추정된 전력 손실이 소정 전력 손실 임계치를 초과하면, 무선 전력 송신기는 이물질이 존재하는 것으로 판단할 수 있다.
판단 결과, 이물질이 존재하면, 무선 전력 송신기는 전력 전송을 중단하고 선택 단계로 진입할 수 있다(S1340 및 S1350).
상기한 1330 단계의 판단 결과, 이물질이 존재하지 않으면, 무선 전력 송신기는 재협상 단계로 진입하여 무선 전력 수신기와 전력 전송 계약을 재협상할 수 있다(S1360). 이때 협상되는 보장 전력은 5W 이상이 될 수 있다.
무선 전력 송신기는 재협상 결과에 따라 전력 전송 단계(460)로 다시 진입하여 해당 무선 전력 수신기에 대한 충전을 계속 수행할 수 있다. 여기서, 재협상 후 무선 전력 송신기는 제1 전력과 제2 전력 사이의 전력을 전송하여 충전을 수행할 수 있다. 여기서, 제1 전력은 5W이고 제2 전력은 15W일 수 있으나, 이는 하나의 실시 예에 불과하며, 제2 전력의 세기는 그보다 크거나 작을 수도 있다.
일 예로, 무선 전력 송신기는 전력 전송 단계로의 진입 후 이물질이 검출되지 않은 경우, 재협상을 통해 제1 전력 전송 모드에서 제2 전력 전송 모드로 전환함으로써 전송 전력의 세기를 상승시켜 충전 시간을 단축시킬 수 있다.
도 14는 본 발명의 또 다른 일 실시 예에 따른 무선 전력 송신기에서의 전력 전송 제어 방법을 설명하기 위한 도면이다.
도 14를 참조하면, 무선 전력 송신기는 제2 전력 전송 제어 절차(S1160)가 완료되어 전력 전송 단계(460)로 진입할 수 있다(S1410).
무선 전력 송신기는 전력 전송 단계(460)에서의 전력 전송 중 온도 변화를 측정할 수 있다(S1420).
일 예로, 전력 전송 단계(460)에서 전력 전송 중 무선 전력 송신기는 단위 시간 동안의 내부 온도 변화량 또는 온도 변화 비율을 측정할 수 있다. 여기서, 무선 전력 송신기상에서 온도 변화가 측정되는 위치는 전송 안테나(640)의 송신 코일일 수 있으나, 이에 한정되지는 않으며, 당업자의 설계에 따라 무선 전력 송신기의 다른 위치-예를 들면, 무선 전력 송신기에 구비된 제어 회로 기판, 충전 베드-에서 측정될 수도 있다.
다른 실시 예에 따른 무선 전력 송신기는 전력 전송 중 소정 주기로 무선 전력 수신기에 의해 측정된 온도 정보를 수신할 수도 있다. 무선 전력 송신기는 무선 전력 수신기로부터 수신된 온도 정보에 기초하여 온도 변화를 측정할 수도 있다.
본 발명의 또 다른 실시 예에 따른 무선 전력 송신기는 내부 측정된 제1 온도 변화 및 무선 전력 수신기로부터 수신된 온도 정보에 기초하여 측정된 제2 온도 변화에 기반하여 최종 온도 변화를 확정할 수도 있다.
무선 전력 송신기는 측정된 온도 변화에 기반하여 이물질 존재 여부를 판단할 수 있다(S1430). 일 예로, 무선 전력 송신기는 측정된 온도 변화가 소정 온도 변화 임계치를 초과하면, 이물질이 존재하는 것으로 판단할 수 있다.
반면, 측정된 온도 변화가 소정 온도 변화 임계치 이하이면, 무선 전력 송신기는 이물질이 존재하지 않는 것으로 판단할 수 있다.
판단 결과, 이물질이 존재하면, 무선 전력 송신기는 전력 전송을 중단하고 선택 단계로 진입할 수 있다(S1440 및 S1450).
상기한 1430 단계의 판단 결과, 이물질이 존재하지 않으면, 무선 전력 송신기는 재협상 단계로 진입하여 무선 전력 수신기와 전력 전송 계약을 재협상할 수 있다(S1360).
무선 전력 송신기는 재협상 결과에 따라 전력 전송 단계(460)로 다시 진입하여 충전을 계속 진행할 수 있다.
일 예로, 무선 전력 송신기는 전력 전송 단계로의 진입 후 이물질이 검출되지 않은 경우, 재협상을 통해 제1 전력 전송 모드에서 제2 전력 전송 모드로 전환함으로써 전송 전력의 세기를 상승시켜 충전 시간을 단축시킬 수 있다. 무선 전력 송신기는 제2 전력 전송 모드에서 제1 전력과 제2 전력 사이의 전력을 전송할 수 있다. 여기서, 제1 전력은 5W이고 제2 전력은 15W일 수 있으나, 이는 하나의 실시 예에 불과하며, 제2 전력은 당업자의 설계 및 무선 전력 송신기의 구성 태양에 따라 15W보다 작거나 클 수도 있다.
도 15는 본 발명의 또 다른 일 실시 예에 따른 무선 전력 송신기에서의 전력 전송 제어 방법을 설명하기 위한 도면이다.
도 15를 참조하면, 무선 전력 송신기는 제2 전력 전송 제어 절차(S1160)가 완료되어 전력 전송 단계(460)로 진입할 수 있다(S1510).
무선 전력 송신기는 전력 전송 단계(460)에서의 전력 전송 중 수신되는 수신 전력 패킷(Received Power Packet) 전력 손실을 측정할 수 있다(S1520).
일 예로, 전력 전송 단계(460)에서 전력 전송 중 무선 전력 수신기로부터 피드백되는 수신 전력 패킷(Received Power Packet)에 기반하여 전력 손실을 측정할 수 있다.
여기서, 전력 손실은 무선 전력 수신기가 배터리(또는 부하)와 연결되지 않은 상태에서 측정된 제1 수신 전력 값에 기반하여 측정된 제1 전력 손실과 무선 전력 수신기가 배터리(또는 부하)와 연결된 상태에서 측정된 제2 수신 전력 값에 기반하여 측정된 제2 전력 손실 중 적어도 하나를 포함할 수 있다.
무선 전력 송신기는 측정된 전력 손실에 기반하여 이물질 존재 여부를 판단할 수 있다(S1530). 일 예로, 무선 전력 송신기는 측정된 전력 손실이 소정 전력 손실 임계치를 초과하면 이물질이 존재하는 것으로 판단할 수 있다. 반면, 측정된 전력 손실이 소정 전력 손실 임계치 이하이면, 이물질이 존재하지 않은 것으로 판단할 수 있다.
판단 결과, 이물질이 존재하면, 무선 전력 송신기는 전력 전송을 중단하고 선택 단계로 진입할 수 있다(S1540 및 S1550).
상기한 1530 단계의 판단 결과, 이물질이 존재하지 않으면, 무선 전력 송신기는 전력 전송 단계(460)에서의 전력 전송 중 온도 변화를 측정할 수 있다(S1560).
일 예로, 전력 전송 단계(460)에서 전력 전송 중 무선 전력 송신기는 단위 시간 동안의 내부 온도 변화량 또는 온도 변화 비율을 측정할 수 있다. 여기서, 무선 전력 송신기상에서 온도 변화가 측정되는 위치는 송신 코일 주변일 수 있으나, 이에 한정되지는 않으며, 당업자의 설계에 따라 무선 전력 송신기의 다른 위치에서 측정될 수도 있다.
다른 실시 예에 따른 무선 전력 송신기는 전력 전송 중 소정 주기로 무선 전력 수신기에 의해 측정된 온도 정보를 수신할 수도 있다. 무선 전력 송신기는 무선 전력 수신기로부터 수신된 온도 정보에 기초하여 온도 변화를 측정할 수도 있다.
본 발명의 또 다른 실시 예에 따른 무선 전력 송신기는 내부 측정된 제1 온도 변화 및 무선 전력 수신기로부터 수신된 온도 정보에 기초하여 측정된 제2 온도 변화에 기반하여 최종 온도 변화를 확정할 수도 있다.
무선 전력 송신기는 측정된 온도 변화에 기반하여 이물질 존재 여부를 판단할 수 있다(S1570). 일 예로, 무선 전력 송신기는 측정된 온도 변화가 소정 온도 변화 임계치를 초과하면, 이물질이 존재하는 것으로 판단할 수 있다.
반면, 측정된 온도 변화가 소정 온도 변화 임계치 이하이면, 무선 전력 송신기는 이물질이 존재하는 않는 것으로 판단할 수 있다.
판단 결과, 이물질이 존재하면, 무선 전력 송신기는 전력 전송을 중단하고 선택 단계로 진입할 수 있다(S1540 및 S1550).
상기한 1570 단계의 판단 결과, 이물질이 존재하지 않으면, 무선 전력 송신기는 재협상 단계로 진입하여 무선 전력 수신기와 전력 전송 계약을 재협상할 수 있다(S1580). 무선 전력 송신기는 재협상 결과에 따라 전력 전송 단계(460)로 다시 진입하여 충전을 계속 진행할 수 있다.
일 예로, 무선 전력 송신기는 전력 전송 단계로의 진입 후 이물질이 검출되지 않은 경우, 재협상을 통해 제1 전력 전송 모드에서 제2 전력 전송 모드로 전환함으로써 전송 전력의 세기를 상승시켜 충전 시간을 단축시킬 수 있다.
상기한 도 15의 실시 예에서는 무선 전력 송신기가 전력 손실에 기반하여 이물질 검출 절차를 수행한 후, 판단 결과에 따라 온도 변화에 기반한 이물질 검출 절차를 수행하는 것으로 도시되어 있으나, 이는 하나의 실시 예에 불과하며, 다른 실시 예에 따른 무선 전력 송신기는 온도 변화에 기반하여 이물질 검출 절차를 수행한 후, 판단 결과에 따라 전력 손실에 기반한 이물질 검출 절차를 수행하도록 구현될 수도 있다.
도 16a는 송신기와 수신기의 버전이 동일할 때 이물질 검출에 따른 무선 전력 전송 제어 방법을 설명하기 위한 흐름도이다.
이하의 실시 예에의 설명에서, 제2 버전은 제1 버전보다 상위 버전으로 보다 최근에 릴리즈된 버전임을 주의해야 한다.
상세하게, 도 16a는 송신기와 수신기의 버전이 모두 하위 버전인 제1 버전-예를 들면, 1.2V-으로 동일할 때 이물질 검출에 따른 무선 전력 전송 제어 방법을 설명하기 위한 흐름도이다. 여기서, 버전은 WPC Qi 표준에 대한 버전일 수 있다.
도 16a를 참조하면, 협상 단계에 진입하면, 제1 버전 송신기(1610)는 제1 버전 수신기(1620)로부터 FOD 상태 패킷을 수신할 수 있다(S1601).
제1 버전 송신기(1610)는 수신된 FOD 상태 패킷에 기반하여 이물질 존재 여부를 판단하고, 판단 결과, 이물질이 있으면, NACK 신호를 제1 버전 수신기(1620)로 전송할 수 있다(S1602).
제1 버전 수신기(1620)는 FOD 상태 패킷에 대한 NACK 응답 신호를 수신하면, 아무런 패킷도 전송하지 않거나 특정 패킷을 전송할 수 있다(S1603).
제1 버전 송신기(1610)는 제1 버전 수신기(1620)로 NACK 신호를 전송하면, 일정 시간-예를 들면, 5초- 이내에 전력 전송을 중단할 수 있다(S1604). 이때, 제1 버전 송신기(1610)는 제1 버전 수신기(1620)로부터 수신되는 어떤 패킷도 무시할 수 있다.
도 16b는 송신기와 수신기의 버전이 상이할 때 이물질 검출에 따른 무선 전력 전송 제어 방법을 설명하기 위한 흐름도이다.
상세하게, 도 16b는 수신기가 송신기보다 상위 버전일 때의 이물질 검출에 따른 무선 전력 전송 제어 방법을 설명하기 위한 흐름도이다.
도 16b를 참조하면, 협상 단계에 진입하면, 제1 버전 송신기(1630)는 제2 버전 수신기(1640)로부터 FOD 상태 패킷을 수신할 수 있다(S1605).
제1 버전 송신기(1630)는 수신된 FOD 상태 패킷에 기반하여 이물질 존재 여부를 판단하고, 판단 결과, 이물질이 있으면, NACK 신호를 제2 버전 수신기(1640)로 전송할 수 있다(S1606).
제1 버전 수신기(1630)는 FOD 상태 패킷에 대한 NACK 응답 신호를 수신하면, 전력 송신기 능력(PTC: Power Transmitter Capability) 정보가 포함된 일반 요구 패킷(GRP: General Request Packet)을 제1 버전 송신기(1630)으로 전송할 수 있다(S1607).
제1 버전 송신기(1630)는 자신보다 상위 버전의 제2 버전 수신기(1640)로 NACK 신호를 전송하면, 수신된 일반 요구 패킷을 무시하고, 일정 시간-예를 들면, 5초- 이내에 전력 전송을 중단할 수 있다(S1608).
도 16c는 송신기와 수신기의 버전이 동일할 때 이물질 검출에 따른 무선 전력 전송 제어 방법을 설명하기 위한 흐름도이다.
