KR20210017653A - Thermally conductive pad for equipment of semi-conductor procedure - Google Patents

Thermally conductive pad for equipment of semi-conductor procedure Download PDF

Info

Publication number
KR20210017653A
KR20210017653A KR1020190097261A KR20190097261A KR20210017653A KR 20210017653 A KR20210017653 A KR 20210017653A KR 1020190097261 A KR1020190097261 A KR 1020190097261A KR 20190097261 A KR20190097261 A KR 20190097261A KR 20210017653 A KR20210017653 A KR 20210017653A
Authority
KR
South Korea
Prior art keywords
heat dissipation
filler
pad
weight
parts
Prior art date
Application number
KR1020190097261A
Other languages
Korean (ko)
Inventor
김현수
Original Assignee
김현수
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김현수 filed Critical 김현수
Priority to KR1020190097261A priority Critical patent/KR20210017653A/en
Publication of KR20210017653A publication Critical patent/KR20210017653A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • C08K3/14Carbides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present invention relates to a thermally conductive pad for semiconductor equipment, the thermally conductive pad comprising: a silicone resin including silicone gel and silicone rubber; and a thermally conductive filler dispersed in the silicone resin to increase thermal conductivity, wherein based on 100 parts by weight of the silicone gel, 1 to 10 parts by weight of the silicone rubber is included. In particular, the thermally conductive pad for semiconductor equipment can be prevented from being cut or having cracks, and thus has the advantage of improving preventive maintenance (PM) of the semiconductor equipment.

Description

반도체 장비용 방열패드{Thermally conductive pad for equipment of semi-conductor procedure}Heat dissipation pad for semiconductor equipment {Thermally conductive pad for equipment of semi-conductor procedure}

본 발명은 반도체 장비용 방열패드에 관한 것으로, 보다 상세하게는 방열효율을 증가시켜, 방도체 장비의 PM(preventive maintenance)을 증가시킬 수 있는 있는 고연신의 반도체 장비용 방열패드에 관한 것이다.The present invention relates to a heat dissipation pad for semiconductor equipment, and more particularly, to a heat dissipation pad for semiconductor equipment of high elongation capable of increasing the preventive maintenance (PM) of the anti-conductor equipment by increasing heat dissipation efficiency.

통상적으로, 방열패드는 전자기기의 열원과 heat sink 사이에 위치해 열원으로부터 발생하는 열을 heat sink 로 전달해주는 TIM(Thermal Interface Materials) 역할을 하는 구조물을 가리킨다.Typically, the heat dissipation pad refers to a structure serving as a thermal interface material (TIM) that is located between a heat source of an electronic device and a heat sink and transfers heat generated from the heat source to the heat sink.

현재, 시장을 형성하고 있는 방열패드의 주재료는 대부분 (수산화)알루미나(Al2O3)가 사용되며, 실리콘계 수지에 첨가하여 패드형태로 제작해 방열패드 또는 실리콘패드라는 명칭으로 판매되고 있다.Currently, the main material of the heat dissipation pad forming the market is mostly (hydroxylated) alumina (Al 2 O 3 ), and it is added to a silicone-based resin and manufactured in the form of a pad and is sold under the name of a heat dissipation pad or a silicone pad.

상기 실리콘계 수지를 소재로 하는 방열패드는 열전도율이 높은 재료를 다량으로 충진할 수 있어 방열성능은 뛰어나지만, 방열패드 자체 경도가 높고, 딱딱하여, 공정 중에 상기 방열패드가 끊어지거나 크랙이 발생하는 문제가 발생하는 경우가 있다. 이러한 경우, 방열패드와 장비 사이가 완전히 밀착되지 못하고, 공기층이 형성되어 열전도율이 떨어져서, 방열효율이 저하되는 문제가 발생한다.The heat dissipation pad made of the silicone resin is excellent in heat dissipation performance because it can fill a large amount of material with high thermal conductivity, but the heat dissipation pad itself is high in hardness and is hard, so the heat dissipation pad is broken or cracked during the process. May occur. In this case, the heat dissipation pad and the equipment cannot be completely in close contact with each other, and an air layer is formed to reduce thermal conductivity, resulting in a problem of lowering the heat dissipation efficiency.

이러한 문제를 해결하기 위하여, 방열효율이 우수한 반도체 장비용 방열패드 소재에 대한 연구개발이 필요한 실정이다.In order to solve this problem, there is a need for research and development on a heat radiation pad material for semiconductor equipment having excellent heat radiation efficiency.

한국공개특허 제10-2011-0013907호Korean Patent Publication No. 10-2011-0013907

본 발명은 전술한 문제점을 해결하기 위한 것으로, 방열패드가 끊어지거나 크랙 발생을 감소시킬 수 있는 고연신의 반도체 장비용 방열패드를 제공하고자 한다.The present invention is to solve the above-described problem, and to provide a heat dissipation pad for semiconductor equipment of high elongation capable of reducing the occurrence of cracks or breakage of the heat dissipation pad.

상기 목적을 달성하기 위하여, To achieve the above object,

본 발명은, The present invention,

반도체 장비용 방열패드로서,As a heat dissipation pad for semiconductor equipment,

실리콘 겔(silicone gel)과 실리콘 고무(silicone rubber)를 포함하는 실리콘 수지; 및Silicone resins including silicone gel and silicone rubber; And

실리콘 수지 내에 분산되어 열전도성을 높이는 방열 필러; 를 포함하며, A heat dissipating filler dispersed in the silicone resin to increase thermal conductivity; Including,

상기 실리콘 겔 100 중량부를 기준으로, 실리콘 고무 1 내지 10 중량부를 포함하며, Based on 100 parts by weight of the silicone gel, containing 1 to 10 parts by weight of silicone rubber,

상기 방열패드는, 연신율이 150 % 이상인 것을 특징으로 하는 반도체 장비용 방열패드를 제공한다.The heat dissipation pad provides a heat dissipation pad for semiconductor equipment, characterized in that the elongation is 150% or more.

본 발명에 따른 반도체 장비용 방열패드는 연신율이 150% 이상으로, 방열패드가 끊어지거나 크랙이 발생하는 것을 방지할 수 있으며, 이에 따라 반도체 장비의 PM(preventive maintenance)를 증가시킬 수 있는 이점이 있다.The heat dissipation pad for semiconductor equipment according to the present invention has an elongation of 150% or more, so that the heat dissipation pad can be prevented from being cut or cracked, thereby increasing the PM (preventive maintenance) of the semiconductor equipment. .

도 1은 본 발명에 따른 반도체 장비용 방열패드의 단면을 나타내는 모식도이다.1 is a schematic diagram showing a cross section of a heat dissipation pad for semiconductor equipment according to the present invention.

본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다.In the present invention, various modifications may be made and various embodiments may be provided, and specific embodiments will be illustrated in the drawings and described in detail in the detailed description.

그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.However, this is not intended to limit the present invention to a specific embodiment, it is to be understood to include all changes, equivalents, and substitutes included in the spirit and scope of the present invention. In describing the present invention, when it is determined that a detailed description of a related known technology may obscure the subject matter of the present invention, a detailed description thereof will be omitted.

본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.The terms used in the present application are only used to describe specific embodiments, and are not intended to limit the present invention. Singular expressions include plural expressions unless the context clearly indicates otherwise.

본 발명에서, "포함한다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성 요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.In the present invention, terms such as "comprises" or "have" are intended to designate the presence of features, numbers, steps, actions, components, parts, or a combination thereof described in the specification, but one or more other features. It is to be understood that the presence or addition of elements or numbers, steps, actions, components, parts, or combinations thereof, does not preclude in advance the possibility.

본 발명은 반도체 장비용 방열패드에 관한 것으로, 보다 상세하게는 방열효율을 증가시켜, 방도체 장비의 PM(preventive maintenance)를 증가시킬 수 있는 있는 고연신의 반도체 장비용 방열패드에 관한 것이다.The present invention relates to a heat dissipation pad for semiconductor equipment, and more particularly, to a heat dissipation pad for semiconductor equipment of high elongation capable of increasing the preventive maintenance (PM) of the anti-conductor equipment by increasing heat dissipation efficiency.

통상적으로, 방열패드의 주재료는 대부분 (수산화)알루미나(Al2O3)가 사용되며, 실리콘계 수지에 첨가하여 패드형태로 제작해 방열패드 또는 실리콘패드라는 명칭으로 판매되고 있다.Typically, the main material of the heat dissipation pad is mostly (hydroxylated) alumina (Al 2 O 3 ), and it is added to a silicone resin and manufactured in the form of a pad and is sold under the name of a heat dissipation pad or a silicone pad.

그러나, 이러한 실리콘계 수지를 소재로 하는 방열패드는 열전도율이 높은 재료를 다량으로 충진할 수 있어 방열성능은 뛰어나지만, 방열패드 자체 경도가 높고, 딱딱하여, 공정 중에 상기 방열패드가 끊어지거나 크랙이 발생하는 문제가 발생하는 경우가 있다. 이러한 경우, 방열패드와 장비 사이가 완전히 밀착되지 못하고, 공기층이 형성되어 열전도율이 떨어지는 문제가 있다.However, the heat dissipation pad made of such a silicone resin can be filled with a large amount of a material with high thermal conductivity, and thus has excellent heat dissipation performance, but the heat dissipation pad itself has high hardness and is hard, so that the heat dissipation pad breaks or cracks occur during the process. There may be a problem that occurs. In this case, there is a problem that the heat dissipation pad and the equipment are not completely in close contact, and an air layer is formed, resulting in a decrease in thermal conductivity.

이에, 본 발명은 실리콘 겔 외에 소정 함량의 실리콘 고무를 포함하여 연신율을 높임으로써 방열패드가 끊어지거나 크랙이 발생하는 것을 감소시킬 수 있는 반도체 장비용 방열패드를 제공하고자 한다.Accordingly, an object of the present invention is to provide a heat dissipation pad for semiconductor equipment capable of reducing the occurrence of cracks or breakage of the heat dissipation pad by increasing the elongation by including a certain amount of silicone rubber in addition to the silicone gel.

이하, 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail.

도 1은 본 발명에 따른 반도체 장비용 방열패드의 단면을 나타내는 모식도이다. 1 is a schematic diagram showing a cross section of a heat dissipation pad for semiconductor equipment according to the present invention.

도 1을 참조하면, 본 발명에 따른 반도체 장비용 방열패드(100)는 실리콘 겔(silicone gel)과 실리콘 고무(silicone rubber)를 포함하는 실리콘 수지(110) 및 실리콘 수지(110) 내에 분산되어 열전도성을 높이는 방열 필러(120)를 포함한다.Referring to FIG. 1, the heat dissipation pad 100 for semiconductor equipment according to the present invention is dispersed in a silicone resin 110 including a silicone gel and a silicone rubber, and a thermoelectric device. It includes a heat dissipation filler 120 to increase the conductivity.

본 발명에서, "방열패드" 라 함은 전자기기의 열원과 heat sink 사이에 위치해 열원으로부터 발생하는 열을 heat sink 로 전달해주는 TIM(Thermal Interface Materials) 역할을 하는 구조물을 의미하는 것으로, 보다 상세하게는 반도체 장비용 실리콘 방열패드를 의미할 수 있다.In the present invention, the term "heating pad" refers to a structure that is located between a heat source of an electronic device and a heat sink and serves as a TIM (Thermal Interface Materials) that transfers heat generated from the heat source to the heat sink. May mean a silicon heat dissipation pad for semiconductor equipment.

실리콘은 유기기를 함유한 규소(organosilicone)와 산소 등이 화학결합으로 서로 연결된 모양으로 된 폴리머를 의미하고, (반도체인 silicone(규소)와는 다른 물질이다.) 실리콘은 유기성과 무기성을 겸비한 독특한 화학제로서 여러 형태로 응용되며, 대부분 산업분야에서 필수적인 고기능 재료로서 위치를 점하고 있다.Silicon refers to a polymer in which organosilicone containing organic groups and oxygen are connected to each other through chemical bonds (it is a different material from silicon, a semiconductor). Silicon is a unique chemical that combines organic and inorganic properties. As a material, it is applied in various forms and occupies a position as an essential high-performance material in most industrial fields.

한편, 본 발명에서 실리콘 겔(silicone gel)은 실록산 결합으로 개개의 분자가 독립해서 존재하므로 분자사슬은 상호간 자유로이 움직일 수 있어서 액체와 같이 유동성이 우수한 특성이 있고, 실리콘고무는 고 중합체로서 분자사슬이 상호 이동을 할 수 없으므로 유동성은 낮으나, 분자간의 상호 인력이 작아 탄성과 복원력이 우수한 특성이 있다. On the other hand, in the present invention, the silicone gel (silicone gel) has a property of excellent fluidity like a liquid because individual molecules exist independently due to siloxane bonds, and the molecular chains can move freely, and silicone rubber is a high polymer and has a molecular chain. Since they cannot move to each other, the fluidity is low, but the mutual attraction between molecules is small, so it has excellent elasticity and resilience.

특히, 종래의 실리콘 방열패드(100)는 실리콘겔(gel) 단독으로 사용하여 패드의 낮은 연신율에 의하여, 패드가 끊어지는 경우가 발생하여 PM 작업성이 감소하였으나, 본 발명에서는 탄성과 복원력이 우수한 특성을 갖는 실리콘 고무를 소정범위 함유하여, 연신율을 증가시킬 수 있고 이에 따라 반도체 장비의 PM(Preventive Maintenance) 간 작업성을 향상시킬 수 있다.In particular, the conventional silicone heat dissipation pad 100 uses only silicone gel, and the pad is broken due to the low elongation of the pad, and thus PM workability is reduced, but in the present invention, the elasticity and resilience are excellent. By containing a silicone rubber having characteristics in a predetermined range, it is possible to increase the elongation and thus improve the workability between PM (Preventive Maintenance) of the semiconductor equipment.

참고로, 실리콘겔은 이온 함유량이 낮아서 부식이 시작되는 수분의 유도 경로 형성을 방지함으로써 고온 다습한 환경에서도 견딜 수 있도록 하며, 내열/내한성이 우수하여 약 -85℃ ~ 200℃ 의 넓은 온도 범위에서 부드럽고 유연한 특성을 유지할 수 있다. 또한, 실리콘겔은 접착력, 광투명성, 열 및 충격 흡수성이 우수하고 전기전도도의 변화를 초래하지 않는다. 나아가, 실리콘 겔은 기본적으로 실리콘 고무와 동일한 폴리실록산 구조를 갖지만, 가교 반응 후의 가교 밀도가 실리콘 고무보다 작아, 통상의 고무 경도계로 측정할 수 없을 정도의 부드러운 겔상으로 경화시키는 것을 의미한다. 상기 실리콘 겔은 주쇄를 구성하는 폴리실록산의 종류에 따라 분류되는 디메틸실리콘 겔, 메틸페닐실리콘 겔 등의 여러가지 실리콘 겔을 사용할 수 있다. 다만, 본 발명에서 사용되는 실리콘 고무와 상용성, 친화성이 우수한 실리콘 겔을 사용할 수 있으며, 실리콘 고무와 동일한 계통의 실리콘 겔을 선택하여 이용하는 것이 바람직하다.For reference, silicone gel has low ionic content and prevents the formation of an induction path of moisture from which corrosion begins, so that it can withstand high temperature and high humidity environments, and has excellent heat/cold resistance, so it can be used in a wide temperature range of about -85℃ to 200℃. It can maintain soft and flexible properties. In addition, silicone gel is excellent in adhesion, light transparency, heat and shock absorption, and does not cause a change in electrical conductivity. Further, the silicone gel basically has the same polysiloxane structure as the silicone rubber, but the crosslinking density after the crosslinking reaction is smaller than that of the silicone rubber, and it means that the silicone gel is cured into a soft gel that cannot be measured with a conventional rubber hardness tester. As the silicone gel, various silicone gels, such as dimethyl silicone gel and methylphenyl silicone gel, classified according to the type of polysiloxane constituting the main chain may be used. However, a silicone gel having excellent compatibility and affinity with the silicone rubber used in the present invention can be used, and it is preferable to select and use a silicone gel of the same system as the silicone rubber.

아울러, 실리콘 고무는 액상 실리콘 고무(Liquid Silicone Rubber, LSR)로 실리카로 강화된 가교폴리머로 만들어진 액상 형태의 합성 고무의 총칭을 의미한다. 본 발명에 있어서, 상기 액상 실리콘 고무는 고상 실리콘 고무와 비교하여, 경화 속도가 매우 빠르고, 점도가 낮아 성형 시 제품 형상 구현에 용이하며, 성형 시 잔여물이 거의 발생하지 않는 다양한 효과를 갖는다.In addition, silicone rubber refers to a generic term for a liquid silicone rubber (LSR), a liquid silicone rubber (LSR) made of a crosslinked polymer reinforced with silica. In the present invention, compared to the solid silicone rubber, the liquid silicone rubber has a very fast curing speed, a low viscosity, and thus it is easy to implement a product shape during molding, and has various effects in which almost no residue occurs during molding.

이러한 실리콘 고무(silicone rubber)는 탄성과 복원력이 우수한 특성이 있는 것으로, 본 발명의 방열패드(100)의 연신율을 증가시킬 수 있다. 구체적으로, 실리콘 겔 100 중량부를 기준으로, 상기 실리콘 고무 1 내지 10 중량부를 포함할 수 있으며, 구체적으로, 실리콘 겔 100 중량부를 기준으로, 상기 실리콘 고무 3 내지 10 중량부, 5 내지 10 중량부를 포함할 수 있다. 만일, 실리콘 고무를 1 중량부 미만으로 포함하는 경우, 실리콘 고무의 함량이 너무 적어 연신율이 작을 수 있으며, 10 중량부를 초과하는 경우, 연신율을 증가할 수 있으나, 점도가 급격히 상승하는 문제가 발생할 수 있다. 따라서, 상술한 범위를 포함하는 것이 바람직하다.Such a silicone rubber has excellent elasticity and resilience, and may increase the elongation of the heat dissipation pad 100 of the present invention. Specifically, based on 100 parts by weight of the silicone gel, may include 1 to 10 parts by weight of the silicone rubber, specifically, based on 100 parts by weight of the silicone gel, including 3 to 10 parts by weight and 5 to 10 parts by weight of the silicone rubber can do. If the silicone rubber is included in less than 1 part by weight, the elongation may be small because the content of the silicone rubber is too small, and if it exceeds 10 parts by weight, the elongation may be increased, but the viscosity may rapidly increase. have. Therefore, it is preferable to include the above-described range.

이러한 방열패드(100)는 연신율이 150 % 이상일 수 있다. 여기서, "연신율(elongation)"은 재료 인장 시험 시 재료가 늘어나는 비율을 의미하며, JIS K 6251-1 조건에 따라 만능 시험기(Zwick-Roell Universal Testing Machine, Z100)을 사용하여 계산할 수 있으며, 하기 계산식에 따라 연신율을 계산할 수 있다. The heat dissipation pad 100 may have an elongation of 150% or more. Here, "elongation" means the rate at which the material stretches during the tensile test of the material, and can be calculated using a Zwick-Roell Universal Testing Machine (Z100) according to JIS K 6251-1 conditions, and the following calculation formula Elongation can be calculated according to.

[계산식][formula]

연신율(%) = (파단시 길이-초기 길이)/초기 길이 × 100Elongation (%) = (length at break-initial length)/initial length × 100

구체적으로, 방열패드(100)의 연신율은 150 % 이상일 수 있으며, 150 내지 250 % 범위, 170 내지 240% 일 수 있다. 한편, 방열패드(100)의 연신율이 150% 미만인 경우, 방열패드(100)와 반도체 장비 사이가 완전히 밀착되지 못하고, 공정 중에 방열패드(100)가 끊어지거나 크랙이 발생하는 문제가 발생할 수 있어, 공기층이 형성되어 열전도율이 떨어지는 문제가 발생할 수 있다. 또한, 방열패드(100)의 연신율이 250%을 초과하는 경우, 방열패드(100)가 끊어지거나 크랙은 발생하지 않으나, 원래의 형상으로 복원되지 않는 문제가 발생할 수 있다.Specifically, the elongation of the heat dissipation pad 100 may be 150% or more, in the range of 150 to 250%, and may be 170 to 240%. On the other hand, if the elongation rate of the heat dissipation pad 100 is less than 150%, the heat dissipation pad 100 and the semiconductor equipment cannot be completely in close contact, and the heat dissipation pad 100 may be broken or cracked during the process. An air layer may be formed, resulting in a problem of lowering the thermal conductivity. In addition, when the elongation of the heat dissipation pad 100 exceeds 250%, the heat dissipation pad 100 may not be cut or cracked, but may not be restored to its original shape.

아울러, 방열 필러(120)는 상기 실리콘 수지(110) 내에 분산되어 있는 것으로, 방열패드(100)는 방열 필러(120)를 포함하여, 방열 대상체에 의해 발생된 열이 방열 패드를 통하여 다른 층으로 쉽게 전달될 수 있다.In addition, the heat dissipation filler 120 is dispersed in the silicone resin 110, and the heat dissipation pad 100 includes the heat dissipation filler 120 so that heat generated by the heat dissipation object is transferred to another layer through the heat dissipation pad. Can be easily delivered.

본 발명의 방열 필러(120)는, 산화아연(ZnO), 탄화 규소(SiC), 마그네시아(MgO), 질화 붕소(BN), 수산화알루미늄(Al2(OH)3), 알루미나(Al2O3), 질화알루미늄(AlN), 질화 규소(Si3N4), 베릴리아(BeO) 및 지르코니아(ZrO2) 로 이루어진 군으로부터 선택되는 하나 이상일 수 있으며, 일 예로, 상기 방열 필러(120)는 알루미나일 수 있다.The heat dissipation filler 120 of the present invention is zinc oxide (ZnO), silicon carbide (SiC), magnesia (MgO), boron nitride (BN), aluminum hydroxide (Al 2 (OH) 3 ), alumina (Al 2 O 3 ), aluminum nitride (AlN), silicon nitride (Si 3 N 4 ), beryllia (BeO), and zirconia (ZrO 2 ), may be one or more selected from the group consisting of, for example, the heat dissipation filler 120 is alumina Can be

상기 방열 필러(120)는 입경크기에 따라서 제1필러(121), 제2필러(122) 및 제3필러(123)를 포함할 수 있으며, 구체적으로, 평균 입경 0.3 내지 1.0 ㎛ 범위의 제1필러(121), 평균 입경 0.4 내지 10 ㎛ 범위의 제2필러(122) 및 평균 입경 60 내지 80 ㎛ 범위의 제3필러(123)를 포함할 수 있다. 즉, 서로 상이한 평균입경을 갖는 방열 필러(120)를 3개의 필러 군으로 하여 필수적으로 포함할 수 있다.The heat dissipation filler 120 may include a first filler 121, a second filler 122, and a third filler 123 according to the size of the particle diameter. Specifically, the first filler having an average particle diameter of 0.3 to 1.0 μm A filler 121, a second filler 122 having an average particle diameter of 0.4 to 10 µm, and a third filler 123 having an average particle diameter of 60 to 80 µm may be included. That is, the heat dissipation fillers 120 having different average particle diameters may be essentially included as three filler groups.

제1필러(121)는 제2필러(122) 및/또는 제3필러(123) 사이의 공간을 채우는 것으로서, 평균 입경 0.3 내지 1.0 ㎛ 범위일 수 있다. 구체적으로, 제1필러(121)는 평균 입경 0.35 내지 0.8 ㎛ 범위일 수 있으며, 평균 입경 0.4 내지 0.6 ㎛ 범위 또는 평균 0.5 ㎛ 일 수 있다. 특히, 제1필러(121)의 입경이 0.3 ㎛ 미만이거나, 1.0 ㎛ 를 초과하는 경우, 후술하게 되는 제2필러(122) 및/또는 제3필러(123)로 접촉하지 못하는 문제가 발생할 수 있다.The first pillar 121 fills the space between the second pillar 122 and/or the third pillar 123 and may have an average particle diameter of 0.3 to 1.0 μm. Specifically, the first filler 121 may have an average particle diameter of 0.35 to 0.8 μm, an average particle diameter of 0.4 to 0.6 μm, or an average of 0.5 μm. In particular, when the particle diameter of the first filler 121 is less than 0.3 µm or exceeds 1.0 µm, there may be a problem in that the second filler 122 and/or the third filler 123 to be described later cannot be contacted. .

아울러, 제1필러(121)는 실리콘 겔 100 중량부를 기준으로, 100 내지 200 중량부를 포함할 수 있으며, 120 내지 160 중량부를 포함할 수 있다. 만일, 상기 제1필러(121)는 실리콘 겔 100 중량부를 기준으로 100 중량부 미만으로 포함하는 경우, 열전도율이 저하될 수 있으며, 200 중량부를 초과하는 경우, 열전도율은 상승하나, 패드 제작 전 실리콘 배합의 점도가 증가하여 작업성이 저하되고 기계적 물성이 저하될 수 있다.In addition, the first filler 121 may include 100 to 200 parts by weight, based on 100 parts by weight of the silicone gel, and may include 120 to 160 parts by weight. If the first filler 121 contains less than 100 parts by weight based on 100 parts by weight of the silicone gel, the thermal conductivity may be lowered, and if it exceeds 200 parts by weight, the thermal conductivity increases, but silicone blending before making the pad As the viscosity of the material increases, workability may decrease and mechanical properties may decrease.

제2필러(122)는 제3필러(123) 사이의 공간을 채우는 것으로서, 평균 입경 0.4 내지 10 ㎛ 범위일 수 있다. 구체적으로, 제2필러(122)는 평균 입경 1 내지 9 ㎛ 범위일 수 있으며, 평균 입경 2 내지 8 ㎛ 범위, 평균 입경 3 내지 7 ㎛ 범위, 평균 입경 4 내지 6 ㎛ 범위 또는 평균 5 ㎛ 일 수 있다. 특히, 제2필러(122)의 입경이 0.4 ㎛ 미만이거나, 10 ㎛ 를 초과하는 경우, 패드 제작 전 실리콘 배합의 점도와 열전도율에 영향을 줄 수 있다.The second pillar 122 fills the space between the third pillars 123 and may have an average particle diameter of 0.4 to 10 μm. Specifically, the second filler 122 may have an average particle diameter of 1 to 9 μm, an average particle diameter of 2 to 8 μm, an average particle diameter of 3 to 7 μm, an average particle diameter of 4 to 6 μm, or an average of 5 μm. have. In particular, when the particle diameter of the second filler 122 is less than 0.4 µm or exceeds 10 µm, the viscosity and thermal conductivity of the silicone formulation before pad fabrication may be affected.

아울러, 제2필러(122)는 실리콘 겔 100 중량부를 기준으로, 200 내지 350 중량부를 포함할 수 있으며, 250 내지 300 중량부를 포함할 수 있다. 만일, 상기 제2필러(122)는 실리콘 겔 100 중량부를 기준으로 200 중량부 미만으로 포함하는 경우, 열전도율이 저하될 수 있으며, 350 중량부를 초과하는 경우, 열전도율은 상승하나, 패드 제작 전 실리콘 배합의 점도가 증가하여 작업성이 저하되고 기계적 물성이 저하될 수 있다.In addition, the second filler 122 may include 200 to 350 parts by weight, and 250 to 300 parts by weight, based on 100 parts by weight of the silicone gel. If the second filler 122 contains less than 200 parts by weight based on 100 parts by weight of the silicone gel, the thermal conductivity may be lowered, and if it exceeds 350 parts by weight, the thermal conductivity increases, but silicone formulation before making the pad As the viscosity of the material increases, workability may decrease and mechanical properties may decrease.

제3필러(123)는 평균 입경 60 내지 80 ㎛ 범위일 수 있다. 구체적으로, 제3필러(123)는 평균 입경 65 내지 75 ㎛ 범위일 수 있으며, 평균 입경 70 ㎛ 일 수 있다. 특히, 제3필러(123)의 입경이 60 ㎛ 미만이거나, 80 ㎛ 를 초과하는 경우, 패드 제작 전 실리콘 배합의 점도와 열전도율에 영향을 줄 수 있다.The third filler 123 may have an average particle diameter in the range of 60 to 80 μm. Specifically, the third filler 123 may have an average particle diameter of 65 to 75 μm and an average particle diameter of 70 μm. In particular, when the particle diameter of the third filler 123 is less than 60 µm or exceeds 80 µm, the viscosity and thermal conductivity of the silicone formulation before pad manufacturing may be affected.

아울러, 제3필러(123)는 실리콘 겔 100 중량부를 기준으로, 350 내지 450 중량부를 포함할 수 있으며, 370 내지 400 중량부를 포함할 수 있다. 만일, 상기 제3필러(123)는 실리콘 겔 100 중량부를 기준으로 350 중량부 미만으로 포함하는 경우, 열전도성이 현저히 저하되어, 사실상 열전달이 발현되기 어려울 수 있으며, 450 중량부를 초과하는 경우 기계적 물성이 현저히 떨어지거나 절연파괴 전압이 낮아질 우려가 있다.In addition, the third filler 123 may include 350 to 450 parts by weight, and may include 370 to 400 parts by weight, based on 100 parts by weight of the silicone gel. If the third filler 123 contains less than 350 parts by weight based on 100 parts by weight of the silicone gel, thermal conductivity is remarkably lowered, so it may be difficult to realize heat transfer in effect, and when it exceeds 450 parts by weight, mechanical properties There is a fear that this may drop significantly or the breakdown voltage may decrease.

한편, 본 발명에 따른 방열패드는 평균 두께 0.1 내지 50 mm 범위일 수 있다. 상기 방열패드의 두께가 너무 얇을 경우에는 충분한 방열 특성을 가지기 어려울 수 있고, 반대로 너무 두꺼운 경우에는 내전압 특성을 가지기 어려울 수 있어, 상술한 범위가 바람직하다.Meanwhile, the heat dissipation pad according to the present invention may have an average thickness of 0.1 to 50 mm. If the thickness of the heat dissipation pad is too thin, it may be difficult to have sufficient heat dissipation characteristics, whereas if the heat dissipation pad is too thick, it may be difficult to have withstand voltage characteristics, and the above range is preferable.

이러한 반도체 장비용 방열패드는 연신율이 150% 이상으로, 방열패드가 끊어지거나 크랙이 발생하는 것을 방지할 수 있으며, 이에 따라 반도체 장비의 PM(preventive maintenance)를 증가시킬 수 있는 이점이 있다.Such a heat dissipation pad for semiconductor equipment has an elongation of 150% or more, and can prevent the heat dissipation pad from being cut or cracked, thereby increasing the PM (preventive maintenance) of the semiconductor equipment.

이하, 본 발명을 실시예 및 실험예에 의해 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail by examples and experimental examples.

단, 하기 실시예 및 실험예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예 및 실험예에 한정되는 것은 아니다.However, the following examples and experimental examples are merely illustrative of the present invention, and the contents of the present invention are not limited to the following examples and experimental examples.

<실시예><Example>

실시예 1. 방열패드의 제조 (1)Example 1. Manufacture of heat dissipation pad (1)

액상의 실리콘 겔과 액상의 실리콘 고무 및 방열 필러를 아래의 표에 나타낸 조성으로 혼합하고, 150℃ 및 100kgf/cm2 의 가열 가압 공정을 거쳐 평균두께가 0.5mm 인 반도체 장비용 방열 패드를 제조하였다.Liquid silicone gel, liquid silicone rubber, and heat dissipation filler are mixed in the composition shown in the table below, and heated and pressurized at 150℃ and 100kg f /cm 2 to produce a heat dissipation pad for semiconductor equipment with an average thickness of 0.5mm. I did.

성분ingredient 함량 (g)Content (g) 비고Remark 실리콘 겔Silicone gel 1010 실리콘 고무Silicone rubber 00 제1필러(알루미나)First filler (alumina) 1515 평균 직경: 0.5 ㎛ Average diameter: 0.5 μm 제2필러(알루미나)Second filler (alumina) 3030 평균 직경: 5 ㎛Average diameter: 5 μm 제3필러(알루미나)Third filler (alumina) 4040 평균 직경: 70 ㎛Average diameter: 70 μm

실시예 2. 방열패드의 제조 (2)Example 2. Manufacture of heat dissipation pad (2)

액상의 실리콘 고무를 0.5 g 혼합한 것을 제외하곤, 실시예 1과 동일한 방법으로 방열패드를 제조하였다.A heat dissipation pad was manufactured in the same manner as in Example 1, except that 0.5 g of the liquid silicone rubber was mixed.

실시예 3. 방열패드의 제조 (3)Example 3. Manufacture of heat dissipation pad (3)

액상의 실리콘 고무를 0.75 g 혼합한 것을 제외하곤, 실시예 1과 동일한 방법으로 방열패드를 제조하였다.A heat dissipation pad was manufactured in the same manner as in Example 1, except that 0.75 g of the liquid silicone rubber was mixed.

<비교예><Comparative Example>

비교예 1. 방열패드의 제조 (4)Comparative Example 1. Manufacture of heat dissipation pad (4)

실리콘 고무를 첨가하지 않고, 실시예 1과 동일한 방법으로 방열패드를 제조하였다.A heat dissipation pad was manufactured in the same manner as in Example 1 without adding silicone rubber.

비교예 2. 방열패드의 제조 (5)Comparative Example 2. Manufacture of heat dissipation pad (5)

액상의 실리콘 고무를 1.5 g 혼합한 것을 제외하곤, 실시예 1과 동일한 방법으로 방열패드를 제조하였다.A heat dissipation pad was manufactured in the same manner as in Example 1, except that 1.5 g of the liquid silicone rubber was mixed.

<실험예><Experimental Example>

실험예 1. 연신율 측정Experimental Example 1. Elongation measurement

본 발명에 따른 방열패드의 물성을 확인하기 위하여, 실시예 1 내지 3, 비교예 1 내지 2의 방열패드를 대상으로 연신율을 측정하였다. In order to confirm the physical properties of the heat dissipating pad according to the present invention, the elongation was measured for the heat dissipating pads of Examples 1 to 3 and Comparative Examples 1 to 2.

구체적으로, 상기 방열패드를 50 mm × 50 mm 로 절단하여 JIS K 6251-1 조건에 따라 만능 시험기(Zwick-Roell Universal Testing Machine, Z100)을 사용하여 측정하였고, 하기 계산식에 따라 연신율을 계산하였다. Specifically, the heat dissipation pad was cut into 50 mm × 50 mm and measured using a universal testing machine (Zwick-Roell Universal Testing Machine, Z100) according to JIS K 6251-1 conditions, and the elongation was calculated according to the following calculation formula.

[계산식][formula]

연신율(%) = (파단시 길이-초기 길이)/초기 길이 × 100Elongation (%) = (length at break-initial length)/initial length × 100

실험예 2. 열전도도 측정Experimental Example 2. Measurement of thermal conductivity

실시예 1 내지 3, 비교예 1 내지 2의 방열패드를 대상으로 열전도도를 측정하였다. 구체적으로, ASTM D 5470 에 따라 열특성시험장치(TIM1400, Analysis Tech 사)를 이용하여 방열시트의 수직 방향에 대한 열전도도를 측정하였다.Thermal conductivity was measured for the heat dissipation pads of Examples 1 to 3 and Comparative Examples 1 to 2. Specifically, the thermal conductivity of the heat dissipating sheet in the vertical direction was measured using a thermal property test apparatus (TIM1400, Analysis Tech) according to ASTM D 5470.

실시예 1 내지 3, 비교예 1 내지 2의 방열패드의 연신율과 열전도도 측정 결과를 아래의 표 2에 나타내었다.The elongation and thermal conductivity measurement results of the heat dissipating pads of Examples 1 to 3 and Comparative Examples 1 to 2 are shown in Table 2 below.

연신율(%)Elongation (%) 열전도도Thermal conductivity 액상 실리콘 고무 함량 (중량 %)Liquid silicone rubber content (% by weight) 실시예 1Example 1 170170 2.52.5 0.50.5 실시예 2Example 2 200200 2.52.5 0.750.75 실시예 3Example 3 240240 2.52.5 1.01.0 비교예 1Comparative Example 1 100100 2.52.5 00 비교예 2Comparative Example 2 280280 2.22.2 1.51.5

표 2에서 확인할 수 있듯이, 실시예 1 내지 3에서 제조한 방열패드는 연신율 및 열전도도가 모두 우수한 것을 확인할 수 있었다. 반면, 비교예 1의 경우, 연신율이 100% 로 연신율이 매우 낮았으며, 비교예 2의 경우, 연신율은 우수하였으나, 열전도율이 저하되는 문제가 있었다.As can be seen in Table 2, it was confirmed that the heat dissipation pads prepared in Examples 1 to 3 had excellent elongation and thermal conductivity. On the other hand, in the case of Comparative Example 1, the elongation was 100% and the elongation was very low. In the case of Comparative Example 2, the elongation was excellent, but there was a problem that the thermal conductivity was lowered.

즉, 본 발명에 따른 방열패드는 액상 실리콘 고무를 소정범위 포함하고 있어, 연신율 및 열전도도가 우수한 것을 확인할 수 있었다.That is, it was confirmed that the heat dissipation pad according to the present invention includes a liquid silicone rubber in a predetermined range, and thus has excellent elongation and thermal conductivity.

100: 방열패드
110: 실리콘 수지
120: 방열 필러 121: 제1필러
122: 제2필러 123: 제3필러
100: heat dissipation pad
110: silicone resin
120: heat dissipation filler 121: first filler
122: second filler 123: third filler

Claims (6)

반도체 장비용 방열패드로서,
실리콘 겔(silicone gel)과 실리콘 고무(silicone rubber)를 포함하는 실리콘 수지; 및
실리콘 수지 내에 분산되어 열전도성을 높이는 방열 필러; 를 포함하며,
실리콘 겔 100 중량부를 기준으로, 상기 실리콘 고무 1 내지 10 중량부를 포함하며,
상기 방열패드는, 연신율이 150 % 이상인 것을 특징으로 하는 반도체 장비용 방열패드.
As a heat dissipation pad for semiconductor equipment,
Silicone resins including silicone gel and silicone rubber; And
A heat dissipating filler dispersed in the silicone resin to increase thermal conductivity; Including,
Based on 100 parts by weight of the silicone gel, including 1 to 10 parts by weight of the silicone rubber,
The heat radiation pad is a heat radiation pad for semiconductor equipment, characterized in that the elongation of 150% or more.
제1항에 있어서,
상기 방열패드는, 연신율이 150 % 내지 250 % 범위인 것을 특징으로 하는 반도체 장비용 방열패드.
The method of claim 1,
The heat radiation pad is a heat radiation pad for semiconductor equipment, characterized in that the elongation is in the range of 150% to 250%.
제1항에 있어서,
방열패드의 두께는 평균 0.1 내지 50 mm 범위인 것을 특징으로 하는 반도체 장비용 방열패드.
The method of claim 1,
A heat radiation pad for semiconductor equipment, characterized in that the thickness of the heat radiation pad ranges from 0.1 to 50 mm on average.
제1항에 있어서,
방열 필러는, 평균 입경 0.3 내지 1.0 ㎛ 범위의 제1필러;
평균 입경 0.4 내지 10 ㎛ 범위의 제2필러; 및
평균 입경 60 내지 80 ㎛ 범위의 제3필러; 를 포함하는 것을 특징으로 하는 반도체 장비용 방열패드.
The method of claim 1,
The heat dissipating filler includes: a first filler having an average particle diameter of 0.3 to 1.0 µm;
A second filler having an average particle diameter of 0.4 to 10 μm; And
A third filler having an average particle diameter of 60 to 80 μm; A heat dissipation pad for semiconductor equipment comprising a.
제4항에 있어서,
실리콘 겔 100 중량부를 기준으로, 방열 필러는 제1필러 100 내지 200 중량부, 제2필러 200 내지 350 중량부 및 제3필러 250 내지 450 중량부가 혼합된 것을 특징으로 하는 반도체 장비용 방열패드.
The method of claim 4,
Based on 100 parts by weight of silicone gel, the heat dissipation filler is a heat dissipation pad for semiconductor equipment, characterized in that 100 to 200 parts by weight of the first filler, 200 to 350 parts by weight of the second filler, and 250 to 450 parts by weight of the third filler are mixed.
제1항에 있어서,
방열 필러는, 산화아연(ZnO), 탄화 규소(SiC), 마그네시아(MgO), 질화 붕소(BN), 수산화알루미늄(Al2(OH)3), 알루미나(Al2O3), 질화알루미늄(AlN), 질화 규소(Si3N4), 베릴리아(BeO) 및 지르코니아(ZrO2) 로 이루어진 군으로부터 선택되는 하나 이상인 반도체 장비용 방열패드.
The method of claim 1,
The heat dissipating filler is zinc oxide (ZnO), silicon carbide (SiC), magnesia (MgO), boron nitride (BN), aluminum hydroxide (Al 2 (OH) 3 ), alumina (Al 2 O 3 ), aluminum nitride (AlN ), silicon nitride (Si 3 N 4 ), beryllia (BeO) and zirconia (ZrO 2 ) at least one heat dissipation pad for semiconductor equipment selected from the group consisting of.
KR1020190097261A 2019-08-09 2019-08-09 Thermally conductive pad for equipment of semi-conductor procedure KR20210017653A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190097261A KR20210017653A (en) 2019-08-09 2019-08-09 Thermally conductive pad for equipment of semi-conductor procedure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190097261A KR20210017653A (en) 2019-08-09 2019-08-09 Thermally conductive pad for equipment of semi-conductor procedure

Publications (1)

Publication Number Publication Date
KR20210017653A true KR20210017653A (en) 2021-02-17

Family

ID=74731596

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190097261A KR20210017653A (en) 2019-08-09 2019-08-09 Thermally conductive pad for equipment of semi-conductor procedure

Country Status (1)

Country Link
KR (1) KR20210017653A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117645795A (en) * 2024-01-30 2024-03-05 北京泰派斯特电子技术有限公司 Elastomer composition, high-elasticity heat-conducting insulating gasket and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110013907A (en) 2009-08-04 2011-02-10 두성산업 주식회사 Heat dissipation pad with high thermoconductivity and manufacturing method thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110013907A (en) 2009-08-04 2011-02-10 두성산업 주식회사 Heat dissipation pad with high thermoconductivity and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117645795A (en) * 2024-01-30 2024-03-05 北京泰派斯特电子技术有限公司 Elastomer composition, high-elasticity heat-conducting insulating gasket and preparation method thereof

Similar Documents

Publication Publication Date Title
KR100677818B1 (en) Heat-Release Structure
JP6314915B2 (en) Heat dissipation putty sheet
KR100591671B1 (en) Semiconductor Encapsulating Epoxy Resin Composition and Semiconductor Device
JP2014193965A (en) High thermal conductive resin composition, high thermal conductive semi-cured resin film and high thermal conductive resin cured product
TW201843282A (en) Silicone resin composition for die-bonding and cured product
CN110739223A (en) Method for manufacturing thermally conductive sheet
KR102660031B1 (en) Thermal conductive composition and method for producing the same
JP6739825B2 (en) Heat conductive composition and heat conductive molded article
KR102094267B1 (en) Semiconductor device
KR20210017653A (en) Thermally conductive pad for equipment of semi-conductor procedure
TW202144501A (en) Heat conductive resin composition and heat conductive sheet using the same
JPS63304021A (en) Epoxy resin composition
KR102523790B1 (en) Composition for 3W class thermally conductive pad of equipment of semi-conductor procedure
KR102651416B1 (en) Composition for thermally conductive pad for equipment of semi-conductor procedure
KR102400549B1 (en) Thermally conductive composition for thermal pads and thermal pads comprising the same
TW202219162A (en) Heat conductive composition and heat conductive sheet using the same
TW201829609A (en) Resin composition, resin sheet and semiconductor device, and method for manufacturing semiconductor device wherein the resin sheet is excellent in operability and formability and capable of maintaining flexibility for a long period of time
KR20230046396A (en) 4W class thermally conductive pad of equipment of semi-conductor procedure
JP3825035B2 (en) Thermally conductive molded body
KR102449297B1 (en) Substrate for power electronic module comprising organic-inorganic composite
JP2005264037A (en) Epoxy resin composition for sealing and resin-sealed semiconductor device
JP7271039B1 (en) thermally conductive sheet
TW202334320A (en) Thermally conductive composition, thermally conductive sheet, and method for manufacturing same
JPS6381120A (en) Epoxy resin composition
TW201116615A (en) Thermally conductive composition

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X601 Decision of rejection after re-examination
J201 Request for trial against refusal decision