KR20230035957A - 무인 비행체를 활용한 송전선로 점검 시스템 - Google Patents

무인 비행체를 활용한 송전선로 점검 시스템 Download PDF

Info

Publication number
KR20230035957A
KR20230035957A KR1020210118571A KR20210118571A KR20230035957A KR 20230035957 A KR20230035957 A KR 20230035957A KR 1020210118571 A KR1020210118571 A KR 1020210118571A KR 20210118571 A KR20210118571 A KR 20210118571A KR 20230035957 A KR20230035957 A KR 20230035957A
Authority
KR
South Korea
Prior art keywords
unmanned aerial
aerial vehicle
transmission line
server
information
Prior art date
Application number
KR1020210118571A
Other languages
English (en)
Other versions
KR102661562B1 (ko
Inventor
김태용
Original Assignee
주식회사 로비고스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 로비고스 filed Critical 주식회사 로비고스
Priority to KR1020210118571A priority Critical patent/KR102661562B1/ko
Publication of KR20230035957A publication Critical patent/KR20230035957A/ko
Priority to KR1020240033640A priority patent/KR20240035983A/ko
Priority to KR1020240033639A priority patent/KR20240035982A/ko
Application granted granted Critical
Publication of KR102661562B1 publication Critical patent/KR102661562B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/30Supply or distribution of electrical power
    • B64U50/34In-flight charging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/30Supply or distribution of electrical power
    • B64U50/34In-flight charging
    • B64U50/35In-flight charging by wireless transmission, e.g. by induction
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/0202Control of position or course in two dimensions specially adapted to aircraft
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G1/00Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines
    • H02G1/02Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines for overhead lines or cables
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/30UAVs specially adapted for particular uses or applications for imaging, photography or videography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/20Remote controls

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Tourism & Hospitality (AREA)
  • Health & Medical Sciences (AREA)
  • Economics (AREA)
  • Theoretical Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Human Resources & Organizations (AREA)
  • Primary Health Care (AREA)
  • Marketing (AREA)
  • General Business, Economics & Management (AREA)
  • General Health & Medical Sciences (AREA)
  • Strategic Management (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • Combustion & Propulsion (AREA)
  • Quality & Reliability (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Power Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

전술한 과제를 해결하기 위한 본 발명의 일 실시예에서, 송전선로 점검 방법이 개시된다. 상기 방법은, 서버로부터 제1위치 이동 명령 신호를 수신하는 단계, 상기 제1위치 이동 명령 신호에 대응하여 송전선로의 제1위치 이동할 것을 결정하는 단계, 상기 서버로부터 제2위치 이동 명령 신호를 수신하는 단계, 상기 제2위치 이동 명령 신호에 대응하여 상기 제1위치로부터 제2위치로 이동하면서 테스트 수행 정보를 획득하는 단계 및 상기 테스트 수행 정보를 상기 서버로 전송할 것을 결정하는 단계를 포함할 수 있다.

Description

무인 비행체를 활용한 송전선로 점검 시스템{TRANSMISSION LINE INSPECTION SYSTEM USING UNMANNED AERIAL VEHICLE}
본 발명은 송전선로에 대한 점검을 수행하는 시스템에 관한 것으로, 보다 구체적으로, 무인 비행체를 활용하여 송전선로 점검을 수행하는 시스템에 제공하는 기술에 관한 것이다.
일반적으로, 송전선로의 점검은 육안검사, 열화상, 초음파 검사와 같은 상시검사와 5년 주기로 사선 정밀 점검이 현재 운용되고 있다. 그러나, 대부분의 검사는 구조물에 대한 검사를 위한 방법이며, 활선에서는 작업자가 철탑의 아래에서 이동하면서 고배율 망원경과 계측 장비를 사용하여 지상에서 점검하는 방식이다. 또한, 기존의 선로 점검 방식은, 휴전 조치 후 작업자가 전선을 타고 하나하나 육안으로 확인하여야 하므로, 많은 시간이 소요되며, 무엇보다 안전사고의 위험이 크다는 문제점이 있다. 또한, 험로에 위치해 작업자가 올라갈 수도 없고, 송전선로가 나무에 가리는 등의 이유로 망원경으로도 확인할 수 없는 감시 사각지대는 점검이 어렵다는 문제점이 있다.
이에 따라, 사용자의 편의성을 증대시키고자, 대한민국 등록특허 제10-1277119호에는 송전선로를 주행하면서 송전선을 점검하는 송전선로 점검 로봇이 개시되어 있다.
한편, 오늘날 무인공중비행체(UAV: Unmanned Aerial Vehicle)(예컨대, 드론)의 활용도가 다양한 분야로 확대되어지고 있다. 예를 들어, 최근 드론은 공공, 민간 등 다양한 잠재적 시장이 형성되어 사회적·경제적으로 영향력이 큰 기술로 전망되고 있다. 세계의 여러 국가는 공공 분야에서 드론의 활용을 확대하고 있으며, 세계 드론 시장의 70% 이상을 점유하고 있는 중국의 DJI를 필두로 드론 기체 및 드론 부품의 생산과 드론에 적용되는 융합기술을 개발하는 기업의 수도 폭발적으로 증가하고 있다. 민간 분야에서 기존에 방송 촬영, 오락용으로 주로 사용되던 드론이 최근 물류 서비스 분야에 많이 적용되고 있다.
이러한 드론을 활용하여 송전선로를 점검하고자 하는 다양한 노력들이 지속되고 있다. 다만, 드론을 비행시키기 위해서는 복수의 프로펠러가 매우 빠르게 회전되어야 하므로 배터리 소모량이 매우 많아 운용시간이 다소 짧다는 문제점이 존재한다. 구체적으로, 배터리는 무게에 비하여 에너지 밀도가 낮아서 많은 에너지를 저장하려면 무게도 함께 증가하게 되며, 이는 장시간 비행에 비효율적일 수 있다. 구체적인 예를 들어, 일반적인 전력을 이용하는 드론은 3.8V~24V의 배터리를 전원으로 사용하고 있으나, 배터리의 용량의 한계로 인해 비행시간이 30분 이하로 제약되는 문제점이 있었다. 즉, 드론의 배터리는 30분 정도 밖에 활용이 불가능할 수 있으며, 이에 더해 점검을 위한 각종 장비, 카메라 등의 기기가 더해지는 경우, 배터리 사용 가능시간은 더욱 줄어들 수 밖에 없으므로, 긴 송전선로를 점검하기에는 무리가 있다.
본 발명이 해결하고자 하는 과제는 상술한 문제점을 해결하기 위한 것으로서, 비행 운용 시간이 향상된 무인 비행체를 활용하여 송전선로 점검을 수행하는 시스템을 제공하기 위함이다.
본 발명이 해결하고자 하는 과제들은 이상에서 언급된 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.
상술한 과제를 해결하기 위한 본 발명의 다양한 실시예에 따른 무인 비행체의 하나 이상의 프로세서에서 수행되는 송전선로 점검 방법이 개시된다. 상기 방법은, 서버로부터 제1위치 이동 명령 신호를 수신하는 단계, 상기 제1위치 이동 명령 신호에 대응하여 송전선로의 제1위치 이동할 것을 결정하는 단계, 상기 서버로부터 제2위치 이동 명령 신호를 수신하는 단계, 상기 제2위치 이동 명령 신호에 대응하여 상기 제1위치로부터 제2위치로 이동하면서 테스트 수행 정보를 획득하는 단계 및 상기 테스트 수행 정보를 상기 서버로 전송할 것을 결정하는 단계를 포함할 수 있다.
대안적인 실시예에서, 상기 제2위치 이동 명령 신호는, 상기 무인 비행체를 상기 제2위치로 이동시키기 위한 제어 신호이며, 상기 테스트 수행 정보는, 상기 송전선로의 고장 여부 판별에 기반이 되는 정보로, 상기 송전선로에 관련한 전선 이미지 및 열화상 이미지 중 적어도 하나를 포함할 수 있다.
대안적인 실시예에서, 상기 서버로부터 제2위치 이동 명령 신호를 수신하는 단계는, 상기 제1위치로 이동한 경우, 위치 확인 요청 정보를 생성하여 상기 서버로 전송할 것을 결정하는 단계 및 상기 서버로부터 상기 위치 확인 요청 정보에 대한 응답으로 상기 제2위치 이동 명령 신호를 수신하는 단계를 포함하며, 상기 위치 확인 요청 정보는, 상기 무인 비행체의 실시간 위치 정보 또는 주변 이미지 정보 중 적어도 하나를 포함할 수 있다.
대안적인 실시예에서, 상기 무인 비행체는, 상기 송전선로의 자기장에 의해 야기되는 유도기전력에 기초하여 비행에 관련한 전기 에너지를 공급받는 것을 특징으로 할 수 있다.
대안적인 실시예에서, 상기 무인 비행체는, 기 설정된 인덕턴스를 갖도록 구비되는 코일부를 포함하여 구비되며, 상기 유도기전력은 상기 코일부를 통해 야기되는 것을 특징으로 할 수 있다.
대안적인 실시예에서, 상기 무인 비행체는, 상기 유도기전력의 크기에 기초하여 상기 송전선로와 미리 정해진 이격 거리를 갖도록 비행하는 것을 특징으로 할 수 있다.
대안적인 실시예에서, 상기 무인 비행체는, 상기 유도기전력에 관련한 교류전압을 직류전압으로 변성하는 변성모듈을 포함하여 구비될 수 있다.
본 발명의 다른 실시예에 따른 송전선로를 점검하는 무인 비행체가 개시된다. 상기 무인 비행체는, 서버와 데이터를 송수신하는 네트워크부, 하나 이상의 인스트럭션을 저장하는 메모리 및 상기 메모리에 저장된 상기 하나 이상의 인스트럭션을 실행함으로써, 전술한 송전선로 점검 방법을 수행하는 프로세서를 포함할 수 있다.
본 발명의 일 실시예에 따른 서버의 하나 이상의 프로세서에서 수행되는 무인 비행체를 활용한 송전선로 점검 방법이 개시된다. 제1위치 이동 명령 신호를 무인 비행체로 전송할 것을 결정하는 단계, 상기 제1위치 이동 명령 신호에 대응하여 송전선로의 제1위치로 이동된 무인 비행체로 제2위치 이동 명령 신호를 전송할 것을 결정하는 단계, 상기 무인 비행체로부터 테스트 수행 정보를 수신하는 단계 및 상기 테스트 수행 정보에 기초하여 송전선로의 고장 여부를 판별하는 단계를 포함할 수 있다.
대안적인 실시예에서, 상기 제2위치 이동 명령 신호는, 상기 무인 비행체를 상기 제2위치로 이동시키기 위한 제어 신호이며, 상기 테스트 수행 정보는, 상기 송전선로의 고장 여부 판별에 기반이 되는 정보로, 상기 송전선로에 관련한 전선 이미지 및 열화상 이미지 중 적어도 하나를 포함할 수 있다.
대안적인 실시예에서, 상기 제2위치 이동 명령 신호를 전송할 것을 결정하는 단계는, 상기 무인 비행체로부터 위치 확인 요청 정보를 수신하는 단계, 상기 위치 확인 요청 정보에 기초하여 테스트 개시 적정 여부를 판별하는 단계 및 상기 테스트 개시 적정 여부 판별 결과에 기초하여 상기 무인 비행체로 상기 제2위치 이동 명령 신호를 전송할 것을 결정하는 단계를 포함하며, 상기 위치 확인 요청 정보는, 상기 무인 비행체의 실시간 위치 정보 또는 주변 이미지 정보 중 적어도 하나를 포함할 수 있다.
대안적인 실시예에서, 상기 무인 비행체는, 상기 송전선로의 자기장에 의해 야기되는 유도기전력에 기초하여 비행에 관련한 전기 에너지를 공급받는 것을 특징으로 할 수 있다.
대안적인 실시예에서, 상기 무인 비행체는, 기 설정된 인덕턴스를 갖도록 구비되는 코일부를 포함하여 구비되며, 상기 유도기전력은 상기 코일부를 통해 야기되는 것을 특징으로 할 수 있다.
대안적인 실시예에서, 상기 무인 비행체는, 상기 유도기전력의 크기에 기초하여 상기 송전선로와 미리 정해진 이격 거리를 갖도록 비행하는 것을 특징으로 할 수 있다.
대안적인 실시예에서, 상기 무인 비행체는, 상기 유도기전력에 관련한 교류전압을 직류전압으로 변성하는 변성모듈을 포함하여 구비될 수 있다.
본 발명의 다른 실시예에 따른 무인 비행체를 활용하여 송전선로를 점검하는 서버가 개시된다. 상기 서버는, 무인 비행체와 데이터를 송수신하는 서버 네트워크부, 하나 이상의 인스트럭션을 저장하는 서버 메모리 및 상기 서버 메모리에 저장된 상기 하나 이상의 인스트럭션을 실행함으로써, 전술한 무인 비행체를 활용한 송전선로 점검 방법을 수행하는 서버 프로세서를 포함할 수 있다.
본 발명의 기타 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다.
본 발명의 다양한 실시예에 따라, 비행 운용 시간이 극대화된 무인 비행체를 통해 송전선로에 대한 점검을 수행할 수 있다.
본 발명의 효과들은 이상에서 언급된 효과로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.
도 1은 본 발명의 일 실시예에 따른 무인 비행체를 활용한 송전선로 점검 방법을 수행하기 위한 시스템을 개략적으로 나타낸 도면이다.
도 2는 본 발명의 일 실시예와 관련된 송전선로를 점검하는 무인 비행체를 예시적으로 나타낸 예시도를 도시한다.
도 3은 본 발명의 일 실시예와 관련된 송전선로에 대한 점검을 수행하는 무인 비행체의 예시적인 블록 구성도를 도시한다.
도 4는 본 발명의 일 실시예와 관련된 송전선로에서 발생하는 자기장을 설명하기 위한 예시도를 도시한다.
도 5는 본 발명의 일 실시예와 관련된 서버와 무인 비행체 간의 정보 교환을 통해 송전선로에 대한 점검을 수행하는 과정을 예시적으로 나타낸 순서도이다.
도 6은 본 발명의 일 실시예와 관련된 무인 비행체를 통해 수행되는 송전선로 점검 방법을 예시적으로 나타낸 순서도를 도시한다.
도 7은 본 발명의 일 실시예와 관련된 무인 비행체를 활용하여 송전선로에 대한 점검을 수행하는 서버의 예시적인 블록 구성도를 도시한다.
도 8은 본 발명의 일 실시예와 관련된 서버를 통해 수행되는 무인 비행체를 활용한 송전선로 점검 방법을 예시적으로 나타낸 순서도를 도시한다.
다양한 실시예들이 이제 도면을 참조하여 설명된다. 본 명세서에서, 다양한 설명들이 본 발명의 이해를 제공하기 위해서 제시된다. 그러나, 이러한 실시예들은 이러한 구체적인 설명 없이도 실행될 수 있음이 명백하다.
본 명세서에서 사용되는 용어 "컴포넌트", "모듈", "시스템" 등은 컴퓨터-관련 엔티티, 하드웨어, 펌웨어, 소프트웨어, 소프트웨어 및 하드웨어의 조합, 또는 소프트웨어의 실행을 지칭한다. 예를 들어, 컴포넌트는 프로세서상에서 실행되는 처리과정(procedure), 프로세서, 객체, 실행 스레드, 프로그램, 및/또는 컴퓨터일 수 있지만, 이들로 제한되는 것은 아니다. 예를 들어, 컴퓨팅 장치에서 실행되는 애플리케이션 및 컴퓨팅 장치 모두 컴포넌트일 수 있다. 하나 이상의 컴포넌트는 프로세서 및/또는 실행 스레드 내에 상주할 수 있다. 일 컴포넌트는 하나의 컴퓨터 내에 로컬화 될 수 있다. 일 컴포넌트는 2개 이상의 컴퓨터들 사이에 분배될 수 있다. 또한, 이러한 컴포넌트들은 그 내부에 저장된 다양한 데이터 구조들을 갖는 다양한 컴퓨터 판독가능한 매체로부터 실행할 수 있다. 컴포넌트들은 예를 들어 하나 이상의 데이터 패킷들을 갖는 신호(예를 들면, 로컬 시스템, 분산 시스템에서 다른 컴포넌트와 상호작용하는 하나의 컴포넌트로부터의 데이터 및/또는 신호를 통해 다른 시스템과 인터넷과 같은 네트워크를 통해 전송되는 데이터)에 따라 로컬 및/또는 원격 처리들을 통해 통신할 수 있다.
더불어, 용어 "또는"은 배타적 "또는"이 아니라 내포적 "또는"을 의미하는 것으로 의도된다. 즉, 달리 특정되지 않거나 문맥상 명확하지 않은 경우에, "X는 A 또는 B를 이용한다"는 자연적인 내포적 치환 중 하나를 의미하는 것으로 의도된다. 즉, X가 A를 이용하거나; X가 B를 이용하거나; 또는 X가 A 및 B 모두를 이용하는 경우, "X는 A 또는 B를 이용한다"가 이들 경우들 어느 것으로도 적용될 수 있다. 또한, 본 명세서에 사용된 "및/또는"이라는 용어는 열거된 관련 아이템들 중 하나 이상의 아이템의 가능한 모든 조합을 지칭하고 포함하는 것으로 이해되어야 한다.
또한, "포함한다" 및/또는 "포함하는"이라는 용어는, 해당 특징 및/또는 구성요소가 존재함을 의미하는 것으로 이해되어야 한다. 다만, "포함한다" 및/또는 "포함하는"이라는 용어는, 하나 이상의 다른 특징, 구성요소 및/또는 이들의 그룹의 존재 또는 추가를 배제하지 않는 것으로 이해되어야 한다. 또한, 달리 특정되지 않거나 단수 형태를 지시하는 것으로 문맥상 명확하지 않은 경우에, 본 명세서와 청구범위에서 단수는 일반적으로 "하나 또는 그 이상"을 의미하는 것으로 해석되어야 한다.
당업자들은 추가적으로 여기서 개시된 실시예들과 관련되어 설명된 다양한 예시적 논리적 블록들, 구성들, 모듈들, 회로들, 수단들, 로직들, 및 알고리즘 단계들이 전자 하드웨어, 컴퓨터 소프트웨어, 또는 양쪽 모두의 조합들로 구현될 수 있음을 인식해야 한다. 하드웨어 및 소프트웨어의 상호교환성을 명백하게 예시하기 위해, 다양한 예시 적 컴포넌트들, 블록들, 구성들, 수단들, 로직들, 모듈들, 회로들, 및 단계들은 그들의 기능성 측면에서 일반적으로 위에서 설명되었다. 그러한 기능성이 하드웨어로 또는 소프트웨어로서 구현되는지 여부는 전반적인 시스템에 부과된 특정 어플리케이션(application) 및 설계 제한들에 달려 있다. 숙련된 기술자들은 각각의 특정 어플리케이션들을 위해 다양한 방법들로 설명된 기능성을 구현할 수 있다. 다만, 그러한 구현의 결정들이 본 발명의 영역을 벗어나게 하는 것으로 해석되어서는 안된다.
제시된 실시예들에 대한 설명은 본 발명의 기술 분야에서 통상의 지식을 가진 자가 본 발명을 이용하거나 또는 실시할 수 있도록 제공된다. 이러한 실시예들에 대한 다양한 변형들은 본 발명의 기술 분야에서 통상의 지식을 가진 자에게 명백할 것이다. 여기에 정의된 일반적인 원리들은 본 발명의 범위를 벗어남이 없이 다른 실시예들에 적용될 수 있다. 그리하여, 본 발명은 여기에 제시된 실시예들로 한정되는 것이 아니다. 본 발명은 여기에 제시된 원리들 및 신규한 특징들과 일관되는 최광의의 범위에서 해석되어야 할 것이다.
본 명세서에서, 컴퓨터는 적어도 하나의 프로세서를 포함하는 모든 종류의 하드웨어 장치를 의미하는 것이고, 실시 예에 따라 해당 하드웨어 장치에서 동작하는 소프트웨어적 구성도 포괄하는 의미로서 이해될 수 있다. 예를 들어, 컴퓨터는 스마트폰, 태블릿 PC, 데스크톱, 노트북 및 각 장치에서 구동되는 사용자 클라이언트 및 애플리케이션을 모두 포함하는 의미로서 이해될 수 있으며, 또한 이에 제한되는 것은 아니다.
이하, 첨부된 도면을 참조하여 본 발명의 실시예를 상세하게 설명한다.
본 명세서에서 설명되는 각 단계들은 컴퓨터에 의하여 수행되는 것으로 설명되나, 각 단계의 주체는 이에 제한되는 것은 아니며, 실시 예에 따라 각 단계들의 적어도 일부가 서로 다른 장치에서 수행될 수도 있다.
도 1은 본 발명의 일 실시예에 따른 무인 비행체를 활용한 송전선로 점점 방법을 수행하기 위한 시스템을 개략적으로 나타낸 도면이다. 도 1에 도시된 바와 같이, 본 발명의 일 실시예에 따른 무인 비행체를 활용한 송전선로 점검 방법을 수행하기 위한 시스템은, 송전선로를 점검하는 무인 비행체(100), 무인 비행체를 활용한 송전선로 점검 서버(200) 및 사용자 단말(10)을 포함할 수 있다. 여기서, 도 1에 도시된 무인 비행체를 활용한 송전선로 점검 방법을 수행하는 시스템은 일 실시예에 따른 것이고, 그 구성 요소가 도 1에 도시된 실시예에 한정되는 것은 아니며, 필요에 따라 부가, 변경 또는 삭제될 수 있다.
본 발명에서 송전선로(1)는, 발전소 상호간, 변전소 상호간, 또는 발전소와 변전소 간을 연결하는 전선로와 이에 속하는 전기설비를 의미할 수 있다. 예컨대, 송전선로는, 일 위치의 발전소 또는 변전소로부터 다른 위치의 발전소 또는 변전소로 전력을 보내는 전선로 및 이에 관련한 지지물, 애자, 접지 장치 등을 포함할 수 있다. 발전소는 도심 지역과 멀리 떨어져 있으므로, 전력을 수송하기 위하여 송전선로가 이용된다. 즉, 먼 지역 간의 전력을 수송하는 송전선로의 길이는 수십 km로 길게 구비되며, 긴 길이에서 전력 손실을 방지하기 위해 특고압으로 송전을 수행하게 된다. 예컨대, 우리나라의 송전 계통의 전압은, 154kV, 345kV, 765kV 등일 수 있다.
이러한 송전선로의 설비 운영(즉, 점검)은, 송전선로의 점검은 활선 상태에서 작업자가 선로의 아래에서 이동하면서 망원경과 계측 장비를 사용하여 지상에서 점검하는 방식과, 휴전 조치 후, 작업자가 전선을 타고 육안으로 확인하여 점검하는 방식 등이 있다. 이러한 선로 점검 방식은, 많은 시간이 소요되며, 무엇보다 안전사고의 위험이 크다는 문제점이 있다. 또한, 험로에 위치해 작업자가 올라갈 수도 없고, 송전선로가 나무에 가리는 등의 이유로 망원경으로도 확인할 수 없는 감시 사각지대는 점검이 어렵다는 문제점이 있다.
본 발명은 무인 비행체를 활용하여 송전선로(1)에 대한 점검을 수행할 수 있다. 무인 비행체(100)를 활용하는 경우, 송전선로에 휴전 조치를 할 필요가 없이, 활선 상태에서 송전선로에 대한 점검이 가능해질 수 있다.
구체적인 예를 들어, 도 2에 도시된 바와 같이, 무인 비행체(100)는 송전선로(1) 주변을 근접비행하면서, 송전선로(1)에 관련한 선로에 관련한 영상 또는 이미지를 획득할 수 있다. 일 실시예에서, 무인 비행체(100)는 카메라모듈(130)을 포함하여 구비될 수 있으며, 해당 카메라모듈(130)을 통해 전선 이미지 및 열화상 이미지 등을 획득하여 서버(200)로 전송할 수 있다. 서버(200)는 무인 비행체(100)로부터 수신한 선로 영상 이미지를 통해 선로의 고장 여부 판별함으로써, 송전선로(1)에 대한 점검을 수행할 수 있다.
본 발명의 일 실시예에 따르면, 무인 비행체(100)는 송전선로(1)에서 발생되는 자기장에 기반하여 비행을 위한 전기에너지를 공급받음으로써 비행 가능 거리 즉, 점검 거리가 극대화되는 것을 특징으로 할 수 있다. 구체적으로, 송전선로(1)는 특고압전압의 전선로임과 동시에, 고전류가 흐르는 전선로일 수 있다. 예를 들어, 345kV 송전선로에서는, 부하에 따라 다르긴 하나 대략적으로 1500A~2000A의 고전류가 흐를 수 있다. 이러한 전류는 60Hz의 교류전류일 수 있다. 송전선로(1)에 흐르는 고전류는 일정 크기 이상의 자기장을 생성할 수 있다. 이 경우, 송전선로(1)에 흐르는 고전류는 교류이므로, 교번 자계를 선로 주변에 생성하게 된다. 예컨대, 송전선로(1)에는, 해당 전선으로부터 수직 거리에 반비례하고, 전류에 비례하여 자기장이 생성될 수 있다. 이러한 자기장은 교번 자기장 즉, 시간에 따라 변화하는 자기장일 수 있으며, 해당 자기장으로 인해 유도기전력이 발생될 수 있다. 일 실시예에서, 무인 비행체(100)는 송전선로(1)에 생성된 자기장에 기초하여 유도기전력을 발생시킬 수 있으며, 해당 유도기전력에 관련한 교류 전압을 직류 전압으로 변성하여 비행을 위한 전기에너지를 지속적으로 발생시킬 수 있다.
일반적으로, 무인 비행체를 비행시키기 위해서는 복수의 프로펠러가 매우 빠르게 회전되어야 하므로 배터리 소모량이 매우 많아 운용시간이 다소 짧다는 문제점이 존재한다. 구체적으로, 배터리는 무게에 비하여 에너지 밀도가 낮아서 많은 에너지를 저장하려면 무게도 함께 증가하게 되며, 이는 장시간 비행에 비효율적일 수 있다. 구체적인 예를 들어, 일반적인 전력을 이용하는 무인 비행체는 3.8V~24V의 배터리를 전원으로 사용하고 있으나, 배터리의 용량의 한계로 인해 비행시간이 30분 이하로 제약되는 문제점이 있었다. 즉, 무인 비행체의 배터리는 30분 정도 밖에 활용이 불가능할 수 있으며, 이에 더해 점검을 위한 각종 장비, 카메라 등의 기기가 더해지는 경우, 배터리 사용 가능시간은 더욱 줄어들 수 밖에 없으므로, 긴 송전선로를 점검하기에는 적정한 운용 시간을 갖지 못할 수 있다.
본 발명의 무인 비행체(100)는 송전선로(1)를 점검하는 비행 과정에서, 해당 송전선로(1)의 자기장에 기반하여 전기 에너지를 공급받을 수 있다. 다시 말해, 송전선로(1)의 자기장을 통해 지속적인 전기 에너지를 공급받음으로써, 긴 길이의 송전선로(1)를 점검하기 위한 무인 비행체(100)의 비행(또는 점검) 시간이 극대화될 수 있어, 송전선로(1)의 점검 효율이 향상될 수 있다. 본 발명의 무인 비행체(100)가 송전선로(1)의 자기장에 기반하여 전기 에너지를 공급받는 방법에 대한 보다 구체적인 설명은 후술하도록 한다.
본 발명의 일 실시예에 따르면, 무인 비행체(100)는 외부환경을 인식하고 스스로 상황을 판단하여 이동하거나 필요시 원격조정으로 동작 가능한 비행체를 의미할 수 있다. 예를 들어, 무인 비행체는 드론(drone)을 의미할 수 있으나, 이에 한정되지는 않는다.
일 실시예에서, 이러한 무인 비행체(100)는 몸체부 및 비행부를 포함하여 구비될 수 있다. 무인 비행체(100)의 비행부는 무인 비행체의 비행을 위한 양력을 발생시킬 수 있다. 비행부는 모터와 결합하여 회전할 수 있는 적어도 하나의 프로펠러를 포함할 수 있다. 구체적으로, 비행부는 프로펠러를 회전시켜 양력을 발생시킬 수 있고, 프로펠러의 회전수를 제어하여 양력의 크기를 조절할 수 있다. 양력의 크기가 조절됨으로써 무인 비행체의 고도 및 무인 비행체의 이동 속도 등이 조절될 수 있다. 무인 비행체(100)의 몸체부에는 무인 비행체(100)를 구성하는 전자 부품들이 구비될 수 있다. 예를 들어, 본체부에는 네트워크부(110), 메모리(120), 카메라모듈(130), 배터리모듈(140), 코일부(150), 변성모듈(160) 또는, 프로세서(170) 등이 구비될 수 있으나, 이에 제한되지 않는다.
무인 비행체(100)는 외부환경을 인식하고 스스로 상황을 판단하여 이동하는 인공지능 기반의 비행 제어를 통해 송전선로(1)에 근접하여 비행할 수 있다. 무인 비행체(100)는 인공지능 기반의 자동 비행 제어를 위하여 비행 상황에 관련한 다양한 상태 정보를 획득하기 위한 다양한 센서 모듈을 포함하여 구비될 수 있다. 예를 들어, 무인 비행체(100)는 온도 센서, 통신 센서, 풍량 및 풍속 센서, 자이로 센서, 진동 센서 등을 포함하여 구비될 수 있으며, 해당 센서 모듈 각각에서 센싱 값을 통해 비행 상태에 관한 정보를 획득할 수 있다. 예를 들어, 이러한 비행 상태에 관한 정보는 무인 비행체(100)의 적정한 비행 여부 또는 고장 여부를 판별하는데 유의미한 정보를 제공할 수 있다. 전술한 무인 비행체에 포함된 다양한 센서의 구체적인 기재는 예시일 뿐, 본 발명은 이에 제한되지 않는다.
또한, 무인 비행체(100)는 필요 시 관리자의 원격조정(즉, 수동 비행 제어)을 통해 송전선로(1)에 근접하여 비행할 수도 있다. 이 경우, 수동 비행 제어를 위한 원격 조정을 위해 무인 비행체(100)는, 비행 영상 정보를 획득하기 위한 카메라 모듈을 포함하여 구비될 수 있다.
추가적인 실시예에서, 무인 비행체(100)의 카메라모듈(130)을 통해, 송전선로(1)에 관련한 전선 이미지 또는 열화상 이미지가 획득되어 서버(200)로 전송될 수 있으며, 서버(200)는 해당 이미지 정보들에 기반하여 송전선로의 고장 여부에 관련한 판별을 수행할 수 있다.
일 실시예에 따르면 무인 비행체를 활용한 송전선로 점검 서버(200)는 근거리 통신망에서 집약적인 처리 기능을 서비스하는 서브 시스템을 의미할 수 있다. 무인 비행체를 활용한 송전선로 점검 서버(200)는 본 개시내용과 관련된 임의의 기능들에 대한 제어 및 데이터 관리 등 네트워크 전체를 감시·제어하거나, 메인프레임이나 공중망을 통한 다른 네트워크와의 연결, 데이터·프로그램·파일 같은 소프트웨어 자원이나 모뎀·팩스·프린터 공유, 기타 장비 등 하드웨어 자원을 공유할 수 있도록 도와주는 역할을 할 수 있다. 무인 비행체를 활용한 송전선로 점검 서버(200)는 특수한 형태로 자신의 하드디스크에 담겨진 정보들을 외부에 공개해주는 컴퓨터를 의미할 수 있다. 일반적으로 여러 정보들을 무인 비행체를 활용한 송전선로 점검 서버(200)에서 관리하고, 일반 사용자들은 자신들의 외부 디바이스(예컨대, 사용자 단말)를 이용하여 무인 비행체를 활용한 송전선로 점검 서버(200)에 접속하고, 무인 비행체를 활용한 송전선로 점검 서버(200)에서 제공하는 정보를 이용할 수 있다. 본 발명에서 무인 비행체를 활용한 송전선로 점검 서버(200)는 정보를 제어, 저장 또는 송수신하여 사용자 단말(10) 및 무인 비행체(100)와 공유할 수 있다.
본 발명에서 무인 비행체를 활용한 송전선로 점검 서버(200)는 외부 서버(미도시)와 통신하여 정보를 교환할 수도 있다. 일 실시예에서, 외부 서버는 네트워크를 통해 무인 비행체를 활용한 송전선로 점검 서버(200)와 연결될 수 있으며, 무인 비행체를 활용한 송전선로 점검 서버(200)가 송전선로의 고장 여부를 판별하기 위해 필요한 각종 정보/데이터를 제공하거나, 무인 비행체의 위치 정보 또는 테스트 수행 정보를 제공받아 저장 및 관리할 수 있다. 예를 들어, 외부 서버는 무인 비행체를 활용한 송전선로 점검 서버(200)의 외부에 별도로 구비되는 저장 서버일 수 있으나, 이에 한정되지 않는다.
또한, 무인 비행체를 활용한 송전선로 점검 서버(200)는 임의의 정보/데이터를 데이터베이스 또는 컴퓨터 판독가능 매체 등에 저장할 수 있다. 컴퓨터 판독가능 매체는 컴퓨터 판독가능 저장 매체 및 컴퓨터 판독가능 통신 매체를 포함할 수 있다. 이러한 컴퓨터 판독가능 저장 매체는 컴퓨터 시스템에 의해서 판독될 수 있도록 프로그램 및 데이터가 저장되는 모든 종류의 저장 매체를 포함할 수 있다. 본 발명의 일 양상에 따르면, 이러한 컴퓨터 판독가능 저장 매체는 ROM(판독 전용 메모리), RAM(랜덤 액세스 메모리), CD(컴팩트 디스크)-ROM, DVD(디지털 비디오 디스크)-ROM, 자기 테이프, 플로피 디스크, 광 데이터 저장장치 등을 포함할 수 있다. 또한, 컴퓨터 판독가능 통신 매체는, 또한 캐리어 웨이브(예컨대, 인터넷을 통한 전송)의 형태로 구현되는 것 또한 포함할 수 있다. 추가적으로, 이러한 매체는 네트워크로 연결된 시스템에 분산되어, 분산 방식으로 컴퓨터가 판독가능한 코드들 및/또는 명령들을 저장할 수도 있다. 본 발명의 무인 비행체를 활용한 송전선로 점검 서버(200)의 자세한 구성은 도 8을 참조하여 자세히 후술하도록 한다.
일 실시예에 따르면, 무인 비행체를 활용한 송전선로 점검 서버(200)는 클라우드 컴퓨팅 서비스를 제공하는 서버일 수 있다. 보다 구체적으로, 무인 비행체를 활용한 송전선로 점검 서버(200)는 인터넷 기반 컴퓨팅의 일종으로 정보를 사용자의 컴퓨터가 아닌 인터넷에 연결된 다른 컴퓨터로 처리하는 클라우드 컴퓨팅 서비스를 제공하는 서버일 수 있다. 상기 클라우드 컴퓨팅 서비스는 인터넷 상에 자료를 저장해 두고, 사용자가 필요한 자료나 프로그램을 자신의 컴퓨터에 설치하지 않고도 인터넷 접속을 통해 언제 어디서나 이용할 수 있는 서비스일 수 있으며, 인터넷 상에 저장된 자료들을 간단한 조작 및 클릭으로 쉽게 공유하고 전달할 수 있다. 또한, 클라우드 컴퓨팅 서비스는 인터넷 상의 서버에 단순히 자료를 저장하는 것뿐만 아니라, 별도로 프로그램을 설치하지 않아도 웹에서 제공하는 응용프로그램의 기능을 이용하여 원하는 작업을 수행할 수 있으며, 여러 사용자가 동시에 문서를 공유하면서 작업을 진행할 수 있는 서비스일 수 있다. 또한, 클라우드 컴퓨팅 서비스는 IaaS(Infrastructure as a Service), PaaS(Platform as a Service), SaaS(Software as a Service), 가상 머신 기반 클라우드 서버 및 컨테이너 기반 클라우드 서버 중 적어도 하나의 형태로 구현될 수 있다. 즉, 본 발명의 서버(200)는 상술한 클라우드 컴퓨팅 서비스 중 적어도 하나의 형태로 구현될 수 있다. 전술한 클라우드 컴퓨팅 서비스의 구체적인 기재는 예시일 뿐, 본 발명은 클라우드 컴퓨팅 환경을 구축하는 임의의 플랫폼을 포함할 수도 있다.
다양한 실시예에서, 무인 비행체를 활용한 송전선로 점검 서버(200)는 네트워크를 통해 사용자 단말(10)과 연결될 수 있고, 사용자의 선로점검 요청에 대응하여 선로 점검을 수행할 최적의 무인 비행체(100)를 결정하거나, 또는 무인 비행체(100)의 이동을 제어할 수 있다.
여기서, 네트워크는 복수의 사용자 단말 및 서버들과 같은 각각의 노드 상호 간에 정보 교환이 가능한 연결 구조를 의미할 수 있다. 예를 들어, 네트워크는 근거리 통신망(LAN: Local Area Network), 광역 통신망(WAN: Wide Area Network), 인터넷(WWW: World Wide Web), 유무선 데이터 통신망, 전화망, 유무선 텔레비전 통신망 등을 포함한다.
또한, 여기서, 무선 데이터 통신망은 3G, 4G, 5G, 3GPP(3rd Generation Partnership Project), 5GPP(5th Generation Partnership Project), LTE(Long Term Evolution), WIMAX(World Interoperability for Microwave Access), 와이파이(Wi-Fi), 인터넷(Internet), LAN(Local Area Network), Wireless LAN(Wireless Local Area Network), WAN(Wide Area Network), PAN(Personal Area Network), RF(Radio Frequency), 블루투스(Bluetooth) 네트워크, NFC(Near-Field Communication) 네트워크, 위성 방송 네트워크, 아날로그 방송 네트워크, DMB(Digital Multimedia Broadcasting) 네트워크 등이 포함되나 이에 한정되지는 않는다.
일 실시예에서, 사용자 단말(10)은 네트워크를 통해 무인 비행체를 활용한 송전선로 점검 서버(200)와 연결될 수 있으며, 무인 비행체를 활용한 송전선로 점검 서버(200)로 선로 점검 요청 정보(예컨대, 특정 구간에 대응하는 송전선로 점검 요청)를 전송할 수 있고, 전송된 선로 점검 요청에 대한 응답으로 각종 정보(예를 들어, 점검에 할당된 무인 비행체, 테스트 수행 정보, 고장 여부에 관한 정보 등)를 제공받을 수 있다.
여기서, 사용자 단말은 휴대성과 이동성이 보장되는 무선 통신 장치로서, 네비게이션, PCS(Personal Communication System), GSM(Global System for Mobile communications), PDC(Personal Digital Cellular), PHS(Personal Handyphone System), PDA(Personal Digital Assistant), IMT(International Mobile Telecommunication)-2000, CDMA(Code Division Multiple Access)-2000, W-CDMA(W-Code Division Multiple Access), Wibro(Wireless Broadband Internet) 단말, 스마트폰(Smartphone), 스마트 패드(Smartpad), 태블렛PC(Tablet PC) 등과 같은 모든 종류의 핸드헬드(Handheld) 기반의 무선 통신 장치를 포함할 수 있으나, 이에 한정되지 않는다. 예컨대, 사용자 단말은, 핫 워드(hot word)를 기반으로 사용자와 상호작용을 통해 음악 감상, 정보 검색 등 다양한 기능을 제공하는 인공지능(AI) 스피커 및 인공지능 TV 등을 더 포함할 수 있다.
이하에서 도 3 내지 도 8을 참조하여 무인 비행체를 활용하여 송전선로 점검을 수행하는 방법 및 선로 점검 과정에서 무인 비행체가 지속적으로 전기 에너지를 공급받는 방법에 대하여 보다 구체적으로 후술하도록 한다.
도 3은 본 발명의 일 실시예와 관련된 송전선로에 대한 점검을 수행하는 무인 비행체의 예시적인 블록 구성도를 도시한다. 도 3에 도시된 바와 같이, 무인 비행체(100)는 네트워크부(110), 메모리(120), 카메라모듈(130), 배터리모듈(140), 코일부(150), 변성모듈(160) 및 프로세서(170)를 포함할 수 있다. 전술한 무인 비행체(100)에 포함된 컴포넌트들은 예시적인 것으로 본 발명내용의 권리범위가 전술한 컴포넌트들로 제한되지 않는다. 즉, 본 발명내용의 실시예들에 대한 구현 양태에 따라서 추가적인 컴포넌트들이 포함되거나 전술한 컴포넌트들 중 일부가 생략될 수 있다.
본 발명의 일 실시예에 따르면, 무인 비행체(100)는 사용자 단말(10)과 데이터를 송수신하는 네트워크부(110)를 포함할 수 있다. 네트워크부(110)는 본 발명의 일 실시예에 따른 송전선로 점검 방법을 수행하기 위한 데이터들을 다른 컴퓨팅 장치, 서버 등과 송수신할 수 있다. 즉, 네트워크부(110)는 무인 비행체(100)와 사용자 단말들 또는 무인 비행체(100)와 서버 간의 통신 기능을 제공할 수 있다. 네트워크부(110)는 무인 비행체를 제어하는 서버(200) 또는 단말기(예컨대, 관리자 단말)로부터 무인 비행체(100)의 비행을 제어하는 제어 신호 등을 수신할 수 있다. 또한, 네트워크부(110)는 무인 비행체(100)에서 송전선로 점검 결과를 무인 비행체를 제어하는 서버(200) 또는 단말로 전송할 수도 있다. 추가적으로, 네트워크부(110)는 무인 비행체(100)로 프로시저를 호출하는 방식으로 무인 비행체(100)와 사용자 단말들 또는 무인 비행체(100)와 서버(200) 간의 정보 전달을 허용할 수 있다.
본 발명의 일 실시예에 따른 네트워크부(110)는 공중전화 교환망(PSTN: Public Switched Telephone Network), xDSL(x Digital Subscriber Line), RADSL(Rate Adaptive DSL), MDSL(Multi Rate DSL), VDSL(Very High Speed DSL), UADSL(Universal Asymmetric DSL), HDSL(High Bit Rate DSL) 및 근거리 통신망(LAN) 등과 같은 다양한 유선 통신 시스템들을 사용할 수 있다.
또한, 본 명세서에서 제시되는 네트워크부(110)는 CDMA(Code Division Multi Access), TDMA(Time Division Multi Access), FDMA(Frequency Division Multi Access), OFDMA(Orthogonal Frequency Division Multi Access), SC-FDMA(Single Carrier-FDMA) 및 다른 시스템들과 같은 다양한 무선 통신 시스템들을 사용할 수 있다.
본 발명에서 네트워크부(110)는 유선 및 무선 등과 같은 그 통신 양태를 가리지 않고 구성될 수 있으며, 단거리 통신망(PAN: Personal Area Network), 근거리 통신망(WAN: Wide Area Network) 등 다양한 통신망으로 구성될 수 있다. 또한, 상기 네트워크는 공지의 월드와이드웹(WWW: World Wide Web)일 수 있으며, 적외선(IrDA: Infrared Data Association) 또는 블루투스(Bluetooth)와 같이 단거리 통신에 이용되는 무선 전송 기술을 이용할 수도 있다. 본 명세서에서 설명된 기술들은 위에서 언급된 네트워크들뿐만 아니라, 다른 네트워크들에서도 사용될 수 있다.
일 실시예에 따르면, 무인 비행체(100)의 네트워크부(110)에는 위치정보 모듈이 내장되어 있을 수 있다. 위치정보 모듈은 무인 비행체(100)의 위치(또는 현재 위치)를 획득하기 위한 모듈로서, 그의 대표적인 예로는 GPS(Global Positioning System) 모듈 또는 WiFi(Wireless Fidelity) 모듈이 있다. 예를 들어, 무인 비행체(100)는 GPS모듈을 활용하면, GPS 위성에서 보내는 신호를 이용하여 무인 비행체의 위치를 획득할 수 있다. 다른 예로서, 무인 비행체(100)는 Wi-Fi모듈을 활용하면, Wi-Fi모듈과 무선신호를 송신 또는 수신하는 무선 AP(Wireless Access Point)의 정보에 기반하여, 무인 비행체(100)의 위치를 획득할 수 있다. 필요에 따라서, 위치정보 모듈은 치환 또는 부가적으로 무인 비행체(100)의 위치에 관한 데이터를 획득할 수 있다. 위치정보 모듈은 무인 비행체(100)의 위치(또는 현재 위치)를 획득하기 위해 이용되는 모듈로, 무인 비행체(100)의 위치를 직접적으로 계산하거나 획득하는 모듈로 한정되지는 않는다.
본 발명의 실시예에 따르면, 무인 비행체(100)에는 메모리(120)가 구비될 수 있다. 메모리(120)는 무인 비행체(100)에서 구동되는 다수의 응용 프로그램, 무인 비행체의 이동(예컨대, 비행)을 위한 데이터들, 명령어들이 저장되어 있을 수 있다. 이러한 응용 프로그램 중 적어도 일부는 출고 당시부터 각 무인 비행체에 존재할 수 있다.
일 실시예에 따르면, 메모리(120)는 본 발명의 일 실시예에 따른 송전선로 점검 방법을 수행하기 위한 컴퓨터 프로그램을 저장할 수 있으며, 저장된 컴퓨터 프로그램은 프로세서(170)에 의하여 판독되어 구동될 수 있다. 또한, 메모리(120)는 프로세서(170)가 생성하거나 결정한 임의의 형태의 정보 및 네트워크부(110)가 수신한 임의의 형태의 정보를 저장할 수 있다. 또한, 메모리(120)는 비행 영상에 관한 정보 또는, 송전선로 점검을 수행함에 따라 획득되는 테스트 수행 정보들을 저장할 수 있다. 예를 들어, 메모리(120)는 입/출력되는 데이터들을 임시 또는 영구 저장할 수 있다.
본 발명의 일 실시예에 따르면, 메모리(120)는 플래시 메모리 타입(flash memory type), 하드디스크 타입(hard disk type), 멀티미디어 카드 마이크로 타입(multimedia card micro type), 카드 타입의 메모리(예를 들어 SD 또는 XD 메모리 등), 램(Random Access Memory, RAM), SRAM(Static Random Access Memory), 롬(Read-Only Memory, ROM), EEPROM(Electrically Erasable Programmable Read-Only Memory), PROM(Programmable Read-Only Memory), 자기 메모리, 자기 디스크, 광디스크 중 적어도 하나의 타입의 저장매체를 포함할 수 있다.
본 발명의 일 실시예에 따르면, 무인 비행체(100)는 카메라모듈(130)을 포함할 수 있다. 일 예시에서, 카메라모듈(130)은 무인 비행체(100)의 몸체부 일 영역에 구비될 수 있다. 카메라모듈(130)은 무인 비행체(100)의 비행 동안 다양한 이미지를 획득할 수 있다. 구체적으로, 카메라모듈(130)은 무인 비행체(100)가 송전선로(1)를 근접하여 비행하는 동안 송전선로에 관련한 전선 이미지 및 해당 전선 이미지에 대응하는 열화상 이미지를 획득할 수 있다. 일 실시예에서, 카메라모듈(130)은 절대0도 이상의 온도에서 모든 물질에 의하여 방사, 전송 또는 반사되는 적외선 에너지를 감지하고 이러한 에너지 요인을 온도측정치 또는 온도기록으로 전환하는 열화상카메라를 포함할 수 있다. 카메라모듈(130)을 통해 획득한 이미지들은 본 발명의 송전선로 고장 여부 판별에 기반이 되는 정보들일 수 있다.
본 발명의 일 실시예에 따르면, 무인 비행체(100)는 배터리모듈(140)을 포함할 수 있다. 일 예시에서, 배터리모듈(140)은 무인 비행체(100)의 몸체부 일 영역에 구비될 수 있다. 배터리모듈(140)은 무인 비행체(100)의 모터를 구동하여 동력을 공급하기 위한 에너지를 저장하는 모듈을 의미할 수 있다. 예컨대, 배터리모듈(140)은, 콘덴서, 화학전지, 연료전지, 물리전지 등 전원을 공급하기 위해 에너지를 전기로 변환하여 저장하는 임의의 저장 디바이스를 포함할 수 있다. 무인 비행체(100)는 배터리모듈(140)로부터 공급되는 전기 에너지를 통해 동력을 발생시켜 비행 또는 이동할 수 있다.
본 발명의 일 실시예에 따르면, 무인 비행체(100)는 코일부(150)를 포함할 수 있다. 코일부(150)는 배터리모듈(140)의 적어도 일부와 연결되어 구비될 수 있으며, 송전선로(1)의 자기장에 기반하여 유도기전력을 발생시킬 수 있다.
보다 자세히 설명하면, 송전선로(1)에는 고전류에 흐를 수 있다. 예컨대, 송전선로(1)에는 1500A ~ 2000A의 고전류가 흐를 수 있다. 이러한 고전류는 60Hz의 교류전류일 수 있다. 송전선로(1)에 흐르는 전류는 자기장을 야기시킬 수 있다. 구체적으로, 맥스웰 방정식에 의거하여 일방향으로 흐르는 고전류는 자기장을 발생시킬 수 있다.
이 경우, 고전류에 대응하여 발생되는 자기장(또는 자계)은 아래와 같은 비오-사바르 법칙을 통해 구할 수 있다.
Figure pat00001
이 경우, 송전선로(1)의 길이가 충분히 길어 무한히 길다고 가장해도 괜찮으므로, 도 4를 참조하면, 하기와 같은 수식으로 정의될 수 있다.
Figure pat00002
따라서, 송전선로(1)에 의한 자기장은 전선으로부터의 수직거리에 반비례하고, 전류에 비례할 수 있다. 다시 말해, 송전선로(1)에 발생되는 자기장은, 전선으로부터 멀수록 약해질 수 있으며, 전류가 증가할수록 증가할 수 있다.
고전류가 흐름에 따라 송전선로(1)에 발생하는 자기장은, 기전력을 생성할 수 있다. 예컨대, 기전력은, 패러데이 법칙을 통해 송전선로(1)의 고전류를 통해 야기되는 자기장에 의해 발생될 수 있다. 패러데이 법칙에 따르면, 시간에 따라 변화하는 자기장은 기전력을 생성하게 된다. 송전선로(1)에 흐르는 고전류에 의해 발생된 자기장은, 교류 전류에 의한 교번 자기장 즉, 시간에 따라 변화하는 자기장일 수 있으며, 해당 자기장을 통해 기전력이 발생될 수 있다.
패러데이 법칙에서 방향까지 고려한 렌츠의 법칙(Lenz's law)은 다음과 같다.
Figure pat00003
이 경우, S는 자기장이 통과하는 코일(인덕턴스)의 면적이고,
Figure pat00004
은 전류의 크기이다. 자속을 이용하여 emf(기전력)을 구하면 하기와 같을 수 있다.
Figure pat00005
여기서,
Figure pat00006
는 각 주파수이다.
일 실시예에서, 코일부(150)는 기 설정된 인덕턴스를 가질 수 있다. 즉, 코일부(150)는 송전선로(1)에서 발생하는 자기장의 방향과 대응하여 위치하는 경우, 전술한 렌츠의 법칙에 의거하여 유도기전력을 발생시키게 된다. 다시 말해, 코일부(150)는 무인 비행체(100) 내에 일정 이상의 인덕턴스를 갖도록 배치되어 자계에 의한 교번 기전력의 생성을 야기시킬 수 있다.
emf에 의해 기전력이 생성되는 경우, 송전선로(1)가 코일부에게 제공할 수 있는 에너지의 정도는 다음과 같은 수식을 통해 설명될 수 있다.
Figure pat00007
또한, 자속 밀도와 전류는 하기와 같이 표현될 수 있다.
Figure pat00008
이 경우, 자계세기 및 자기장은 방향이 일치하고, 투자율은 동일하며 부피에 독립한 변수이므로, 결과적으로 하기의 수식과 같이 에너지로 표현될 수 있다.
Figure pat00009
즉, 위와 같은 수식들을 통해 송전선로(1)의 자기장(또는 자계)에 대응하는 방향으로 코일부(150)가 위치되는 경우, 일정 이상의 인덕턴스를 가진 코일부(150)를 통해 유도기전력이 발생될 수 있다. 예컨대, 코일부(150)를 통해 자기장의 변화를 상쇄하려는 방향으로 유도기전력이 발생되게 된다. 즉, 코일부(150)는 송전선로(1)에 근접하여 위치하는 경우, 해당 송전선로(1)의 자기장 방향에 대응하여 위치됨에 따라, 유도기전력을 발생시킬 수 있다.
보다 구체적인 예를 들어, 345kV 전압의 1500A의 전류가 흐른다고 가정하면, 코일부(150)를 송전선로(1)에서 발생한 자기장의 방향에 대응하여 위치시키는 경우, 해당 코일부(150)에 유도기전력이 발생하게 된다. 코일부(150)의 크기를 0.2㎡, 감은횟수 1000회, 길이 30cm로 가정하고 어몰퍼트 코어(비투자율 10000)을 코일에 연결한다고 가정하고 송전선로(1)에서 2m정도 떨어진 상태에서 유도기전력을 계산하면 다음과 같다.
Figure pat00010
상기와 같이, 코일부(150)를 통해 유도기전력(예컨대, 5.37[W])이 발생함을 알 수 있다. 이 경우, 전술한 수식에 활용된 변수들(예컨대, 코일부의 크기, 감긴 횟수, 길이 등)은 제한된 값이 아닌, 조절 가능한 값이므로, 해당 변수들의 조절을 통해 필요한 에너지(즉 유도기전력)를 획득할 수 있음이 통상의 기술자에게 자명할 것이다.
본 발명의 일 실시예에 따르면, 무인 비행체(100)는 변성모듈(160)을 포함할 수 있다. 변성모듈(160)은 교류 전압을 직류 전압으로 바꾸기 위한 모듈일 수 있다. 예컨대, 코일부(150)를 통해 발생된 유도기전력은, 교류 전류를 통해 야기되는 교번 자계에 기초하여 생성된 것이므로, 교류 전압에 관련한 것일 수 있다. 변성모듈(160)은 이러한 교류 전압을 무인 비행체(100)의 비행을 위한 전기 에너지 공급에 적합하도록 직류 전압으로 변성하는 역할을 수행할 수 있다. 예를 들어, 변성모듈(160)은 정류기, 평활회로, 정전압회로 또는 레귤레이터 등을 포함하여 구성될 수 있다.
즉, 변성모듈(160)은 유도기전력에 관련한 교류 전압을 무인 비행체(100)의 모터를 구동시키기 위한 직류 전압으로 변성시킬 수 있다. 이에 따라, 무인 비행체(100)는 별도의 배터리모듈(140)에 대한 충전 과정 없이, 변성모듈(160)을 통해 비행에 관련한 전기 에너지(즉, 직류 전압)를 공급받을 수 있어, 장시간 비행 또는 점검이 가능해질 수 있다. 따라서, 무인 비행체(100)를 활용한 송전선로의 점검 효율이 향상될 수 있다.
본 발명의 일 실시예에 따르면, 프로세서(170)는 하나 이상의 코어로 구성될 수 있으며, 컴퓨팅 장치의 중앙 처리 장치(CPU: central processing unit), 범용 그래픽 처리 장치(GPGPU: general purpose graphics processing unit), 텐서 처리 장치(TPU: tensor processing unit) 등의 데이터 분석, 딥러닝을 위한 프로세서를 포함할 수 있다.
일 실시예에 따르면, 프로세서(170)는 통상적으로 무인 비행체(100)의 전반적인 동작을 처리할 수 있다. 프로세서(170)는 위에서 살펴본 구성요소들을 통해 입력 또는 출력되는 신호, 데이터, 정보 등을 처리하거나 메모리(120)에 저장된 응용 프로그램을 구동함으로써, 서버(200) 또는 사용자 단말(10)에게 적정한 정보 또는, 기능을 제공하거나 처리할 수 있다.
본 발명의 일 실시예에 따르면, 프로세서(170)는 서버(200)로부터 제1위치 이동 명령 신호를 수신할 수 있다. 제1위치 이동 명령 신호는, 무인 비행체(100)를 송전선로의 제1위치로 이동시키기 위한 제어 신호일 수 있다. 이에 따라, 제1위치 이동 명령 신호는 제1위치에 관련한 위치 정보를 포함하고 있을 수 있다. 예컨대, 제1위치는 점검이 수행되는 일 지점에 관련한 위치일 수 있다.
또한, 프로세서(170)는 제1위치로 이동한 경우, 위치 확인 요청 정보를 생성하여 서버(200)로 전송할 것을 결정할 수 있다. 위치 확인 요청 정보는, 무인 비행체(100)의 실시간 위치 정보 또는 주변 이미지 정보 중 적어도 하나를 포함할 수 있다. 구체적으로, 프로세서(170)는 무인 비행체(100)가 제1위치로 이동한 것으로 판별한 경우, 실시간 위치 정보 또는 주변 이미지 정보에 관련한 위치 확인 요청 정보를 생성하고, 생성된 위치 확인 요청 정보를 서버(200)로 전송할 것을 결정할 수 있다. 예를 들어, 프로세서(170)는 실시간 위치가 A 구역(예컨대, 좌표 정보)에 해당한다는 위치 확인 요청 정보를 생성하여 서버(200)로 전송할 것을 결정할 수 있다. 다른 예를 들어, 프로세서(170)는 카메라모듈(130)을 현재 위치에 관련한 주변 이미지 정보를 획득하며, 해당 주변 이미지 정보를 포함하는 위치 확인 요청 정보를 생성하여 서버(200)로 전송할 것을 결정할 수 있다. 이 경우, 서버(200)는 프로세서(170)로부터 수신한 위치 확인 요청 정보에 기초하여 현재 무인 비행체(100)가 송전선로 점검을 위한 적정한 위치(즉, 제1위치)에 위치하고 있는지 여부를 판별할 수 있다.
또한, 프로세서(170)는 서버(200)로부터 제2위치 이동 명령 신호를 수신할 수 있다. 일 실시예에서, 제2위치 이동 명령 신호의 수신은, 위치 확인 요청 정보에 대한 응답일 수 있다. 구체적으로, 서버(200)는 위치 확인 요청 정보를 통해 무인 비행체(100)의 현재 위치가 점검을 수행하기 위한 적정 위치인지 여부를 판별하고, 해당 판별 결과에 기초하여 제2위치 이동 명령 신호를 무인 비행체(100)의 프로세서(170)로 전송할 수 있다. 다시 말해, 무인 비행체(100)의 위치 확인 요청 정보가 적정한 경우에만 프로세서(170)는 제2위치 이동 명령 신호를 수신하게 되어, 제1위치와 상이한 제2위치로의 이동을 결정할 수 있다. 제2위치 이동 명령 신호는 무인 비행체(100)를 제2위치로 이동시키기 위한 제어 신호일 수 있다. 이에 따라, 제2위치 이동 명령 신호는 제2위치에 관련한 위치 정보를 포함하고 있을 수 있다. 예컨대, 제2위치는, 제1위치로부터 송전선로를 따라 일정 거리 떨어진 일 위치로, 점검의 종착지에 관련한 일 위치일 수 있다.
일 실시예에 따르면, 프로세서(170)는 제2위치 이동 명령 신호에 대응하여 제1위치로부터 제2위치로 이동하면서 테스트 수행 정보를 획득할 것을 결정할 수 있다. 이 경우, 테스트 수행 정보는, 송전선로(1) 고장 여부 판별에 기반이 되는 정보로, 송전선로에 관련한 전선 이미지 및 열화상 이미지 중 적어도 하나를 포함할 수 있다. 즉, 프로세서(170)는 제2위치 이동 명령 신호를 수신하는 경우, 카메라모듈(130)을 제어하여, 송전선로(1)에 관련한 전선 이미지 및 열화상 이미지를 획득할 수 있다.
또한, 프로세서(170)는 획득된 테스트 수행 정보를 서버(200)로 전송할 것을 결정할 수 있다. 다시 말해, 프로세서(170)는 송전선로(1)에 근접하여 비행할 수 있으며, 비행 동안 카메라모듈(130)을 통해 시작에 관련한 제1위치로부터 종료에 관련한 제2위치까지 송전선로(1)에 관련한 이미지들을 획득할 수 있다. 이 경우, 서버(200)는 수신한 테스트 수행 정보에 기초하여 송전선로의 이상 여부(예컨대, 고장 여부)를 판별할 수 있다.
일 실시예에 따르면, 프로세서(170)는 유도기전력의 크기에 기초하여 송전선로와 미리 정해진 이격거리를 갖도록 무인 비행체(100)의 비행을 제어하는 것을 특징으로 할 수 있다. 송전선로(1)는 설비 규모가 크고 경간 거리가 멀어 비행 중인 무인 비행체(100)의 위치와 송전선로(1) 간의 거리를 가늠하기 어렵기 때문에, 무인 비행체(100)를 수동으로 시계비행하며 송전선로(1)를 점검하기에는 선로와의 높은 충돌 위험을 가질 수 있다. 무인 비행체(100)와 송전선로(1)가 충돌하는 경우, 송전선로(1) 또는 무인 비행체(100)에 고장이 발생될 수 있다. 예컨대, 송전선로(1)의 고장으로 인해 전력 전달이 중단됨에 따라 더 큰 문제가 발생될 수도 있다.
이에 따라, 프로세서(170)는 코일부(150)에 발생되는 유도기전력의 크기에 기초하여 송전선로(1)와 일정 이상의 이격 거리를 형성하도록 무인 비행체(100)의 비행을 제어할 수 있다. 예컨대, 송전선로(1)와 코일부(150)가 가까워지는 경우, 자기장의 크기가 세기며, 이에 따라 코일부(150)에서 발생되는 유도기전력의 크기가 커질 수 있다. 이 경우, 프로세서(170)는 유도기전력의 크기가 미리 정해진 기준치를 초과함을 식별하여, 송전선로와 멀어지는 방향으로 무인 비행체(100)의 비행을 제어할 수 있다. 다시 말해, 코일부(150)에서 발생하는 유도기전력의 세기에 기초하여 무인 비행체(100)와 송전선로(1) 간의 거리를 예측하여 비행을 제어함으로써, 무인 비행체(100)와 송전선로(1)의 충돌을 방지하여 점검 시 발생할 수 있는 충돌 사고를 예방하는 효과를 제공할 수 있다.
도 5는 본 발명의 일 실시예와 관련된 서버와 무인 비행체 간의 정보 교환을 통해 송전선로에 대한 점검을 수행하는 과정을 예시적으로 나타낸 순서도이다. 도 5에서 도시되는 내용에 대한 특징 중 도 1 내지 도 4와 관련하여 앞서 설명된 특징과 중복되는 특징에 대해서는 도 1 내지 도 4에 기재된 내용을 참고하고 여기에서는 그 설명을 생략하도록 한다.
본 발명의 일 실시예에 따르면, 서버(200)는 무인 비행체(100)로 제1위치 이동 명령 신호를 전송할 수 있다(301). 제1위치 이동 명령 신호는, 무인 비행체(100)를 송전선로의 제1위치로 이동시키기 위한 제어 신호일 수 있다. 이에 따라, 제1위치 이동 명령 신호는 제1위치에 관련한 위치 정보를 포함하고 있을 수 있다. 예컨대, 제1위치는 점검이 수행되는 일 지점에 관련한 위치일 수 있다.
무인 비행체(100)는 서버(200)로부터 제1위치 이동 명령 신호를 수신하는 경우, 해당 제1위치 이동 명령 신호에 대응하는 제1위치로 이동할 수 있다(303). 제1위치로 이동한 경우, 무인 비행체(100)는 위치 확인 요청 정보를 생성할 수 있다(305). 여기서 위치 확인 요청 정보는, 무인 비행체(100)의 실시간 위치 정보 또는 주변 이미지 정보 중 적어도 하나를 포함할 수 있다. 구체적으로, 무인 비행체(100)는 제1위치로 이동을 완료한 경우, 실시간 위치 정보 또는 주변 이미지 정보에 관련하여 위치 확인 요청 정보를 생성할 수 있다. 또한, 무인 비행체(100)는 생성된 위치 확인 요청 정보를 서버(200)로 전송할 수 있다(307). 예를 들어, 무인 비행체(100)는 실시간 위치가 A 구역(예컨대, 좌표 정보)에 해당한다는 위치 확인 요청 정보를 생성하여 서버(200)로 전송할 것을 결정할 수 있다. 다른 예를 들어, 무인 비행체(100)는 카메라모듈(130)을 현재 위치에 관련한 주변 이미지 정보를 획득하며, 해당 주변 이미지 정보를 포함하는 위치 확인 요청 정보를 생성하여 서버(200)로 전송할 것을 결정할 수 있다.
서버(200)는 무인 비행체(100)로부터 위치 확인 요청 정보를 수신하는 경우, 해당 위치 확인 요청 정보에 기초하여 테스트 개시 적정 여부를 판별할 수 있다(309). 구체적으로, 서버(200)는 위치 확인 요청 정보를 통해 무인 비행체(100)의 현재 위치가 점검을 수행하기 위한 적정 위치인지 여부를 판별할 수 있다. 예를 들어, 위치 확인 요청 정보가 특정 위치에 관한 좌표 정보를 포함하는 경우, 서버(200)는 해당 좌표가 제1위치(즉, 점검 수행 위치)에 대응하는 위치와 일치하는지 여부를 확인하여 테스트 개시의 적정 여부를 판별할 수 있다. 다른 예를 들어, 위치 확인 요청 정보가 주변 이미지 정보를 포함하는 경우, 서버(200)는 해당 주변 이미지 정보를 제1위치에 관련하여 기 저장된 선로 주변 이미지와 비교하여 테스트 개시의 적정 여부를 판별할 수도 있다.
서버(200)가 위치 확인 요청 정보를 통해 무인 비행체(100)가 테스트를 개시하기에 적정한 위치에 위치한 것으로 판별하는 경우, 서버(200)는 무인 비행체(100)로 제2위치 이동 명령 신호를 전송할 수 있다(311). 다시 말해, 서버(200)는 무인 비행체(100)의 위치 확인 요청 정보를 통해 현재 무인 비행체(100)가 적정한 위치에 위치하는 것으로 판별된 경우에만, 무인 비행체(100)로 제2위치 이동 명령 신호를 전송하게 되어, 무인 비행체(100)로 하여금 제1위치와 상이한 제2위치로의 이동 또는 비행을 수행하도록 할 수 있다. 제2위치 이동 명령 신호는 무인 비행체(100)를 제2위치로 이동시키기 위한 제어 신호일 수 있다. 이에 따라, 제2위치 이동 명령 신호는 제2위치에 관련한 위치 정보를 포함하고 있을 수 있다. 예컨대, 제2위치는, 제1위치로부터 송전선로를 따라 일정 거리 떨어진 일 위치로, 점검의 종착지에 관련한 일 위치일 수 있다.
무인 비행체(100)는 제2위치 이동 명령 신호에 대응하여, 제1위치에서 제2위치로 이동하며 테스트 수행 정보를 획득할 수 있다(313). 이 경우, 테스트 수행 정보는, 송전선로(1) 고장 여부 판별에 기반이 되는 정보로, 송전선로에 관련한 전선 이미지 및 열화상 이미지 중 적어도 하나를 포함할 수 있다. 즉, 무인 비행체(100)는 제2위치 이동 명령 신호를 수신하는 경우, 카메라모듈(130)을 제어하여, 송전선로(1)에 관련한 전선 이미지 및 열화상 이미지를 획득할 수 있다. 또한, 무인 비행체(100)는 획득한 테스트 수행 정보를 서버(200)로 전송할 수 있다(315). 무인 비행체(100)는 송전선로(1)에 근접하여 비행할 수 있으며, 비행 동안 카메라모듈(130)을 통해 시작에 관련한 제1위치로부터 종료에 관련한 제2위치까지 송전선로(1)에 관련한 이미지들을 획득할 수 있다. 이에 따라, 서버(200)는 수신한 테스트 수행 정보에 기초하여 송전선로의 이상 여부(예컨대, 고장 여부)를 판별할 수 있다(317).
도 6은 본 발명의 일 실시예와 관련된 무인 비행체를 통해 수행되는 송전선로 점검 방법을 예시적으로 나타낸 순서도를 도시한다.
본 발명의 일 실시예에 따르면, 상기 방법은, 서버(200)로부터 제1위치 이동 명령 신호를 수신하는 단계(S110)를 포함할 수 있다.
본 발명의 일 실시예에 따르면, 상기 방법은, 제1위치 이동 명령 신호에 대응하여 송전선로의 제1위치로 이동하는 단계(S120)를 포함할 수 있다.
본 발명의 일 실시예에 따르면, 상기 방법은, 서버(200)로부터 제2위치 이동 명령 신호를 수신하는 단계(S130)를 포함할 수 있다.
본 발명의 일 실시예에 따르면, 상기 방법은, 제2위치 이동 명령 신호에 대응하여 송전선로의 제1위치로부터 제2위치로 이동하면서 테스트 수행 정보를 획득하는 단계(S140)를 포함할 수 있다.
본 발명의 일 실시예에 따르면, 상기 방법은, 테스트 수행 정보를 서버(200)로 전송하는 단계(S150)를 포함할 수 있다.
전술한 도 6에 도시된 단계들은 필요에 의해 순서가 변경될 수 있으며, 적어도 하나 이상의 단계가 생략 또는 추가될 수 있다. 즉, 전술한 단계는 본 발명의 일 실시예에 불과할 뿐, 본 발명의 권리 범위는 이에 제한되지 않는다.
도 7은 본 발명의 일 실시예와 관련된 무인 비행체를 활용하여 송전선로에 대한 점검을 수행하는 서버의 예시적인 블록 구성도를 도시한다.
도 7에 도시된 바와 같이, 서버(200)는, 서버 메모리(220), 서버 네트워크부(210) 및 서버 프로세서(230)를 포함할 수 있다. 전술한 컴포넌트들은 예시적인 것으로서, 본 개시내용의 권리범위가 전술한 컴포넌트들로 제한되지 않는다. 즉, 본 발명의 실시예들에 대한 구형 양태에 따라서 추가적인 컴포넌트들이 포함되거나, 또는 전술한 컴포넌트들 중 일부가 생략될 수 있다.
본 발명의 일 실시예에 따르면, 서버(200)는 사용자 단말(10) 및 무인 비행체(100)와 데이터를 송수신하는 서버 네트워크부(210)를 포함할 수 있다. 즉, 서버 네트워크부(210)는 서버(200)와 외부 디바이스 간의 통신 기능을 제공하거나, 또는 서버(200)와 무인 비행체(100) 간의 통신 기능을 제공할 수 있다. 추가적으로, 서버 네트워크부(210)는 서버(200)로 프로시저를 호출하는 방식으로 서버(200)와 외부 디바이스, 서버(200)와 무인 비행체(100) 간의 정보 전달을 허용할 수 있다.
본 발명의 일 실시예에 따른 서버 네트워크부(210)는 공중전화 교환망(PSTN: Public Switched Telephone Network), xDSL(x Digital Subscriber Line), RADSL(Rate Adaptive DSL), MDSL(Multi Rate DSL), VDSL(Very High Speed DSL), UADSL(Universal Asymmetric DSL), HDSL(High Bit Rate DSL) 및 근거리 통신망(LAN) 등과 같은 다양한 유선 통신 시스템들을 사용할 수 있다.
또한, 본 명세서에서 제시되는 서버 네트워크부(210)는 CDMA(Code Division Multi Access), TDMA(Time Division Multi Access), FDMA(Frequency Division Multi Access), OFDMA(Orthogonal Frequency Division Multi Access), SC-FDMA(Single Carrier-FDMA) 및 다른 시스템들과 같은 다양한 무선 통신 시스템들을 사용할 수 있다.
본 발명에서 서버 네트워크부(210)는 유선 및 무선 등과 같은 그 통신 양태를 가리지 않고 구성될 수 있으며, 단거리 통신망(PAN: Personal Area Network), 근거리 통신망(WAN: Wide Area Network) 등 다양한 통신망으로 구성될 수 있다. 또한, 네트워크는 공지의 월드와이드웹(WWW: World Wide Web)일 수 있으며, 적외선(IrDA: Infrared Data Association) 또는 블루투스(Bluetooth)와 같이 단거리 통신에 이용되는 무선 전송 기술을 이용할 수도 있다. 본 명세서에서 설명된 기술들은 위에서 언급된 네트워크들뿐만 아니라, 다른 네트워크들에서도 사용될 수 있다.
본 발명의 일 실시예에 따르면, 서버 메모리(220)는 서버 프로세서(230)가 생성하거나 결정한 임의의 형태의 정보 및 서버 네트워크부(210)가 수신한 임의의 형태의 정보를 저장할 수 있다.
본 발명의 일 실시예에 따르면, 서버 메모리(220)는 플래시 메모리 타입(flash memory type), 하드디스크 타입(hard disk type), 멀티미디어 카드 마이크로 타입(multimedia card micro type), 카드 타입의 메모리(예를 들어 SD 또는 XD 메모리 등), 램(Random Access Memory, RAM), SRAM(Static Random Access Memory), 롬(Read-Only Memory, ROM), EEPROM(Electrically Erasable Programmable Read-Only Memory), PROM(Programmable Read-Only Memory), 자기 메모리, 자기 디스크, 광디스크 중 적어도 하나의 타입의 저장매체를 포함할 수 있다. 서버(200)는 인터넷(internet) 상에서 서버 메모리(220)의 저장 기능을 수행하는 웹 스토리지(web storage)와 관련되어 동작할 수도 있다. 전술한 메모리에 대한 기재는 예시일 뿐, 본 발명은 이에 제한되지 않는다.
본 발명의 일 실시예에 따르면, 서버 프로세서(230)는 통상적으로 서버(200)의 전반적인 동작을 처리할 수 있다. 서버 프로세서(230)는 위에서 살펴본 구성요소들을 통해 입력 또는 출력되는 신호, 데이터, 정보 등을 처리하거나 서버 메모리(220)에 저장된 응용 프로그램을 구동함으로써, 사용자 단말(10) 및 무인 비행체(100)로 적절한 정보 또는, 기능을 제공하거나 처리할 수 있다.
본 발명의 일 실시예에 따르면, 서버 프로세서(230)는 무인 비행체(100)로 제1위치 이동 명령 신호를 전송할 것을 결정할 수 있다. 제1위치 이동 명령 신호는, 무인 비행체(100)를 송전선로의 제1위치로 이동시키기 위한 제어 신호일 수 있다. 이에 따라, 제1위치 이동 명령 신호는 제1위치에 관련한 위치 정보를 포함하고 있을 수 있다. 예컨대, 제1위치는 점검이 수행되는 일 지점에 관련한 위치일 수 있다. 즉, 서버 프로세서(230)는 무인 비행체(100)로 제1위치 이동 명령 신호로 전송할 것을 결정함으로써, 무인 비행체(100)가 점검 또는 테스트 수행에 적합한 위치로 이동하도록 할 수 있다.
서버 프로세서(230)는 무인 비행체(100)로부터 위치 확인 요청 정보를 수신하는 경우, 해당 위치 확인 요청 정보에 기초하여 테스트 개시 적정 여부를 판별할 수 있다. 위치 확인 요청 정보는, 무인 비행체(100)의 실시간 위치 정보 또는 주변 이미지 정보 중 적어도 하나를 포함할 수 있다. 구체적으로, 무인 비행체(100)는 제1위치로 이동을 완료한 경우, 실시간 위치 정보 또는 주변 이미지 정보에 관련하여 위치 확인 요청 정보를 생성할 수 있다. 또한, 무인 비행체(100)는 생성된 위치 확인 요청 정보를 서버(200)로 전송할 수 있다. 예를 들어, 무인 비행체(100)는 실시간 위치가 A 구역(예컨대, 좌표 정보)에 해당한다는 위치 확인 요청 정보를 생성하여 서버(200)로 전송할 것을 결정할 수 있다. 다른 예를 들어, 무인 비행체(100)는 카메라모듈(130)을 현재 위치에 관련한 주변 이미지 정보를 획득하며, 해당 주변 이미지 정보를 포함하는 위치 확인 요청 정보를 생성하여 서버(200)로 전송할 것을 결정할 수 있다.
구체적으로, 서버 프로세서(230)는 위치 확인 요청 정보를 통해 무인 비행체(100)의 현재 위치가 점검을 수행하기 위한 적정 위치인지 여부를 판별할 수 있다. 예를 들어, 위치 확인 요청 정보가 특정 위치에 관한 좌표 정보를 포함하는 경우, 서버 프로세서(230)는 해당 좌표가 제1위치(즉, 점검 수행 위치)에 대응하는 위치와 일치하는지 여부를 확인하여 테스트 개시의 적정 여부를 판별할 수 있다. 다른 예를 들어, 위치 확인 요청 정보가 주변 이미지 정보를 포함하는 경우, 서버 프로세서(230)는 해당 주변 이미지 정보를 제1위치에 관련하여 기 저장된 선로 주변 이미지와 비교하여 테스트 개시의 적정 여부를 판별할 수도 있다.
본 발명의 일 실시예에 따르면, 서버 프로세서(230)는 무인 비행체(100)로 제2위치 이동 명령 신호를 전송할 수 있다. 구체적으로, 서버 프로세서(230)는 위치 확인 요청 정보를 통해 무인 비행체(100)가 테스트를 개시하기에 적정한 위치에 위치한 것으로 판별하는 경우, 무인 비행체(100)로 제2위치 이동 명령 신호를 전송할 수 있다. 다시 말해, 서버 프로세서(230)는 무인 비행체(100)의 위치 확인 요청 정보를 통해 현재 무인 비행체(100)가 적정한 위치에 위치하는 것으로 판별된 경우에만, 무인 비행체(100)로 제2위치 이동 명령 신호를 전송하게 되어, 무인 비행체(100)로 하여금 제1위치와 상이한 제2위치로의 이동 또는 비행을 수행하도록 할 수 있다. 제2위치 이동 명령 신호는 무인 비행체(100)를 제2위치로 이동시키기 위한 제어 신호일 수 있다. 이에 따라, 제2위치 이동 명령 신호는 제2위치에 관련한 위치 정보를 포함하고 있을 수 있다. 예컨대, 제2위치는, 제1위치로부터 송전선로를 따라 일정 거리 떨어진 일 위치로, 점검의 종착지에 관련한 일 위치일 수 있다.
본 발명의 일 실시예에 따르면, 서버 프로세서(230)는 무인 비행체(100)로부터 테스트 수행 정보를 수신할 수 있다. 여기서 테스트 수행 정보는, 송전선로(1) 고장 여부 판별에 기반이 되는 정보로, 송전선로에 관련한 전선 이미지 및 열화상 이미지 중 적어도 하나를 포함할 수 있다. 즉, 무인 비행체(100)는 제2위치 이동 명령 신호를 수신하는 경우, 카메라모듈(130)을 제어하여, 송전선로(1)에 관련한 전선 이미지 및 열화상 이미지를 획득할 수 있다. 서버(200)는 무인 비행체(100)로부터 테스트 수행 정보를 수신하게 되며, 해당 테스트 수행 정보를 통해 송전선로의 이상 여부(예컨대, 고장 여부)를 판별할 수 있다.
도 8은 본 발명의 일 실시예와 관련된 서버를 통해 수행되는 무인 비행체를 활용한 송전선로 점검 방법을 예시적으로 나타낸 순서도를 도시한다.
본 발명의 일 실시예에 따르면, 상기 방법은, 제1위치 이동 명령 신호를 무인 비행체로 전송하는 단계(S210)를 포함할 수 있다.
본 발명의 일 실시예에 따르면, 상기 방법은, 제1위치 이동 명령 신호에 대응하여 송전선로의 제1위치로 이동된 무인 비행체로 제2위치 이동 명령 신호를 전송하는 단계(S220)를 포함할 수 있다.
본 발명의 일 실시예에 따르면, 상기 방법은, 무인 비행체(100)로부터 테스트 수행 정보를 수신하는 단계(S230)를 포함할 수 있다.
본 발명의 일 실시예에 따르면, 상기 방법은, 테스트 수행 정보에 기초하여 송전선로의 고장 여부를 판별하는 단계(S240)를 포함할 수 있다.
전술한 도 8에 도시된 단계들은 필요에 의해 순서가 변경될 수 있으며, 적어도 하나 이상의 단계가 생략 또는 추가될 수 있다. 즉, 전술한 단계는 본 발명의 일 실시예에 불과할 뿐, 본 발명의 권리 범위는 이에 제한되지 않는다.
본 발명의 실시예와 관련하여 설명된 방법 또는 알고리즘의 단계들은 하드웨어로 직접 구현되거나, 하드웨어에 의해 실행되는 소프트웨어 모듈로 구현되거나, 또는 이들의 결합에 의해 구현될 수 있다. 소프트웨어 모듈은 RAM(Random Access Memory), ROM(Read Only Memory), EPROM(Erasable Programmable ROM), EEPROM(Electrically Erasable Programmable ROM), 플래시 메모리(Flash Memory), 하드 디스크, 착탈형 디스크, CD-ROM, 또는 본 발명이 속하는 기술 분야에서 잘 알려진 임의의 형태의 컴퓨터 판독가능 기록매체에 상주할 수도 있다.
본 발명의 구성 요소들은 하드웨어인 컴퓨터와 결합되어 실행되기 위해 프로그램(또는 애플리케이션)으로 구현되어 매체에 저장될 수 있다. 본 발명의 구성 요소들은 소프트웨어 프로그래밍 또는 소프트웨어 요소들로 실행될 수 있으며, 이와 유사하게, 실시 예는 데이터 구조, 프로세스들, 루틴들 또는 다른 프로그래밍 구성들의 조합으로 구현되는 다양한 알고리즘을 포함하여, C, C++, 자바(Java), 어셈블러(assembler) 등과 같은 프로그래밍 또는 스크립팅 언어로 구현될 수 있다. 기능적인 측면들은 하나 이상의 프로세서들에서 실행되는 알고리즘으로 구현될 수 있다.
본 발명의 기술 분야에서 통상의 지식을 가진 자는 여기에 개시된 실시예들과 관련하여 설명된 다양한 예시적인 논리 블록들, 모듈들, 프로세서들, 수단들, 회로들 및 알고리즘 단계들이 전자 하드웨어, (편의를 위해, 여기에서 "소프트웨어"로 지칭되는) 다양한 형태들의 프로그램 또는 설계 코드 또는 이들 모두의 결합에 의해 구현될 수 있다는 것을 이해할 것이다. 하드웨어 및 소프트웨어의 이러한 상호 호환성을 명확하게 설명하기 위해, 다양한 예시적인 컴포넌트들, 블록들, 모듈들, 회로들 및 단계들이 이들의 기능과 관련하여 위에서 일반적으로 설명되었다. 이러한 기능이 하드웨어 또는 소프트웨어로서 구현되는지 여부는 특정한 애플리케이션 및 전체 시스템에 대하여 부과되는 설계 제약들에 따라 좌우된다. 본 발명의 기술 분야에서 통상의 지식을 가진 자는 각각의 특정한 애플리케이션에 대하여 다양한 방식들로 설명된 기능을 구현할 수 있으나, 이러한 구현 결정들은 본 발명의 범위를 벗어나는 것으로 해석되어서는 안 될 것이다.
여기서 제시된 다양한 실시예들은 방법, 장치, 또는 표준 프로그래밍 및/또는 엔지니어링 기술을 사용한 제조 물품(article)으로 구현될 수 있다. 용어 "제조 물품"은 임의의 컴퓨터-판독가능 장치로부터 액세스 가능한 컴퓨터 프로그램, 캐리어, 또는 매체(media)를 포함한다. 예를 들어, 컴퓨터-판독가능 매체는 자기 저장 장치(예를 들면, 하드 디스크, 플로피 디스크, 자기 스트립, 등), 광학 디스크(예를 들면, CD, DVD, 등), 스마트 카드, 및 플래쉬 메모리 장치(예를 들면, EEPROM, 카드, 스틱, 키 드라이브, 등)를 포함하지만, 이들로 제한되는 것은 아니다. 또한, 여기서 제시되는 다양한 저장 매체는 정보를 저장하기 위한 하나 이상의 장치 및/또는 다른 기계-판독가능한 매체를 포함한다. 용어 "기계-판독가능 매체"는 명령(들) 및/또는 데이터를 저장, 보유, 및/또는 전달할 수 있는 무선 채널 및 다양한 다른 매체를 포함하지만, 이들로 제한되는 것은 아니다.
제시된 프로세스들에 있는 단계들의 특정한 순서 또는 계층 구조는 예시적인 접근들의 일례임을 이해하도록 한다. 설계 우선순위들에 기반하여, 본 발명의 범위 내에서 프로세스들에 있는 단계들의 특정한 순서 또는 계층 구조가 재배열될 수 있다는 것을 이해하도록 한다. 첨부된 방법 청구항들은 샘플 순서로 다양한 단계들의 엘리먼트들을 제공하지만 제시된 특정한 순서 또는 계층 구조에 한정되는 것을 의미하지는 않는다.
제시된 실시예들에 대한 설명은 임의의 본 발명의 기술 분야에서 통상의 지식을 가진 자가 본 발명을 이용하거나 또는 실시할 수 있도록 제공된다. 이러한 실시예들에 대한 다양한 변형들은 본 발명의 기술 분야에서 통상의 지식을 가진 자에게 명백할 것이며, 여기에 정의된 일반적인 원리들은 본 발명의 범위를 벗어남이 없이 다른 실시예들에 적용될 수 있다. 그리하여, 본 발명은 여기에 제시된 실시예들로 한정되는 것이 아니라, 여기에 제시된 원리들 및 신규한 특징들과 일관되는 최광의의 범위에서 해석되어야 할 것이다.

Claims (16)

  1. 무인 비행체의 하나 이상의 프로세서에서 수행되는 방법에 있어서,
    서버로부터 제1위치 이동 명령 신호를 수신하는 단계;
    상기 제1위치 이동 명령 신호에 대응하여 송전선로의 제1위치 이동할 것을 결정하는 단계;
    상기 서버로부터 제2위치 이동 명령 신호를 수신하는 단계;
    상기 제2위치 이동 명령 신호에 대응하여 상기 제1위치로부터 제2위치로 이동하면서 테스트 수행 정보를 획득하는 단계; 및
    상기 테스트 수행 정보를 상기 서버로 전송할 것을 결정하는 단계;
    를 포함하는,
    송전선로 점검 방법.
  2. 제1항에 있어서,
    상기 제2위치 이동 명령 신호는,
    상기 무인 비행체를 상기 제2위치로 이동시키기 위한 제어 신호이며,
    상기 테스트 수행 정보는,
    상기 송전선로의 고장 여부 판별에 기반이 되는 정보로, 상기 송전선로에 관련한 전선 이미지 및 열화상 이미지 중 적어도 하나를 포함하는,
    송전선로 점검 방법.
  3. 제1항에 있어서,
    상기 서버로부터 제2위치 이동 명령 신호를 수신하는 단계는,
    상기 제1위치로 이동한 경우, 위치 확인 요청 정보를 생성하여 상기 서버로 전송할 것을 결정하는 단계; 및
    상기 서버로부터 상기 위치 확인 요청 정보에 대한 응답으로 상기 제2위치 이동 명령 신호를 수신하는 단계;
    를 포함하며,
    상기 위치 확인 요청 정보는,
    상기 무인 비행체의 실시간 위치 정보 또는 주변 이미지 정보 중 적어도 하나를 포함하는,
    송전선로 점검 방법.
  4. 제1항에 있어서,
    상기 무인 비행체는,
    상기 송전선로의 자기장에 의해 야기되는 유도기전력에 기초하여 비행에 관련한 전기 에너지를 공급받는 것을 특징으로 하는,
    송전선로 점검 방법.
  5. 제4항에 있어서,
    상기 무인 비행체는,
    기 설정된 인덕턴스를 갖도록 구비되는 코일부를 포함하여 구비되며, 상기 유도기전력은 상기 코일부를 통해 야기되는 것을 특징으로 하는,
    송전선로 점검 방법.
  6. 제4항에 있어서,
    상기 무인 비행체는,
    상기 유도기전력의 크기에 기초하여 상기 송전선로와 미리 정해진 이격 거리를 갖도록 비행하는 것을 특징으로 하는,
    송전선로 점검 방법.
  7. 제4항에 있어서,
    상기 무인 비행체는,
    상기 유도기전력에 관련한 교류전압을 직류전압으로 변성하는 변성모듈을 포함하여 구비되는,
    송전선로 점검 방법.
  8. 송전선로를 점검하는 무인 비행체에 있어서,
    서버와 데이터를 송수신하는 네트워크부;
    하나 이상의 인스트럭션을 저장하는 메모리; 및
    상기 메모리에 저장된 상기 하나 이상의 인스트럭션을 실행함으로써, 제1항의 방법을 수행하는 프로세서;
    를 포함하는,
    송전선로를 점검하는 무인 비행체.
  9. 서버의 하나 이상의 프로세서에서 수행되는 방법에 있어서,
    제1위치 이동 명령 신호를 무인 비행체로 전송할 것을 결정하는 단계;
    상기 제1위치 이동 명령 신호에 대응하여 송전선로의 제1위치로 이동된 무인 비행체로 제2위치 이동 명령 신호를 전송할 것을 결정하는 단계;
    상기 무인 비행체로부터 테스트 수행 정보를 수신하는 단계; 및
    상기 테스트 수행 정보에 기초하여 송전선로의 고장 여부를 판별하는 단계;
    를 포함하는,
    무인 비행체를 활용한 송전선로 점검 방법.
  10. 제9항에 있어서,
    상기 제2위치 이동 명령 신호는,
    상기 무인 비행체를 상기 제2위치로 이동시키기 위한 제어 신호이며,
    상기 테스트 수행 정보는,
    상기 송전선로의 고장 여부 판별에 기반이 되는 정보로, 상기 송전선로에 관련한 전선 이미지 및 열화상 이미지 중 적어도 하나를 포함하는,
    무인 비행체를 활용한 송전선로 점검 방법.
  11. 제9항에 있어서,
    상기 제2위치 이동 명령 신호를 전송할 것을 결정하는 단계는,
    상기 무인 비행체로부터 위치 확인 요청 정보를 수신하는 단계;
    상기 위치 확인 요청 정보에 기초하여 테스트 개시 적정 여부를 판별하는 단계; 및
    상기 테스트 개시 적정 여부 판별 결과에 기초하여 상기 무인 비행체로 상기 제2위치 이동 명령 신호를 전송할 것을 결정하는 단계;
    를 포함하며,
    상기 위치 확인 요청 정보는,
    상기 무인 비행체의 실시간 위치 정보 또는 주변 이미지 정보 중 적어도 하나를 포함하는,
    무인 비행체를 활용한 송전선로 점검 방법.
  12. 제9항에 있어서,
    상기 무인 비행체는,
    상기 송전선로의 자기장을 통해 야기되는 유도기전력에 기초하여 비행을 위한 전기 에너지를 공급받는 것을 특징으로 하는,
    무인 비행체를 활용한 송전선로 점검 방법.
  13. 제12항에 있어서,
    상기 무인 비행체는,
    기 설정된 인덕턴스를 갖도록 구비되는 코일부를 포함하여 구비되며, 상기 유도기전력은 상기 코일부를 통해 야기되는 것을 특징으로 하는,
    무인 비행체를 활용한 송전선로 점검 방법.
  14. 제12항에 있어서,
    상기 무인 비행체는,
    상기 유도기전력의 크기에 기초하여 상기 송전선로와 미리 정해진 이격 거리를 갖도록 비행하는 것을 특징으로 하는,
    무인 비행체를 활용한 송전선로 점검 방법.
  15. 제12항에 있어서,
    상기 무인 비행체는,
    상기 유도기전력에 관련한 교류전압을 직류전압으로 변성하는 변성모듈을 포함하여 구비되는,
    무인 비행체를 활용한 송전선로 점검 방법.
  16. 무인 비행체를 활용한 송전선로 점검 서버에 있어서,
    무인 비행체와 데이터를 송수신하는 서버 네트워크부;
    하나 이상의 인스트럭션을 저장하는 서버 메모리; 및
    상기 서버 메모리에 저장된 상기 하나 이상의 인스트럭션을 실행함으로써, 제9항의 방법을 수행하는 서버 프로세서;
    를 포함하는,
    무인 비행체를 활용한 송전선로 점검 서버.
KR1020210118571A 2021-09-06 2021-09-06 무인 비행체를 활용한 송전선로 점검 시스템 KR102661562B1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020210118571A KR102661562B1 (ko) 2021-09-06 2021-09-06 무인 비행체를 활용한 송전선로 점검 시스템
KR1020240033640A KR20240035983A (ko) 2021-09-06 2024-03-11 무인 비행체의 실시간 위치 확인 기반 송전선로 점검 방법
KR1020240033639A KR20240035982A (ko) 2021-09-06 2024-03-11 이동 명령에 따라 테스트 수행 정보를 획득하는 무인 비행체를 활용한 송전선로 점검 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210118571A KR102661562B1 (ko) 2021-09-06 2021-09-06 무인 비행체를 활용한 송전선로 점검 시스템

Related Child Applications (2)

Application Number Title Priority Date Filing Date
KR1020240033639A Division KR20240035982A (ko) 2021-09-06 2024-03-11 이동 명령에 따라 테스트 수행 정보를 획득하는 무인 비행체를 활용한 송전선로 점검 방법
KR1020240033640A Division KR20240035983A (ko) 2021-09-06 2024-03-11 무인 비행체의 실시간 위치 확인 기반 송전선로 점검 방법

Publications (2)

Publication Number Publication Date
KR20230035957A true KR20230035957A (ko) 2023-03-14
KR102661562B1 KR102661562B1 (ko) 2024-04-29

Family

ID=85502639

Family Applications (3)

Application Number Title Priority Date Filing Date
KR1020210118571A KR102661562B1 (ko) 2021-09-06 2021-09-06 무인 비행체를 활용한 송전선로 점검 시스템
KR1020240033640A KR20240035983A (ko) 2021-09-06 2024-03-11 무인 비행체의 실시간 위치 확인 기반 송전선로 점검 방법
KR1020240033639A KR20240035982A (ko) 2021-09-06 2024-03-11 이동 명령에 따라 테스트 수행 정보를 획득하는 무인 비행체를 활용한 송전선로 점검 방법

Family Applications After (2)

Application Number Title Priority Date Filing Date
KR1020240033640A KR20240035983A (ko) 2021-09-06 2024-03-11 무인 비행체의 실시간 위치 확인 기반 송전선로 점검 방법
KR1020240033639A KR20240035982A (ko) 2021-09-06 2024-03-11 이동 명령에 따라 테스트 수행 정보를 획득하는 무인 비행체를 활용한 송전선로 점검 방법

Country Status (1)

Country Link
KR (3) KR102661562B1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117686844A (zh) * 2024-02-02 2024-03-12 山东道万电气有限公司 一种基于巡检机器人的电力配网线路监测方法及系统
CN117726959A (zh) * 2024-02-09 2024-03-19 国网安徽省电力有限公司巢湖市供电公司 基于智能图像识别的无人机电力线路安全巡检系统及方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160123551A (ko) * 2015-04-16 2016-10-26 연세대학교 산학협력단 전력 설비 점검을 위한 위상 정보 기반의 드론 시스템 자동 제어 시스템 및 그 방법
KR101798908B1 (ko) * 2016-11-23 2017-11-17 한국항공우주연구원 무인 비행체 및 그의 충전 방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160123551A (ko) * 2015-04-16 2016-10-26 연세대학교 산학협력단 전력 설비 점검을 위한 위상 정보 기반의 드론 시스템 자동 제어 시스템 및 그 방법
KR101798908B1 (ko) * 2016-11-23 2017-11-17 한국항공우주연구원 무인 비행체 및 그의 충전 방법

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117686844A (zh) * 2024-02-02 2024-03-12 山东道万电气有限公司 一种基于巡检机器人的电力配网线路监测方法及系统
CN117686844B (zh) * 2024-02-02 2024-04-16 山东道万电气有限公司 一种基于巡检机器人的电力配网线路监测方法及系统
CN117726959A (zh) * 2024-02-09 2024-03-19 国网安徽省电力有限公司巢湖市供电公司 基于智能图像识别的无人机电力线路安全巡检系统及方法
CN117726959B (zh) * 2024-02-09 2024-05-10 国网安徽省电力有限公司巢湖市供电公司 基于智能图像识别的无人机电力线路安全巡检系统及方法

Also Published As

Publication number Publication date
KR20240035983A (ko) 2024-03-19
KR102661562B1 (ko) 2024-04-29
KR20240035982A (ko) 2024-03-19

Similar Documents

Publication Publication Date Title
Alsamhi et al. Convergence of machine learning and robotics communication in collaborative assembly: mobility, connectivity and future perspectives
KR20240035982A (ko) 이동 명령에 따라 테스트 수행 정보를 획득하는 무인 비행체를 활용한 송전선로 점검 방법
US20210248183A1 (en) Acoustic monitoring system
CN117858834A (zh) 用于基于3d模型的无人机飞行规划和控制的系统和方法
US20200064869A1 (en) Perpetual unmanned aerial vehicle surveillance
CN107431527A (zh) 使用自主车辆闭环优化无线网络
US10673520B2 (en) Cellular command, control and application platform for unmanned aerial vehicles
KR20180026883A (ko) 기상 정보를 이용한 무인 비행체의 경로 안내 시스템, 그 방법 및 컴퓨터 프로그램이 기록된 기록매체
CN109000651B (zh) 一种路径规划方法及路径规划装置
CN112749440A (zh) Uav飞行管理规划器
US20200039645A1 (en) Autonomous aerial management as a service
RU2687008C2 (ru) Способ установления плановой траектории полета транспортного средства возле цели (варианты), вычислительное устройство (варианты)
TW201838360A (zh) 航空機器人飛行器天線切換
JP2015515249A (ja) 電力伝送システムに関連したタスクを実行するよう構成されたモバイルデバイス
US11157867B1 (en) Selecting flight routes based on historical exposure
WO2020153171A1 (ja) 情報処理装置
KR101921122B1 (ko) 기상 정보를 이용한 무인 비행체의 경로 안내 시스템, 그 방법 및 컴퓨터 프로그램이 기록된 기록매체
Jacobsen et al. Design of an autonomous cooperative drone swarm for inspections of safety critical infrastructure
Schofield et al. Cloud to cable: A drone framework for autonomous power line inspection
US20190362637A1 (en) Automated vehicle control
KR20170111219A (ko) 화재 관찰을 위한 무인 항공기의 비행 제어 서버 및 제어 방법
Matlekovic et al. Microservices for autonomous UAV inspection with UAV simulation as a service
Kliushnikov et al. UAV fleet based accident monitoring systems with automatic battery replacement systems: Algorithms for justifying composition and use planning
JP2018077626A (ja) 飛行制御装置、飛行制御方法、及びプログラム
US20220101735A1 (en) System and method for navigation of unmanned aerial vehicles using mobile networks

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
A107 Divisional application of patent
GRNT Written decision to grant