상세하게, 도 16c는 수신기와 송신기의 버전이 모두 상위 버전인 제2 버전-예를 들면, 1.3V-일 때의 이물질 검출에 따른 무선 전력 전송 제어 방법을 설명하기 위한 흐름도이다.
도 16c를 참조하면, 협상 단계에 진입하면, 제2 버전 송신기(1650)는 제2 버전 수신기(1660)로부터 FOD 상태 패킷을 수신할 수 있다(S1609).
제2 버전 송신기(1650)는 수신된 FOD 상태 패킷에 기반하여 이물질 존재 여부를 판단하고, 판단 결과, 이물질이 있으면, NACK 신호를 제2 버전 수신기(1660)로 전송할 수 있다(S1610).
제2 버전 수신기(1660)는 FOD 상태 패킷에 대한 NACK 응답 신호를 수신하면, 전력 송신기 능력(PTC: Power Transmitter Capability) 정보가 포함된 일반 요구 패킷(GRP: General Request Packet)을 제2 버전 송신기(1650)으로 전송할 수 있다(S1611).
제2 버전 송신기(1650)는 자신과 동일 버전의 제2 버전 수신기(1660)로부터 일반 요구 패킷이 수신되면, 보장 전력이 제1 전력으로 설정된 전력 송신기 능력 패킷을 제2 버전 수신기(1660)로 전송할 수 있다(S1612).
이때, 제2 버전 수신기(1660)는 보장 전력이 제1 전력으로 설정된 특별 요구 패킷을 제2 버전 송신기(1650)로 전송할 수 있다(S1613).
제2 버전 송신기(1650)는 특별 요구 패킷에 대한 응답으로 ACK 신호를 전송하고(S1614), 전력 전송 단계로 진입하여 보장 전력을 제1 전력으로 설정하여 충전을 수행할 수 있다(S1615).
상기한 도 16c의 실시 예에 따른 본 발명에 따른 무선 전력 송신기는 협상 단계에서 이물질이 검출되어도 보장 전력을 하향 조정하여 안전하게 충전 상태를 유지할 수 있는 장점이 있다.
상기한 도 16c의 실시 예에 있어서, 만약, 상기한 1613 단계에서 제2 버전 송신기(1650)는 보장 전력이 제1 전력보다 큰 전력으로 설정된 특별 요구 패킷이 수신되는 경우, 특별 요구 패킷에 대한 응답으로 NACK 응답을 제2 버전 수신기(1660)로 전송할 수 있다.
도 16d는 수신기보다 송신기가 상위 버전일 때 이물질 검출에 따른 무선 전력 전송 제어 방법을 설명하기 위한 흐름도이다.
상세하게, 도 16d는 수신기의 버전이 송신기의 버전보다 하위 버전인 제1 버전-예를 들면, 1.2V-일 때 하위 호환성(Backward Compatibility)이 유지되도록 이물질 검출 시 무선 전력 전송을 제어하는 방법을 설명하기 위한 흐름도이다.
도 16d를 참조하면, 협상 단계에 진입하면, 제2 버전 송신기(1670)는 제1 버전 수신기(1680)로부터 FOD 상태 패킷을 수신할 수 있다(S1616).
제2 버전 송신기(1670)는 수신된 FOD 상태 패킷에 기반하여 이물질 존재 여부를 판단하고, 판단 결과, 이물질이 있으면, NACK 신호를 제1 버전 수신기(1680)로 전송할 수 있다(S1617).
일 예로, 제1 버전 수신기(1680)는 FOD 상태 패킷에 대한 NACK 응답 신호를 수신하면, 전력 송신기 능력(PTC: Power Transmitter Capability) 정보가 포함된 일반 요구 패킷(GRP: General Request Packet)을 제2 버전 송신기(1670)로 전송할 수 있다(S1618). 다른 일 예로, 수신기의 타입에 따라 제1 버전 수신기(1680)는 FOD 상태 패킷에 대한 NACK 응답 신호를 수신하면, 아무런 패킷도 제2 버전 송신기(1670)로 전송하지 않을 수도 있다.
제2 버전 송신기(1670)는 자신보다 하위 버전의 제1 버전 수신기(1680)로부 NACK 신호를 전송한 경우, 보장 전력이 제1 전력으로 설정된 전력 송신기 능력 패킷을 제1 버전 수신기(1680)로 전송할 수 있다(S1619).
일 예로, 제1 버전 수신기(1680)는 보장 전력이 제1 전력으로 설정된 특별 요구 패킷을 제2 버전 송신기(1670)로 전송할 수 있다(S1620). 다른 일 예로, 수신기의 타입에 따라 제1 버전 수신기(1680)는 FOD 상태 패킷에 대한 NACK 응답 신호를 수신하면, 아무런 패킷도 제2 버전 송신기(1670)로 전송하지 않을 수도 있다.
제2 버전 송신기(1650)는 특별 요구 패킷에 대한 응답으로 NACK 신호를 전송하고(S1621), 일정 시간-예를 들면, 5초일 수 있으나, 이에 한정되지는 않음- 이내에 전력 전송을 중단할 수 있다. 제2 버전 송신기(1650)는 특별 요구 패킷에 대한 응답으로 NACK 신호를 전송함으로써, 제1 버전 수신기(1680)가 협상 단계 종료 후 보정 단계로 진입하는 것을 차단할 수 있다.
상술한 실시예에 따른 방법들은 컴퓨터에서 실행되기 위한 프로그램으로 제작되어 컴퓨터가 읽을 수 있는 기록 매체에 저장될 수 있으며, 컴퓨터가 읽을 수 있는 기록 매체의 예로는 ROM, RAM, CD-ROM, 자기 테이프, 플로피디스크, 광 데이터 저장장치 등을 포함한다.
컴퓨터가 읽을 수 있는 기록 매체는 네트워크로 연결된 컴퓨터 시스템에 분산되어, 분산방식으로 컴퓨터가 읽을 수 있는 코드가 저장되고 실행될 수 있다. 그리고, 상술한 방법을 구현하기 위한 기능적인(function) 프로그램, 코드 및 코드 세그먼트들은 실시예가 속하는 기술분야의 프로그래머들에 의해 용이하게 추론될 수 있다.
본 발명은 본 발명의 정신 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다.
따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.

Claims (10)

  1. 무선 전력 송신기로부터 전력을 전송 받는 무선 전력 수신기에 있어서,
    상기 무선 전력 송신기로부터 무선 전력을 전송 받는 수신부; 및
    기준 품질 인자 및 기준 피크 주파수 중 적어도 하나를 포함하는 이물질 검출 상태 패킷이 저장된 주제어부를 포함하고,
    상기 주제어부는 상기 이물질 검출 상태 패킷을 상기 무선 전력 송신기로 전송하고,
    상기 주제어부는 상기 무선 전력 송신기로부터 상기 이물질이 존재함을 나타내는 NAK 응답을 수신하거나, 상기 이물질이 존재하지 않음을 나타내는 ACK 응답을 수신하고,
    상기 수신부는 상기 수신된 NAK 응답에 따라 상기 무선 전력 송신기로부터 제1 전력을 전송 받거나, 상기 수신된 ACK 응답에 따라 상기 무선 전력 송신기로부터 상기 제1 전력보다 큰 제2 전력을 전송 받는 무선 전력 수신기.
  2. 제1항에 있어서,
    상기 수신부는 전력 전송 환경의 변화에 기초하여 상기 제1 전력과 상기 제2 전력 사이의 제3 전력을 전송 받는 무선 전력 수신기.
  3. 제1항에 있어서,
    상기 제1 전력은 5W인, 무선 전력 수신기.
  4. 제3항에 있어서,
    상기 제2 전력은 15W인, 무선 전력 수신기.
  5. 제1항에 있어서,
    상기 무선 전력 송신기로부터 전력을 전송 받기 이전에 상기 이물질 검출 상태 패킷을 상기 무선 전력 송신기로 전송하여 이물질의 존재 여부를 검출하도록 하는 무선 전력 수신기.
  6. 제1항에 있어서,
    상기 제2 전력을 전송 받는 동안의 전송 전력의 손실 또는 온도 변화에 기초하여 상기 이물질의 존재 여부가 더 검출되는 무선 전력 수신기.
  7. 제6항에 있어서,
    상기 주제어부는 상기 무선 전력 송신기에 의해 측정된 송신 전력의 세기에 대응하는 수신 전력의 세기에 관한 정보를 상기 무선 전력 송신기로 전송하고,
    상기 이물질의 존재 여부는, 상기 송신 전력의 세기와 상기 수신 전력의 세기의 차이값에 기초하여 전력 손실을 비교하여 결정되는, 무선 전력 수신기.
  8. 제1항에 있어서,
    상기 수신부는, 상기 수신된 NAK 응답에 응답하여 상기 무선 전력 송신기로부터 상기 무선 전력 수신기로의 전력 전송이 중단되는 것을 방지하기 위해 상기 무선 전력 송신기로부터 상기 제1 전력을 전송 받는, 무선 전력 수신기.
  9. 제1항에 있어서,
    상기 제1 전력을 전송 받는 중에 상기 이물질이 존재하는 것이 다시 검출되면 상기 무선 전력 송신기로부터의 전력 전송이 중단되는, 무선 전력 수신기.
  10. 제1항에 있어서,
    상기 주제어부는 상기 제2전력을 전송 받는 동안에 상기 무선 전력 송신기의 상태 변화가 발생하는 경우 상기 전력 전송의 크기를 재협상하는 무선 전력 수신기.
KR1020230092396A 2018-05-16 2023-07-17 무선 전력 수신기 KR20230110703A (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020180056166 2018-05-16
KR20180056166 2018-05-16
KR1020230047831A KR102656065B1 (ko) 2018-05-16 2023-04-11 무선 전력 전송 제어 방법 및 장치

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020230047831A Division KR102656065B1 (ko) 2018-05-16 2023-04-11 무선 전력 전송 제어 방법 및 장치

Publications (1)

Publication Number Publication Date
KR20230110703A true KR20230110703A (ko) 2023-07-25

Family

ID=68731571

Family Applications (16)

Application Number Title Priority Date Filing Date
KR1020180068751A KR102509314B1 (ko) 2018-05-16 2018-06-15 무선 전력 전송 제어 방법 및 장치
KR1020230029422A KR102592095B1 (ko) 2018-05-16 2023-03-06 무선 전력 전송 제어 방법 및 장치
KR1020230046735A KR102633579B1 (ko) 2018-05-16 2023-04-10 무선 전력 전송 제어 방법 및 장치
KR1020230047830A KR102592807B1 (ko) 2018-05-16 2023-04-11 무선 전력 전송 제어 방법 및 장치
KR1020230047831A KR102656065B1 (ko) 2018-05-16 2023-04-11 무선 전력 전송 제어 방법 및 장치
KR1020230092396A KR20230110703A (ko) 2018-05-16 2023-07-17 무선 전력 수신기
KR1020230092415A KR20230111177A (ko) 2018-05-16 2023-07-17 무선 전력 송신기
KR1020230092418A KR20230111179A (ko) 2018-05-16 2023-07-17 무선 전력 전송 방법
KR1020230092417A KR20230110704A (ko) 2018-05-16 2023-07-17 무선 전력 수신기
KR1020230092400A KR20230111175A (ko) 2018-05-16 2023-07-17 무선 전력 수신기
KR1020230092399A KR20230111174A (ko) 2018-05-16 2023-07-17 무선 전력 수신 방법
KR1020230092416A KR20230111178A (ko) 2018-05-16 2023-07-17 무선 전력 수신 방법
KR1020230092419A KR20230111180A (ko) 2018-05-16 2023-07-17 무선 전력 전송 방법
KR1020230092397A KR20230111172A (ko) 2018-05-16 2023-07-17 무선 전력 전송 방법
KR1020230092398A KR20230111173A (ko) 2018-05-16 2023-07-17 무선 전력 송신기
KR1020230092414A KR20230111176A (ko) 2018-05-16 2023-07-17 무선 전력 전송 방법

Family Applications Before (5)

Application Number Title Priority Date Filing Date
KR1020180068751A KR102509314B1 (ko) 2018-05-16 2018-06-15 무선 전력 전송 제어 방법 및 장치
KR1020230029422A KR102592095B1 (ko) 2018-05-16 2023-03-06 무선 전력 전송 제어 방법 및 장치
KR1020230046735A KR102633579B1 (ko) 2018-05-16 2023-04-10 무선 전력 전송 제어 방법 및 장치
KR1020230047830A KR102592807B1 (ko) 2018-05-16 2023-04-11 무선 전력 전송 제어 방법 및 장치
KR1020230047831A KR102656065B1 (ko) 2018-05-16 2023-04-11 무선 전력 전송 제어 방법 및 장치

Family Applications After (10)

Application Number Title Priority Date Filing Date
KR1020230092415A KR20230111177A (ko) 2018-05-16 2023-07-17 무선 전력 송신기
KR1020230092418A KR20230111179A (ko) 2018-05-16 2023-07-17 무선 전력 전송 방법
KR1020230092417A KR20230110704A (ko) 2018-05-16 2023-07-17 무선 전력 수신기
KR1020230092400A KR20230111175A (ko) 2018-05-16 2023-07-17 무선 전력 수신기
KR1020230092399A KR20230111174A (ko) 2018-05-16 2023-07-17 무선 전력 수신 방법
KR1020230092416A KR20230111178A (ko) 2018-05-16 2023-07-17 무선 전력 수신 방법
KR1020230092419A KR20230111180A (ko) 2018-05-16 2023-07-17 무선 전력 전송 방법
KR1020230092397A KR20230111172A (ko) 2018-05-16 2023-07-17 무선 전력 전송 방법
KR1020230092398A KR20230111173A (ko) 2018-05-16 2023-07-17 무선 전력 송신기
KR1020230092414A KR20230111176A (ko) 2018-05-16 2023-07-17 무선 전력 전송 방법

Country Status (5)

Country Link
US (16) US11381119B2 (ko)
EP (18) EP4254732A3 (ko)
JP (18) JP7423551B2 (ko)
KR (16) KR102509314B1 (ko)
CN (18) CN116742833A (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102605047B1 (ko) 2016-12-08 2023-11-24 엘지이노텍 주식회사 무선 충전을 위한 이물질 검출 방법 및 그를 위한 장치
EP3818620A4 (en) * 2018-07-19 2022-03-23 MediaTek Singapore Pte. Ltd. FOREIGN OBJECT DETECTION IN WIRELESS POWER TRANSFER SYSTEMS
WO2020036357A1 (ko) * 2018-08-14 2020-02-20 엘지전자 주식회사 무선전력 전송 시스템에서 이물질 검출을 수행하는 장치 및 방법
US20230307960A1 (en) * 2020-06-16 2023-09-28 Sony Group Corporation Charging device, power receiving device, and method
CN114172277A (zh) * 2021-08-31 2022-03-11 佛山市顺德区美的饮水机制造有限公司 多功能饮水机
JP2023060745A (ja) * 2021-10-18 2023-04-28 キヤノン株式会社 受電装置、送電装置、無線電力伝送方法、及び、プログラム

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8447234B2 (en) * 2006-01-18 2013-05-21 Qualcomm Incorporated Method and system for powering an electronic device via a wireless link
US9553485B2 (en) * 2011-10-13 2017-01-24 Integrated Device Technology, Inc. Apparatus, system, and method for detecting a foreign object in an inductive wireless power transfer system based on input power
US9450648B2 (en) 2011-10-13 2016-09-20 Integrated Device Technology, Inc. Apparatus, system, and method for detecting a foreign object in an inductive wireless power transfer system
KR101831993B1 (ko) 2011-11-18 2018-02-26 삼성전자주식회사 무선 전력 수신기의 충전 전류를 제어하기 위한 장치 및 방법
US9536656B2 (en) * 2012-05-21 2017-01-03 Texas Instruments Incorporated Systems and methods of reduction of parasitic losses in a wireless power system
JP5915904B2 (ja) * 2012-06-22 2016-05-11 ソニー株式会社 処理装置、処理方法、及び、プログラム
JP6137791B2 (ja) * 2012-07-06 2017-05-31 キヤノン株式会社 給電制御装置、受電装置、給電装置の制御方法、受電装置の制御方法およびプログラム。
KR101962667B1 (ko) * 2012-07-12 2019-03-27 삼성전자주식회사 무선 전력 송신기, 무선 전력 수신기 및 각각의 제어 방법
KR101807899B1 (ko) * 2012-10-19 2017-12-11 삼성전자주식회사 무선 전력 송신기, 무선 전력 수신기 및 무선 전력 송신기의 무선 전력 수신기 허가 방법
US20140253026A1 (en) 2013-03-08 2014-09-11 O2 Micro Inc. Apparatus, Method, and System for Wirelessly Charging an Electronic Device
KR102051682B1 (ko) * 2013-03-15 2019-12-03 지이 하이브리드 테크놀로지스, 엘엘씨 무선 전력 전송 시스템에서 이물질 감지 장치 및 방법
RU2649907C2 (ru) * 2013-08-07 2018-04-05 Конинклейке Филипс Н.В. Беспроводная индуктивная передача мощности
EP2876770B1 (de) * 2013-11-22 2016-08-17 TOSHIBA Electronics Europe GmbH Verfahren zur kabellosen Übertragung einer Leistung
JP6159894B2 (ja) * 2014-03-25 2017-07-05 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. ワイヤレス誘導電力伝達
US20170163100A1 (en) * 2014-06-20 2017-06-08 Powerbyproxi Limited Foreign object detection in inductive power transfer field
EP3180835A4 (en) * 2014-08-12 2017-09-13 PowerbyProxi Limited System and method for power transfer
WO2016091764A1 (en) * 2014-12-11 2016-06-16 Koninklijke Philips N.V. Wireless inductive power transfer
KR102154779B1 (ko) * 2015-03-10 2020-09-10 삼성전자주식회사 무선 충전 방법 및 장치
JP6632299B2 (ja) * 2015-09-29 2020-01-22 ローム株式会社 ワイヤレス送電装置、その制御回路、充電器、およびパワーロスメソッドによる異物検出のキャリブレーション方法
JP6908348B2 (ja) * 2015-11-27 2021-07-28 ローム株式会社 ワイヤレス送電装置およびそのプロセッサ
US10530196B2 (en) * 2016-02-05 2020-01-07 Texas Instruments Incorporated Methods and apparatus for power loss calibration in a wireless power system
KR20170099082A (ko) * 2016-02-23 2017-08-31 엘지이노텍 주식회사 무선 충전 방법 및 그를 위한 장치 및 시스템
KR20170118571A (ko) 2016-04-15 2017-10-25 엘지이노텍 주식회사 Fo 검출 방법 및 그를 위한 장치 및 시스템
WO2017217663A1 (ko) * 2016-06-13 2017-12-21 엘지이노텍(주) 이물질 검출 방법 및 그를 위한 장치 및 시스템
KR102573342B1 (ko) * 2016-06-14 2023-08-31 엘지이노텍 주식회사 이물질 검출 방법 및 그를 위한 장치 및 시스템
KR20170140685A (ko) * 2016-06-13 2017-12-21 엘지이노텍 주식회사 이물질 검출 방법 및 그를 위한 장치 및 시스템
KR102576401B1 (ko) * 2016-07-22 2023-09-08 엘지이노텍 주식회사 이물질 검출 방법 및 그를 위한 장치 및 시스템
KR20180003810A (ko) * 2016-07-01 2018-01-10 엘지이노텍 주식회사 이물질 검출 방법 및 그를 위한 장치 및 시스템
WO2018038531A1 (ko) * 2016-08-23 2018-03-01 엘지이노텍(주) 이물질 검출 방법 및 그를 위한 장치 및 시스템
KR102617560B1 (ko) * 2016-08-23 2023-12-27 엘지이노텍 주식회사 이물질 검출 방법 및 그를 위한 장치 및 시스템
CN106685029A (zh) * 2017-01-11 2017-05-17 天地(常州)自动化股份有限公司 一种无线充电装置及其金属异物检测方法
KR101812444B1 (ko) 2017-04-04 2017-12-26 주식회사 에프아이티글로벌 이물질감지기능이 있는 무선충전장치 및 무선충전장치의 이물질감지방법
US10742074B2 (en) * 2018-06-15 2020-08-11 Lg Innotek Co., Ltd. Method and apparatus for controlling wireless power transmission
US10658878B2 (en) * 2018-08-31 2020-05-19 Apple Inc. Wireless charging system with temperature sensor array
JP7278756B2 (ja) * 2018-11-28 2023-05-22 キヤノン株式会社 受電装置、受電装置の制御方法及びプログラム
US11581759B2 (en) * 2019-05-14 2023-02-14 Canon Kabushiki Kaisha Power reception apparatus, control method, and storage medium

