KR20230046930A - 저전력 전기화학적 합성가스 제조장치 및 이를 이용한 h2/co 비율이 제어된 합성가스의 제조방법 - Google Patents
저전력 전기화학적 합성가스 제조장치 및 이를 이용한 h2/co 비율이 제어된 합성가스의 제조방법 Download PDFInfo
- Publication number
- KR20230046930A KR20230046930A KR1020220032182A KR20220032182A KR20230046930A KR 20230046930 A KR20230046930 A KR 20230046930A KR 1020220032182 A KR1020220032182 A KR 1020220032182A KR 20220032182 A KR20220032182 A KR 20220032182A KR 20230046930 A KR20230046930 A KR 20230046930A
- Authority
- KR
- South Korea
- Prior art keywords
- oxidation
- reduction
- electrode
- synthesis gas
- low
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 89
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims abstract description 160
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 116
- 230000003647 oxidation Effects 0.000 claims abstract description 112
- 239000007789 gas Substances 0.000 claims abstract description 101
- 230000009467 reduction Effects 0.000 claims abstract description 93
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 81
- 238000003786 synthesis reaction Methods 0.000 claims abstract description 81
- 229910002092 carbon dioxide Inorganic materials 0.000 claims abstract description 80
- 239000001569 carbon dioxide Substances 0.000 claims abstract description 80
- 229910017464 nitrogen compound Inorganic materials 0.000 claims abstract description 73
- 150000002830 nitrogen compounds Chemical class 0.000 claims abstract description 73
- 239000003792 electrolyte Substances 0.000 claims description 114
- 125000006850 spacer group Chemical group 0.000 claims description 81
- 239000000446 fuel Substances 0.000 claims description 59
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 38
- 239000003054 catalyst Substances 0.000 claims description 23
- 229910021529 ammonia Inorganic materials 0.000 claims description 19
- 239000003014 ion exchange membrane Substances 0.000 claims description 16
- 230000001590 oxidative effect Effects 0.000 claims description 15
- 238000007599 discharging Methods 0.000 claims description 12
- 239000010931 gold Substances 0.000 claims description 12
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 claims description 10
- 229910052751 metal Inorganic materials 0.000 claims description 9
- 239000002184 metal Substances 0.000 claims description 9
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 8
- 238000009792 diffusion process Methods 0.000 claims description 8
- 239000010936 titanium Substances 0.000 claims description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 7
- 229910052737 gold Inorganic materials 0.000 claims description 7
- 229910052757 nitrogen Inorganic materials 0.000 claims description 7
- 229910044991 metal oxide Inorganic materials 0.000 claims description 6
- QPLDLSVMHZLSFG-UHFFFAOYSA-N CuO Inorganic materials [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 claims description 5
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 5
- OHJMTUPIZMNBFR-UHFFFAOYSA-N biuret Chemical compound NC(=O)NC(N)=O OHJMTUPIZMNBFR-UHFFFAOYSA-N 0.000 claims description 5
- 239000004202 carbamide Substances 0.000 claims description 5
- 238000005342 ion exchange Methods 0.000 claims description 5
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 4
- 229920001807 Urea-formaldehyde Polymers 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 4
- 229910002804 graphite Inorganic materials 0.000 claims description 4
- 239000010439 graphite Substances 0.000 claims description 4
- ODGAOXROABLFNM-UHFFFAOYSA-N polynoxylin Chemical compound O=C.NC(N)=O ODGAOXROABLFNM-UHFFFAOYSA-N 0.000 claims description 4
- 239000011780 sodium chloride Substances 0.000 claims description 4
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Chemical compound [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 claims description 4
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 claims description 4
- 239000010935 stainless steel Substances 0.000 claims description 4
- 229910001220 stainless steel Inorganic materials 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- MGJKQDOBUOMPEZ-UHFFFAOYSA-N N,N'-dimethylurea Chemical compound CNC(=O)NC MGJKQDOBUOMPEZ-UHFFFAOYSA-N 0.000 claims description 3
- LEHOTFFKMJEONL-UHFFFAOYSA-N Uric Acid Chemical compound N1C(=O)NC(=O)C2=C1NC(=O)N2 LEHOTFFKMJEONL-UHFFFAOYSA-N 0.000 claims description 3
- TVWHNULVHGKJHS-UHFFFAOYSA-N Uric acid Natural products N1C(=O)NC(=O)C2NC(=O)NC21 TVWHNULVHGKJHS-UHFFFAOYSA-N 0.000 claims description 3
- 229910045601 alloy Inorganic materials 0.000 claims description 3
- 239000000956 alloy Substances 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 229910052738 indium Inorganic materials 0.000 claims description 3
- 229910052741 iridium Inorganic materials 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 229910052745 lead Inorganic materials 0.000 claims description 3
- 229910052753 mercury Inorganic materials 0.000 claims description 3
- 229910001092 metal group alloy Inorganic materials 0.000 claims description 3
- 150000004706 metal oxides Chemical class 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 229910052697 platinum Inorganic materials 0.000 claims description 3
- 229910052703 rhodium Inorganic materials 0.000 claims description 3
- 229910052707 ruthenium Inorganic materials 0.000 claims description 3
- 229910052709 silver Inorganic materials 0.000 claims description 3
- 229910052718 tin Inorganic materials 0.000 claims description 3
- 229940116269 uric acid Drugs 0.000 claims description 3
- 229910052725 zinc Inorganic materials 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 abstract description 39
- 238000000034 method Methods 0.000 abstract description 12
- 230000001965 increasing effect Effects 0.000 abstract description 10
- 238000005260 corrosion Methods 0.000 abstract description 3
- 230000007797 corrosion Effects 0.000 abstract description 3
- 239000007772 electrode material Substances 0.000 abstract description 2
- 230000003301 hydrolyzing effect Effects 0.000 abstract description 2
- 238000006722 reduction reaction Methods 0.000 description 69
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 56
- 229910002091 carbon monoxide Inorganic materials 0.000 description 56
- 239000012528 membrane Substances 0.000 description 21
- 238000005341 cation exchange Methods 0.000 description 13
- 239000003011 anion exchange membrane Substances 0.000 description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 239000004215 Carbon black (E152) Substances 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 238000005265 energy consumption Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 229930195733 hydrocarbon Natural products 0.000 description 5
- 150000002430 hydrocarbons Chemical class 0.000 description 5
- 238000004502 linear sweep voltammetry Methods 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 229920000049 Carbon (fiber) Polymers 0.000 description 4
- 239000004917 carbon fiber Substances 0.000 description 4
- 150000001768 cations Chemical class 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- -1 ethylene, propylene Chemical group 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 239000010842 industrial wastewater Substances 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000012071 phase Substances 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 150000001450 anions Chemical class 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 238000003487 electrochemical reaction Methods 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 239000000543 intermediate Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000002351 wastewater Substances 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 150000001335 aliphatic alkanes Chemical class 0.000 description 2
- 150000001336 alkenes Chemical class 0.000 description 2
- 239000013065 commercial product Substances 0.000 description 2
- 238000005137 deposition process Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000007606 doctor blade method Methods 0.000 description 2
- 238000004070 electrodeposition Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 2
- 230000020477 pH reduction Effects 0.000 description 2
- 239000000123 paper Substances 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 238000010792 warming Methods 0.000 description 2
- PHTSTUUPYUUDES-UHFFFAOYSA-N 1,3-dimethylurea Chemical compound CNC(NC)=O.CNC(NC)=O PHTSTUUPYUUDES-UHFFFAOYSA-N 0.000 description 1
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical class CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- FQMIAEWUVYWVNB-UHFFFAOYSA-N 3-prop-2-enoyloxybutyl prop-2-enoate Chemical compound C=CC(=O)OC(C)CCOC(=O)C=C FQMIAEWUVYWVNB-UHFFFAOYSA-N 0.000 description 1
- DBCAQXHNJOFNGC-UHFFFAOYSA-N 4-bromo-1,1,1-trifluorobutane Chemical compound FC(F)(F)CCCBr DBCAQXHNJOFNGC-UHFFFAOYSA-N 0.000 description 1
- NTDFJPCHHGBHCO-UHFFFAOYSA-N 7,9-dihydro-3H-purine-2,6,8-trione Chemical compound OC1=NC(O)=C2NC(O)=NC2=N1.N1C(=O)NC(=O)C2=C1NC(=O)N2 NTDFJPCHHGBHCO-UHFFFAOYSA-N 0.000 description 1
- 229920003934 Aciplex® Polymers 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- 229920000557 Nafion® Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000003957 anion exchange resin Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000012084 conversion product Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 125000004386 diacrylate group Chemical group 0.000 description 1
- 239000010840 domestic wastewater Substances 0.000 description 1
- 238000003411 electrode reaction Methods 0.000 description 1
- STVZJERGLQHEKB-UHFFFAOYSA-N ethylene glycol dimethacrylate Substances CC(=C)C(=O)OCCOC(=O)C(C)=C STVZJERGLQHEKB-UHFFFAOYSA-N 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- RPQRDASANLAFCM-UHFFFAOYSA-N oxiran-2-ylmethyl prop-2-enoate Chemical compound C=CC(=O)OCC1CO1 RPQRDASANLAFCM-UHFFFAOYSA-N 0.000 description 1
- 125000005496 phosphonium group Chemical group 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- JUJWROOIHBZHMG-UHFFFAOYSA-O pyridinium Chemical compound C1=CC=[NH+]C=C1 JUJWROOIHBZHMG-UHFFFAOYSA-O 0.000 description 1
- 125000001453 quaternary ammonium group Chemical group 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 125000001302 tertiary amino group Chemical group 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 239000003403 water pollutant Substances 0.000 description 1
- 238000003911 water pollution Methods 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/23—Carbon monoxide or syngas
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/02—Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
- C25B11/03—Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
- C25B11/031—Porous electrodes
- C25B11/032—Gas diffusion electrodes
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B15/00—Operating or servicing cells
- C25B15/02—Process control or regulation
- C25B15/023—Measuring, analysing or testing during electrolytic production
- C25B15/025—Measuring, analysing or testing during electrolytic production of electrolyte parameters
- C25B15/029—Concentration
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B15/00—Operating or servicing cells
- C25B15/08—Supplying or removing reactants or electrolytes; Regeneration of electrolytes
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B9/00—Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
- C25B9/17—Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
- C25B9/19—Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/073—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Analytical Chemistry (AREA)
- Automation & Control Theory (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Abstract
본 발명은 전기화학적 합성가스 제조장치에 관한 것으로, 더욱 상세하게는 이산화탄소 및 질소화합물을 저전력으로 동시에 가수분해하여 H2와 CO가 혼합된 합성가스를 생산하되, 원하는 비율의 H2/CO 합성가스를 맞춤 생산할 수 있는 제조장치 및 방법에 관한 것이다. 본 발명에 따른 저전력 전기화학적 합성가스 제조장치는 환원전극에서의 이산화탄소의 환원 뿐만 아니라 산화전극에서 질소화합물의 산화가 동시에 수행되므로, 이산화탄소 전환 효율을 종래 이산화탄소 전환시스템에 비하여 30% 이상 향상시키며, 생성되는 합성가스의 H2/CO 비율을 제어할 수 있어 원하는 H2/CO 비율을 갖는 합성가스를 생산할 수 있는 효과, 및 구동전압을 감소시킴으로써 전극 재질의 부식 문제를 억제하고, 전극의 내구성을 증가시키는 효과를 가질 수 있다.
Description
본 발명은 전기화학적 합성가스 제조장치에 관한 것으로, 더욱 상세하게는 이산화탄소 및 질소화합물을 저전력으로 동시에 가수분해하여 H2와 CO가 혼합된 합성가스를 생산하되, 원하는 비율의 H2/CO 합성가스를 맞춤 생산할 수 있는 제조장치 및 방법에 관한 것이다.
산업의 발전에 따라서 이산화탄소의 배출량이 증가하고 있으며, 이에 따른 대기 중 이산화탄소 농도는 산업 혁명 이후 꾸준하게 증가하고 있다. 산업의 발전에 따른 인구 증가, 화석연료 사용량의 증가는 이산화탄소 배출량을 급증하게 하였으며, 이에 따라 지구온난화, 해양의 산성화 등 다양한 환경적 영향을 초래하였다.
이산화탄소를 효과적으로 저감하는 기술을 개발하기 위하여 이산화탄소의 포집 및 저장 기술 관련 다양한 연구가 진행되어 왔으며, 최근에는 이산화탄소를 일산화탄소, 에탄올 등 다른 고부가 가치의 에너지 자원으로 전환하는 기술 또한 개발되고 있다.
그 중, 이산화탄소의 전기화학적 전환은 상온, 상압 조건에서 수행할 수 있고 간단한 시스템으로 모듈화가 가능한 장점을 가지고 있다.
현재 이산화탄소 전환시스템에서 이산화탄소 환원의 짝 반응으로는 산소발생반응(Oxygen evolution reaction, OER)이 적용되어 있다. 이에 따라 종래 이산화탄소 전환 시스템의 반응식은 하기의 반응식 1과 같다:
[반응식 1]
환원전극: CO2 + H2O + 2e- → CO(g) + H2O (-0.53 V vs. RHE)
산화전극: H2O → 1/2O2 + 2H+ + 2e- (1.23 V vs. RHE).
이때, 상기 반응식 1의 종래 이산화탄소 전환시스템의 이론 on-set 전압은 -1.76V로서, 이산화탄소의 높은 화학적 안정성으로 인해 많은 전기 에너지가 소모되어야 하는 단점이 있다.
이론적인 에너지 소모량에 대한 식은 하기 수학식 1과 같다.
[수학식 1]
W(에너지 소모량)=I(전류)×V(전압)
이에, 상기 수학식 1을 참조하면, 현재 이산화탄소 전환시스템의 구동전압을 감소할 수 있다면, 종래 기술의 문제점인 높은 에너지 소모량을 감소시킬 수 있으므로, 구동전압을 낮출 수 있는 고효율 이산화탄소 전환 시스템 개발이 시급하다.
한편, 이산화탄소를 전기적으로 전환시켜 CO와 H2 가스 혼합물인 합성가스를 제조하는 방법이 연구되고 있다. 상기 합성가스는 피셔-트롭스(Fischer-Tropsch; F-T) 반응을 통하여 에틸렌, 프로필렌 및 부텐 이성질체와 같은 저가 알칸의 탄화수소 중간화합물을 생성할 수 있으며, 이러한 알칸의 탄화수소 중간화합물은 적절한 촉매 하에서 선형 알파올레핀 올리고머 또는 에스테르 형의 합성 윤활유와 같은 산업용 올레핀제품으로 전환시킬 수 있으며, 메탄올과 같은 액체연료의 합성에도 사용될 수 있다.
이때, H2/CO 비율은 연료조성과 운전조건의 유연성으로 인해 F-T 반응과 메탄올 합성에 매우 중요하므로, 원하는 H2/CO 비율을 갖는 합성가스로 제어할 수 있는 방법이 요구되는 실정이다.
본 발명이 해결하고자 하는 제1 과제는 상기한 바와 같이 종래 기술의 단점 및 문제점을 개선하기 위한 것으로서, 원하는 H2/CO 비율을 갖는 합성가스를 제조할 수 있는 저전력 전기화학적 합성가스 제조장치를 제공하는 것이다.
또한, 본 발명이 해결하고자 하는 제2 과제는 상기 저전력 전기화학적 합성가스 제조장치를 이용한 H2/CO 비율이 제어된 합성가스의 제조방법을 제공하는 것이다.
본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다 른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
상기 제1 과제를 해결하기 위하여, 본 발명은 저전력 전기화학적 합성가스 제조장치를 제공한다. 상기 저전력 전기화학적 합성가스 제조장치는 이산화탄소가 포함된 환원연료가 공급되는 제1 공급부, 상기 이산화탄소가 환원되는 환원전극, 상기 환원전극과 접촉하고 환원전해질을 담지하는 환원전해질 스페이서, 및 상기 환원전해질 스페이서의 일단에 위치하고 이산화탄소가 환원되어 합성가스를 배출하는 제1 배출부를 포함하는 환원전극부; 질소화합물이 포함된 산화연료가 공급되는 제2 공급부, 상기 질소화합물이 산화되는 산화전극, 상기 산화전극과 접촉하고 산화전해질을 담지하는 산화전해질 스페이서, 및 상기 산화전해질 스페이서의 일단에 위치하고 질소화합물 산화생성물을 배출하는 제2 배출부를 포함하는 산화전극부; 상기 환원전해질 스페이서와 상기 산화전해질 스페이서 사이에 위치하는 이온교환막을 포함하는 이온교환부; 및 상기 환원전극과 산화전극에 전원을 공급하는 전원부;를 포함한다.
상기 제1 공급부는 환원연료 주입구 및 유로가 형성된 바이폴라 플레이트이며, 상기 제2 공급부는 산화연료 주입구, 유로 및 산화연료 배출구가 형성된 바이폴라 플레이트일 수 있다.
상기 바이폴라 플레이트는 그라파이트, 알루미늄(Al), 스테인레스 스틸(SUS), 티타늄(Ti), 금(Au) 및 이들의 조합으로 이루어지는 군으로부터 선택되는 적어도 하나일 수 있다.
상기 환원전극 및 산화전극은 촉매층을 포함하는 기체확산전극일 수 있다.
상기 환원전극의 촉매층은 Cu, Au, Ag, Zn, Sn, Pb, In, Hg, CuO 및 Cu2O로 이루어지는 군으로부터 선택되는 금속 또는 금속산화물, 금속-금속 합금, 금속-금속산화물 합금 및 탄소담지 금속 중 적어도 하나일 수 있다.
상기 산화전극의 촉매층은 Pt, Ir, Rh, Ru, Fe, Ni, IrO2, RuO2, 탄소담지 금속 및 이들의 조합에서 선택될 수 있다.
상기 질소화합물은 암모니아(NH3), 요소(urea), 요산(uric acid), 비우렛(biuret), 디메틸 요소(dimethyl urea), 하이드라진(hydrazine), 요소 포름알데하이드(H2N-COONH4), HNO3, NO2, NO, N2O3 및 이들의 조합으로 구성된 군으로부터 선택될 수 있다.
상기 산화연료 내에서 질소화합물의 농도는 0.1wt% ~ 30wt% 범위일 수 있다.
상기 환원전해질 및 산화전해질은 각각 독립적으로 KHCO3, K2CO3, KOH, KCl, KClO4, K2SiO3, Na2SO4, NaNO3, NaCl, NaF, NaClO4, CaCl2 및 이들의 조합으로 구성된 군으로부터 선택될 수 있다.
상기 환원전해질 스페이서 및 산화전해질 스페이서의 너비는 10 cm 미만일 수 있다.
상기 환원전해질 스페이서 및 산화전해질 스페이서의 너비는 5 cm 이하일 수 있다.
상기 환원전해질 스페이서 및 산화전해질 스페이서의 너비는 1.5 cm 이하일 수 있다.
상기 전원부는 1 mA cm-2 ~ 10 A cm-2 의 범위의 전류밀도를 갖는 정전류를 인가할 수 있다.
또한, 상기 제2 과제를 해결하기 위하여, 본 발명은 상기 저전력 전기화학적 합성가스 제조장치를 이용한 H2/CO 비율이 제어된 합성가스의 제조방법을 제공한다. 상기 H2/CO 비율이 제어된 합성가스의 제조방법은, 상기 저전력 전기화학적 합성가스 제조장치를 제공하는 단계(S10); 상기 저전력 전기화학적 합성가스 제조장치의 제1 공급부에 이산화탄소를 포함하는 환원연료와, 제2 공급부에 질소화합물을 포함하는 산화연료를 주입하는 단계(S20); 및 상기 저전력 전기화학적 합성가스 제조장치의 산화전극 및 환원전극에 정전류를 인가하여 이산화탄소 및 질소화합물을 동시에 전환시켜 H2 및 CO를 포함하는 합성가스를 제조하는 단계(S30)를 포함하며, 주입되는 질소화합물의 농도 및 인가되는 정전류의 전류밀도를 조절하여 H2/CO 비율이 제어된 합성가스를 제조하는 것을 특징으로 한다.
상기 산화연료 내에서 질소화합물의 농도는 0.1wt% ~ 30wt% 범위일 수 있다.
상기 정전류의 전류밀도는 1 mA cm-2 ~ 10 A cm-2 의 범위로 사용되어 생성되는 합성가스의 H2/CO 비율을 0.25 ~ 30으로 제어할 수 있다.
본 발명의 일 실시예에 따르면, 기존의 이산화탄소 전환 시스템의 산화전극 반응인 산소발생반응을 질소화합물의 산화반응으로 대체함에 따라, 이론 on-set 전압이 낮아짐으로써 저전력으로 구동이 가능하여 시스템의 에너지 소모량을 효과적으로 줄이고, 환원전극에서는 이산화탄소의 환원반응이 발생하고, 산화 극에서는 질소화합물의 산화반응이 발생하여 온실가스인 이산화탄소와 심각한 수질오염원인 질소화합물이 제거되며, 가치 있는 합성가스를 생산하는 효과를 제공할 수 있다.
또한, 본 발명에 따른 저전력 전기화학적 합성가스 제조장치는 환원전극에서의 이산화탄소의 환원 뿐만 아니라 산화전극에서 질소화합물의 산화가 동시에 수행되므로, 이산화탄소 전환 효율을 종래 이산화탄소 전환시스템에 비하여 30% 이상 향상시키며, 생성되는 합성가스의 H2/CO 비율을 제어할 수 있어 원하는 H2/CO 비율을 갖는 합성가스를 생산할 수 있는 효과, 및 구동전압을 감소시킴으로써 전극 재질의 부식 문제를 억제하고, 전극의 내구성을 증가시키는 효과를 가질 수 있다.
본 발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 상세한 설명 또는 특허청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.
도 1은 본 발명의 일 실시예에 따른 저전력 전기화학적 합성가스 제조장치의 모식도를 나타낸다.
도 2는 본 발명의 일 실시예에 따른 저전력 전기화학적 합성가스 제조장치에 있어서, 전극과 이온교환막 사이의 거리(d)가 10 cm인 경우, 질소화합물(NH3)의 농도에 따른 양극의 전압에 대한 선형주사전위법(Linear Sweep Voltammetry, LSV)의 결과를 나타내는 그래프이다.
도 3은 본 발명의 일 실시예에 따른 저전력 전기화학적 합성가스 제조장치에 있어서, 전극과 이온교환막 사이의 거리(d)가 10 cm 미만인 경우, 질소화합물(NH3)의 농도에 따른 양극의 전압에 대한 선형주사전위법(Linear Sweep Voltammetry, LSV)의 결과를 나타내는 그래프이다.
도 4는 본 발명의 일 실시예에 따른 저전력 전기화학적 합성가스 제조장치에 있어서, 전극과 이온교환막 사이의 거리(d)에 따른 전압과 전류밀도의 변화를 나타내는 그래프이다.
도 5는 본 발명의 일 실시예에 따른 저전력 전기화학적 합성가스 제조장치에서 산화전해질 내의 질소화합물(NH3)의 유무에 따른 인가 전류밀도별 셀 전압을 나타낸 그래프이다.
도 6은 본 발명의 일 실시예에 따른 저전력 전기화학적 합성가스 제조장치에서 산화전해질 내 질소화합물(NH3)을 포함하지 않는 경우, 인가 전류밀도별 합성가스(H2/CO)의 전환율을 나타낸 그래프이다.
도 7은 본 발명의 일 실시예에 따른 저전력 전기화학적 합성가스 제조장치에서 산화전해질 내 2M의 질소화합물(NH3)을 포함하는 경우, 인가 전류밀도별 합성가스(H2/CO)의 전환율을 나타낸 그래프이다.
도 8은 본 발명의 일 실시예에 따른 저전력 전기화학적 합성가스 제조장치에서 산화전해질 내 질소화합물(NH3)의 유무에 따른 인가 전류밀도별 합성가스(H2/CO)의 전환율을 나타낸 그래프이다.
도 2는 본 발명의 일 실시예에 따른 저전력 전기화학적 합성가스 제조장치에 있어서, 전극과 이온교환막 사이의 거리(d)가 10 cm인 경우, 질소화합물(NH3)의 농도에 따른 양극의 전압에 대한 선형주사전위법(Linear Sweep Voltammetry, LSV)의 결과를 나타내는 그래프이다.
도 3은 본 발명의 일 실시예에 따른 저전력 전기화학적 합성가스 제조장치에 있어서, 전극과 이온교환막 사이의 거리(d)가 10 cm 미만인 경우, 질소화합물(NH3)의 농도에 따른 양극의 전압에 대한 선형주사전위법(Linear Sweep Voltammetry, LSV)의 결과를 나타내는 그래프이다.
도 4는 본 발명의 일 실시예에 따른 저전력 전기화학적 합성가스 제조장치에 있어서, 전극과 이온교환막 사이의 거리(d)에 따른 전압과 전류밀도의 변화를 나타내는 그래프이다.
도 5는 본 발명의 일 실시예에 따른 저전력 전기화학적 합성가스 제조장치에서 산화전해질 내의 질소화합물(NH3)의 유무에 따른 인가 전류밀도별 셀 전압을 나타낸 그래프이다.
도 6은 본 발명의 일 실시예에 따른 저전력 전기화학적 합성가스 제조장치에서 산화전해질 내 질소화합물(NH3)을 포함하지 않는 경우, 인가 전류밀도별 합성가스(H2/CO)의 전환율을 나타낸 그래프이다.
도 7은 본 발명의 일 실시예에 따른 저전력 전기화학적 합성가스 제조장치에서 산화전해질 내 2M의 질소화합물(NH3)을 포함하는 경우, 인가 전류밀도별 합성가스(H2/CO)의 전환율을 나타낸 그래프이다.
도 8은 본 발명의 일 실시예에 따른 저전력 전기화학적 합성가스 제조장치에서 산화전해질 내 질소화합물(NH3)의 유무에 따른 인가 전류밀도별 합성가스(H2/CO)의 전환율을 나타낸 그래프이다.
이하에서는 첨부한 도면을 참조하여 본 발명을 설명하기로 한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 따라서 여기에서 설명하는 실시예로 한정되는 것은 아니다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결(접속, 접촉, 결합)"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 부재를 사이에 두고 "간접적으로 연결"되어 있는 경우도 포함한다. 또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 구비할 수 있다는 것을 의미한다.
본 명세서에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도 가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
이하 첨부된 도면을 참고하여 본 발명의 실시예를 상세히 설명하기로 한다.
본 발명의 일 측면은 저전력 전기화학적 합성가스 제조장치를 제공한다.
도 1은 본 발명의 일 실시예에 따른 저전력 전기화학적 합성가스 제조장치의 모식도를 나타낸다.
도 1을 참조하면, 본 발명에 따른 저전력 전기화학적 합성가스 제조장치는
이산화탄소가 포함된 환원연료가 공급되는 제1 공급부, 상기 이산화탄소가 환원되는 환원전극, 상기 환원전극과 접촉하고 환원전해질을 담지하는 환원전해질 스페이서, 및 상기 환원전해질 스페이서의 일단에 위치하고 이산화탄소가 환원되어 합성가스를 배출하는 제1 배출부를 포함하는 환원전극부;
질소화합물이 포함된 산화연료가 공급되는 제2 공급부, 상기 질소화합물이 산화되는 산화전극, 상기 산화전극과 접촉하고 산화전해질을 담지하는 산화전해질 스페이서, 및 상기 산화전해질 스페이서의 일단에 위치하고 질소화합물 산화생성물을 배출하는 제2 배출부를 포함하는 산화전극부;
상기 환원전해질 스페이서와 상기 산화전해질 스페이서 사이에 위치하는 이온교환막을 포함하는 이온교환부; 및
상기 환원전극과 산화전극에 전원을 공급하는 전원부;를 포함한다.
먼저, 본 발명에 따른 저전력 전기화학적 합성가스 제조장치는 환원전극부를 포함한다.
상기 환원전극부는 이산화탄소가 포함된 환원연료가 공급되는 제1 공급부(10), 상기 이산화탄소가 환원되는 환원전극(12), 상기 환원전극과 접촉하고 환원전해질을 담지하는 환원전해질 스페이서(13), 및 상기 환원전해질 스페이서의 일단에 위치하고 이산화탄소가 환원되어 합성가스를 배출하는 제1 배출부(14)를 포함한다.
본 발명의 일 실시예에서, 상기 제1 공급부(10)는 이산화탄소가 포함된 환원연료를 장치 내로 공급하는 역할을 하며, 환원연료 주입구(11) 및 유로가 형성되어 환원연료를 장치 내 환원 전극에 공급도록 형성된 바이폴라 플레이트의 형태일 수 있으나, 이에 제한되는 것은 아니다. 상기 제1 공급부는 그라파이트, 알루미늄(Al), 스테인레스 스틸(SUS), 티타늄(Ti), 금(Au) 및 이들의 조합으로 이루어지는 군으로부터 선택되는 적어도 하나일 수 있다.
상기 환원연료는 이산화탄소가 단독으로 사용되거나, 또는 제1 전해질을 더 포함할 수 있다.
본 발명의 일 실시예에서, 상기 제1 전해질은 KHCO3, K2CO3, KOH, KCl, KClO4, K2SiO3, Na2SO4, NaNO3, NaCl, NaF, NaClO4, CaCl2 및 이들의 조합으로 구성된 군으로부터 선택되는 어느 하나일 수 있다. 상기 이산화탄소는 기상 또는 액상일 수 있다. 예를 들면, 상기 제1 공급부(10)를 통하여 기상 또는 액상의 이산화탄소가 환원연료로서 공급될 수 있다. 또는 상기 기상의 이산화탄소가 제1 전해질, 예를 들면, KHCO3 수용액에 용해되어 용액 상태로 공급될 수 있다.
본 발명의 일 실시예에서, 상기 환원전극(12)은 외부로부터 공급된 이산화탄소의 환원반응이 발생하는 전극으로서, 당 업계에서 통상적으로 사용되는 기체확산전극(Gas Dffusion Electrode; GDE)을 사용할 수 있다. 상기 기체확산전극은 물질의 3가지 상태, 즉 고체, 액체 및 기체가 서로 접촉되고 고체의 전자전도성 촉매가 액체 상과 기체상 사이의 전기화학적 반응을 촉매하는 전극이다. 상기 기체확산전극은 예컨대 탄소섬유로 이루어진 100~200 μm 두께의 다공성 전극일 수 있으며, 상기 탄소섬유 상에 이산화탄소의 환원반응에 활성을 갖는 촉매가 촉매층을 구성하여 존재할 수 있다. 상기 촉매는 예를 들면, Cu, Au, Ag, Zn, Sn, Pb, In, Hg, CuO 및 Cu2O로 이루어지는 군으로부터 선택되는 금속 또는 금속산화물, 금속-금속 합금, 금속-금속산화물 합금 및 탄소담지 금속 중 적어도 하나를 들 수 있다. 상기 촉매층은 예를 들면, 스프레이 코팅(Spray coating) 공정, 데칼 공정(Decal method), 테이프캐스팅 공정(Doctor-blade method), 전기영동증착(electro-deposition) 공정, 무전해도금(electroless-deposition) 공정 등 각종 CCS(catalyst coated substrate) 및 CCM(catalyst coated membrane) 기술을 이용하여 제조될 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 일 실시예에서, 상기 환원전해질 스페이서(13)는 환원전해질을 담지하는 공간으로서, 장치 내 환원전해질의 체류시간을 증가시키는 역할을 하며, 환원전극과 후술되는 이온교환막 사이에 위치한다. 상기 환원전해질 스페이서에는 환원전해질로서 상기 제1 전해질이 미리 담지되어 있을 수 있고, 환원연료가 공급됨에 따라 이산화탄소가 용해된 전해질이 환원전극에 접촉시 과량의 전해질이 환원전해질 스페이서로 이동되어 담지될 수 있다.
이때, 본 발명에 따른 저전력 전기화학적 합성가스 제조장치는 상기 환원전해질 스페이서(13)의 너비(d), 즉, 환원전극과 이온교환막 간의 거리를 조절하는 것을 특징으로 한다. 본 발명자는 상기 환원전해질 스페이서(13)의 너비(d)에 따른 전압과 전류밀도의 변화를 측정한 결과, 도 4에 나타낸 바와 같이, d의 너비가 10 cm일 경우에는 전압의 증가에도 전류밀도가 낮게 나타났으나, d의 너비가 좁아질수록 동일한 전압에서 전류밀도의 크기가 증가함으로써 전기전도도가 높아짐을 확인하였다. 따라서, 상기 환원전해질 스페이서(13)의 너비(d)는 10 cm 미만인 것이 바람직하며, 더 바람직하게는 5 cm 이하, 더욱더 바람직하게는 1.5 cm 이하일 수 있다.
상기 환원전해질 스페이서(13)와 환원전극(12)의 계면에서는 이산화탄소가 환원되어 수소(H2) 및 일산화탄소(CO)의 혼합물인 합성가스를 생성하며, 이에, 상기 환원전해질 스페이서(13)의 일단에는 생성된 합성가스를 배출하는 제1 배출부(14)가 구비될 수 있다.
다음으로, 본 발명에 따른 저전력 전기화학적 합성가스 제조장치는 산화전극부를 포함한다.
상기 산화전극부는 질소화합물이 포함된 산화연료가 공급되는 제2 공급부(20), 상기 질소화합물이 산화되는 산화전극(22), 상기 산화전극과 접촉하고 산화전해질을 담지하는 산화전해질 스페이서(23), 및 상기 산화전해질 스페이서의 일단에 위치하고 질소화합물이 산화되어 형성된 산소 및 질소를 배출하는 제2 배출부(25)를 포함한다.
본 발명의 일 실시예에서, 상기 제2 공급부(20)는 질소화합물이 포함된 산화연료를 장치 내로 공급하는 역할을 하며, 산화연료 주입구(21), 유로 및 산화연료 배출구(24)가 형성되어 산화연료를 장치 내 산화전극에 공급도록 형성된 바이폴라 플레이트의 형태일 수 있으나, 이에 제한되는 것은 아니다. 상기 제2 공급부는 그라파이트, 알루미늄(Al), 스테인레스 스틸(SUS), 티타늄(Ti), 금(Au) 및 이들의 조합으로 이루어지는 군으로부터 선택되는 적어도 하나일 수 있다.
상기 산화연료는 제2 전해질에 질소화합물이 용해된 용액이거나, 질소화합물이 포함된 생활폐수 또는 산업폐수일 수 있으나, 이에 제한되는 것은 아니다.
상기 질소화합물은 이산화탄소의 전환시 작동전압을 낮추는 역할을 함과 동시에 이산화탄소가 전환되어 생성된 합성가스의 H2 및 CO의 비율을 조절하는 중요한 역할을 한다.
본 발명자는 본 발명에 따른 저전력 전기화학적 합성가스 제조장치에서 상기 이산화탄소의 전환시 질소화합물이 미치는 영향을 알아보기 위하여, 산화전극에 주입하는 산화연료 내 질소화합물의 유무에 따른 작동전압 및 합성가스(수소, 일산화탄소)의 전환효율을 측정한 결과, 도 5에 나타낸 바와 같이, 산화연료 내에 질소화합물을 포함하지 않는 경우에 비하여 질소화합물을 포함하는 경우 작동전압이 낮아진 것을 확인하였고, 도 6 및 도 7에 나타낸 바와 같이, 산화연료 내에 질소화합물을 포함하지 않는 경우에는 생성된 합성가스의 H2 및 CO의 비율이 인가된 전압과 관련없이 일정한 패턴을 보이지 않는 반면, 산화연료 내에 질소화합물을 포함하는 경우에는 생성된 합성가스의 H2 및 CO의 비율이 인가된 전압에 따라 선형으로 증가하는 것으로 나타났다. 따라서, 상기 질소화합물은 본 발명에 따른 저전력 전기화학적 합성가스 제조장치에서 합성가스 제조시 합성가스의 H2/CO의 비율을 조절할 수 있는 매우 중요한 요소임을 알 수 있다.
본 발명의 일 실시예에서, 상기 질소화합물은 암모니아(NH3), 요소(urea), 요산(uric acid), 비우렛(biuret), 디메틸 요소(dimethyl urea), 하이드라진(hydrazine), 요소 포름알데하이드(H2N-COONH4), HNO3, NO2, NO, N2O3 및 이들의 조합으로 구성된 군으로부터 선택되는 어느 하나일 수 있다.
본 발명의 일 실시예에서, 상기 제2 전해질은 KHCO3, K2CO3, KOH, KCl, KClO4, K2SiO3, Na2SO4, NaNO3, NaCl, NaF, NaClO4, CaCl2 및 이들의 조합으로 구성된 군으로부터 선택되는 어느 하나일 수 있다. 상기 제2 전해질은 제1 전해질과 동일할 수도 있고 상이할 수도 있다.
예컨대 상기 산화연료는 제2 전해질, 예를 들면, KHCO3 수용액에 암모니아(NH3)가 용해되어 용액 상태로 공급될 수 있다.
이때, 상기 산화연료 내에서 질소화합물의 농도는 0.1wt% - 30wt% 범위인 것이 바람직한 바, 상기 범위 내에서 생성되는 합성가스의 H2/CO의 비율 조절을 효과적으로 수행할 수 있으며, 상기 범위를 벗어나면 이러한 작용이 제대로 수행되지 못하는 문제가 있다.
본 발명의 일 실시예에서, 상기 산화전극(22)은 외부로부터 공급된 질소화합물이 산화반응하는 전극으로서, 당 업계에서 통상적으로 사용되는 기체확산전극(Gas Diffusion Electrode; GDE)을 사용할 수 있다. 상기 기체확산전극은 물질의 3가지 상태, 즉 고체, 액체 및 기체가 서로 접촉되고 고체의 전자전도성 촉매가 액체 상과 기체상 사이의 전기화학적 반응을 촉매하는 전극이다. 상기 기체확산전극은 예컨대 탄소섬유로 이루어진 100~200 μm 두께의 다공성 전극일 수 있으며, 상기 탄소섬유 상에 질소화합물의 산화반응에 활성을 갖는 촉매가 촉매층을 구성하여 존재할 수 있다. 상기 촉매는 예를 들면, Pt, Ir, Rh, Ru, Fe, Ni, IrO2, RuO2, 탄소담지 금속 및 이들의 조합에서 선택될 수 있다. 상기 촉매층은 예를 들면, 스프레이 코팅(Spray coating) 공정, 데칼 공정(Decal method), 테이프캐스팅 공정(Doctor-blade method), 전기영동증착(electro-deposition) 공정, 무전해도금(electroless-deposition) 공정 등 각종 CCS(catalyst coated substrate) 및 CCM(catalyst coated membrane) 기술을 이용하여 제조될 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 일 실시예에서, 상기 산화전해질 스페이서(23)는 산화전해질을 담지하는 공간으로서, 장치 내 산화전해질의 체류시간을 증가시키는 역할을 하며, 산화전극과 후술되는 이온교환막 사이에 위치한다. 상기 산화전해질 스페이서에는 산화전해질로서 상기 제2 전해질이 미리 담지되어 있을 수 있고, 산화연료가 공급됨에 따라 질소화합물이 용해된 전해질이 산화전극에 접촉시 과량의 전해질이 산화전해질 스페이서로 이동되어 담지될 수 있다.
이때, 본 발명에 따른 저전력 전기화학적 합성가스 제조장치는 상기 산화전해질 스페이서(23)의 너비(d), 즉, 산화전극과 이온교환막 간의 거리를 조절하는 것을 특징으로 한다. 본 발명자는 상기 환원전해질 스페이서(23)의 너비(d)에 따른 전압과 전류밀도의 변화를 측정한 결과, 도 4에 나타낸 바와 같이, d의 너비가 10 cm일 경우에는 전압의 증가에도 전류밀도가 낮게 나타났으나, d의 너비가 좁아질수록 동일한 전압에서 전류밀도의 크기가 증가함으로써 전기전도도가 높아짐을 확인하였다. 따라서, 상기 환원전해질 스페이서(13)의 너비(d)는 10 cm 미만인 것이 바람직하며, 더 바람직하게는 5 cm 이하, 더욱더 바람직하게는 1.5 cm 이하일 수 있다.
상기 산화전해질 스페이서(23)와 산화전극(22)의 계면에서는 질소화합물이 산화되어 질소(N2)를 생성하며, 이에, 상기 산화전해질 스페이서(23)의 일단에는 생성된 질소를 배출하는 제2 배출부(25)가 구비될 수 있다.
다음으로, 본 발명에 따른 저전력 전기화학적 합성가스 제조장치는 상기 환원전극과 산화전극 사이에 위치하는 이온교환막(30)을 포함하는, 이온교환부를 포함한다.
본 발명의 일 실시예에서, 상기 이온교환막은 이온 상태의 양이온 또는 음이온을 반대쪽 전극에 선택적으로 전달시켜주는 역할을 하며, 양이온 교환막, 음이온 교환막, 또는 양이온 교환막과 음이온 교환막이 접합된 혼합막을 사용할 수 있다.
본 발명의 일 실시예에서, 상기 양이온 교환막은 폴리비닐리덴 플루오라이드(PVDF), 폴리아미드, 폴리에스터, 폴리설폰, 폴리에틸렌, 폴리프로필렌, 스티렌, 아크릴산, 메타크릴산, 글리시딜아크릴레이트, 글리시딜메타크릴 레이트, 폴리에틸렌글리콜디아크릴레이트, 1,3-부틸렌글리콜디아크릴레이트, 에틸렌글리콜디메타크릴레이트 및 셀루로오스로 이루어진 군으로부터 선택된 어느 하나 이상을 포함할 수 있다.
본 발명의 일 실시예에서, 상기 양이온 교환막의 경우 촉매 작용에 의하여 환원전극에서 생성된 환원 물질 혹은 중간체가 산화전극으로 이동하여 산화하지 않도록 하는 결기막 역할을 담당하며, 음이온의 투과를 억제하며 양이온이 투과 가능한 분리상일 수 있다.
본 발명에 있어서, 양이온 교환막은 양이온이 전도성이 있는 것으로 공지된 것을 제한 없이 사용할 수 있다. 구체적으로는, 타공질 필름, 부직포, 직포, 종이, 부직지, 무기막 등을 들 수 있다. 이들 양이온 교환막의 재질은 특별히 제한되는 것은 아니고, 열가소성 수지, 열경화성 수지, 무기물 및 이들의 혼합물을 사용할 수 있다.
또한, 양이온 교환막 중에서도, 기계적 강도, 화학적 안정성 및 내약품성이 우수하고, 음이온 교환 수지와 친화 가 좋은 관점에서 불소계 막 혹은 탄화수소계 막을 사용하는 것이 바람직할 수 있다.
본 발명의 일 실시예에서, 상기 양이온 교환막은 시판품, 예를 들어, Dupont 사의 상품명 Nafion, FuMA-Tech GmbH의 상품명 Fumapem 등으로서 입수할 수도 있다.
본 발명의 일 실시예에서, 상기 음이온 교환막은 OH- , HCO3 - , CO3 2- 과 같은 음이온이 투과 가능한 분리상을 의미할 수 있고, 불소계 물질 또는 탄화수소계 물질 중 하나이상을 포함할 수 있고, 예를 들면, 탄화수소계 물질, 예를 들면 4급 암모늄 염기, 피리디늄 염기, 이마다졸륨 염기, 제3급 아미노기 또는 포스포늄기를 포함할 수 있다.
본 발명의 일 실시예에서, 상기 음이온 교환막은 시판품 예를 들어, Tokuyama Co. Ltd.의 상품명 A201, FuMA-Tech GmbH의 상품명 Fumasep, Asahi Chemical Industry Co.의 상품명 Aciplex 등으로서 입수할 수도 있다.
본 발명에 따른 저전력 전기화학적 합성가스 제조장치는 상기 음이온 교환막을 사용하여, OH 이온이 높은 효율로 전달되어, 일산화탄소에 대한 선택성을 대폭 향상시킴으로써, 일산화탄소의 생성 효율이 증가하는 효과가 있을 수 있다.
본 발명의 일 실시예에서, 상기 혼합막은 양이온 교환막 및 음이온 교환막을 모두 포함하며, 상기 환원전극(13) 및 상기 산화전극(23) 사이에 위치하되, 상기 환원전극(13)과 접하는 음이온 교환막 및 상기 산화전극(23)과 접하는 양이온교환막을 포함하고, 상기 음이온 교환막 및 상기 양이온교환막은 접하여 정션(junction) 구조를 갖는 것을 특징으로 할 수 있다.
본 발명의 일 실시예에서, 상기 이온교환막의 두께는 1 μm 내지 150 μm, 예를 들면, 50 μm 내지 100 μm, 예를 들면, 50 μm일 수 있다.
다음으로, 본 발명에 따른 저전력 전기화학적 합성가스 제조장치는 상기 환원전극(13) 및 산화전극(23)에 전원을 공급하는 전원부를 포함한다.
상기 전원부를 통하여 상기 환원전극에서는 이산화탄소의 환원반응이 상기 산화전극에서는 질소화합물의 산화반응이 진행될 수 있다.
상기 전원부는 1 mA cm-2 ~ 10 A cm-2 의 범위의 전류밀도를 갖는 정전류를 인가할 수 있다.
본 발명에 따른 저전력 전기화학적 합성가스 제조장치의 반응식은 하기의 반응식 2와 같다:
[반응식 2]
환원전극: CO2 + 2H+ + 2e- → CO(g) + H2O (-0.53 V vs. RHE)
H+ + e- → H2 (0.00 V vs. RHE)
산화전극: 2NH3 + 6OH- → N2 + 6H2O + 6e- (0.06 V vs RHE).
상기 반응식 2를 참조하면, 본 발명의 이산화탄소 및 질소화합물의 동시 전환시스템의 이론 on-set 전압은 (-0.53 V) - (0.06 V) = -0.59 V 이다.
패러데이 법칙에 따른 전기화학적 전환 생성물의 계산법은 하기의 수학식 2와 같다:
[수학식 2]
(상기 수학식 2에서,
n은 생성물(gmol)이고,
F는 페러데이 상수(96,500 C/gmol)이며,
z는 단위 전기화학 반응에서 소모되는 전자의 개수이다.).
상기 반응식 1 및 반응식 2에서 도출한 이론 on-set 전압 및 상기 수학식 1 및 수학식 2를 참조하면, 이산화탄소 전환으로 얻는 생성물의 양이 일정할 때, 즉 전류 값을 일정하게 인가할 때, 본 발명에 따른 저전력 전기화학적 합성가스 제조장치는 산화전극에서 질소화합물을 산화시킴으로써 종래 이산화탄소 전환시스템보다 구동전압이 낮으므로, 구동전압이 높은 기존의 이산화탄소 전환시스템보다 에너지 소모량이 현저히 낮다는 것을 확인할 수 있다.
또한, 일반적으로 이산화탄소 전환시스템에 높은 전압이 인가될 경우, 구성요소의 부식이 발생할 수 있는데, 본 발명에 따른 저전력 전기화학적 합성가스 제조장치는 구동전압이 감소하여 전극 재질의 부식 문제를 억제할 수 있는 효과를 나타낼 수 있다.
나아가, 본 발명에 따른 저전력 전기화학적 합성가스 제조장치는 환원전극에서의 이산화탄소의 환원 뿐만 아니라 산화전극에서 질소화합물의 산화가 동시에 수행되므로, 구동시 에너지 소모량을 효과적으로 줄이고, 이산화탄소 전환 효율을 종래 이산화탄소 전환시스템에 비하여 30% 이상 향상시키며, 생성되는 합성가스의 H2/CO 비율을 제어할 수 있어 원하는 H2/CO 비율을 갖는 합성가스를 생산할 수 있는 효과, 및 구동전압을 감소시킴으로써 전극의 내구성을 증가시키는 효과를 가질 수 있다.
또한, 본 발명에 따른 저전력 전기화학적 합성가스 제조장치를 통해, 이산화탄소 및 질소화합물을 동시에 분해시킴으로써, 이산화탄소로 인한 지구온난화, 해양의 산성화 등 다양한 환경적 영향을 방지할 수 있고, 더불어 암모니아와 같은 질소화합물이 포함된 공업 폐수 및 농업 폐수를 산화연료로 주입함으로써, 상기 공업 폐수 및 농업 폐수를 정화하여 수질 오염을 억제하고 환경 적인 측면에서 상당한 기여를 할 수 있다. 나아가, 생성된 합성가스는 다른 고부가 가치의 에너지 자원으로 전환할 수 있다.
또한, 본 발명의 다른 측면은 상기 저전력 전기화학적 합성가스 제조장치를 이용한 H2/CO 비율이 제어된 합성가스의 제조방법을 제공한다.
구체적으로, 상기 H2/CO 비율이 제어된 합성가스의 제조방법은
본 발명에 따른 저전력 전기화학적 합성가스 제조장치를 제공하는 단계(S10);
상기 저전력 전기화학적 합성가스 제조장치의 제1 공급부에 이산화탄소를 포함하는 환원연료와, 제2 공급부에 질소화합물을 포함하는 산화연료를 주입하는 단계(S20); 및
상기 저전력 전기화학적 합성가스 제조장치의 산화전극 및 환원전극에 정전류를 인가하여 이산화탄소 및 질소화합물을 동시에 전환시켜 H2 및 CO를 포함하는 합성가스를 제조하는 단계(S30)를 포함하며,
주입되는 질소화합물의 농도 및 인가되는 정전류의 전류밀도를 조절하여 H2/CO 비율이 제어된 합성가스를 제조하는 것을 특징으로 한다.
이하, 본 발명에 따른 H2/CO 비율이 제어된 합성가스의 제조방법을 단계별로 상세하게 설명한다.
먼저, S10 단계는 저전력 전기화학적 합성가스 제조장치를 제공하는 단계이다. 본 발명은 저전력 전기화학적 합성가스 제조장치에 특징이 있으며, 구체적인 구성은 전술한 바와 같으므로, 중복 기재를 피하기 위하여, 자세한 설명은 생략한다.
다음으로, S20 단계는 상기 저전력 전기화학적 합성가스 제조장치의 연료를 주입하는 단계이다. 상기 저전력 전기화학적 합성가스 제조장치는 환원전극에 이산화탄소를 포함하는 환원연료를 공급하는 제1 공급부와, 산화전극에 질소화합물을 포함하는 산화연료를 공급하는 제2 공급부가 구비되어 있다. 이에, 상기 제1 공급부에는 이산화탄소를 포함하는 환원연료, 예컨대 이산화탄소가 용해된 제1 전해질을 주입할 수 있고, 제2 공급부에는 질소화합물을 포함하는 산화연료, 예컨대 질소화합물이 용해된 제2 전해질 또는 질소화합물이 용해된 공업 폐수 또는 농업 폐수를 주입한다.
이때, 상기 질소화합물은 암모니아(NH3), 요소(urea), 요산(uric acid), 비우렛(biuret), 디메틸 요소(dimethyl urea), 하이드라진(hydrazine), 요소 포름알데하이드(H2N-COONH4), HNO3, NO2, NO, N2O3 및 이들의 조합으로 구성된 군으로부터 선택되는 어느 하나일 수 있으며, 일례로서 암모니아일 수 있다.
이때, 상기 산화연료 내에서 질소화합물의 농도는 0.1wt% - 30wt% 범위인 것이 바람직한 바, 상기 범위 내에서 생성되는 합성가스의 H2/CO의 비율 조절을 효과적으로 수행할 수 있으며, 상기 범위를 벗어나면 이러한 작용이 제대로 수행되지 못하는 문제가 있다.
상기 제1 공급부와 제2 공급부에 각각 주입되는 환원연료 및 산화연료의 공급 유속은 15~35 ml/min으로 유지하는 것이 바람직한 바, 이러한 범위에서 전류밀도가 안정화되고 전체 패러데이 효율(faradaic efficiency)이 적절하게 유지되는 데 적합할 수 있다.
다음으로, S30 단계는 상기 저전력 전기화학적 합성가스 제조장치의 산화전극 및 환원전극에 정전류를 인가하여 이산화탄소 및 질소화합물을 동시에 전환시켜 H2 및 CO를 포함하는 합성가스를 제조하는 단계이다.
상기 정전류를 인가하는 것은 상기 저전력 전기화학적 합성가스 제조장치의 전원부를 통하여 수행할 수 있다.
이때, 인가되는 정전류의 전류밀도를 조절하여 H2/CO 비율이 제어된 합성가스를 제조하는 것을 특징으로 한다.
상기 정전류의 전류밀도는 1 mA cm-2 ~ 10 A cm-2 의 범위로 사용될 수 있으며, 이때 생성되는 합성가스의 H2/CO 비율은 0.25 ~ 30일 수 있다.
이와 같이, 본 발명에 따른 저전력 전기화학적 합성가스 제조장치는 제1 공급부에 이산화탄소를 포함하는 환원연료를 주입하고, 제2 공급부에 질소화합물을 포함하는 산화연료를 주입한 후, 환원전극과 산화전극에 정전류를 공급하여 이산화탄소를 전환시켜 합성가스를 생성하되, 질소화합물의 농도 및 정전류의 전류밀도를 조절함으로써 생성되는 합성가스의 H2/CO 비율을 제어할 수 있어 원하는 H2/CO 비율을 갖는 합성가스를 맞춤 생산할 수 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예(example) 및 실험예를 제시한다. 다만, 하기의 실시예 및 실험예는 본 발명의 이해를 돕기 위한 것일 뿐, 본 발명이 하기의 실시예에 의해 한정되는 것은 아니다.
<실시예 1~3 : 저전력 전기화학적 합성가스 제조장치의 제조>
<실시예 1>
3×3 cm 크기의 전극 지지체 상에 Au 촉매를 도포하여 환원전극(12)을 제조하고, 3×3 cm 크기의 전극 지지체 상에 Pt 촉매를 도포하여 산화전극(22)을 제조하였다. 도 1에 나타낸 바와 같이, 상기 환원전극(12)과 산화전극(22)을, 제1 공급부(10)로서 CO2 주입구(11) 및 유로를 갖는 환원전극부 유동 플레이트와, 제2 공급부(20)로서 산화전해질 및 NH3 주입구(21), 유로 및 배출구(24)를 갖는 산화전극부 유동 플레이트에 각각 결합시킨 후, 상기 환원전극(12) 및 산화전극(22) 사이에 100 μm 두께의 양이온교환막(Proton exchange membrane. PEM)(30)을 형성하였고, 상기 환원전극과 양이온교환막 사이에 합성가스 배출구를 갖는 환원전해질 스페이서(catholyte spacer)를 구비하고, 상기 산화전극(22)과 양이온교환막(30) 사이에 N2 및 O2 배출구(25)를 갖는 산화전해질 스페이서(anolyte spacer)(23)를 구비하였다. 이때 환원전해질 스페이서 및 산화전해질 스페이서의 너비(d)를 각각 1.3 cm로 하였다. 이후, 부품들 사이에 가스켓(40)을 이용하여 마감함으로써 단위전지를 제조하였다.
<실시예 2>
상기 실시예 1에서, 환원전해질 스페이서 및 산화전해질 스페이서의 너비(d)를 0.1 cm로 하는 것을 제외하고는 실시예 1과 동일한 방법으로 단위 전지를 제조하였다.
<실시예 3>
상기 실시예 1에서, 환원전해질 스페이서 및 산화전해질 스페이서의 너비(d)를 3.2 cm로 하는 것을 제외하고는 실시예 1과 동일한 방법으로 단위 전지를 제조하였다.
<실시예 4>
상기 실시예 1에서, 환원전해질 스페이서 및 산화전해질 스페이서의 너비(d)를 5.0 cm로 하는 것을 제외하고는 실시예 1과 동일한 방법으로 단위 전지를 제조하였다.
<실시예 5>
상기 실시예 1에서, 환원전해질 스페이서 및 산화전해질 스페이서의 너비(d)를 9.2 cm로 하는 것을 제외하고는 실시예 1과 동일한 방법으로 단위 전지를 제조하였다.
<비교예 1>
상기 실시예 1에서, 환원전해질 스페이서 및 산화전해질 스페이서의 너비(d)를 10 cm로 하는 것을 제외하고는 실시예 1과 동일한 방법으로 단위 전지를 제조하였다.
<실험예 1: LSV의 측정>
상기 실시예 1, 2 및 비교예 1에서 제조한 단위전지의 환원전극에 이산화탄소가 포화된 0.5 M의 KHCO3 수용액을 20 ml/min의 속도로 주입하고, 산화전극에 암모니아가 포함되지 않거나 2.0 M의 암모니아가 포함된 0.5 M의 KHCO3 수용액을 30 ml/min의 속도로 주입하여 이산화탄소를 전환시켜 합성가스를 발생시켰다. 이때, 단위 전지의 양극에 대하여 0.1 V/s의 속도로 양극의 전압을 변화시켜 LSV(Linear sweep voltammetry)를 측정하여 도 2 내지 도 4에 나타내었다.
도 2는 비교예 1에서 제조된 단위전지(d=10 cm)에서 암모니아 농도에 따른 산화전극에 인가된 전압에 따른 전류밀도의 변화를 나타내는 그래프이다.
도 3은 실시예 1에서 제조된 단위전지(d=1.3 cm)에서 암모니아 농도에 따른 산화전극에 인가된 전압에 따른 전류밀도의 변화를 나타내는 그래프이다.
도 4는 실시예 1, 2 및 비교예 1에서 제조된 단위전지에서 d의 값에 따른, 암모니아 포함시 인가된 전압에 따른 전류밀도의 변화를 나타내는 그래프이다.
도 2 내지 도 4에 나타낸 바와 같이, 본 발명에 따른 전기화학적 합성가스 제조장치는 암모니아 농도가 증가할수록, 전극과 이온교환막 사이의 거리(d)가 10 cm 미만으로 짧아질수록 셀 전위가 훨씬 낮아짐으로써 저전력으로도 합성가스를 제조할 수 있음을 알 수 있다.
<실험예 2: 구동 전압 및 합성가스 전환효율의 측정>
상기 실시예 1에서 제조한 단위전지의 환원전극에 이산화탄소가 포화된 0.5 M의 KHCO3 수용액을 20 ml/min의 속도로 주입하고, 산화전극에 암모니아가 포함되지 않거나 2.0 M의 암모니아가 포함된 0.5 M의 KHCO3 수용액을 30 ml/min의 속도로 주입하여 이산화탄소를 전환시켜 합성가스를 발생시켰다. 이때, 상기 단위전지에 10, 30, 50, 75, 100 mA/cm2의 정전류를 한시간 인가한 후, 구동전압 및 합성가스(수소, 일산화탄소)의 전환효율을 측정하여 도 5 내지 도 8에 나타내었다.
도 5는 본 발명의 일 실시예에 따른 저전력 전기화학적 합성가스 제조장치에서 산화전해질 내의 NH3의 유무에 따른 인가 전류밀도별 셀 전압을 나타낸 그래프이다.
도 6은 본 발명의 일 실시예에 따른 저전력 전기화학적 합성가스 제조장치에서 산화전해질 내 NH3를 포함하지 않는 경우, 인가 전류밀도별 합성가스(H2/CO)의 전환율을 나타낸 그래프이다.
도 7은 본 발명의 일 실시예에 따른 저전력 전기화학적 합성가스 제조장치에서 산화전해질 내 2M의 NH3를 포함하는 경우, 인가 전류밀도별 합성가스(H2/CO)의 전환율을 나타낸 그래프이다.
도 8은 본 발명의 일 실시예에 따른 저전력 전기화학적 합성가스 제조장치에서 산화전해질 내 NH3의 유무에 따른 인가 전류밀도별 합성가스(H2/CO)의 전환율을 나타낸 그래프이다.
도 5에 나타낸 바와 같이, 본 발명에 따른 전기화학적 합성가스 제조장치는 산화전해질 내에 암모니아를 첨가함으로써 암모니아를 첨가하지 않을 때보다 전체 전류밀도에서 더 낮은 구동전압을 나타내는 것을 확인할 수 있다.
또한, 도 6 내지 도 8에 나타낸 바와 같이, 본 발명에 따른 전기화학적 합성가스 제조장치는 산화전해질 내에 2M의 암모니아를 첨가하는 경우, 암모니아를 첨가하지 않을 때보다 전체적으로 합성가스(H2/CO) 전환율이 약 30% 이상 향상되는 것으로 나타났으며, 또한 전류밀도에 따라 합성가스(H2/CO)의 전환율이 선형적으로 증가함을 확인하였다.
따라서, 본 발명에 따른 전기화학적 합성가스 제조장치는 산화전해질 내에 2M의 암모니아를 첨가함으로써 더 낮은 구동전압에서 합성가스를 제조할 수 있으며, 전류밀도에 따라 합성가스의 전환율을 조절할 수 있으므로, 원하는 비율의 합성가스를 맞춤으로 생산할 수 있다.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명 의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해 할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.
본 발명의 범위는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
10: 제1 공급부
11: 환원연료 주입구
12: 환원전극 13: 환원전해질 스페이서(catholyte spacer)
14: 합성가스 배출구 20: 제2 공급부
21: 산화연료 주입구 22: 산화전극
23: 산화전해질 스페이서(anolyte spacer)
24: 산화연료 배출구 25: N2 배출구
30: 이온교환막 40: 가스켓
d: 환원전해질 스페이서 또는 산화전해질 스페이서의 너비
12: 환원전극 13: 환원전해질 스페이서(catholyte spacer)
14: 합성가스 배출구 20: 제2 공급부
21: 산화연료 주입구 22: 산화전극
23: 산화전해질 스페이서(anolyte spacer)
24: 산화연료 배출구 25: N2 배출구
30: 이온교환막 40: 가스켓
d: 환원전해질 스페이서 또는 산화전해질 스페이서의 너비
Claims (16)
- 이산화탄소가 포함된 환원연료가 공급되는 제1 공급부, 상기 이산화탄소가 환원되는 환원전극, 상기 환원전극과 접촉하고 환원전해질을 담지하는 환원전해질 스페이서, 및 상기 환원전해질 스페이서의 일단에 위치하고 이산화탄소가 환원되어 합성가스를 배출하는 제1 배출부를 포함하는 환원전극부;
질소화합물이 포함된 산화연료가 공급되는 제2 공급부, 상기 질소화합물이 산화되는 산화전극, 상기 산화전극과 접촉하고 산화전해질을 담지하는 산화전해질 스페이서, 및 상기 산화전해질 스페이서의 일단에 위치하고 질소화합물 산화생성물을 배출하는 제2 배출부를 포함하는 산화전극부;
상기 환원전해질 스페이서와 상기 산화전해질 스페이서 사이에 위치하는 이온교환막을 포함하는 이온교환부; 및
상기 환원전극과 산화전극에 전원을 공급하는 전원부;를 포함하는
저전력 전기화학적 합성가스 제조장치. - 제1항에 있어서,
상기 제1 공급부는 환원연료 주입구 및 유로가 형성된 바이폴라 플레이트이며, 상기 제2 공급부는 산화연료 주입구, 유로 및 산화연료 배출구가 형성된 바이폴라 플레이트인 것을 특징으로 하는 저전력 전기화학적 합성가스 제조장치. - 제2항에 있어서,
상기 바이폴라 플레이트는 그라파이트, 알루미늄(Al), 스테인레스 스틸(SUS), 티타늄(Ti), 금(Au) 및 이들의 조합으로 이루어지는 군으로부터 선택되는 적어도 하나인 것을 특징으로 하는 저전력 전기화학적 합성가스 제조장치. - 제1항에 있어서,
상기 환원전극 및 산화전극은 촉매층을 포함하는 기체확산전극인 것을 특징으로 하는 저전력 전기화학적 합성가스 제조장치. - 제4항에 있어서,
상기 환원전극의 촉매층은 Cu, Au, Ag, Zn, Sn, Pb, In, Hg, CuO 및 Cu2O로 이루어지는 군으로부터 선택되는 금속 또는 금속산화물, 금속-금속 합금, 금속-금속산화물 합금 및 탄소담지 금속 중 적어도 하나인 것을 특징으로 하는 저전력 전기화학적 합성가스 제조장치. - 제4항에 있어서,
상기 산화전극의 촉매층은 Pt, Ir, Rh, Ru, Fe, Ni, IrO2, RuO2, 탄소담지 금속 및 이들의 조합에서 선택되는 것을 특징으로 하는 저전력 전기화학적 합성가스 제조장치. - 제1항에 있어서,
상기 질소화합물은 암모니아(NH3), 요소(urea), 요산(uric acid), 비우렛(biuret), 디메틸 요소(dimethyl urea), 하이드라진(hydrazine), 요소 포름알데하이드(H2N-COONH4), HNO3, NO2, NO, N2O3 및 이들의 조합으로 구성된 군으로부터 선택되는 것을 특징으로 하는 저전력 전기화학적 합성가스 제조장치. - 제1항에 있어서,
상기 산화연료 내에서 질소화합물의 농도는 0.1wt% ~ 30wt% 범위인 것을 특징으로 하는 저전력 전기화학적 합성가스 제조장치. - 제1항에 있어서,
상기 환원전해질 및 산화전해질은 각각 독립적으로 KHCO3, K2CO3, KOH, KCl, KClO4, K2SiO3, Na2SO4, NaNO3, NaCl, NaF, NaClO4, CaCl2 및 이들의 조합으로 구성된 군으로부터 선택되는 것을 특징으로 하는 저전력 전기화학적 합성가스 제조장치. - 제1항에 있어서,
상기 환원전해질 스페이서 및 산화전해질 스페이서의 너비는 10 cm 미만인 것을 특징으로 하는 저전력 전기화학적 합성가스 제조장치. - 제10항에 있어서,
상기 환원전해질 스페이서 및 산화전해질 스페이서의 너비는 5 cm 이하인 것을 특징으로 하는 저전력 전기화학적 합성가스 제조장치. - 제10항에 있어서,
상기 환원전해질 스페이서 및 산화전해질 스페이서의 너비는 1.5 cm 이하인 것을 특징으로 하는 저전력 전기화학적 합성가스 제조장치. - 제1항에 있어서,
상기 전원부는 1 mA cm-2 ~ 10 A cm-2 의 범위의 전류밀도를 갖는 정전류를 인가하는 것을 특징으로 하는 저전력 전기화학적 합성가스 제조장치. - 이산화탄소가 포함된 환원연료가 공급되는 제1 공급부, 상기 이산화탄소가 환원되는 환원전극, 상기 환원전극과 접촉하고 환원전해질을 담지하는 환원전해질 스페이서, 및 상기 환원전해질 스페이서의 일단에 위치하고 이산화탄소가 환원되어 합성가스를 배출하는 제1 배출부를 포함하는 환원전극부;
질소화합물이 포함된 산화연료가 공급되는 제2 공급부, 상기 질소화합물이 산화되는 산화전극, 상기 산화전극과 접촉하고 산화전해질을 담지하는 산화전해질 스페이서, 및 상기 산화전해질 스페이서의 일단에 위치하고 질소화합물 산화생성물을 배출하는 제2 배출부를 포함하는 산화전극부;
상기 환원전해질 스페이서와 상기 산화전해질 스페이서 사이에 위치하는 이온교환막을 포함하는 이온교환부; 및
상기 환원전극과 산화전극에 전원을 공급하는 전원부; 를 포함하는 저전력 전기화학적 합성가스 제조장치를 제공하는 단계(S10);
상기 저전력 전기화학적 합성가스 제조장치의 제1 공급부에 이산화탄소를 포함하는 환원연료와, 제2 공급부에 질소화합물을 포함하는 산화연료를 주입하는 단계(S20); 및
상기 저전력 전기화학적 합성가스 제조장치의 산화전극 및 환원전극에 정전류를 인가하여 이산화탄소 및 질소화합물을 동시에 전환시켜 H2 및 CO를 포함하는 합성가스를 제조하는 단계(S30)를 포함하며,
주입되는 질소화합물의 농도 및 인가되는 정전류의 전류밀도를 조절하여 H2/CO 비율이 제어된 합성가스를 제조하는 것을 특징으로 하는, 저전력 전기화학적 합성가스 제조장치를 이용한 H2/CO 비율이 제어된 합성가스의 제조방법. - 제14항에 있어서,
상기 산화연료 내에서 질소화합물의 농도는 0.1wt% ~ 30wt% 범위인 것을 특징으로 하는, 저전력 전기화학적 합성가스 제조장치를 이용한 H2/CO 비율이 제어된 합성가스의 제조방법. - 제14항에 있어서,
상기 정전류의 전류밀도는 1 mA cm-2 ~ 10 A cm-2 의 범위로 사용되어 생성되는 합성가스의 H2/CO 비율을 0.25 ~ 30으로 제어하는 것을 특징으로 하는, 저전력 전기화학적 합성가스 제조장치를 이용한 H2/CO 비율이 제어된 합성가스의 제조방법.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/871,783 US11965254B2 (en) | 2021-09-30 | 2022-07-22 | Manufacturing apparatus and manufacturing method for synthetic gas with controlled H2/CO ratio |
KR1020240127053A KR20240141697A (ko) | 2021-09-30 | 2024-09-20 | 저전력 전기화학적 합성가스 제조장치 및 이를 이용한 h2/co 비율이 제어된 합성가스의 제조방법 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020210129383 | 2021-09-30 | ||
KR20210129383 | 2021-09-30 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020240127053A Division KR20240141697A (ko) | 2021-09-30 | 2024-09-20 | 저전력 전기화학적 합성가스 제조장치 및 이를 이용한 h2/co 비율이 제어된 합성가스의 제조방법 |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20230046930A true KR20230046930A (ko) | 2023-04-06 |
Family
ID=85917817
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020220032182A KR20230046930A (ko) | 2021-09-30 | 2022-03-15 | 저전력 전기화학적 합성가스 제조장치 및 이를 이용한 h2/co 비율이 제어된 합성가스의 제조방법 |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20230046930A (ko) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7790012B2 (en) | 2008-12-23 | 2010-09-07 | Calera Corporation | Low energy electrochemical hydroxide system and method |
-
2022
- 2022-03-15 KR KR1020220032182A patent/KR20230046930A/ko not_active Application Discontinuation
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7790012B2 (en) | 2008-12-23 | 2010-09-07 | Calera Corporation | Low energy electrochemical hydroxide system and method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Rabiee et al. | Gas diffusion electrodes (GDEs) for electrochemical reduction of carbon dioxide, carbon monoxide, and dinitrogen to value-added products: a review | |
Larrazábal et al. | Analysis of mass flows and membrane cross-over in CO2 reduction at high current densities in an MEA-type electrolyzer | |
An et al. | Direct formate fuel cells: A review | |
US10854906B2 (en) | Redox flow battery with carbon dioxide based redox couple | |
KR20230030620A (ko) | 전해조 출력에서 다중 전자 생성물 또는 co의 고농도를 위한 시스템 및 방법 | |
JP4979179B2 (ja) | 固体高分子型燃料電池およびその製造方法 | |
AU2009246798B2 (en) | Permselective membrane-free direct fuel cell and components thereof | |
Senocrate et al. | Electrochemical CO2 reduction at room temperature: Status and perspectives | |
Sapountzi et al. | Hydrogen from electrochemical reforming of C1–C3 alcohols using proton conducting membranes | |
CA3238869A1 (en) | Reactor with advanced architecture for the electrochemical reaction of co2, co, and other chemical compounds | |
JP5528630B2 (ja) | 鉄酸化還元対を用いたカソード電極を含む燃料電池 | |
JP7413304B2 (ja) | 二酸化炭素電解装置 | |
US20230175146A1 (en) | Systems and methods for ethylene production | |
Disch et al. | Bipolar Membrane with Porous Anion Exchange Layer for Efficient and Long‐Term Stable Electrochemical Reduction of CO2 to CO | |
JP6998797B2 (ja) | 有機ハイドライド製造装置、有機ハイドライドの製造方法およびエネルギー輸送方法 | |
WO2018216356A1 (ja) | 有機ハイドライド製造装置 | |
Simakov et al. | Electrocatalytic Reduction of CO 2 | |
KR102679486B1 (ko) | 음이온 교환막 수전해 장치 및 그의 제조방법 | |
KR20230046930A (ko) | 저전력 전기화학적 합성가스 제조장치 및 이를 이용한 h2/co 비율이 제어된 합성가스의 제조방법 | |
US11965254B2 (en) | Manufacturing apparatus and manufacturing method for synthetic gas with controlled H2/CO ratio | |
JP2022143970A (ja) | 二酸化炭素電解装置 | |
Karimi et al. | Performance characteristics of polymer electrolyte membrane CO2 electrolyzer: effect of CO2 dilution, flow rate and pressure | |
Gupta | Electrocatalytic Water Splitting | |
KR102681440B1 (ko) | 암모니아를 이용하는 수소 생산 시스템 및 이를 구비하는 발전 시스템 | |
KR20210035575A (ko) | 이산화탄소 및 질소화합물 동시 전환시스템 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E902 | Notification of reason for refusal | ||
E601 | Decision to refuse application |