KR20230081925A - Manufacturing method of parts to be welded for condenser welding machine - Google Patents

Manufacturing method of parts to be welded for condenser welding machine Download PDF

Info

Publication number
KR20230081925A
KR20230081925A KR1020210169246A KR20210169246A KR20230081925A KR 20230081925 A KR20230081925 A KR 20230081925A KR 1020210169246 A KR1020210169246 A KR 1020210169246A KR 20210169246 A KR20210169246 A KR 20210169246A KR 20230081925 A KR20230081925 A KR 20230081925A
Authority
KR
South Korea
Prior art keywords
cutting
processing
shape
processed
machining
Prior art date
Application number
KR1020210169246A
Other languages
Korean (ko)
Inventor
강동길
Original Assignee
강동길
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 강동길 filed Critical 강동길
Priority to KR1020210169246A priority Critical patent/KR20230081925A/en
Publication of KR20230081925A publication Critical patent/KR20230081925A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B3/00General-purpose turning-machines or devices, e.g. centre lathes with feed rod and lead screw; Sets of turning-machines
    • B23B3/30Turning-machines with two or more working-spindles, e.g. in fixed arrangement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P19/00Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes
    • B23P19/04Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes for assembling or disassembling parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • B23Q15/007Automatic control or regulation of feed movement, cutting velocity or position of tool or work while the tool acts upon the workpiece
    • B23Q15/08Control or regulation of cutting velocity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/10Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting speed or number of revolutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q3/00Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine
    • B23Q3/02Devices holding, supporting, or positioning work or tools, of a kind normally removable from the machine for mounting on a work-table, tool-slide, or analogous part
    • B23Q3/06Work-clamping means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B5/00Machines or devices designed for grinding surfaces of revolution on work, including those which also grind adjacent plane surfaces; Accessories therefor
    • B24B5/36Single-purpose machines or devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mounting, Exchange, And Manufacturing Of Dies (AREA)

Abstract

The present invention relates to a method of machining and manufacturing a part to be welded of a capacitor welding machine which eliminates conventionally performed heat treatment processes and discharge and wire processes and changes primary and secondary shape machining to single shape machining when machining a part to be welded for capacitor welding to reduce costs and improve cycle time by process improvement and improve key performance such as flatness and machining performance of shapes with high levels of difficulty. The method of machining and manufacturing a part to be welded of a capacitor welding machine comprises: a shape machining process of machining the shape of a part to be machined; a grinding process of grinding the part to be machined of which the shape machining process is completed; a post-treatment process of performing a coating treatment by a latent method to supplement the surface hardness of the part to be machined which is ground through the grinding process; and a final assembly process of assembling the part to be machined which is machined and manufactured through the shape machining process, the grinding process, and the post-treatment process by using a jig for assembly.

Description

콘덴서 용접기 피 용접부품의 가공제조 방법{Manufacturing method of parts to be welded for condenser welding machine}Manufacturing method of parts to be welded for condenser welding machine}

본 발명은 반도체, 자동차, 2차 전지분야에서 콘덴서 용접기를 통해 용접이 수행되는 피 용접부품(이하 '가공대상부품'라고도 함)을 가공 및 제조하는 방법에 관한 것으로, 더욱 상세하게는 콘덴서 용접용 피 용접부품의 가공에 있어서, 종래 수행하던 열처리 공정, 방전 및 와이어 공정을 없애고, 1,2차 형상가공을 단일 형상 가공으로 변경함으로써, 공정개선에 따른 원가절감 및 사이클 타임을 개선하고, 동시에 고난이도 형상의 가공 성능과 평탄도와 같은 핵심 성능을 향상시킨 콘덴서 용접기 피 용접부품의 가공제조 방법에 관한 것이다.The present invention relates to a method for processing and manufacturing a welded part (hereinafter referred to as a 'part to be processed') to be welded through a capacitor welder in the fields of semiconductors, automobiles, and secondary batteries, and more particularly, for capacitor welding. In the processing of parts to be welded, by eliminating the heat treatment process, electrical discharge and wire processes previously performed, and changing the 1st and 2nd shape processing to single shape processing, cost reduction and cycle time are improved by process improvement, and at the same time, high level of difficulty It relates to a processing and manufacturing method of welded parts of a condenser welding machine with improved core performance such as shape processing performance and flatness.

일반적으로 반도체, 자동차, 2차 전지분야에서 콘덴서 용접기를 통해 용접이 수행되는 피 용접부품을 가공 제조하는 공정을 살펴보면, 도 1에 도시된 바와 같이 가공대상부품의 황삭 및 증삭을 위해 수행하는 1차 형상가공 공정(S10)과, 상기 1차 형상 가공 공정(S10)이 완료된 가공대상부품을 열처리(표면 또는 진공방식으로)하여 경도를 높여주는 열처리 공정(S20)과, 상기 열처리 공정(S20)이 수행된 가공대상부품의 원활한 절삭 가공을 위하여 수행하는 방전 및 와이어 공정(S30)과, 상기 방전 및 와이어 공정(S30)이 완료된 가공대상부품을 정삭하여 성형하는 2차 형상가공 하는 공정(S40)과, 상기 2차 형상 가공이 완료된 가공대상부품을 연마하여 주는 연마공정(S50)과, 상기 연마공정(S50) 이후 가공대상부품을 표면경도를 위해 코팅을 수행하는 후처리 공정(S60)과, 상기 후처리 공정(S60) 후 최종 부품을 체결부재를 통해 조립하여 가공제품을 완성하는 최종 조립공정(S70)을 포함한다.In general, looking at a process for processing and manufacturing a welded part in which welding is performed through a capacitor welder in the fields of semiconductors, automobiles, and secondary batteries, as shown in FIG. The shape processing step (S10), the heat treatment step (S20) of increasing the hardness by heat-treating (surface or vacuum method) the part to be processed on which the first shape processing step (S10) has been completed, and the heat treatment step (S20) A discharge and wire process (S30) performed for smooth cutting of the part to be processed, and a second shape processing process (S40) of finishing and shaping the part to be processed after the discharge and wire process (S30) A polishing step (S50) of polishing the target part for which the secondary shape processing has been completed, and a post-processing step (S60) of coating the target part for surface hardness after the polishing step (S50), After the post-processing step (S60), a final assembly step (S70) of assembling final parts through fastening members to complete a processed product is included.

이와 같은 종래의 피 용접부품의 가공제조 공정은, In such a conventional processing and manufacturing process of parts to be welded,

특히 열처리 공정(S20)에 있어서, 콘덴서 용접용 가공대상부품의 경우, 1차적으로 형상 가공한 금속재료는 무른 상태로서 2차 형상가공(정삭가공)을 수행하기 위해서는 열처리공정을 통해 경도(Hardness)를 강화하여야 하는 것이 일반적이다.In particular, in the heat treatment process (S20), in the case of the part to be processed for capacitor welding, the firstly shaped metal material is in a soft state, and in order to perform the secondary shape processing (finishing), hardness (Hardness) It is common to have to reinforce

열처리공정은 부품종류 및 가공 상황에 따라 진공열처리방식과 표면열처리방식을 적용하는데, 진공열처리방식은 고심도 열처리방식으로서 가공성 저하현상을 최소화할 수 있으나 열처리에 따른 형상변형 가능성이 높은 반면, 표면열처리방식은 형상변형 가능성은 낮으나 가공성이 현저히 저하되는 상반된 성격을 가지고 있다.In the heat treatment process, vacuum heat treatment method and surface heat treatment method are applied depending on the type of part and processing conditions. The method has a low possibility of shape deformation, but has the opposite character of remarkably degrading workability.

이와 같은 열처리 공정은, 열처리공정으로 인하여 소요의 경도는 확보 가능하나 열처리방법에 따라 후속 형상 가공 시 변형가능성, 가공성 저하현상 등과 같은 부작용이 발생하게 되어 후속공정관리의 어려움과 다양한 형태의 제품불량발생(형상변형, 요구성능 미달 등)으로 근본적인 공정혁신의 요구가 계속적으로 제기되어 왔다.Such a heat treatment process can secure the required hardness due to the heat treatment process, but depending on the heat treatment method, side effects such as deformability and deterioration of workability occur during subsequent shape processing, resulting in difficulties in managing the subsequent process and various types of product defects. (shape deformation, lack of required performance, etc.), the demand for fundamental process innovation has been continuously raised.

특히 열처리 공정(S20)으로 인해 1차 형상가공 공정(S10)과 2차 형상가공 공정(S40)이 물리적으로 분리되어 형상가공의 작업연속성이 저하되고, 이에 따른 추가 공정인 방전 및 와이어 공정(S30)이 불가피하여 이와 관련된 추가원가가 약 15~20%를 차지하여 실질적인 제품제조 원가상승으로 귀결되고 있는 실정이다.In particular, due to the heat treatment process (S20), the primary shape processing process (S10) and the secondary shape processing process (S40) are physically separated, reducing the work continuity of the shape processing, and thus the additional process, the discharge and wire process (S30). ) is unavoidable, and the additional cost related to it accounts for about 15~20%, resulting in a substantial increase in product manufacturing cost.

등록특허공보 10-1416885 (등록일자 2014년07월02일)Registered Patent Publication No. 10-1416885 (registration date July 02, 2014) 등록특허공보 10-2104998 (등록일자 2020년04월21일)Registered Patent Publication No. 10-2104998 (Date of registration: April 21, 2020) 등록특허공보 10-1416885 (등록일자 2014년07월02일)Registered Patent Publication No. 10-1416885 (registration date July 02, 2014)

본 발명은 상기한 문제점을 해결하기 위하여 창안된 것으로, 본 발명의 목적은 콘덴서 용접용 피 용접부품의 가공에 있어서, 종래 수행하던 열처리 공정, 방전 및 와이어 공정을 없애고, 1,2차 형상가공을 단일 형상 가공으로 변경함으로써, 공정개선에 따른 원가절감 및 사이클 타임을 개선하고, 동시에 고난이도 형상의 가공 성능과 평탄도와 같은 핵심 성능을 향상시킨 콘덴서 용접기 피 용접부품의 가공제조 방법을 제공하는 것에 있다.The present invention was invented to solve the above problems, and an object of the present invention is to eliminate the heat treatment process, electric discharge and wire process previously performed in the processing of welded parts for capacitor welding, and to perform primary and secondary shape processing. By changing to single shape processing, cost reduction and cycle time due to process improvement are improved, and at the same time, processing performance of high-difficulty shapes and core performance such as flatness are improved.

이와 같은 목적을 달성하기 위한 본 발명은 가공대상부품을 형상 가공하는 형상가공 공정; 상기 형상가공 공정이 완료된 가공대상부품을 연마하여 주는 연마 공정; 상기 연마 공정을 통해 연마 처리된 가공대상부품의 표면 경도를 보완해주기 위해 레이던트 방식으로 코팅 처리하는 후처리 공정; 및 상기 형상가공 공정 및 연마공정 및 후처리 공정을 통해 가공 제조된 가공대상부품을 조립전용지그를 이용하여 조립하는 최종 조립공정을 포함하고, The present invention for achieving the above object is a shape processing step of processing the shape of the part to be processed; a polishing step of polishing the part to be processed after the shape machining step is completed; a post-processing process of coating in a radiant manner to supplement the surface hardness of the part to be processed through the polishing process; And a final assembly process of assembling the parts to be processed manufactured through the shape processing process, polishing process, and post-processing process using an assembly-only jig,

상기 형상가공 공정은, 소재선택 및 공작기계(및 치공구)를 설정하는 제1단계; 다중절삭에 따른 세부 절삭패턴을 설정하는 제2단계; 가공부위에 따른 절삭용 바이트를 선정하는 제3단계; 선택된 절삭용 바이트를 이용하여 다중 절삭 가공하는 제4단계; 및 상기 다중 절삭 가공이후 일정 시간 간격으로 가공대상부품의 평탄도를 측정하는 제5단계를 포함하는 것을 특징으로 한다.The shape processing process includes a first step of selecting a material and setting a machine tool (and a jig tool); A second step of setting detailed cutting patterns according to multi-cutting; A third step of selecting a bite for cutting according to the processing part; A fourth step of multi-cutting using the selected cutting bite; and a fifth step of measuring the flatness of the part to be processed at regular time intervals after the multi-cutting process.

또한 본 발명에 따르면 상기 형상가공 공정의 제2단계의 세부 절삭패턴은 절삭강도 RPM, 절삭깊이 및 절삭속도를 포함하는 것을 특징으로 한다.In addition, according to the present invention, the detailed cutting pattern of the second step of the shape processing process is characterized in that it includes cutting strength RPM, cutting depth and cutting speed.

또한 본 발명에 따르면 상기 형상가공 공정의 제3단계의 가공부위에 따른 절삭용 바이트를 선정은, 가공부위 별 절삭속도, 깊이, 가공정밀도를 이용하여 재질 및 형태를 결정하는 것을 특징으로 한다.In addition, according to the present invention, the selection of the cutting bite according to the machining part in the third step of the shape machining process is characterized in that the material and shape are determined using the cutting speed, depth, and machining precision for each machining part.

또한 본 발명에 따르면 상기 형상가공 공정의 제4단계의 다중 절삭 가공은, In addition, according to the present invention, the multi-cutting process of the fourth step of the shape processing process,

1회 절삭심도, 절삭회수, 절삭강도, 절삭속도의 조합으로 구성되되, 공작기계와 가공대상부품의 소재 특성에 따라 조합하는 것을 특징으로 한다.It is composed of a combination of depth of cut per cut, number of cuts, cutting strength, and cutting speed, and is characterized in that it is combined according to the material characteristics of the machine tool and the part to be processed.

또한 본 발명에 따르면 상기 형상가공 공정의 제5단계의 상기 평탄도 측정 공정은, 측정위치를 가공대상부품 표면의 다수부위에 균일하게 설정하고, 일정한 시간 간격으로 측정기를 이용하여 측정하되, 다중절삭가공과 함께 반복적으로 병행처리하는 것을 특징으로 한다.In addition, according to the present invention, in the flatness measurement step of the fifth step of the shape machining process, the measurement position is uniformly set on multiple parts of the surface of the part to be processed, and the measurement is performed using a measuring device at regular time intervals, but multiple cutting is performed. It is characterized by repeated parallel processing with processing.

이와 같이 본 발명은 공정개선에 따른 원가절감 및 사이클 타임을 개선하고, 동시에 고난이도 형상의 가공 성능과 평탄도와 같은 핵심 성능을 향상시킨 장점을 제공한다.As such, the present invention provides advantages of cost reduction and cycle time improvement according to process improvement, and at the same time, core performance such as high-difficulty shape processing performance and flatness are improved.

또한 본 발명은 평탄도 단계별측정에 따른 측정 오류를 최소화할 수 있다.In addition, the present invention can minimize measurement errors due to step-by-step measurement of flatness.

또한 본 발명은 열처리공정 관련하여 발생되는 클램프(Clamp) 크랙 등 직접적 불량현상 제거할 수 있다.In addition, the present invention can directly eliminate defects such as clamp cracks generated in relation to the heat treatment process.

도 1은 종래의 콘덴서 용접기 피 용접부품의 가공제조 방법의 공정도,
도 2는 본 발명에 따른 콘덴서 용접기 피 용접부품의 가공제조 방법의 공정도,
도 3은 본 발명에 따른 형상가공 공정의 상세 단계별 공정도,
도 4는 본 발명이 적용되는 공작기계 및 가공대상부품의 구성도,
도 5의 (a)(b)는 본 발명에 따른 가공대상부품의 실시 예,
도 6의 (a)(b)는 본 발명에 따른 가공대상부품의 가공부위와 절삭용 바이트의 설정 구성도,
도 7은 본 발명에 따른 평탄도 측정 방법을 보여주는 도면,
도 8은 본 발명에 따른 보조장치인 버킹지그를 보여주는 도면이다.
1 is a process chart of a manufacturing method for manufacturing a welded part of a conventional condenser welding machine;
2 is a process chart of a manufacturing method for processing and manufacturing a welded part of a capacitor welding machine according to the present invention;
3 is a detailed step-by-step process diagram of the shape processing process according to the present invention;
4 is a configuration diagram of a machine tool and a part to be processed to which the present invention is applied;
Figure 5 (a) (b) is an embodiment of the part to be processed according to the present invention,
Figure 6 (a) (b) is a configuration diagram of the setting of the processing part and cutting bytes of the part to be processed according to the present invention,
7 is a view showing a flatness measurement method according to the present invention;
8 is a view showing a bucking jig as an auxiliary device according to the present invention.

이하 첨부된 도면을 참조하여 본 발명의 바람직한 실시 예를 보다 상세히 설명한다.Hereinafter, preferred embodiments of the present invention will be described in more detail with reference to the accompanying drawings.

우선, 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 한해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 그리고 본 발명을 설명함에 있어서, 관련된 공지 기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.First, in adding reference numerals to components of each drawing, it should be noted that the same components have the same numerals as much as possible, even if they are displayed on different drawings. And, in describing the present invention, if it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the gist of the present invention, the detailed description will be omitted.

도 2는 본 발명에 따른 콘덴서 용접기 피 용접부품의 가공제조 방법의 공정도이다.2 is a process chart of a manufacturing method for processing a welded part of a capacitor welder according to the present invention.

도시된 바와 같이 본 발명 콘덴서 용접기 피 용접부품의 가공제조 방법은, As shown, the manufacturing method of the welding parts of the condenser welding machine of the present invention,

형상가공 공정(S110), 연마 공정(S120), 후처리 공정(S130) 및 최종 조립공정(S140)을 포함한다.It includes a shape processing process (S110), a polishing process (S120), a post-processing process (S130) and a final assembly process (S140).

본 발명에 따르면, 콘덴서 용접용 피 용접부품인 가공대상부품(10)은 도 4 및 도 5의 (a)(b)에서와 같이 본체부(11)와 조정부(12)를 포함하며, 상기 조정부(12)는 본체부(11)의 최종 조립 시 조정역할을 하는 보조부품으로서, 일반적으로 본체부(11)가 안착되는 부분에 사용되므로 본체부(11) 보다 경도가 좋아야 하며 치수정밀도 또한 높은 수준을 요구한다.According to the present invention, the part to be processed 10, which is a part to be welded for welding a capacitor, includes a body part 11 and an adjusting part 12 as shown in FIGS. 4 and 5 (a) (b), and the adjusting part (12) is an auxiliary part that plays a role in adjusting the final assembly of the body part 11, and is generally used in the part where the body part 11 is seated, so it should have better hardness than the body part 11 and have a high level of dimensional accuracy. ask for

또한 상기 본체부(11)와 조정부(12)를 포함하는 가공대상부품(10)은 소정의 공작기계(20)를 통해 성형되어 진다.In addition, the part to be processed 10 including the body part 11 and the adjusting part 12 is molded through a predetermined machine tool 20 .

상기 형상가공 공정(S110)은 가공대상부품을 형상 가공하는 공정으로, The shape processing step (S110) is a process of shape processing the part to be processed,

도 3에서와 같이 소재선택 및 공작기계(및 치공구)를 설정하는 제1단계(S111)와, 다중절삭에 따른 세부 절삭패턴을 설정하는 제2단계(S112)와, 가공부위에 따른 절삭용 바이트를 선정하는 제3단계(S113)와, 선택된 절삭용 바이트를 이용하여 다중 절삭 가공하는 제4단계(S114)와, 상기 다중 절삭 가공이후 일정 시간 간격으로 가공대상부품의 평탄도를 측정하는 제5단계(S115)를 포함한다.As shown in FIG. 3, the first step (S111) of selecting materials and setting machine tools (and jigs), the second step (S112) of setting detailed cutting patterns according to multi-cutting, and cutting bytes according to processing parts A third step of selecting (S113), a fourth step of multi-cutting using the selected cutting bite (S114), and a fifth of measuring the flatness of the part to be processed at regular time intervals after the multi-cutting. Step S115 is included.

상기 제1단계(S111)는 소재선택 및 공작기계(및 치공구)를 설정하는 과정으로, 피 용접부품인 가공대상부품(10)의 소재(원재료)와 상기 가공대상부품(10)을 가공할 공작기계(20) 및 치공구를 조합하여 설정한다.The first step (S111) is a process of selecting a material and setting a machine tool (and a jig), and the material (raw material) of the part to be processed 10, which is a part to be welded, and the process to process the part to be processed 10 Set by combining the machine 20 and the jig tool.

이와 같이 상기 가공대상부품(10)의 소재와 공작기계(20) 및 치공구를 조합하여 설정하는 이유는 소재(금속)에 따라 가장 최적의 가공 성능을 발휘할 수 있는 공작기계(200) 및 치공구를 설정하기 위함이다.The reason for setting the material of the part to be processed 10 in combination with the machine tool 20 and the jig tool is to set the machine tool 200 and the jig tool that can exhibit the most optimal machining performance according to the material (metal). is to do

상기 제2단계(S112)는 다중절삭에 따른 세부 절삭패턴을 설정하는 과정으로, The second step (S112) is a process of setting a detailed cutting pattern according to multiple cutting,

상기 가공대상부품(10)의 세부 절삭패턴을 설정한다. 상기 절삭패턴은 도 6의 (a)에서와 같이 가공부위(13)에 따른 절삭패턴을 설정하는 것으로, 절삭강도 RPM, 절삭깊이 및 절삭속도 등을 포함한다.A detailed cutting pattern of the part to be processed 10 is set. The cutting pattern is to set a cutting pattern according to the processing part 13 as shown in (a) of FIG. 6, and includes cutting strength RPM, cutting depth, cutting speed, and the like.

또한 도 6의 (b)와 같이 가공부위(13)별 요구되는 가공정밀도가 상이함으로 이를 고려하기 위함이며, 반도체, 자동차 부품은 본체부(11)와 조정부(12)에 따라 요구 정밀도 수준이 다르며 정밀도가 높은 부분은 특수가공도 필요하게 된다.In addition, as shown in (b) of FIG. 6, this is to take into account that the processing precision required for each processing part 13 is different. Parts with high precision require special machining.

상기 제3단계(S113)는 가공부위에 따른 절삭용 바이트를 선정하는 과정으로, 도 6의 (a)와 같이 가공대상부품(10)의 절삭부위(13)에 따른 절삭용 바이트(14)는 가공부위(13) 별 절삭속도, 깊이, 가공정밀도 등을 고려하여 재질 및 형태를 결정한다.The third step (S113) is a process of selecting a cutting bite according to the processing part. As shown in FIG. 6 (a), the cutting bite 14 according to the cutting part 13 of the part 10 to be processed is The material and shape are determined in consideration of the cutting speed, depth, and processing precision for each processing part 13 .

또한 상기 절삭용 바이트(14)의 재질은 세라믹, 다이아몬드, 고속도강(SKH), 주조경질합금, 서멧(Cermet) 등이 될 수 있다.In addition, the material of the cutting bite 14 may be ceramic, diamond, high-speed steel (SKH), cast hard alloy, cermet, or the like.

상기 제4단계(S114)는 선택된 절삭용 바이트(14)를 이용하여 다중 절삭 가공하는 과정으로, The fourth step (S114) is a process of multi-cutting using the selected cutting bite 14,

평탄도를 확보하기 위해 평탄도 수준과 적정 가공시간과의 상관관계를 고려하여 절삭가공을 수행한다.In order to secure flatness, cutting is performed by considering the correlation between the level of flatness and the appropriate machining time.

즉 상기 다중 절삭은 1회 절삭심도, 절삭회수, 절삭강도, 절삭속도의 조합으로 구성되되, 이들 구성요소들은 절삭공정 후 핵심 성능 및 가공시간과는 상이한 관계를 나타내기 때문에, 반드시 공작기계(20)와 가공대상부품(10)의 소재 특성도 고려하여 조합하여야 한다.That is, the multi-cutting is composed of a combination of depth of cut, number of cuts, cutting strength, and cutting speed, but since these components show different relationships with core performance and processing time after the cutting process, the machine tool (20 ) and the material characteristics of the part to be processed 10 should also be considered and combined.

상기 제5단계(S115)는 상기 다중 절삭 가공이후 일정 시간 간격으로 가공대상부품의 평탄도를 측정하는 과정이다.The fifth step (S115) is a process of measuring the flatness of the part to be processed at regular time intervals after the multi-cutting process.

즉 상기 평탄도 측정 공정은 상기 다중 절삭 가공(S114)을 수행하는 과정에서 가공대상부품(10)의 변형여부를 판단하기 위해 수행되는 과정이다.That is, the flatness measuring process is a process performed to determine whether the part to be processed 10 is deformed in the process of performing the multi-cutting process (S114).

상기 평탄도 측정은 도 7에서와 같이 측정위치를 가공대상부품(10) 표면의 다수부위에 균일하게 설정하고, 일정한 시간 간격으로 측정기(16)를 이용하여 측정하여 준다.As shown in FIG. 7, the flatness measurement is performed by uniformly setting measurement positions on multiple parts of the surface of the part to be processed 10 and using the measuring instrument 16 at regular time intervals.

또한 이러한 평탄도 측정은 다중절삭가공과 함께 반복적으로 병행처리 되며, 최종으로 가공대상부품(10)의 형상가공을 완료하게 된다. In addition, this flatness measurement is repeatedly processed in parallel with multi-cutting, and finally, the shape processing of the part to be processed 10 is completed.

또한 본 발명에 따르면 다중 절삭 가공하는 제4단계(S114) 이전에는 보조장치를 적용할 수 있는 제6단계(S116)가 더 포함될 수 있다.In addition, according to the present invention, before the fourth step (S114) of multi-cutting, a sixth step (S116) for applying an auxiliary device may be further included.

상기 제6단계(S116)는 보조장치를 적용할 수 있는 과정으로, The sixth step (S116) is a process for applying an auxiliary device,

가공대상부품(10)의 탭핑 작업 시 탭핑 장치 전용다이를 구축하되, 도 8에서와 같은 버킹지그로 구성한다.During the tapping operation of the part to be processed 10, a die dedicated to the tapping device is constructed, but it is configured as a bucking jig as shown in FIG. 8.

상기 버킹지그는 에어를 활용해 흡착하는 방식으로 수작업을 배제하고 일정한 외력을 작용시켜 변형을 최소화하고 작업시간을 단축하여 준다.The bucking jig eliminates manual work by adsorbing using air and applies a certain external force to minimize deformation and shorten work time.

따라서 기존 1차 형상가공시 부품두께별(0.2~1T) 휨정도 및 평탄도가 상이함에 따른 문제가 지속적으로 발생하는 MCT공정에서의 바이스지그방식에 대한 문제점을 해결하게 된다. Therefore, it solves the problem of the vise jig method in the MCT process in which problems continuously occur due to the difference in the degree of warpage and flatness for each part thickness (0.2 ~ 1T) during the existing primary shape processing.

상기 연마 공정(S120)은 상기 형상가공 공정(S110)이 완료된 가공대상부품(10)을 연마하여 주는 공정이다.The polishing process (S120) is a process of polishing the part to be processed 10 after the shape processing process (S110) is completed.

상기 후처리 공정(S130)은 상기 연마 공정(S120)을 통해 연마 처리된 가공대상부품(10)을 표면 경도를 보완해주기 위한 공정으로, 가공대상부품(10)의 본체부(11)와 조정부(12)를 레이던트 방식으로 코팅처리하여 준다.The post-processing process (S130) is a process for supplementing the surface hardness of the part to be processed 10 polished through the polishing process (S120), and the main body 11 and the adjustment unit ( 12) is coated in a radant method.

상기 레이던트 코팅처리는 후처리 후 공차가 일정하게 유지되며 마모성이 적고, 제품수명 연장되며 정전기가 방지된다. 또한 내식성이 우수하고 분진도 최소화되는 특성이 있다.The radiant coating treatment maintains a constant tolerance after post-treatment, reduces abrasion, extends product life, and prevents static electricity. It also has excellent corrosion resistance and minimizes dust.

또한 상기 후처리 공정(S130)에는 추가적인 코팅공정이 더 포함될 수 있다.In addition, an additional coating process may be further included in the post-treatment process (S130).

상기 추가적인 코팅공정은 DLC코팅, 용사코팅 및 CNT코팅이 될 수 있다.The additional coating process may be DLC coating, thermal spray coating, and CNT coating.

또한 DLC코팅은 다이아몬드, 탄소성분의 가스를 이용한 진공상태에서 코팅이며, 내마모성, 내구수명이 연장되고, 내화학성 및 내부식성 우수하다.In addition, DLC coating is a coating in a vacuum state using diamond and carbon gas, and has excellent wear resistance, extended durability, chemical resistance and corrosion resistance.

상기 용사코팅은 DE,DP 수지불체를 이용하여 600~1300도 고열 불꽃으로 순간분사하며, 무공해, 무독성, 친환경 방식이다.The thermal spray coating is instantly sprayed with a high-temperature flame of 600 to 1300 degrees using DE and DP resin materials, and is a pollution-free, non-toxic, and eco-friendly method.

상기 CNT코팅은 정전기가 방지되고, 도정성가진 코팅막이 형성되는 것으로, 반도체, 화학분야에 널리 사용된다.The CNT coating prevents static electricity and forms a coating film having a degree of precision, and is widely used in the semiconductor and chemical fields.

상기 최종 조립공정(S140)은 상기 형상가공공정(S110) 및 연마공정(S120) 및 후처리 공정(S130)을 통해 가공 제조된 가공대상부품(10)을 조립하는 공정으로, 조립전용지그를 이용하여 조립하도록 한 공정이다.The final assembly process (S140) is a process of assembling the part to be processed 10 manufactured through the shape processing process (S110), polishing process (S120), and post-processing process (S130), using an assembly-only jig. It is a process to assemble.

상기 조립전용지그는 부품별 볼트 체결 시 핀위치를 미세 조정할 수 있는 구조를 가지며, 허용 가능한 불일치간격에 대해서는 미세조정이 가능하도록 구성된다.The assembly-only jig has a structure capable of fine-adjusting the position of a pin when fastening bolts for each component, and is configured to enable fine-adjustment for an allowable discrepancy interval.

상기 조립전용지그는 핸들러 케이스(Case) 별 적용 가능한 지그형태 분석을 통해 개발되며, 조립품질(조립공차)을 개선하고 작업인력 및 최종조립시간을 단축하게 된다.The assembly-only jig is developed through analysis of applicable jig shapes for each handler case, improves assembly quality (assembly tolerance), and reduces work manpower and final assembly time.

따라서 완료된 최종부품을 조립하는 경우 종래의 일체형 방식은 볼트체결불량발생시 이전공정으로 돌아가 재가공을 수행하는 번거로움을 제거하고, 조립에 소요되는 핸들러 세팅에 다수의 작업인원이 투입되는 문제점과, 조립 정밀도, 효율 등이 떨어지는 문제점을 해소하게 된다.Therefore, when assembling completed final parts, the conventional all-in-one method eliminates the hassle of returning to the previous process and performing reprocessing in case of bolt fastening failure, and the problem of requiring a large number of workers to set the handler required for assembly and the assembly accuracy , the problem of low efficiency is solved.

이상에서는 본 발명에 대한 한정된 실시예들을 설명한 것이나, 본 발명은 이에 한정되는 것은 아니고 다양한 실시예가 예상됨을 당업자는 주의해야 한다.In the above, limited embodiments of the present invention have been described, but those skilled in the art should note that the present invention is not limited thereto and various embodiments are expected.

Claims (5)

가공대상부품을 형상 가공하는 형상가공 공정;
상기 형상가공 공정이 완료된 가공대상부품을 연마하여 주는 연마 공정;
상기 연마 공정을 통해 연마 처리된 가공대상부품의 표면 경도를 보완해주기 위해 레이던트 방식으로 코팅 처리하는 후처리 공정; 및
상기 형상가공 공정 및 연마공정 및 후처리 공정을 통해 가공 제조된 가공대상부품을 조립전용지그를 이용하여 조립하는 최종 조립공정을 포함하고,
상기 형상가공 공정은,
소재선택 및 공작기계(및 치공구)를 설정하는 제1단계;
다중절삭에 따른 세부 절삭패턴을 설정하는 제2단계;
가공부위에 따른 절삭용 바이트를 선정하는 제3단계;
선택된 절삭용 바이트를 이용하여 다중 절삭 가공하는 제4단계; 및
상기 다중 절삭 가공이후 일정 시간 간격으로 가공대상부품의 평탄도를 측정하는 제5단계를 포함하는 것을 특징으로 하는 콘덴서 용접기 피 용접부품의 가공제조 방법.
A shape processing step of shape processing a part to be processed;
a polishing step of polishing the part to be processed after the shape machining step is completed;
a post-processing process of coating in a radiant manner to supplement the surface hardness of the part to be processed through the polishing process; and
Including a final assembly process of assembling the parts to be processed manufactured through the shape processing process, polishing process, and post-processing process using an assembly-only jig,
The shape processing process,
The first step of selecting materials and setting up machine tools (and jigs);
A second step of setting detailed cutting patterns according to multi-cutting;
A third step of selecting a bite for cutting according to the processing part;
A fourth step of multi-cutting using the selected cutting bite; and
Processing and manufacturing method of a part to be welded by a condenser welding machine, characterized in that it comprises a fifth step of measuring the flatness of the part to be processed at regular time intervals after the multi-cutting process.
청구항 1에 있어서,
상기 형상가공 공정의 제2단계의 세부 절삭패턴은 절삭강도 RPM, 절삭깊이 및 절삭속도를 포함하는 것을 특징으로 하는 콘덴서 용접기 피 용접부품의 가공제조 방법.
The method of claim 1,
The detailed cutting pattern of the second step of the shape processing process includes cutting strength RPM, cutting depth and cutting speed.
청구항 1에 있어서,
상기 형상가공 공정의 제3단계의 가공부위에 따른 절삭용 바이트를 선정은,
가공부위 별 절삭속도, 깊이, 가공정밀도를 이용하여 재질 및 형태를 결정하는 것을 특징으로 하는 콘덴서 용접기 피 용접부품의 가공제조 방법.
The method of claim 1,
Selecting a cutting bite according to the processing part of the third step of the shape processing process,
A method of processing and manufacturing a welded part of a condenser welding machine, characterized in that the material and shape are determined using the cutting speed, depth, and processing precision of each processing part.
청구항 1에 있어서,
상기 형상가공 공정의 제4단계의 다중 절삭 가공은,
1회 절삭심도, 절삭회수, 절삭강도, 절삭속도의 조합으로 구성되되, 공작기계와 가공대상부품의 소재 특성에 따라 조합하는 것을 특징으로 하는 콘덴서 용접기 피 용접부품의 가공제조 방법.
The method of claim 1,
The multi-cutting process of the fourth step of the shape machining process,
A method for processing and manufacturing welded parts of a condenser welding machine, which is composed of a combination of depth of cut per cut, number of cuts, cutting strength, and cutting speed, characterized in that the combination is made according to the material characteristics of the machine tool and the part to be processed.
청구항 1에 있어서,
상기 형상가공 공정의 제5단계의 상기 평탄도 측정 공정은,
측정위치를 가공대상부품 표면의 다수부위에 균일하게 설정하고, 일정한 시간 간격으로 측정기를 이용하여 측정하되, 다중절삭가공과 함께 반복적으로 병행처리하는 것을 특징으로 하는 콘덴서 용접기 피 용접부품의 가공제조 방법.
The method of claim 1,
The flatness measurement process of the fifth step of the shape processing process,
Condenser welding machine processing and manufacturing method of parts to be welded, characterized in that the measurement position is uniformly set on multiple parts of the surface of the part to be processed and measured using a measuring instrument at regular time intervals, but repeatedly processed in parallel with multiple cutting processes. .
KR1020210169246A 2021-11-30 2021-11-30 Manufacturing method of parts to be welded for condenser welding machine KR20230081925A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210169246A KR20230081925A (en) 2021-11-30 2021-11-30 Manufacturing method of parts to be welded for condenser welding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210169246A KR20230081925A (en) 2021-11-30 2021-11-30 Manufacturing method of parts to be welded for condenser welding machine

Publications (1)

Publication Number Publication Date
KR20230081925A true KR20230081925A (en) 2023-06-08

Family

ID=86765590

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210169246A KR20230081925A (en) 2021-11-30 2021-11-30 Manufacturing method of parts to be welded for condenser welding machine

Country Status (1)

Country Link
KR (1) KR20230081925A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101416885B1 (en) 2012-04-02 2014-08-07 (주)셀이엔지 metal plate grinding method
KR102104998B1 (en) 2020-02-03 2020-05-04 (주)아주정공 Automatic Flatness Calibration Device for Polished Metal Platess and Method Thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101416885B1 (en) 2012-04-02 2014-08-07 (주)셀이엔지 metal plate grinding method
KR102104998B1 (en) 2020-02-03 2020-05-04 (주)아주정공 Automatic Flatness Calibration Device for Polished Metal Platess and Method Thereof

Similar Documents

Publication Publication Date Title
Sharma A textbook of production engineering
CN112077546A (en) Method for processing crown-free die forging palm tree blade root type blade
CN104959863A (en) Turning clamp for plate part hole and inner annular groove machining
CN103264262B (en) Machining technology of cam reinforcement lever mechanism
KR20230081925A (en) Manufacturing method of parts to be welded for condenser welding machine
CN111531325B (en) Method for processing split finger tip sheet
CN110595320B (en) Method for machining composite part without reference in circumferential direction
CN112613133B (en) Reference conversion method for collinear processing of engine cylinder block
JPH06249317A (en) Thread groove forming method for ball screw
CN210255175U (en) Positioning mechanism
CN111015138B (en) Processing method of powder metallurgy cross slip ring die
KR20080013518A (en) Method for manufacturing valve seat hole of cylinder head
CN102357822A (en) Jig for processing automobile air conditioning die circular cutter
CN112571092A (en) Trimming method for position accuracy of tool hole array
CN115041933B (en) Combined machining method for step insert
CN111230429B (en) Method for processing brake block for airplane
CN114211205B (en) Integral manufacturing process of double-hole tube of control rod guide cylinder
CN112276496B (en) Method for solving deformation of low-pressure turbine disc in machining process
CN113878299B (en) Method for repairing and processing bearing pedestal bushing
CN218874913U (en) Gas turbine blade precision casting blank datum point grinding tool
CN115122058A (en) Method for machining blade by using five-axis numerical control machining center
CN113909827B (en) Batch processing technology for fixing seats
CN110193780B (en) Arc machining method and machining tool
CN112170959A (en) Repairing method of mechanical clamping type hard alloy circular saw blade
CN105300215A (en) Size range measuring tool of stepped shaft part and measuring method

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E601 Decision to refuse application