Also Published As

Publication number Publication date
JP2023139121A (ja) 2023-10-03
EP3796519A1 (en) 2021-03-24
EP4254730A2 (en) 2023-10-04
EP4254735A2 (en) 2023-10-04
CN116722664A (zh) 2023-09-08
CN116742832A (zh) 2023-09-12
CN116865461A (zh) 2023-10-10
US20230369912A1 (en) 2023-11-16
EP4236033A3 (en) 2024-01-03
JP2023134686A (ja) 2023-09-27
KR20230052869A (ko) 2023-04-20
KR102509314B1 (ko) 2023-03-14
KR20230111174A (ko) 2023-07-25
KR20230111178A (ko) 2023-07-25
KR20230111172A (ko) 2023-07-25
CN116722666A (zh) 2023-09-08
KR20190131400A (ko) 2019-11-26
CN116722670A (zh) 2023-09-08
EP3796519A4 (en) 2022-03-16
CN112136263A (zh) 2020-12-25
JP2023139130A (ja) 2023-10-03
US20230208203A1 (en) 2023-06-29
EP4254733A2 (en) 2023-10-04
CN116722671A (zh) 2023-09-08
US20230361619A1 (en) 2023-11-09
US20200350788A1 (en) 2020-11-05
JP2023139127A (ja) 2023-10-03
EP4254727A1 (en) 2023-10-04
KR20230111177A (ko) 2023-07-25
EP4250532A3 (en) 2023-10-11
EP4236030A3 (en) 2023-12-27
EP4254731A2 (en) 2023-10-04
EP4250532A2 (en) 2023-09-27
JP2023139128A (ja) 2023-10-03
KR102592807B1 (ko) 2023-10-24
KR20230111180A (ko) 2023-07-25
EP4236031A3 (en) 2023-12-27
CN116722665A (zh) 2023-09-08
JP2023139124A (ja) 2023-10-03
US20230361626A1 (en) 2023-11-09
EP4254726A1 (en) 2023-10-04
JP2023139126A (ja) 2023-10-03
KR20230051462A (ko) 2023-04-18
CN116742833A (zh) 2023-09-12
EP4254731A3 (en) 2023-10-11
CN116885864A (zh) 2023-10-13
US20230361625A1 (en) 2023-11-09
US20240022119A1 (en) 2024-01-18
KR102656065B1 (ko) 2024-04-11
US20230369907A1 (en) 2023-11-16
US20240006927A1 (en) 2024-01-04
US20230369905A1 (en) 2023-11-16
EP4254725A1 (en) 2023-10-04
KR20230111173A (ko) 2023-07-25
EP4254734A3 (en) 2023-12-27
CN116865460A (zh) 2023-10-10
KR20230110704A (ko) 2023-07-25
EP4254732A3 (en) 2023-11-01
EP4250531A1 (en) 2023-09-27
JP2023139132A (ja) 2023-10-03
JP7496459B2 (ja) 2024-06-06
KR102633579B1 (ko) 2024-02-06
CN116742831A (zh) 2023-09-12
EP4236033A2 (en) 2023-08-30
JP2023134685A (ja) 2023-09-27
EP4236031A2 (en) 2023-08-30
CN116722668A (zh) 2023-09-08
KR20230111175A (ko) 2023-07-25
US20230378818A1 (en) 2023-11-23
US20230361621A1 (en) 2023-11-09
CN116722669A (zh) 2023-09-08
EP4236032A3 (en) 2023-12-27
EP4254733A3 (en) 2023-11-08
US11784514B2 (en) 2023-10-10
JP2021523670A (ja) 2021-09-02
KR20230111176A (ko) 2023-07-25
US11349347B2 (en) 2022-05-31
EP4236030A2 (en) 2023-08-30
EP4236032A2 (en) 2023-08-30
KR20230111179A (ko) 2023-07-25
KR20230053575A (ko) 2023-04-21
JP2023134687A (ja) 2023-09-27
CN116722667A (zh) 2023-09-08
US20230361624A1 (en) 2023-11-09
US11381119B2 (en) 2022-07-05
JP2023139133A (ja) 2023-10-03
EP4254734A2 (en) 2023-10-04
US20210226482A1 (en) 2021-07-22
JP2023134674A (ja) 2023-09-27
CN116742834A (zh) 2023-09-12
JP2023139131A (ja) 2023-10-03
US20220360115A1 (en) 2022-11-10
CN116742830A (zh) 2023-09-12
EP4254730A3 (en) 2023-10-18
EP4236029A3 (en) 2023-12-27
US20230369913A1 (en) 2023-11-16
JP2023139125A (ja) 2023-10-03
KR20230036094A (ko) 2023-03-14
US20220302767A1 (en) 2022-09-22
JP7423551B2 (ja) 2024-01-29
JP2023134707A (ja) 2023-09-27
EP4254728A1 (en) 2023-10-04
KR20230052868A (ko) 2023-04-20
JP2023139122A (ja) 2023-10-03
US11626762B2 (en) 2023-04-11
KR102592095B1 (ko) 2023-10-23
JP2023139123A (ja) 2023-10-03
EP4254732A2 (en) 2023-10-04
EP4254735A3 (en) 2024-01-03
EP4236029A2 (en) 2023-08-30
KR20230110702A (ko) 2023-07-25
JP7461540B2 (ja) 2024-04-03
CN116742835A (zh) 2023-09-12

Similar Documents

Publication Publication Date Title
KR102509314B1 (ko) 무선 전력 전송 제어 방법 및 장치
KR102572975B1 (ko) 무선 전력 송신 방법 및 장치
KR102672539B1 (ko) 무선 전력 송신기
KR102672538B1 (ko) 무선 전력 전송 제어 방법 및 장치

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination