KR20230046396A - 4W class thermally conductive pad of equipment of semi-conductor procedure - Google Patents
4W class thermally conductive pad of equipment of semi-conductor procedure Download PDFInfo
- Publication number
- KR20230046396A KR20230046396A KR1020210129331A KR20210129331A KR20230046396A KR 20230046396 A KR20230046396 A KR 20230046396A KR 1020210129331 A KR1020210129331 A KR 1020210129331A KR 20210129331 A KR20210129331 A KR 20210129331A KR 20230046396 A KR20230046396 A KR 20230046396A
- Authority
- KR
- South Korea
- Prior art keywords
- heat dissipation
- silicone resin
- weight
- pad
- semiconductor equipment
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 25
- 238000000034 method Methods 0.000 title description 6
- 230000017525 heat dissipation Effects 0.000 claims abstract description 65
- 229920002050 silicone resin Polymers 0.000 claims abstract description 24
- 239000000945 filler Substances 0.000 claims abstract description 21
- 229920001296 polysiloxane Polymers 0.000 claims abstract description 9
- 239000006087 Silane Coupling Agent Substances 0.000 claims abstract description 8
- 239000006185 dispersion Substances 0.000 claims abstract description 8
- 239000007788 liquid Substances 0.000 claims abstract description 4
- 239000000919 ceramic Substances 0.000 claims abstract 4
- LTPBRCUWZOMYOC-UHFFFAOYSA-N Beryllium oxide Chemical compound O=[Be] LTPBRCUWZOMYOC-UHFFFAOYSA-N 0.000 claims description 8
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 7
- 239000002245 particle Substances 0.000 claims description 6
- 230000005855 radiation Effects 0.000 claims description 6
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 4
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 claims description 2
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 claims description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 2
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical group [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 2
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 claims description 2
- 239000007791 liquid phase Substances 0.000 claims description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 2
- 239000000463 material Substances 0.000 description 12
- 239000003921 oil Substances 0.000 description 10
- 230000000740 bleeding effect Effects 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 8
- 238000012360 testing method Methods 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- 229920002379 silicone rubber Polymers 0.000 description 5
- 239000004945 silicone rubber Substances 0.000 description 5
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 239000007822 coupling agent Substances 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 238000013365 molecular weight analysis method Methods 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 230000003449 preventive effect Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012761 high-performance material Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 125000000962 organic group Chemical group 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/01—Use of inorganic substances as compounding ingredients characterized by their specific function
- C08K3/013—Fillers, pigments or reinforcing additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/54—Silicon-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L83/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67098—Apparatus for thermal treatment
- H01L21/67103—Apparatus for thermal treatment mainly by conduction
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/001—Conductive additives
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Materials Engineering (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
본 발명은 4W급 반도체 장비용 방열패드에 관한 것으로, 보다 상세하게는 실리콘 수지의 분자량과 방열필러 입자 분포 제어를 통하여 오일 블리딩의 문제를 해결하면서 비평탄한 표면에도 용이하게 접착되어 4W 이상의 열전도율을 보이면서 절연파괴 문제를 해결하는, 4W급 반도체 장비용 방열패드에 관한 것이다.The present invention relates to a heat dissipation pad for 4W class semiconductor equipment, and more particularly, solves the problem of oil bleeding by controlling the molecular weight of silicone resin and the distribution of heat dissipation filler particles, and is easily adhered to an uneven surface, showing a thermal conductivity of 4W or more. It relates to a heat dissipation pad for 4W class semiconductor equipment that solves the insulation breakdown problem.
통상적으로, 방열패드는 전자기기의 열원과 heat sink 사이에 위치해 열원으로부터 발생하는 열을 heat sink 로 전달해주는 TIM(Thermal Interface Materials) 역할을 하는 구조물을 가리킨다.In general, a heat dissipation pad refers to a structure that serves as a thermal interface material (TIM) that is located between a heat source and a heat sink of an electronic device and transfers heat generated from the heat source to the heat sink.
현재, 시장을 형성하고 있는 방열패드의 주재료는 대부분 (수산화)알루미나(Al2O3)가 사용되며, 실리콘계 수지에 첨가하여 패드형태로 제작해 방열패드 또는 실리콘패드라는 명칭으로 판매되고 있다.Currently, the main material of the heat dissipation pad forming the market is mostly (hydroxide) alumina (Al 2 O 3 ), which is added to a silicone-based resin to form a pad and is sold under the name of a heat dissipation pad or silicon pad.
상기 실리콘계 수지를 소재로 하는 방열패드는 열전도율이 높은 재료를 다량으로 충진할 수 있어 방열성능은 뛰어나지만, 방열패드 자체 경도가 높고, 딱딱하여, 공정 중에 상기 방열패드가 끊어지거나 크랙이 발생하는 문제가 발생하는 경우가 있다. 이러한 경우, 방열패드와 장비 사이가 완전히 밀착되지 못하고, 공기층이 형성되어 열전도율이 떨어져서, 방열효율이 저하되는 문제가 발생한다.The heat dissipation pad made of the silicon-based resin can be filled with a material having high thermal conductivity in a large amount, so the heat dissipation performance is excellent, but the heat dissipation pad itself is high in hardness and hard, so that the heat dissipation pad breaks or cracks during the process. may occur. In this case, the heat dissipation pad and the equipment are not completely adhered to each other, and an air layer is formed to decrease thermal conductivity, resulting in a decrease in heat dissipation efficiency.
또한 상대적으로 낮은 분자량의 실록산 등에 의하여 발생하는 오일블리딩의 문제 등도 크게 문제가 되는데, 특히 비평탄한 표면과의 접착시 이것은 충분한 접착력을 제공하지 못하는 문제가 있다. In addition, the problem of oil bleeding caused by siloxane having a relatively low molecular weight is also a major problem, and in particular, when bonding to a non-flat surface, it does not provide sufficient adhesive strength.
이러한 문제를 해결하기 위하여, 방열효율, 오일블리딩, 비평탄면에서도 충분한 접착력을 갖는 방열패드 개발이 필요하다. In order to solve these problems, it is necessary to develop a heat dissipation pad having heat dissipation efficiency, oil bleeding, and sufficient adhesive strength even on non-flat surfaces.
따라서 본 발명이 해결하고자 하는 과제는 4W/m.K급 수준의 우수한 물성의 반도체 장비용 방열패드를 제공하는 것이다.Therefore, the problem to be solved by the present invention is to provide a heat dissipation pad for semiconductor equipment with excellent physical properties at the 4W/m.K level.
상기 목적을 달성하기 위하여, 본 발명은 반도체 장비용 방열패드로서, 실리콘 고무(silicone rubber)를 포함하는 실리콘 수지; 및 실리콘 수지 내에 분산되어 열전도성을 높이는 방열 필러; 를 포함하며, 실리콘 고무의 수평균분자량은 1,000 내지 2,000이며, 분산도는 30,000 내지 50,000사이인 것을 특징으로 하는 반도체 장비용 방열패드를 제공한다. In order to achieve the above object, the present invention is a heat dissipation pad for semiconductor equipment, a silicone resin including silicone rubber (silicone rubber); and a heat dissipating filler dispersed in the silicone resin to increase thermal conductivity. Including, the number average molecular weight of the silicone rubber is 1,000 to 2,000, and the degree of dispersion is between 30,000 and 50,000 to provide a heat dissipation pad for semiconductor equipment, characterized in that.
본 발명의 일 실시예에서, 상기 실리콘 수지는 액상으로 중합된 것이며, 상기 방열필러는 20 내지 70 ㎛ 직경의 입자가 전체 중량 중 60% 이상이다. In one embodiment of the present invention, the silicone resin is polymerized in a liquid phase, and the particles having a diameter of 20 to 70 μm account for 60% or more of the total weight of the heat dissipating filler.
본 발명의 일 실시예에서, 상기 방열 필러는 산화아연(ZnO), 탄화 규소(SiC), 마그네시아(MgO), 질화 붕소(BN), 수산화알루미늄(Al2(OH)3), 알루미나(Al2O3), 질화알루미늄(AlN), 질화 규소(Si3N4), 베릴리아(BeO) 및 지르코니아(ZrO2) 로 이루어진 군으로부터 선택되는 하나 이상이다. In one embodiment of the present invention, the heat dissipating filler is zinc oxide (ZnO), silicon carbide (SiC), magnesia (MgO), boron nitride (BN), aluminum hydroxide (Al 2 (OH) 3 ), alumina (Al 2 O 3 ), aluminum nitride (AlN), silicon nitride (Si 3 N 4 ), beryllia (BeO), and zirconia (ZrO 2 ) and at least one selected from the group consisting of.
본 발명에 따른 반도체 장비용 방열패드는, 실리콘 수지의 분자량 및 분산도와 방열효과를 가지는 방열필러 크기 분포를 고온에서의 오일블리딩과 우수한 방열 특성, 그리고 높은 접착력과 균일한 열전도도를 갖는다. The heat dissipation pad for semiconductor equipment according to the present invention has the molecular weight and dispersion of the silicone resin and the size distribution of the heat dissipation filler having the heat dissipation effect, oil bleeding at high temperatures, excellent heat dissipation properties, high adhesion and uniform thermal conductivity.
도 1은 본 발명에 따른 반도체 장비용 방열패드의 분자량 분석결과이다. 1 is a molecular weight analysis result of a heat dissipation pad for semiconductor equipment according to the present invention.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다.Since the present invention can make various changes and have various embodiments, specific embodiments will be illustrated in the drawings and described in detail in the detailed description.
그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.However, this is not intended to limit the present invention to specific embodiments, and should be understood to include all modifications, equivalents, and substitutes included in the spirit and scope of the present invention. In describing the present invention, if it is determined that a detailed description of related known technologies may obscure the gist of the present invention, the detailed description will be omitted.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.Terms used in this application are only used to describe specific embodiments, and are not intended to limit the present invention. Singular expressions include plural expressions unless the context clearly dictates otherwise.
본 발명에서, "포함한다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성 요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.In the present invention, the term "comprises" or "has" is intended to designate that there is a feature, number, step, operation, component, part, or combination thereof described in the specification, but one or more other features It should be understood that the presence or addition of numbers, steps, operations, components, parts, or combinations thereof is not precluded.
본 발명은 반도체 장비용 방열패드에 관한 것으로, 보다 상세하게는 방열효율을 증가시켜, 반도체 장비의 PM(preventive maintenance)를 증가시킬 수 있는 4W급 반도체 장비용 방열패드에 관한 것이다.The present invention relates to a heat dissipation pad for semiconductor equipment, and more particularly, to a heat dissipation pad for a 4W class semiconductor equipment capable of increasing preventive maintenance (PM) of semiconductor equipment by increasing heat dissipation efficiency.
반도체, 전기/전자, 자동차 분야 등의 집적화, 경량화, 소형화, 다기능화가 추구되고 있으며, 특히 반도체의 고집적화가 될수록 더욱 많은 열이 발생한다. 이에 열에 의한 반도체 성능 저하 및 수율 개선을 위한 연구가 필요한 실정이나, 국내 방열소재 업체의 대부분은 일반 산업 군에 치중되어 있어, 본 발명은 Etch 장비 내 방열시트가 완전히 밀착되어 피착제와 공기층이 형성되지 않도록 고온에서의 안정적인 점착성과 방열특성을 만족하고, 고연신율, 저경도를 구현하여 방열시트의 크랙(Crack)을 방지할 수 있으며, Etch 공정 중 Arcing 발생 감소 및 소재 열화로 인한 수명 단축을 방지하기 위해 신뢰성을 높일 수 있는 방열 소재를 개발하기 위해 연구한 결과 본 발명을 완성하였다.Integration, weight reduction, miniaturization, and multifunctionalization are being pursued in semiconductor, electric/electronic, and automobile fields, and in particular, as semiconductors become highly integrated, more heat is generated. Accordingly, research is needed to improve yield and deterioration of semiconductor performance due to heat, but most of the domestic heat dissipation material companies are focused on the general industry. It satisfies stable adhesiveness and heat dissipation characteristics at high temperatures to prevent cracking of the heat dissipation sheet by realizing high elongation and low hardness, reducing arcing during the etch process and preventing shortening of life due to material deterioration. As a result of research to develop a heat dissipation material that can increase reliability in order to do so, the present invention was completed.
통상적으로, 방열패드의 주재료는 대부분 (수산화)알루미나(Al2O3)가 방열필러로 사용되며, 실리콘계 수지에 첨가하여 패드형태로 제작해 방열패드 또는 실리콘패드라는 명칭으로 판매되고 있다.Typically, the main material of the heat dissipation pad is mostly (hydroxide) alumina (Al 2 O 3 ) is used as a heat dissipation filler, and is added to a silicone-based resin to form a pad and is sold under the name of a heat dissipation pad or silicon pad.
그러나, 이러한 실리콘계 수지를 소재로 하는 방열패드는 열전도율이 높은 재료를 다량으로 충진할 수 있어 방열성능은 뛰어나지만, 방열패드 자체 경도가 높고, 딱딱하여, 공정 중에 상기 방열패드가 끊어지거나 크랙이 발생하는 문제가 발생하는 경우가 있다. 이러한 경우, 방열패드와 장비 사이가 완전히 밀착되지 못하고, 공기층이 형성되어 열전도율이 떨어지는 문제가 있다. 또한 고온에서 실리콘 수지가 녹아나는 소위 "오일 블리딩(oil bleeding)" 문제가 발생한다. 이에, 본 발명은 실리콘수지의 수평균분자량은 1,000 내지 2,000이며, 분산도는 30,000 내지 50,000사이를 사용하여 고온에서 실리콘 수지가 녹아나는 소위 "오일 블리딩(oil bleeding)" 및 접착력 약화 문제를 해결하였다. 더 나아가, 20 내지 70 ㎛ 직경의 입자가 전체 중량 중 60% 이상인 경우, 실질적으로 고온에서의 방열 특성을 그대로 유지할 수 있었다. However, a heat dissipation pad made of such a silicone-based resin can be filled with a material having high thermal conductivity in a large amount and has excellent heat dissipation performance, but the heat dissipation pad itself is high in hardness and hard, so that the heat dissipation pad breaks or cracks during the process. There are times when problems arise. In this case, there is a problem in that the heat dissipation pad and the equipment are not completely adhered to each other, and an air layer is formed, resulting in poor thermal conductivity. In addition, a so-called "oil bleeding" problem occurs in which the silicone resin melts at high temperatures. Accordingly, in the present invention, the number average molecular weight of the silicone resin is 1,000 to 2,000, and the degree of dispersion is between 30,000 and 50,000 to solve the problem of so-called "oil bleeding" and the weakening of adhesive strength, in which the silicone resin melts at high temperature. . Furthermore, when the particles having a diameter of 20 to 70 μm account for 60% or more of the total weight, the heat dissipation characteristics at high temperatures could be substantially maintained.
본 발명에서, "방열패드" 라 함은 전자기기의 열원과 heat sink 사이에 위치해 열원으로부터 발생하는 열을 heat sink 로 전달해주는 TIM(Thermal Interface Materials) 역할을 하는 구조물을 의미하는 것으로, 보다 상세하게는 반도체 장비용 실리콘 방열패드를 의미할 수 있다.In the present invention, the term "thermal pad" refers to a structure that serves as a TIM (Thermal Interface Materials) that is located between a heat source and a heat sink of an electronic device and transfers heat generated from the heat source to the heat sink. may mean a silicon heat dissipation pad for semiconductor equipment.
실리콘은 유기기를 함유한 규소(organosilicone)와 산소 등이 화학결합으로 서로 연결된 모양으로 된 폴리머를 의미하고, (반도체인 silicone(규소)와는 다른 물질이다.) 실리콘은 유기성과 무기성을 겸비한 독특한 화학제로서 여러 형태로 응용되며, 대부분 산업분야에서 필수적인 고기능 재료로서 위치를 점하고 있다.Silicon refers to a polymer in which organosilicone containing organic groups and oxygen are connected to each other through chemical bonds (it is a different material from silicone, which is a semiconductor). Silicone is a unique chemical combination of organic and inorganic properties. It is applied in various forms as a zero, and occupies a position as an essential high-performance material in most industrial fields.
한편, 본 발명에서 액상실리콘 겔(silicone gel)은 실록산 결합으로 개개의 분자가 독립해서 존재하므로 분자사슬은 상호간 자유로이 움직일 수 있어서 액체와 같이 유동성이 우수한 특성이 있고, 실리콘고무는 고 중합체로서 분자사슬이 상호 이동을 할 수 없으므로 유동성은 낮으나, 분자간의 상호 인력이 작아 탄성과 복원력이 우수한 특성이 있다.On the other hand, in the present invention, the liquid silicone gel has excellent fluidity like a liquid because individual molecules exist independently with siloxane bonds, so molecular chains can move freely with each other, and silicone rubber is a high polymer that has molecular chains Since this mutual movement is not possible, the fluidity is low, but the mutual attraction between molecules is small, so it has excellent elasticity and restoring force.
이하, 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail.
도 1은 본 발명에 따른 반도체 장비용 방열패드의 분자량 분석결과이다. 본 발명에서는 실리콘 수지, 방열 필러, 및 실란커플링제를 혼합하고, 150℃ 및 100kgf/cm2 의 가열 가압 공정을 거쳐 평균두께가 0.5mm 인 반도체 장비용 방열 패드를 제조하였다. 여기에서 실리콘 수지 100중량부에 대하여 방열필러(알루미나) 900 중량부, 커플링제 10 중량부의 조성비였다. 1 is a molecular weight analysis result of a heat dissipation pad for semiconductor equipment according to the present invention. In the present invention, a heat dissipation pad for semiconductor equipment having an average thickness of 0.5 mm was prepared by mixing a silicone resin, a heat dissipation filler, and a silane coupling agent, and subjected to a heating and pressing process at 150° C. and 100 kg f /cm 2 . Here, the composition ratio was 900 parts by weight of a heat radiation filler (alumina) and 10 parts by weight of a coupling agent with respect to 100 parts by weight of the silicone resin.
도 1을 참조하면, 본 발명의 일 실시예에 따른 방열패드(HA)와, 비교예(Lo)의 방열패드 간 수평균 분자량(Mn), 중량평균 분자량(Mw), 그리고 부피평균 분자량(Mz)을 확인할 수 있다. 특히 분산도(Polydispersity, PD)인 Mw/Mn은 HA가 Lo보다 높은 30,000 이상의 수치임을 알 수 있다. 1, number average molecular weight (Mn), weight average molecular weight (Mw), and volume average molecular weight (Mz) between a heat radiation pad (HA) according to an embodiment of the present invention and a heat radiation pad of Comparative Example (Lo) )can confirm. In particular, it can be seen that polydispersity (PD), Mw/Mn, is a value higher than Lo of 30,000 for HA.
하기 표 1은 상기 실시예 및 비교예에 따른 방열패드의 비교 결과이다. 여기에서 점착력 및 오일 블리딩은 모두 섭씨 150도에서 측정하였다. Table 1 below shows comparison results of heat dissipation pads according to the above examples and comparative examples. Here, both adhesion and oil bleeding were measured at 150 degrees Celsius.
열전도도는 구체적으로, ASTM D 5470 에 따라 열특성시험장치(TIM1400, Analysis Tech 사)를 이용하여 방열시트의 수직 방향에 대한 열전도도를 측정하였고, 경도는, 6.4mm(1/4in) 두께의 시편을 듀로미터 경도계를 사용하여 ASTM D 2240 에 따라 측정하였다. 또한, 만능시험기(Zwick-Roell Universal Testing Machine, Z100)를 사용하여 ASTM D 3330 에 따라 방열패드의 점착력을 측정하였으며, 연신율은 상기 방열패드를 50 mm × 50 mm 로 절단하여 JIS K 6251-1 조건에 따라 만능 시험기(Zwick-Roell Universal Testing Machine, Z100)을 사용하여 측정하였고, 하기 계산식에 따라 연신율을 계산하였다. 또한 오일 블리eld은 상기 신뢰성 평가는 100mm*100mm 크기의 시료를 보관온도 150℃에서 적용압력 10kgf, 보관시간 48시간의 조건으로 수행되었다.Specifically, the thermal conductivity was measured in the vertical direction of the heat dissipation sheet using a thermal property tester (TIM1400, Analysis Tech) according to ASTM D 5470, and the hardness was measured at a thickness of 6.4 mm (1/4 in). Specimens were measured according to ASTM D 2240 using a durometer durometer. In addition, the adhesion of the heat dissipation pad was measured according to ASTM D 3330 using a universal testing machine (Zwick-Roell Universal Testing Machine, Z100), and the elongation was determined by cutting the heat dissipation pad into 50 mm × 50 mm under JIS K 6251-1 conditions. It was measured using a universal testing machine (Zwick-Roell Universal Testing Machine, Z100) according to, and the elongation was calculated according to the following formula. In addition, the reliability evaluation of the oil bleed was performed under the conditions of a storage temperature of 150 ° C, an applied pressure of 10 kgf, and a storage time of 48 hours for a sample of 100 mm * 100 mm size.
상기 표 1의 결과를 참조하면, 실리콘 고무의 수평균분자량은 1,000 내지 2,000이며, 분산도가 30,000 이상 바람직하게는 30,000 내지 50,000사이인 HA가 고온에서의 오일블리딩 특성과 함께 점착력이 매우 우수하다는 것을 알 수 있다. Referring to the results of Table 1, the number average molecular weight of silicone rubber is 1,000 to 2,000, and the dispersion degree is 30,000 or more, preferably between 30,000 and 50,000, HA has excellent oil-bleeding properties and adhesive strength at high temperatures. Able to know.
본 발명에 따른 방열패드는 상술한 분자량 조건을 통하여 오일블리딩 개선 뿐만 아니라 연신율 또한 80 % 이상일 수 있다. 여기서, "연신율(elongation)"은 재료 인장 시험 시 재료가 늘어나는 비율을 의미하며, JIS K 6251-1 조건에 따라 만능 시험기(Zwick-Roell Universal Testing Machine, Z100)을 사용하여 계산할 수 있으며, 하기 계산식에 따라 연신율을 계산할 수 있다. The heat dissipation pad according to the present invention may have an elongation of 80% or more as well as oil bleeding improvement through the above-described molecular weight conditions. Here, "elongation" means the rate at which a material elongates during a material tensile test, and can be calculated using a universal testing machine (Zwick-Roell Universal Testing Machine, Z100) according to JIS K 6251-1 conditions, and can be calculated using the following formula Elongation can be calculated according to
[계산식][formula]
연신율(%) = (파단시 길이-초기 길이)/초기 길이 × 100Elongation (%) = (length at break - initial length) / initial length × 100
구체적으로, 방열패드(100)의 연신율은 80 % 이상일 수 있으며, 80 내지 250 % 범위일 수 있다. 한편, 방열패드(100)의 연신율이 80% 미만인 경우, 방열패드(100)와 반도체 장비 사이가 완전히 밀착되지 못하고, 공정 중에 방열패드(100)가 끊어지거나 크랙이 발생하는 문제가 발생할 수 있어, 공기층이 형성되어 열전도율이 떨어지는 문제가 발생할 수 있다. 또한, 방열패드(100)의 연신율이 250%을 초과하는 경우, 방열패드(100)가 끊어지거나 크랙은 발생하지 않으나, 원래의 형상으로 복원되지 않는 문제가 발생할 수 있다.Specifically, the elongation of the heat dissipation pad 100 may be 80% or more, and may be in the range of 80 to 250%. On the other hand, when the elongation of the heat dissipation pad 100 is less than 80%, the heat dissipation pad 100 and the semiconductor equipment cannot be completely adhered to, and the heat dissipation pad 100 breaks or cracks may occur during the process. An air layer may be formed, causing a problem in that the thermal conductivity is lowered. In addition, when the elongation of the heat dissipation pad 100 exceeds 250%, the heat dissipation pad 100 does not break or crack, but may not be restored to its original shape.
본 발명은 더 나아가 실리콘 수지에 분산된 방열 필러 중 20 내지 70㎛인 알루미나가 60% 이상인 경우, 패드 전체적으로 균일한 열전도도를 갖는다. 하기 표 2및 표 3의 실험결과는 HA 분자량에 대하여 방열필러의 입경에 대한 열전도도 측정결과이다. 여기에서 109 mm × 100 mm 로 절단한 사각 시편의 중심과 양 끝단의 전도도의 편차를 평균치로 나누어 열저도도 균일도를 계산하였다. 또한 전체적인 방열필러의 중량은 모두 실리콘 수지 100 중량부에 대하여 800 중량부로 동일하게 하였다. In the present invention, when the alumina of 20 to 70 μm is 60% or more of the heat dissipating filler dispersed in the silicone resin, the entire pad has uniform thermal conductivity. The experimental results in Tables 2 and 3 below are the thermal conductivity measurement results for the particle diameter of the heat-radiating filler with respect to the HA molecular weight. Here, the thermal conductivity uniformity was calculated by dividing the deviation of the conductivity between the center and both ends of the rectangular specimen cut into 109 mm × 100 mm by the average value. In addition, the total weight of the heat dissipating filler was equal to 800 parts by weight based on 100 parts by weight of the silicone resin.
상기 결과를 참조하면, 실리콘 수지의 수평균분자량은 1,000 내지 2,000이며, 분산도는 30,000 내지 50,000사이인 경우, 방열필러는 20 내지 70 ㎛ 직경의 입자가 전체 중량 중 60% 이상이어야 패드 전체적인 균일도가 좋아지는 것을 알 수 있다. Referring to the above results, when the number average molecular weight of the silicone resin is 1,000 to 2,000 and the degree of dispersion is between 30,000 and 50,000, the heat dissipating filler must have 60% or more of the total weight of the particles with a diameter of 20 to 70 μm to achieve overall uniformity of the pad you know it's getting better.
더 나아가, 본 발명에 따른 방열패드 조성물은 실란커플링제를 사용하여 방열필러와 실리콘의 상용성을 높였다. 이로써 본 발명에 따른 방열패드 조성물은 우수한 전자차폐율과 높은 열전도율을 가지면서 우수한 연신율을 갖는다. 이로써 방열패드가 끊어지거나 크랙이 발생하는 것을 방지할 수 있으며, 이에 따라 반도체 장비의 PM(preventive maintenance)를 증가시킬 수 있는 이점이 있다.Furthermore, the heat dissipation pad composition according to the present invention uses a silane coupling agent to increase compatibility between the heat dissipation filler and silicone. Thus, the heat dissipation pad composition according to the present invention has excellent elongation while having excellent electromagnetic shielding and high thermal conductivity. As a result, it is possible to prevent the heat dissipation pad from breaking or cracking, and thus, there is an advantage of increasing preventive maintenance (PM) of semiconductor equipment.
즉, 실란커플링제를 5 중량부 미만으로 사용하는 경우 열전도도가 4.6 W/mK 미만이고, 균일도는 0.8%, 연신율은 74%이었다. 하지만 커플링제를 5 내지 10 중량부로 사용하는 경우, 열전도도 균일도는 0.1%. 연신율은 81%를 보였다. 즉, 본 발명에 따른 방열패드는 실란 커플링제를 소정범위 포함하고 있어, 4W급 열전도도에 더하여 균일한 열전도도 및 연신율을 갖는 것을 알 수 있다.That is, when using less than 5 parts by weight of the silane coupling agent, the thermal conductivity was less than 4.6 W/mK, the uniformity was 0.8%, and the elongation was 74%. However, when the coupling agent is used in an amount of 5 to 10 parts by weight, the thermal conductivity uniformity is 0.1%. The elongation rate was 81%. That is, it can be seen that the heat dissipation pad according to the present invention includes a silane coupling agent in a predetermined range, and has uniform thermal conductivity and elongation in addition to 4W class thermal conductivity.
Claims (3)
액상실리콘 겔로 이루어진 실리콘 수지;
상기 실리콘 수지 내에 분산되어 열전도성을 높이는 세라믹 방열 필러; 및
상기 실리콘 수지내 방열필러의 분산을 도와주는 실란커플링제;를 포함하며
상기 실리콘 수지 50 내지 100 중량부에 대하여 상기 세라믹 방열필러는 900 내지 950 중량부, 상기 실란커플링제는 5 내지 20 중량부이며, 실리콘 수지의 수평균분자량은 1,000 내지 2,000이며, 분산도는 30,000 내지 50,000사이인 것을 특징으로 하는 반도체 장비용 방열패드.As a heat dissipation pad for semiconductor equipment,
a silicone resin made of liquid silicone gel;
a ceramic heat dissipating filler dispersed in the silicone resin to increase thermal conductivity; and
A silane coupling agent to help disperse the heat dissipating filler in the silicone resin; and
The ceramic heat dissipating filler is 900 to 950 parts by weight and the silane coupling agent is 5 to 20 parts by weight, the number average molecular weight of the silicone resin is 1,000 to 2,000, and the degree of dispersion is 30,000 to 2,000 with respect to 50 to 100 parts by weight of the silicone resin. Heat dissipation pad for semiconductor equipment, characterized in that between 50,000.
상기 실리콘 수지는 액상으로 중합된 것이며, 상기 방열필러는 20 내지 70 ㎛ 직경의 입자가 전체 중량 중 60% 이상인 것을 특징으로 하는 반도체 장비용 방열패드.According to claim 1,
The silicone resin is polymerized in a liquid phase, and the heat radiation filler is a heat radiation pad for semiconductor equipment, characterized in that 60% or more of the total weight of the particles having a diameter of 20 to 70 μm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020210129331A KR102695987B1 (en) | 2021-09-30 | 2021-09-30 | 4W class thermally conductive pad of equipment of semi-conductor procedure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020210129331A KR102695987B1 (en) | 2021-09-30 | 2021-09-30 | 4W class thermally conductive pad of equipment of semi-conductor procedure |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20230046396A true KR20230046396A (en) | 2023-04-06 |
KR102695987B1 KR102695987B1 (en) | 2024-08-16 |
Family
ID=85917881
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020210129331A KR102695987B1 (en) | 2021-09-30 | 2021-09-30 | 4W class thermally conductive pad of equipment of semi-conductor procedure |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102695987B1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20100055319A (en) * | 2008-11-17 | 2010-05-26 | 닛토덴코 가부시키가이샤 | Method for manufacturing thermally conductive sheet and thermally conductive sheet |
KR20110013907A (en) | 2009-08-04 | 2011-02-10 | 두성산업 주식회사 | Heat dissipation pad with high thermoconductivity and manufacturing method thereof |
KR20200033274A (en) * | 2017-07-24 | 2020-03-27 | 다우 도레이 캄파니 리미티드 | Thermal conductive silicone gel composition Thermal conductive member and heat dissipation structure |
KR20200098778A (en) * | 2019-02-12 | 2020-08-21 | 주식회사 에프엔디컴퍼니 | Method of preparing Thermal Interface Material for Battery Package of Electrical Vehicle |
KR20210046865A (en) * | 2016-01-26 | 2021-04-28 | 데쿠세리아루즈 가부시키가이샤 | Thermally conductive sheet, production method for thermally conductive sheet, heat dissipation member, and semiconductor device |
-
2021
- 2021-09-30 KR KR1020210129331A patent/KR102695987B1/en active IP Right Grant
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20100055319A (en) * | 2008-11-17 | 2010-05-26 | 닛토덴코 가부시키가이샤 | Method for manufacturing thermally conductive sheet and thermally conductive sheet |
KR20110013907A (en) | 2009-08-04 | 2011-02-10 | 두성산업 주식회사 | Heat dissipation pad with high thermoconductivity and manufacturing method thereof |
KR20210046865A (en) * | 2016-01-26 | 2021-04-28 | 데쿠세리아루즈 가부시키가이샤 | Thermally conductive sheet, production method for thermally conductive sheet, heat dissipation member, and semiconductor device |
KR20200033274A (en) * | 2017-07-24 | 2020-03-27 | 다우 도레이 캄파니 리미티드 | Thermal conductive silicone gel composition Thermal conductive member and heat dissipation structure |
KR20200098778A (en) * | 2019-02-12 | 2020-08-21 | 주식회사 에프엔디컴퍼니 | Method of preparing Thermal Interface Material for Battery Package of Electrical Vehicle |
Also Published As
Publication number | Publication date |
---|---|
KR102695987B1 (en) | 2024-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100677818B1 (en) | Heat-Release Structure | |
TWI397555B (en) | Thermally conductive silicone elastomers, heat transfer media and thermal directional silicone elastomer compositions | |
US7484556B2 (en) | Heat dissipating member | |
TWI475103B (en) | Heat spreader structure | |
JP6314915B2 (en) | Heat dissipation putty sheet | |
KR20170044041A (en) | Insulating heat dissipation sheet | |
US11008462B2 (en) | Heat-conductive sheet | |
CN110739223A (en) | Method for manufacturing thermally conductive sheet | |
US20210268616A1 (en) | Electrostatic chuck device | |
US6760214B2 (en) | Electrostatic chuck for ion injector | |
KR102566883B1 (en) | Composition for 5W class thermally conductive pad of equipment of semi-conductor procedure | |
KR102400549B1 (en) | Thermally conductive composition for thermal pads and thermal pads comprising the same | |
KR102695987B1 (en) | 4W class thermally conductive pad of equipment of semi-conductor procedure | |
KR102408612B1 (en) | Thermal-conductive composite sheet | |
KR20210017653A (en) | Thermally conductive pad for equipment of semi-conductor procedure | |
TW202309240A (en) | Heat conduction sheet and method for manufacturing heat conduction sheet | |
KR102651416B1 (en) | Composition for thermally conductive pad for equipment of semi-conductor procedure | |
TW202219162A (en) | Heat conductive composition and heat conductive sheet using the same | |
WO2024185675A1 (en) | Thermally conductive silicone resin composition and thermally conductive member | |
KR100568429B1 (en) | Thermally conductive silicone rubber composite with self tacky | |
KR102449297B1 (en) | Substrate for power electronic module comprising organic-inorganic composite | |
US20220410448A1 (en) | Heat conductive sheet and method for producing same | |
WO2023162323A1 (en) | Thermally conductive composition, thermally conductive sheet, and method for manufacturing same | |
TW201116615A (en) | Thermally conductive composition | |
KR101855614B1 (en) | Adhesive composition and adhesive sheet including the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E902 | Notification of reason for refusal | ||
E90F | Notification of reason for final refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |