KR20230031238A - 연속 피부 전기 활동 전극이 손목쪽에 배열된 스트레스 이벤트 검출용 웨어러블 디바이스 - Google Patents

연속 피부 전기 활동 전극이 손목쪽에 배열된 스트레스 이벤트 검출용 웨어러블 디바이스 Download PDF

Info

Publication number
KR20230031238A
KR20230031238A KR1020227046293A KR20227046293A KR20230031238A KR 20230031238 A KR20230031238 A KR 20230031238A KR 1020227046293 A KR1020227046293 A KR 1020227046293A KR 20227046293 A KR20227046293 A KR 20227046293A KR 20230031238 A KR20230031238 A KR 20230031238A
Authority
KR
South Korea
Prior art keywords
computing device
user
wearable computing
wrist
biosensor
Prior art date
Application number
KR1020227046293A
Other languages
English (en)
Inventor
린지 선덴
다니엘 스티븐 하우
콘라드 구안충 왕
료타로 미야가와
시머스 데이비드 톰슨
데이비드 던칸슨 거트시크
Original Assignee
피트비트 엘엘씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 피트비트 엘엘씨 filed Critical 피트비트 엘엘씨
Publication of KR20230031238A publication Critical patent/KR20230031238A/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/053Measuring electrical impedance or conductance of a portion of the body
    • A61B5/0531Measuring skin impedance
    • A61B5/0533Measuring galvanic skin response
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • A61B5/165Evaluating the state of mind, e.g. depression, anxiety
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02416Detecting, measuring or recording pulse rate or heart rate using photoplethysmograph signals, e.g. generated by infrared radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/053Measuring electrical impedance or conductance of a portion of the body
    • A61B5/0531Measuring skin impedance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/681Wristwatch-type devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0209Special features of electrodes classified in A61B5/24, A61B5/25, A61B5/283, A61B5/291, A61B5/296, A61B5/053
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/04Arrangements of multiple sensors of the same type
    • A61B2562/046Arrangements of multiple sensors of the same type in a matrix array
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/06Arrangements of multiple sensors of different types
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/16Details of sensor housings or probes; Details of structural supports for sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/01Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7282Event detection, e.g. detecting unique waveforms indicative of a medical condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/742Details of notification to user or communication with user or patient ; user input means using visual displays

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Physics & Mathematics (AREA)
  • Psychiatry (AREA)
  • Dermatology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Psychology (AREA)
  • Developmental Disabilities (AREA)
  • Social Psychology (AREA)
  • Child & Adolescent Psychology (AREA)
  • Hospice & Palliative Care (AREA)
  • Educational Technology (AREA)
  • Cardiology (AREA)
  • Physiology (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

웨어러블 컴퓨팅 디바이스는 사용자가 착용하면 웨어러블 컴퓨팅 디바이스의 사용자의 손목 바깥쪽에 안착되도록 구성된 손목 바깥쪽 면을 포함하는 하우징, 하우징 내에 배열된 전자 디스플레이, 사용자가 손목 바깥쪽에 착용할 때 사용자와의 피부 접촉을 유지하도록 하우징의 손목 바깥쪽 면에 위치되는 복수의 생체 센서 전극, 및 복수의 생체 센서 전극에 통신 가능하게 결합된 적어도 하나의 드라이버를 포함한다. 복수의 생체 센서 전극 각각은, 적어도, 피부 접촉 위치에서 사용자의 전기 임피던스를 나타내는 하나 이상의 파라미터를 지속적으로 측정한다. 또한, 웨어러블 컴퓨팅 디바이스는 복수의 생체 센서 전극 및 드라이버에 통신 가능하게 결합되고, 사용자의 전기 임피던스를 이용하여 소정 기간 동안의 사용자의 피부 컨덕턴스, 피부 컨덕턴스의 변화, 피부 컨덕턴스 수준(SCL) 및/또는 피부 컨덕턴스 반응(SCR)을 결정하도록 구성된 적어도 하나의 컨트롤러(들)을 포함한다.

Description

연속 피부 전기 활동 전극이 손목쪽에 배열된 스트레스 이벤트 검출용 웨어러블 디바이스
본 개시는 대체로 웨어러블 컴퓨팅 디바이스에 관한 것이며, 보다 구체적으로는 접촉 면적의 증가와 센서 신호의 신호 품질 개선을 제공하는 웨어러블 디바이스의 연속 피부 전기 활동 센서 전극을 손목쪽에 배열하는 것에 관한 것이다.
최근 들어 개인 건강에 대한 소비자 관심으로 다양한 개인 건강 모니터링 디바이스가 시장에 제공되고 있다. 센서, 전자기기 및 전원의 소형화에 대한 최근의 발전으로 여기서 "생체 트래킹" 또는 "생체 모니터링" 디바이스라고도 하는 개인 건강 모니터링 디바이스의 크기가 이전에는 비실용적이었던 매우 작은 크기로 제공될 수 있게 되었다.
이러한 생체 모니터링 디바이스는 다음과 같은 유형의 정보, 즉 심박수, 칼로리 소모량, 오르고 그리고/또는 내려간 층수, 위치 및/또는 방향, 고도, 보행 속도 및/또는 이동 거리 등 중에서 하나 이상을 수집하고, 획득하고 그리고/또는 제공할 수 있다. 소비자 디바이스를 통해 이용 가능한 기술을 포함하는 최근의 기술 발전은 건강 검출 및 모니터링에 있어서 상응하는 발전을 제공했다. 예를 들어, 피트니스 트래커 및 스마트 워치와 같은 디바이스는 디바이스를 착용한 사람의 맥박 또는 움직임과 관련한 정보를 결정할 수 있다. 그러나 통상의 디바이스의 성능으로 인해 이러한 디바이스를 이용하여 결정할 수 있는 건강 정보의 양과 유형은 제한적이었다.
그러나 센서, 전자기기 및 전원의 소형화에 대한 최근의 발전으로 개인 건강 모니터링 디바이스의 크기가 이전에는 비실용적이었던 매우 작은 크기로 제공될 수 있게 되었고, 이에 의해 추가 파라미터를 모니터링할 수 있게 되었다. 하나의 예로, 특정 생체 모니터링 디바이스는 사용자 피부의 미세한 전기 변화인 피부 전기 활동, 즉 EDA 반응을 사용자의 손바닥을 통해 EDA 반응을 검출하는 전기 센서를 이용하여 측정한다.
특히, EDA 반응의 경우, 손바닥을 통해 전기 임피던스가 측정되고, 측정된 전기 임피던스에 기초하여 피부 컨덕턴스(conductance)가 계산된다. 그런 다음 계산된 피부 컨덕턴스로부터 계산된 피부 컨덕턴스 데이터의 스파이크(spike)인 피부 컨덕턴스 반응, 즉 SCR이 결정된다. 보다 구체적으로, SCR 스파이크를 식별하기 위해, 피부 컨덕턴스가 기준치 또는 기준점과 비교된다. 일반적으로, SCR은 사용자의 손바닥과 같이 땀샘 밀도가 높은 것으로 알려진 인체의 특정 영역으로부터 수집되는 데이터를 이용하면 더 정확하게 식별된다.
그러나 피부 컨덕턴스로부터 평가될 수 있는 2가지의 주된 피부 전기 활동 피처, 즉 1) (앞에서 논의한 바와 같은) SCR 및 2) 피부 컨덕턴스 수준, SCL이 있다. SCR만이 아닌 SCL이 사용자의 연속적인 피부 전기 활동, 즉 cEDA를 결정하는 데 유익할 수 있는데, cEDA가 급성 스트레스 이벤트에 대한 신체 반응과 같은 특정한 생물학적 이벤트에 대한 전조로 사용될 수 있기 때문이다. 그러나 cEDA는 정확한 판독을 제공하기 위해서는 지속적인 피부 접촉이 필요하기 때문에 생체 모니터링 디바이스의 상면(즉, 신체에 접촉하지 않는 표면)에 장착된 전극을 이용하여 cEDA를 검출하기가 어려울 수 있다. 또한 일부 경우에서 디바이스는 사용자의 적극적인 상호작용을 요구할 수 있다.
일부 경우에서, 디바이스는 손목 안쪽(ventral wrist) EDA 측정을 포함할 수 있지만, 이러한 디바이스는 반드시 이에 한정되지는 않지만 전기적 연결이 디바이스 본체로부터 손목을 통해 전극으로 가야하고, 지속적인 접촉을 유지하기 위해 전극이 손목으로부터 돌출되어야 하고, 그리고 꽉 쥐는데 사용되는 근육과 힘줄이 전극 아래로 지나가는 단점들이 있는데, 이로 인해 기준 측정치에 잘못된 변화가 일어날 수 있다.
이에 따라 본 개시는 cEDA 전극이 손목 바깥쪽(dorsal wrist)에 배열된 형태를 갖는 웨어러블 생체 모니터링 디바이스에 관한 것이다. 특히, 본 개시는 급성 스트레스 이벤트를 검출하기 위한 웨어러블 생체 모니터링 디바이스 상에서의 손목 바깥쪽 cEDA 전극의 레이아웃, 크기, 간격 및 배치에 관한 것이다. 본 개시는 또한 전극이 웨어러블 생체 모니터링 디바이스의 손목쪽에 배치될 때 충분한 신호 품질을 얻는 것과 관련된 문제를 해결한다.
본 개시의 실시예의 태양과 장점은 아래의 설명에서 부분적으로 제시하거나, 그 설명으로부터 알 수 있거나 혹은 그 실시예를 실시하는 것을 통해 알 수 있을 것이다.
본 개시의 하나의 예시적인 태양은 웨어러블 컴퓨팅 디바이스에 관한 것이다. 웨어러블 컴퓨팅 디바이스는 사용자가 착용하면 웨어러블 컴퓨팅 디바이스의 사용자의 손목 바깥쪽에 안착되도록 구성된 손목 바깥쪽 면을 포함하는 하우징, 하우징 내에 배열된 전자 디스플레이, 사용자가 손목 바깥쪽에 착용할 때 사용자와의 피부 접촉을 유지하도록 하우징의 손목 바깥쪽 면에 위치된 복수의 생체 센서 전극, 및 복수의 생체 센서 전극에 통신 가능하게 결합된 적어도 하나의 드라이버를 포함한다. 복수의 생체 센서 전극 각각은, 적어도, 피부 접촉 위치에서 사용자의 전기 임피던스를 나타내는 하나 이상의 파라미터를 측정한다. 또한, 드라이버는 적어도 하나의 컨트롤러(들)에 통신 가능하게 결합되어 있다. 또한, 컨트롤러(들)는 사용자의 전기 임피던스에 기초하여 소정 기간 동안의 사용자의 피부 컨덕턴스 수준(SCL)을 결정하고 그리고 SCL에 적어도 부분적으로 기초하여 사용자의 스트레스 상태를 계산하도록 구성된다.
본 발명의 다른 예시적인 태양은 웨어러블 컴퓨팅 디바이스를 이용하여 사용자의 스트레스 상태를 모니터링하는 컴퓨터로 구현되는 방법에 관한 것이다. 웨어러블 컴퓨팅 디바이스는 웨어러블 컴퓨팅 디바이스의 하우징의 손목 바깥쪽 면에 복수의 생체 센서 전극을 포함한다. 컴퓨터로 구현되는 방법은 복수의 생체 센서 전극 중 하나 이상을 사용자의 손목 바깥쪽에 인접하게 배치하는 단계를 포함한다. 또한, 방법은 웨어러블 컴퓨팅 디바이스의 복수의 생체 센서 전극 중 하나 이상을 통해 소정 기간 동안 손목에서 사용자의 전기 임피던스를 나타내는 하나 이상의 파라미터를 지속적으로 측정하는 단계를 포함한다. 또한, 방법은 웨어러블 컴퓨팅 디바이스의 컨트롤러를 통해, 사용자의 전기 임피던스에 기초하여 소정 기간 동안의 사용자의 피부 컨덕턴스 수준(SCL)을 결정하는 단계를 포함한다. 또한, 방법은 컨트롤러(들)를 통해 SCL에 적어도 부분적으로 기초하여 사용자의 스트레스 상태를 계산하는 단계를 포함한다. 따라서 방법은 웨어러블 컴퓨팅 디바이스의 디스플레이를 통해 스트레스 상태를 사용자에게 표시하는 단계를 더 포함한다.
본 개시의 다른 태양은 다양한 시스템, 장치, 비일시적 컴퓨터 판독 가능 매체, 사용자 인터페이스 및 전자 디바이스에 관한 것이다.
본 개시의 다양한 실시예의 이러한 그리고 다른 피처, 태양 및 장점은 아래의 설명과 첨부된 특허청구범위를 참조하면 더 잘 이해할 수 있을 것이다. 본 명세서에 포함되어 명세서의 일부를 이루는 첨부 도면은 본 개시의 예시적인 실시예를 예시하고 발명의 설명과 함께 관련 원리를 설명하는 역할을 한다.
통상의 기술자에게 주어지는 실시예의 상세한 설명은 첨부 도면을 참조하는 명세서에 기재되어 있다.
도 1은 본 개시의 일 실시예에 따른 피부 전기 활동, 즉 EDA의 진폭(y축) 대 시간(x축)의 그래프를 나타낸다.
도 2는 본 개시의 일 실시예에 따른 사용자의 손목 바깥쪽 위에 있는 웨어러블 컴퓨팅 디바이스의 사시도이다.
도 3은 본 개시의 일 실시예에 따른 웨어러블 컴퓨팅 디바이스의 전면 사시도이다.
도 4는 도 3의 웨어러블 컴퓨팅 디바이스의 후면 사시도이다.
도 5는 도 3의 웨어러블 컴퓨팅 디바이스의 디스플레이의 분해도이다.
도 6은 본 개시의 일 실시예에 따라 활용될 수 있는 예시적인 시스템의 다양한 컨트롤러 컴포넌트를 도시한다.
도 7은 본 개시의 일 실시예에 따라 통신할 수 있는 예시적인 디바이스 세트의 개략도이다.
도 8a 내지 도8d는 본 개시에 따른 웨어러블 컴퓨팅 디바이스의 손목쪽에 있는 복수의 생체 센서 전극의 레이아웃에 대한 다양한 실시예를 도시한다.
도 9a 내지 도 9l은 본 개시에 따른 웨어러블 컴퓨팅 디바이스의 손목쪽에 있는 복수의 생체 센서 전극의 레이아웃의 또 다른 실시예를 제공한다.
도 10은 본 개시에 따른 웨어러블 컴퓨팅 디바이스의 손목쪽을 도시한 도면으로, 특히 사용자의 팔꿈치와 손목에 대한 복수의 생체 센서 전극의 배열 형태를 도시한다.
도 11은 본 개시의 일 실시예에 따른 EDA 진폭(즉, 컨덕턴스 제곱과 서셉턴스(susceptance) 제곱의 합의 제곱근으로 계산된 어드미턴스(admittance) 크기)(y축) 대 시간(x축)의 그래프를 나타내며, 특히 특정한 움직임이 시간에 따른 EDA 측정치에 미치는 영향을 도시한다.
도 12a 및 도 12b는 본 개시의 일 실시예에 따른 어드미턴스, 주위 습도 및 온도(예컨대, 피부 또는 주위 온도)의 그래프를 나타내며, 특히 사용자의 손목에 착용된 웨어러블 컴퓨팅 디바이스에 의해 측정되는 도전율에 대한 습도 및 온도의 영향을 도시한다.
도 13은 본 개시에 따른 웨어러블 컴퓨팅 디바이스를 사용하여 사용자의 스트레스 상태를 모니터링하는 방법의 일 실시예의 흐름도이다.
이제 본 발명의 실시예들을 상세하게 설명하는데, 실시예들의 하나 이상의 예가 도면에 도시되어 있다. 각각의 예는 본 발명을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것이 아니다. 실제로, 본 발명의 범위 또는 기술적 사상을 벗어나지 않으면서 본 발명에 대한 다양한 수정과 변형이 행해질 수 있음은 통상의 기술자에게 자명할 것이다. 예를 들어, 한 실시예의 일부로서 예시되거나 혹은 설명된 피처가 다른 실시예와 함께 사용되어 또 다른 실시예를 생성할 수 있다. 따라서 본 발명은 첨부된 청구범위 및 그 균등물의 범위 내에 있는 수정 및 변형도 커버하고자 하는 것이다.
개관
소비자 디바이스를 통해 이용 가능한 기술을 포함하는 최근의 기술 발전은 건강 검출 및 모니터링에 있어서 상응하는 발전을 제공했다. 예를 들어 피트니스 트래커 및 스마트 워치와 같은 디바이스는 디바이스를 착용한 사람의 맥박 또는 움직임과 관련한 정보를 결정할 수 있다. 그러나 통상의 디바이스의 성능으로 인해 이러한 디바이스를 이용하여 결정할 수 있는 건강 정보의 양과 유형은 제한적이었다.
그러나 센서, 전자기기 및 전원의 소형화에 대한 최근의 발전으로 개인 건강 모니터링 디바이스의 크기가 이전에는 비실용적이었던 매우 작은 크기로 제공될 수 있게 되었다. 예를 들어, 어떤 생체 모니터링 디바이스는 폭이 약 4센티미터(cm), 길이가 4cm, 두께가 1.3cm인 하우징을 구비하는 손목밴드를 포함한다. 이러한 생체 모니터링 디바이스는 일반적으로 이러한 작은 체적 내에 패키지된 디스플레이, 배터리, 센서, 전자기기 패키지, 무선 통신 기능, 전원 및 인터페이스 버튼을 포함한다. 더욱이, 어떤 생체 모니터링 디바이스는 심박수 센서, 심전도와 호환되는 다목적 전기 센서, ECG 및 EDA 애플리케이션, 적색 및 적외선 센서, 자이로스코프, 고도계, 가속도계, 온도 센서, 주변 광 센서, Wi-Fi, 혠, 진동 또는 촉각 피드백 센서, 스피커 및 마이크와 같은, 디바이스의 사용자에게 유익할 수 있는 다수의 생물학적 파라미터를 측정하기 위한 다양한 센서를 포함한다. 하나의 예로, 어떤 생체 모니터링 디바이스는 사용자 피부 위의 전극들 사이에서 컨덕턴스와 서셉턴스의 변화인 EDA 응답을 전형적으로 사용자의 손바닥을 통해 EDA 응답을 검출하는 단일 경로 전기 센서를 이용하여 측정한다.
예를 들어, EDA 응답의 경우, 손바닥 또는 사용자 손가락의 안쪽을 통해 전기 임피던스가 측정되고, 측정된 전기 임피던스에 기초하여 피부 컨덕턴스가 계산된다. 그런 다음 계산된 피부 컨덕턴스로부터 계산된 피부 컨덕턴스 데이터의 스파이크인 피부 컨덕턴스 반응, 즉 SCR이 결정된다. 보다 구체적으로, SCR 스파이크를 식별하기 위해, 피부 컨덕턴스가 기준치 또는 기준점과 비교된다. 일반적으로, SCR은 사용자의 손바닥 또는 사용자 손가락의 안쪽으로부터 수집되는 데이터로부터 더 정확하게 결정된다.
그러나 피부 컨덕턴스로부터 평가될 수 있는 2가지의 주된 전기 피부 활동 피처, 즉 1) (앞에서 논의한 바와 같은) SCR 및 2) 피부 컨덕턴스 수준, SCL이 있다. SCR만이 아닌 SCL이 사용자의 연속적인 피부 전기 활동, 즉 cEDA를 결정하는 데 유익할 수 있는데, cEDA가 급성 스트레스 이벤트에 대한 신체 반응과 같은 특정한 생물학적 이벤트에 대한 전조로 사용될 수 있기 때문이다. 그러나 cEDA는 정확한 판독을 제공하기 위해서는 지속적인 피부 접촉이 필요하기 때문에 생체 모니터링 디바이스의 상면(즉, 신체에 접촉하지 않는 표면)에 장착된 전극을 이용하여 cEDA를 검출하기가 어려울 수 있다.
보다 구체적으로, 타이밍의 측면에서, 양자 간의 차이는 SCR이 초 단위로 일어나는 반면 SCL은 초, 분 및/또는 시간 동안 평가된다는 점이다. 일예로, 도 1은 EDA 진폭을 밀리초(ms) 단위의 시간에 대한 그래프(10)를 나타낸다. 도시된 바와 같이, 그래프(10)는 위상 피부 컨덕턴스 응답(SCR, 12), 긴장성 피부 컨덕턴스 수준(SCL, 14) 및 EDA 피크(16)를 비교하여 나타내고 있다. 따라서, 도 1의 그래프(10)를 통해 나타난 바와 같이, SCL 변화를 정확하게 검출하기 위해서 피부 컨덕턴스가 (분/시간/일 동안) 지속적으로 측정될 필요가 있다. 그러나 EDA를 측정하기 위해 손바닥이나 손가락 측정을 이용하면, 사용자가 손바닥이나 손을 웨어러블 디바이스에 계속 대고 있을 필요가 있으므로 정확한 SCL을 결정하기가 어렵다. 이에 따라 본 개시는 cEDA 전극이 손목 바깥쪽에 배열된 형태를 갖는 웨어러블 생체 모니터링 디바이스에 관한 것이다. 특히, 본 개시는 급성 스트레스 이벤트를 검출하기 위한 웨어러블 생체 모니터링 디바이스 상에서의 손목 바깥쪽 cEDA 전극의 레이아웃, 크기, 간격 및 배치에 관한 것이다. 본 개시는 또한 전극이 웨어러블 생체 모니터링 디바이스의 손목쪽에 배치될 때 충분한 신호 품질을 얻는 것과 관련된 문제를 해결한다.
본 명세서에서 설명하는 실시예에 따르면, 접촉 면적의 증가, 피부 접촉 유지 방법의 개선 및 이에 상응하는 센서 신호의 신호 품질 개선이 보장될 수 있는 구성 형태가 제안된다.
이제 도면을 참조하여 본 개시의 예시적인 실시예를 보다 상세하게 설명한다.
예시적인 디바이스 및 시스템
이제 도면을 참조하면, 도 2 내지 도 5는 본 개시에 따른 웨어러블 컴퓨팅 디바이스(100)의 사시도이다. 특히, 도 2에 도시된 바와 같이, 웨어러블 컴퓨팅 디바이스(100)는 손목시계처럼 사용자의 팔뚝(102)에 착용될 수 있다. 따라서, 도시된 바와 같이, 웨어러블 컴퓨팅 디바이스(100)는 웨어러블 컴퓨팅 디바이스(100)를 사용자의 팔뚝(102)에 고정하기 위한 손목 밴드(103)를 포함할 수 있다. 또한, 도 2, 도 3 및 도 5에 도시된 바와 같이, 웨어러블 컴퓨팅 디바이스(100)는 외부 커버(105) 및 웨어러블 컴퓨팅 디바이스(100)와 관련된 전자 기기를 수용하는 하우징(104)을 갖는다. 예를 들어, 일 실시예에서, 외부 커버(105)는 유리, 폴리카보네이트, 아크릴 등으로 이루어질 수 있다. 또한, 도 2, 도 3 및 도 5에 도시된 바와 같이, 웨어러블 컴퓨팅 디바이스(100)는 하우징(104) 내에 배열되고 외부 커버(105)를 통해 볼 수 있는 전자 디스플레이(106)를 포함한다. 더욱이, 도시된 바와 같이, 웨어러블 컴퓨팅 디바이스(100)는 사용자의 특정한 건강 데이터를 수집하기 위해 웨어러블 컴퓨팅 디바이스(100)의 다양한 센서를 활성화하는 메커니즘을 제공하도록 구현될 수 있는 하나 이상의 버튼(108)을 또한 포함할 수 있다. 더욱이, 일 실시예에서, 전자 디스플레이(106)는 하우징(104) 내에 수용될 수도 있는 전자기기 패키지(미도시)를 덮을 수 있다.
특히 도 4를 참조하면, 웨어러블 컴퓨팅 디바이스(100)의 하우징(104)은 사용자가 착용할 때 사용자의 손목 바깥쪽에 안착하도록 구성된 손목 바깥쪽 면(110) 및 사용자가 손목에 착용할 때 사용자와의 피부 접촉을 유지하도록 하우징(104)의 손목 바깥쪽 면(110)에 위치되는 복수의 생체 센서 전극(112)을 더 포함한다. 따라서, 이러한 실시예에서, 각각의 생체 센서 전극(112) 각각은, 적어도, 손목 바깥쪽 위에 피부 접촉 위치에서 사용자의 전기 임피던스를 지속적으로 측정한다. 이에 따라, 하나 이상의 실시예에서, 복수의 생체 센서 전극(112) 중 하나 이상(또는 전부)이 cEDA 센서 전극일 수 있다. 일부 실시예에서, 웨어러블 컴퓨팅 디바이스(100)는 cEDA 센서 전극 외에 적어도 하나의 추가 생체 센서 전극을 또한 포함할 수 있다. 이러한 실시예에서, 추가 생체 센서 전극은 (주변 온도 센서 또는 피부 온도 센서와 같은) 하나 이상의 온도 센서, 습도 센서, 광 센서, 압력 센서, 마이크 또는 PPG 센서를 포함할 수 있다.
또한, 여기서 설명하는 생체 센서 전극(112)은 임의의 적절한 재료로 구성될 수 있다. 예를 들어, 일 실시예에서, 여기서 설명하는 생체 센서 전극(112)은 스테인리스 스틸 또는 적절한 전도도 및/또는 내식성을 갖는 임의의 다른 재료로 구성될 수 있고, 1마이크로미터 두께의 티타늄 질화물일 수 있는 선택적인 PVD 코팅을 구비할 수 있다. 이러한 실시예에서, PVD 코팅은 센서 전극(112)에 원하는 색상을 제공할 수 있고, 이에 의해 스테인리스 스틸이 이미 제공하는 것 이상으로 산화를 방지하고 또 내구성을 증가시킨다.
추가 실시예에서, PVD 및 표면 마감은 cEDA 신호 및 사용자의 편안함에 영향을 미치는 보습을 증가/감소시키는 데 사용될 수 있다. 특정 실시예에서, 생체 센서 전극(112)은 광택 또는 거울면 마감을 갖는 주석과 니켈의 합금(TiN)으로 형성될 수 있다. 더욱이, 일 실시예에서, 생체 센서 전극(112)은 소수성 재료 또는 투명한 재료로 구성될 수 있다.
이제 도 6을 참조하면, 다양한 실시예에 따라 활용될 수 있는 웨어러블 컴퓨팅 디바이스(100)의 예시적인 시스템(200)의 컴포넌트가 도시되어 있다. 특히, 도시된 바와 같이, 시스템(200)은 또한 사용자의 전기 임피던스를 이용하여 소정 시간 동안의 사용자의 피부 컨덕턴스 수준(SCL) 및/또는 피부 컨덕턴스 응답(SCR)을 결정하기 위해 복수의 생체 센서 전극(112)에 통신 가능하게 결합된 적어도 하나의 컨트롤러(202)를 포함할 수 있다. 따라서, 이러한 실시예에서, 생체 센서 전극(112)은 전압, 전류, 임피던스 및/또는 EDA 애플리케이션을 위해 컨트롤러(202)에 의해 사용될 수 있는 임의의 기타 적절한 파라미터를 측정할 수 있다.
더욱이, 일 실시예에서, 컨트롤러(들)(202)는 플래시 메모리 또는 DRAM과 같은 메모리 디바이스(204)에 저장될 수 있는 명령을 실행하기 위한 중앙 연산처리 장치(CPU) 또는 그래픽 처리 장치(GPU)일 수 있다. 예를 들어, 일 실시예에서, 메모리 디바이스(204)는 RAM, ROM, FLASH 메모리 또는 기타 비일시적 디지털 데이터 저장 장치를 포함할 수 있고, 메모리 디바이스(204)로부터 로드되어 컨트롤러(들)(202)를 이용하여 실행될 때 컨트롤러(들)(202)가 여기서 설명하는 기능을 수행하게 하는 명령 시퀀스를 포함하는 제어 프로그램을 포함할 수 있다. 통사의 기술자에게 명백한 바와 같이, 시스템(200)은 컨트롤러 또는 임의의 적당한 프로세서에 의해 실행하기 위한 프로그램 명령을 위한 데이터 저장 장치와 같은 많은 유형의 메모리, 데이터 저장 장치 또는 컴퓨터 판독 가능 매체를 포함할 수 있다. 동일하거나 혹은 별도의 저장 장치가 이미지나 데이터를 위해 사용될 수 있고, 다른 디바이스와의 정보 공유를 위해 이동식 메모리가 사용될 수 있으며, 다른 디바이스와의 공유를 위해 다양한 통신 방식이 이용될 수 있다. 또한, 비록 디바이스가 다른 수단을 통해, 예를 들어 오디오 스피커, 프로젝터, 또는 디스플레이 캐스팅 또는 휴대 전화와 같은 다른 디바이스로의 데이터 스트리밍을 통해 정보를 전달할 수 있고, 휴대 전화의 애플리케이션이 데이터를 표시하지만, 도시된 바와 같이, 시스템(200)은 터치 스크린, 유기 발광 다이오드(OLED) 또는 액정 디스플레이(LCD)와 같은 임의의 적절한 디스플레이(206)를 포함한다.
시스템(200)은 또한 특정 무선 채널의 통신 범위 내에서 하나 이상의 전자 디바이스와 통신하도록 작동 가능한 하나 이상의 무선 컴포넌트(212)를 포함할 수 있다. 무선 채널은 Bluetooth, 셀룰러, NFC, 초광대역(UWB) 또는 Wi-Fi 채널과 같이 장치가 무선으로 통신할 수 있게 하는 데 사용되는 적절한 채널일 수 있다. 시스템(200)이 당 업계에서 공지된 바와 같이 하나 이상의 통상의 유선 통신 연결을 구비할 수 있음을 이해해야 한다.
시스템(200)은 또한 하나 이상의 전원 컴포넌트(208)를 포함하는데, 예를 들어 종래의 플러그인 방식을 통해 또는 전력 매트(power mat) 또는 다른 장치와의 근접을 통한 용량성 충전과 같은 다른 방식을 통해 재충전되도록 작동 가능한 배터리를 포함할 수 있다. 추가 실시예에서, 시스템(200)은 또한 사용자로부터의 통상적인 입력을 수신할 수 있는 적어도 하나의 추가 I/O 디바이스(210)를 포함할 수 있다. 이러한 통상적인 입력은 예를 들어 푸시 버튼, 터치 패드, 터치 스크린, 휠, 조이스틱, 키보드, 마우스, 트랙볼, 키패드 또는 사용자가 시스템(200)에 명령을 입력할 수 있는 임의의 다른 디바이스 또는 요소를 포함할 수 있다. 다른 실시예에서, I/O 디바이스(들)(210)는 일부 실시예에서와 같이 무선 적외선 또는 Bluetooth 또는 기타 링크에 의해 연결될 수 있다. 일부 실시예에서, 시스템(200)은 또한 음성 또는 다른 오디오 명령을 받아들이는 마이크 또는 다른 오디오 획득 요소를 포함할 수 있다. 예를 들어, 특정 실시예에서, 시스템(200)이 버튼을 전혀 포함하지 않을 수 있고, 사용자가 디바이스와 접촉하지 않고도 디바이스를 제어할 수 있도록 시각적이고 청각적인 명령들의 조합을 통해서만 제어될 수 있다. 특정 실시예에서, I/O 요소(210)는 또한 여기서 설명하는 생체 센서 전극(112), 광학 센서, 기압 센서(예컨대, 고도계 등) 등 중 하나 이상을 포함할 수 있다.
계속해서 도 6을 참조하면, 시스템(200)은 또한 예를 들어 웨어러블 컴퓨팅 디바이스(100)를 착용하는 사람을 위해 인체의 하나 이상의 메트릭(metrics)에 대한 데이터를 측정하기 위한 드라이버(214) 및 하나 이상의 이미터(216)와 하나 이상의 검출기(218)의 적어도 일부 조합(여기서는 광학 패키지(215)라고 함)을 포함할 수 있다. 이러한 실시예에서, 도 4에 도시된 바와 같이. 예를 들어 광학 패키지(215)는 하우징(104) 내에 배열될 수 있고 하우징(104)의 손목 바깥쪽 면(110)을 통해 적어도 부분적으로 노출될 수 있다. 따라서, 여기에 도시하고 추가로 설명하는 바와 같이, 생체 센서 전극(112)은 하우징(104)의 손목쪽 면(110) 위에 있는 광학 패키지(215) 주위에 위치될 수 있다. 대안적인 실시예에서, 광학 패키지(215)의 여러 컴포넌트가 센서 전극(112) 주위에 그리고/또는 다른 적당한 구성 형태로, 예를 들어 광학 패키지(215)에 인접하게, 그 사이에 들어가게, 그것에 의해 둘러싸이게, 혹은 그 위에 위치될 수 있다. 특정 실시예에서, 예를 들어, 생체 센서 전극(112)이 투명한 경우, 생체 센서 전극(112)은 광학 패키지(215) 위에 배열될 수 있다.
다시 도 6을 참조하면, 일부 실시예에서, 이는 주변 환경의 이미지를 캡처할 수 있고 그리고 디바이스 부근에 있는 사용자, 사람 또는 물체를 이미지화할 수 있는 하나 이상의 카메라와 같은 적어도 하나의 이미징 요소를 포함할 수 있다. 이미지 캡처 요소는 사용자가 디바이스를 작동시킬 때 사용자의 이미지를 캡처하기에 충분한 해상도, 초점 범위 및 가시 영역을 갖는 CCD 이미지 캡처 요소와 같은 임의의 적절한 기술을 포함할 수 있다. 다른 이미지 캡처 요소는 심도 센서도 포함할 수 있다. 카메라 요소를 컴퓨팅 디바이스와 함께 이용하여 이미지를 캡처하는 방법은 해당 기술 분야에서 공지되어 있고 따라서 여기서는 상세하게 설명하지 않는다. 이미지 캡처가 단일 이미지, 다중 이미지, 주기적 이미징, 연속 이미지 캡처, 이미지 스트리밍 등을 이용하여 수행될 수 있음을 이해해야 한다. 또한, 시스템(200)은 예를 들어 사용자, 애플리케이션 또는 다른 디바이스로부터 명령을 수신할 때 이미지 캡처를 시작 및/또는 중지하는 기능을 포함할 수 있다.
도 6의 이미터(216)와 검출기(218)는, 하나의 예에서, 광용적맥파(PPG) 측정치를 얻기 위해 사용될 수 있다. 어떤 PPG 기술은 단일 공간 위치에서 광을 검출하는 것 또는 2곳 이상의 공간 위치로부터 얻은 신호를 더하는 것을 필요로 한다. 이러한 2가지 방식 모두 심박수(HR) 추정치(또는 다른 생리학적 메트릭)를 결정할 수 있는 단일 공간 측정치를 발생시킨다. 일부 실시예에서, PPG 디바이스는 단일 검출기에 결합된 단일 광원(즉, 단일 광 경로)을 사용한다. 대안적으로, PPG 디바이스는 단일 검출기 또는 다중 검출기에 결합된 다중 광원(즉, 2개 이상의 광 경로)을 사용할 수 있다. 다른 실시예에서, PPG 디바이스는 단일 광원 또는 다수의 광원에 결합된 다수의 검출기(즉, 2개 이상의 광 경로)를 사용한다. 일부 경우에서, 광원(들)은 녹색, 적색, 적외선(IR) 광 중 하나 이상 뿐 아니라 (대사 모니터링을 위한 장적외선과 같은) 스펙트럼 내의 다른 적당한 파장의 광을 방출하도록 구성될 수 있다. 예를 들어, PPG 디바이스는 단일의 광원과 특정 파장 또는 파장 범위를 검출하도록 각각 구성된 2개 이상의 광 검출기를 사용할 수 있다. 일부 경우에서는, 각각의 검출기가 서로 다른 파장 똔느 파장 범위를 검출하도록 구성된다. 다른 경우에서는, 2개 이상의 검출기가 동일한 파장 또는 파장 범위를 검출하도록 구성된다. 또 다른 경우, 하나 이상의 검출기가 하나 이상의 다른 검출기와 다른 특정 파장 또는 파장 범위를 검출하도록 구성된다. 다중 광 경로를 사용하는 실시예에서, PPG 디바이스는 HR 추정치 또는 다른 생리학적 메트릭을 결정하기 전에 다중 광 경로로부터 발생하는 신호의 평균을 결정할 수 있다.
더욱이, 실시예에서, 이미터(216)와 검출기(218)는 드라이버 회로를 이용하여 컨트롤러(202)에 직간접적으로 결합될 수 있고, 컨트롤러(202)는 드라이버 회로에 의해 이미터(216)를 구동하고 검출기(218)로부터 신호를 획득할 수 있다. 호스트 컴퓨터(222)는 하나 이상의 근거리 네트워크, 광역 네트워크, UWB 및/또는 임의의 지상 또는 위성 링크를 사용하는 인터네트워크를 포함할 수 있는 하나 이상의 네트워크(220)를 통해 무선 네트워킹 컴포넌트(212)와 통신할 수 있다. 일부 실시예에서, 호스트 컴퓨터(222)는 여기서 설명하는 기능 중 일부를 수행하도록 구성된 제어 프로그램 및/또는 애플리케이션 프로그램을 실행한다.
이제 도 7을 참조하면, 다양한 실시예의 태양을 구현할 수 있는 환경(300)의 개략도가 도시되어 있다. 특히, 도시된 바와 같이, 사용자는 적어도 하나의 무선 통신 프로토콜을 이용하여 통신할 수 있는 다수의 각기 다른 디바이스를 가질 수 있다. 예를 들어, 도시된 바와 같이, 사용자는 스마트워치(302) 또는 (웨어러블 컴퓨팅 디바이스(100)와 같은) 피트니스 트래커를 가질 수 있고, 사용자는 이러한 디바이스가 스마트폰(304) 및 태블릿 컴퓨터(306)와 통신할 수 있기를 원할 것이다. 다수의 장치와 통신하는 능력으로 인해 사용자는 스마트폰(304) 또는 태블릿 컴퓨터(306)에 설치된 애플리케이션을 이용하여 스마트워치(302)로부터 정보, 예컨대 스마트워치(302)의 센서를 이용하여 획득된 데이터를 얻을 수 있다. 사용자는 또한 스마트 워치(302)가 스마트워치로부터 데이터를 획득하여 처리할 수 있고 스마트워치 또는 개별 디바이스에 설치된 애플리케이션에서는 이용할 수 없었던 기능을 제공하는 서비스 공급자(308) 또는 그러한 기타 개체와 통신할 수 있기를 원할 수 있다. 또한, 도시된 바와 같이, 스마트워치(302)는 인터넷 또는 셀룰러 네트워크와 같은 적어도 하나의 네트워크(210)를 통해 서비스 제공자(308)와 통신할 수 있거나 혹은 적어도 하나의 네트워크를 통해 통신할 수 있는 개별 디바이스 중 하나와 Bluetooth®와 같은 무선 연결을 통해 통신할 수 있다. 다양한 실시예에서, 다수의 다른 유형의 또는 근거의 통신이 있을 수 있다.
통신할 수 있는 것 외에, 사용자는 디바이스들이 다양한 방식으로 또는 특정한 양상으로 통신할 수 있기를 원할 수 있다. 예를 들어, 사용자는 특히 데이터가 개인 건강 데이터 또는 기타 이러한 통신을 포함할 수 있는 경우에 디바이스들 간의 통신이 보호될 것을 원할 수 있다. 디바이스 또는 애플리케이션 공급자는 적어도 일부 상황에서 이 정보를 보호할 필요가 있을 수 있다. 사용자는 디바이스들이 순차적으로가 아니라 동시에 서로 통신할 수 있기를 원할 수 있다. 이는 페어링이 필요할 수 있는 경우에 특히 그러한데, 사용자는 각각의 디바이스가 단지 한 번만 페어링되고 이에 따라 손수 페어링할 필요가 없는 것을 선호할 수 있기 때문이다. 사용자는 또한 통신이 가능한 한 표준 기반이 되기를 바랄 수 있고, 이에 따라 사용자가 손수 개입할 필요가 거의 없을 뿐만 아니라 디바이스들이 가능한 한 보통은 다양한 전용 형식에는 해당하지 않는 많은 유형의 다른 디바이스와 통신할 수 있다. 따라서 사용자는 1개의 디바이스를 가지고 방 안을 걸으며 이러한 디바이스는 사용자의 노력이 거의 또는 전혀 없이 자동으로 다른 대상 디바이스와 통신할 수 있기를 희망할 수 있다. 다양한 통상의 방식에서, 디바이스는 Wi-Fi와 같은 통신 기술을 활용하여 무선 근거리 네트워크(WLAN)를 이용하는 다른 디바이스와 통신한다.
많은 사물 인터넷(IoT) 디바이스와 같은 보다 소형의 또는 보다 저용량의 디바이스는 Bluetooth®, 특히 전력 소비가 매우 낮은 저에너지 블루투스(BLE)와 같은 통신 기술을 대신 활용한다.
추가 실시예에서, 도 7에 도시된 환경(300)은 데이터가 매우 다양한 방식으로 획득, 처리 및 표시될 수 있게 한다. 예를 들어, 데이터는 스마트 워치(302)의 센서를 이용하여 획득될 수 있지만, 스마트 워치(302)의 제한된 리소스로 인해 데이터는 처리를 위해 스마트폰(304) 또는 서비스 공급자(308)(또는 클라우드 리소스)에게 전송될 수 있고, 그러면 처리 결과가 스마트워치(302), 스마트폰(304) 및/또는 사용자와 연관된 다른 디바이스, 예를 들어 태블릿 컴퓨터(306)에서 해당 사용자에게 다시 제시될 수 있다. 적어도 일부 실시예에서, 사용자는 이러한 디바이스들 중 임의의 디바이스의 인터페이스를 이용하여 건강 데이터와 같은 입력을 제공할 수 있고, 디바이스의 인터페이스는 그러한 결정을 내릴 때 고려될 수 있다.
이제 도 8a 내지 도 8d 및 도 9a 내지 도 9l을 참조하면, 본 개시에 따른 웨어러블 컴퓨팅 디바이스(100)의 하우징(104)의 손목쪽 면(110)의 다수의 실시예, 특히 손목쪽 면(110) 위에 생체 센서 전극(112)이 다양하게 배열된 형태가 여러 가지로 도시되고 있다. 여기서 설명하는 복수의 생체 센서 전극(112)의 배열 형태의 각각의 실시예는 제한적인 의미가 아니며, 예시적인 배열 형태로 여기에 제시되었음을 이해해야 한다. 특히, 도 8a 내지 도 8d 및 도 9a 내지 도 9l 전체에서 도시된 바와 같이, 복수의 생체 센서 전극(112)을 하우징(104)의 손목쪽 면(110)의 중심을 향하도록 유지하기 위해, 즉 사용자와의 피부 접촉을 유지하는 것을 돕기 위해, 복수의 생체 센서 전극(112)이 하우징(104)의 손목쪽 면(110)의 가장자리(124)로부터 가장자리 갭(122)에 의해 이격되어 있다. 이러한 배열 형태는 사용자와의 피부 접촉이 사용하는 내내 유지되도록 웨어러블 컴퓨팅 디바이스(100)의 손목쪽 면(110)의 중심에 가능한 한 가까이 있으면서도 전극 표면적을 최대화하는 것을 포함하여 다수의 이점을 제공한다. 여기서 설명하는 배열 형태와 동일한 이점을 제공하는 또 다른 배열 형태도 또한 활용될 수 있다.
또한, 도시된 바와 같이, 복수의 생체 센서 전극(112) 중 2개 이상이 그 크기 및/또는 형상이 각기 다를 수 있다. 특정 실시예에서, 예를 들어, 각각의 생체 센서 전극(112)의 가장 좁은 치수는 약 2mm 내지 약 10mm의 범위이며, 예를 들어 약 5mm 또는 약 4.5mm일 수 있다. 따라서 하우징(104)의 손목쪽 면(110) 위에 있는 생체 센서 전극(112) 전부의 전체 면적은 약 100제곱밀리미터(mm2)내지 약 150mm2의 범위, 예를 들어 약 130mm2일 수 있다. 다른 실시예에서, 여기서 설명하는 복수의 생체 센서 전극(112)은 뾰족한 가장자리가 아닌 대체로 곡선형 가장자리를 가질 수 있고, 또한 하우징(104)과 같은 높이에 있을 수 있다. 또 다른 실시예에서, 피부 접촉을 최대화하기 위해 가능한 한 큰 것이 바람직한 복수의 생체 센서 전극(112)은 보다 큰 전극 길이 및/또는 영역 상자(bonding)의 추가적인 이점을 제공한다.
다른 실시예에서, 도 8a 및 도 8b 각각은 제1 생체 센서 전극(114) 및 제2 생체 센서 전극(116)을 도시한다. 또한, 도시된 바와 같이, 제1 및 제2 생체 센서 전극(114, 116)은 적어도 하나의 갭(118, 120)에 의해 이격되어 있다. 특히, 도시된 바와 같이, 제1 및 제2 생체 센서 전극(114, 116)은 광학 패키지(215)의 양측에 배열된 제1 갭(118) 및 제2 갭(120)에 의해 이격되어 있다. 여기서 설명하는 갭이 임의의 적절한 크기일 수 있음을 이해해야 한다. 예를 들어, 특정 실시예에서, 여기서 설명하는 갭(들)은 약 1mm 내지 약 10mm 범위, 예를 들어 약 5mm 또는 더 바람직하게는 약 2mm일 수 있다.
이제 도 9a 내지 도 9l을 참조하면, 본 발명에 따른 웨어러블 컴퓨팅 디바이스(100)의 하우징(104)의 손목쪽 면(110)의 다수의 실시예, 특히 손목쪽 면(100) 위에 생체 센서 전극(112)이 다양하게 배열된 형태가 여러 가지로 도시되고 있다. 특히, 도 9a에 도시된 바와 같이, 제1 및 제2 생체 센서 전극(114, 116)은 동심인 구성 형태로 배열될 수 있다. 따라서, 도시된 바와 같이, 이러한 실시예에서, 제1 및 제2 생체 센서 전극(114, 116) 사이의 갭(118)은 환형 갭(122)이다.
다른 실시예에서, 도 9b에 도시된 바와 같이, 제1 및 제2 생체 센서 전극(114, 116)은 광학 패키지(215)(미도시) 주위에 환형인 구성 형태로 배열될 수 있다. 대조적으로, 도 9c, 도 9i 및 도 9j에 도시된 바와 같이, 제1 및 제2 생체 센서 전극(114, 116) 각각은 사각형(예컨대, 정사각형, 직사각형 등)인 구성 형태를 가질 수 있다. 또한, 특정 실시예에서, 도 9c에 도시된 바와 같이, 생체 센서 전극(112)은 생체 센서 전극들 중 한 전극(114)가 다른 전극 안에 들어 있도록 (즉, 생체 센서 전극들 중 하나(116)가 다른 것보다 커서 작은 생체 센서 전극(114)이 다른 전극 내에 들어맞도록) 배열될 수 있다.
도 9e 내지 도 9l에 도시된 바와 같이, 복수의 생체 센서 전극(112)은 광학 패키지(215) 주위에 배열된 2개보다 많은 생체 센서 전극을 포함할 수 있다. 예를 들어, 도 9e 및 도 9f에 도시된 바와 같이, 웨어러블 컴퓨팅 디바이스(100)는 광학 패키지(215)(미도시) 주위에 환형 구성 형태로 배열된 2개보다 많은 생체 센서 전극(114, 116)을 구비할 수 있다. 보다 구체적으로, 도 9e에 도시된 바와 같이, 4개의 생체 센서 전극(112)이 환형 구성 형태로 손목쪽 면(110)에 배열된다. 다른 실시예에서, 도 9f에 도시된 바와 같이, 8개의 생체 센서 전극(112)이 환형 구성 형태로 손목쪽 면(110)에 배열된다. 통상의 기술자는 센서 전극의 표면적을 증가시키도록 임의의 수의 생체 센서 전극이 웨어러블 컴퓨팅 디바이스(100)의 손목쪽 면(110)에 배열될 수 있고, 이에 따라 센서 신호 품질이 향상됨을 알 것이다.
이제 도 9g, 도 9h 및 도 9k를 참조하면, 복수의 생체 센서 전극(112) 중 적어도 2개가 쌍(114, 116)으로 배열될 수 있다. 예를 들어, 컨트롤러(들)(202)는 복수의 생체 센서 전극(112)의 쌍들(114, 116) 중 하나를 선택하여 그 쌍으로부터 수집되는 데이터에 기초하여 소정 기간 동안의 사용자의 SCL을 결정하도록 구성된다. 특정 실시예에서, 절전 및 디바이스 소형화를 위해, 생체 센서 전극(112)은 주기적으로 작동될 수 있다(즉, 간헐적으로 꺼짐). 한 번에 단 한 쌍의 전극만이 활성화되더라도, 웨어러블 컴퓨팅 디바이스(100)는 활성 쌍을 신속하게 스위칭하는 것에 의해 모든 가능한 전극 쌍에 걸쳐 여전히 지속적인 측정을 수행할 수 있다. 이는 전력 예산을 줄이고, 서로 다른 전극 쌍 사이에서의 신호 오염을 방지하고, 컨트롤러가 데이터를 출력할 최적의 전극 쌍을 선택할 수 있게 한다. 대안적으로, 거의 일정한 여기 전류가 있지만 임의의 주어진 순간에는 단 하나의 전극 쌍에서만 여기 전류가 발생하는 것을 의미하는 예컨대 비중첩 구형파 여기를 이용하여 여러 쌍의 생체 센서 전극을 활성화시킬 수 있다.
또한, 이러한 실시예에서, 도시된 바와 같이, 생체 센서 전극(112)의 쌍(114, 116) 각각의 적어도 일부가 서로 평행하고 소정 거리의 갭(118)에 의해 이격될 수 있다. 따라서 이러한 배열 형태는 2개의 생체 센서 전극(114, 116) 사이에서 수집된 최선의 혹은 가장 정확한 데이터가 추가 처리를 위해 사용될 수 있도록 다수의 비슷한 위치에 놓인 센서 전극들로부터 샘플 데이터를 받아들이는 데 유익할 수 있다. 특히, 도 9g 및 도 9k에 도시된 바와 같이, 생체 센서 전극(112)의 쌍(114, 116)은 실질적으로 크기 및/또는 치수가 동일할 수 있고, 손목쪽 면(110)에 대해 수직 방향으로(도 9g), 손목쪽 면(110)에 대해 수평 방향으로(도 9k) 그리고/또는 그 조합으로 배열될 수 있다. 대안적인 실시예에서, 9h에 도시된 바와 같이, 생체 센서 전극(112)은 중앙에 있는 더 큰 생체 센서 전극(116) 및 중앙의 더 큰 생체 센서 전극(116)을 둘러싸는 복수의 더 작은 생체 센서 전극(114)을 포함할 수 있다.
도 9l을 참조하면, 또 다른 실시예에서, 복수의 생체 센서 전극(112)이 도 9c와 유사하게 배열될 수 있지만, 생체 센서 전극들 사이에 다수의 갭(118, 120)이 있다. 예를 들어, 도시된 바와 같이, 복수의 생체 센서 전극(112)은 제1 생체 센서 전극(114) 및 제2 생체 센서 전극(116)으로 된 세트 2개를 포함할 수 있다. 각각의 세트는 광학 패키지(215)(미도시)의 양 측부에 배열되고 갭(120)에 의해 분리된다. 또한, 제1 및 제2 생체 센서 전극(114, 116) 각각도 또한 갭(118)에 의해 분리된다.
이제 도 10을 참조하면, 또 다른 실시예에서, 복수의 생체 센서 전극(112) 중 하나 이상이 하우징(104)의 손목쪽 면(110)의 표면 위에서 복수의 생체 센서 전극(112)에 인접한 영역에 대해 융기될 수 있다. 이러한 실시예에서, 도시된 바와 같이, 생체 센서 전극(112)은 하우징(104)의 손목쪽 면(110)에 대해 높아질 수 있다. 다른 실시예에서, 생체 센서 전극(112)은 하우징(104)의 손목쪽 면(110)과 동일한 높이에 놓일 수 있지만, 이에 인접하게 채널 또는 오목부를 포함할 수 있다. 이러한 배열 형태는 일반적으로 증기가 주변 공기로 직접 흩어지게 하는 데 효율적이다. 그러한 실시예에서, 채널(들)은 외부 공기에 연결되도록 구성될 수 있다.
이제 도 10 및 도 11을 참조하면, (316L 스테인리스 강으로 형성된) 생체 센서 전극(112)이 사용자의 팔꿈치 및 손에 대해 배열된 형태의 일 실시예가 생체 센서 전극(112)의 cEDA 측정치의 시간에 대한 그래프(400)와 함께 제공된다. 특히, T1과 T2 사이에 도시된 바와 같이, 시작점(402)에 도시된 바와 같이 사용자가 손목을 회전시킬 때 생체 센서 전극 1과 2(도 10)로부터 cEDA 측정이 이루어진다. 또한, T3과 T4 사이에 도시된 바와 같이, 시작점(404)에 도시된 바와 같이 사용자가 손목을 회전시킬 때 생체 센서 전극 3과 4(도 10)로부터 cEDA 측정이 이루어진다. 또한, T4와 T5 사이에 도시된 바와 같이, 사용자가 덤벨 로우(dumbbell row)를 완료할 때 생체 센서 전극 3과 4(도 10)로부터 cEDA 측정이 이루어진다. 또한, T5와 T6 사이에 도시된 바와 같이, 사용자가 덤벨 로우를 완료할 때 생체 센서 전극 1과 2(도 10)로부터 cEDA 측정이 이루어진다. 따라서 도 10과 도 11은 다수의 단일 경로 전극을 이용하는 cEDA 측정이 전극 위치 및 몸짓/운동(예컨대, 웨이트)을 평가하기 위한 기회를 제공하는 방법의 현실적인 예를 제공한다. 더욱이, 특정 실시예에서, 특정 전극 조합이 (즉, 종목/활동 변화에 대해) 최적화된 cEDA 신호 품질을 가질 수 있다.
이제 도 12a 및 도 12b를 참조하면, 여기서 설명하는 웨어러블 컴퓨팅 디바이스를 착용하고 있는 사용자의 (예컨대, 피부 및/또는 주변 온도와 같은) 온도, 습도 및 도전율의 그래프가 본 개시에 따라 제공된다. 특히, 도 12a에 도시된 바와 같이, 사용자는 2개의 방 사이를 이동하는데, 하나는 가습기가 있는 방이고 다른 하나는 없는 방이다. 또한, 도 12b에 도시된 바와 같이, 사용자는 2개의 방 사이를 이동하는데, 하나는 습도를 높이기 위해 온수 샤워를 사용하고 다른 하나는 사용하지 않는다. 따라서, 도 12a 및 도 12b의 그래프에 대체로 도시된 바와 같이. 성가신 변수(예컨대, 주변 및 대상 조건)의 존재는 데이터를 cEDA, 온도 및 습도 간의 명확한 관계를 그리기에 불충분하게 만든다. 따라서, 여기서 설명하는 추가 온도 및/또는 습도 센서는 사용자의 cEDA 측정을 더 개선하기 위해 이러한 성가신 데이터를 제거하는 데 유익할 수 있다.
이제 도 13을 참조하면, 웨어러블 컴퓨팅 디바이스를 이용하여 사용자의 스트레스 상태를 모니터링하는 방법(500)의 일 실시예의 흐름도가 제시된다. 실시예에서, 예를 들어, 웨어러블 컴퓨팅 디바이스는 도 1 내지 도 10을 참조하여 여기서 설명한 웨어러블 컴퓨팅 디바이스(100)와 같은 임의의 적당한 웨어러블 컴퓨팅 디바이스일 수 있다. 일반적으로, 여기서는 도 1 및 내지 도 10의 웨어러블 컴퓨팅 디바이스(100)를 참조하여 방법(500)을 설명한다. 그러나 개시된 방법(500)이 임의의 다른 적절한 구성 형태를 갖는 임의의 다른 적당한 웨어러블 컴퓨팅 디바이스로 구현될 수 있음을 이해해야 한다. 또한, 비록 도 13은 예시 및 설명을 위해 단계들이 특정 순서로 수행되는 것으로 나타내지만, 여기서 논의하는 방법은 어떤 특정한 순서 또는 배열 형태로 한정되지 않는다. 통상의 기술자는, 여기서 제시한 개시 내용을 이용하여, 여기서 개시한 방법의 여러 단계들이 본 개시의 범위를 벗어나지 않으면서 다양한 방식으로 생략, 재배열 및/또는 개조될 수 있음을 알 것이다.
여기서 언급하고 설명한 바와 같이, 웨어러블 컴퓨팅 디바이스는 웨어러블 컴퓨팅 디바이스 하우징의 손목 바깥쪽 면에 복수의 생체 센서 전극을 포함한다. 따라서, (502)에 나타난 바와 같이, 방법(500)은 복수의 생체 센서 전극 중 하나 이상을 사용자의 손목 바깥쪽에 인접하게 배치하는 단계를 포함한다. 예를 들어, 실시예에서, 방법(500)은 하우징의 손목 바깥쪽 면에 있는 광학 패키지 주위에, 그 사이에 들어가게, 그것에 의해 둘러싸이게, 혹은 그 위에 복수의 생체 센서 전극을 배열하는 단계를 포함할 수 있다. (504)에 나타난 바와 같이, 방법(500)은 웨어러블 컴퓨팅 디바이스의 복수의 생체 센서 전극 중 하나 이상을 통해, 적어도, 소정 기간 동안 손목에서 사용자의 전기 임피던스를 나타내는 하나 이상의 파라미터를 지속적으로 측정하는 단계를 포함한다. (506)에 나타난 바와 같이, 방법(500)은 웨어러블 컴퓨팅 디바이스에 의해 수집된 하나 이상의 추가 파라미터에 기초하여 사용자의 측정된 전기 임피던스를 필터링하는 단계를 포함한다. 예를 들어, 도 12a 및 도 12b를 참조하여 설명한 바와 같이, 특정 파라미터 또는 이벤트(예컨대, 습도, 온도, 도전율, 소음, 압력, 빛 등)가 고려되고 수집된 데이터로부터 제거될 수 있다.
다시 도 13을 참조하면, (508)에 나타난 바와 같이, 방법(500)은 웨어러블 컴퓨팅 디바이스의 적어도 하나의 컨트롤러를 통해 사용자의 전기 임피던스에 기초하여 특정 기간 동안의 사용자 피부 컨덕턴스 수준 (SCL)을 결정하는 단계를 포함한다. (510)에 나타난 바와 같이, 방법(500)은 컨트롤러(들)를 통해 SCL 또는 SCL 및 심박수와 같은 다른 디바이스에 의해 수집된 메트릭의 조합에 기초하여 사용자의 스트레스 상태를 계산하는 것을 포함한다. (512)에 나타난 바와 같이, 방법(500)은 웨어러블 컴퓨팅 디바이스의 디스플레이를 통해 스트레스 상태를 사용자에게 표시하는 단계를 포함한다. 또 다른 실시예에서, 방법(500)은 예컨대 전력 사용량에 대해 측정치를 최대화하도록 측정을 위한 복수의 생체 센서 전극(112)의 최적의 쌍을 선택하는 것을 포함할 수 있다. 자극 전류 및 신호 처리 둘 다의 경우에 전극이 더 많으면 전력도 더 많이 소비하므로, 다수의 경로로부터 동시에 측정하는 것이 유용할 수 있다.
추가 개시
여기에서 논의한 기술은 서버, 데이터베이스, 소프트웨어 애플리케이션 및 기타 컴퓨터 기반 시스템, 및 이러한 시스템과 주고받는 액션 및 정보를 언급한다. 컴퓨터 기반 시스템의 고유한 유연성으로 인해 컴포넌트들 간의 작업 및 기능의 매우 다양한 구성 형태, 조합 및 분할이 가능할 수 있다. 예를 들어, 여기에 논의한 프로세스는 단일 장치 또는 컴포넌트 또는 조합하여 작동하는 다수의 디바이스 또는 컴포넌트를 이용하여 구현될 수 있다. 데이터베이스 및 애플리케이션은 단일 시스템에서 구현되거나 혹은 여러 시스템에 분산될 수 있다. 분산된 컴포넌트는 직렬로 또는 병렬로 작동할 수 있다.
본 주제를 여러 가지의 구체적이고 예시적인 실시예에 대해 상세하게 설명했지만, 각각의 예는 설명을 위해 제공되며 본 개시를 제한하는 것이 아니다. 통상의 기술자는, 상술한 내용을 이해하면, 이러한 실시예에 대한 변경, 변형 및 균등물을 용이하게 생성할 수 있다. 이에 따라 본 개시는 통상의 기술자에게는 자명할 본 개시에 대한 그러한 수정, 변형 및/또는 부가를 포함하는 것을 배제하지 않는다. 예를 들어, 하나의 실시예의 일부로 예시되거나 혹은 설명된 피처는 다른 실시예와 함께 사용되어 또 다른 실시예를 만들어 낼 수 있다. 따라서 본 개시는 그러한 변경, 변형 및 균등물을 포함하는 것을 의도한다.

Claims (20)

  1. 웨어러블 컴퓨팅 디바이스로,
    사용자가 착용하면 웨어러블 컴퓨팅 디바이스의 사용자의 손목 바깥쪽에 안착되도록 구성된 손목 바깥쪽 면을 포함하는 하우징;
    하우징 내에 배열된 전자 디스플레이;
    사용자가 손목 바깥쪽에 착용할 때 사용자와의 피부 접촉을 유지하도록 하우징의 손목 바깥쪽 면에 위치되고, 적어도, 피부 접촉 위치에서 사용자의 전기 임피던스를 나타내는 하나 이상의 파라미터를 측정하는 복수의 생체 센서 전극;
    복수의 생체 센서 전극에 통신 가능하게 결합된 적어도 하나의 드라이버; 및
    적어도 하나의 드라이버에 통신 가능하게 결합된 적어도 하나의 컨트롤러로, 사용자의 전기 임피던스에 기초하여 소정 기간 동안의 사용자의 피부 컨덕턴스 수준(SCL)을 결정하고 그리고 SCL에 적어도 부분적으로 기초하여 사용자의 스트레스 상태를 계산하도록 구성된 적어도 하나의 컨트롤러를 포함하는 것을 특징으로 하는 웨어러블 컴퓨팅 디바이스.
  2. 청구항 1에 있어서,
    복수의 생체 센서 전극 각각이 연속 피부 전기 활동(cEDA) 센서 전극을 포함하고, cEDA 센서 전극은 SCL 및 피부 컨덕턴스 반응(SCR)을 측정하도록 구성된 것을 특징으로 하는 웨어러블 컴퓨팅 디바이스.
  3. 청구항 1에 있어서,
    하우징 내에 배열되고 하우징의 손목 바깥쪽 면을 통해 적어도 부분적으로 노출되는 광학 패키지를 더 포함하고,
    복수의 생체 센서 전극은 하우징의 손목 바깥쪽 면에 있는 광학 패키지 주변에, 광학 패키지에 인접하게, 광학 패키지 사이에 들어가게, 광학 패키지에 의해 둘러싸이게 혹은 그 위에 위치되는 것을 특징으로 하는 웨어러블 컴퓨팅 디바이스.
  4. 청구항 3에 있어서,
    복수의 생체 센서 전극이 적어도 제1 생체 센서 전극 및 제2 생체 센서 전극을 포함하고, 제1 및 제2 생체 센서 전극은 적어도 하나의 갭에 의해 이격되는 것을 특징으로 하는 웨어러블 컴퓨팅 디바이스.
  5. 청구항 4에 있어서,
    적어도 하나의 갭이 광학 패키지의 양측에 배열된 제1 갭 및 제2 갭을 포함하는 것을 특징으로 하는 웨어러블 컴퓨팅 디바이스.
  6. 청구항 4에 있어서,
    제1 및 제2 생체 센서 전극이 동심원인 구성 형태로 배열되고, 적어도 하나의 갭은 환형 갭인 것을 특징으로 하는 웨어러블 컴퓨팅 디바이스.
  7. 청구항 3에 있어서,
    복수의 생체 센서 전극은 광학 패키지 주변에, 광학 패키지에 인접하게, 광학 패키지 사이에 들어가게, 광학 패키지에 의해 둘러싸이게 혹은 그 위에 배열된 2개보다 많은 생체 센서 전극을 포함하는 것을 특징으로 하는 웨어러블 컴퓨팅 디바이스.
  8. 청구항 7에 있어서,
    2개보다 많은 생체 센서 전극이 광학 패키지 주변에 환형 구성 형태로 배열되는 것을 특징으로 하는 웨어러블 컴퓨팅 디바이스.
  9. 청구항 7에 있어서,
    2개보다 많은 생체 센서 전극이 광학 패키지 주변에, 광학 패키지에 인접하게, 광학 패키지 사이에 들어가게, 광학 패키지에 의해 둘러싸이게 혹은 그 위에 사각형 구성 형태로 배열되는 것을 특징으로 하는 웨어러블 컴퓨팅 디바이스.
  10. 청구항 1에 있어서,
    복수의 생체 센서 전극 중 적어도 2개가 쌍으로 배열되고, 쌍의 각각은 서로 평행하고 갭에 의해 이격된 것을 특징으로 하는 웨어러블 컴퓨팅 디바이스.
  11. 청구항 10에 있어서,
    적어도 하나의 컨트롤러가 복수의 생체 센서 전극의 쌍들 중 하나를 선택하여 그 쌍으로부터 수집되는 데이터에 기초하여 소정 기간 동안의 사용자의 SCL을 결정하도록 구성된 것을 특징으로 하는 웨어러블 컴퓨팅 디바이스.
  12. 청구항 1에 있어서,
    복수의 생체 센서 전극 중 2개 이상이 각기 다른 형상을 갖는 것을 특징으로 하는 웨어러블 컴퓨팅 디바이스.
  13. 청구항 1에 있어서,
    복수의 생체 센서 전극이 하우징의 손목 바깥쪽 면의 가장자리로부터 갭에 의해 이격된 것을 특징으로 하는 웨어러블 컴퓨팅 디바이스.
  14. 청구항 1에 있어서,
    복수의 생체 센서 전극 중 하나 이상이 하우징의 손목 바깥쪽 면의 표면 위에서 복수의 생체 센서 전극에 인접한 영역에 대해 융기되어 있는 것을 특징으로 하는 웨어러블 컴퓨팅 디바이스.
  15. 청구항 1에 있어서,
    적어도 하나의 추가 생체 센서 전극을 더 포함하고,
    적어도 하나의 추가 생체 센서 전극은 하나 이상의 오도 센서, 습도 센서, 광 센서, 압력 센서, 마이크 또는 광용적맥파(PPG) 중 적어도 하나를 포함하는 것을 특징으로 하는 웨어러블 컴퓨팅 디바이스.
  16. 청구항 1에 있어서,
    복수의 생체 센서 전극 중 하나 이상이 투명함, 손목 바깥쪽 면과 동일한 높이에 있음, 표면 마감됨 또는 가장자리가 곡선형인 특성 중 적어도 하나를 포함하는 것을 특징으로 하는 웨어러블 컴퓨팅 디바이스.
  17. 웨어러블 컴퓨팅 디바이스를 이용하여 사용자의 스트레스 상태를 모니터링하는 컴퓨터로 구현되는 방법으로,
    웨어러블 컴퓨팅 디바이스는 웨어러블 컴퓨팅 디바이스의 하우징의 손목 바깥쪽 면에 복수의 생체 센서 전극을 구비하며,
    컴퓨터로 구현되는 방법은,
    복수의 생체 센서 전극 중 하나 이상을 사용자의 손목 바깥쪽에 인접하게 배치하는 단계;
    웨어러블 컴퓨팅 디바이스의 복수의 생체 센서 전극 중 하나 이상을 통해 소정 기간 동안 손목에서 사용자의 전기 임피던스를 나타내는 하나 이상의 파라미터를 지속적으로 측정하는 단계;
    웨어러블 컴퓨팅 디바이스의 컨트롤러를 통해, 사용자의 전기 임피던스에 기초하여 소정 기간 동안의 사용자의 피부 컨덕턴스 수준(SCL)을 결정하는 단계;
    컨트롤러(들)를 통해 SCL에 적어도 부분적으로 기초하여 사용자의 스트레스 상태를 계산하는 단계; 및
    웨어러블 컴퓨팅 디바이스의 디스플레이를 통해 스트레스 상태를 사용자에게 표시하는 단계를 포함하는 것을 특징으로 하는 웨어러블 컴퓨팅 디바이스를 이용하여 사용자의 스트레스 상태를 모니터링하는 컴퓨터로 구현되는 방법
  18. 청구항 17에 있어서,
    측정을 위한 최적의 전극 쌍을 선택하는 단계를 더 포함하는 것을 특징으로 하는 웨어러블 컴퓨팅 디바이스를 이용하여 사용자의 스트레스 상태를 모니터링하는 컴퓨터로 구현되는 방법
  19. 청구항 17에 있어서,
    웨어러블 컴퓨팅 디바이스에 의해 수집된 하나 이상의 추가 파라미터에 기초하여 사용자의 전기 임피던스를 필터링하는 단계를 더 포함하는 것을 특징으로 하는 웨어러블 컴퓨팅 디바이스를 이용하여 사용자의 스트레스 상태를 모니터링하는 컴퓨터로 구현되는 방법.
  20. 청구항 17에 있어서,
    복수의 생체 센서 전극이 하우징의 손목 바깥쪽 면에 있는 광학 패키지 주변에, 광학 패키지에 인접하게, 광학 패키지 사이에 들어가게, 광학 패키지에 의해 둘러싸이게 혹은 그 위에 배열된 것을 특징으로 하는 웨어러블 컴퓨팅 디바이스를 이용하여 사용자의 스트레스 상태를 모니터링하는 컴퓨터로 구현되는 방법.
KR1020227046293A 2021-08-23 2021-08-23 연속 피부 전기 활동 전극이 손목쪽에 배열된 스트레스 이벤트 검출용 웨어러블 디바이스 KR20230031238A (ko)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2021/047119 WO2023027685A1 (en) 2021-08-23 2021-08-23 Arrangement of wrist-side continuous electrodermal activity electrodes on a wearable device for detecting stress events

Publications (1)

Publication Number Publication Date
KR20230031238A true KR20230031238A (ko) 2023-03-07

Family

ID=77802247

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020227046293A KR20230031238A (ko) 2021-08-23 2021-08-23 연속 피부 전기 활동 전극이 손목쪽에 배열된 스트레스 이벤트 검출용 웨어러블 디바이스

Country Status (6)

Country Link
US (1) US20240090806A1 (ko)
EP (1) EP4161376A1 (ko)
JP (1) JP7511035B2 (ko)
KR (1) KR20230031238A (ko)
CN (1) CN116056636A (ko)
WO (1) WO2023027685A1 (ko)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112014001020B1 (pt) * 2011-07-20 2022-01-11 Koninklijke Philips N.V. Dispositivo que pode ser utilizado sobre o corpo e método de sua fabricação
US9049998B2 (en) * 2012-06-22 2015-06-09 Fitbit, Inc. Biometric monitoring device with heart rate measurement activated by a single user-gesture
JP6199715B2 (ja) 2013-11-29 2017-09-20 株式会社デンソー 精神負担評価装置、及びプログラム
KR20170118439A (ko) 2016-04-15 2017-10-25 삼성전자주식회사 생체 정보를 측정하는 전자 장치 및 그를 충전하는 장치
KR20180017690A (ko) * 2016-08-10 2018-02-21 삼성전자주식회사 생체 정보 검출 장치 및 방법
FR3057152B1 (fr) * 2016-10-07 2018-12-07 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede et systeme de surveillance de stress d'un utilisateur
CN111065326A (zh) 2017-08-25 2020-04-24 博能电子公司 增强光学心脏活动测量
WO2019073756A1 (ja) * 2017-10-13 2019-04-18 ソニー株式会社 生体情報計測装置および生体情報計測システム
EP3594963A1 (en) * 2018-07-11 2020-01-15 Koninklijke Philips N.V. Device, system and method for determining a stress level of a user
WO2021026606A1 (en) * 2019-08-13 2021-02-18 Parasym Pty Ltd Vagus nerve stimulation system

Also Published As

Publication number Publication date
EP4161376A1 (en) 2023-04-12
JP7511035B2 (ja) 2024-07-04
CN116056636A (zh) 2023-05-02
US20240090806A1 (en) 2024-03-21
JP2023550675A (ja) 2023-12-05
WO2023027685A1 (en) 2023-03-02

Similar Documents

Publication Publication Date Title
JP6480519B2 (ja) 心拍数情報を利用したアスレチックパフォーマンス監視システム
US12089914B2 (en) Enhanced physiological monitoring devices and computer-implemented systems and methods of remote physiological monitoring of subjects
CN112971744B (zh) 用于测量生物信号的方法及其可穿戴电子设备
CN108742559B (zh) 可佩戴心率监视器
US8781791B2 (en) Touchscreen with dynamically-defined areas having different scanning modes
US20160058378A1 (en) System and method for providing an interpreted recovery score
CN107223247A (zh) 用于获得多个健康参数的方法、系统和可穿戴装置
CN105636504A (zh) 用于使用移动装置获得身体功能测量值的系统和方法
US20160030809A1 (en) System and method for identifying fitness cycles using earphones with biometric sensors
US20240016400A1 (en) Physiological Sampling During Predetermined Activities
CN108903920A (zh) 便携式生物计量监测装置及其操作方法
US20160051185A1 (en) System and method for creating a dynamic activity profile using earphones with biometric sensors
US10078734B2 (en) System and method for identifying performance days using earphones with biometric sensors
KR20220087658A (ko) 운동 가이드를 제공하는 전자 장치 및 그 동작 방법
US20220406453A1 (en) Fitness Fatigue Score Determination and Management Techniques
JP2018005512A (ja) プログラム、電子機器、情報処理装置及びシステム
US20150120025A1 (en) System and method for creating a dynamic activity profile
WO2023168561A1 (en) Application of a removable protective film to form a conductive region on a cover glass of a wearable computing device
JP7511035B2 (ja) ストレスイベントを検出するためのウェアラブルデバイス上の手首側の継続的皮膚電気活動電極の配置
CN114271789B (zh) 可穿戴设备及佩戴检测方法
KR20220135720A (ko) 사용자 자세에 기반하여 혈압을 측정하는 전자 장치 및 그 제어 방법
WO2024039367A1 (en) Momentary stress algorithm for a wearable computing device
WO2024044180A1 (en) System and method for determining a wear state of a wearable computing device