KR20230055966A - Method for purification of a protein - Google Patents

Method for purification of a protein Download PDF

Info

Publication number
KR20230055966A
KR20230055966A KR1020220132531A KR20220132531A KR20230055966A KR 20230055966 A KR20230055966 A KR 20230055966A KR 1020220132531 A KR1020220132531 A KR 1020220132531A KR 20220132531 A KR20220132531 A KR 20220132531A KR 20230055966 A KR20230055966 A KR 20230055966A
Authority
KR
South Korea
Prior art keywords
culture medium
target protein
supernatant
protein
centrifugation
Prior art date
Application number
KR1020220132531A
Other languages
Korean (ko)
Other versions
KR102621026B1 (en
Inventor
정오석
오후근
김석천
김판겸
박재형
안혜빈
Original Assignee
에스케이바이오사이언스(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220066095A external-priority patent/KR20230054247A/en
Application filed by 에스케이바이오사이언스(주) filed Critical 에스케이바이오사이언스(주)
Publication of KR20230055966A publication Critical patent/KR20230055966A/en
Application granted granted Critical
Publication of KR102621026B1 publication Critical patent/KR102621026B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • C07K1/34Extraction; Separation; Purification by filtration, ultrafiltration or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/20011Coronaviridae
    • C12N2770/20051Methods of production or purification of viral material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Virology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Analytical Chemistry (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)

Abstract

According to one aspect of a technology disclosed by the present application, there is provided a method for purifying a cell culture medium expressing a target protein, which is a polypeptide represented by an amino acid sequence represented by SEQ ID NO: 1 or a polypeptide having sequence homology of 75 % or more with the polypeptide, the method comprising, after culturing a cell line expressing the target protein: (a) recovering a supernatant by centrifuging the cell culture medium; and (b) filtering the recovered culture medium. In addition, the method for purifying a cell culture medium expressing a target protein according to the present invention may be used to improve a protein production process and reduce protein production costs while mass-producing the protein.

Description

단백질의 정제방법{METHOD FOR PURIFICATION OF A PROTEIN}Protein purification method {METHOD FOR PURIFICATION OF A PROTEIN}

본 발명은 목적 단백질을 대량 생산하면서도 생산 비용을 절감할 수 있는 상기 단백질을 발현하는 세포 배양액의 정제 방법으로서, 특히, SARS-CoV-2 (Severe Acute Respiratory Syndrome-Coronavirus-2) 감염을 예방하고/하거나 감염시 발현되는 증상을 완화하는 목적으로 사용되는 백신의 항원 단백질을 발현하는 세포 배양액을 정제하는 방법에 관한 것이다.The present invention is a method for purifying a cell culture medium expressing the protein, which can reduce production costs while mass-producing a target protein, and in particular, prevents SARS-CoV-2 (Severe Acute Respiratory Syndrome-Coronavirus-2) infection and / It relates to a method for purifying a cell culture medium expressing an antigen protein of a vaccine used for the purpose of alleviating symptoms expressed during infection or infection.

2019년 12월 이후 팬데믹 감염이 보고된 SARS-CoV-2 바이러스는 Coronaviridae family, Betacoronavirus genus Sarbecovirus subgenus에 속하는 바이러스로서, 바이러스 표면의 삼량체 (trimer) 당단백질 (즉, 스파이크 (Spike) 단백질) 상단의 수용체 결합 도메인 (Receptor Binding Domain, RBD)이 인체 세포 표면의 ACE2 수용체 단백질에 결합함으로써 감염을 일으키는 것으로 알려져 있다. 스파이크 당단백질 단량체 (monomer)는 숙주세포 단백질 분해효소 (protease)에 의하여 S1 서브유닛 및 S2 서브유닛으로 분리된다. The SARS-CoV-2 virus, which has been reported as a pandemic infection since December 2019, is a virus belonging to the Coronaviridae family, Betacoronavirus genus Sarbecovirus subgenus. It is known that the Receptor Binding Domain (RBD) of B. binds to the ACE2 receptor protein on the surface of human cells to cause infection. Spike glycoprotein monomers are separated into S1 subunits and S2 subunits by host cell proteases.

상기 SARS-CoV-2 바이러스 감염의 주된 전파경로는 감염자의 비말과의 밀접접촉인 것으로 알려져 있다. 그러나, 감염자와 직접 접촉하거나 또는 감염자의 비말 등에 의하여 오염된 물품과 같은 매개체를 만진 후, 손을 씻지 않은 채 눈, 코, 입 등을 만짐으로써 바이러스 전파가 이루어질 수도 있다고 알려져 있다. It is known that the main transmission route of the SARS-CoV-2 virus infection is close contact with droplets of an infected person. However, it is known that the virus may be transmitted by direct contact with an infected person or by touching a medium such as an item contaminated by droplets of an infected person and then touching eyes, nose, mouth, etc. without washing hands.

한편, 2020년 SARS-CoV-2 바이러스 감염으로 인한 사회경제적 피해가 심화되면서 미국, 유럽 등 다양한 국가에서 SARS-CoV-2 바이러스 감염에 따른 증세를 완화하는 효과를 갖는 백신 사용에 대한 긴급승인과 함께 전세계적으로 여러 국가에서 백신 접종이 개시되었다. 그러나, 상기 백신을 접종하였더라도 백신 접종자에서의 SARS-CoV-2 바이러스 감염을 원천 차단하지는 못한다. Meanwhile, as the socioeconomic damage caused by SARS-CoV-2 virus infection intensified in 2020, various countries including the United States and Europe obtained emergency approval for the use of vaccines that have the effect of alleviating symptoms caused by SARS-CoV-2 virus infection. Vaccination has been initiated in several countries worldwide. However, even if the vaccine is vaccinated, SARS-CoV-2 virus infection in the vaccinated person cannot be prevented from the source.

더욱이, 알파변이, 베타 변이, 감마 변이, 엡실론 변이, 델타 변이, 카파 변이, 에타 변이와 같은 SARS-CoV-2 바이러스 변이가 계속 보고되고 있으며, 백신 접종자에서의 이러한 변이된 SARS-CoV-2 바이러스 감염이 계속적으로 발생하고 있다. 따라서, 체내 유효 항체 수치를 유지하기 위한 목적으로 백신 접종자를 대상으로 한 추가 백신 접종이 권고되고 있는 실정이다. 나아가, 각국 정부는 SARS-CoV-2 감염이 사회경제에 미치는 영향을 고려하여 SARS-CoV-2 백신 접종 대상을 청소년 층까지 확대하고 있는바, SARS-CoV-2 감염 예방 백신 및 상기 백신에 사용될 수 있는 항원 단백질 생산 수요가 급증하고 있다. 식물에서 목적 단백질을 대량 생산하는 방법에 대해서는 이미 공지되어 있으나(공개특허 제10-2021-0117808호), 동물성 세포에서 목적 단백질을 대량 생산하는 방법에 대해서는 아직 연구가 부족한 실정이다. 따라서, 단기간 내 동물성 세포에서 백신 항원 단백질을 대량생산할 수 있는 제조 방법의 개발이 요구된다. Moreover, SARS-CoV-2 virus mutations such as alpha mutation, beta mutation, gamma mutation, epsilon mutation, delta mutation, kappa mutation, and eta mutation continue to be reported, and these mutated SARS-CoV-2 viruses in vaccinated persons Infections continue to occur. Therefore, for the purpose of maintaining an effective antibody level in the body, additional vaccination for vaccinated persons is recommended. Furthermore, governments of each country are expanding the target of SARS-CoV-2 vaccination to adolescents in consideration of the impact of SARS-CoV-2 infection on the society and economy. Demand for antigenic protein production is rapidly increasing. A method for mass-producing a target protein in plants is already known (Patent Publication No. 10-2021-0117808), but research on a method for mass-producing a target protein in animal cells is still lacking. Therefore, it is required to develop a production method capable of mass-producing vaccine antigen proteins in animal cells in a short period of time.

공개특허 제10-2021-0117808호Publication No. 10-2021-0117808

본 발명자들은 백신의 항원 단백질의 생산 단가를 절감하는 방법에 대한 연구를 진행하던 중, 바이오리액터에서 배양한 목적 단백질을 발현하는 세포 배양액을 회수하고 목적 단백질을 정제하는 과정에서 원심분리기에 배양액이 공급되는 속도인 공급유속 (feed flow)을 변화시킴에 따라 공정에 소요되는 시간 단축 및 원심분리 상층액 내 불순물 감소효과를 얻을 수 있고, 원심분리 이후 공정에서 불순물 감소를 위하여 사용되는 필터 수량이 달라짐으로써 생산 공정을 개선하고 단백질 생산 단가를 절감할 수 있다는 점을 발견하여 본 발명을 완성하였다. While conducting research on a method for reducing the production cost of vaccine antigen proteins, the present inventors recovered the cell culture medium expressing the target protein cultured in the bioreactor and supplied the culture medium to the centrifuge in the process of purifying the target protein. By changing the feed flow rate, which is the speed of centrifugation, the time required for the process can be shortened and the effect of reducing impurities in the centrifugation supernatant can be obtained. The present invention was completed by finding that the production process can be improved and the protein production cost can be reduced.

본 출원에 의해 개시되는 기술의 일 양태에 따르면, 목적 단백질을 발현하는 세포 배양액의 정제 방법으로서, 상기 목적 단백질을 발현하는 세포주를 배양하는 단계 이후에, (a) 상기 세포 배양액을 원심분리하여 상층액을 회수하는 단계; 및 (b) 상기 회수된 배양액을 여과하는 단계를 포함하는 정제 방법을 제공한다. According to one aspect of the technology disclosed by the present application, as a method for purifying a cell culture medium expressing a target protein, after culturing a cell line expressing the target protein, (a) centrifuging the cell culture medium to obtain an upper layer recovering liquid; And (b) it provides a purification method comprising the step of filtering the recovered culture medium.

본 발명에 따른 목적 단백질을 발현하는 세포 배양액의 정제 방법은 단백질 생산 공정을 개선하고 단백질 생산비용을 절감하면서도, 상기 단백질을 대량생산하는데 사용될 수 있다.The method for purifying a cell culture solution expressing a target protein according to the present invention can be used to mass-produce the protein while improving the protein production process and reducing protein production costs.

도 1은 서열번호 1의 목적 단백질을 코딩하는 염기서열을 포함하는 벡터의 구조를 나타낸 것이다.
도 2는 목적 단백질을 발현하는 세포 배양액 2000 L를 원심분리하는 과정에서 공급유속을 각각 200 L/h, 300 L/h 또는 400 L/h로 하여 얻은 (i) 원심분리 상층액 내 목적 단백질 함량, (ii) 상기 원심분리 상층액에 A1HC 심층필터를 적용하여 여과하였을 때 여과액 내 목적 단백질 함량 및 (iii) 상기 A1HC 심층필터 여과액에 0.5/0.2 ㎛ 필터를 적용하여 여과하였을 때 여과액 내 목적 단백질 함량을 SDS-PAGE로 측정한 결과를 나타낸 것이다.
도 3은 목적 단백질을 발현하는 세포 배양액 2000 L를 200 L/h의 공급유속으로 원심분리하여 얻은 (i) 원심분리 상층액 내 목적 단백질 함량, (ii) 상기 원심분리 상층액에 0.45 ㎛ 필터를 적용하여 여과하였을 때 여과액 내 목적 단백질 함량 및 (iii) 상기 0.45 ㎛ 필터 여과액에 0.2 ㎛ 필터를 적용하여 여과하였을 때 여과액 내 목적 단백질 함량을 SDS-PAGE로 측정한 결과를 나타낸 것이다.
1 shows the structure of a vector containing a nucleotide sequence encoding a target protein of SEQ ID NO: 1.
Figure 2 is obtained by centrifuging 2000 L of cell culture medium expressing the target protein at a supply flow rate of 200 L/h, 300 L/h or 400 L/h, respectively (i) the target protein content in the centrifugation supernatant , (ii) the content of the target protein in the filtrate when the centrifugal supernatant was filtered by applying the A1HC depth filter, and (iii) in the filtrate when the A1HC depth filter filtrate was filtered by applying a 0.5/0.2 μm filter. It shows the result of measuring the target protein content by SDS-PAGE.
Figure 3 shows (i) the content of the target protein in the centrifugation supernatant obtained by centrifuging 2000 L of cell culture medium expressing the target protein at a supply flow rate of 200 L/h, (ii) 0.45 μm filter in the centrifugation supernatant The result of measuring the target protein content in the filtrate when filtered by applying and (iii) the target protein content in the filtrate when filtering by applying a 0.2 μm filter to the 0.45 μm filter filtrate was measured by SDS-PAGE.

이하, 본 발명을 보다 구체적으로 설명한다. Hereinafter, the present invention will be described in more detail.

본 발명의 일 측면은, 목적 단백질을 발현하는 세포 배양액의 정제 방법으로서, 상기 목적 단백질을 발현하는 세포주를 배양하는 단계 이후에, (a) 상기 세포 배양액을 원심분리하여 상층액을 회수하는 단계; 및 (b) 상기 회수된 배양액을 여과하는 단계를 포함하는 정제 방법을 제공한다. One aspect of the present invention is a method for purifying a cell culture medium expressing a target protein, after culturing the cell line expressing the target protein, (a) centrifuging the cell culture medium to recover a supernatant; And (b) it provides a purification method comprising the step of filtering the recovered culture medium.

상기 "목적 단백질"은 세포가 발현 가능한 모든 종류의 외래 산물 단백질이다. 대표적으로, 인슐린, 사이토카인(인터루킨, 종양괴사인자, 인터페론, 콜로니자극인자, 케모카인 등등), 에리트로포이에틴, 항원, 항체, 항체 단편, 구조 단백질, 조절단백질, 전사인자, 독소 단백질, 호르몬, 호르몬 유사체, 효소, 효소 저해제, 수송단백질, 리셉터 (예컨대, 티로신 키나아제 수용체 등), 리셉터의 단편, 생체방어 유도물질, 저장단백질, 이동단백질(movement protein), 익스플로이티브 프로틴(exploitive protein), 리포터 단백질, 성장 인자 등이 있으며, 이러한 목적 단백질은 세포주에서의 발현을 위한 벡터에 상기 목적 단백질을 코딩하는 유전자를 삽입할 수 있도록 하는 제한 효소 인지 또는 절단 부위가 도입되어 있는 핵산 서열인 "클로닝 부위" 를 포함할 수 있다. The "target protein" is any kind of exogenous product protein that can be expressed by cells. Typically, insulin, cytokine (interleukin, tumor necrosis factor, interferon, colony stimulating factor, chemokine, etc.), erythropoietin, antigen, antibody, antibody fragment, structural protein, regulatory protein, transcription factor, toxin protein, hormone, hormone Analogs, enzymes, enzyme inhibitors, transport proteins, receptors (e.g., tyrosine kinase receptors, etc.), fragments of receptors, biological defense inducers, storage proteins, movement proteins, exploitive proteins, reporter proteins, growth factors, etc., and such a target protein includes a "cloning site", which is a nucleic acid sequence into which a restriction enzyme recognition or cleavage site is introduced to allow insertion of the gene encoding the target protein into a vector for expression in a cell line. can do.

본 발명에서 상기 목적 단백질은 국제특허공보 제2021-163438호의 청구항 1에 기재된 폴리펩타이드 중 하나이거나, 국제특허공보 제2019-169120호, 미국 특허공보 제9630994호, 국제특허공보 제WO2021-163481호, 국제특허공보 제WO2021-163438호, 또는 국제출원 제PCT/US2021/037341호의 명세서에 개시된 폴리펩타이드 중 하나일 수 있다. 바람직하게는, 상기 목적 단백질에서 RBD 및 링커 부분을 제외한 단백질은 국제특허공보 제2019-169120호에 개시된 서열번호 7, 29, 30, 31, 또는 39로 표시되는 아미노산 서열을 갖는 폴리펩타이드이거나, 상기 국제특허공보 제2019-169120호에 개시된 폴리펩타이드의 아미노산 서열과 85% 이상 서열 상동성을 갖는 폴리펩타이드일 수 있다. In the present invention, the target protein is one of the polypeptides described in claim 1 of International Patent Publication No. 2021-163438, International Patent Publication No. 2019-169120, US Patent Publication No. 9630994, International Patent Publication No. WO2021-163481, It may be one of the polypeptides disclosed in the specification of International Patent Publication No. WO2021-163438, or International Application No. PCT/US2021/037341. Preferably, the protein excluding the RBD and the linker portion from the target protein is a polypeptide having an amino acid sequence represented by SEQ ID NO: 7, 29, 30, 31, or 39 disclosed in International Patent Publication No. 2019-169120, or the above It may be a polypeptide having 85% or more sequence homology with the amino acid sequence of the polypeptide disclosed in International Patent Publication No. 2019-169120.

본 발명의 일 구체예에서, 상기 목적 단백질은 SARS-CoV-2 스파이크 단백질의 수용체 결합 도메인(Receptor Binding Domain) 및 나노입자의 구조체인 I53-50A를 포함하는 단백질일 수 있다. 또한, 본 발명의 일 실시양태에서, 상기 목적 단백질은 SARS-CoV-2 스파이크 단백질의 수용체 결합 도메인, 및 I53-50A, SARS-CoV-2 스파이크 단백질의 수용체 결합 도메인과 I53-50A를 연결하는 링커를 포함하는 단백질일 수 있다. 나아가, 본 발명의 다른 실시양태에서, 상기 목적 단백질은 SARS-CoV-2 스파이크 단백질의 수용체 결합 도메인, I53-50A, SARS-CoV-2 스파이크 단백질의 수용체 결합 도메인과 I53-50A를 연결하는 링커 및 N-말단 포스파타제 시그널 펩타이드를 포함하는 단백질일 수 있다. 이때, 상기 나노입자의 구조체인 I53-50A의 아미노산 서열은 KMEELFKKHKIVAVLRANSVEEAIEKAVAVFAGGVHLIEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVEQARKAVESGAEFIVSPHLDEEISQFAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVKAMKGPFPNVKFVPTGGVNLDNVAEWFKAGVLAVGVGSALVKGTPDEVREKAKAFVEKIRGATE일 수 있으며, 상기 링커의 아미노산 서열은 GGSGGSGSGGSGGSGSEKAAKAEEAAR일 수 있고, 상기 N-말단 포스파타제 시그널 펩타이드의 아미노산 서열은 MGILPSPGMPALLSLVSLLSVLLMGCVAETGT일 수 있다. In one embodiment of the present invention, the target protein may be a protein including the Receptor Binding Domain of the SARS-CoV-2 spike protein and I53-50A, which is a nanoparticle structure. In addition, in one embodiment of the present invention, the target protein is the receptor binding domain of the SARS-CoV-2 spike protein, and I53-50A, a linker connecting the receptor binding domain of the SARS-CoV-2 spike protein and I53-50A. It may be a protein containing. Furthermore, in another embodiment of the present invention, the target protein is the receptor binding domain of the SARS-CoV-2 spike protein, I53-50A, a linker connecting the receptor binding domain of the SARS-CoV-2 spike protein and I53-50A, and It may be a protein comprising an N-terminal phosphatase signal peptide. At this time, the amino acid sequence of I53-50A, which is the structure of the nanoparticle, may be KMEELFKKHKIVAVLRANSVEEAIEKAVAVFAGGVHLIEITFTVPDADTVIKALSVLKEKGAIIGAGTVTSVEQARKAVESGAEFIVSPHLDEEISQFAKEKGVFYMPGVMTPTELVKAMKLGHTILKLFPGEVVGPQFVKAMKGPFPNVKFVPTGGVNLDNVAEWFKATPGGVLAVGVREVGSVRGATE ring, The amino acid sequence of the Kerr may be GGSGGSGSGGSGGSGSEKAAKAEEAAR, and the amino acid sequence of the N-terminal phosphatase signal peptide may be MGILPSPGMPALLSLVSLLSVLLMGCVAETGT.

본 발명의 다른 구체예에서, 상기 목적 단백질은 서열번호 1로 표시되는 아미노산 서열로 이루어진 폴리펩타이드이거나, 상기 서열번호 1로 표시되는 아미노산 서열과 70% 이상, 75% 이상, 80% 이상, 85% 이상, 90% 이상, 91% 이상, 92% 이상, 93% 이상, 94% 이상, 95% 이상, 96% 이상, 97% 이상, 98% 이상 또는 99% 이상 서열 상동성을 갖는 폴리펩타이드일 수 있다. 상기 목적 단백질은 서열번호 2로 표시되는 염기서열로 이루어진 유전자에 의해 코딩되거나, 상기 서열번호 2로 표시되는 염기서열과 70% 이상, 75% 이상, 80% 이상, 85% 이상, 90% 이상, 91% 이상, 92% 이상, 93% 이상, 94% 이상, 95% 이상, 96% 이상, 97% 이상, 98% 이상 또는 99% 이상 서열 상동성을 갖는 염기 서열에 의하여 코딩될 수 있다. In another embodiment of the present invention, the target protein is a polypeptide consisting of the amino acid sequence represented by SEQ ID NO: 1, or 70% or more, 75% or more, 80% or more, 85% or more of the amino acid sequence represented by SEQ ID NO: 1 At least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% sequence homology. there is. The target protein is encoded by a gene consisting of the nucleotide sequence represented by SEQ ID NO: 2, or 70% or more, 75% or more, 80% or more, 85% or more, 90% or more of the nucleotide sequence represented by SEQ ID NO: 2, 91% or more, 92% or more, 93% or more, 94% or more, 95% or more, 96% or more, 97% or more, 98% or more or 99% or more sequence homology can be encoded by a base sequence.

상기 목적 단백질을 생산하는 세포주는 서열번호 1로 표시되는 아미노산 서열로 표시되는 폴리펩타이드 또는 이와 70% 이상, 75% 이상, 80% 이상, 85% 이상, 90% 이상, 91% 이상, 92% 이상, 93% 이상, 94% 이상, 95% 이상, 96% 이상, 97% 이상, 98% 이상 또는 99% 이상 서열 상동성을 갖는 폴리펩타이드를 코딩하는 유전자를 포함하는 발현 벡터를 갖는 세포주일 수 있다. 본 발명의 일 구체예에서, 상기 발현 벡터는 플라스미드 벡터일 수 있으나, 세포에 서열번호 1로 표시되는 아미노산 서열로 표시되는 폴리펩타이드 또는 이와 70% 이상, 75% 이상, 80% 이상, 85% 이상, 90% 이상, 91% 이상, 92% 이상, 93% 이상, 94% 이상, 95% 이상, 96% 이상, 97% 이상, 98% 이상 또는 99% 이상 서열 상동성을 갖는 폴리펩타이드를 코딩하는 유전자를 형질감염하기에 적합한 벡터라면 제한없이 사용될 수 있다. The cell line producing the target protein is a polypeptide represented by the amino acid sequence represented by SEQ ID NO: 1 or more than 70%, more than 75%, more than 80%, more than 85%, more than 90%, more than 91%, more than 92% , It may be a cell line having an expression vector containing a gene encoding a polypeptide having at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99% sequence homology. . In one embodiment of the present invention, the expression vector may be a plasmid vector, but the polypeptide represented by the amino acid sequence represented by SEQ ID NO: 1 or 70% or more, 75% or more, 80% or more, 85% or more , which encodes a polypeptide having at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99% sequence homology Any vector suitable for transfecting a gene may be used without limitation.

한편, 본 발명에서 서열번호 1로 표시되는 아미노산 서열로 표시되는 단백질을 코딩하는 유전자를 포함하는 발현 벡터는 서열번호 3으로 표시되는 DNA 서열을 가질 수 있다.Meanwhile, in the present invention, an expression vector including a gene encoding a protein represented by the amino acid sequence represented by SEQ ID NO: 1 may have a DNA sequence represented by SEQ ID NO: 3.

본 발명에서 사용된 용어, "벡터"는 숙주세포에 도입되어 숙주세포 유전체 내로 재조합 및 삽입될 수 있거나, 또는 에피좀 (episome)으로 자발적으로 복제될 수 있는 뉴클레오티드 서열을 포함하는 핵산 수단을 말한다. 적합한 발현 벡터는 프로모터, 개시코돈, 종결코돈, 폴리아데닐화 신호 및 인핸서 같은 발현 조절 요소 (element) 외에도 막 표적화 또는 분비를 위한 신호서열 또는 리더서열을 포함하며, 목적에 따라 다양하게 제조될 수 있다. 개시코돈 및 종결코돈을 표적 단백질을 암호화하는 유전자 작제물이 투여되었을 때 개체에서 반드시 작용을 나타내야 하며 암호화 서열과 인프레임 (in frame)에 있어야 한다.As used herein, the term "vector" refers to a nucleic acid means comprising a nucleotide sequence that can be introduced into a host cell and recombined and inserted into the genome of the host cell, or can be spontaneously replicated as an episome. Suitable expression vectors include expression control elements such as promoters, initiation codons, stop codons, polyadenylation signals and enhancers, as well as signal sequences or leader sequences for membrane targeting or secretion, and can be prepared in various ways depending on the purpose. . When a genetic construct encoding a target protein is administered, the initiation codon and stop codon must be functional in the subject and must be in frame with the coding sequence.

본 발명의 일 구체예에 따른 폴리뉴클레오티드 또는 벡터는 게놈 외부의 독립적 분자, 구체적으로는 복제할 수 있는 분자로서 유전적으로 변형된 숙주세포 또는 비-인간 숙주개체 내에 존재할 수 있거나, 또는 숙주세포 또는 비-인간 숙주개체의 게놈으로 안정적으로 삽입될 수 있다. The polynucleotide or vector according to one embodiment of the present invention is an independent molecule outside the genome, specifically a molecule capable of replicating, and may exist in a genetically modified host cell or non-human host organism, or may be present in a host cell or non-human host cell. -Can be stably integrated into the genome of human host organisms.

본 발명의 일 구체예에 따른 목적 단백질을 발현하는 세포주의 숙주세포는 진핵세포이다. 상기 진핵세포는 진균세포 (fungus), 식물세포 또는 동물세포를 포함한다. 진균세포의 예로는 효모, 구체적으로는 사카로마이세스 속(Saccharomyces sp.)의 효모, 더욱 구체적으로는 사카로마이세스 세레비지애 (S. cerevisiae)일 수 있다. 또한, 동물세포의 예로는 곤충세포 또는 포유동물 세포가 있고, 구체적인 동물세포의 예로는 HEK293, 293T, NSO, 중국 햄스터 난소 세포(CHO), MDCK, U2-OSHela, NIH3T3, MOLT-4, Jurkat, PC-12, PC-3, IMR, NT2N, Sk-n-sh, CaSki, C33A 등이 있다. 또한, 통상의 기술분야에 잘 알려져 있는 적당한 세포주들은 ATCC (American Type Culture Collection)와 같은 세포주 기탁기관으로부터 수득할 수 있다. A host cell of a cell line expressing a target protein according to one embodiment of the present invention is a eukaryotic cell. The eukaryotic cells include fungus cells, plant cells or animal cells. Examples of the fungal cell may be yeast, specifically Saccharomyces genus ( Saccharomyces sp ) yeast, more specifically Saccharomyces cerevisiae ( S. cerevisiae ). In addition, examples of animal cells include insect cells or mammalian cells, and specific examples of animal cells include HEK293, 293T, NSO, Chinese hamster ovary cells (CHO), MDCK, U2-OSHela, NIH3T3, MOLT-4, Jurkat, PC-12, PC-3, IMR, NT2N, Sk-n-sh, CaSki, C33A, etc. In addition, suitable cell lines well known in the art can be obtained from cell line depositories such as the American Type Culture Collection (ATCC).

본 발명의 일 구체에에 따른 목적 단백질을 발현하는 세포주의 숙주세포는 중국 햄스터 난소 (CHO) 세포일 수 있으며, 바람직하게는 재조합 아데노-관련 바이러스 (recombinant Adeno-Associated Virus, rAAV)에 의하여 Glutamine Synthetase 유전자의 6번 엑손이 넉아웃 (Knock-out)된 HD-BIOP3 세포를 사용할 수 있다. The host cell of the cell line expressing the target protein according to one embodiment of the present invention may be a Chinese hamster ovary (CHO) cell, preferably a recombinant adeno-associated virus (rAAV) by Glutamine Synthetase HD-BIOP3 cells in which exon 6 of the gene is knocked out can be used.

상기 숙주세포에 목적 단백질을 코딩하는 유전 서열을 갖는 발현 벡터를 도입하기 위해서는 핵산을 세포 내로 도입하는 어떤 방법이든 사용할 수 있고, 숙주세포에 따라 통상의 기술분야에 공지된 기술을 사용할 수 있다. 예를 들어, 열충격법 (Heat Shock), 전기천공법 (Electroporation), 인산칼슘 (CaPO4) 침전, 염화칼슘 (CaCl2) 침전, 미세주입법 (microinjection), 폴리에틸렌글리콜 (PEG)법, DEAE-덱스트란법, 양이온 리포좀법, 및 초산 리튬-DMSO법 등이 있으나, 이에 제한되지 않는다. In order to introduce an expression vector having a genetic sequence encoding a target protein into the host cell, any method for introducing nucleic acid into the cell may be used, and techniques known in the art may be used depending on the host cell. For example, heat shock, electroporation, calcium phosphate (CaPO 4 ) precipitation, calcium chloride (CaCl 2 ) precipitation, microinjection, polyethylene glycol (PEG) method, DEAE-dextran method, cationic liposome method, and lithium acetate-DMSO method, but are not limited thereto.

본 발명의 일 구체예에서, 플라스크 또는 바이오리액터 (bioreactor)에서 목적 단백질을 발현하는 세포주를 배양할 수 있다. In one embodiment of the present invention, a cell line expressing a target protein may be cultured in a flask or bioreactor.

바이오리액터를 이용한 배양은 플라스크와 달리 DO, 글루코스 함량, pH와 같은 배양조건을 조절 및 유지할 수 있어서 세포 배양을 유리한 조건에서 수행할 수 있고 대량 배양이 가능하다. 상기 플라스크 및 바이오리액터의 종류 및 배양 조건은 당업자가 통상적으로 조절 가능한 범위 내에서 변경할 수 있다. Unlike flasks, culture using a bioreactor can control and maintain culture conditions such as DO, glucose content, and pH, so that cell culture can be performed under favorable conditions and mass culture is possible. The types of flasks and bioreactors and culture conditions can be changed within a range commonly controllable by those skilled in the art.

본 발명의 일 구체예에서, 플라스크 또는 바이오리액터 (bioreactor)에서 목적 단백질을 발현하는 세포주를 배양할 수 있다. 바이오리액터를 이용한 배양은 플라스크와 달리 DO, 글루코스 함량, pH와 같은 배양조건을 조절 및 유지할 수 있어서 세포 배양을 유리한 조건에서 수행할 수 있고 대량 배양이 가능하다. In one embodiment of the present invention, a cell line expressing a target protein may be cultured in a flask or bioreactor. Unlike flasks, culture using a bioreactor can control and maintain culture conditions such as DO, glucose content, and pH, so that cell culture can be performed under favorable conditions and mass culture is possible.

상기 플라스크 및 바이오리액터의 종류 및 배양 조건은 당업자가 통상적으로 조절 가능한 범위 내에서 변경할 수 있다. The types of flasks and bioreactors and culture conditions can be changed within a range commonly controllable by those skilled in the art.

예를 들어, 목적 단백질을 발현하는 세포주를 엘렌메이어 플라스크 (Elenmeyer Flask)에 접종하여 부유배양한 뒤 계대 배양하여 바이오리액터에 접종할 최소 세포수를 확보하고, 계대배양한 세포주를 일회용 세포배양백이 장착된 바이오리액터에 접종하여 유가식배양을 실시하여 목적 단백질을 생산할 수 있다. For example, a cell line expressing a target protein is inoculated into an Elenmeyer flask, cultured in suspension, subcultured to secure the minimum number of cells to be inoculated into a bioreactor, and the subcultured cell line is equipped with a disposable cell culture bag. The target protein can be produced by inoculating the prepared bioreactor and performing fed-batch culture.

본 발명의 또 다른 구체예에서, 배양 기간은 6일 이상일 수 있다. 바람직하게는 배양 기간이 6일, 7일, 8일, 9일, 10일, 11일, 12일, 13일, 14일, 15일, 16일, 17일, 18일, 19일 또는 20일일 수 있다. 보다 바람직하게는 배양 기간이 10일일 수 있다. In another embodiment of the invention, the culture period may be 6 days or more. Preferably, the culture period is 6 days, 7 days, 8 days, 9 days, 10 days, 11 days, 12 days, 13 days, 14 days, 15 days, 16 days, 17 days, 18 days, 19 days or 20 days. can More preferably, the culture period may be 10 days.

상기 (a) 세포 배양액을 원심분리하여 상층액을 회수하는 단계는, 일반적인 단백질 분리 방법을 이용하여 실시될 수 있다. The step (a) of centrifuging the cell culture medium to recover the supernatant may be performed using a general protein separation method.

본 발명의 일 구체예에서, 상기 (a) 세포 배양액을 원심분리하여 상층액을 회수하는 단계는, 본 발명이 속한 기술분야에서 일반적으로 사용되는 원심분리기를 이용할 수 있다. 예를 들어, 고정각 앵글로터를 사용하는 원심분리기, 스윙 로터를 사용하는 원심 분리기, 연속 원심분리기 등을 사용할 수 있다. 바람직하게는, 상기 (a) 세포 배양액을 원심분리하여 상층액을 회수하는 단계는, 연속 원심분리기를 이용하여 수행될 수 있다. 상기 연속 원심분리기는 GEA사의 westfalia continuous centrifuge일 수 있다. In one embodiment of the present invention, in the step (a) of centrifuging the cell culture medium to recover the supernatant, a centrifugal separator commonly used in the art to which the present invention pertains may be used. For example, a centrifuge using a fixed-angle angle rotor, a centrifugal separator using a swing rotor, a continuous centrifuge, and the like may be used. Preferably, the step (a) of centrifuging the cell culture medium to recover the supernatant may be performed using a continuous centrifuge. The continuous centrifuge may be GEA's westfalia continuous centrifuge.

본 발명의 다른 구체예에서, 상기 (a) 세포 배양액을 원심분리하여 상층액을 회수하는 단계에서, 원심분리시 g-force는 8000x g 초과 20000x g 이하일 수 있다. 또한, 상기 원심분리시 g-force가 8000x g 초과 19000x g 이하일 수 있으며, 바람직하게는 15000x g 이상 20000x g이하, 16000x g 이상 20000x g이하, 17000x g 이상 20000x g이하, 18000x g 이상 20000x g이하, 19000x g 이상 2000x g 이하, 15000x g 이상 19000x g이하, 16000x g 이상 19000x g이하, 17000x g 이상 19000x g이하, 또는 18000x g 이상 19000x g 이하일 수 있으나, 이러한 수치로 제한되지 않는다. In another embodiment of the present invention, in the (a) step of centrifuging the cell culture medium to recover the supernatant, the g-force during centrifugation may be greater than 8000x g and less than 20000x g. In addition, the g-force during the centrifugation may be greater than 8000x g and less than 19000x g, preferably greater than 15000x g and less than 20000x g, greater than 16000x g and less than 20000x g, greater than 17000x g and less than 20000x g, greater than 18000x g and less than 20000x g, 19000x g or more and 2000x g or less, 15000x g or more and 19000x g or less, 16000x g or more and 19000x g or less, 17000x g or more and 19000x g or less, or 18000x g or more and 19000x g or less, but is not limited to these figures.

본 발명의 또다른 구체예에서, 상기 (a) 세포 배양액을 원심분리하여 상층액을 회수하는 단계에서, 원심분리 용기속도가 8000 rpm 초과 13000 rpm 이하일 수 있다. 또한, 상기 원심분리 용기속도가 8000 rpm 초과 12000 rpm 이하일 수 있으며, 바람직하게는 10000 rpm 이상 13000 rpm 이하, 11000 rpm 이상 13000 rpm 이하, 12000 rpm 이상 13000 rpm 이하, 10000 rpm 이상 12000 rmp 이하, 또는 11000 rpm 이상 12000 rpm 이하일 수 있나, 이러한 수치로 제한되지 않는다. In another embodiment of the present invention, in the step (a) of centrifuging the cell culture medium and recovering the supernatant, the centrifugal vessel speed may be greater than 8000 rpm and less than 13000 rpm. In addition, the centrifugation vessel speed may be greater than 8000 rpm and less than 12000 rpm, preferably greater than 10000 rpm and less than 13000 rpm, greater than 11000 rpm and less than 13000 rpm, greater than 12000 rpm and less than 13000 rpm, greater than 10000 rpm and less than 12000 rpm, or 11000 rpm or more and 12000 rpm or less, but is not limited to these figures.

본 발명의 다른 구체예에서, 상기 (a) 세포 배양액을 원심분리하여 상층액을 회수하는 단계에서, 원심분리기로 배양액이 공급되는 공급속도인 공급유속 (feed flow)이 200 L/h 내지 400 L/h, 200 L/h 내지 300 L/h, 210 L/h 내지 300 L/h, 220 L/h 내지 300 L/h, 230 L/h 내지 300 L/h, 또는 240 L/h 내지 300 L/h일 수 있다. 바람직하게는, 상기 공급유속이 250 L/h일 수 있으나, 이에 제한되지는 않는다. In another embodiment of the present invention, in the step of (a) centrifuging the cell culture medium to recover the supernatant, the feed flow rate at which the culture medium is supplied to the centrifuge is 200 L/h to 400 L /h, 200 L/h to 300 L/h, 210 L/h to 300 L/h, 220 L/h to 300 L/h, 230 L/h to 300 L/h, or 240 L/h to 300 It may be L/h. Preferably, the supply flow rate may be 250 L/h, but is not limited thereto.

본 발명의 또 다른 구체예에서, 상기 (a) 세포 배양액을 원심분리하여 상층액을 회수하는 단계에서 원심분리시 배출간격 (ejection interval)이 100 내지 250 초, 120 내지 240 초, 120 내지 230초, 140 내지 230 초, 160 내지 220초, 180 내지 210 초, 또는 190 내지 210초일 수 있다. 또한, 바람직하게는 상기 원심분리시 배출간격은 190 내지 210 초이거나 201초일수 있으나, 이러한 수치로 제한되는 것은 아니다. 상기 회수된 배양액을 대상으로 무균 시험, 마이코플라스마 검출 시험, 세포배양 접종법을 통한 외래성 인자 확인 시험, 미세 마우스 바이러스 (Mouse Minute virus) 검출 시험 및 결핵균 검출시험을 시행할 수 있다. 상기 회수된 배양액에는 균이 없으며, 마이코플라스마, 외래성 인자, 미세 마우스 바이러스 및 결핵균이 검출되지 않는다. 본 발명의 일 구체예에서, 상기 원심분리로 회수된 배양액 내 불순물을 제거하기 위하여 필터를 사용하여 여과할 수도 있다. 이때, 여과에 사용하는 필터의 공극 직경은 1 ㎛ 이하, 0.5 ㎛ 이하, 0.45 ㎛ 이하, 0.3 ㎛ 이하, 0.25 ㎛ 이하, 0.22 ㎛ 이하 또는 0.2 ㎛이하일 수 있으며, 다양한 공극 직경을 갖는 필터를 조합하여 사용할 수도 있다. 또한, 상기 여과시 전도도는 10 내지 20 mS/cm, 10 내지 19 mS/cm, 10 내지 18 mS/cm, 10 내지 17 mS/cm, 또는 10 내지 16 mS/cm일 수 있으나, 이러한 조건으로 제한되지 않는다. In another embodiment of the present invention, in the step of (a) centrifuging the cell culture medium and recovering the supernatant, the ejection interval during centrifugation is 100 to 250 seconds, 120 to 240 seconds, 120 to 230 seconds , 140 to 230 seconds, 160 to 220 seconds, 180 to 210 seconds, or 190 to 210 seconds. Also, preferably, the discharge interval during the centrifugal separation may be 190 to 210 seconds or 201 seconds, but is not limited thereto. A sterility test, a mycoplasma detection test, an exogenous factor identification test through a cell culture inoculation method, a mouse minute virus detection test, and a tuberculosis bacillus detection test may be performed on the recovered culture medium. There are no bacteria in the recovered culture medium, and no mycoplasma, exogenous factor, micromouse virus, or Mycobacterium tuberculosis are detected. In one embodiment of the present invention, it may be filtered using a filter to remove impurities in the culture medium recovered by the centrifugation. At this time, the pore diameter of the filter used for filtration may be 1 μm or less, 0.5 μm or less, 0.45 μm or less, 0.3 μm or less, 0.25 μm or less, 0.22 μm or less, or 0.2 μm or less, by combining filters having various pore diameters. can also be used In addition, the conductivity upon filtration may be 10 to 20 mS/cm, 10 to 19 mS/cm, 10 to 18 mS/cm, 10 to 17 mS/cm, or 10 to 16 mS/cm, but limited to these conditions. It doesn't work.

본 발명의 다른 구체예에서, 상기 (b) 회수된 배양액을 여과하는 단계는 정밀여과필터를 이용하여 수행될 수 있다. 상기 정밀여과필터의 기능은 예컨대, <20 리터(l)/㎡의 피드 로드인 압력 한계, 또는 탁도 감소에 기초하여 평가될 수 있다. 또한, 상기 정밀여과필터의 비제한적인 예로는 정밀여과 멤브레인, 밀리포어(Millipore), COHC, A1HC, BIHC, XOHC 심층 필터, CUNO 60ZA, 및 CUNO 90ZA가 있다. 바람직하게는, 상기 정밀여과필터가 심층필터일 수 있고, 보다 바람직하게는 A1HC 심층 필터일 수 있으나 이러한 필터로 제한되지는 않는다. In another embodiment of the present invention, the (b) step of filtering the recovered culture medium may be performed using a microfiltration filter. The function of the microfiltration filter can be evaluated based on a pressure limit, eg, a feed load of <20 liters (l)/m 2 , or turbidity reduction. Further, non-limiting examples of the microfiltration filter include a microfiltration membrane, Millipore, COHC, A1HC, BIHC, XOHC depth filter, CUNO 60ZA, and CUNO 90ZA. Preferably, the microfiltration filter may be a depth filter, more preferably an A1HC depth filter, but is not limited to such a filter.

본 발명의 또 다른 구체예에서, 상기 원심분리로 회수된 배양액에 필터를 적용하여 여과한 뒤 계면활성제를 추가로 처리하여 반응시킬 수 있다. 상기 계면활성제는 도데실황산 나트륨 (SDS), 디옥시콜산 나트륨, Triton X-100 (상표명, Rohm and Hass사 제조), Nodiet P-40 (상표명, Shell사 제조), Tween-80, Tween-20, CHAPS, Chapso, 디기토닌 (digitonin), 유레아 (urea) 및 이들의 혼합물 등에서 선택될 수 있으나, 이러한 성분으로 제한되는 것은 아니다. 바람직하게는, 상기 계면활성제는 Triton X-100일 수 있다. 또한, 상기 계면활성제를 처리하여 반응시키는 시간은 30분 이상일 수 있으나, 이러한 조건으로 제한되는 것은 아니다. In another embodiment of the present invention, after filtering by applying a filter to the culture medium recovered by the centrifugation, it may be reacted by further treatment with a surfactant. The surfactant is sodium dodecyl sulfate (SDS), sodium deoxycholate, Triton X-100 (trade name, manufactured by Rohm and Hass), Nodiet P-40 (trade name, manufactured by Shell), Tween-80, Tween-20 , CHAPS, Chapso, digitonin, urea, and mixtures thereof, but is not limited to these components. Preferably, the surfactant may be Triton X-100. In addition, the time for treating and reacting the surfactant may be 30 minutes or more, but is not limited to these conditions.

본 발명의 일 구체예에서, 상기 계면활성제를 처리한 필터 여과액을 재여과할 수 있다. 상기 재여과에 사용하는 필터의 공극 직경은 1 ㎛ 이하, 0.5 ㎛ 이하, 0.45 ㎛ 이하, 0.3 ㎛ 이하, 0.25 ㎛ 이하, 0.22 ㎛ 이하 또는 0.2 ㎛이하일 수 있으며, 다양한 공극 직경을 갖는 필터를 조합하여 사용할 수도 있다. 실시예 In one embodiment of the present invention, the filter filtrate treated with the surfactant may be refiltered. The pore diameter of the filter used for the re-filtration may be 1 μm or less, 0.5 μm or less, 0.45 μm or less, 0.3 μm or less, 0.25 μm or less, 0.22 μm or less, or 0.2 μm or less, and filters having various pore diameters may be combined to obtain can also be used Example

이하, 본 발명을 하기 실시예에 의하여 더욱 상세하게 설명한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명의 범위가 이들만으로 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail by the following examples. However, the following examples are only for exemplifying the present invention, and the scope of the present invention is not limited only to these.

제조예 1. 목적 단백질을 발현하는 세포주의 제작 Preparation Example 1. Preparation of cell lines expressing the target protein

서열번호 1의 아미노산 서열로 표시되는 폴리펩타이드를 발현하는 세포주를 제작하기 위하여 영국 HORIZON Discovery 사에서 분양 받은 HD-BIOP3 세포주를 숙주세포로 사용하였다. Donor plasmid (pJV145)에 SalI/NotI 제한 효소 반응을 이용해 Genscript사에서 합성한 cDNA를 삽입하여 재조합 발현 벡터 plasmid (M-2560)를 제작하였다 (도 1). 상기 M-2560 벡터는 서열번호 3으로 표시되는 DNA 서열을 갖는다. To prepare a cell line expressing the polypeptide represented by the amino acid sequence of SEQ ID NO: 1, HD-BIOP3 cell line obtained from HORIZON Discovery, UK was used as a host cell. A recombinant expression vector plasmid (M-2560) was constructed by inserting the cDNA synthesized by Genscript into the Donor plasmid (pJV145) using the SalI/NotI restriction enzyme reaction (Fig. 1). The M-2560 vector has a DNA sequence represented by SEQ ID NO: 3.

상기 HD-BIOP3 세포주에 재조합 발현 벡터 plasmid (M-2560)를 형질주입하였다. 형질주입된 세포 중 안정적인 single cell cloning이 가능한 세포를 선별하여 충분한 장기 계대 안정성을 갖는 연구용 세포은행(Research cell bank; RCB)을 제조하였다. 상기 RCB를 SK바이오사이언스 안동공장으로 이관하여 GMP 기준에 적합하게 제조용 세포은행(Working Cell Bank; WCB)를 제조하였다. A recombinant expression vector plasmid (M-2560) was transfected into the HD-BIOP3 cell line. Among the transfected cells, cells capable of stable single cell cloning were selected to prepare a research cell bank (RCB) having sufficient long-term passage stability. The RCB was transferred to the Andong plant of SK Bioscience, and a working cell bank (WCB) was manufactured in accordance with GMP standards.

WCB(Working Cell Bank) 1 바이알을 37 ℃ 항온수조 (water bath)에서 녹이고 CD OptiCHO 배지로 희석한 후 원심분리를 하여 펠렛 (pellet)을 CD OptiCHO 배지로 재부유시켰다. 10 L 바이오리액터에서 5 x 105 cells/mL 농도로 6 L 배양, 50 L 바이오리액터에서 5 x 105 cells/mL 농도로 30 L 배양, 200 L 바이오리액터에서 5 x 105 cells/mL 농도로 200 L 배양, 2000 L 바이오리액터에서 8 x 105 cells/mL 농도로 1600 L 배양할 수 있도록 확장 계대 배양하였다.One vial of WCB (Working Cell Bank) was dissolved in a water bath at 37 ° C., diluted with CD OptiCHO medium, centrifuged, and the pellet was resuspended in CD OptiCHO medium. 6 L culture at 5 x 10 5 cells/mL in 10 L bioreactor, 30 L culture at 5 x 10 5 cells/mL in 50 L bioreactor, 5 x 10 5 cells/mL in 200 L bioreactor 200 L culture, 8 x 10 5 cells / mL concentration in a 2000 L bioreactor was expanded to 1600 L culture was subcultured.

제조예 2. 목적 단백질을 발현하는 세포주의 2000 L 바이오리액터에서의 배양 Production Example 2. Cultivation of a cell line expressing a target protein in a 2000 L bioreactor

일회용 세포 배양백을 2000 L 바이오리액터에 장착하고 가동 준비를 한 뒤, 1400 L의 Dynamis 배지를 주입하고 8.0 x 105 cells/mL의 농도로 WCB를 접종하여 배양하였다. 배양 시, DO 조절은 기체 및 산소를 통해 진행하며, pH 조절은 8 % 탄산수소나트륨 및 이산화탄소 가스를 사용하여 진행하였다. After mounting the disposable cell culture bag in a 2000 L bioreactor and preparing for operation, 1400 L of Dynamis medium was injected, and WCB was inoculated at a concentration of 8.0 x 10 5 cells/mL and cultured. During incubation, DO control proceeded through gas and oxygen, and pH control proceeded using 8% sodium bicarbonate and carbon dioxide gas.

접종 직후부터 매일 샘플링을 하여 세포수를 측정하고 미생물 오염 여부 및 배양액 내 glucose 농도 등을 확인하였으며, 바이오리액터 내 거품이 condenser에 장착된 air filter의 하단까지 올라오면 ADCF 소포제를 처리하였다. 이와 같은 과정을 배양 종료까지 반복적으로 진행하였다. 배양시 사용되는 배양 조건은 하기 표 1과 같다. Sampling was performed every day immediately after inoculation to measure the number of cells, check the presence of microbial contamination and the concentration of glucose in the culture medium, and when bubbles in the bioreactor reached the bottom of the air filter mounted on the condenser, ADCF antifoam was treated. This process was repeated until the end of the culture. Culture conditions used during culture are shown in Table 1 below.

세포주의 배양 조건 Cell line culture conditions 배양 조건culture conditions 설정 값set value 온도 (배양 0 ~ 5일차)Temperature (day 0-5 of incubation) 37℃37℃ 온도 (배양 5일차 이후)Temperature (after the 5th day of culture) 31℃31℃ 배양용 배지culture medium DynamisDynamis 접종용 배지medium for inoculation CD OptiCHOCD OptiCHO 교반 속도stirring speed 93 RPM93 RPM 배양 부피culture volume 1600 L1600L 초기 접종 농도initial inoculation concentration 8.0 x 105 cells/mL8.0 x 10 5 cells/mL 용존 산소량amount of dissolved oxygen 40%40% 용존 산소량 조절Dissolved Oxygen Control 기체, 산소gas, oxygen pH 조절pH control 8 % 탄산수소나트륨, 이산화탄소8% sodium bicarbonate, carbon dioxide

실험예 1. 원심분리 공급유속 (feed flow) 차이에 따른 목적 단백질의 회수량 및 불순물의 변화 Experimental Example 1. Changes in Recovery Amount of Target Protein and Impurities According to Differences in Centrifugal Separation Feed Flow

다량의 목적 단백질을 신속하게 생산하기 위하여 대규모 바이오리액터를 사용하거나 또는 배양액 부피를 증가시킬 수 있으나, 소규모 바이오리액터 또는 적은 부피로 배양하는 경우보다 배양액을 회수하는 과정에서 배양액의 원심분리기로의 투입시간 및 원심분리기 내 대기 시간이 증가하기 때문에 생산기간이 증가하는 단점이 존재하였다. In order to rapidly produce a large amount of the target protein, a large-scale bioreactor can be used or the volume of the culture medium can be increased. And there was a disadvantage that the production period increased because the waiting time in the centrifuge increased.

이에, 단백질의 대규모 생산에 사용되는 바이오리액터 (2000L)에서 1400L의 배지를 채워 용존산소량 및 pH 등의 배양 조건을 칼리브레이션한 뒤 1600L의 배지로 목적 단백질을 발현하는 세포의 배양을 개시하고 목적 단백질의 생산을 위한 배양 첨가물들을 배양 과정에서 첨가함으로써 배양 10일차 배양부피가 2000 L의 배양부피가 되도록 배양하였다. 산업용 연속 원심분리기 (2000L 이상 분리가능, westfalia continuous centrifuge, GEA)를 사용하여 원심분리하며, 이때 100% output(full performance) 조건으로 설정하여 원심분리를 수행하되, 배양액이 원심분리기로 공급되는 공급 유속을 증가시킴으로써 원심분리에 소요되는 시간을 단축하고자 하였다. 이 때, 원심분리에 소요되는 시간 단축이 원심분리 후 회수되는 목적 단백질의 수율 및 불순물 함량에 미치는 영향을 확인하기 위하여 상층액 내 목적 단백질의 농도, 수율, 상층액 내 불순물 및 상층액의 탁도를 측정하였다. 상기 100% output(full performance) 조건은 11,800 rpm의 용기 속도 또는 18,300 g-force에 대응되는 조건이다.Therefore, in a bioreactor (2000L) used for large-scale protein production, 1400L of medium is filled to calibrate culture conditions such as dissolved oxygen content and pH, and then the culture of cells expressing the target protein is started with 1600L of medium. By adding culture additives for production during the culture process, the culture volume on the 10th day of culture was cultured to a culture volume of 2000 L. Centrifugation is performed using an industrial continuous centrifuge (capable of separating more than 2000L, westfalia continuous centrifuge, GEA), and at this time, centrifugation is performed under the condition of 100% output (full performance), and the flow rate at which the culture medium is supplied to the centrifuge By increasing the , the time required for centrifugation was shortened. At this time, in order to confirm the effect of reducing the time required for centrifugation on the yield and impurity content of the target protein recovered after centrifugation, the concentration and yield of the target protein in the supernatant, impurities in the supernatant, and turbidity of the supernatant were examined. measured. The 100% output (full performance) condition is a condition corresponding to a vessel speed of 11,800 rpm or 18,300 g-force.

상층액 내 전체 단백질 농도는 써모피셔 사이언티픽사 (ThermoFisher Scientific)에서 제공하는 피어스 (상표명) BCA 단백질 분석 키트 (카탈로그 번호 23225)를 이용한 BCA 분석법을 통해 측정되었다. 또한, 상층액 내 목적 단백질의 농도는 HIC-HPLC를 이용하여 측정하였다.Total protein concentration in the supernatant was determined via a BCA assay using the Pierce™ BCA Protein Assay Kit (Cat. No. 23225) provided by ThermoFisher Scientific. In addition, the concentration of the target protein in the supernatant was measured using HIC-HPLC.

상층액 내 불순물 함량은 상층액 내 숙주세포 단백질 및 숙주세포 유래 DNA를 측정하여 확인하였다. 이때, 상층액 내 숙주세포 단백질 농도는 시그너스 테크놀로지사 (Cygnus Technologies)의 중국 햄스터 난소 세포 (CHO) 숙주세포 단백질 (Host Cell Protein, HCP) ELISA 키트 (카탈로그 번호: F550-1)를 이용한 ELISA 분석을 통해 측정하였다. 나아가, 상층액 내 숙주세포 유래 DNA (Host Cell Derived DNA, HCD) 농도는 써모피셔 사이언티픽사의 어플라이드 바이오시스템 (상표명 Applied Biosystems) resDNASEQ 정량 CHO DNA 키트 (카탈로그 번호: 4402085)를 이용한 RT-PCR을 통해 분석하였다. 또한, 상층액의 탁도는 탁도계 (Naphelometer)를 이용하여 측정하였다. The content of impurities in the supernatant was confirmed by measuring host cell proteins and host cell-derived DNA in the supernatant. At this time, the host cell protein concentration in the supernatant was determined by ELISA analysis using a Chinese hamster ovary cell (CHO) host cell protein (HCP) ELISA kit (catalog number: F550-1) from Cygnus Technologies. measured through Furthermore, the concentration of Host Cell Derived DNA (HCD) in the supernatant was measured by RT-PCR using Thermo Fisher Scientific's Applied Biosystems (trade name Applied Biosystems) resDNASEQ Quantitative CHO DNA Kit (Catalog Number: 4402085). analyzed through In addition, the turbidity of the supernatant was measured using a turbidimeter (Naphelometer).

배양액이 원심분리기로 공급되는 공급 유속 변화에 따른 상층액 내 전체 단백질 농도, 목적 단백질 농도, 목적 단백질의 수율 및 상층액 내 불순물과 상층액의 탁도 측정 결과를 표 2에 나타내었다. Table 2 shows the total protein concentration in the supernatant, the target protein concentration, the yield of the target protein, and the measurement results of impurities in the supernatant and turbidity of the supernatant according to the change in the supply flow rate of the culture medium to the centrifuge.

공급 유속 차이에 따른 상층액 내 목적 단백질 농도, 불순물 및 탁도 Concentration of target protein, impurities and turbidity in the supernatant according to the difference in feed flow rate 공급 유속
(L/h)
supply flow rate
(L/h)
상층액 내 전체 단백질 농도
(μg/ml)
Total protein concentration in supernatant
(μg/ml)
목적 단백질 농도 (μg/ml)Target protein concentration (μg/ml) 숙주세포 단백질 (HCP) (ng/mlHost cell protein (HCP) (ng/ml 숙주 세포 유래 DNA
(HCD) (ng/ml)
host cell-derived DNA
(HCD) (ng/ml)
탁도
(NTU)
turbidity
(NTU)
200200 5639.7785639.778 15851585 369140369140 26473.426473.4 56.656.6 300300 5794.0965794.096 1568.11568.1 359130359130 27045.627045.6 73.873.8 400400 6081.0036081.003 1598.61598.6 389700389700 3278632786 154154

원심분리시 공급유속이 200L/h 인 경우 2000L의 배양액의 원심분리시간이 10시간인데 반해, 공급유속이 300L/h로 증가될 경우 2000L 배양액을 원심분리하는데 약 6.7 시간이 소요되었다. 또한, 공급유속이 400L/h인 경우 2000L 배양액을 원심분리하는데 소요되는 시간이 약 5시간으로 단축되었다. When the supply flow rate during centrifugation was 200 L/h, the centrifugation time of the 2000 L culture medium was 10 hours, whereas when the supply flow rate was increased to 300 L/h, it took about 6.7 hours to centrifuge the 2000 L culture medium. In addition, when the supply flow rate is 400 L / h, the time required for centrifugation of 2000 L culture medium is reduced to about 5 hours.

한편, 원심분리시 공급유속이 200L/h에서 300L/h 또는 400L/h로 증가하더라도 회수되는 상층액 내 목적 단백질의 함량은 크게 달라지지 않는 것으로 나타났다. 또한, 원심분리시 공급유속이 200L/h에서 300L/h로 증가하더라도 상층액 내 불순물인 숙주세포 단백질 및 숙주 세포 유래 DNA가 크게 증가하거나 감소하지 않는 것으로 나타났다. 비록, 원심분리시 공급유속이 200 L/h에서 300L/h로 증가되면, 상층액 내 탁도가 증가하였으나, 이러한 탁도 증가는 원심 분리로 얻은 상층액에 심층필터 (Depth filter)를 적용함으로써 개선되는 것으로 확인되었다. On the other hand, it was found that the content of the target protein in the recovered supernatant did not change significantly even when the feed flow rate during centrifugation increased from 200 L/h to 300 L/h or 400 L/h. In addition, it was found that host cell proteins and host cell-derived DNA, which are impurities in the supernatant, did not significantly increase or decrease even when the feed flow rate during centrifugation increased from 200 L/h to 300 L/h. Although the turbidity in the supernatant increased when the feed flow rate increased from 200 L/h to 300 L/h during centrifugation, this increase in turbidity was improved by applying a depth filter to the supernatant obtained by centrifugation. confirmed to be

나아가, 원심분리시 공급유속이 200L/h에서 400L/h로 증가하면 숙주세포 단백질 및 숙주세포 유래 DNA가 증가하는 경향을 보였으나, 원심 분리 이후 심층필터를 사용함으로써 숙주세포 단백질 및 숙주세포 유래 DNA가 상당수 제거되었고, 탁도가 현저하게 낮아지는 것으로 확인되었다. Furthermore, when the supply flow rate increased from 200 L/h to 400 L/h during centrifugation, host cell proteins and host cell-derived DNA tended to increase. A significant number of was removed, and it was confirmed that the turbidity was significantly lowered.

한편, 원심분리시 공급유속이 200L/h보다 낮으면 원심분리시간이 10시간 이상으로 증가하여 생산기간이 지연되는 문제가 발생할 수 밖에 없다. 또한, 원심분리시 공급유속이 400L/h보다 높은 경우 공급유속이 200L/h인 경우보다 원심분리 시간이 절반 미만으로 단축될 수 있으나, 상층액 내 불순물 및 탁도가 증가함으로써 불순물 제거를 위하여 사용하여야 하는 필터의 수가 급격히 늘어나는 문제가 발생하였다. On the other hand, if the supply flow rate during centrifugal separation is lower than 200 L / h, the centrifugal separation time increases to 10 hours or more, which inevitably causes a problem in that the production period is delayed. In addition, when the supply flow rate during centrifugation is higher than 400 L/h, the centrifugation time can be reduced by less than half compared to the case where the supply flow rate is 200 L/h. There was a problem that the number of filters to be used increased rapidly.

따라서, 목적 단백질을 발현하는 세포주의 배양액을 원심분리할 때 공급유속이 200L/h 내지 400L/h이면, 상층액 내 목적 단백질 농도에 영향을 주지 않으면서도 생산기간 단축 및 생산비용 절감효과를 달성하는 것으로 확인되었다. Therefore, when the feed flow rate is 200 L / h to 400 L / h when centrifuging the culture medium of the cell line expressing the target protein, shortening the production period and reducing production cost without affecting the concentration of the target protein in the supernatant confirmed to be

실험예 2. 원심분리 공급유속 (feed flow) 차이에 따른 탁도 변화 Experimental Example 2. Turbidity change according to centrifugation feed flow difference

2000L 바이오 리액터에서 1600 L 배지로 목적 단백질을 발현하는 세포의 배양을 개시하고, 목적 단백질의 생산을 위한 배양 첨가물들을 배양 과정에서 첨가함으로써 배양 10일차 배양부피가 2000 L가 되도록 배양한뒤, 산업용 연속 원심분리기(westfalia continuous centrifuge, GEA)를 사용하여 상층액을 회수하였다. 상층액 회수시 100% output(full performance) 조건으로 설정하여 원심분리를 하였으며, 상기 100% output(full performance) 조건은 11,800 rpm의 용기 속도 또는 18,300x g에 대응되는 조건이다. 공급 유속이 200 L/h, 250 L/h 또는 300 L/h이고 배출간격이 각각 252초, 201초 또는 168초로 원심분리하여 얻은 상층액의 탁도를 탁도계를 이용하여 측정하였고, 측정 결과를 표 3에 기재하였다. Initiate the culture of cells expressing the target protein in a 1600 L medium in a 2000 L bioreactor, and add culture additives for the production of the target protein during the culture process, so that the culture volume on the 10th day of culture becomes 2000 L, and then industrial continuous The supernatant was recovered using a centrifuge (westfalia continuous centrifuge, GEA). When the supernatant was recovered, centrifugation was performed under the condition of 100% output (full performance), and the 100% output (full performance) condition corresponds to a container speed of 11,800 rpm or 18,300x g. The turbidity of the supernatant obtained by centrifugation at a supply flow rate of 200 L/h, 250 L/h or 300 L/h and a discharge interval of 252 seconds, 201 seconds, or 168 seconds, respectively, was measured using a turbidimeter, and the measurement results are shown in the table. 3.

공급 유속 차이에 따른 상층액 내 탁도 변화 Change in turbidity in the supernatant according to the difference in feed flow rate 공급 유속(L/h)Supply flow rate (L/h) 원심분리시 배출간격Discharge interval during centrifugation 탁도 (NTU)Turbidity (NTU) 200200 252초 252 seconds 134134 250250 201초 201 seconds 135135 300 300 168초 168 seconds 166166

원심분리시 공급유속이 200 L/h에서 250L/h로 증가되더라도, 상층액 내 탁도는 거의 변하지 않았으며, 공급유속이 200 L/h에서 300L/h로 증가하더라도 탁도의 변화폭은 약 30 수준이어서 실험예 1에서 공급유속이 200 L/h에서 300L/h로 증가되었을 때 나타난 변화폭(약 20)과 크게 차이 나지 않는 것으로 확인되었다.Even when the feed flow rate increased from 200 L/h to 250 L/h during centrifugation, the turbidity in the supernatant did not change much. In Experimental Example 1, it was confirmed that there was no significant difference from the change width (about 20) shown when the supply flow rate was increased from 200 L / h to 300 L / h.

비록, 원심분리시 공급유속이 400 L/h인 경우의 탁도를 측정하지는 않았으나, 상기 200 L/h 및 300 L/h에서의 탁도를 고려할 때, 상기 실험예 1에서 측정된 것과 유사한 양상을 띄어, 300 L/h에서의 탁도보다 더 높은 탁도를 보일 것으로 예상되었다. Although the turbidity was not measured when the feed flow rate was 400 L/h during centrifugation, considering the turbidity at 200 L/h and 300 L/h, the results were similar to those measured in Experimental Example 1. , it was expected to show higher turbidity than that at 300 L/h.

단백질을 발현하는 세포의 상업적 배양시 배양 부피가 증가됨에 따라 공급유속도 증가시키게 된다. 공급유속을 증가시킴에 따라 필터의 수량을 더 추가할 경우, 생산기간을 단축하면서도 불순물이 적어 탁도가 낮은 상층액을 얻을 수 있는 것으로 확인되었다. In commercial culture of protein-expressing cells, the supply flow rate increases as the culture volume increases. It was confirmed that when the number of filters was added as the supply flow rate was increased, a supernatant having low turbidity due to low impurities was obtained while shortening the production period.

실험예 3. 원심분리 상층액의 여과시 사용되는 필터의 사용에 따른 목적 단백질의 정제 및 불순물의 제거 Experimental Example 3. Purification of target protein and removal of impurities according to the use of a filter used for filtration of the centrifugal supernatant

상기 실험예 1에서 수득한 원심분리 상층액에 필터를 적용하여 여과하였을 때 여과액 내 목적 단백질의 함량 변화 및 불순물 감소 효과 여부를 확인하였다. When the filter was applied to the centrifuged supernatant obtained in Experimental Example 1 and filtered, the change in the content of the target protein in the filtrate and the effect of reducing impurities were confirmed.

상기 실험예 1에서와 같이 원심분리시 공급 유속이 증가될 경우, 원심분리에 소요되는 시간이 짧다는 장점이 있으나 상층액에 불순물의 함량이 증가된다는 단점이 있다. 그러한 불순물을 제거하기 위해서는 더 많은 필터를 적용해야 하는바, 추가의 필터를 적용함에 따라 상층액 내 불순물 양에 미치는 영향을 확인하고자 하였다. When the supply flow rate is increased during centrifugation as in Experimental Example 1, there is an advantage in that the time required for centrifugation is short, but there is a disadvantage in that the content of impurities in the supernatant is increased. Since more filters should be applied to remove such impurities, the effect of applying additional filters on the amount of impurities in the supernatant was confirmed.

상기 실험예 1에서 수득한 (i) 원심분리 상층액, (ii) 상기 상층액에 A1HC 심층필터를 적용한 여과액, (iii) 상기 여과액에 0.5/0.2 ㎛ 필터를 적용한 여과액 내 목적 단백질의 함량 및 불순물 양을 SDS-PAGE 분석을 통해 확인하였다. (i) the centrifugation supernatant obtained in Experimental Example 1, (ii) the filtrate obtained by applying the A1HC depth filter to the supernatant, and (iii) the target protein in the filtrate obtained by applying the 0.5/0.2 μm filter to the filtrate. The content and amount of impurities were confirmed through SDS-PAGE analysis.

원심분리 상층액에 필터를 적용하였을 때 여과액 내 목적 단백질 함량은 필터를 적용하지 않은 원심분리 상층액에서의 목적 단백질 함량과 유사하여 목적 단백질 단량체 및 목적 단백질 이량체 밴드 크기가 유사함으로써 목적 단백질 함량이 유지되는 것으로 나타났다 (도 2 및 3 참조). When a filter is applied to the centrifugation supernatant, the content of the target protein in the filtrate is similar to that of the supernatant of centrifugation without a filter applied, and the band sizes of the target protein monomer and target protein dimer are similar, so the target protein content appeared to be maintained (see Figures 2 and 3).

한편, 원심분리 상층액에 필터를 적용한 경우 불순물이 감소하여, 목적 단백질 단량체 및 목적 단백질 이량체 밴드가 필터를 적용하지 않은 원심분리 상층액에서 관찰되는 목적 단백질 단량체 및 목적 단백질 이량체 밴드보다 뚜렷하였고, 그 외의 밴드 (즉, 목적 단백질이 아닌 다른 단백질인 불순물)의 선명도가 줄어듦으로써 상대적으로 흐릿하게 관찰되는 것으로 나타났다 (도 2 및 3 참조). On the other hand, when a filter was applied to the centrifugation supernatant, impurities were reduced, and the target protein monomer and target protein dimer bands were more distinct than the target protein monomer and target protein dimer bands observed in the centrifugation supernatant to which no filter was applied. , It was found that the other bands (ie, impurities that are proteins other than the target protein) were observed relatively blurry by reducing the sharpness (see FIGS. 2 and 3).

Claims (10)

목적 단백질을 발현하는 세포 배양액의 정제 방법으로서,
상기 목적 단백질은 SARS-CoV-2 스파이크 단백질의 수용체 결합 도메인(Receptor Binding Domain) 및 나노입자의 구조체인 I53-I50A를 포함하는 단백질로서, 서열번호 1로 표시되는 아미노산 서열로 표시되는 폴리펩타이드 또는 이와 95% 이상 서열 상동성을 갖는 폴리펩타이드이며,
상기 목적 단백질을 발현하는 세포주로서, 중국 햄스터 난소(Chinese Hamster Ovary, CHO) 세포에서 유래한 세포주를 배양하는 단계 이후에,
(a) 상기 세포 배양액을 원심분리하여 상층액을 회수하는 단계로서, 원심분리시 공급유속(feed flow)은 200 L/h 내지 400 L/h이고, 원심분리시 g-force가 8000x g 초과 20000x g 이하인 단계; 및
(b) 상기 회수된 배양액을 여과하는 단계
를 포함하는, 정제 방법.
As a method for purifying a cell culture medium expressing a target protein,
The target protein is a protein including the Receptor Binding Domain of the SARS-CoV-2 spike protein and I53-I50A, which is a nanoparticle structure, and is a polypeptide represented by the amino acid sequence represented by SEQ ID NO: 1 or the like. A polypeptide having 95% or more sequence homology,
As a cell line expressing the target protein, after culturing a cell line derived from Chinese Hamster Ovary (CHO) cells,
(a) centrifuging the cell culture medium to recover the supernatant, wherein the feed flow during centrifugation is 200 L/h to 400 L/h, and the g-force during centrifugation exceeds 8000 x g 20000 x g or less; and
(b) filtering the recovered culture medium
Including, purification method.
제1항에 있어서, 상기 (a) 세포 배양액을 원심분리하여 상층액을 회수하는 단계에서, 연속 원심분리기를 이용하여 수행되는 것인 정제 방법. The method of claim 1, wherein the step (a) of centrifuging the cell culture medium to recover the supernatant is performed using a continuous centrifuge. 제1항에 있어서, 상기 공급유속이 200 내지 300 L/h인 정제 방법. The purification method according to claim 1, wherein the supply flow rate is 200 to 300 L/h. 제3항에 있어서, 상기 공급유속이 250 L/h인 정제 방법. The purification method according to claim 3, wherein the supply flow rate is 250 L/h. 제1항에 있어서, 상기 (a) 세포 배양액을 원심분리하여 상층액을 회수하는 단계에서, 원심분리 용기속도가 8000 rpm 초과 13000 rpm 이하인 정제방법. The purification method according to claim 1, wherein in the step (a) of centrifuging the cell culture medium and recovering the supernatant, the speed of the centrifugation vessel is greater than 8000 rpm and less than 13000 rpm. 제1항에 있어서, 상기 (a) 세포 배양액을 원심분리하여 상층액을 회수하는 단계에서, 원심분리시 배출간격(ejection interval)이 100 내지 250 초인 정제 방법. The method of claim 1, wherein in the step (a) of centrifuging the cell culture medium to recover the supernatant, an ejection interval during centrifugation is 100 to 250 seconds. 제6항에 있어서, 상기 원심분리시 배출간격이 190 내지 210 초인 정제 방법. The purification method according to claim 6, wherein the discharge interval during the centrifugation is 190 to 210 seconds. 제1항에 있어서, 상기 (b) 회수된 배양액을 여과하는 단계가 정밀여과필터를 이용하여 수행되는 정제 방법. The purification method according to claim 1, wherein step (b) filtering the recovered culture medium is performed using a microfiltration filter. 제8항에 있어서, 상기 정밀여과필터가 심층필터(Depth filter)인 정제 방법.The purification method according to claim 8, wherein the microfiltration filter is a depth filter. 제8항에 있어서, 상기 정밀여과필터 여과액에 계면활성제를 추가로 처리하는 정제방법. The purification method according to claim 8, wherein the microfiltration filter filtrate is further treated with a surfactant.
KR1020220132531A 2021-10-15 2022-10-14 Method for purification of a protein KR102621026B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20210137835 2021-10-15
KR1020210137835 2021-10-15
KR1020220066095 2022-05-30
KR1020220066095A KR20230054247A (en) 2021-10-15 2022-05-30 Method for purification of a protein

Publications (2)

Publication Number Publication Date
KR20230055966A true KR20230055966A (en) 2023-04-26
KR102621026B1 KR102621026B1 (en) 2024-01-09

Family

ID=86099547

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220132531A KR102621026B1 (en) 2021-10-15 2022-10-14 Method for purification of a protein

Country Status (1)

Country Link
KR (1) KR102621026B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006007459A1 (en) * 2004-06-21 2006-01-19 Biogen Idec Ma Inc. Use of depth filtration in series with continuous centrifugation to clarify mammalian cell cultures
WO2021163438A1 (en) * 2020-02-14 2021-08-19 University Of Washington Polypeptides, compositions, and their use to treat or limit development of an infection
KR20210117808A (en) 2020-03-20 2021-09-29 포항공과대학교 산학협력단 A method of mass production of target gene in plants

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006007459A1 (en) * 2004-06-21 2006-01-19 Biogen Idec Ma Inc. Use of depth filtration in series with continuous centrifugation to clarify mammalian cell cultures
WO2021163438A1 (en) * 2020-02-14 2021-08-19 University Of Washington Polypeptides, compositions, and their use to treat or limit development of an infection
KR20210117808A (en) 2020-03-20 2021-09-29 포항공과대학교 산학협력단 A method of mass production of target gene in plants

Also Published As

Publication number Publication date
KR102621026B1 (en) 2024-01-09

Similar Documents

Publication Publication Date Title
EP2910632B1 (en) Highly functional enzyme having modified substrate specificity of human beta-hexosaminidase b and exhibiting protease resistance
CN113845576B (en) Recombinant feline herpesvirus type 1 gB-gD protein and application thereof
CN112225814A (en) Novel coronavirus RBD fusion protein subunit vaccine and preparation method and application thereof
CN111925452B (en) Mycoplasma hyopneumoniae genetic engineering subunit vaccine, and preparation method and application thereof
CN113817040A (en) Echinococcus granulosus recombinant protein and preparation method thereof
KR102621026B1 (en) Method for purification of a protein
CN102112601A (en) Novel fusion proteins and use thereof for preparing hepatitis c vaccines
CN112679616B (en) Paralichthys rhabdovirus genetic engineering subunit vaccine
CN107325188B (en) Construction method and application of CHO cell strain of porcine serum protein fused with porcine circovirus Cap2 protein
EP4180521A1 (en) Method for production of varicella zoster virus surface protein antigen
KR20080026085A (en) Recombinant e-selectin made in insect cells
CN115073565A (en) Recombinant novel coronavirus S protein trimer and preparation method and application thereof
RU2586511C1 (en) RECOMBINANT Hansenula polymorpha YEAST STRAIN - PRODUCER OF HEPATITIS B VIRUS SURFACE ANTIGEN SEROTYPE &#34;ayw&#34;
CN105646701A (en) Recombinant human endostatin protein with different amino acid structures, method for preparing recombinant human endostatin protein and application thereof
Wang et al. Heterologous expression of bovine lactoferricin in Pichia methanolica
JP2015518723A (en) Trichoderma hydrophobin production
RU2546240C1 (en) RECOMBINANT STRAIN OF YEAST Hansenula polymorpha - PRODUCER OF MAJOR CAPSID PROTEIN L1 OF HUMAN PAPILLOMAVIRUS OF TYPE 56
CN113321714B (en) Recombinant N protein of SARS-CoV-2 and its preparation and purification method
CN110951634B (en) Preparation method and application of large yellow croaker IL-4/13A gene pichia pastoris expression product
CN111732667B (en) Peste des petits ruminants virus genetic engineering subunit vaccine
RU2701337C1 (en) Bacterial strain escherichia coli - producer of recombinant extracellular domain of protein gp
CN108424459A (en) The fusion protein and its preparation method and application of human serum albumins and people&#39;s saltant type hepatocyte growth factor
RU2586513C1 (en) RECOMBINANT Hansenula polymorpha YEAST STRAIN - PRODUCER OF MUTANT HEPATITIS B VIRUS SURFACE ANTIGEN (VERSIONS)
CN115873833A (en) Engineering strain and process for producing immunoglobulin G degrading enzyme
CN117467018A (en) Recombinant subunit fusion protein rEG-Fc and preparation method thereof

Legal Events

Date Code Title Description
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X701 Decision to grant (after re-examination)