KR20230069227A - 기판 처리 시스템의 복수의 질량 유동 제어기(mfc)들에 대한 교정 동작을 수행하기 위한 방법들, 시스템들, 및 장치 - Google Patents

기판 처리 시스템의 복수의 질량 유동 제어기(mfc)들에 대한 교정 동작을 수행하기 위한 방법들, 시스템들, 및 장치 Download PDF

Info

Publication number
KR20230069227A
KR20230069227A KR1020237013158A KR20237013158A KR20230069227A KR 20230069227 A KR20230069227 A KR 20230069227A KR 1020237013158 A KR1020237013158 A KR 1020237013158A KR 20237013158 A KR20237013158 A KR 20237013158A KR 20230069227 A KR20230069227 A KR 20230069227A
Authority
KR
South Korea
Prior art keywords
mfcs
flow rate
mfc
flow
calibration
Prior art date
Application number
KR1020237013158A
Other languages
English (en)
Inventor
빈두사가르 마라스 산카라토디
지위안 예
조티 라지반
알라 모라디안
주오밍 주
에롤 안토니오 씨. 산체스
패트리시아 엠. 리우
Original Assignee
어플라이드 머티어리얼스, 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 어플라이드 머티어리얼스, 인코포레이티드 filed Critical 어플라이드 머티어리얼스, 인코포레이티드
Publication of KR20230069227A publication Critical patent/KR20230069227A/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F25/00Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
    • G01F25/10Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters
    • G01F25/15Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters specially adapted for gas meters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/001Means for regulating or setting the meter for a predetermined quantity
    • G01F15/002Means for regulating or setting the meter for a predetermined quantity for gases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/005Valves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F25/00Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
    • G01F25/10Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters
    • G01F25/17Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of flowmeters using calibrated reservoirs

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Vapour Deposition (AREA)
  • Flow Control (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

양상들은 일반적으로 기판 처리 시스템의 복수의 질량 유동 제어기(MFC)들에 대한 교정 동작을 수행하기 위한 방법들, 시스템들, 및 장치에 관한 것이다. 일 양상에서, 복수의 설정점(setpoint)들에 걸친 타깃 유량들의 범위에 대해, 보정 유동 곡선이 생성된다. 일 구현에서, 기판 처리 시스템의 복수의 질량 유동 제어기(MFC)들에 대한 교정 동작을 수행하는 방법은 교정 동작을 위해 복수의 MFC들을 우선순위화(prioritizing)하는 단계를 포함한다. 우선순위화하는 단계는 복수의 MFC들의 각각의 MFC에 대한 동작 시간을 결정하는 단계 및 각각의 MFC에 대한 동작 시간에 따라 순위 목록에서 복수의 MFC들을 순위화(ranking)하는 단계를 포함한다. 방법은, 순위 목록에 따라 그리고 기판 처리 시스템에 대한 유휴 시간 동안, 복수의 MFC들에 대한 교정 동작을 수행하는 단계를 포함한다.

Description

기판 처리 시스템의 복수의 질량 유동 제어기(MFC)들에 대한 교정 동작을 수행하기 위한 방법들, 시스템들, 및 장치
[0001] 양상들은 일반적으로 기판 처리 시스템의 복수의 질량 유동 제어기(MFC; mass flow controller)들에 대한 교정 동작을 수행하기 위한 방법들, 시스템들, 및 장치에 관한 것이다. 일 양상에서, 복수의 설정점(setpoint)들에 걸친 타깃 유량(target flow rate)들의 범위에 대해, 보정 유동 곡선(corrected flow curve)이 생성된다.
[0002] 기판 처리 동작들에 사용되는 질량 유동 제어기(MFC)들은 몇 가지 결함들을 수반할 수 있다. 예를 들어, MFC들은 드리프트(drift), 누출(leaking) 및/또는 시프트 온 제로(shift-on-zero)를 포함할 수 있다. 드리프트는 동일한 동작 조건에서 동일한 질량 유량을 더 이상 전달하지 않는 MFC를 포함한다. 누출은, MFC가 유동량(amount of flow)이 발생하지 않아야 하는 동작 조건으로 설정된 경우, MFC를 통해 흐르는 유동량을 포함한다. 시프트 온 제로는, 실제로 MFC를 통해 흐르는 유동이 없는 경우, MFC를 통해 흐르는 유동량이 있음을 나타내는 MFC를 포함한다.
[0003] 위의 결함들을 해결하려는 시도들은 상당한 비용 지출 및 인력 소모의 상당한 지출, 상당한 기계 가동 중지 시간 및 상당한 동작 지연들을 포함하며, MFC들이 동작하는 동작 유량들의 전체 범위를 정확하게 감안하지 않는다. 추가적으로, 결함들을 해결하지 못하면, 디바이스 성능을 방해하는 처리 결과들(예컨대, 증착 직후(as deposited)의 필름 두께 및 증착된 필름 품질)에 영향을 미칠 수 있다. 드리프트를 검출하려는 노력들은 처리된 기판의 속성들이 측정될 때까지 이루어지지 않을 수 있다. 노력들은 또한, 드리프트를 부정확하게 측정하거나 검출할 수 있다.
[0004] 따라서, 질량 유동 제어기(MFC)들을 자동적으로 보정하는 것을 용이하게 하여 동작 유량 범위들 전반에 걸쳐 MFC들을 정확하게 보정하고, 비용 지출 및 인력 소모를 감소시키고, 기계 가동 중지 시간을 감소시키며, 동작 지연들을 감소시키는 것을 용이하게 하는 개선된 방법들, 시스템들, 및 장치가 필요하다.
[0005] 양상들은 일반적으로 기판 처리 시스템의 복수의 질량 유동 제어기(MFC)들에 대한 교정 동작을 수행하기 위한 방법들, 시스템들, 및 장치에 관한 것이다. 일 양상에서, 복수의 설정점들에 걸친 타깃 유량들의 범위에 대해, 보정 유동 곡선이 생성된다. 일 양상에서, 교정 동작은 복수의 MFC들을 자동적으로 보정하는 데 사용된다.
[0006] 일 구현에서, 기판 처리 시스템의 복수의 질량 유동 제어기(MFC)들에 대한 교정 동작을 수행하는 방법은 교정 동작을 위해 복수의 MFC들을 우선순위화(prioritizing)하는 단계를 포함한다. 우선순위화하는 단계는 복수의 MFC들의 각각의 MFC에 대한 동작 시간을 결정하는 단계, 및 각각의 MFC에 대한 동작 시간에 따라 순위 목록(rank list)에서 복수의 MFC들을 순위화(ranking)하는 단계를 포함한다. 방법은, 순위 목록에 따라 그리고 기판 처리 시스템에 대한 유휴 시간 동안, 복수의 MFC들에 대한 교정 동작을 수행하는 단계를 포함한다. 교정 동작은 타깃 유량으로 제1 MFC를 통해 가스를 유동시키기 위해 제1 MFC를 유동 모드로 설정하는 것을 포함한다. 교정 동작은 가스를 질량 유동 검증기(mass flow verifier)로 지향시키는 것 및 복수의 설정점들에 대응하는 복수의 유량들을 통해 가스의 타깃 유량을 스테핑(stepping)하는 것을 포함한다. 교정 동작은 질량 유동 검증기를 사용하여 복수의 설정점들 각각에서 가스의 측정 유량(measured flow rate)을 검증하는 것을 포함한다.
[0007] 일 구현에서, 기판 처리 시스템의 복수의 질량 유동 제어기(MFC)들에 대한 교정 동작을 수행하기 위한 비-일시적 컴퓨터 판독가능 매체는, 실행될 때, 복수의 동작들이 수행되도록 하는 명령들을 포함한다. 복수의 동작들은 교정 동작을 위해 복수의 MFC들을 우선순위화하는 것을 포함한다. 우선순위화하는 것은 복수의 MFC들의 각각의 MFC에 대한 동작 시간을 결정하는 것 및 각각의 MFC에 대한 동작 시간에 따라 순위 목록에서 복수의 MFC들을 순위화하는 것을 포함한다. 복수의 동작들은, 순위 목록에 따라 그리고 기판 처리 시스템에 대한 유휴 시간 동안, 복수의 MFC들에 대한 교정 동작을 수행하는 것을 포함한다. 교정 동작은 타깃 유량으로 제1 MFC를 통해 가스를 유동시키기 위해 제1 MFC를 유동 모드로 설정하는 것을 포함한다. 교정 동작은 가스를 질량 유동 검증기로 지향시키는 것 및 복수의 설정점들에 대응하는 복수의 유량들을 통해 가스의 타깃 유량을 스테핑하는 것을 포함한다. 교정 동작은 질량 유동 검증기를 사용하여 복수의 설정점들 각각에서 가스의 측정 유량을 검증하는 것을 포함한다.
[0008] 일 구현에서, 기판 처리 시스템은 처리 볼륨을 포함하는 처리 챔버를 포함한다. 기판 처리 시스템은 처리 챔버에 커플링된 가스 회로를 포함한다. 가스 회로는 복수의 질량 유동 제어기(MFC)들, 처리 챔버와 복수의 MFC들 사이에 커플링된 하나 이상의 전달 라인(delivery line)들, 및 복수의 MFC들과 질량 유동 검증기 사이에 커플링된 다이버터 라인(diverter line)을 포함한다. 기판 처리 시스템은, 실행될 때, 복수의 동작들이 수행되게 하는 명령들을 포함하는 제어기를 포함한다. 복수의 동작들은 교정 동작을 위해 복수의 MFC들을 우선순위화하는 것을 포함한다. 우선순위화하는 것은 복수의 MFC들의 각각의 MFC에 대한 동작 시간을 결정하는 것, 및 각각의 MFC에 대한 동작 시간에 따라 순위 목록에서 복수의 MFC들을 순위화하는 것을 포함한다. 복수의 동작들은, 순위 목록에 따라 그리고 기판 처리 시스템에 대한 유휴 시간 동안, 복수의 MFC들에 대한 교정 동작을 수행하는 것을 포함한다. 교정 동작은 타깃 유량으로 제1 MFC를 통해 가스를 유동시키기 위해 제1 MFC를 유동 모드로 설정하는 것을 포함한다. 교정 동작은 가스를 질량 유동 검증기로 지향시키는 것 및 복수의 설정점들에 대응하는 복수의 유량들을 통해 가스의 타깃 유량을 스테핑하는 것을 포함한다. 교정 동작은 질량 유동 검증기를 사용하여 복수의 설정점들 각각에서 가스의 측정 유량을 검증하는 것을 포함한다.
[0009] 본 개시내용의 상기 열거된 특징들이 상세히 이해될 수 있는 방식으로, 앞서 간략히 요약된 본 개시내용의 보다 구체적인 설명이 실시예들을 참조로 하여 이루어질 수 있는데, 이러한 실시예들의 일부는 첨부된 도면들에 예시되어 있다. 그러나, 첨부된 도면들은 단지 예시적인 실시예들을 예시하는 것이므로 범위를 제한하는 것으로 간주되지 않아야 한다는 것이 주목되어야 하는데, 이는 본 개시내용이 다른 균등하게 유효한 실시예들을 허용할 수 있기 때문이다.
[0010] 도 1은 일 구현에 따른 처리 챔버를 갖는 기판 처리 시스템의 개략적인 단면도이다.
[0011] 도 2는 일 구현에 따른 질량 유동 제어기(MFC)의 개략적인 단면도이다.
[0012] 도 3a는 일 구현에 따른 기판 처리 시스템의 복수의 질량 유동 제어기(MFC)들에 대한 교정 동작을 수행하는 방법의 개략적인 블록도이다.
[0013] 도 3b는 일 구현에 따른 도 3a에 도시된 동작의 교정 동작을 수행하는 개략적인 블록도이다.
[0014] 도 4는 일 구현에 따른 그래프의 개략도이다.
[0015] 이해를 용이하게 하기 위해, 도면들에 대해 공통인 동일한 엘리먼트들을 지정하기 위해 가능한 경우 동일한 참조 번호들이 사용되었다. 일 실시예의 엘리먼트들 및 특징들은 추가의 언급없이 다른 실시예들에 유익하게 통합될 수 있는 것으로 고려된다.
[0016] 양상들은 일반적으로 기판 처리 시스템의 복수의 질량 유동 제어기(MFC)들에 대한 교정 동작을 수행하기 위한 방법들, 시스템들, 및 장치에 관한 것이다. 일 양상에서, 보정 유동 곡선은 복수의 설정점들에 걸친 타깃 유량들의 범위에 대해 생성된다.
[0017] 도 1은 일 구현에 따른 처리 챔버(100)를 갖는 기판 처리 시스템(101)의 개략적 단면도이다. 처리 챔버(100)는 에피택셜 증착 처리 동작들을 위해 구성된다. 처리 챔버(100)는 기판(125)의 상부 표면 상의 재료의 에피택셜 증착을 포함하여, 하나 이상의 기판들을 처리하는 데 사용될 수 있다. 처리 챔버(100)는, 다른 컴포넌트들 중에서, 처리 챔버(100) 내에 배치된 기판 지지대(106)의 후면(104)을 가열하기 위한 방사 가열 램프들(102)의 어레이를 포함할 수 있다. 기판 지지대(106)는, 도시된 바와 같이, 디스크형 기판 지지대(106)일 수 있거나, 기판(125)의 가장자리로부터 기판을 지지하여 램프들(102)의 열 방사에 기판(125)의 노출을 용이하게 하는 링형 기판 지지대(중앙 개구를 가짐)일 수 있다.
[0018] 기판 지지대(106)는 상부 돔(128)과 하부 돔(114) 사이의 처리 챔버(100) 내에 로케이팅된다. 상부 돔(128), 하부 돔(114), 및 상부 돔(128)과 하부 돔(114) 사이에 배치된 베이스 링(136)은 일반적으로 처리 챔버(100)의 내부 영역을 정의한다. 기판(125)은 로딩 포트(loading port)를 통해 처리 챔버(100) 내로 이송되고, 기판 지지대(106) 상에 포지셔닝된다.
[0019] 기판 지지대(106)는 중앙 샤프트(132)에 의해 지지되며, 이는, 기판(125)의 로딩 및 언로딩, 및 몇몇 경우에 기판의 처리 동안, 수직 방향(134)으로 기판(125)을 이동시킨다. 기판 지지대(106)는 도 1에서 상승된 처리 포지션에 있는 것으로 도시되어 있지만, 중앙 샤프트(732)에 커플링된 액추에이터에 의해 처리 포지션 아래의 로딩 포지션으로 수직 이동될 수 있다. 처리 포지션 아래로 하강될 때, 리프트 핀들(105)은 기판(125)과 접촉하고, 기판 지지대(706)로부터 기판(125)을 상승시킨다. 그런 다음, 로봇은 로딩 포트를 통해 처리 챔버(100)로 들어가서 기판(125)과 체결하고 그로부터 기판을 제거할 수 있다. 그런 다음, 기판 지지대(706)는 기판(125)의 디바이스 측(116)이 위를 향한 상태로 기판 지지대(106)의 전면(110) 상에 기판(125)을 배치하기 위해 처리 포지션으로 수직으로 작동될 수 있다.
[0020] 기판 지지대(106)는, 처리 포지션에 로케이팅되는 동안, 처리 챔버(100)의 내부 볼륨을 기판(125) 위에 있는 처리 볼륨(156)과 기판 지지대(106) 아래의 퍼지 가스 볼륨(158)으로 분할한다. 기판 지지대(106)는 중앙 샤프트(132)에 의해 처리하는 동안 회전되어, 처리 챔버(100) 내의 열적 영향 및 처리 가스 유동 공간 이상(process gas flow spatial anomaly)들의 영향을 최소화하고, 이에 따라 기판(125)의 균일한 처리를 용이하게 한다. 기판 지지대(106)는 램프들(102)로부터 방사 에너지를 흡수하고 방사 에너지를 기판(125)으로 전도하기 위해 탄화규소 또는 탄화규소로 코팅된 흑연으로 형성될 수 있다. 상부 돔(128)의 중앙 윈도우 부분과 하부 돔(114)의 저부는 석영과 같은 광학적으로 투명한 재료로 형성된다. 상부 돔(128)의 두께 및 곡률 정도는 처리 챔버(100)에서 균일한 유동 균일성을 위해 더 평평한 지오메트리(geometry)를 제공하도록 구성될 수 있다.
[0021] 램프들(102)의 어레이는, 처리 가스가 통과할 때, 기판(125)의 다양한 영역들에서 온도를 독립적으로 제어하기 위해 중앙 샤프트(132)를 중심으로 특정된 최적의 원하는 방식으로 하부 돔(114)에 인접하여 그 아래에 배치될 수 있고, 이는 기판(125)의 디바이스 측(116)(예컨대, 상부 표면) 상에 재료의 에피택셜 증착을 용이하게 한다. 증착 재료는 갈륨 비소, 갈륨 질화물 또는 알루미늄 갈륨 질화물을 포함할 수 있다. 다른 실시예들과 조합될 수 있는 일 실시예에서, 램프들(102)과 같은 방사 가열 램프들의 어레이가 상부 돔(128) 위에 배치될 수 있다.
[0022] 램프들(102)은 기판(125)을 섭씨 약 200도 내지 섭씨 약 1,600도 범위 내의 온도로 가열하도록 구성된 전구들을 포함하도록 구성될 수 있다. 각각의 램프(102)는 각각의 램프(102)에 전력이 공급되게 하는 배전판(power distribution board)에 커플링된다. 램프들(102)은, 예를 들어, 램프들(102) 사이에 로케이팅된 채널들(149)로 유입되는 냉각 유체에 의해, 처리 동안 또는 처리 후에 냉각될 수 있는 램프 헤드(145) 내에 포지셔닝된다. 램프헤드(145)는 하부 돔(114)에 대한 램프헤드(145)의 매우 근접함에 부분적으로 기인하여 하부 돔(114)을 전도성 및 방사성으로 냉각한다. 램프헤드(145)는 또한 램프 벽들 및 램프들(102) 주위의 반사기들의 벽들을 냉각시킬 수 있다. 대안적으로, 하부 돔(114)은 대류 접근법에 의해 냉각될 수 있다. 애플리케이션에 따라, 램프헤드(145)는 하부 돔(114)과 접촉할 수 있거나 접촉하지 않을 수 있다.
[0023] 원형 실드(167)는 선택적으로 기판 지지대(106) 주위에 배치되고 라이너 조립체(163)에 의해 둘러싸일 수 있다. 실드(167)는 처리 가스들을 위한 예열 구역을 제공하면서 램프들(102)로부터 기판(125)의 디바이스 측(116)으로의 열(heat)/광(light) 노이즈의 누출을 방지하거나 최소화한다. 실드(167)는 화학 기상 증착(CVD) SiC, SiC로 코팅된 소결 흑연, 성장 SiC, 불투명 석영, 코팅 석영, 또는 처리 및 퍼징 가스들에 의한 화학적 파괴에 저항하는 임의의 유사하고 적합한 재료로 만들어질 수 있다.
[0024] 라이너 조립체(163)는 베이스 링(136)의 내부 원주 내에 내포되거나 내부 원주에 의해 둘러싸이도록 크기가 정해진다. 라이너 조립체(163)는 처리 챔버(100)의 금속 벽들로부터 내부 볼륨(예컨대, 처리 볼륨(156) 및 퍼지 가스 볼륨(158))을 차폐한다. 라이너 조립체(163)가 단일 본체로서 도시되어 있지만, 라이너 조립체(163)는 상이한 구성들을 갖는 하나 이상의 라이너들을 포함할 수 있다. 기판 지지대(106)로부터 기판(625)의 후면을 가열한 결과로서, 기판 지지대(106) 상의 온도 측정들/온도 제어를 위한 광학 고온계(118)의 사용이 수행될 수 있다. 광학 고온계(118)에 의한 이러한 온도 측정은 또한 기판(125)의 디바이스 측(116) 상에서 행해질 수 있다.
[0025] 반사기(122)는 상부 돔(128) 외부에 선택적으로 배치되어 기판(125)에서 방사되는 빛을 다시 기판(125)으로 반사할 수 있다. 반사기(122)는 클램프 링(130)을 사용하여 상부 돔(128)에 고정될 수 있다. 반사기(122)는 알루미늄 또는 스테인리스 강과 같은 금속으로 만들어질 수 있다. 반사 효율은 반사기 영역을 금과 같은 고반사 코팅으로 코팅함으로써 향상될 수 있다. 반사기(122)는 냉각원에 연결된 하나 이상의 채널들(126)을 가질 수 있다. 채널들(126)은 반사기(122)를 냉각시키기 위해 반사기(122)의 일 측에 형성된 통로와 연결된다. 통로는 물과 같은 유체의 유동을 전달하도록 구성되며, 반사기(122)의 일 측을 따라 수평으로 진행될 수 있다.
[0026] 기판 처리 시스템(101)은 가스 회로(180)를 포함한다. 가스 회로(180)는 복수의 질량 유동 제어기(MFC)들(181a-181d)을 포함한다. MFC들(181a-181d) 각각은 개개의 MFC(181a-181d)에 가스를 공급하기 위해 개개의 가스 소스(182a-182d)에 커플링된다. 하나 이상의 전달 라인들(183a-183d)(4개가 도시됨)은 MFC들(181a-181d)과 처리 챔버(100) 사이에 커플링되어, MFC들(181a-181d)로부터 가스들을 처리 볼륨(156) 및/또는 퍼지 가스 볼륨(158)으로 공급한다. 하나 이상의 다이버터 라인들(184)(하나가 도시됨)은 MFC들(181a-181d)과 질량 유동 검증기(186) 사이에 커플링된다. 질량 유동 검증기(186)는 저장 탱크(185)를 통해 하나 이상의 다이버터 라인들(184)에 커플링된다. 복수의 밸브들(187a-187d)은 하나 이상의 다이버터 라인들(184)(하나가 도시되어 있지만, 밸브들(187a-187d) 각각에 대한 전용 다이버터 라인이 고려됨)을 따라 배치되고, MFC들(181a-181d)과 전달 라인들(183a-183d) 사이에 커플링된다. 밸브들(187a-187d)은 3방향 및/또는 4방향 밸브들(3방향 밸브가 도시됨)일 수 있다. 밸브들(187a-187d)은 제1 포지션, 제2 포지션 및 제3 포지션 사이에서 작동 가능하다. 제1 포지션에서, 개개의 밸브(187a-187d)는 개개의 MFC(181a-198d)로부터 처리 챔버(100)로 가스를 유동시킨다. 제2 포지션에서, 개개의 밸브(187a-187d)는 개개의 MFC(181a-198d)로부터 저장 탱크(185)로 가스를 유동시킨다. 제3 포지션에서, 개개의 밸브(187a-187d)는 가스가 저장 탱크(185) 또는 처리 챔버(100)로 흐르는 것을 차단한다.
[0027] MFC들(181a-181d)은 처리 가스들(예컨대, 증착 가스들, 주입 가스들, 산화 가스들, 에칭 가스들 및/또는 도펀트 가스들) 및 퍼지 가스들을 처리 챔버(100)에 전달한다. MFC들(181a-181d)은 이와 같은 가스들의 유량도 제어한다. 예를 들어, MFC들(181a-181d)은 이질소(N2), 수소(H2), 염화수소(HCL), 디클로로실란(DCS), 실란(SiH4), 메틸실란(CH3-SiH3), 포스핀(PH3), 및/또는 디보란(B2H6) 중 하나 이상을 포함할 수 있는 가스들의 유량들을 전달 및 제어한다. 본 개시내용은 다른 가스들이 사용될 수 있음을 고려한다.
[0028] 일 예로서, 제1 MFC(181a)로부터 공급되는 처리 가스는 베이스 링(136)의 측벽에 형성된 제1 가스 유입구(174)를 통해 처리 볼륨(156)으로 유입된다. 제1 가스 유입구(174)는 처리 가스를 일반적으로 반경 방향의 내측 방향으로 지향시키도록 구성된다. 에피택셜 필름 형성 처리 동안, 기판 지지대(106)는 제1 가스 유입구(174)에 인접하고 이와 거의 동일한 높이(elevation)에 있는 처리 포지션에 로케이팅될 수 있고, 이는 처리 가스가 유동 경로(173)를 따라 위로 그리고 만곡하게, 층류(laminar flow)로 기판(125)의 상부 표면을 가로질러 흐르도록 하는 것을 용이하게 한다. 처리 가스는 제1 가스 유입구(174)에 대향하는 처리 챔버(100)의 측면에 로케이팅된 가스 배출구(178)를 통해 (유동 경로(175)를 따라) 처리 볼륨(156)을 빠져나간다. 가스 출구(178)를 통한 처리 가스의 제거는 거기에 커플링된 진공 펌프(180)에 의해 용이해질 수 있다. 제1 가스 유입구(174)와 가스 배출구(178)가 서로 정렬되고 거의 동일한 높이에 배치되기 때문에, 이와 같은 평행 어레인지먼트는, 상부 돔(128)과 조합될 때, 기판(125)을 가로질러 일반적으로 평면적이고 균일한 가스 유동을 가능하게 하는 것으로 여겨진다. 추가의 방사상 균일성은 기판 지지대(106)를 통한 기판(125)의 회전에 의해 제공될 수 있다.
[0029] 다른 예로서, 퍼지 가스는 베이스 링(136)의 측벽에 형성된 선택적인 제2 가스 유입구(164)(또는 제1 가스 유입구(174))를 통해 제2 MFC(181b)로부터 퍼지 가스 볼륨(158)으로 공급될 수 있다. 제2 가스 유입구(164)는 제1 가스 유입구(174) 아래의 높이에 배치된다. 원형 실드(167) 또는 예열 링을 사용하는 경우, 원형 실드 또는 예열 링은 제1 가스 유입구(174)와 제2 가스 유입구(164) 사이에 배치될 수 있다. 어느 경우든, 제2 가스 유입구(164)는 일반적으로 반경 방향의 내측 방향으로 퍼지 가스를 지향시키도록 구성된다. 에피택셜 필름 형성 처리 동안, 기판 지지대(106)는 퍼지 가스가 층류로 기판 지지대(106)의 후면(104)에 걸쳐 유동 경로(165)를 따라 아래로 그리고 만곡하게 흐르도록 하는 포지션에 로케이팅될 수 있다. 임의의 특정 이론에 얽매이지 않고, 퍼지 가스의 유동은 처리 가스의 유동이 퍼지 가스 볼륨(158)으로 들어가는 것을 방지하거나 실질적으로 회피하는 것을 용이하게 하거나, 퍼지 가스 영역(158)(예컨대, 기판 지지대(106) 아래의 영역)으로 들어가는 처리 가스의 확산을 감소시키는 것으로 여겨진다. 퍼지 가스는 (유동 경로(166)를 따라) 퍼지 가스 볼륨(158)을 빠져나가고, 제2 가스 유입구(164)에 대향하는 처리 챔버(100)의 측면 상에 로케이팅된 가스 배출구(178)를 통해 처리 챔버(100)의 외부로 배출된다.
[0030] 가스 회로(180)의 다른 MFC들(예컨대, 제3 MFC(181c) 및 제4 MFC(181d))은 동일한 제1 유입구(174) 및/또는 동일한 제2 유입구(164)를 통해 가스들을 유입하도록 구성될 수 있거나, 다른 가스 유입구들(예컨대, 제3 가스 유입구 및/또는 제4 가스 유입구)을 통해 가스들을 유입하도록 구성될 수 있다.
[0031] 처리 챔버(100)가 에피택셜 증착 챔버로 도시 및 기술되었지만, 본 개시내용의 양상들은 화학 기상 증착(CVD) 챔버들, 원자층 증착(ALD) 챔버들, 물리적 기상 증착(PVD) 챔버들, 에칭 챔버들, 이온 주입 챔버들, 산화 챔버들 및/또는 다른 처리 챔버들과 같은 다른 챔버들 및 다른 기판 처리 동작들과 관련하여 사용될 수 있다.
[0032] 기판 처리 시스템(101)은 가스 회로(180)에 커플링된 제어기(190)를 포함한다. 제어기(190)는 중앙 처리 유닛(CPU)(191), 명령들을 포함하는 메모리(192), 및 CPU(191)에 대한 지원 회로들(193)을 포함한다. 제어기(190)는 가스 회로(180)의 MFC들(181a-181d)을 직접 또는 다른 컴퓨터들 및/또는 제어기들을 통해 제어한다. 제어기(190)는 다양한 챔버들 및 장비, 및 그 위나 내부의 하위 프로세서들을 제어하기 위해 산업 환경에서 사용되는 임의의 형태의 범용 컴퓨터 프로세서이다.
[0033] 메모리(192) 또는 비-일시적 컴퓨터 판독가능 매체는, 로컬 또는 원격으로, RAM(Random Access Memory), ROM(Read Only Memory), 플로피 디스크, 하드 디스크, 플래시 드라이브 또는 임의의 다른 형태의 디지털 스토리지와 같은 용이하게 이용 가능한 메모리 중 하나 이상이다. 지원 회로들(193)은 CPU(191)(프로세서)를 지원하기 위해 CPU(191)에 커플링된다. 지원 회로들(193)은 캐시, 전력 공급 장치들, 클록 회로들, 입력/출력 회로부 및 서브시스템들 등을 포함한다. 기판 처리 파라미터들(예컨대, 처리 레시피) 및 동작들은 가스 회로(180) 및 처리 챔버(100)와 같은 시스템(101)의 동작들을 제어하기 위해 제어기(190)를 특정 목적 제어기로 전환(turn)하도록 실행되거나 호출되는 소프트웨어 루틴으로서 메모리(192)에 저장된다. 제어기(190)는 본원에 기술된 방법들 중 임의의 방법을 수행하도록 구성된다. 메모리(192)에 저장된 명령들은, 실행될 때, 방법(300)의 동작(302) 내지 동작(324) 중 하나 이상을 수행하게 한다.
[0034] 본원에 기술된 다양한 동작들(예컨대, 방법(300)의 동작(302) 내지 동작(324))은 제어기(190)를 사용하여 자동적으로 수행될 수 있거나, 사용자에 의해 수행되는 특정 동작들로 자동적으로 또는 수동적으로 수행될 수 있다.
[0035] 제어기(190)는 MFC들(181a-181d)에 대한 교정 동작을 수행하도록 구성된다. 제어기(190)는 교정 동작을 위해 복수의 MFC들(181a-181d)을 우선순위화한다. MFC들(181-181d)에 대한 교정 동작은, 처리 챔버(100)의 유휴 시간들 동안, 한 번에 하나의 MFC(181a-181d)에 대해 수행된다. 유휴 시간들은, 기판(125)이 처리 챔버(100)로 이송되기 전 및 기판(125)이 처리 챔버(100)에서 제거된 후와 같이, 기판(125)이 처리 챔버(100)의 처리 볼륨(156)의 외부에 있는 동안의 시간들이다. 교정 동작 동안, 제어기(190)는 타깃 유량으로 MFC(181a-181d)를 통해 가스를 유동시키기 위해 MFC(181-18d)를 유동 모드로 설정한다. 제어기(190)는 가스를 저장 탱크(185) 및 질량 유동 검증기(186)로 지향하도록 대응하는 밸브(187a-187d)에 지시한다. 제어기(190)는 복수의 설정점들에 대응하는 복수의 유량들을 통해 가스의 타깃 유량을 스테핑(step)하도록 MFC(181a-191d)에 지시한다. 복수의 설정점들에 대응하는 복수의 유량들은 개개의 MFC(181a-181d)의 전체 동작 범위의 최소 유량 및 최대 유량을 포함할 수 있다. 복수의 설정점들에 대응하는 복수의 유량들은 유동 레시피의 최소 유량 및 최대 유량을 포함할 수 있다. 복수의 유량들은 감소하는 순서 시퀀스(order sequence), 증가하는 순서 시퀀스 및/또는 무작위 순서 시퀀스로 스테핑될 수 있다. 제어기(190)는 복수의 설정점들 각각에서 저장 탱크(185)로 전환된 가스의 측정 유량을 검증하도록 질량 유동 검증기(186)에 지시한다. 본 개시내용은 저장 탱크(185)가 생략될 수 있고 질량 유동 검증기(186)가 하나 이상의 다이버터 라인들(185)에 직접 커플링될 수 있음을 고려한다. 이와 같은 실시예에서, 질량 유동 검증기(186)는 복수의 설정점들 각각에서 하나 이상의 다이버터 라인들(185)에서 전환된 가스의 측정 유량을 검증한다.
[0036] 복수의 설정점들에 대응하는 복수의 유량들을 통해 타깃 유량을 스테핑하면, 처리 레시피에서 사용될 수 있는 복수의 유량들을 검증하는 것을 용이하게 한다. 질량 유동 검증기(186)는 복수의 설정점들의 각각의 설정점에 대한 측정 유량을 제어기(190)로 전송한다. 복수의 설정점들의 각각의 설정점에 대해, 제어기(190)는 측정 유량을 사용하여 타깃 유량에 대한 측정 유량의 유동비를 결정하고, 측정 유량을 실질적으로 타깃 유량과 동일하게 보정하는 보정 유량(corrected flow rate)을 결정한다. 제어기(190)는 타깃 유량을 보정 계수로 나누어 각각의 설정점에 대한 보정 유량을 결정한다. 제어기(190)는 복수의 설정점들에 걸쳐 보정 유량들을 포함하는 보정 유동 곡선을 생성한다. 보정 유동 곡선을 사용하면, 보정 유량은 보정 유동 곡선을 따라 어디에서든지, 예를 들어, 개개의 MFC(181a-181d)의 전체 동작 범위를 따라 어디에서든지 식별(예컨대, 추론)될 수 있다. 일 예로서, 제2 설정점에 대응하는 제2 보정 유량이 식별될 수 있다. 제2 설정점에 대응하는 제2 보정 유량은 보정 유동 곡선을 따라 배치되고, 제2 설정점이 검증을 위한 복수의 설정점들 중 하나로 사용되지 않도록 복수의 설정점들과는 상이하다. 다른 실시예들과 조합될 수 있는 일 실시예에서, 제2 설정점은 복수의 설정점들 중 2개의 설정점들 사이에 있다. 다른 실시예들과 조합될 수 있는 일 실시예에서, 제2 설정점은 복수의 설정점들의 외부에 있다.
[0037] 후속 교정은 보정 유동 곡선에 포함된 동일한 설정점(들) 및/또는 보정 유동 곡선에 포함된 설정점(들)과는 서로 다른 상이한 설정점(들)에 대한 제2 보정 유동 곡선을 생성할 수 있다. 다른 예들과 조합될 수 있는 일 예에서, 보정 유동 곡선을 생성하기 위해, 검증 동안, 상이한 설정점(들)이 사용되지 않았다. 동일한 설정점(들) 및/또는 상이한 설정점(들)에 대응하는 보정 유량들을 포함하는 제2 보정 유동 곡선은 새로운 유동 곡선을 생성하기 위해 보정 유동 곡선과 병합될 수 있다.
[0038] 제어기(190)는, 개개의 MFC(181a-181d)에 대한 교정 동작의 이전 반복 동안, 제어기(190)에 의해 수집된 기존의 유량 데이터와 복수의 설정점들에 걸친 보정 유량들을 비교할 수 있다.
[0039] 제어기(190)는 그래프 및/또는 표의 형태, 즉, 복수의 설정점들, 복수의 설정점들에 걸친 타깃 유량들, 복수의 설정점들에 걸친 측정 유량들, 복수의 설정점들에 걸친 유동비들, 및/또는 복수의 설정점들에 걸친 보정 유량들로 디스플레이(예컨대, 사용자 인터페이스) 상에 출력 및 디스플레이할 수 있다.
[0040] 제어기(190)의 메모리(192)에 저장된 명령들은 본원에 기술된 동작들에 더하여 실행될 수 있는 하나 이상의 기계 학습/인공 지능 알고리즘들을 포함할 수 있다. 일 예로서, 제어기(190)에 의해 실행되는 기계 학습/인공 지능 알고리즘은 교정 동작을 수행하기 위해 MFC들(181a-181d)을 우선순위화할 수 있다. 제어기(190)는 각각의 MFC(181a-181d)에 대한 동작 시간과 같은 동작 파라미터들을 모니터링 및 저장할 수 있고, 각각의 MFC에 대한 동작 시간에 따라 순위 목록에서 복수의 MFC들(181a-181d)을 순위화할 수 있다. 순위 목록은 기계 학습/인공 지능 알고리즘을 사용하여 지속적으로 모니터링되고 업데이팅될 수 있다. 기계 학습/인공 지능 알고리즘은 순위 목록을 모니터링하고 업데이팅하기 위해 MFC들(181a-181d)에 대한 유량 변경들 및/또는 동작 결함들과 같은 이전의 동작 파라미터들을 고려할 수 있다. 또 다른 예로서, 제어기(190)에 의해 실행되는 기계 학습/인공 지능 알고리즘은 처리 레시피 및/또는 처리 레시피 또는 다른 처리 레시피를 사용하여 이전의 처리 동작들 동안에 기록된 데이터에 따라 복수의 설정점들 및 최종 유량을 선택할 수 있다. 제어기(190)의 기계 학습/인공 지능 알고리즘은 처리 챔버(100)에서 이전에 사용된 처리 레시피를 추가로 모니터링하고 저장할 수 있으며, 저장된 처리 레시피는 복수의 설정점들 및 최종 유량을 선택하기 위해 기계 학습/인공 지능 알고리즘에 의해 사용될 수 있다.
[0041] 기계 학습/인공 지능 알고리즘은 복수의 설정점들의 순위를 매기는 제2 순위 목록에 따라 교정 동작에서 사용하기 위해 복수의 설정점들(처리 레시피에 사용되는 유량들에 대응함)을 우선순위화할 수 있다.
[0042] 도 2는 일 구현에 따른 질량 유동 제어기(MFC)(200)의 개략적인 단면도이다. MFC(200)는 도 1에 도시된 MFC들(181a-181d) 각각으로 사용될 수 있다. MFC(200)는 가스 소스로부터 유입구(207)를 통해 가스를 수용한다. 유입구(207)를 통해 수용된 가스는 바이패스(220)에 포지셔닝된 유동 제한 디바이스(211)와 만난다. 센서 디바이스(204)는 MFC(200)를 통한 가스의 유량을 측정하도록 구성된다. 일단 가스가 센서 디바이스(204) 및/또는 제한 디바이스(211)를 통과하면, 가스는 유량 제어 밸브(206)와 만난다. 유량 제어 밸브(206)를 통과한 후, 가스는 배출구(221)를 통해 밸브들(181a-181d) 중 하나로 흐른다. 유량 제어 밸브(206)는 압전 액추에이터(piezo actuator)(227) 및 금속 다이어프램(metal diaphragm)(228)을 포함한다.
[0043] MFC(200)는 제어기(190)에 커플링된다. MFC(200)는 제어기(190)로부터 유량 입력 신호(223)(예컨대, 교정 동작 동안의 타깃 유량을 포함함)를 수신하고, 유량 출력 신호(224)를 제어기(190)로 전송한다. 유량 출력 신호(224)는 센서 디바이스(204)를 사용하여 측정될 수 있다. 질량 유동 검증기(186)를 사용하여 복수의 설정점들에 걸쳐 검증된 측정 유량들은 센서 디바이스(204)를 사용하여 측정된 유량 출력 신호(224)와 상이하고 별개이다. MFC(200)는 전원으로부터 전력 공급(225)을 받는다.
[0044] 드리프트 또는 시프트 온 제로로 인해, 예를 들어, 질량 유동 검증기(186)를 사용하여 검증된 측정 유량들은 동작 처리 목적들에 대해 유량 출력 신호들(224)보다 더 정확할 수 있다.
[0045] MFC(200)는 모듈(230)을 포함한다. 모듈(230)은 센서 디바이스(204)에 커플링된 A/D 컨버터(231), 유량 제어 밸브(206)에 커플링된 밸브 드라이버 회로(232), 및 CPU(233)를 포함한다. 모듈(230)은 또한 드라이버/수신기(234) 및 D/A-A/D 변환기(235)를 포함한다.
[0046] 도 3a는 일 구현에 따른 기판 처리 시스템의 복수의 질량 유동 제어기(MFC)들에 대한 교정 동작을 수행하는 방법(300)의 개략적인 블록도이다. 방법(300)의 동작(302)은 교정 동작을 위해 복수의 MFC들을 우선순위화하는 것을 포함한다. 동작(302)의 우선순위화는 복수의 MFC들의 각각의 MFC에 대한 동작 시간을 결정하는 것; 및 각각의 MFC에 대한 동작 시간에 따라 순위 목록에서 복수의 MFC들을 순위화하는 것을 포함한다. 각각의 MFC에 대한 동작 시간은 개개의 MFC에 대한 이전의 교정 이후 개개의 MFC가 유동 모드로 설정된 총 시간이다. 복수의 MFC들의 각각의 MFC의 동작 시간은 최대 동작 시간으로부터 최소 동작 시간에 이르기까지 순위 목록 내에 순위화된다.
[0047] 본 개시내용은 사용자가 교정 동작을 위한 복수의 MFC들의 서브세트를 수동으로 선택할 수 있다는 것을 고려한다.
[0048] 방법(300)의 동작(304)은 순위 목록에 따라 그리고 기판 처리 시스템에 대한 유휴 시간 동안, 복수의 MFC들에 대한 교정 동작을 수행하는 것을 포함한다. 유휴 시간은 기판이 기판 처리 시스템의 처리 챔버의 처리 볼륨 외부에 있는 동안의 시간이다. 교정 동작은, 복수의 MFC들 중 다른 MFC들보다 먼저 최대 동작 시간에 대응하는 제1 MFC에 대해 교정 동작이 수행되도록, 순위 목록에 따라 수행된다. 제1 MFC에 대한 교정 동작이 수행된 후, 유휴 시간이나 하나 이상의 추가 유휴 시간 동안, 하나 이상의 다른 MFC들에 대한 교정 동작이 수행된다. 복수의 MFC들에 걸쳐 교정 동작을 수행하는 것은 우선순위화되고 복수의 유휴 시간들에 걸쳐 시차를 두고 수행되며, 복수의 유휴 항목들은 기판 처리 동작의 상이한 스테이지들 및/또는 기판 처리 동작이 수행되는 상이한 기판들에 의해 분리될 수 있다.
[0049] 동작(304)의 교정 동작은 동작 간격들에서 수행(예컨대, 트리거됨)될 수 있다. 다른 실시예들과 조합될 수 있는 일 실시예에서, 동작 간격들은 처리되는 매 1,000개의 기판들과 같은 기판 카운트 간격들이다. 다른 실시예들과 조합될 수 있는 일 실시예에서, 동작 간격들은 유휴 시간이 30분을 초과하는 발생들과 같은 유휴 시간 간격들이다. 교정 동작은 또한, 개개의 MFC에 대한 (교정 동작의 이전 반복들로부터의) 기존 보정 유량들을 분석하고 개개의 MFC의 드리프트를 예측함으로써 수행(예컨대, 트리거)될 수 있다. 분석 및 예측은 제어기(190)의 기계 학습/인공 지능 알고리즘에 의해 수행될 수 있다.
[0050] 도 3b는 일 구현에 따른 도 3a에 도시된 동작(304)의 교정 동작을 수행하는 개략적인 블록도이다. 교정 동작은 순위 목록의 제1 MFC에 대해 먼저 수행된다. 교정 동작의 동작(312) 내지 동작(324)은, 기계에 대한 하나 이상의 유휴 시간 동안, 복수의 MFC들의 각각의 MFC에 대해 하나씩 그리고 순위 목록의 순서대로 반복될 수 있다.
[0051] 동작(312)은 복수의 MFC들 중 제1 MFC를 타깃 유량으로 제1 MFC를 통해 가스를 유동시키는 유동 모드로 설정하는 것을 포함한다.
[0052] 동작(314)은 가스를 질량 유동 검증기로 지향시키는 것을 포함한다. 동작(316)은 복수의 설정점들에 대응하는 복수의 유량들을 통해 가스의 타깃 유량을 스테핑하는 것을 포함한다. 복수의 설정점들에 대응하는 복수의 유량들은 제1 MFC의 전체 동작 범위의 최소 유량 및 최대 유량을 포함할 수 있다. 복수의 설정점들에 대응하는 복수의 유량들은 유동 레시피의 최소 유량 및 최대 유량을 포함할 수 있다. 복수의 유량들은 감소하는 순서 시퀀스, 증가하는 순서 시퀀스 및/또는 무작위 순서 시퀀스로 스테핑될 수 있다.
[0053] 동작(318)은 질량 유동 검증기를 사용하여 복수의 설정점들 각각에서 가스의 측정 유량을 검증하는 것을 포함한다. 최종 유량 및 복수의 설정점들은 사용자에 의해 선택될 수 있거나, 제어기(예컨대, 제어기(190))에 의해 선택될 수 있다. 다른 실시예들과 조합될 수 있는 일 실시예에서, 설정점들 및 최종 유량은, 처리 동작(예컨대, 에피택셜 증착 동작) 동안, 개개의 제1 MFC에 대해 사용되는 처리 레시피의 복수의 스테이지들에 대응한다(예컨대, 그에 따라 선택됨). 다른 실시예들과 결합될 수 있는 일 실시예에서, 동작(302)은 교정 동작에서 사용하기 위해 각각의 MFC에 대한 복수의 설정점들(처리 레시피에서 사용되는 유량들에 대응함)을 우선순위화하는 것을 포함한다. 복수의 설정점들은 복수의 설정점들의 순위를 매기는 제2 순위 목록에 따라 우선순위화된다. 제2 순위 목록은, 설정점들이 얼마나 자주 사용되는지 및/또는 설정점들이 얼마나 최근에 사용되었는지에 기초하여, 복수의 설정점들을 순위화할 수 있다.
[0054] 동작(320)은, 복수의 설정점들의 각각의 설정점에 대해, 측정 유량과 타깃 유량 사이의 유동비를 결정하는 것을 포함한다. 동작(322)은 복수의 설정점들의 각각의 설정점에 대해, 타깃 유량과 실질적으로 동일하도록 측정 유량을 보정하는 보정 유량을 결정하는 것을 포함한다. 제1 MFC에 대해 드리프트가 발생하면, 보정 유량은 타깃 유량과 실질적으로 동일하도록 실제 유량(측정 유량)을 보정함으로써 드리프트를 보정한다. 각각의 설정점에 대한 유동비는 측정 유량을 타깃 유량으로 나누는 것에 의해 결정된 비율이다. 각각의 설정점에 대한 보정 유량은 타깃 유량을 보정 계수로 나누는 것에 의해 결정된다. 다른 실시예들과 조합될 수 있는 일 실시예에서, 보정 계수는 유동비(비율)와 동일하다. 각각의 설정점에 대한 보정 계수는 다중점 곡선(multi-point curve)으로 플로팅될 수 있다. 다른 실시예들과 조합될 수 있는 일 실시예에서, 보정 계수는 제1 MFC에 대한 교정 동작의 하나 이상의 이전의 반복들에서 계산된 하나 이상의 기존 비율들 및 유동비의 평균이다.
[0055] 결정된 유동비(들)는, 제1 허용 범위를 벗어나거나 제1 허용 범위보다 좁은 제2 허용 범위 내에 있는 경우, 무시되고(예컨대, 보정 계수 결정들에서 제외됨), 삭제될 수 있으며, 그리고/또는 유동비들과 동일한 보정 계수들은 무시되고 삭제될 수 있다(예컨대, 제1 MFC의 동작 동안에 사용되지 않음). 유동비(들) 및/또는 보정 계수들은 제1 허용 범위 내에 있고 제2 허용 범위를 벗어나는 경우 허용된다. 다른 예들과 결합될 수 있는 일 예에서, 제1 허용 범위는 0.7 내지 1.3이다. 다른 예들과 결합될 수 있는 일 예에서, 제2 허용 범위는 0.995 내지 1.005이다. 다른 제1 및 제2 허용 범위들이 고려된다. 제1 및 제2 허용 범위들은 사용자에 의해 설정될 수 있고, 그리고/또는 예를 들어, 기계 학습/인공 지능 알고리즘에 의해 결정될 수 있다. 제1 및 제2 허용 범위들은 교정 동작의 이전 반복들로부터의 기존 유동비 데이터 및/또는 기존 보정 계수 데이터에 대한 이력 편차 동작들을 수행함으로써 결정될 수 있다. 유동비(들)가 제1 허용 범위를 벗어나거나 제2 허용 범위 내에 있으면, 경고를 디스플레이에 전송하는 것과 같이, 경고가 생성되어 사용자에게 전송될 수 있다. 경고는 특정 유동비(들)가 제1 허용 범위를 벗어나거나 제2 허용 범위 내에 있음을 나타낼 수 있다.
[0056] 동작(324)은 보정 유동 곡선을 갖는 그래프를 생성하는 것을 포함한다. 그래프를 생성하는 것은 그래프에서 복수의 설정점들의 각각의 설정점에 대한 보정 유량을 플로팅하는 것을 포함한다. 그래프를 생성하는 것은 또한 제1 MFC에 대한 보정 유동 곡선을 생성하기 위해 매끄러운 곡선 피팅(smooth curve fitting)을 사용하여 그래프 내의 복수의 설정점들의 각각의 설정점에 대한 보정 유량을 연결하는 것을 포함한다. 그래프에는 교정 동작의 이전 반복에서 생성된 제1 MFC에 대한 기존 유동 곡선도 포함될 수 있다. 보정 유동 곡선은 기존 유동 곡선과 비교하여 허용되거나 거절될 수 있다. 허용되면, 보정 유동 곡선은 기존 유동 곡선과 병합되어, 보정 유동 곡선과 기존 유동 곡선을 가중하고 평균화함으로써 새로운 유동 곡선을 생성한다.
[0057] 보정 유동 곡선과 기존 유동 곡선의 가중 및 평균화는 평균화를 수행하기 전에 보정 유동 곡선의 보정 유량들과 기존 유동 곡선의 기존 유량들에 가중치를 할당하는 것을 포함한다. 할당된 가중치들은 개개의 설정점에서 기존 유량에 대한 보정 유량의 비율 및 기존 유량들의 지속 기간(durational age)을 고려할 수 있다. 본 개시내용은, 0.7 내지 1.3의 제1 허용 범위를 벗어나거나 0.995 내지 1.005의 제2 허용 범위 내에 있는 경우, 개개의 MFC의 보정 유량은 무시되고(예컨대, 평균화로부터 제외됨) 삭제될 수 있음을 고려한다. 비율이 제1 허용 범위 내에 있고 제2 허용 범위를 벗어나면, 보정 유량은 허용된다. 다른 제1 및 제2 허용 범위들이 고려된다. 제1 및 제2 허용 범위들은 사용자에 의해 설정될 수 있고, 그리고/또는 예를 들어, 기계 학습/인공 지능 알고리즘에 의해 결정될 수 있다. 제1 및 제2 허용 범위들은 교정 동작의 이전 반복들로부터의 기존 비율 데이터에 대한 이력 편차 동작들을 수행함으로써 결정될 수 있다. 비율이 제1 허용 범위를 벗어나거나 제2 허용 범위 내에 있으면, 경고를 디스플레이에 전송하는 것과 같이, 경고가 생성되어 사용자에게 전송될 수 있다. 경고는 비율이 제1 허용 범위를 벗어나거나 제2 허용 범위 내에 있음을 나타낼 수 있다. 사용자는 제1 허용 범위를 벗어나거나 제2 허용 범위 내에 있는 비율을 삭제할지 여부를 선택할 수 있다.
[0058] 다른 실시예들과 조합될 수 있는 일 실시예에서, 보정 유동 곡선(허용되는 경우)은 각각의 설정점에서 보정 계수를 전역 보정 계수(global correction factor)로 가중하고 평균화함으로써 복수의 설정점들에 걸쳐 전역 보정 계수와 병합된다. 전역 보정 계수는 동작(304)의 교정 동작과 유사한 이전의 단일 설정점 교정 동작을 사용하여 결정될 수 있다.
[0059] 허용되면, 새로운 유동 곡선은 개개의 MFC를 동작시키는 데 사용될 수 있다. 보정 유동 곡선이 기존 유동 곡선과 상이하면, 보정 유동 곡선은 거절될 수 있다. 보정 유동 곡선이 거절되면, 기존 유동 곡선은 개개의 MFC를 동작시키는 데 사용될 수 있다. 보정 유동 곡선이 허용되고 기존 유동 곡선이 없으면, 보정 유동 곡선은 개개의 MFC를 동작시키는 데 사용될 수 있다.
[0060] 보정 유동 곡선, 기존의 낮은 곡선 및/또는 새로운 유동 곡선은 그래프 및/또는 표의 형태로 디스플레이(예컨대, 사용자 인터페이스) 상에 출력 및 디스플레이될 수 있다.
[0061] 도 3a를 참조하면, 방법(300)의 동작(306)은, 기판 처리 동작(예컨대, 에피택셜 증착 동작) 동안, 복수의 MFC들 중 하나 이상(예컨대, 제1 MFC)을 동작시키는 것을 포함한다. 동작되는 각각의 MFC는 새로운 유동 곡선(선택된 경우), 보정 유동 곡선(선택된 경우), 기존 유동 곡선(선택된 경우) 또는 전역 보정 계수(선택된 경우)에 따라 동작된다. 복수의 MFC들 중 하나 이상은 기판 처리 동작이 섭씨 200도 내지 섭씨 800도의 범위 내인 온도에서 수행되는 동안 동작된다. 개개의 MFC는 동작 설정점들에 대응하는 보정 유량들을 사용하여 동작 설정점들에 걸쳐 동작된다. 보정 유량들은 곡선들 중 하나를 따라 배치된다(선택된 곡선에 따라 다름). 보정 유량은 보정 유동 곡선을 따라 어디에서든, 예를 들어, 개개의 MFC의 전체 동작 범위에 따라 어디에서든 식별될 수 있다. 일 예로서, 제2 설정점에 대응하는 제2 보정 유량이 식별될 수 있다. 제2 설정점은 동작 설정점들 중 하나일 수 있다. 제2 설정점에 대응하는 제2 보정 유량은 보정 유동 곡선을 따라 배치되고, 제2 설정점이 검증을 위한 복수의 설정점들 중 하나로 사용되지 않도록 복수의 설정점들과 상이하다. 다른 실시예들과 조합될 수 있는 일 실시예에서, 제2 설정점은 복수의 설정점들 중 2개의 설정점들 사이에 있다. 다른 실시예들과 조합될 수 있는 일 실시예에서, 제2 설정점은 복수의 설정점들의 외부에 있다.
[0062] 본 개시내용은 보정 유동 곡선(보정 유량들을 가짐) 및/또는 새로운 유동 곡선(새로운 유량들을 가짐)은, 기판 처리 동작 동안, 개개의 MFC의 동작에서 아직 보정 유동 곡선 및/또는 새로운 유동 곡선을 구현하지 않고 데이터 수집 모드에서 생성되어 메모리에 저장될 수 있음을 고려한다.
[0063] 도 4는 일 구현에 따른 그래프(400)의 개략도이다. 그래프(400)의 X축은 (SCCM(standard cubic centimeter per minute) 단위로) 타깃 유량들을 포함하고, 그래프(400)의 Y축은 (SCCM 단위로) 보정 유량들을 포함한다. 기존 유동 곡선(410) 및 보정 유동 곡선(430)은 그래프(400)에 플로팅되어 있다. 기존 유동 곡선(410)은 복수의 설정점들(411a-411d) 및 매끄러운 곡선 피팅을 사용하여 설정점들(411a-411d)을 통해 연장되는 곡선 피팅 라인(curved fitting line)(412)을 포함한다. 보정 유동 곡선(430)은 복수의 설정점들(431a-431k) 및 매끄러운 곡선 피팅을 사용하여 설정점들(431a-431k)을 통해 연장되는 곡선 피팅 라인(432)을 포함한다.
[0064] 본 개시내용은 가중 및 평균화에 의한 보정 유동 곡선(430) 및 기존 유동 곡선(410)의 병합(방법(300)의 동작(324)과 관련하여 논의된 바와 같음)이 특정 타깃 유량에서 특정 설정점을 특정 타깃 유량에 배치된 곡선 피팅 라인들(412, 432) 중 하나에 따른 점(point)과 병합하는 것을 포함할 수 있음을 고려한다. 일 예로서, 설정점(411b)에서의 기존 유량은 설정점(411b)의 타깃 유량에 배치된 수직축(450)을 따른 설정점(411b)과 수직으로 정렬된 곡선 피팅 라인(432)을 따라 배치된 보정 유량으로 가중되고 평균화될 수 있다. 설정점(411b)에서의 기존 유량은 설정점(411b)에서의 새로운 보정 유량을 계산하기 위해 곡선 피팅 라인(432)을 따라 배치된 보정 유량으로 가중되고 평균화될 수 있다.
[0065] 본 개시내용의 장점들은 인-라인 처리(in-line process)에서 질량 유동 제어기(MFC)들을 자동적으로 보정하는 것, 동작 유량 범위들에 걸쳐 MFC들을 정확하게 보정하는 것, 감소된 가능성 또는 과잉 보정 및 과소 보정, 다양한 MFC들에 대한 애플리케이션의 모듈성, 비용 지출 절감 및 인력 소모 감소, 기계 가동 중지 시간 감소, 동작 지연 감소, 정확한 증착 및 강화된 증착 균일성, 및 스루풋 증가를 포함한다.
[0066] 일 예로서, 유휴 시간들 동안 MFC들을 하나씩 보정하고, 교정 동작을 위해 복수의 MFC들을 우선순위화하는 것은 기계 가동 중지 시간을 감소시키고 스루풋을 증가시키는 것을 용이하게 한다. 또 다른 예로서, 보정 유동 곡선(보정 유량들을 가짐)과 기존 유동 곡선(기존 유량들을 가짐)의 병합은 MFC들의 정확한 교정 및 보정을 용이하게 한다. 이와 같은 양상들은 증가된 효율, 증가된 스루풋 및 감소된 기계 중단 시간과 관련한 예상치 못한 결과들을 용이하게 하는 것으로 여겨진다.
[0067] 본원에 개시된 하나 이상의 양상들이 조합될 수 있다는 것이 고려된다. 일 예로서, 기판 처리 시스템(101), MFC(200), 방법(300), 동작(304) 및/또는 그래프(400) 중 하나 이상의 양상들, 특징들, 컴포넌트들 및/또는 속성들이 조합될 수 있다. 또한, 본원에 개시된 하나 이상의 양상들은 전술한 장점들의 일부 또는 전부를 포함할 수 있다는 것이 고려된다.
[0068] 전술한 바가 본 개시내용의 실시예들에 관한 것이지만, 본 개시내용의 다른 그리고 추가적인 실시예들이, 본 개시내용의 기본적인 범위를 벗어나지 않으면서 안출될 수 있다. 본 개시내용은 또한 본원에 기술된 실시예들의 하나 이상의 양상들이 기술된 다른 양상들 중 하나 이상의 양상들로 대체될 수 있음을 고려한다. 본 개시내용의 범위는 다음의 청구항들에 의해 결정된다.

Claims (20)

  1. 기판 처리 시스템의 복수의 질량 유동 제어기(MFC; mass flow controller)들에 대한 교정 동작을 수행하는 방법으로서,
    상기 교정 동작을 위해 상기 복수의 MFC들을 우선순위화(prioritizing)하는 단계 ― 상기 우선순위화하는 단계는,
    상기 복수의 MFC들의 각각의 MFC에 대한 동작 시간을 결정하는 단계, 및
    상기 각각의 MFC에 대한 동작 시간에 따라 순위 목록(rank list)에서 상기 복수의 MFC들을 순위화(ranking)하는 단계를 포함함 ―; 및
    상기 순위 목록에 따라 그리고 상기 기판 처리 시스템에 대한 유휴 시간 동안, 상기 복수의 MFC들에 대한 교정 동작을 수행하는 단계를 포함하며,
    상기 교정 동작은,
    타깃 유량으로 제1 MFC를 통해 가스를 유동시키기 위해 상기 제1 MFC를 유동 모드로 설정하는 것;
    상기 가스를 질량 유동 검증기로 지향시키는 것;
    복수의 설정점들에 대응하는 복수의 유량들을 통해 상기 가스의 타깃 유량을 스테핑(stepping)하는 것; 및
    상기 질량 유동 검증기를 사용하여 상기 복수의 설정점들 각각에서 상기 가스의 측정 유량(measured flow rate)을 검증하는 것을 포함하는,
    기판 처리 시스템의 복수의 질량 유동 제어기(MFC)들에 대한 교정 동작을 수행하는 방법.
  2. 제1 항에 있어서,
    상기 유휴 시간은, 기판이 상기 기판 처리 시스템의 처리 챔버의 처리 볼륨 외부에 있는 동안의 시간인,
    기판 처리 시스템의 복수의 질량 유동 제어기(MFC)들에 대한 교정 동작을 수행하는 방법.
  3. 제1 항에 있어서,
    상기 교정 동작은, 상기 복수의 설정점들의 각각의 설정점에 대해,
    상기 타깃 유량에 대한 상기 측정 유량의 유동비를 결정하는 것, 및
    상기 측정 유량을 보정하는 보정 유량(corrected flow rate)을 결정하는 것을 더 포함하는,
    기판 처리 시스템의 복수의 질량 유동 제어기(MFC)들에 대한 교정 동작을 수행하는 방법.
  4. 제3 항에 있어서,
    상기 보정 유량은, 상기 유동비가 제1 허용 범위를 벗어나거나 상기 제1 허용 범위보다 좁은 제2 허용 범위 내에 있는 경우, 무시되는,
    기판 처리 시스템의 복수의 질량 유동 제어기(MFC)들에 대한 교정 동작을 수행하는 방법.
  5. 제4 항에 있어서,
    상기 교정 동작은,
    상기 복수의 설정점들의 각각의 설정점에 대한 상기 보정 유량을 그래프에서 플로팅하는 것; 및
    상기 제1 MFC에 대한 보정 유동 곡선을 생성하기 위해 매끄러운 곡선 피팅(smooth curve fitting)을 사용하여, 상기 그래프에서 상기 복수의 설정점들의 각각의 설정점에 대한 상기 보정 유량을 연결하는 것을 더 포함하는,
    기판 처리 시스템의 복수의 질량 유동 제어기(MFC)들에 대한 교정 동작을 수행하는 방법.
  6. 제5 항에 있어서,
    상기 보정 유동 곡선을 따라 배치되고 그리고 상기 복수의 설정점들과는 상이한 제2 설정점에 대응하는 제2 보정 유량을 식별하는 단계를 더 포함하는,
    기판 처리 시스템의 복수의 질량 유동 제어기(MFC)들에 대한 교정 동작을 수행하는 방법.
  7. 제1 항에 있어서,
    상기 각각의 MFC에 대한 동작 시간은, 개개의 MFC에 대한 이전의 교정 이후 상기 개개의 MFC가 유동 모드로 설정된 총 시간이고, 그리고
    상기 복수의 MFC들의 각각의 MFC의 동작 시간은, 최대 동작 시간으로부터 최소 동작 시간에 이르기까지 상기 순위 목록에서 순위화되는,
    기판 처리 시스템의 복수의 질량 유동 제어기(MFC)들에 대한 교정 동작을 수행하는 방법.
  8. 제7 항에 있어서,
    상기 교정 동작은, 상기 복수의 MFC들 중 다른 MFC들보다 먼저 상기 최대 동작 시간에 대응하는 상기 제1 MFC에 대해 상기 교정 동작이 수행되도록 상기 순위 목록에 따라 수행되는,
    기판 처리 시스템의 복수의 질량 유동 제어기(MFC)들에 대한 교정 동작을 수행하는 방법.
  9. 기판 처리 시스템의 복수의 질량 유동 제어기(MFC)들에 대한 교정 동작을 수행하기 위한 비-일시적 컴퓨터 판독가능 매체로서,
    상기 비-일시적 컴퓨터 판독가능 매체는, 실행될 때, 복수의 동작들이 수행되게 하는 명령들을 포함하며,
    상기 복수의 동작들은,
    상기 교정 동작을 위해 상기 복수의 MFC들을 우선순위화하는 것 ― 상기 우선순위화하는 것은,
    상기 복수의 MFC들의 각각의 MFC에 대한 동작 시간을 결정하는 것; 및
    각각의 MFC에 대한 동작 시간에 따라 순위 목록에서 상기 복수의 MFC들을 순위화하는 것을 포함함 ―; 및
    상기 순위 목록에 따라 그리고 상기 기판 처리 시스템에 대한 유휴 시간 동안, 상기 복수의 MFC들에 대한 교정 동작을 수행하는 것을 포함하며,
    상기 교정 동작은,
    타깃 유량으로 제1 MFC를 통해 가스를 유동시키기 위해 상기 제1 MFC를 유동 모드로 설정하는 것;
    상기 가스를 질량 유동 검증기로 지향시키는 것;
    복수의 설정점들에 대응하는 복수의 유량들을 통해 상기 가스의 타깃 유량을 스테핑하는 것; 및
    상기 질량 유동 검증기를 사용하여 상기 복수의 설정점들 각각에서 상기 가스의 측정 유량을 검증하는 것을 포함하는,
    비-일시적 컴퓨터 판독가능 매체.
  10. 제9 항에 있어서,
    상기 유휴 시간은, 기판이 상기 기판 처리 시스템의 처리 챔버의 처리 볼륨 외부에 있는 동안의 시간인,
    비-일시적 컴퓨터 판독가능 매체.
  11. 제9 항에 있어서,
    상기 교정 동작은, 상기 복수의 설정점들의 각각의 설정점에 대해,
    상기 타깃 유량에 대한 상기 측정 유량의 유동비를 결정하는 것; 및
    상기 측정 유량을 보정하는 보정 유량을 결정하는 것을 더 포함하는,
    비-일시적 컴퓨터 판독가능 매체.
  12. 제11 항에 있어서,
    상기 보정 유량은, 상기 유동비가 제1 허용 범위를 벗어나거나 상기 제1 허용 범위보다 좁은 제2 허용 범위 내에 있는 경우, 무시되는,
    비-일시적 컴퓨터 판독가능 매체.
  13. 제12 항에 있어서,
    상기 교정 동작은,
    상기 복수의 설정점들의 각각의 설정점에 대한 상기 보정 유량을 그래프에서 플로팅하는 것; 및
    보정 유동 곡선을 생성하기 위해 매끄러운 곡선 피팅을 사용하여, 상기 그래프에서 상기 복수의 설정점들의 각각의 설정점에 대한 상기 보정 유량을 연결하는 것을 더 포함하는,
    비-일시적 컴퓨터 판독가능 매체.
  14. 제13 항에 있어서,
    상기 교정 동작은,
    상기 보정 유동 곡선을 따라 배치되고 그리고 상기 복수의 설정점들과는 상이한 제2 설정점에 대응하는 제2 보정 유량을 식별하는 것을 더 포함하는,
    비-일시적 컴퓨터 판독가능 매체.
  15. 제9 항에 있어서,
    상기 각각의 MFC에 대한 동작 시간은, 개개의 MFC에 대한 이전의 교정 이후 상기 개개의 MFC가 유동 모드로 설정된 총 시간이고, 그리고
    상기 복수의 MFC들의 각각의 MFC의 동작 시간은, 최대 동작 시간으로부터 최소 동작 시간에 이르기까지 상기 순위 목록에서 순위화되는,
    비-일시적 컴퓨터 판독가능 매체.
  16. 제15 항에 있어서,
    상기 교정 동작은, 상기 복수의 MFC들 중 다른 MFC들보다 먼저 상기 최대 동작 시간에 대응하는 상기 제1 MFC에 대해 상기 교정 동작이 수행되도록 상기 순위 목록에 따라 수행되는,
    비-일시적 컴퓨터 판독가능 매체.
  17. 기판 처리 시스템으로서,
    처리 볼륨을 포함하는 처리 챔버;
    상기 처리 챔버에 커플링되는 가스 회로 ― 상기 가스 회로는, 복수의 질량 유동 제어기(MFC)들을 포함함 ―;
    상기 처리 챔버와 상기 복수의 MFC들 사이에 커플링된 하나 이상의 전달 라인(delivery line)들;
    상기 복수의 MFC들과 질량 유동 검증기 사이에 커플링된 다이버터 라인(diverter line);
    실행 시에, 복수의 동작들이 수행되게 하는 명령들을 포함하는 제어기를 포함하며,
    상기 복수의 동작들은,
    교정 동작을 위해 상기 복수의 MFC들을 우선순위화하는 것 ― 상기 우선순위화하는 것은,
    상기 복수의 MFC들의 각각의 MFC에 대한 동작 시간을 결정하는 것; 및
    상기 각각의 MFC에 대한 동작 시간에 따라 순위 목록에서 상기 복수의 MFC들을 순위화하는 것을 포함함 ―; 및
    상기 순위 목록에 따라 그리고 상기 기판 처리 시스템에 대한 유휴 시간 동안, 상기 복수의 MFC들에 대한 교정 동작을 수행하는 것을 포함하며,
    상기 교정 동작은,
    타깃 유량으로 제1 MFC를 통해 가스를 유동시키기 위해 상기 제1 MFC를 유동 모드로 설정하는 것;
    상기 가스를 상기 질량 유동 검증기로 지향시키는 것;
    복수의 설정점들에 대응하는 복수의 유량들을 통해 상기 가스의 타깃 유량을 스테핑하는 것; 및
    상기 질량 유동 검증기를 사용하여 상기 복수의 설정점들 각각에서 상기 가스의 측정 유량을 검증하는 것을 포함하는,
    기판 처리 시스템.
  18. 제17 항에 있어서,
    상기 유휴 시간은, 기판이 상기 처리 챔버의 처리 볼륨 외부에 있는 동안의 시간인,
    기판 처리 시스템.
  19. 제17 항에 있어서,
    상기 교정 동작은, 상기 복수의 설정점들의 각각의 설정점에 대해,
    상기 타깃 유량에 대한 상기 측정 유량의 유동비를 결정하는 것; 및
    상기 측정 유량을 보정하는 보정 유량을 결정하는 것을 더 포함하는,
    기판 처리 시스템.
  20. 제17 항에 있어서,
    상기 각각의 MFC에 대한 동작 시간은, 개개의 MFC에 대한 이전의 교정 이후 상기 개개의 MFC가 유동 모드로 설정된 총 시간인,
    기판 처리 시스템.
KR1020237013158A 2021-04-13 2022-01-20 기판 처리 시스템의 복수의 질량 유동 제어기(mfc)들에 대한 교정 동작을 수행하기 위한 방법들, 시스템들, 및 장치 KR20230069227A (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US17/229,737 US11733081B2 (en) 2021-04-13 2021-04-13 Methods, systems, and apparatus for conducting a calibration operation for a plurality of mass flow controllers (MFCs) of a substrate processing system
US17/229,737 2021-04-13
PCT/US2022/013165 WO2022220900A1 (en) 2021-04-13 2022-01-20 Methods, systems, and apparatus for conducting a calibration operation for a plurality of mass flow controllers (mfcs) of a substrate processing system

Publications (1)

Publication Number Publication Date
KR20230069227A true KR20230069227A (ko) 2023-05-18

Family

ID=83510105

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020237013158A KR20230069227A (ko) 2021-04-13 2022-01-20 기판 처리 시스템의 복수의 질량 유동 제어기(mfc)들에 대한 교정 동작을 수행하기 위한 방법들, 시스템들, 및 장치

Country Status (7)

Country Link
US (2) US11733081B2 (ko)
EP (1) EP4324023A1 (ko)
JP (1) JP2024503966A (ko)
KR (1) KR20230069227A (ko)
CN (1) CN116802584A (ko)
TW (1) TW202240332A (ko)
WO (1) WO2022220900A1 (ko)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6389364B1 (en) 1999-07-10 2002-05-14 Mykrolis Corporation System and method for a digital mass flow controller
US7073392B2 (en) 2002-07-19 2006-07-11 Celerity, Inc. Methods and apparatus for pressure compensation in a mass flow controller
TW200507141A (en) 2003-05-12 2005-02-16 Agere Systems Inc Method of mass flow control flow verification and calibration
US6955072B2 (en) * 2003-06-25 2005-10-18 Mks Instruments, Inc. System and method for in-situ flow verification and calibration
CN101978132B (zh) 2008-01-18 2015-04-29 关键系统公司 对气体流动控制器进行现场测试的方法和设备
JP5346628B2 (ja) 2009-03-11 2013-11-20 株式会社堀場エステック マスフローコントローラの検定システム、検定方法、検定用プログラム
US8707754B2 (en) * 2010-04-30 2014-04-29 Applied Materials, Inc. Methods and apparatus for calibrating flow controllers in substrate processing systems
US9062993B2 (en) * 2012-05-22 2015-06-23 E I Du Pont De Nemours And Company Method and apparatus for liquid flow calibration check
US20200042021A1 (en) * 2017-02-27 2020-02-06 Bhushan Somani Systems And Methods For Calibrating And Tuning A Mass Flow Controller
US10866135B2 (en) * 2018-03-26 2020-12-15 Applied Materials, Inc. Methods, systems, and apparatus for mass flow verification based on rate of pressure decay
TWI821281B (zh) * 2018-04-28 2023-11-11 美商應用材料股份有限公司 基於氣體脈衝的共享前驅物分佈系統及其使用方法
US10760944B2 (en) * 2018-08-07 2020-09-01 Lam Research Corporation Hybrid flow metrology for improved chamber matching

Also Published As

Publication number Publication date
US20230366715A1 (en) 2023-11-16
CN116802584A (zh) 2023-09-22
JP2024503966A (ja) 2024-01-30
EP4324023A1 (en) 2024-02-21
TW202240332A (zh) 2022-10-16
US20220326061A1 (en) 2022-10-13
US11733081B2 (en) 2023-08-22
WO2022220900A1 (en) 2022-10-20

Similar Documents

Publication Publication Date Title
US11390950B2 (en) Reactor system and method to reduce residue buildup during a film deposition process
US8724976B2 (en) Use of infrared camera for real-time temperature monitoring and control
US8124168B2 (en) Substrate processing method and substrate processing apparatus
US7953512B2 (en) Substrate processing system, control method for substrate processing apparatus and program stored on medium
US6083323A (en) Method for controlling the temperature of the walls of a reaction chamber during processing
US20070281084A1 (en) Apparatus and method for depositing layer on substrate
US20040050326A1 (en) Apparatus and method for automatically controlling gas flow in a substrate processing system
US20180142356A1 (en) Thickness uniformity control for epitaxially-grown structures in a chemical vapor deposition system
US8012884B2 (en) Semiconductor device manufacturing method and semiconductor device manufacturing apparatus
US10395934B2 (en) Control device, substrate processing system, substrate processing method, and program
US20060099805A1 (en) Heat treating system and heat treating method
KR20230125281A (ko) 반도체 웨이퍼 반응기에서의 예열 링을 위한 시스템들및 방법들
US11733081B2 (en) Methods, systems, and apparatus for conducting a calibration operation for a plurality of mass flow controllers (MFCs) of a substrate processing system
EP0808917A1 (en) Apparatus and method for controlling the temperature of a wall of a reaction chamber
US20180258528A1 (en) Substrate processing apparatus
JP7230877B2 (ja) エピタキシャルウェーハの製造システム及びエピタキシャルウェーハの製造方法
JP2023000903A (ja) 枚葉式エピタキシャル成長装置の制御装置及び制御方法、並びにエピタキシャルウェーハの製造システム
JP7439739B2 (ja) エピタキシャル成長装置の温度管理方法及びシリコン堆積層ウェーハの製造方法
US20240141498A1 (en) Methods of correlating zones of processing chambers, and related systems and methods
US20230212742A1 (en) Model-based purge gas flow
CN116917557A (zh) 晶体厚度微平衡传感器的原位epi生长率控制
US20220243323A1 (en) Use of rotation to correct for azimuthal non-uniformities in semiconductor substrate processing
KR20240036467A (ko) 정보 처리 장치 및 파라미터 제어 방법
JP2024002304A (ja) 成膜装置
TW202329288A (zh) 用於磊晶沉積反應器的動態及局部溫度控制