KR20230024872A - 마이크로폰 - Google Patents

마이크로폰 Download PDF

Info

Publication number
KR20230024872A
KR20230024872A KR1020227032981A KR20227032981A KR20230024872A KR 20230024872 A KR20230024872 A KR 20230024872A KR 1020227032981 A KR1020227032981 A KR 1020227032981A KR 20227032981 A KR20227032981 A KR 20227032981A KR 20230024872 A KR20230024872 A KR 20230024872A
Authority
KR
South Korea
Prior art keywords
vibration
pickup assembly
vibration pickup
microphone
cantilever
Prior art date
Application number
KR1020227032981A
Other languages
English (en)
Inventor
웬빙 조
용솨이 유안
웬준 뎅
유지아 후앙
신 기
펑윈 랴오
Original Assignee
썬전 샥 컴퍼니 리미티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 썬전 샥 컴퍼니 리미티드 filed Critical 썬전 샥 컴퍼니 리미티드
Publication of KR20230024872A publication Critical patent/KR20230024872A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/08Microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/46Special adaptations for use as contact microphones, e.g. on musical instrument, on stethoscope
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/08Mouthpieces; Microphones; Attachments therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/222Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only  for microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/24Structural combinations of separate transducers or of two parts of the same transducer and responsive respectively to two or more frequency ranges
    • H04R1/245Structural combinations of separate transducers or of two parts of the same transducer and responsive respectively to two or more frequency ranges of microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • H04R17/02Microphones
    • H04R17/025Microphones using a piezoelectric polymer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • H04R17/10Resonant transducers, i.e. adapted to produce maximum output at a predetermined frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/04Circuits for transducers, loudspeakers or microphones for correcting frequency response
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • H04R7/04Plane diaphragms
    • H04R7/06Plane diaphragms comprising a plurality of sections or layers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2460/00Details of hearing devices, i.e. of ear- or headphones covered by H04R1/10 or H04R5/033 but not provided for in any of their subgroups, or of hearing aids covered by H04R25/00 but not provided for in any of its subgroups
    • H04R2460/13Hearing devices using bone conduction transducers

Abstract

본 개시는 셸 구조; 상기 셸 구조안에 수용되고, 상기 셸 구조에 전송된 외부 소리신호에 응답하여 진동을 발생하는 진동픽업조립체; 및 각각 상기 진동픽업조립체의 진동을 수신하여 전기신호를 생성하는 적어도 2개의 음향전기변환소자를 포함하고, 상기 적어도 2개의 음향전기변환소자는 상기 진동픽업조립체의 진동에 대하여 상이한 주파수응답을 가지는 마이크로폰을 제공한다.

Description

마이크로폰
본 개시는 음향전송 기술분야에 관한 것으로서, 구체적으로는 마이크로폰에 관한 것이다.
마이크로폰(이를테면 골전도 마이크로폰 또는 기전도 마이크로폰)은 외부 소리신호에 근거하여 전체 대역 신호를 출력할 수 있다. 상기 마이크로폰에 의해 출력되는 상기 전체 대역 신호는 서브대역 주파수 분할처리("서브대역 분해처리"라고도 알려진다)를 통해 처리된 후 후속의 음성인식, 노이즈 감소, 신호 강화, 및 기타 신호처리에서 처리될 수 있다. 상기 서브대역 주파수 분할처리 기술은 전기음향, 통신, 이미지 코딩, 반향 소거, 레이더 비닝, 등 분야에 광범위하게 이용될 수 있다. 현재의 서브대역 주파수 분할처리 기술은 일반적으로 하드웨어 회로(이를테면 전자소자) 및 소프트웨어 알고리즘(이를테면 디지털 기술)을 이용하여 상기 전체 대역 신호에 대해 상기 서브대역 주파수 분할처리를 실행한다. 한편으로는, 상기 전자소자가 그 자체의 특성의 영향을 받기 때문에, 필터의 성능이 좋을 수록, 회로의 설계가 더 복잡하다. 반면에, 전체 대역 신호의 상기 서브대역 주파수 분할처리를 위한 상기 소프트웨어 알고리즘의 사용은 상대적으로 높은 계산 자원을 요구하고 처리 중에 소리신호의 왜곡과 노이즈 유입을 유발할 수 있으며, 이는 소리의 품질에 영향을 줄 수 있다.
그러므로, 상기 전체 대역 신호의 서브대역 주파수 분할처리를 간단화하여 장치측에서 서브대역 분할처리를 실행함으로써, 복잡한 하드웨어 회로 및 소프트웨어 알고리즘에 대한 의존성을 감소시키고, 상기 최종 소리신호의 품질을 더 향상시킬 수 있는 마이크로폰을 제공하는 것이 바람직하다.
마이크로폰으로서, 셸 구조(shell structure); 상기 셸 구조안에 수용될 수 있고, 상기 셸 구조에 전송된 외부 소리신호에 응답하여 진동을 발생하는 진동픽업조립체; 및 각각 상기 진동픽업조립체의 진동을 수신하여 전기신호를 생성하도록 구성될 수 있는 적어도 2개의 음향전기변환소자를 포함할 수 있고, 상기 적어도 2개의 음향전기변환소자는 상기 진동픽업조립체의 진동에 대하여 상이한 주파수응답을 가질 수 있다.
일부 실시예에서는, 각 음향전기변환소자에 대응되는 주파수응답은 적어도 하나의 공진 주파수를 포함할 수 있고, 상기 적어도 2개의 음향전기변환소자에 대응되는 복수의 공진 주파수 중 적어도 2개는 20Hz 내지 16000Hz의 범위내에 있을 수 있다.
일부 실시예에서는, 상기 적어도 2개의 음향전기변환소자에 대응되는 서브대역의 수량은 5 이상일 수 있다.
일부 실시예에서는, 상기 진동픽업조립체와 상기 셸 구조는 적어도 하나의 음향캐비티를 정의할 수 있고, 상기 적어도 하나의 음향캐비티는 제1 음향캐비티를 포함할 수 있고, 상기 셸 구조는 적어도 하나의 홀을 포함할 수 있고, 상기 적어도 하나의 홀은 상기 제1 음향캐비티에 위치할 수 있고, 상기 적어도 하나의 홀은 상기 외부 소리신호를 상기 제1 음향캐비티에 진입하도록 안내할 수 있으며, 상기 진동픽업조립체는 상기 제1 음향캐비티안에서 소리신호에 응답하여 진동할 수 있고, 및 상기 적어도 2개의 음향전기변환소자는 각각 상기 진동픽업조립체의 진동을 수신하여 상기 전기신호를 생성할 수 있다.
일부 실시예에서는, 상기 진동픽업조립체는 상기 진동픽업조립체의 둘레측을 통해 상기 셸 구조에 연결될 수 있고, 상기 진동픽업조립체의 적어도 일부분 구조는 상기 외부 소리신호에 응답하여 진동을 발생할 수 있다.
일부 실시예에서는, 상기 진동픽업조립체는 제1 진동픽업조립체를 포함할 수 있고, 상기 적어도 2개의 음향전기변환소자는 상기 제1 진동픽업조립체에 직접 또는 간접적으로 연결될 수 있다.
일부 실시예에서는, 상기 진동픽업조립체는 위로부터 아래로 순차로 배치된 제1 진동픽업조립체와 제2 진동픽업조립체를 포함할 수 있고, 상기 제1 진동픽업조립체와 상기 제2 진동픽업조립체는 둘레측을 통해 상기 셸 구조에 연결될 수 있고, 상기 제1 진동픽업조립체와 상기 제2 진동픽업조립체의 적어도 일부분 구조는 상기 외부 소리신호에 응답하여 진동을 생성할 수 있다.
일부 실시예에서는, 관 구조의 진동전도조립체는 상기 제1 진동픽업조립체와 상기 제2 진동픽업조립체 사이에 배치될 수 있고, 상기 진동전도조립체, 상기 제1 진동픽업조립체, 및 상기 제2 진동픽업조립체는 캐비티를 정의할 수 있다.
일부 실시예에서는, 상기 진동픽업조립체는 제1 진동픽업조립체, 제2 진동픽업조립체, 및 제3 진동픽업조립체를 포함할 수 있고, 상기 제1 진동픽업조립체와 상기 제2 진동픽업조립체는 서로 마주하여 설치될 수 있고, 관 구조의 진동전도조립체는 상기 제1 진동픽업조립체와 상기 제2 진동픽업조립체 사이에 배치될 수 있고, 상기 진동전도조립체, 상기 제1 진동픽업조립체, 및 상기 제2 진동픽업조립체는 캐비티를 정의할 수 있으며, 상기 제3 진동픽업조립체는 상기 진동전도조립체와 상기 셸 구조의 내벽 사이에 연결될 수 있고, 상기 제3 진동픽업조립체는 상기 외부 소리신호에 응답하여 진동을 생성할 수 있다.
일부 실시예에서는, 각 음향전기변환소자는 외팔보 구조를 포함할 수 있고, 상기 외팔보 구조의 일단부는 상기 진동전도조립체의 내벽에 연결되고 상기 외팔보 구조의 다른 일단부는 상기 캐비티안에 현수될 수 있으며, 상기 외팔보 구조는 진동신호에 근거하여 변형되어 상기 진동신호를 전기신호로 변환시킬 수 있다.
일부 실시예에서는, 상이한 외팔보 구조는 상기 진동전도조립체의 내벽에서 간격을 두고 분포될 수 있다.
일부 실시예에서는, 상기 적어도 2개의 음향전기변환소자에 대응되는 상기 외팔보 구조의 크기 또는 재료는 다를 수 있다.
일부 실시예에서는, 상기 적어도 2개의 음향전기변환소자는 제1 외팔보 구조와 제2 외팔보 구조를 포함할 수 있고, 상기 제1 외팔보의 진동방향에 수직이 되는 방향에서의 상기 제1 외팔보의 길이는 상기 제2 외팔보의 진동방향에 수직이 되는 방향에서의 상기 제2 외팔보의 길이보다 클 수 있으며, 상기 제1 외팔보에 대응되는 공진 주파수는 상기 제2 외팔보에 대응되는 공진 주파수보다 낮을 수 있다.
일부 실시예에서는, 상기 외팔보 구조는 제1 전극층, 압전층, 제2 전극층, 탄성층, 및 기판층을 포함할 수 있고, 상기 제1 전극층, 상기 압전층, 및 상기 제2 전극층은 순차로 배치될 수 있고, 상기 탄성층은 상기 제1 전극층의 상면 또는 상기 제2 전극층의 하면에 위치할 수 있고, 상기 기판층은 상기 탄성층의 상면 또는 하면에 위치할 수 있다.
일부 실시예에서는, 상기 외팔보 구조는 적어도 하나의 탄성층, 전극층, 및 압전층을 포함할 수 있고, 상기 적어도 하나의 탄성층은 상기 전극층의 표면에 위치할 수 있고, 상기 전극층은 제1 전극과 제2전극을 포함할 수 있고, 상기 제1 전극은 제1 빗모양 구조로 구부러질 수 있고, 상기 제2 전극은 제2 빗모양 구조내로 구부러질 수 있고, 상기 제1 빗모양 구조는 상기 제2 빗모양 구조와 결합하여 상기 압전층의 상면 또는 하면에 위치하는 상기 전극층을 형성할 수 있고; 상기 제1 빗모양 구조와 상기 제2 빗모양 구조는 상기 외팔보 구조의 길이를 따라 연장될 수 있다.
일부 실시예에서는, 각 음향전기변환소자는 제1 외팔보 구조와 제2 외팔보 구조를 포함할 수 있고, 상기 제1 외팔보 구조는 상기 제2 외팔보 구조와 마주하여 배치될 수 있고, 상기 제1 외팔보 구조와 상기 제2 외팔보 구조는 제1 거리를 가질 수 있고, 상기 제1 외팔보 구조와 상기 제2 외팔보 구조 사이의 제1 거리는 진동신호에 근거하여 변화하여 상기 진동신호를 전기신호로 변환시킬 수 있다.
일부 실시예에서는, 각 음향전기변환소자에 대응되는 상기 제1 외팔보 구조와 상기 제2 외팔보 구조는 상기 진동전도조립체의 둘레측의 내벽에서 간격을 두고 분포될 수 있다.
일부 실시예에서는, 상기 제1 외팔보 구조의 강도는 상기 제2 외팔보 구조의 강도와 다르다.
일부 실시예에서는, 상기 마이크로폰은 적어도 하나의 막구조를 포함할 수 있고, 상기 적어도 하나의 막구조는 상기 음향전기변환소자의 상면 및/또는 하면에 위치할 수 있다.
일부 실시예에서는, 상기 적어도 하나의 막구조는 상기 음향전기변환소자의 상면 및/또는 하면의 전체 또는 일부분을 커버할 수 있다.
일부 실시예에서는, 상기 마이크로폰은 적어도 하나의 지지구조를 포함할 수 있고, 상기 적어도 하나의 지지구조의 일단부는 상기 진동픽업조립체의 제1 진동픽업조립체에 연결될 수 있고, 상기 적어도 하나의 지지구조의 다른 일단부는 상기 진동픽업조립체의 제2 진동픽업조립체에 연결될 수 있고, 상기 적어도 2개의 음향전기변환소자의 자유 단부와 상기 지지구조는 제2 거리를 가질 수 있다.
일부 실시예에서는, 상기 마이크로폰은 상이한 음향전기변환소자에 의해 출력되는 전기신호를 디지털신호로 변환하도록 구성된 적어도 하나의 샘플링모듈을 더 포함할 수 있고, 상기 샘플링모듈은 상이한 샘플링 주파수를 이용하여 상이한 음향전기변환소자에 의해 출력되는 상기 전기신호를 샘플링할 수 있다.
본 개시는 예시적인 실시예들의 측면에서 더 설명되며, 이러한 예시적인 실시예들은 도면들을 참고하여 상세히 설명된다. 이러한 실시예들은 한정적이지 않다. 이러한 실시예들에서, 동일한 부호는 동일한 구조를 표시한다.
도 1은 본 개시의 일부 실시예들에 따른 서브대역 주파수 분할을 실행하는 예시적인 처리를 나타내는 흐름도이다.
도 2는 본 개시의 일부 실시예들에 따른 서브대역 주파수 분할을 실행하는 예시적인 처리를 나타내는 흐름도이다.
도 3은 본 개시의 일부 실시예들에 따른 음향전기변환소자의 스프링 질량 댐핑 시스템을 나타내는 개략도이다.
도 4는 본 개시의 일부 실시예들에 따른 스프링 질량 댐핑 시스템의 변위공진곡선의 예시적인 정규화를 나타내는 개략도이다.
도 5 는 본 개시의 일부 실시예들에 따른 마이크로폰의 구조도를 나타내는 개략도이다.
도 6a 는 도 5의 마이크로폰의 A-A 방향에서의 단면 개략도이다.
도 6b는 도 5의 마이크로폰의 A-A 방향에 수직이 되는 방향에서의 단면 개략도이다.
도 7a 는 본 개시의 일부 실시예들에 따른 외팔보 구조의 개략도이다.
도 7b 는 본 개시의 일부 실시예들에 따른 외팔보 구조의 개략도이다.
도 8은 본 개시의 일부 실시예들에 따른 마이크로폰을 나타내는 개략도이다.
도 9는 본 개시의 일부 실시예들에 따른 마이크로폰의 주파수 응답곡선의 개략도이다.
도 10은 본 개시의 일부 실시예들에 따른 마이크로폰을 나타내는 개략도이다.
도 11은 본 개시의 일부 실시예들에 따른 마이크로폰을 나타내는 개략도이다.
도 12는 본 개시의 일부 실시예들에 따른 마이크로폰을 나타내는 개략도이다.
도 13은 본 개시의 일부 실시예들에 따른 마이크로폰을 나타내는 개략도이다.
도 14는 본 개시의 일부 실시예들에 따른 마이크로폰을 나타내는 개략도이다.
도 15는 본 개시의 일부 실시예들에 따른 마이크로폰을 나타내는 개략도이다.
도 16a는 본 개시의 일부 실시예들에 따른 마이크로폰의 단면 개략도이다.
도 16b는 본 개시의 일부 실시예들에 따른 마이크로폰의 단면 개략도이다.
도 17a는 본 개시의 일부 실시예들에 따른 마이크로폰을 나타내는 단면도이다.
도 17b는 본 개시의 일부 실시예들에 따른 마이크로폰의 단면 개략도이다.
도 18은 본 개시의 일부 실시예들에 따른 마이크로폰을 나타내는 개략도이다.
도 19는 본 개시의 일부 실시예들에 따른 마이크로폰을 나타내는 개략도이다.
도 20은 본 개시의 일부 실시예들에 따른 마이크로폰을 나타내는 개략도이다.
본 개시의 실시예들에 관련된 기술안을 더 명확하게 설명하기 위해, 아래에서는 상기 실시예들의 설명에서 참조한 도면들에 대해 간단히 소개한다. 물론 아래에서 기재하는 도면은 단지 본 개시의 일부 예 또는 실시예들이다. 당업계의 통상의 기술자들에 있어서 임의의 창조적인 노력을 하지 않고 이러한 도면들에 근거하여 본 개시를 기타 유사한 상황에 응용할 수 있다. 문맥으로부터 명확하게 얻을 수 있거나 또는 문맥에서 다르게 해석하는 외에는 도면 중의 동일한 부호는 동일한 구조나 동작을 표시한다.
여기에서 사용하는 상기 "시스템", "장치", "유닛" 및/또는 "모듈"은 상이한 부재, 소자, 부품, 부분 또는 상이한 수준의 조립체를 오름 순서로 구분하기 위한 하나의 방법이다. 그러나 다른 단어가 동일한 목적을 달성할 수 있다면 그 단어는 다른 표현에 의해 대체될 수 있다.
본 개시와 첨부된 청구항에서 사용되는 바와 같이, 단수 형태 "하나", "일" 및 "상기"는 문맥에서 별도로 명확하게 지시하지 않는 한, 복수의 형태를 포함한다. 일반적으로 용어 "포함", "포괄", 및/또는 "함유"는 명시된 절차들과 소자들을 포함함을 의미하며, 이러한 절차들과 소자들은 배타적인 것이 아니며, 상기 방법들 또는 장치들은 기타 절차들 또는 소자들을 포함할 수 있다.
본 개시에서 사용하는 흐름도는 시스템이 본 개시의 실시예에 따라 실행하는 동작을 설명한다. 흐름도의 앞뒤의 동작들은 정확히 순서에 따라 실행될 필요가 없음을 이해해야 한다. 반대로 복수의 동작들은 반대 순서거나 동시에 처리될 수 있다. 그리고 기타 동작은 이러한 처리에 추가될 수 있거나 하나 이상의 동작들은 이들 절차들에서 삭제할 수 있다.
본 개시는 마이크로폰을 설명한다. 상기 마이크로폰은 소리신호를 전기신호로 변환할 수 있는 변환기일 수 있다. 일부 실시예에서는, 마이크로폰은 가동코일 마이크로폰, 리본 마이크로폰, 콘덴서 마이크로폰, 압전 마이크로폰, 일렉트렛 마이크로폰, 전자기 마이크로폰, 탄소 마이크로폰, 또는 이들의 임의의 조합일 수 있다. 일부 실시예에서는, 소리의 획득방식에 따라, 상기 마이크로폰은 골전도 마이크로폰 및 기전도 마이크로폰을 포함할 수 있다. 본 개시의 이 실시예에서 설명하는 상기 마이크로폰은 셸 구조, 진동픽업조립체, 및 적어도 2개의 음향전기변환소자를 포함할 수 있다. 상기 셸 구조는 상기 진동픽업조립체 및 상기 적어도 2개의 음향전기변환소자를 탑재하도록 구성될 수 있다. 일부 실시예에서는, 상기 셸 구조는 직육면체, 원기둥, 또는 기타 불규칙적인 구조를 가질 수 있다. 일부 실시예에서는, 상기 셸 구조는 중공내부 구조로써, 독립적으로 음향캐비티를 형성할 수 있으며, 상기 진동픽업조립체와 상기 적어도 2개의 음향전기변환소자는 음향캐비티안에 위치할 수 있다. 일부 실시예에서는, 상기 진동픽업조립체는 상기 셸 구조의 측벽에 연결될 수 있으며, 상기 진동픽업조립체는 상기 셸 구조에 전도되는 외부 소리신호에 응답하여 진동을 생성할 수 있다. 일부 실시예에서는, 상기 적어도 2개의 음향전기변환소자는 상기 진동픽업조립체에 직접 또는 간접적으로 연결되어, 상기 진동픽업조립체의 진동을 수신하고 상기 수신한 진동신호를 출력을 위해 전기신호로 변환시킨다.
일부 실시예에서는, 상이한 음향전기변환소자들(이를테면 외팔보 구조)은 상기 진동픽업조립체의 진동에 응답하는 상이한 주파수 응답을 가질 수 있다. 예를 들면, 각 음향전기변환소자는 공진 주파수 부근의 소리에 대해 공진 주파수와 높은 응답을 가진다. 일부 실시예에서는, 상기 소리신호 또는 상기 진동신호에 대한 각 음향전기변환소자의 응답은 상응한 주파수 응답곡선(이를테면 도9에 표시하는 주파수 응답곡선920, 930)을 통해 설명될 수 있다. 일부 실시예에서는, 각 음향전기변환소자의 구조, 크기 및 재료, 등(이를테면 외팔보 구조)을 배치함으로써, 상이한 음향전기변환소자는 각각 주파수 응답의 상이한 주파수 폭과 상이한 공진 주파수를 가질 수 있다. 예를 들면, 상이한 길이의 외팔보 구조를 설치함으로써, 상이한 길이의 외팔보 구조의 공진 수파수는 각각 300Hz 내지 500Hz, 500Hz 내지 700Hz, 700Hz 내지 1000Hz, 2200Hz 내지 3000Hz, 4700Hz 내지 5700Hz, 7000Hz 내지 12000Hz, 등의 주파수 범위 이내일 수 있다. 일부 실시예에서는, 각 음향전기변환소자는 공진피크 부근에서만 높은 민감도를 유지하며, 즉, 상기 공진피크에서의 상기 음향전기변환소자의 민감도는 기타 구역(특히 주파수가 상기 공진피크로부터 멀리 떨어진 구역)의 민감도보다 훨씬 클 수 있으며, 따라서 상기 소리신호의 상기 서브대역 주파수 분할은 복수의 음향전기변환소자를 이용하여 상기 음향전기변환소자의 상응한 공진 피크 부근의 소리신호의 음향전기변환을 실행하여 구현할 수 있다. 일부 실시예에서는, 상기 상이한 음향전기변환소자 중의 적어도 2개의 공진 주파수 사이의 차이는 5000Hz보다 클 수 있다. 일부 실시예에서는, 상기 상이한 음향전기변환소자 중의 적어도 2개의 공진 주파수 사이의 차이는 3000Hz보다 클 수 있다. 일부 실시예에서는, 상기 상이한 음향전기변환소자 중의 적어도 2개의 공진 주파수 사이의 차이는 2000Hz보다 클 수 있다. 일부 실시예에서는, 상기 상이한 음향전기변환소자 중의 적어도 2개의 공진 주파수 사이의 차이는 1000Hz보다 클 수 있다. 일부 실시예에서는, 상기 상이한 음향전기변환소자 중의 적어도 2개의 공진 주파수 사이의 차이는 500Hz보다 클 수 있다. 일부 실시예에서는, 상기 상이한 음향전기변환소자 중의 적어도 2개의 공진 주파수 사이의 차이는 200Hz보다 클 수 있다. 일부 실시예에서는, 상기 상이한 음향전기변환소자 중의 적어도 2개의 공진 주파수 사이의 차이는 100Hz보다 클 수 있다. 내용을 쉽게 설명하기 위해, 예시적인 해석만으로써, 마이크로폰은 20Hz 내지 15000Hz의 범위내에 100개의 서브대역을 포함할 수 있으며, 각 서브대역은 약 150Hz의 대역폭을 가지며, 최소 공진 주파수의 주파수대역 범위는20Hz 내지 170Hz의 범위내일 수 있고, 최대 공진 주파수의 주파수대역은 14850Hz 내지 15000Hz의 범위내일 수 있고, 상기 최대 공진 주파수(이를테면 약 14920Hz)와 상기 최소 공진 주파수(이를테면 약 95Hz) 사이의 차이는 약 14825Hz일 수 있다. 다른 하나의 예를 들면, 20Hz 내지 10000Hz의 범위내에서, 상기 마이크로폰은 40개의 서브대역을 포함하고, 각 서브대역은 250Hz의 대역폭을 가지고, 상기 최소 공진 주파수의 주파수대역 범위는 20Hz 내지 270Hz의 범위내일 수 있고, 상기 최대 공진 주파수의 주파수대역은 9750Hz 내지 10000Hz의 범위내일 수 있고, 상기 최대 공진 주파수(이를테면 약 14920Hz)와 상기 최소 공진 주파수(이를테면 약 95Hz) 사이의 차이는 약 9730Hz일 수 있다. 또 다른 하나의 예로써, 20Hz 내지 10000Hz의 범위내에서, 상기 마이크로폰는 10개의 서브대역을 포함할 수 있고, 각 서브대역은1000Hz의 대역폭을 가지고, 상기 최소 공진 주파수의 주파수대역 범위는 20Hz 내지 1020Hz의 범위내일 수 있고, 상기 최대 공진 주파수의 주파수대역은 9000Hz 내지 10000Hz의 범위내일 수 있고, 상기 최대 공진 주파수(이를테면 약 9500Hz)와 상기 최소 공진 주파수(이를테면 약 510Hz) 사이의 차이는 약 9730Hz일 수 있다. 이상은 예시적은 설명일 뿐이고, 선택된 대역 범위, 서브대역 수량, 및 대역폭의 구체적인 값은 상이한 응용 장면(이를테면 실내 통화 장면, 실외 노이즈 장면, 등.)에 근거하여 적용될 수 있고, 더 한정되지 않을 수 있음에 유의해야 한다. 상기 마이크로폰의 주파수 응답은 상이한 음향전기변환소자(이를테면 도9에 표시하는 주파수 응답곡선 910)의 주파수 응답의 융합을 통해 형성된 높은 신호 대 노이즈를 구비하는 평탄한 주파수 응답곡선으로 간주될 수 있다. 한편으로는, 본 개시의 실시예에 의해 제공되는 상기 마이크로폰은 하드웨어 회로(이를테면 필터링 회로) 또는 소프트웨어 알고리즘을 이용하지 않고, 상기 마이크로폰의 구조를 통해 상기 전체 대역 신호에 대해 서브대역 주파수 분할처리를 실행할 수 있으며, 이는 복잡한 하드웨어 회로 설계, 상대적으로 높은 상기 소프트웨어 알고리즘의 계산 자원, 신호 왜곡, 및 노이즈 유입의 문제를 피할 수 있으며, 따라서 상기 마이크로폰의 복잡성과 생산비용을 절감시킬 수 있다. 반면에, 본 개시의 실시예에 의해 제공하는 상기 마이크로폰은 상대적으로 높은 신호 대 노이즈 비율을 구비하는 평탄한 주파수 응답곡선을 출력하여 상기 마이크로폰의 신호 품질을 향상시킬 수 있다. 더욱이, 상이한 음향전기변환소자(이를테면 상기 외팔보 구조)를 설치함으로써, 상이한 주파수 범위의 공진피크를 상기 마이크로폰 시스템에 추가할 수 있고, 이는 상기 마이크로폰의 복수의 공진피크 부근의 민감도를 향상시키며, 따라서 전체 광대역에서 상기 마이크로폰의 민감도를 향상시킬 수 있다.
도 1은 본 개시의 일부 실시예들에 따른 서브대역 주파수 분할을 실행하는 예시적인 처리를 나타내는 흐름도이다. 도 1에 표시하는 바와 같이, 일부 실시예에서는, 마이크로폰(100)은 음향전기변환소자(110), 샘플링모듈(120), 서브대역 주파수 분할모듈(130), 신호처리모듈(140)을 포함할 수 있다.
상기 마이크로폰(100)은 소리신호를 전기신호로 변환할 수 있는 변환기일 수 있다. 일부 실시예에서는, 상기 마이크로폰(100)은 가동코일 마이크로폰, 리본 마이크로폰, 콘덴서 마이크로폰, 압전 마이크로폰, 일렉트렛 마이크로폰, 전자기 마이크로폰, 탄소 마이크로폰, 등, 또는 이들의 임의의 조합일 수 있다. 일부 실시예에서는, 소리획득방식에 따라, 마이크로폰(100)은 골전도 마이크로폰와 기전도 마이크로폰을 포함할 수 있다.
음향전기변환소자(110)는 진동을 수신하여 전기신호를 생성하도록 구성된다. 상기 골전도 마이크로폰을 하나의 예로 들면, 일부 실시예에서는, 상기 마이크로폰(100)은 셸 구조, 진동픽업조립체를 더 포함할 수 있으며, 여기서, 상기 진동픽업조립체는 상기 셸 구조내에 수용될 수 있고, 상기 셸 구조에 전송되는 외부 소리신호에 응답하여 진동을 생성할 수 있다. 상기 기전도 마이크로폰을 하나의 예로 들면, 일부 실시예에서는, 상기 진동픽업조립체와 상기 셸 구조는 적어도 하나의 음향캐비티를 정의할 수 있으며, 상기 적어도 하나의 음향캐비티는 제1 음향캐비티를 포함할 수 있고, 상기 셸 구조는 하나 이상의 홀을 포함할 수 있고, 하나 이상의 홀은 상기 제1 음향캐비티에 위치할 수 있고, 하나 이상의 홀은 상기 외부 소리신호를 상기 제1 음향캐비티내로 들어가게끔 안내할 수 있고, 여기서, 상기 진동픽업조립체는 상기 셸 구조에 전송되는 소리신호에 응답하여 진동을 생성하여 상기 제1 음향캐비티내에 진입시킬 수 있고, 상기 음향전기변환소자(110)는 상기 진동픽업조립체의 진동을 수신하고 상기 전기신호를 생성할 수 있다.
일부 실시예에서는, 상기 음향전기변환소자(110)는 소리신호를 전기신호로 변환시킬 수 있다. 일부 실시예에서는, 상기 음향전기변환소자(110)는 콘덴서 음향전기변환소자 또는 압전소자를 포함할 수 있다. 일부 실시예에서는, 상기 압전변환소자는 측정된 비전기량(이를테면 압력, 변위, 등.)의 변화를 전압의 변화로 변환시킬 수 있는 소자일 수 있다. 예를 들면, 상기 압전변환소자는 상기 진동픽업조립체의 진동하에서 변형될 수 있는 외팔보 구조를 포함할 수 있고, 변형되는 외팔보 구조에 의해 발생하는 압전효과는 전기신호를 생성할 수 있다. 일부 실시예에서는, 콘덴서 음향전기변환소자는 측정된 비전기량(이를테면 변위, 압력, 광도, 가속도, 등.)의 변화를 전기용량의 변화로 변환할 수 있는 소자일 수 있다. 예를 들면, 콘덴서 음향전기변환소자는 제1 외팔보 구조 및 제2 외팔보 구조를 포함할 수 있고, 상기 제1 외팔보 구조와 상기 제2 외팔보 구조는 상기 진동픽업조립체의 진동을 통해 상이한 정도로 변형될 수 있으며, 따라서 상기 제1 외팔보 구조와 상기 제2 외팔보 구조 사이의 거리는 변할 수 있다. 상기 제1 외팔보 구조와 상기 제2 외팔보 구조 사이의 거리는 전기용량의 변화로 변환되어 상기 진동신호로부터 상기 전기신호로의 변환을 구현할 수 있다. 상기 음향전기변환소자(110)의 구체적인 구조에 대한 더 많은 정보는 도 5, 도 8, 및 그 관련 설명을 참고할 수 있다.
상기 샘플링모듈(120)은 전기신호를 디지털신호로 변환하는 샘플링 주파수에 근거하여 상기 전기신호를 샘플링(및 유지 관리), 양자화, 인코딩할 수 있다. 일부 실시예에서는, 상기 샘플링모듈(120)은 샘플링 회로, 아날로그-디지털 변환기, 등을 포함할 수 있다. 구체적으로는, 상기 샘플링 회로는 연속된 전기신호를 분해하여 상기 샘플링모듈(120)에 입력할 수 있다. 즉, 상기 연속된 전기신호는 상기 샘플링 주파수에 근거하여 샘플링되어 일련의 이산 표본값(즉 샘플링된 신호)을 얻을 수 있다.
상기 서브대역 주파수 분할모듈(130)은 디지털신호를 복수의 서브대역 주파수 분할신호로 분해할 수 있다. 일부 실시예에서는, 상기 서브대역 주파수 분할모듈(130)은 전자소자(이를테면 필터, 주파수 분할모듈)를 포함할 수 있다. 일부 실시예에서는, 상기 필터는 특정된 주파수 범위에서 전기신호를 선택하여 주파수 특성에 근거하여 상기 전기신호를 기타 주파수 범위내로 감쇄시킬 수 있다. 상기 필터의 주파수 특성은 저항기, 콘덴서, 인덕터, 및 상기 필터회로내의 기타 소자의 파라미터를 조절함으로써 달성할 수 있다. 일부 실시예에서는, 상기 서브대역 주파수 분할모듈(130)은 상이한 주파수 특성을 구비하는 복수의 필터를 포함할 수 있으며, 상기 복수의 필터는 각기 상기 공진 주파수 범위내의 공진을 발생할 수 있으며, 각각 상기 상응한 공진 주파수 범위내의 전기신호를 선택하여 광대역 전기신호를 복수의 서브대역 주파수 분할신호로 분해할 수 있다. 일부 실시예에서는, 상기 신호는 서브대역 주파수 분할처리에 근거하여 백엔드 알고리즘을 통해 더 실행될 수 있다. 일부 실시예에서는, 상기 백엔드 알고리즘은 선형 예측 부호화(LPC), 선형 예측 세프스트라 계수(LPCC: Linear Predictive Cepstral Coefficient), 멜 주파수 세프스트라 계수(MFCC: Mel-Frequency Cepstral Coefficient) 등 중 하나 이상을 포함할 수 있으나 이에 한정되지 않는다.
상기 신호처리모듈(140)은 상기 서브대역 주파수 분할신호를 처리할 수 있다. 일부 실시예에서는, 상기 신호처리모듈(140)은 등화기, 동적범위 컨트롤러, 위상 프로세서 등 중 하나 이상을 포함할 수 있다. 일부 실시예에서는, 상기 등화기는 특정된 주파수대역(이를테면 상기 서브대역 주파수 분할신호에 대응되는 주파수대역)에 근거하여 상기 서브대역 주파수 분할모듈(130)에 의해 출력되는 상기 서브대역 주파수 분할신호를 증강시키거나 및/또는 감쇄시키도록 구성될 수 있다. 상기 서브대역 주파수 분할신호의 증강은 상기 신호 증폭을 증가시키는 것을 의미하고, 상기 서브대역 주파수 분할신호를 감쇄시키는 것은 상기 신호 증폭을 감소시키는 것을 의미할 수 있다. 일부 실시예에서는, 동적범위 컨트롤러는 상기 서브대역 주파수 분할신호를 압축시키고/시키거나 증폭시키도록 구성될 수 있다. 상기 서브대역 주파수 분할 전기신호를 압축시키거고/시키거나 증폭시키는 것은 상기 마이크로폰(100)에서 입력신호와 출력신호 사이의 비율을 감소시키거나 및/또는 증가시키는 것을 의미할 수 있다. 일부 실시예에서는, 상기 위상 프로세서는 상기 서브대역 주파수 분할신호의 위상을 조절하도록 구성될 수 있다. 일부 실시예에서는, 상기 신호처리모듈(140)은 상기 마이크로폰(100) 내부에 위치할 수 있다. 예를 들면, 상기 신호처리모듈(140)은 상기 마이크로폰(100)의 상기 셸 구조에 의해 독립적으로 형성한 상기 음향캐비티내에 위치할 수 있다. 일부 실시예에서는, 상기 신호처리모듈(140)은 기타 전자장치, 예를 들면, 헤드폰, 모바일 기기, 태블릿, 노트북, 등 중 임의의 하나, 또는 이들의 임의의 조합의 내부에 위치할 수 있다. 일부 실시예에서는, 상기 스마트 홈장치는 스마트장치, 스마트 모니터링장치, 스마트 TV, 스마트 카메라 등, 또는 이들의 임의의 조합을 포함할 수 있다. 일부 실시예에서는, 상기 스마트 이동장치는 스마트폰, PDA(Personal Digital Assistant), 게임 장치, 내비게이션 장치, POS 장치, 등, 또는 이들의 임의의 조합을 포함할 수 있다.
상술한 상기 마이크로폰(100)의 작업과정에서, 한편으로는, 상기 서브대역 주파수 분할모듈(130)이 전자소자인 경우, 서브대역 주파수 분할모듈(130)의 필터 회로의 설계는 일반적으로 비교적 복잡하게 하여 비교적 좋은 전자소자 특성의 영향에 의한 주파수파 필터링 효과를 달성할 수 있다. 반면에, 상기 서브대역 주파수 분할모듈(140)은 상기 백엔드 알고리즘을 통해 상기 서브대역 주파수 분할을 구현할 수 있으나, 상기 백엔드 알고리즘은 상대적으로 높은 계산 자원이 요구되고 대량 데이터가 처리되는 바, 결국 계산시간이 너무 길고, 나아가, 상기 백엔드 알고리즘을 통한 서브대역 주파수 분할의 실행은 상기 소리신호의 왜곡과 처리 중 노이즈의 유입을 초래할 수 있어서 음질에 영향을 줄 수 있다. 따라서, 상술한 상기 서브대역 주파수 분할방식에 존재하는 문제를 해결하기 위해, 본 개시는 상기 마이크로폰의 복잡한 필터 회로 설계 및 상기 백엔드 알고리즘의 거대한 계산량의 문제를 해결하고, 동시에 상기 마이크로폰의 Q 값 및 민감도를 개선하는 마이크로폰을 제공할 수 있다. 상기 마이크로폰에 관한 더 많은 정보는 도 2 내지 도 20 및 관련 설명을 참고할 수 있다.
상기 마이크로폰(100)의 부재는 도1에 표시하는 상기 음향전기변환소자(110), 상기 샘플링모듈(120), 상기 서브대역 주파수 분할모듈(130), 및 상기 신호처리모듈(140)에 한정되지 않고, 기타 모듈을 더 포함할 수 있음에 유의해야 한다. 더욱이, 상기 음향전기변환소자(110), 상기 샘플링모듈(120), 상기 서브대역 주파수 분할모듈(130), 및 상기 신호처리모듈(140)은 시스템, 상기 마이크로폰(100)로써 사용될 수 있으며, 상기 시스템의 일부분으로써 상기 음향전기변환소자(110)만을 포함할 수 있다. 상기 샘플링모듈(120), 상기 서브대역 주파수 분할모듈(130), 및 상기 신호처리모듈(140)은 상기 마이크로폰(100)의 외측에 설치할 수 있고, 상기 음향전기변환소자(110)에 의해 출력되는 상기 전기신호는 유선 또는 무선방식을 통해 후속 처리를 위해 상응한 모듈에 전송될 수 있다.
도 2는 본 개시의 일부 실시예들에 따른 서브대역 주파수 분할을 실행하는 예시적인 처리를 나타내는 흐름도이다. 일부 실시예에서는, 마이크로폰(200)은 적어도 2개의 음향전기변환소자(210), 샘플링모듈(220), 신호처리모듈(230)을 포함할 수 있다. 상기 마이크로폰(200)은 외부 소리신호를 픽업하여 상기 외부 소리신호를 상기 음향전기변환소자(210)에 전송할 수 있다. 상기 음향전기변환소자(210)는 상기 소리신호(이를테면 상기 진동)를 전기신호로 변환시킬 수 있다. 일부 실시예에서는, 상기 적어도 2개의 음향전기변환소자(210)(이를테면 제1 음향전기변환소자, 제2 음향전기변환소자,.., 제n 음향전기변환소자, 등.)는 각각 상기 소리신호에 응답하는 상이한 주파수를 가지며, 따라서 주로 각 음향전기변환소자에 의해 출력되는 전기신호는 상이한 주파수 범위 및 상이한 주파수대역폭(즉, 제1 서브대역 주파수 분할 전기신호,.., 제n 서브대역 주파수 분할 전기신호, 등.)에 대응될 수 있다. 예를 들면, 상기 음향전기변환소자는 각각 제1 주파수응답, 제2 주파수응답, 제3 주파수응답, 및 제4 주파수응답을 가지는 제1 음향전기변환소자, 제2 음향전기변환소자, 제3 음향전기변환소자, 제4 음향전기변환소자를 포함할 수 있다. 일부 실시예에서는, 상기 제1 주파수응답, 상기 제2 주파수응답, 상기 제3 주파수응답, 및 상기 제4 주파수응답은 각각 상이한 주파수 범위에 대응될 수 있다. 대안으로써, 상기 제1 주파수응답, 상기 제2 주파수응답 및 상기 제3 주파수응답은 서로 상이한 주파수 범위에 대응될 수 있고, 상기 제4 주파수응답은 상기 제3 주파수응답과 같은 주파수 범위를 가질 수 있다. 일부 실시예에서는, 상기 제1 주파수응답, 상기 제2 주파수응답, 상기 제3 주파수응답, 및 상기 제4 주파수응답은 동일하거나 상이한 주파수대역폭에 대응될 수 있다. 예를 들면, 상기 제2 주파수응답의 주파수대역폭은 상기 제1 주파수응답의 주파수대역폭보다 클 수 있고, 상기 제3 주파수응답의 주파수대역폭은 상기 제2 주파수응답의 주파수대역폭보다 클 수 있다. 다른 하나의 예를 들면, 상기 제4 주파수응답의 주파수대역폭은 상기 제3 주파수응답의 주파수대역폭과 동일할 수 있다. 일부 실시예에서는, 상기 상이한 음향전기변환소자에 대응되는 주파수 범위는 서로 중첩되거나 중첩되지 않을 수 있다. 예를 들면, 상기 제1 주파수응답과 상기 제2 주파수응답은 각각 상기 2개의 인접한 서브대역중 하나에 대응될 수 있고, 상기 제2 주파수응답의 주파수 범위는 상기 제1 주파수응답의 주파수 범위의 적어도 일부분을 포함할 수 있고, 상기 제2 주파수응답의 주파수 범위는 상기 제1 주파수응답의 주파수 범위와 중첩되는 부분을 구비할 수 있다. 다른 하나의 예를 들면, 상기 제1 주파수응답 및 상기 제4 주파수응답은 각각 서로 인접하지 않은 2개의 서브대역 중의 하나에 대응될 수 있고, 상기 제4 주파수응답의 주파수 범위는 상기 제1 주파수응답과 동일한 주파수 또는 주파수 범위를 구비하지 않을 수 있으며, 및 상기 제4 주파수응답은 상기 제1 주파수응답과 중첩되지 않을 수 있다. 일부 실시예에서는, 상이한 음향전기변환소자에 대응되는 공진 주파수는 다를 수 있다. 예를 들면, 상기 제1 주파수응답, 상기 제2 주파수응답, 상기 제3 주파수응답, 및 상기 제4 주파수응답에 각각 대응되는 공진 주파수는 점차적으로 증가될 수 있다. 일부 실시예에서는, 상기 제2 주파수응답과 상기 제1 주파수응답은 반전력점 또는 그 부근에서 교차될 수 있다. 예를 들면, 상기 제2 주파수응답의 공진 주파수는 상기 제1 주파수응답의 공진 주파수보다 클 수 있고, 상기 제2 주파수응답의 반전력점은 상기 제1 주파수응답의 반전력점과 교차될 수 있다. 일부 실시예에서는, 상기 제2 주파수응답과 상기 제1 주파수응답은 상기 반전력점 부근의 위치에서 교차되지 않을 수 있다.
일부 실시예에서는, 상기 외팔보 구조의 치수(이를테면 길이, 폭, 두께, 등.) 또는 재료를 조절함으로써, 상이한 외팔보 구조는 각각 희망하는 주파수 범위내의 공진을 생성할 수 있으며, 나아가, 상이한 공진 주파수 범위에 대응되는 주파수 응답을 획득할 수 있다. 직육면체 구조를 구비하는 상기 외팔보를 예로 설명하면, 일부 실시예에서는, 음향전기변환소자(250)의 공진 주파수는 상기 외팔보 구조의 길이와 음의 상관관계를 가진다. 예를 들면, 상기 음향전기변환소자(250)는 제1 음향전기변환소자와 제2 음향전기변환소자를 포함할 수 있고, 상기 제1 음향전기변환소자는 제1 외팔보 구조를 포함할 수 있고, 상기 제2 음향전기변환소자는 제2 외팔보 구조를 포함할 수 있으며, 여기서, 상기 제1 외팔보 구조의 길이는 상기 제2 외팔보 구조의 길이보다 클 수 있고, 상기 제1 음향전기변환소자에 대응되는 공진 주파수는 상기 제2 음향전기변환소자에 대응되는 공진 주파수보다 낮을 수 있다. 여기서 설명하는 상기 제1 외팔보 구조와 상기 제2 외팔보 구조는 길이를 제외하고 동일한 파라미터(이를테면 폭, 두께, 재료)를 가질 수 있음에 유의해야 한다. 기타 실시예들에서, 상이한 외팔보 구조의 길이, 폭, 상기 두께, 및 재료는 조절되어 상이한 외팔보 구조의 공진 주파수를 규제할 수 있다.
일부 실시예에서는, 복수의 서브대역 주파수 분할 전기신호는 상이한 병렬회로를 통해 각자 전송될 수 있다. 일부 실시예에서는, 상기 복수의 서브대역 주파수 분할 전기신호는 특정 프로토콜 규칙에 따라 공동라인을 통해 특정 형식으로 출력될 수 있다. 일부 실시예에서는, 상기 특정 프로토콜 규칙은 직접 전송, 진폭 변조, 주파수 변조, 등 중 하나 이상을 포함할 수 있지만 이에 한정되지 않는다. 일부 실시예에서는, 상기 회로매체는 동축 케이블, 통신 케이블, 플렉시블 케이블, 스파이럴 케이블, 비금속 피복 케이블, 금속 피복 케이블, 멀티 코어 케이블, 트위스트 페어 케이블, 리본 케이블, 차폐 케이블, 통신 케이블, 페어링 케이블, 병렬 2 코어 도체, 트위스트 페어, 광섬유, 적외선, 전자기, 음파 등 중 하나 이상을 포함할 수 있지만 이에 한정되지 않는다. 일부 실시예에서는, 상기특정 형식은 CD, WAVE, AIFF, MPEG-1, MPEG-2, MPEG-3, MPEG-4, MIDI, WMA, RealAudio, VQF, AMR, APE, FLAC, AAC, 등 중 하나 이상을 포함할 수 있지만 이에 한정되지 않는다. 일부 실시예에서는, 전송제어 프로토콜은 AES3, EBU, ADAT, I2S, TDM, MIDI, CobraNet, Ethernet AVB, Dante, ITU-T G.728, ITU-T G.711, ITU-T G.722, ITU-T G.722.1, ITU-T G.722.1 Annex C, AAC-LD, 등 중 하나 이상을 포함할 수 있지만 이에 한정되지 않는다.
일부 실시예에서는, 상기 음향전기변환소자(210)의 각 음향전기변환소자(이를테면 상기 제1 음향전기변환소자,... 상기 제n 음향전기변환소자)는 각각 상응한 서브대역 주파수 분할 전기신호(이를테면 제1 서브대역 주파수 분할 전기신호,..,제n 서브대역 주파수 분할 전기신호)를 출력할 수 있으며, 상기 서브대역 주파수 분할 전기신호를 상응한 샘플링모듈(220)(이를테면 제1 샘플링모듈 1,.., 제n 샘플링모듈, 등.)에 전송하여 상기 서브대역 주파수 분할 전기신호(이를테면 제1 서브대역 주파수 분할 전기신호, .., 제n 서브대역 주파수 분할 전기신호)를 각각 상응한 디지털 신호(이를테면 제1 디지털신호,.., 제n 디지털신호, 등.)로 변환시킨다. 예를 들면, 상기 제1 샘플링모듈은 제1 서브대역 주파수 분할 전기신호를 샘플링하여 제1 서브대역 주파수 분할 전기신호를 제1 디지털신호로 변환시킬 수 있다. 상기 서브대역 주파수 분할 전기신호는 서브대역임을 명시한다. 일부 실시예에서는, 샘플링모듈(220)의 수량은 음향전기변환소자(210)의 수량과 다를 수 있다. 예를 들면, 상기 복수의 음향전기변환소자에 의해 출력되는 상기 서브대역 주파수 분할 전기신호는 동일한 샘플링 주파수를 가지는 동일한 샘플링모듈을 통해 샘플링될 수 있다. 일부 실시예에서는, 2개 이상의 인접한 음향전기변환소자에 의해 출력되는 서브대역 주파수 분할 전기신호의 주파수 범위는 근접할 수 있다. 상기 동일한 샘플링모듈은 2개 이상의 인접한 음향전기변환소자에 의해 출력되는 상기 서브대역 주파수 분할 전기신호에 대해 샘플링하여 상기 서브대역 주파수 분할 전기신호의 변환효율을 향상시킬 수 있다. 상기 샘플링 주파수, 샘플링 데이터 용량, 및 샘플링 난이도를 감소시키기 위해, 일부 실시예에서는, 상기 샘플링모듈(220)의 샘플링 주파수는 상이한 서브대역 주파수 분할 전기신호의 주파수 범위에 기반하여 결정될 수 있으며, 이는 상이한 서브대역 주파수 분할 전기신호가 상이한 주파수 범위를 가지고, 상기 샘플링모듈은 상이한 샘플링 주파수에 근거하여 상이한 서브대역 주파수 분할 전기신호를 처리할 수 있다고 이해할 수 있다. 예를 들면, 상대적으로 낮은 샘플링 주파수는 상기 저주파수 범위의 서브대역 주파수 분할 전기신호에 이용되어 낮은 차단주파수를 확보할 수 있다. 다른 하나의 예를 들면, 상대적으로 높은 샘플링 주파수는 중고주파수 범위의 상기 서브대역 주파수 분할 전기신호에 이용되어 상대적으로 높은 차단주파수를 확보할 수 있다. 상기 샘플링모듈은 상이한 샘플링 주파수에 근거하여 상이한 서브대역 주파수 분할 전기신호를 처리하여 샘플링하는 데이터량을 감소시키고, 샘플링의 난이도 및 비용을 감소시킬 수 있다. 그리고, 상기 서브대역 주파수 분할 및 샘플링 처리 중의 신호 왜곡 및 노이즈 유입과 같은 문제는 상이한 샘플링 주파수를 가지는 상기 서브대역 신호를 처리함으로써 방지할 수 있다. 일부 실시예에서는, 각 서브대역 주파수 분할 전기신호에 대응되는 상기 샘플링모듈의 샘플링차단주파수는 상기 서브대역 주파수 분할 전기신호에 대응되는 상기 공진 주파수 범위(아래에서는 "대역폭"라고도 일컷는다)의 최대 주파수보다 특정값만큼 클 수 있다. 각 상기 서브대역 주파수 분할신호에 대응되는 공진 주파수 범위는 상기 서브대역 주파수 분할 전기신호의 3 dB 대역폭일 수 있으며, 이는 상기 진폭 공진이 상기 공진피크의 1/2로 하강되었을 때 정의된 주파수 범위로 이해할 수 있다. 일부 실시예에서는, 상기 특정값의 범위는 500Hz보다 클 수 있다. 일부 실시예에서는, 상기 특정값의 범위는600H보다 클 수 있다. 일부 실시예에서는, 상기 특정값의 범위는 800Hz보다 클 수 있다. 상기 서브대역 주파수 분할 전기신호의 변환 품질을 향상시키기 위해, 일부 실시예에서는, 상기 샘플링 주파수는 상기 서브대역 주파수 분할 전기신호 대역폭의 최고 주파수의 1배 이상일 수 있다. 일부 실시예에서는, 상기 샘플링 주파수는 상기 서브대역 주파수 분할 전기신호 대역폭의 최고 주파수의 3배 이상일 수 있다. 일부 실시예에서는, 상기 샘플링 주파수는 상기 서브대역 주파수 분할 전기신호 대역폭의 최고 주파수의 2배 이상이고 상기 서브대역 주파수 분할 전기신호 대역폭의 최고 주파수의 4배 이하일 수 있다.
일부 실시예에서는, 상기 샘플링모듈(220)의 각 샘플링모듈에 의해 출력되는 상기 디지털 신호(이를테면 제1 디지털 신호,...,제n 디지털 신호, 등.)는 추가로 상기 신호처리모듈(230)에 전송되어 신호처리될 수 있다. 일부 실시예에서는, 복수의 디지털신호는 상이한 병렬회로를 통해 각자 상기 신호처리모듈(230)에 전송될 수 있다. 일부 실시예에서는, 복수의 디지털신호는 공동 회로를 공유하여 특정 프로토콜 규칙에 따라 특정 형식을 통해 상기 신호처리모듈(230)에 전송될 수 있다.
일부 실시예에서는, 상이한 주파수응답 특성을 구비하는 음향전기변환소자(이를테면 상기 외팔보 구조)를 상기 마이크로폰에 설치함으로써, 상기 음향전기변환소자에 의한 상기 광대역 소리신호의 직접 서브대역 분해가 구현될 수 있으며, 하드웨어 회로 또는 소프트웨어 알고리즘의 사용에 의한 복잡한 하드웨어 회로 설계, 상기 소프트웨어 알고리즘의 상대적으로 높은 계산 자원, 신호 왜곡, 및 노이즈 유입을 방지할 수 있고, 따라서 마이크로폰의 복잡성과 생산비용을 절감할 수 있다.
도 2에 표시하는 상기 마이크로폰(200)의 부재들은 상기 음향전기변환소자(210), 상기 샘플링모듈(220), 및 상기 신호처리모듈(230)에 한정되지 않으며, 기타 모듈, 예를 들면 진동픽업조립체, 진동전도조립체, 회로모듈, 등, 또는 이들의 임의의 조합을 더 포함할 수도 있음에 유의해야 한다. 도 2(이를테면 제n 음향전기변환소자, 제 n 샘플링모듈, 등.)에 설명된n은 2 이상의 정수일 수 있고, n의 구체적인 값은 실제 응용장면에 따라 조절될 수 있음이 추가로 이해될 수 있다.
상기 음향전기변환소자를 쉽게 이해하기 위해, 일부 실시예에서는, 상기 마이크로폰의 음향전기변환소자는 스프링 질량 댐핑 시스템과 거의 동등할 수 있다. 상기 마이크로폰이 작동할 때, 상기 스프링 질량 댐핑 시스템은 여기원(이를테면 상기 진동픽업조립체의 진동)의 작용하에서 진동을 생성할 수 있다. 도 3은 본 개시의 일부 실시예들에 따른 음향전기변환소자의 스프링 질량 댐핑 시스템을 나타내는 개략도이다. 도 3에 표시하는 바와 같이, 상기 스프링 질량 댐핑 시스템은 미분방적식(1)에 따라 이동할 수 있다.
Figure pct00001
,(1)
여기서,
Figure pct00002
는 상기 스프링 질량 댐핑 시스템의 질량이고,
Figure pct00003
는 상기 스프링 질량 댐핑 시스템의 변위이고,
Figure pct00004
는 상기 스프링 질량 댐핑 시스템의 댐핑이고,
Figure pct00005
는 상기 스프링 질량 댐핑 시스템의 탄성계수이고,
Figure pct00006
는 구동력의 진폭이고,
Figure pct00007
는 외력의 원주파수이다.
상기 미분방적식(1)을 풀어서 정상상태(2)의 범위를 얻을 수 있다.
Figure pct00008
,(2)
여기서,
Figure pct00009
는 상기 스프링 질량 댐핑 시스템의 변위의 값이고 상기 마이크로폰이 작동할 때의 출력 전기신호와 동등하고,
Figure pct00010
중의
Figure pct00011
는 출력변위이고,
Figure pct00012
는 기계적 임피던스이고,
Figure pct00013
는 진동 위상이다.
변위 진폭
Figure pct00014
의 비율의 정규화는 공식(3)으로 설명할 수 있다.
Figure pct00015
,(3)
여기서,
Figure pct00016
에서
Figure pct00017
는 정상상태(또는 ω= 0일 때)의 변위 진폭이고,
Figure pct00018
중의
Figure pct00019
는 외력 주파수 대 고유 주파수의 비율이고,
Figure pct00020
in
Figure pct00021
는 상기 진동의 원주파수이고,
Figure pct00022
중의
Figure pct00023
기계적 품질계수이다.
도 4는 본 개시의 일부 실시예들에 따른 스프링 질량 댐핑 시스템의 변위공진곡선의 예시적인 정규화를 나타내는 개략도이다. 수평축은 스프링 질량 댐핑 시스템의 실제 진동 주파수 대 스프링 질량 댐핑 시스템의 고유 주파수의 비율이고, 세로축은 상기 스프링 질량 댐핑 시스템의 정규화 변위이다. 도 4의 각 곡선은 각각 상이한 파라미터를 가지는 상기 스프링 질량 댐핑 시스템의 변위공진곡선이다. 일부 실시예에서는, 상기 마이크로폰은 상기 음향전기변환소자와 상기 셸 구조 사이의 상대적 변위를 통해 전기신호를 생성할 수 있다. 예를 들면, 일렉트렛 마이크로폰은 격막과 기판 사이의 변화에 근거하여 전기신호를 생성할 수 있다. 다른 하나의 예를 들면, 외팔보 골전도 마이크로폰은 외팔보 사이의 거리 변화에 의한 상기 변형된 외팔보 구조 또는 전기용량 변화에 의해 발생되는 압전기에 근거해 전기신호를 생성할 수 있다. 일부 실시예에서는, 상기 외팔보 구조 변형의 변위가 클 수록, 상기 마이크로폰에 의해 출력되는 전기신호가 크다. 도 4에 표시하는 바와 같이,상기 스프링 질량 댐핑 시스템의 실제 진동 주파수는 상기 스프링 질량 댐핑 시스템(즉, 상기 스프링 질량 댐핑 시스템의 실제 진동 주파수와 상기 스프링 질량 댐핑 시스템의 고유 주파수 사이의 비율
Figure pct00024
이 1과 같거나 거의 같음)의 고유 주파수와 같거나 거의 같을 수 있으며, 상기 스프링 질량 댐핑 시스템의 정규화 변위가 클 수록, 상기 변위공진곡선(여기에서의 공진 주파수 범위로 이해해도 된다) 중의 공진피크의 3 dB 대역폭이 좁을 수 있다. 상기 공식(3)을 결합하면, 상기 스프링 질량 댐핑 시스템의 정규화 변위가 클 수록, 상기 마이크로폰의 Q값이 크다.
도 5는 본 개시의 일부 실시예들에 따른 마이크로폰을 나타내는 개략도이다. 마이크로폰(500)은 셸 구조(510), 적어도 2개의 음향전기변환소자(520), 및 진동픽업조립체(522)을 포함할 수 있다. 상기 셸 구조(510)은 상기 진동픽업조립체(522)과 음향전기변환소자(520)를 탑재하도록 구성될 수 있다. 일부 실시예에서는, 상기 셸 구조(510)은 규칙적인 구조, 예를 들면 직육면체, 원기둥, 원뿔 절두체, 또는 기타 불규칙적인 구조체일 수 있다. 일부 실시예에서는, 상기 셸 구조(510)는 공심 구조체일 수 있으며, 상기 셸 구조(510)는 독립적으로 상기 진동픽업조립체(522)와 상기 적어도 2개의 음향전기변환소자(520)가 위치할 수 있는 음향캐비티를 형성할 수 있다. 일부 실시예에서는, 상기 셸 구조(510)의 재료는 금속, 합금, 및 중합체(이를테면 아크릴로니트릴-부타디엔-페놀 공중합체, 폴리염화비닐, 폴리카보네이트, 폴리프로필렌 등) 중의 하나 이상을 포함할 수 있으나 이에 한정되지 않는다. 일부 실시예에서는, 상기 진동픽업조립체(522)는 상기 셸 구조(510)의 측벽에 연결될 수 있으며, 따라서 상기 셸 구조(510)에 의해 형성되는 상기 음향캐비티는 제1 음향캐비티(530)와 제2 음향캐비티(540)를 포함할 수 있는 복수의 캐비티로 나뉠 수 있다.
일부 실시예에서는, 하나 이상의 홀(511)은 상기 셸 구조(510)의 제1 음향캐비티(530)에 대응되는 측벽에 설치될 수 있고, 하나 이상의 홀(511)은 상기 제1 음향캐비티(530)내에 위치하여 상기 외부 소리신호를 상기 제1 음향캐비티(530) 내부로 안내할 수 있다. 일부 실시예에서는, 상기 외부 소리신호는 상기 홀(511)로부터 상기 마이크로폰(530)의 상기 제1 음향캐비티(530)에 진입하고 공기를 상기 제1 음향캐비티(530)의 내부로 안내하여 진동시킬 수 있다. 상기 진동픽업조립체(522)는 공기 진동신호를 픽업하여 상기 공기 진동신호를 상기 음향전기변환소자(520)로 전송할 수 있으며, 상기 음향전기변환소자(520)는 상기 공기 진동신호를 수신하고 상기 공기 진동신호를 전기신호로 변환시켜 출력할 수 있다.
일부 실시예에서는, 상기 진동픽업조립체(522)는 위로부터 아래로 순차로 배치된 제1 진동픽업조립체(5221)와 제2 진동픽업조립체(5222)을 포함할 수 있다. 상기 제1 진동픽업조립체와 상기 제2 진동픽업조립체는 둘레측을 통해 상기 셸 구조에 연결될 수 있고, 상기 제1 진동픽업조립체(5221)와 상기 제2 진동픽업조립체(5222)의 적어도 일부분 구조는 상기 홀(511)을 통해 상기 마이크로폰(530)에 진입하는 음향신호에 응답하여 진동을 생성할 수 있다. 일부 실시예에서는, 상기 진동픽업조립체(522)의 재료는 반도체 재료, 금속 재료, 합금, 유기재료, 등 중 하나 이상을 포함할 수 있지만 이에 한정되지 않는다. 일부 실시예에서는, 상기 반도체 재료는 실리콘, 이산화규소, 질화규소, 탄화규소, 등을 포함할 수 있지만 이에 한정되지 않는다. 일부 실시예에서는, 상기 금속재료는 구리, 알루미늄, 크롬, 티타늄, 금, 등을 포함할 수 있지만 이에 한정되지 않는다. 일부 실시예에서는, 상기 합금은 구리-금속 합금, 구리-금 합금, 티타늄 합금, 알루미늄 합금, 등을 포함할 수 있지만 이에 한정되지 않는다. 일부 실시예에서는, 상기 유기재료는 폴리이미드, 파리렌, PDMS, 실리콘젤, 실리콘, 등을 포함할 수 있지만 이에 한정되지 않는다. 일부 실시예에서는, 상기 진동픽업조립체(522)는 판상 구조, 각기둥 구조, 등을 가질 수 있다.
일부 실시예에서는, 상기 진동픽업조립체(522)의 상이한 구역은 상이한 재료로 제조될 수 있다. 예를 들면, 상기 진동픽업조립체(522)의 진동픽업전송조립체(523)에 접촉되는 부분의 재료와 상기 진동픽업조립체(522)의 캐비티(550)에 대응되는 부분의 재료는 단단한 재료일 수 있으며, 그 강도는 상기 진동픽업조립체(522)의 기타 구역의 강도, 예를 들면, 주로 공기 진동에 응답하여 상기 셸 구조(510)에 상대적으로 움직일 수 있는 가장자리 구역의 강도보다 클 수 있다. 일부 실시예에서는, 상기 진동픽업조립체(522)에서 단단한 재료로 구성된 국부 구조는 상기 제1 음향캐비티(530) 중의 공기 진동의 작용하에서 변형되기 어려워서 상기 캐비티(550)의 체적이 기본상 변하지 않도록 유지되므로써, 상기 캐비티(550)의 체적변화의 음향전기변환소자(1320)에 대한 영향을 방지하고, 상기 음향전기변환소자(520)가 희망하는 주파수 범위내에서 상기 진동픽업조립체(522)로부터 수신한 진동신호를 전기신호로 변환시킬 수 있도록 확보한다. 일부 실시예에서는, 상기 캐비티(550)는 진공 캐비티일 수 있다. 상기 음향전기변환소자(520)는 상기 진공 캐비티에 위치하여 상기 음향전기변환소자(510)가 상기 음향캐비티의 공기와 접촉하는 것을 방지하고, 상기 음향캐비티의 공기 진동의 상기 음향전기변환소자(520)의 음향전기변환처리 중의 영향을 감소시키며, 즉, 상기 마이크로폰의 큰 배경 노이즈의 문제를 해결할 수 있다. 반면에, 상기 음향전기변환소자(520)는 상기 진공 캐비티 내부에 위치할 수 있고, 이는 상기 진동처리 중의 상기 음향전기변환소자(520)와 공기 사이의 마찰을 방지할 수 있고, 상기 마이크로폰(530)의 진공 캐비티 내부의 공기 댐핑을 감소시키고, 상기 마이크로폰(500)의 Q 값을 개선할 수 있다. 일부 실시예에서는, 상기 캐비티(550)의 진공도는 100 PA보다 작을 수 있다. 일부 실시예에서는, 상기 캐비티(550)의 진공도는 10-6 Pa 내지 100 Pa일 수 있다. 일부 실시예에서는, 상기 캐비티(550)의 진공도는 10-3 Pa 내지 100 Pa일 수 있다. 일부 실시예에서는, 상기 캐비티(550)의 진공도는 1 Pa 내지 100 Pa일 수 있다.
일부 실시예에서는, 상기 마이크로폰(500)은 진동전도조립체(523)를 포함할 수 있다. 상기 진동전도조립체(523)는 제1 진동픽업조립체(5221)와 제2 진동픽업조립체(5222) 사이에 배치될 수 있다. 상기 진동전도조립체(523)의 상면은 상기 제1 진동픽업조립체(5221)의 하면에 연결될 수 있고, 상기 진동전도조립체(523)의 하면은 상기 제2 진동픽업조립체(5222)의 상면에 연결될 수 있다. 일부 실시예에서는, 상기 캐비티(550)는 상기 진동전도조립체(523), 상기 제1 진동픽업조립체(5221), 상기 제2 진동픽업조립체(5222) 사이에 형성될 수 있고, 상기 음향전기변환소자(520)는 상기 캐비티(550)에 위치할 수 있다. 구체적으로는, 상기 음향전기변환소자(520)의 일단부는 상기 진동전도조립체(523)의 내벽에 연결될 수 있고, 상기 음향전기변환소자(520)의 다른 일단부는 상기 캐비티(550)안에 현수될 수 있다. 일부 실시예에서는, 상기 진동픽업조립체(522)(이를테면 상기 제1 진동픽업조립체(5221), 상기 제2 진동픽업조립체(5222))는 상기 진동전도조립체(523)를 통해 상기 진동신호를 상기 음향전기변환소자(520)에 전송할 수 있다. 일부 실시예에서는, 상기 진동전도조립체(523)의 재료는 반도체 재료, 금속 재료, 합금, 유기재료, 등 중 하나 이상을 포함할 수 있지만 이에 한정되지 않는다. 일부 실시예에서는, 상기 진동전도조립체(523)의 재료는 상기 진동픽업조립체(522)의 재료와 같거나 상이할 수 있다. 일부 실시예에서는, 상기 진동전도조립체(523)와 상기 진동픽업조립체(522)는 일체로 형성된 구조일 수 있다. 일부 실시예에서는, 상기 진동전도조립체(523)와 상기 진동픽업조립체(522)는 상대적으로 독립된 구조일 수 있다. 일부 실시예에서는, 상기 진동전도조립체(523)는 규칙적 및/또는 불규칙적인 다각형 구조, 예를 들면 관 구조, 고리형 구조, 사각형 구조, 및 오각형 구조일 수 있다.
대안 실시예들에서, 상기 진동픽업조립체(522)는 제1 진동픽업조립체(5221)만 포함할 수 있으며, 상기 제1 진동픽업조립체(5221)는 둘레측을 통해 상기 셸 구조(510)에 연결될 수 있으며, 하나 이상의 음향전기변환소자(520)는 상기 제1 진동픽업조립체(5221)에 직접 또는 간접적으로 연결될 수 있음에 유의해야 한다. 예를 들면, 상기 음향전기변환소자(520)는 상기 제1 진동픽업조립체(5221)의 상면 또는 하면에 위치할 수 있고, 하나 이상의 음향전기변환소자(520)는 상기 제1 진동픽업조립체(5221)의 상면 또는 하면에서 간격을 두고 분포될 수 있으며, 여기서, 하나 이상의음향전기변환소자(520)는 서로 접촉하지 않을 수 있다. 다른 하나의 예를 들면, 상기 음향전기변환소자(520)는 기타 구조(이를테면 상기 진동전도조립체(523))를 통해 상기 제1 진동픽업조립체(5221)에 연결될 수 있다. 상기 제1 진동픽업조립체(5221)는 상기 홀(511)을 통해 상기 마이크로폰(530)에 진입하는 음향신호에 응답하여 진동을 생성할 수 있으며, 상기 음향전기변환소자(520)는 상기 제1 진동픽업조립체(5221) 또는 상기 진동전도조립체(523)의 진동을 전기신호로 변환할 수 있다.
일부 실시예에서는, 하나 이상의 음향전기변환소자(520)는 상기 진동전도조립체(523)의 내벽에서 간격을 두고 분포될 수 있다. 상기 간격을 두는 분포는 수평방향( 도5에 표시하는 A-A 방향에 수직이 된다) 또는 세로방향(상기 A-A 방향도 에 표시하는 5)의 양자를 의미할 수 있음에 유의해야 한다. 예를 들면, 상기 진동전도조립체(523)가 고리형 관 구조인 경우, 하나 이상의 음향전기변환소자(520)는 상기 세로방향에서 위로부터 아래로의 순서로 간격을 두고 분포될 수 있다. 도 6a 는 도 5의 마이크로폰의 A-A 방향에서의 단면 개략도이다. 도 6a에 표시하는 바와 같이, 복수의 음향전기변환소자(520)는 상기 진동전도조립체(523)의 내벽에서 간격을 두로 순차로 분포될 수 있다. 복수의 음향전기변환소자(520)는 상기 수평방향과 동일한 평면이거나 거의 평행되게 간격을 두고 분포될 수 있다. 도 6b는 도 5의 마이크로폰의 A-A 방향에 수직이 되는 방향에서의 단면 개략도이다. 도 6b에 표시하는 바와 같이, 음향전기변환소자(520)와 상기 진동전도조립체(530)의 각각의 고정단부는 상기 수평방향에서 상기 진동전도조립체(523)의 고리형 내벽에 간격을 두고 분포될 수 있으며, 상기 음향전기변환소자(520)의 고정단부는 상기 진동전도조립체(523)에 거의 수직이 될 수 있고, 상기 음향전기변환소자(520)의 다른 일단부("자유단"이라고도 한다)는 상기 진동전도조립체(523)의 중심방향을 향해 연장되고 상기 캐비티(550)내에 현수될 수 있으며, 따라서 상기 음향전기변환소자(520)는 상기 수평방향에서 고리형으로 분포될 수 있다. 일부 실시예에서는, 상기 진동전도조립체(523)는 다각형 관 구조(이를테면 삼각형, 오각형, 육각형, 등.)일 수 있으며, 복수의 음향전기변환소자(520)의 고정단부는 상기 수평방향에서 상기 진동전도조립체(523)의 각 측벽에서 간격을 두고 분포될 수도 있다. 도 7a 는 본 개시의 일부 실시예들에 따른 외팔보 구조의 개략도이다. 도 7a에 표시하는 바와 같이 상기 진동전도조립체(523)는 사각형 구조일 수 있고, 복수의 음향전기변환소자(520)는 상기 진동전도조립체(523)의 4개의 측벽에 교대로 분포될 수 있다. 도 7b 는 본 개시의 일부 실시예들에 따른 외팔보 구조의 개략도이다. 도 7b에 표시하는 바와 같이, 상기 진동전도조립체(523)는 육각형 구조일 수 있으며, 상이한 길이의 외팔보 구조(521)는 상기 진동전도조립체(523)의 6개의 측벽에 교대로 분포될 수 있다. 상기 진동전도조립체(523)의 내벽에 간격을 두고 분포된 복수의 음향전기변환소자(520)는 상기 캐비티(550)의 공간의 활용을 개선하고 상기 마이크로폰(500)의 전체 체적을 감소시킬 수 있다.
복수의 음향전기변환소자(520)는 상기 수평또는 세로방향에서 상기 진동전도조립체(523)의 전체 내벽에서 간격을 두고 분포되는 방식에 한정되지 않을 수 있으며, 복수의 음향전기변환소자(520)는 상기 진동전도조립체(523)의 측벽 또는 일부분 측벽에 더 배치될 수 있으며, 또는 복수의 음향전기변환소자(520)는 상기 동일한 수평면에 있을 수 있음에 유의해야 한다. 예를 들면, 상기 진동전도조립체(523)는 입방체 구조일 수 있고, 복수의 음향전기변환소자(520)는 상기 입방체 구조의 하나의 측벽, 2개의 반대측 또는 인접한 측벽, 또는 임의의 3개의 측벽에서 대칭되게 배치될 수 있다. 복수의 음향전기변환소자(520)의 분포방식은 상기 캐비티(550)의 수량 또는 크기에 따라 조절될 수 있으며, 더 한정되지 않을 수 있다.
일부 실시예에서는, 각 음향전기변환소자(520)는 외팔보 구조를 포함할 수 있고, 상기 외팔보 구조의 일단부는 상기 진동전도조립체(523)의 내벽에 연결될 수 있고, 상기 외팔보 구조의 다른 일단부는 상기 캐비티(550)내에 현수될 수 있다.
일부 실시예에서는, 상기 외팔보 구조는 제1 전극층, 압전층, 제2 전극층, 탄성층, 및 기판층을 포함할 수 있다. 상기 제1 전극층, 상기 압전층, 및 상기 제2 전극층은 위로부터 아래로 순차로 배치될 수 있으며, 상기 탄성층은 상기 제1 전극층의 상면 또는 상기 제2 전극층의 하면에 위치할 수 있고, 상기 기판층은 상기 탄성층의 상면 또는 하면에 위치할 수 있다. 일부 실시예에서는, 외부 소리신호는 상기 홀(511)을 통해 상기 마이크로폰(530)의 상기 음향캐비티(530)에 진입하고 공기를 상기 제1 음향캐비티(530) 내부에 전달하여 진동을 발생시킨다. 상기 공기진동신호는 상기 진동픽업조립체(520)를 통해 픽업되고 상기 음향전기변환소자(520)(이를테면 상기 외팔보 구조)에 전송될 수 있으며, 상기 외팔보 구조의 상기 탄성층은 상기 진동신호의 작용하에서 변형될 수 있다. 일부 실시예에서는, 상기 압전층은 상기 탄성층의 변형에 근거하여 전기신호를 생성할 수 있고, 상기 제1 전극층과 상기 제2 전극층은 상기 전기신호를 수집할 수 있다. 일부 실시예에서는, 상기 압전층은 압전 효과에 근거하여, 상기 탄성층의 응력하에서의 변형작용하에서 전압(전위차)를 발생하고, 상기 제1 전극층과 상기 제2 전극층은 상기 전압(상기 전기신호)을 출력할 수 있다.
일부 실시예에서는, 상기 탄성층은 하나 이상의 반도체 재료에 의해 지지되는 막구조 또는 블록 구조일 수 있다. 일부 실시예에서는, 상기 반도체 재료는 실리콘, 이산화규소, 질화규소, 질화갈륨, 산화아연, 탄화규소, 등을 포함할 수 있지만 이에 한정되지 않는다. 일부 실시예에서는, 상기 압전층의 재료는 압전 결정 재료와 압전 세라믹 재료를 포함할 수 있다. 상기 압전 결정 재료는 압전 단결정일 수 있다. 일부 실시예에서는, 상기 압전결정재료는 결정, 스팔레라이트, 아라곤라이트, 토르말린, 로도크로사이트, GaAs, 티탄산바륨 및 유래 구조 결정, KH2PO4, NaKC4H4O6-4H2O(로셸염), 등, 또는 이들의 임의의 조합을 포함할 수 있다. 상기 압전 세라막 재료는 상이한 재료 분말 입자 사이의 고상 응답 및 소결에 의해 획득하는 미세립자의 불규칙적인 집합인 압전 다결정일 수 있다. 일부 실시예에서는, 상기 압전 세라믹 재료는 티탄산바륨(BT), 티탄산지르코늄(PZT), 티탄산지연(PBLN), 티탄산지연(PT), 질화알루미늄(AIN), 산화아연(ZnO), 등, 또는 이들의 임의의 조합을 포함할 수 있다. 일부 실시예에서는, 상기 압전층 재료는 압전 폴리머 재료, 예를 들면 폴리비닐리덴 이플루오라이드(PVDF)를 더 포함할 수 있다. 일부 실시예에서는, 상기 제1 전극층과 상기 제2 전극층은 전도성 재료 구조일 수 있다. 예시적인 전도성 재료는금속, 합금 재료, 금속 산화물 재료, 그래핀, 등, 또는 이들의 임의의 조합을 포함할 수 있다. 일부 실시예에서는, 금속과 합금 재료는니켈, 철, 납, 백금, 티타늄, 구리, 몰리브덴, 아연, 또는 이들의 임의의 조합을 포함할 수 있다. 일부 실시예에서는, 상기 금속 산화물 재료는 RuO2, MnO2, PbO2, NiO, 등, 또는 이들의 임의의 조합을 포함할 수 있다.
일부 실시예에서는, 상기 외팔보 구조는 와이어 결합 전극층(PAD 층)을 더 포함할 수 있으며, 상기 와이어 결합 전극층은 상기 제1 전극층과 상기 제2 전극층에 위치할 수 있고, 상기 제1 전극층과 상기 제2 전극층은 외부 와이어 결합(이를테면 금선, 알루미늄선, 등.)을 통해 외부 회로에 연결될 수 있고, 상기 제1 전극층과 상기 제2 전극층 사이의 전압신호는 백엔드 처리회로로 안내될 수 있다. 일부 실시예에서는, 상기 와이어 결합 전극층의 재료는 구리박, 티타늄, 구리, 등을 포함할 수 있다. 일부 실시예에서는, 상기 와이어 결합 전극층의 재료는 상기 제1 전극층(또는 상기 제2 전극층)의 재료와 같을 수 있다. 일부 실시예에서는, 상기 와이어 결합 전극층의 재료는 상기 제1 전극층(또는 상기 제2 전극층)의 재료와 다를 수 있다.
기타 실시예들에서, 상기 외팔보 구조는 적어도 탄성층, 전극층, 및 압전층을 포함할 수 있으며, 여기서, 상기 탄성층은 상기 전극층의 표면에 위치할 수 있고 상기 전극층은 상기 압전층의 상면 또는 하면에 위치할 수 있다. 일부 실시예에서는, 상기 전극층은 제1 전극과 제2 전극을 포함할 수 있다.상기 제1 전극과 상기 제2 전극은 빗모양 구조로 구부러질 수 있으며, 상기 제1 빗모양 구조와 제2 빗모양 구조는 상기 인접한 빗살구조 사이에 일정한 틈을 구비한 복수의 빗살구조를 포함할 수 있고, 상기 거리는 동일하거나 상이할 수 있다. 상기 제1 빗모양 구조와 상기 제2 빗모양 구조는 결합하여 전극층을 구성할 수 있고, 상기 제1 빗모양 구조의 빗살 구조는 상기 제2 빗모양 구조의 틈 내부로 더 연장될 수 있으며, 상기 제2 빗모양 구조의 빗살 구조는 상기 제1 빗모양 구조의 틈 내부로 연장되어 결합을 통해 전극층을 형성할 수 있다. 상기 제1 빗살 구조와 상기 제2 빗살 구조는 서로 결합될 수 있으며, 따라서 상기 제1 전극과 상기 제2 전극은 빽빽하게 배치될수 있으나 교차되지는 않는다. 일부 실시예에서는, 상기 제1 빗모양 구조와 상기 제2 빗모양 구조는 상기 외팔보의 길이 방향(이를테면 고정 단부로부터 자유 단부로)을 따라 연장될 수 있다. 상기 탄성층과 압전층에 대한 더 많은 정보는 도 5 및 그 관련 설명을 참고할 수 있다. 일부 실시예에서는, 상기 상이한 음향전기변환소자(520)의 각 외팔보 구조는 각각 외팔보공진시스템을 형성할 수 있으며, 외팔보공진시스템의 공진 주파수는 공식(4)에 의해 표현될 수 있다.
Figure pct00025
,(4)
여기서,
Figure pct00026
는 상기 공진시스템의 공진 주파수이고,
Figure pct00027
는 상기 공진시스템의 강도이고,
Figure pct00028
는 상기 공진시스템의 질량이다. 상기 공식(4)에 의하면, 상기 공진시스템의 강도 대 상기 공진시스템의 질량의 비율
Figure pct00029
이 작아질 때, 상기 공진시스템의 공진 주파수
Figure pct00030
는 작아질 수 있다. 일부 실시예에서는, 상기 공진시스템의 민감도는 상기 공진시스템의 공진 주파수를 변화시킴에 의해 특정된 주파수 범위(이를테면 상기 공진 주파수보다 작다)로 개선될 수 있다.
일부 실시예에서는, 상기 외팔보 구조가 입방체 구조인 경우, 상기 외팔보공진시스템의 공진 주파수를 계산하기 위한 상기 공식(4)은 공식(5)으로 표현될 수도 있다.
Figure pct00031
,(5)
여기서,
Figure pct00032
는 상기 공진시스템의 공진 주파수이고,
Figure pct00033
는 상기 외팔보 구조의 재료의 탄성계수이고,
Figure pct00034
는 상기 외팔보 구조( 상기 외팔보 구조의 길이로 해석할 수 있다)의 관성 모‘X드이고,
Figure pct00035
는 상기 외팔보 구조의 밀도이고,
Figure pct00036
는 상기 외팔보 구조의 단면면적이다.
Figure pct00037
, 여기서,
Figure pct00038
는 상기 외팔보 구조의 단면의 폭이고,
Figure pct00039
는 상기 외팔보 구조의 단면의 높이이다. 상기 공식(5)에 의하면, 동일한 단면 크기(즉, 상기 외팔보 구조의 폭과 높이)와 재료를 구비하면, 상기 외팔보 구조의 길이가 길 수록, 상기 외팔보 구조의 공진 주파수가 작다.
상기 설명에 기초하여, 일부 실시예에서는, 상이한 음향전기변환소자(520)(이를테면 상이한 길이의 외팔보 구조)를 설치함으로써, 상이한 음향전기변환소자(520)는 각각 상이한 공진 주파수를 가질 수 있으며, 따라서 상이한 주파수응답은 상기 진동전도조립체(523)의 진동신호에 따라 생성될 수 있다. 일부 실시예에서는, 상기 외팔보 구조의 파라미터(이를테면 상기 길이, 상기 폭, 상기 두께, 상기 재료, 등.)는 상이한 공진 주파수에 대응되는 주파수응답을 얻을 수 있도록 설치될 수 있다. 일부 실시예에서는, 상기 외팔보 구조에 따라 공진 주파수는 상기 외팔보 구조의 진동방향에 수직이 되는 방향의 길이와 음의 상관관계를 가질 수 있으며, 즉, 그 자체의 진동에 수직이 되는 방향에서의 상기 외팔보 구조의 길이가 길 수록, 상기 외팔보 구조에 대응되는 공진 주파수가 작다. 예를 들면, 도7a에 표시하는 상기 진동방향에 수직이 되는 상기 제1 외팔보 구조(5211)의 길이는 상기 진동방향에 수직이 되는 상기 제2 외팔보 구조의 길이보다 클 수 있고, 상기 제1 외팔보 구조(5211)에 대응되는 공진 주파수는 상기 제2 외팔보 구조(5212)에 대응되는 공진 주파수보다 낮을 수 있다. 일부 실시예에서는, 상기 외팔보 구조(5212)의 길이를 조절함으로써 상기 상이한 외팔보 구조에 대응되는 복수의 공진 주파수 중의 적어도 2개는20Hz 내지 16000Hz이내일 수 있다. 상기 외팔보 구조(5212)의 길이를 조절함으로써 상기 상이한 외팔보 구조에 대응되는 복수의 공진 주파수 중의 적어도 2개는100Hz 내지 12000Hz이내일 수 있다. 상기 외팔보 구조는 공진 주파수 부근의 진동에 민감하기 때문에, 상기 외팔보 구조는 진동 신호에 대한 주파수 선택 특성을 가지고 있다고 간주할 수 있다. 즉, 상기 외팔보 구조는 주로 공진 주파수 부근의 상기 서브대역진동신호를 상기 전기신호로 변환할 수 있다. 따라서, 일부 실시예에서는, 상이한 길이를 설정함으로써, 상이한 외팔보 구조는 상이한 공진 주파수를 가질 수 있으며, 따라서 각각 각 공진 주파수 주위의 서브대역을 형성할 수 있다. 예를 들면, 11개의 서브대역은 복수의 외팔보 구조를 통해 사람의 음성의 주파수 범위내에 설정될 수 있고, 상기 외팔보 구조에 대응되는 상기 11개의 서브대역의 각 서브대역의 공진 주파수는 각각 500Hz 내지 700Hz, 700Hz 내지 1000Hz, 1000Hz 내지 1300Hz, 1300Hz 내지 1700Hz, 1700Hz 내지 2200Hz, 2200Hz 내지 3000Hz, 3000Hz 내지 3800Hz, 3800Hz 내지 4700Hz, 4700Hz 내지 5700Hz, 5700Hz 내지 7000Hz, 및7000Hz 내지 12000Hz의 범위 이내일 수 있다. 다른 하나의 예를 들면, 16개의 서브대역은 복수의 외팔보 구조를 통해 사람의 음성의 주파수 범위내에 설정될 수 있고, 상기 외팔보 구조에 대응되는 상기 16개의 서브대역의 각 서브대역의 공진 주파수는 각각 500Hz 내지 640Hz, 640Hz 내지 780Hz, 780Hz 내지 930Hz, 940Hz 내지 1100Hz, 1100Hz 내지 1300Hz, 1300Hz 내지 1500Hz, 1500Hz 내지 1750Hz, 1750Hz 내지 1900Hz, 1900Hz 내지 2350Hz, 2350Hz 내지 2700Hz, 2700Hz 내지 3200Hz, 3200Hz 내지 3800Hz, 3800Hz 내지 4500Hz, 4500Hz 내지 5500Hz, 5500Hz 내지 6600Hz, 6600Hz 내지 8000Hz의 범위 이내일 수 있다. 또 하나의 예로써, 24개의 서브대역은 복수의 외팔보 구조를 통해 사람의 음성의 주파수 범위내에 설정될 수 있고, 상기 외팔보 구조에 대응되는 상기 24개의 서브대역의 각 서브대역의 공진 주파수는 각각 20Hz 내지 120Hz, 120Hz 내지 210Hz, 210Hz 내지 320Hz, 320Hz 내지 410Hz, 410Hz 내지 500Hz, 500Hz 내지 640Hz, 640Hz 내지 780Hz, 780Hz 내지 930Hz, 940Hz 내지 1100Hz, 1100Hz 내지 1300Hz, 1300Hz 내지 1500Hz, 1500Hz 내지 1750Hz, 1750Hz 내지 1900Hz, 1900Hz 내지 2350Hz, 2350Hz 내지 2700Hz, 2700Hz 내지 3200Hz, 3200Hz 내지 3800Hz, 3800Hz 내지 4500Hz, 4500Hz 내지 5500Hz, 5500Hz 내지 6600Hz, 6600Hz 내지 7900Hz, 7900Hz 내지 9600Hz, 9600Hz 내지 12100Hz, 12100Hz 내지 16000Hz의 범위 이내일 수 있다. 직육면체 구조를 구비하는 외팔보 구조를 하나의 예로 들면, 일부 실시예에서는, 적어도 5개의 서브대역은 복수의 외팔보 구조의 상이한 길이를 조절하는 것을 통해 사람의 음성 주파수 범위(이를테면 20Hz 내지 16000Hz)내에 형성될 수 있다. 일부 실시예에서는, 5 내지11개의 서브대역은 복수의 외팔보 구조의 상이한 길이를 조절하는 것을 통해 사람의 음성 주파수 범위(이를테면 20Hz 내지 16000Hz)내에 형성될 수 있다. 일부 실시예에서는, 5 내지 16개의 서브대역은 복수의 외팔보 구조의 상이한 길이를 조절하는 것을 통해 사람의 음성 주파수 범위(이를테면 20Hz 내지 16000Hz)내에 형성될 수 있다. 일부 실시예에서는, 6 내지 24개의 서브대역은 복수의 외팔보 구조의 상이한 길이를 조절하는 것을 통해 사람의 음성 주파수 범위(이를테면 20Hz 내지 16000Hz)내에 형성될 수 있다. 상기 음향전기변환소자(또는 상기 외팔보 구조), 서브대역의 수량, 및 각 서브대역에 대응되는 공진 주파수의 주파수 범위는 상술한 바에 한정되지 않으며, 상기 마이크로폰의 응용장면, 상기 마이크로폰의 크기, 및 기타 특정된 상황에 근거하여 조절될 수 있으며, 여기의 기재에 제한되지 않음에 유의해야 한다. 더욱이, 상기 외팔보 구조의 형상은 상술한 직육면체에 한정되지 않고, 기타 가능한 다른 형상일 수 있으며, 상기 외팔보 구조의 단면 형상은 삼각형, 반진주형, 사방형, 오각형, 육각형과 같은 규칙적이거나 불규칙적인 형상일 수 있으며, 상이한 외팔보는 상기 외팔보 구조의 질량 또는 강도와 관련되는 파리미터를 조절함으로써 상이한 공진 주파수를 가질 수 있다.
일부 실시예에서는, 상기 마이크로폰(530)의 음향전기변환소자(520)는 구조, 크기, 내면의 거칠기, 등과 같은 상기 제1 음향캐비티(530) 및/또는 상기 홀(511)의 파라미터를 조절하는 것을 통해 각각 희망하는 주파수 범위내에서 공진을 발생할 수 있다. 예를 들면, 진동신호에 대한 서브대역분할은 상기 제1 음향캐비티(530)의 형상, 캐비티 체적, 및 내면의 거칠기를 조절함으로써 완성되어 상기 제1 음향캐비티(530)에 들어가는 소리가 특정된 서브대역주파수를 가지도록 할 수 있다. 상기 마이크로폰(530)이 상기 크기, 및 내면의 거칠기와 같은 파라미터를 조절함으로써 각각 희망하는 주파수 범위내에서 공진을 발생는 내용은 본 개시와 동일 일자에 제출한 "마이크로폰"이라는 명칭의 특허출원을 참고할 수 있으며, 여기서는 기술하지 않는다.
도 8은 본 개시의 일부 실시예들에 따른 마이크로폰을 나타내는 개략도이다. 도 8에 표시하는 바와 같이, 상기 마이크로폰(800)은 셸 구조(810), 음향전기변환소자(820), 및 진동픽업조립체(822)를 포함할 수 있다. 도8에 표시하 상기 마이크로폰(800)은 도5에 표시하는 상기 마이크로폰(530)과 같거나 유사할 수 있다. 예를 들면, 마이크로폰(800)의 셸 구조(810)는 마이크로폰(500)의 셸 구조(510)와 같거나 유사할 수 있다. 다른 하나의 예를 들면, 상기 마이크로폰(800)의 제1 음향캐비티(830), 제2 음향캐비티(840), 및 캐비티(850)는 각각 상기 마이크로폰(500)의 상기 제1 음향캐비티(530), 상기 제2 음향캐비티(540), 및 상기 캐비티(550)와 같거나 유사할 수 있다. 또 하나의 예로써, 상기 마이크로폰(800)의 상기 진동픽업조립체(822)(이를테면 제1 진동픽업조립체(8221), 제2 진동픽업조립체(8222))는 상기 마이크로폰(500)의 상기 진동픽업조립체(522)(이를테면 제1 진동픽업조립체(5221), 제2 진동픽업조립체(5222))와 같거나 유사할 수 있다. 상기 마이크로폰(800)(이를테면 홀(811), 진동전도조립체( 823), 등.)에 관한 더 많은 구조는 도 5 및 관련 설명을 참고할 수 있다.
일부 실시예에서는, 도 8에 표시하는 상기 마이크로폰(800)과 도5에 표시하는 상기 마이크로폰(530) 사이의 주요 차이는 상기 마이크로폰(800)의 각 음향전기변환소자(820)는 제1 외팔보 구조(8211)와 제2 외팔보 구조(8212)를 포함할 수 있는 것이며, 여기서, 상기 제1 외팔보 구조(8211)와 상기 제2 외팔보 구조(8212)는 2개의 전극판으로 간주할 수 있다. 일부 실시예에서는, 상기 제1 외팔보 구조(8211)와 상기 제2 외팔보 구조(8212)는 서로 마주하여 설치될 수 있고, 상기 제1 외팔보 구조(8211)와 상기 제2 외팔보 구조(8212)는 마주하는 구역을 가질 수 있다. 일부 실시예에서는, 상기 제1 외팔보 구조(8211)와 상기 제2 외팔보 구조(8212)는 세로방향으로 설치될 수 있고, 상기 마주하는 구역은 상기 제1 외팔보 구조(8211)의 하면과 상기 제2 외팔보 구조(8212)의 상면의 투영 구역으로 해석할 수 있다. 일부 실시예에서는, 상기 제1 외팔보 구조(8211)와 상기 제2 외팔보 구조(8212)는 제1 거리(d1)를 가질 수 있다. 상기 제1 외팔보 구조(8211)와 상기 제2 외팔보 구조(8212)는 각각 상기 진동전도조립체(823)로부터 진동신호를 수신한 후 상기 진동방향(상기 제1 거리(d1)의 연장방향)에서 상이한 정도로 변형되어 상기 제1 거리(d1)를 변화시킨다. 상기 제1 외팔보 구조(8211)와 상기 제2 외팔보 구조(8212)는 상기 제1 거리(d1)의 변화에 근거하여 상기 진동전도조립체(823)의 상기 수신한 진동신호를 전기신호로 변환시킬 수 있다.
일부 실시예에서는, 상기 제1 외팔보 구조(8211)와 상기 제2 외팔보 구조(8212)가 상이한 상기 진동방향에서 상이한 정도의 변형을 발생하게 하기 위해, 상기 제1 외팔보 구조(8211)의 강도는 상기 제2 외팔보 구조(8212)와 다를 수 있다. 상기 진동전도조립체(823)로부터 오는 진동신호의 작용하에서, 낮은 강도의 외팔보 구조는 일정한 정도의 변형을 생성할 수 있고, 상대적으로 높은 강도를 가지는 외팔보 구조에 의해 생성된 변형은 0이거나 낮은 강도를 가지는 외팔보 구조에 의해 생성된 변형보다 작을 수 있다. 일부 실시예에서는, 상기 마이크로폰(800)이 작동할 때, 비교적 작은 강도를 가지는 상기 외팔보 구조(이를테면 상기 제2 외팔보 구조(8212))는 상기 진동전도조립체(823)의 진동에 응답하여 변형될 수 있으며, 상대적으로 높은 강도(이를테면 상기 제1 외팔보 구조(8211))를 가지는 외팔보 구조는 변형되는 대신 진동전도조립체(823)와 함께 진동하여 상기 제1 거리(d1)가 변하도록 할 수 있다.
일부 실시예에서는, 음향전기변환소자(8210) 중의 낮은 강도를 가지는 상기 외팔보 구조의 공진 주파수는 사람 귀의 청력 범위내의 주파수 범위 이내일 수 있다. 일부 실시예에서는, 상기 음향전기변환소자(8210) 중의 상대적으로 높은 강도를 가지는 상기 외팔보 구조의 공진 주파수는 사람 귀에 민감하지 않은 주파수 범위(이를테면 16,000Hz보다 크다) 이내일 수 있다. 일부 실시예에서는, 상기 음향전기변환소자(8210) 중의 상기 제1 외팔보 구조(8211)(또는 상기 제2 외팔보 구조(8212))의 강도는 상기 제1 외팔보 구조(8211)(또는 상기 제2 외팔보 구조(8212))의 재료, 길이, 폭, 및 두께를 조절함으로써 구현될 수 있다. 일부 실시예에서는, 상이한 음향전기변환소자(8210)에 대응되는 각 조의 외팔보 구조의 파라미터(이를테면 재료, 두께, 길이, 폭, 등.)를 조절하여 상이한 공진 주파수에 대응되는 상이한 주파수응답을 획득할 수 있다. 일부 실시예에서는, 상이한 음향전기변환소자(8210)에 대응되는 각 조의 외팔보 구조(이를테면 상기 제1 외팔보 구조(8211)와 상기 제2 외팔보 구조(8212))의 길이를 조절함으로써, 상이한 음향전기변환소자(8210)에 대응되는 복수의 공진 주파수 중 적어도 2개는 20Hz 내지 16000Hz의 범위 이내일 수 있다. 일부 실시예에서는, 상이한 음향전기변환소자(8210)에 대응되는 각 조의 외팔보 구조(이를테면 상기 제1 외팔보 구조(8211)와 상기 제2 외팔보 구조(8212))의 길이를 조절함으로써, 상이한 음향전기변환소자(8210)에 대응되는 상기 복수의 공진 주파수 중 적어도 2개는 100Hz 내지 1200Hz의 범위내일 수 있다. 상기 음향전기변환소자(8210)에 대응되는 한 조의 외팔보 구조(이를테면 상기 제1 외팔보 구조(8211)와 상기 제2 외팔보 구조(8212))가 상기 공진 주파수 부근의 진동에 민감하기 때문에, 상기 음향전기변환소자(8210)에 대응되는 상기 조의 외팔보 구조는 상기 진동신호에 대한 주파수 선택 특성을 가진다고 간주할 수 있으며, 즉, 상기 음향전기변환소자(8210)에 대응되는 상기 조의 외팔보 구조는 주로 상기 공진 주파수 부근의 상기 서브대역 진동신호를 상기 전기신호로 변환시킬 수 있다. 따라서, 일부 실시예에서는, 상이한 음향전기변환소자(8210)에 대응되는 복수의 외팔보 구조는 상이한 길이를 설정함으로써 상이한 공진 주파수를 가질 수 있고, 상기 서브대역은 각 공진 주파수 주위에 별도로 형성될 수 있다. 일부 실시예에서는, 적어도 5개의 서브대역은 상기 복수의 조의 외팔보 구조를 통해 사람의 음성의 주파수 범위(이를테면 20Hz 내지 16000Hz) 이내로 설정될 수 있다. 예를 들면, 11개의 서브대역은 상기 복수의 조의 외팔보 구조를 통해 사람 음성의 주파수 범위내로 설정될 수 있고, 11개의 서브대역에 대응되는 각 외팔보 구조의 공진 주파수는 각각 500Hz 내지 700Hz, 700Hz 내지 1000Hz, 1000Hz 내지 1300Hz, 1300Hz 내지 1700Hz, 1700Hz 내지 2200Hz, 2200Hz 내지 3000Hz, 3000Hz 내지 3800Hz, 3800Hz 내지 4700Hz, 4700Hz 내지 5700Hz, 5700Hz 내지 7000Hz, 7000Hz 내지 12000Hz의 범위 이내일 수 있다. 다른 하나의 예를 들면, 16개의 서브대역은 상기 복수의 조의 외팔보 구조를 통해 사람 음성의 주파수 범위내로 설정될 수 있고, 16개의 서브대역에 대응되는 각 외팔보 구조의 공진 주파수는 각각 500Hz 내지 640Hz, 640Hz 내지 780Hz, 780Hz 내지 930Hz, 940Hz 내지 1100Hz, 1100Hz 내지 1300Hz, 1300Hz 내지 1500Hz, 1500Hz 내지 1750Hz, 1750Hz 내지 1900Hz, 1900Hz 내지 2350Hz, 2350Hz 내지 2700HzHz, 2700Hz 내지 3200Hz, 3200Hz 내지 3800Hz, 3800Hz 내지 4500Hz, 4500Hz 내지 5500Hz, 5500Hz 내지 6600Hz, 6600Hz 내지 8000Hz의 범위 이내일 수 있다. 또 하나의 예로써, 24개의 서브대역은 상기 복수의 조의 외팔보 구조를 통해 사람 음성의 주파수 범위내로 설정될 수 있고, 24개의 서브대역에 대응되는 각 외팔보 구조의 공진 주파수는 각각 20Hz 내지 120Hz, 120Hz 내지 210Hz, 210Hz 내지 320Hz, 320Hz 내지 410Hz, 410Hz 내지 500Hz, 500Hz 내지 640Hz, 640Hz 내지 780Hz, 780Hz 내지 930Hz, 940Hz 내지 1100Hz, 1100Hz 내지 1300Hz, 1300Hz 내지 1500Hz, 1500Hz 내지 1750Hz, 1750Hz 내지 1900Hz, 1900Hz 내지 2350Hz, 2350Hz 내지 2700Hz, 2700Hz 내지 3200Hz, 3200Hz 내지 3800Hz, 3800Hz 내지 4500Hz, 4500Hz 내지 5500Hz, 5500Hz 내지 6600Hz, 6600Hz 내지 7900Hz, 7900Hz 내지 9600Hz, 9600Hz 내지 12100Hz, 12100Hz 내지 16000Hz의 범위 이내일 수 있다. 일부 실시예에서는, 5-50 개의 서브대역은 상기 복수의 조의 외팔보 구조를 상이한 길이로 조절함으로써 상기 사람의 음성의 주파수 범위(이를테면 20Hz 내지 16,000Hz) 이내에 형성될 수 있다. 일부 실시예에서는, 6 내지 24개의 서브대역은 상기 복수의 조의 외팔보 구조를 상이한 길이로 조절함으로써 상기 사람의 음성의 주파수 범위(이를테면 20Hz 내지 16,000Hz) 이내일 수 있다.
도 9는 본 개시의 일부 실시예들에 따른 마이크로폰의 주파수 응답곡선의 개략도이다. 도 9에 표시하는 바와 같이, 수평축은 주파수를 Hz로 표시하고, 상기 수직축은 상기 마이크로폰에 의해 출력되는 소리신호의 주파수 응답을 dB로 표시할 수 있다. 상기 마이크로폰은 상기 마이크로폰(500), 상기 마이크로폰(800), 마이크로폰(1000), 마이크로폰(1000), 마이크로폰(1300), 마이크로폰(1400), 마이크로폰(1500), 마이크로폰(1800), 마이크로폰(1900), 마이크로폰(2000), 등일 수 있다. 도 9의 점선은 각각 상기 마이크로폰의 각 음향전기변환소자에 대응되는 주파수 응답곡선을 나타낸다. 도 9의 상기 주파수 응답곡선에 의하면, 각 음향전기변환소자는 상기 공진 주파수(이를테면 주파수 응답곡선(920)의 공진 주파수는 약 350Hz이고 주파수 응답곡선(930)의 공진 주파수는 약 1500Hz일 수 있다)를 가진다. 상기 외부 소리신호가 상기 마이크로폰에 전송된 경우, 상이한 음향전기변환소자는 상기 공진 주파수 부근의 진동신호에 더 민감할 수 있으며, 따라서 각 음향전기변환소자에 의해 출력되는 신호는 주로 상기 공진 주파수에 대응되는 서브대역신호를 포함할 수 있다. 일부 실시예에서는, 각 음향전기변환소자의 상기 공진피크에서의 출력은 평탄한 구역의 출력보다 훨씬 클 수 있다. 상기 소리신호에 대응되는 전체 대역의 신호의 서브대역 주파수 분할은 각 음향전기변환소자의 주파수 응답곡선의 공진피크 부근의 주파수대역을 선택함으로써 구현될 수 있다. 일부 실시예에서는, 도 9의 각 주파수 응답곡선은 융합되어 상기 마이크로폰의 높은 신호 대 노이즈 비율을 구비하는 평탄한 주파수 응답곡선(910)을 획득할 수 있다. 그리고, 상이한 음향전기변환소자(이를테면 상기 외팔보 구조)를 설치함으로써, 상기 상이한 주파수 범위의 공진피크를 상기 마이크로폰 시스템에 추가할 수 있으며, 이는 복수의 공진피크 부근의 상기 마이크로폰의 민감도를 향상시키고 나아가 전체 광대역의 상기 마이크로폰의 민감도를 향상시킬 수 있다.
상기 마이크로폰에 복수의 음향전기변환소자를 설치하고 상이한 공진 주파수를 가지는 상기 음향전기변환소자(이를테면 상기 외팔보 구조)의 특성을 이용함으로써, 진동신호의 필터링 및 주파수대역 분해를 달성할 수 있으며, 이는 복잡한 하드웨어 회로 설계, 상기 소프트웨어 알고리즘의 상대적으로 높은 계산 자원, 신호 왜곡, 및 노이즈 유입의 문제를 방지할 수 있으며, 따라서 상기 마이크로폰의 복잡성과 생산 비용을 감소시킬 수 있다.
도 10은 본 개시의 일부 실시예들에 따른 마이크로폰을 나타내는 개략도이다. 도 10에 표시하는 바와 같이, 마이크로폰(1000)은 셸 구조(1010), 음향전기변환소자(1020), 및 진동픽업조립체(1022)를 포함할 수 있다. 도10에 표시하는 상기 마이크로폰(1000)은 도5에 표시하는 상기 마이크로폰(530)와 같거나 유사할 수 있다. 예를 들면, 상기 마이크로폰(1000)의 셸 구조(1010)는 상기 마이크로폰(500)의 셸 구조(510)와 같거나 유사할 수 있다. 다른 하나의 예를 들면, 상기 마이크로폰(1000)의 제1 음향캐비티(1030), 제2 음향캐비티(1040), 및 캐비티(1050)는 각각 상기 마이크로폰(1000)의 상기 제1 음향캐비티(530), 상기 제2 음향캐비티(540), 및 상기 캐비티(550)와 같거나 유사할 수 있다. 또 하나의 예로써, 상기 마이크로폰(1000)의 상기 진동픽업조립체(1022)(이를테면 제1 진동픽업조립체(10221), 제2 진동픽업조립체(10222))는 상기 마이크로폰(500)의 상기 진동픽업조립체(522)(이를테면 상기 제1 진동픽업조립체(5221), 상기 제2 진동픽업조립체(5222))와 같거나 유사할 수 있다. 상기 마이크로폰(1000)(이를테면 홀(1011), 진동전도조립체(1023), 상기 음향전기변환소자(1020), 등.)의 더 많은 구조는 도 5 및 관련 설명을 참고할 수 있다.
일부 실시예에서는, 도10에 표시하는 상기 마이크로폰(1000)과 도5에 표시하는 상기 마이크로폰(530) 사이의 차이는 상기 마이크로폰(1000)은 하나 이상의 막구조(1060)를 더 포함할 수 있다는 것이다. 일부 실시예에서는, 상기 막구조(1060)는 상기 음향전기변환소자(1020)의 상면 및/또는 하면에 위치할 수 있다. 예를 들면, 상기 막구조(1060)는 단층의 막구조일 수 있으며, 이 막구조는 상기 음향전기변환소자(1020)의 상면 및/또는 하면에 위치할 수 있다. 다른 하나의 예를 들면, 상기 막구조(1060)는 제1 막구조와 제2 막구조를 포함하는 두층의 막일 수 있으며, 여기서, 상기 제1 막구조는 상기 음향전기변환소자(1020)의 상면에 위치할 수 있고, 상기 제2 막구조는 상기 음향전기변환소자(1020)의 하면에 위치할 수 있다. 상기 음향전기변환소자(1020)의 공진 주파수는 상기 막구조(1060)를 상기 음향전기변환소자(1020)의 표면에 설치함으로써 조절될 수 있다. 일부 실시예에서는, 상기 음향전기변환소자(1020)의 공진 주파수는 상기 막구조(1060)의 재료, 크기(이를테면 길이, 폭), 및 두께를 조절함으로써 영향을 받을 수 있다. 한편으로는, 상기 막구조(1060) 및 상기 음향전기변환소자(1020)(이를테면 상기 외팔보 구조)의 파라미터(이를테면 재료, 크기, 두께, 등.)를 조절함으로써, 상기 음향전기변환소자(1020)는 희망하는 주파수 범위내에서 공진을 발생할 수 있다. 반면에, 상기 음향전기변환소자(1020)의 표면에 제공된 상기 막구조(1060)는 과부하인 경우 상기 마이크로폰(1000)의 상기 음향전기변환소자(1020)의 파괴를 방지하도록 하고, 따라서 마이크로폰(1000)의 신뢰성을 향상시킨다. 그리고, 음향전기변환소자(1020)의 표면에 제공된 상기 막구조(1060)는 응력에 의한 마이크로폰(1000)의 변형량을 감소시킬 수 있고 실제 제품이 설계 목표에 더 가까워지도록 한다.
일부 실시예에서는, 상기 막구조(1060)는 상기 음향전기변환소자(1020)의 상면 및/또는 하면의 전체 또는 국부를 커버할 수 있다. 예를 들면, 각 음향전기변환소자(1020)의 상면 및/또는 하면은 상응한 막구조(1060)에 의해 커버될 수 있으며, 상기 막구조(1060)는 음향전기변환소자(1020)의 상면 또는 하면을 전부 커버할 수 있거나, 또는 상기 막구조(1060)는 상기 상응한 음향전기변환소자(1020)의 상면 또는 하면을 국부적으로 커버할 수 있다. 다른 하나의 예를 들면, 상기 수평방향에서, 복수의 음향전기변환소자(1020)가 상기 동일한 수평면에서 대칭되게 위치하는 경우, 상기 막구조(1060)는 동일한 수평면에서 대칭되게 복수의 음향전기변환소자(1020)의 하면을 전부 커버할 수 있으며, 예를 들면, 상기 막구조(1060)는 둘레측을 통해 상기 진동전도조립체(1023)의 내벽에 연결될 수 있고, 따라서 상기 캐비티(1050)를 2개의 서로 독립되는 캐비티로 분리한다. 또 하나의 예로써, 상기 막구조(1060)의 형상 상기 진동전도조립체(1023)의 단면 형상과 같을 수 있으며, 상기 막구조(1060)는 둘레측을 통해 상기 진동전도조립체(1023)의 내벽에 연결될 수 있고, 상기 막구조(1060)의 중심부에는 홀(도 10에 미도시)을 포함할 수 있고, 상기 막구조(1060)는 동일한 수평면에서 복수의 음향전기변환소자(1020)의 상면 또는 하면을 국부적으로 커버할 수 있고, 상기 캐비티(1050)는 상기 막구조(1060)에 의해 2개의 연결되는 캐비티(상기 상, 하)로 나뉠 수 있다.
일부 실시예에서는, 상기 막구조(1060)의 재료는 반도체 재료, 금속 재료, 합금, 유기재료, 등 중 하나 이상을 포함할 수 있지만 이에 한정되지 않는다. 일부 실시예에서는, 상기 반도체 재료는 실리콘, 이산화규소, 질화규소, 탄화규소, 등을 포함할 수 있지만 이에 한정되지 않는다. 일부 실시예에서는, 상기 금속재료는 구리, 알루미늄, 크롬, 티타늄, 금, 등을 포함할 수 있지만 이에 한정되지 않는다. 일부 실시예에서는, 상기 합금은 구리-금속 합금, 구리-금 합금, 티타늄 합금, 알루미늄 합금, 등을 포함할 수 있지만 이에 한정되지 않는다. 일부 실시예에서는, 상기 유기재료는 폴리이미드, 파릴렌, PDMS, 실리콘 젤, 실리카, 등을 포함할 수 있지만 이에 한정되지 않는다.
도 11은 본 개시의 일부 실시예들에 따른 마이크로폰을 나타내는 개략도이다. 도 11 에 표시하는 마이크로폰(1000)는 도 8에 표시하는 마이크로폰(800)와 같거나 유사할 수 있다. 예를 들면, 상기 마이크로폰(1000)의 셸 구조(1110)는 상기 마이크로폰(800)의 셸 구조(810)와 같거나 유사할 수 있다. 다른 하나의 예를 들면, 상기 마이크로폰(1000)의 제1 음향캐비티(1130), 제2 음향캐비티(1140), 및 캐비티(1150)는 각각 기 마이크로폰(800)의 상기 제1 음향캐비티(830), 상기 제2 음향캐비티(840), 및 상기 캐비티(850)와 같거나 유사할 수 있다. 또 하나의 예로써, 상기 마이크로폰(1000)의 상기 진동픽업조립체(1122)(이를테면 제1 진동픽업조립체(11221), 제2 진동픽업조립체(11222))는 상기 마이크로폰(800)의 상기 진동픽업조립체(822)(이를테면 제1 진동픽업조립체(8221), 제2 진동픽업조립체(8222))와 같거나 유사할 수 있다. 상기 마이크로폰(1000)에 관한 더 많은 구조(이를테면 홀(1111), 진동전도조립체(1123), 음향전기변환소자(1120), 등.)는 도 8 및 그 관련 설명을 참고할 수 있다.
일부 실시예에서는, 상기 도 11 에 표시하는 마이크로폰(1000)와 도 8에 표시하는 마이크로폰(800)의 주요 차이는 상기 마이크로폰(1000)이 하나 이상의 막구조(1160)를 더 포함할 수 있다는 것이다. 일부 실시예에서는, 막구조(1160)은 상기 음향전기변환소자(1120)의 상대적으로 낮은 강도를 가지는 상기 외팔보 구조(이를테면 제2 외팔보 구조(11212))의 상면 및/또는 하면에 위치할 수 있다. 예를 들면, 상기 막구조(1160)는 단층 막구조일 수 있으며, 이는 상기 음향전기변환소자(1020)의 상면 또는 하면에 위치할 수 있다. 다른 하나의 예를 들면, 상기 막구조(1160)는 제1 막구조와 제2 막구조를 포함하는 두층 막구조일 수 있으며, 여기서, 상기 제1 막구조는 상기 음향전기변환소자(11212)의 상면에 위치할 수 있고, 상기 제2 막구조는 상기 음향전기변환소자(11212)의 하면에 위치할 수 있다. 일부 실시예에서는, 상기 막구조(1160)는 상기 제2 외팔보 구조(11212)의 상면 및/또는 하면을 전부 또는 국부적으로 커버할 수 있다. 예를 들면, 각 제2 외팔보 구조(11212)의 상면 또는 하면은 상응한 막구조(1160)에 의해 커버될 수 있으며, 상기 상응한 막구조(1160)는 상기 상응한 제2 외팔보 구조(11212)의 상면 또는 하면을 전부 커버할 수 있거나, 또는 상기 막구조(1160)는 상기 상응한 제2 외팔보 구조(11212)의 상면 또는 하면을 국부적으로 커버할 수 있다. 상기 막구조(1160)가 상기 제2 외팔보 구조(11212)의 상면 또는 하면을 전부 또는 국부적으로 커버하는데 관한 더 많은 정보는 도 10 및 그 관련 설명을 참고할 수 있다.
일부 실시예에서는, 상기 막구조(1160)는 상기 음향전기변환소자(1120)의 상대적으로 높은 강도를 구비하는 외팔보 구조(이를테면 제1 외팔보 구조(11211))의 상면 및/또는 하면에 위치할 수 있다. 상기 막구조(1160)가 상기 제1 외팔보 구조(11211)의 상면 및/또는 하면에 위치하는 방식은 상기 막구조(1160)가 상기 제2 외팔보 구조(11212)의 상면 및/또는 하면에 위치하는 방식과 유사할 수 있으며, 여기서 기술하지 않는다.
일부 실시예에서는, 상기 막구조(1160)는 상기 음향전기변환소자(1120)의 낮은 강도를 구비하는 외팔보 구조와 상대적으로 높은 강도를 구비하는 외팔보 구조(이를테면 상기 제1 외팔보 구조(11211))(이를테면 상기 제2 외팔보 구조(11212))의 상면 및/또는 하면에 대칭되게 위치할 수 있다. 예를 들면, 도 12는 본 개시의 일부 실시예들에 따른 마이크로폰을 나타내는 개략도이다. 도12에 표시하는 바와 같이, 상기 막구조(1160)은 상기 제1 외팔보 구조(11211)의 상면 및 상기 제2 외팔보 구조(11212)의 하면에 대칭되게 위치할 수 있다. 일부 실시예에서는, 상기 막구조(1160)를 상대적으로 높은 강도를 구비하는 외팔보 구조(이를테면 상기 제1 외팔보 구조(11211))의 상면 및/또는 하면에 설치함으로써, 상기 상대적으로 높은 강도를 구비하는 외팔보 구조는 상기 진동전도조립체(1123)에 상대적으로 변형하지 않을 수 있으며, 이는 상기 마이크로폰(1100)의 강도를 향상시킬 수 있다. 반면에, 상기 제2 외팔보 구조(1122) 또는 상기 제1 외팔보 구조(1120)에 제공된 상기 막구조(1060)는 응력에 의한 상기 제2 외팔보 구조(1122) 또는 상기 제1 외팔보 구조(1120)의 변형량을 조절하여 상기 제2 외팔보 구조(1122)와 상기 제1 외팔보 구조(1120) 사이의 거리를 정확하게 제어할 수 있다.
도 13은 본 개시의 일부 실시예들에 따른 마이크로폰을 나타내는 개략도이다. 도13에 표시하는 바와 같이, 상기 마이크로폰(1300)은 셸 구조(1310), 상기 음향전기변환소자(1320), 및 진동픽업조립체(1322)를 포함할 수 있다. 도 13에 표시하는 상기 마이크로폰(1300)는 도 5에 표시하는 상기 마이크로폰(530)와 같거나 유사할 수 있다. 예를 들면, 상기 마이크로폰(1300)의 셸 구조(1310)는 상기 마이크로폰(500)의 셸 구조(510)와 같거나 유사할 수 있다. 다른 하나의 예를 들면, 상기 마이크로폰(1300)의 제1 음향캐비티(1330), 제2 음향캐비티(1340), 및 캐비티(1350)는 각각 상기 마이크로폰(500)의 상기 제1 음향캐비티(530), 상기 제2 음향캐비티(540), 및 상기 캐비티(550)와 같거나 유사할 수 있다. 상기 마이크로폰(1300)(이를테면 홀(1311), 진동전도조립체(1323), 상기 음향전기변환소자(1320), 등.)에 관한 더 많은 정보는 도 5 및 그 관련 설명을 참고할 수 있다.
일부 실시예에서는, 도 13에 표시하는 상기 마이크로폰(1300)과 도 5에 표시하는 상기 마이크로폰(530) 사이의 주요 차이는 진동픽업조립체(1322)이다. 일부 실시예에서는, 상기 진동픽업조립체(1322)는 제1 진동픽업조립체(13221), 제2 진동픽업조립체(13222), 및 제3 진동픽업조립체(13223)를 포함할 수 있다. 일부 실시예에서는, 상기 제1 진동픽업조립체(13221), 상기 진동전도조립체(1323), 및 상기 제1 진동픽업조립체(13221)는 위로부터 아래로 순차로 배치될 수 있으며, 구체적으로는, 상기 제1 진동픽업조립체(13221)의 하면은 상기 진동전도조립체(1323)의 상면에 연결될 수 있고, 상기 제2 진동픽업조립체(13222)의 상면은 상기 진동전도조립체(1323)의 하면에 연결될 수 있고, 상기 제1 진동픽업조립체(13221), 상기 제2 진동픽업조립체(13222) 및 상기 진동전도조립체(1323)는 캐비티(1350)를 정의할 수 있고, 및 상기 음향전기변환소자(1320)는 상기 캐비티(1350)안에 위치할 수 있다. 일부 실시예에서는, 상기 제3 진동픽업조립체(13223)는 상기 진동전도조립체(1323)와 기 셸 구조(1310)의 내벽 사이에 연결될 수 있다. 상기 마이크로폰(1300)이 작동할 때, 상기 소리신호는 홀(1311)을 통해 상기 제1 음향캐비티(1330)에 진입하고 상기 진동픽업조립체(1322)에 작용하며, 이는 상기 제3 진동픽업조립체(13223)의 진동을 일으킬 수 있고, 상기 제3 진동픽업조립체(13223)는 상기 진동을 상기 진동전도조립체(1323)를 통해 상기 음향전기변환소자(1320)에 전송할 수 있다.
일부 실시예에서는, 상기 제3 진동픽업조립체(13223)는 상기 진동전도조립체(1323) 및 상기 셸 구조(1310)에 적응하는 하나 이상의 막구조를 포함할 수 있다. 예를 들면, 상기 셸 구조(1310)와 상기 진동전도조립체(1323)의 양자가 원기둥 구조인 경우, 상기 제3 진동픽업조립체(13223)는 고리형 막구조일 수 있고, 상기 고리형 막구조의 둘레측의 외벽은 상기 셸 구조(1310)에 연결될 수 있고 상기 고리형 막구조의 둘레측의 내벽은 상기 진동전도조립체(1323)에 연결될 수 있다. 다른 예로써, 상기 셸 구조(1310)이 상기 원기둥 구조이고 상기 진동전도조립체(1323)가 입방체 구조이면, 상기 제3 진동픽업조립체(13223)는 홀 중심에 사각형 홀을 구비하는 원형 막구조일 수 있으며, 상기 막구조의 둘레측의 외벽은 상기 셸 구조(1310)에 연결될 수 있고 상기 막구조의 내벽은 상기 진동전도조립체(1323)에 연결될 수도 있다. 상기 제3 진동픽업조립체(13223)의 형상은 상술한 상기 고리형 및 사각형 형상에 한정되지 않고, 상기 막구조의 다른 형상, 예를 들면, 오각형, 육각형 등과 같은 규칙적 및/또는 불규칙적 형상일 수 있음에 유의해야 한다. 상기 제3 진동픽업조립체(13223)의 형상과 구조는 상기 셸 구조(1310) 및 상기 진동전도조립체(1323)의 형상에 적응될 수 있다.
일부 실시예에서는, 상기 제3 진동픽업조립체(13223)의 재료는 반도체 재료, 금속 재료, 합금, 유기재료, 등 중 하나 이상을 포함할 수 있지만 이에 한정되지 않는다. 일부 실시예에서는, 상기 반도체 재료는 실리콘, 이산화규소, 질화규소, 탄화규소, 등을 포함할 수 있지만 이에 한정되지 않는다. 일부 실시예에서는, 상기 금속재료은 구리, 알루미늄, 크롬, 티타늄, 금, 등을 포함할 수 있지만 이에 한정되지 않는다. 일부 실시예에서는, 상기 합금은 구리-금속 합금, 구리-금 합금, 티타늄 합금, 알루미늄 합금, 등을 포함할 수 있지만 이에 한정되지 않는다. 일부 실시예에서는, 상기 유기재료는 폴리이미드, 파릴렌, PDMS, 실리콘 젤, 실리카, 등을 포함할 수 있지만 이에 한정되지 않는다.
일부 실시예에서는, 상기 제1 진동픽업조립체(13221)의 재료 및/또는 상기 제2 진동픽업조립체(13222)의 재료는 유연한 재료일 수 있다. 상기 제1 진동픽업조립체(13221)와 상기 제2 진동픽업조립체(13222)의 재료 및 상기 제3 진동픽업조립체(13223)의 재료는 전부 유연한 재료일 수 있으며, 상기 제1 진동픽업조립체(13221)와 상기 제2 진동픽업조립체(13222)는 상기 진동픽업조립체(1322)(즉, 상기 제1 진동픽업조립체(13221)와 상기 제2 진동픽업조립체(13222)는 진동신호를 픽업하는데 이용될 수 있다)의 일부분으로써, 상기 제1 음향캐비티(1330)안의 공기 진동의 작용하에서 변형될 수 있다. 일부 실시예에서는, 상기 제1 진동픽업조립체(13221)의 재료와 상기 제2 진동픽업조립체(13222)의 재료는 단단한 재료일 수 있다. 이런 경우, 상기 제1 진동픽업조립체(13221)와 상기 제2 진동픽업조립체(13222)는 상기 제1 음향캐비티(1330)안의 공기 진동의 작용하에서 변형되지 않을 수 있다. 일부 실시예에서는, 상기 제1 진동픽업조립체(13221)와 상기 제2 진동픽업조립체(13222)는 단단한 재료로 제조될 수 있으며, 이는 상기 캐비티(1350)의 체적이 상기 마이크로폰(1300)이 작동할 때 기본상 일정하게 유지하도록 하고, 이는 상기 캐비티(1350)의 체적변화의 상기 음향전기변환소자(1320)에 대한 영향을 방지하고, 상기 음향전기변환소자(1320)가 희망하는 주파수 범위에서 공진을 발생하도록 확보할 수 있다.
일부 실시예에서는, 상기 마이크로폰(1300)은 적어도 하나의 막구조(상기 도 13에 미도시)를 더 포함할 수 있으며, 상기 적어도 하나의 막구조는 상기 음향전기변환소자(1320)의 상면 및/또는 하면에 위치할 수 있다. 상기 적어도 하나의 막구조의 상세한 내용에 관한 더 많은 정보는 도 10 및 그 관련 설명에 관련될 수 있으며, 여기서 기재하지 않는다.
도 14는 본 개시의 일부 실시예들에 따른 마이크로폰을 나타내는 개략도이다. 도14에 표시하는 바와 같이, 상기 마이크로폰(1400)는 셸 구조(1410), 음향전기변환소자(1420), 및 진동픽업조립체(1422)을 포함할 수 있다. 도 14에 표시하는 상기 마이크로폰(1400)은 도 8에 표시하는 마이크로폰(800)와 같거나 유사할 수 있다. 예를 들면, 상기 마이크로폰(1400)의 셸 구조(1410)는 상기 마이크로폰(800)의 셸 구조(810)와 같거나 유사할 수 있다. 다른 하나의 예를 들면, 상기 마이크로폰(1400)의 제1 음향캐비티(1430), 제2 음향캐비티(1440), 및 캐비티(1450)는 각각 상기 마이크로폰(800)의 상기 제1 음향캐비티(830), 상기 제2 음향캐비티(840), 및 상기 캐비티(850)와 같거나 유사할 수 있다. 상기 마이크로폰(1400)(이를테면 홀(1411), 진동전도조립체(1423), 상기 음향전기변환소자(1420), 등.)의 구조는 도 8 및 그 관련 설명을 참고할 수 있다.
일부 실시예에서는, 도 14에 표시하는 상기 마이크로폰(1400)과 도 8에 표시하는 마이크로폰(800) 사이의 주요 차이는 상기 진동픽업조립체(1422)일 수 있다. 일부 실시예에서는, 상기 진동픽업조립체(1422)는 제1 진동픽업조립체(14221), 제2 진동픽업조립체(14222), 및 제3 진동픽업조립체(14223)을 포함할 수 있다. 일부 실시예에서는, 상기 제1 진동픽업조립체(14221), 제2 진동픽업조립체(14222), 및 제3 진동픽업조립체(14223)는 위로부터 아래로 순차로 배치될 수 있고, 구체적으로는, 상기 제1 진동픽업조립체(14221)의 하면은 상기 진동전도조립체(1423)의 상면에 연결될 수 있고, 상기 제2 진동픽업조립체(14222)의 상면은 상기진동전도조립체(1423)의 하면에 연결될 수 있고, 상기 제1 진동픽업조립체(14221), 상기 제2 진동픽업조립체(14221), 상기 제2 진동픽업조립체(14222), 및 상기 진동전도조립체(1423)은 캐비티(1450)을 정의할 수 있고, 및 상기 음향전기변환소자(1420)는 상기 캐비티(1450)안에 위치할 수 있다. 일부 실시예에서는, 상기 제3 진동픽업조립체(14223)는 상기 진동전도조립체(1423)와 상기 셸 구조(1410)의 내벽 사이에 연결될 수 있다. 상기 마이크로폰(1400)가 작동할 때, 상기 소리신호는 상기 홀(1411)을 통해 상기 제1 음향캐비티(1430)에 진입하여 상기 제3 진동픽업조립체(14223)를 진동시킬 수 있으며, 상기 제3 진동픽업조립체(14223)는 상기 진동을 상기 진동전도조립체(1423)을 통해 상기 음향전기변환소자(1420)에 전송할 수 있다. 상기 제3 진동픽업조립체(14223)에 관한 더 많은 정보는 도13및 그 관련 설명을 참고할 수 있다.
일부 실시예에서는, 상기 마이크로폰(1400)은 적어도 하나의 막구조(상기 도 14에 미도시)를 더 포함할 수 있으며, 상기 적어도 하나의 막구조는 상기 음향전기변환소자(1420)의 상면 및/또는 하면에 위치할 수 있다. 상기 적어도 하나의 막구조의 상세한 내용에 관한 더 많은 정보는 도 10-도 12 및 그 관련 설명에 관련될 수 있으며, 여기서 기재하지 않는다.
도 15는 본 개시의 일부 실시예들에 따른 마이크로폰을 나타내는 개략도이다. 도15에 표시하는 바와 같이, 상기 마이크로폰(1500)는 셸 구조(1510), 음향전기변환소자(1520), 및 진동픽업조립체(1522)를 포함할 수 있다. 도 15 에 표시하는 상기 마이크로폰(1500)은 도 13에 표시하는 상기 마이크로폰(1300)와 같거나 유사할 수 있다. 예를 들면, 상기 마이크로폰(1500)의 셸 구조(1510)는 상기 마이크로폰(1300)의 셸 구조(1310)와 같거나 유사할 수 있다. 다른 하나의 예를 들면, 상기 마이크로폰(1500)의 제1 음향캐비티(1530), 제2 음향캐비티(1540), 및 캐비티(1550)는 각각 상기 마이크로폰(1300)의 상기 제1 음향캐비티(1330), 상기 제2 음향캐비티(1340), 및 상기 캐비티(1350)와 같거나 유사할 수 있다. 또 하나의 예로써, 상기 마이크로폰(1500)의 상기 진동픽업조립체(1522)(이를테면 제1 진동픽업조립체(15221), 제2 진동픽업조립체(15222), 제3 진동픽업조립체(152223))는 상기 마이크로폰(1300)의 상기 진동픽업조립체(1322)(이를테면 상기 제1 진동픽업조립체(13221), 상기 제2 진동픽업조립체(13222), 상기 제3 진동픽업조립체(13223))와 같거나 유사할 수 있다. 상기 마이크로폰(1500)(이를테면 홀(1511), 진동전도조립체(1523), 상기 음향전기변환소자(1520), 등.)의 더 많은 구조는 도13및 그 관련 설명을 참고할 수 있다.
일부 실시예에서는, 도 15 에 표시하는 상기 마이크로폰(1500)과 도 13에 표시하는 상기 마이크로폰(1300) 사이의 주요 차이는 상기 마이크로폰(1500)이 하나 이상의 지지구조(1560)를 더 포함할 수 있는 것이다. 일부 실시예에서는, 지지구조(1560)는 상기 캐비티(1550)에 설치될 수 있고, 상기 지지구조(1560)의 상면은 상기 제1 진동픽업조립체(15221)의 하면에 연결될 수 있고, 상기 지지구조(1560)의 하면은 상기 제2 진동픽업조립체(15222)의 상면에 연결될 수 있다. 한편으로는, 상기 캐비티에 상기 지지구조(1560)를 설치함으로써, 상기 지지구조(1560)는 각각 상기 제1 진동픽업조립체(15221)와 상기 제2 진동픽업조립체(15222)에 연결될 수 있고, 상기 제1 진동픽업조립체(15221)와 상기 제2 진동픽업조립체(15222)의 강도를 더 향상시키고, 이는 상기 제1 진동픽업조립체(15221)와 상기 제2 진동픽업조립체(15222)가 상기 제1 음향캐비티(1530)안의 공기 진도의 영향을 받아 변형되는 것을 방지할 수 있으며, 상기 마이크로폰(1500)(이를테면 상기 제1 진동픽업조립체(15221), 상기 제2 진동픽업조립체(15222))의 내부 장치의 진동 모드를 감소시킨다. 반면에, 상기 지지구조(1560)는 각각 상기 제1 진동픽업조립체(15221)와 상기 제2 진동픽업조립체(15222)에 연결되어, 과부하하에서의 상기 마이크로폰(1500)의 신뢰성을 향상시킬 수 있다.
일부 실시예에서는, 상기 지지구조(1560)의 형상은 규칙적 및/또는 불규칙적 구조 예를 들면 판상 구조, 원기둥, 원뿔 절두체, 정육면체, 각형 테이블, 육면체, 등일 수 있다. 상기 지지구조(1560)의 재료는 반도체 재료, 금속 재료, 합금, 유기재료, 등 중 하나 이상을 포함할 수 있지만 이에 한정되지 않는다. 일부 실시예에서는, 상기 반도체 재료는 실리콘, 이산화규소, 질화규소, 탄화규소, 등을 포함할 수 있지만 이에 한정되지 않는다. 일부 실시예에서는, 상기 금속재료은 구리, 알루미늄, 크롬, 티타늄, 금, 등을 포함할 수 있지만 이에 한정되지 않는다. 일부 실시예에서는, 상기 합금은 구리-금속 합금, 구리-금 합금, 티타늄 합금, 알루미늄 합금, 등을 포함할 수 있지만 이에 한정되지 않는다. 일부 실시예에서는, 상기 유기재료는 폴리이미드, 파릴렌, PDMS, 실리콘 젤, 실리카, 등을 포함할 수 있지만 이에 한정되지 않는다.
도 15를 참고하면, 일부 실시예에서는, 상기 음향전기변환소자(1520)(즉, 상기 캐비티(1550)안에 현수된 단부)와 상기 지지구조(1560)의 자유 단부 사이의 제2 거리(d2)는 2um 이상으로써 상기 음향전기변환소자(1520)가 상기 진동 중 상기 지지구조(1560)와 충돌하는 것을 방지할 수 있다. 한편, 상기 제2 거리(d2)가 작을 때(이를테면 상기 제2 거리(d2)가 20um 이하일 수 있다), 상기 마이크로폰(1500)의 전체 체적은 효과적으로 감소될 수 있다. 일부 실시예에서는, 상이한 음향전기변환소자(1520)(이를테면 상이한 길이의 상기 외팔보 구조)의 자유 단부는 상기 지지구조(1560)으로부터 상이한 제2 거리(d2)를 가질 수 있다. 일부 실시예에서는, 지구조(1560)의 상이한 형상과 크기를 설계하고 상기 지지구조(1560)의 위치를 조절함으로써, 복수의 음향전기변환소자(1520)(이를테면 상기 외팔보 구조)는 상기 캐비티(1550)안에서 가깝게 배치될 수 있으며, 상기 마이크로폰(1500)은 작은 전체 크기를 가질 수 있다. 도 16a와 도 16b는 본 개시의 일부 실시예들에 따른 마이크로폰의 단면 개략도이다. 도16a와 도 16b에 표시하는 바와 같이, 상기 지지구조(1560)이 타원 원기둥인 경우, 상기 지지구조(1560), 상기 캐비티(1550)안의 상기 진동전도조립체, 및 상기 진동픽업조립체는 고리형 또는 고리 모양 캐비티를 정의하며, 상기 캐비티(1550)안에서 복수의 음향전기변환소자(1520)는 상기 지지구조(1560)의 둘레측을 따라 위치하고 간격을 둘 수 있다. 일부 실시예에서는, 상기 지지구조(1560)는 상기 캐비티(1550)의 중심에 위치할 수 있다. 예를 들면, 도 17 a는 본 개시의 일부 실시예들에 따른 마이크로폰을 나타내는 단면도이다. 도 17a에 표시하는 바와 같이, 상기 지지구조(1560)는 상기 캐비티(1550)의 중심에 위치할 수 있다. 상기 중심은 상기 캐비티(1550)의 기하학적 중심일 수 있다. 일부 실시예에서는, 상기 지지구조(1560)는 상기 캐비티(1550)에서 상기 진동전도조립체(1523)의 각 단부 부근에 설치될 수 있다. 예를 들면, 도 17b는 본 개시의 일부 실시예들에 따른 마이크로폰의 단면 개략도이다. 도17b에 표시하는 바와 같이, 상기 지지구조(1560)는 상기 캐비티(1550)안에서 상기 진동전도조립체(1523)의 측벽 L 부근에 위치할 수 있다. 상기 지지구체(1550)의 형상, 배치, 위치, 및 재료는 상기 음향전기변환소자(1520)의 길이, 수량, 및 분포 등에 따라 적응될 수 있으며, 여기서 더 제한되지 않을 수 있음에 유의해야 한다.
일부 실시예에서는, 상기 마이크로폰(1500)이 적어도 하나의 막구조(상기 도 15에 미도시)를 더 포함할 수 있으며, 상기 적어도 하나의 막구조는 상기 음향전기변환소자(1520)의 상면 및/또는 하면에 위치할 수 있다. 일부 실시예에서는, 상기 막구조의 중심에는 상기 지지구조(1560)를 통과하기 위한 홀이 설치될 수 있고, 이는 상기 지지구조의 단면 형상과 같거나 다를 수 있다. 일부 실시예에서는, 상기 지지구조(1560)의 둘레측은 상기 막구조의 중심홀의 둘레측에 연결될 수 있거나, 또는 상기 지지구조(1560) 둘레측은 구조의 중심홀의 둘레측에 연결되지 않을 수 있다. 상기 막구조의 형상, 재료 및 구조에 관한 더 많은 정보는 도 10 및 그 관련 설명과 관련될 수 있다.
상기 지지구조는 상기 마이크로폰의 기타 실시예에도 응용할 수 있음에 유의해야 한다. 예를 들면, 상기 지지구조는 도 5에 표시하는 상기 마이크로폰(530), 도 8에 표시하는 마이크로폰(800), 도10에 표시하는 상기 마이크로폰(1000), 도11에 표시하는 상기 마이크로폰(1000), 및 도12에 표시하는 상기 마이크로폰(1200)에 응용될 수 있다. 상기 지지구조가 기타 마이크로폰에 응용될 때, 상기 지지구조의 형상, 위치 및 재료는 구체적인 상황에 적응될 수 있다.
도 18은 본 개시의 일부 실시예들에 따른 마이크로폰을 나타내는 개략도이다. 도 18에 표시하는 바와 같이, 상기 마이크로폰(1800)는 셸 구조(1810), 음향전기변환소자(1820), 및 진동픽업조립체(1822)를 포함할 수 있다. 도 18에 표시하는 상기 마이크로폰(1800)는 도 14에 표시하는 상기 마이크로폰(1400)와 같거나 유사할 수 있다. 예를 들면, 상기 마이크로폰(1800)의셸 구조(1810)는 상기 마이크로폰(1400)의 셸 구조(1410)와 같거나 유사할 수 있다. 다른 하나의 예를 들면, 상기 마이크로폰(1800)의 제1 음향캐비티(1830), 제2 음향캐비티(1840), 및 캐비티(1850)는 각각 상기 마이크로폰(1400)의 상기 제1 음향캐비티(1430), 상기 제2 음향캐비티(1440), 및 상기 캐비티(1450)와 같거나 유사할 수 있다. 또 하나의 예로써, 상기 마이크로폰(1800)의 상기 진동픽업조립체(1822)(이를테면 제1 진동픽업조립체(18221), 제2 진동픽업조립체(18222), 제3 진동픽업조립체(18223))는 상기 마이크로폰(1300)의 상기 진동픽업조립체(1422)(이를테면 상기 제1 진동픽업조립체(14221), 상기 제2 진동픽업조립체(14222), 상기 제3 진동픽업조립체(14223)와 같거나 유사할 수 있다. 상기 마이크로폰(1800)(이를테면 홀(1811), 진동전도조립체(1823), 상기 음향전기변환소자(1820), 등.)의 더 많은 구조는 도 14 및 그 관련 설명을 참고할 수 있다.
일부 실시예에서는, 도 18에 표시하는 상기 마이크로폰(1800)과 도 14에 표시하는 상기 마이크로폰(1400) 사이의 주요 차이는 상기 마이크로폰(1800)이 지지구조(1860)를 더 포함할 수 있다는 것이다. 일부 실시예에서는, 상기 지지구조(1860)의 상면은 상기 제1 진동자픽업조립체(18221)의 하면에 연결될 수 있고 상기 지지구조(1860)의 하면은 상기 제2 진동자픽업조립체(18222)의 상면에 연결될 수 있다. 일부 실시예에서는, 상기 음향전기변환소자(1820)의 적어도 2개의 자유 단부(즉, 상기 캐비티(1850)안에서 현수된 단부)는 상기 지지구조(1860)로부터 제2 거리(d2)를 가질 수 있다. 상기 지지구조(1860)의 더 많은 정보는 도 15 및 그 관련 설명과 관련될 수 있다.
일부 실시예에서는, 상기 마이크로폰(1800)는 적어도 하나의 막구조(도18에 미도시)를 더 포함할 수 있다. 상기 지지구조(1860)를 포함하는 상기 마이크로폰(1800)의 적어도 막구조에 관한 더 많은 정보는 도 11, 도 12, 도 15 및 그 관련 설명과 관련될 수 있다.
상기 실시예 중의 지지구조는 도15 및 도 18에 표시하는 상기 마이크로폰에 한정되지 않을 수 있고, 상기 지지구조는 도5, 도 8, 도 10, 도 11, 도 12, 등에 표시하는 상기 마이크로폰과 같은 기타 실시예들에서 기재한 상기 마이크로폰에 응용될 수 있으며, 여기에서 기재한 바에 한정되지 않을 수 있음에 유의해야 한다.
도 19는 본 개시의 일부 실시예들에 따른 마이크로폰을 나타내는 개략도이다. 일부 실시예에서는, 상기 마이크로폰는 도19에 표시하는 바와 같이 골전도 마이크로폰일 수 있으며, 골전도 마이크로폰(1900)는 셸 구조(1910), 음향전기변환소자(1920), 및 진동픽업조립체(1922)를 포함할 수 있다. 도 19에 표시하는 상기 골전도 마이크로폰(1900)의 상기 음향전기변환소자(1920), 상기 제1 음향캐비티(1930), 상기 제2 음향캐비티(1940), 캐비티(1950), 진동전도조립체(1923), 상기 지지구조(1960), 등과 같은 소자들은 도15에 표시하는 상기 마이크로폰(1500)와 같거나 유사할 수 있다.
일부 실시예에서는, 상기 골전도 마이크로폰(1900)과 도 15 에 표시하는 상기 마이크로폰(1500) 사이의 주요 차이는 상이한 진동픽업 방식일 수 있다. 상기 마이크로폰(1500)의 진동픽업조립체(1522)는 상기 홀(1511)을 통해 상기 제1 음향캐비티(1530)에 전송되는 공기진동신호를 픽업할 수 있으며, 이와 반대로, 상기 골전도 마이크로폰(1900)의 셸 구조(1910)는 홀을 구비하지 않을 수 있으며, 상기 골전도 마이크로폰(1900)는 상기 셸 구조(1910)의 진동에 응답하여 상기 진동픽업조립체(1922)를 통해 진동신호를 생성할 수 있다. 구체적으로는, 상기 셸 구조(1910)는 상기 외부 소리신호에 근거하여 진동을 생성할 수 있으며, 상기 제3 진동픽업조립체(19223)는 상기 셸 구조(1910)의 진동에 응답하여 진동신호를 생성할 수 있으며, 상기 진동전도조립체(1923)를 통해 상기 진동신호를 상기 음향전기변환소자(1920)에 전송할 수 있으며, 상기 음향전기변환소자(1920)는 상기 진동신호를 상기 전기신호로 변환시켜 출력할 수 있다.
도 20은 본 개시의 일부 실시예들에 따른 마이크로폰을 나타내는 개략도이다. 도20에 표시하는 바와 같이, 골전도 마이크로폰(2000)는 셸 구조(2010), 음향전기변환소자(2020), 및 진동픽업조립체(2022)를 포함할 수 있다. 도20에 표시하는 상기 골전도 마이크로폰(2000)의 상기 음향전기변환소자(2020), 제1 음향캐비티(2030), 제2 음향캐비티(2040), 캐비티(2050), 진동전도조립체(2023), 지지구조(2060), 등과 같은 부재들은 도 18에 표시하는 상기 마이크로폰(1800)의 부재들과 같거나 유사할 수 있다.
일부 실시예에서는, 상기 골전도 마이크로폰(2000)과 도 18에 표시하는 상기 마이크로폰(1800) 사이의 주요 차이는 상이한 진동픽업 방식일 수 있다. 상기 마이크로폰(1800)의 상기 진동픽업조립체(1822)(이를테면 상기 제1 진동픽업조립체(18221), 상기 제2 진동픽업조립체(18222), 상기 제3 진동픽업조립체(18223))는 상기 홀(1811)을 통해 상기 제1 음향캐비티(1830)에 전송되는 공기진동신호를 픽업할 수 있으며, 이와 반대로, 상기 골전도 마이크로폰(2000)의 셸 구조(2010)는 홀을 포함하지 않을 수 있으며, 상기 골전도 마이크로폰(1900)은 상기 셸 구조(2010)의 진동에 응답하여 상기 진동픽업조립체(2022)(이를테면 제3 진동픽업조립체(20223))를 통해 진동신호를 생성할 수 있다. 일부 실시예에서는, 상기 셸 구조(2010)는 상기 외부 소리신호에 근거하여 진동을 생성할 수 있으며, 상기 제3 진동픽업조립체(20223)는 상기 셸 구조(2010)의 진동에 응답하여 진동신호를 생성하고 상기 진동전도조립체(2023)를 통해 상기 음향전기변환소자(2020)에 전송할 수 있다. 상기 음향전기변환소자(2020)는 상기 진동신호를 상기 전기신호로 변환하여 출력할 수 있다.
도 5에 표시하는 상기 마이크로폰(530), 도 8에 표시하는 마이크로폰(800), 도10에 표시하는 상기 마이크로폰(1000), 도11에 표시하는 상기 마이크로폰(1000), 및 도12 에 표시하는 상기 마이크로폰(1200)은 골전도 마이크로폰로써 이용될 수도 있음에 유의해야 한다. 예를 들면, 상기 마이크로폰은 홀을 구비하지 않고 배치될 수 있고, 상기 셸 구조는 상기 외부 소리신호에 근거하여 진동을 생성할 수 있고, 상기 제1 진동픽업조립체 또는 상기 제2 진동픽업조립체는 상기 셸 구조의 진동에 응답하여 진동신호를 생성할 수 있고, 상기 진동을 상기 진동전도조립체를 통해 상기 음향전기변환소자에 전송하며, 상기 음향전기변환소자는 상기 진동신호를 전기신호로 변환시켜 출력할 수 있다.
이상에서 기본 원칙을 설명하였다. 물론, 본 분야의 기술자들에 있어서, 상기의 상세설명은 하나의 예 뿐이고 본 개시에 대한 한정이 아니다. 여기에서 명기하지 않았지만 본 분야의 기술자들에 있어서 본 개시에 대하여 다양한 변형, 개진, 또는 수정이 가능하다. 이러한 변화, 개량, 또는 수정은 본 개시의 제시를 받았으며, 이는 본 개시의 바람직한 실시예의 요지와 범위내에 있는 것이다.
또한 본 개시의 실시예들을 설명하는데 일정한 용어를 사용한다. 이를테면, 용어 "하나의 실시예", "일 실시예", 및/또는 "일부 실시예"는 실시예와 관련하여 설명한 상세한 특징, 구조 또는 특성은 본 개시의 적어도 하나의 실시예에 포함됨을 의미한다. 따라서 본 명세서의 상이한 부분에서 기술한 2개 이상의 "하나의 실시예", "일 실시예", 또는 "하나의 변형 실시예"는 전부 동일한 실시예로 여길 필요가 없음을 강조하고 인정한다. 그리고 하나 이상의 실시예의 본 개시에서 일부 특징, 구조 또는 특성은 적당히 조합될 수 있다.
또한, 한 분야의 기술자들은, 본 공개의 각 방면이 임의의 새롭고 유용한 처리, 기계, 제품 또는 이들의 조합 또는 물질의 조합 또는 그들의 새롭고 유양한 개진을 포함하는 여러가지 특허 가능한 종류 또는 상황을 통해 기술하고 설명될 수 있다는 것을 인식할 것이다. 상응하게 본 개시의 각 방면은 전체적으로 하드웨어, 전체적으로 소프트웨어(펌웨어, 상주 소프트웨어, 마이크로 코드 등) 또는 소프트웨어와 하드웨어를 조합하여 구현될 수 있다. 상기 하드웨어, 또는 소프트웨어는 "데이터 블록", "모듈", "엔진", "유닛", "부재", 또는 "시스템"을 의미할 수 있다. 또한 본 공개의 각 방면들은 하나 이상의 컴퓨터 판독가능한 매체내에 있는 컴퓨터 제품, 컴퓨터 판독가능한 프로그램 코드를 내장한 제품의 형식을 취할 수 있다.
컴퓨터 저장매체는 기제대 또는 캐리어의 일부와 같은 컴퓨터 프로그램 인코딩을 포함하는 전파 데이터 신호를 포함할 수 있다. 전파신호는 전자기 형태, 광학 형태 또는 적절한 조합 형태를 포함하여 다양한 표현형식을 가질 수 있다. 컴퓨터 저장매체는 컴퓨터 판독가능한 저장매체 이외의 임의의 컴퓨터 판독가능한 매체로서, 시스템 또는 장치를 실행하는데 이용되거나, 또는 장치에 이용되어 통신, 전파를 실행하거나, 또는 명령과 연결되어 장치에 이용될 수 있다. 컴퓨터 저장 매체에 위치한 프로그램 코드는 라디오, 케이블, 광섬유 케이블, RF 또는 유사한 매체, 또는 전술한 임의의 조합을 포함하는 임의의 적절한 매체를 통해 전파될 수 있다.
본 개시의 각 양태의 동작을 수행하기 위한 컴퓨터 프로그램 코드는 자바, 스칼라, 스몰토크, 에펠, JADE, 에메랄드, C++, C#, VB.NET, 파이썬 또는 이들과 유사한 객체 지향 프로그래밍 언어; C 프로그래밍 언어, 비주얼 베이직, 포트란 1703, 펄, 코볼 1702, PHP, ABAP와 같은 상규적인 프로그래밍 언어; 파이썬, 루비, 그루비 같은 동적 프로그래밍 언어; 또는 기타 프로그래밍 언어와 같은 언어를 포함하여 하나 이상의 프로그래밍 언어의 임의의 조합으로 작성될 수 있다. 프로그램 코드는 전체적으로 사용자의 컴퓨터에서, 일부가 사용자의 컴퓨터에서 독립 실행형 소프트웨어 패키지로써, 일부는 사용자의 컴퓨터에서 일부는 원격 컴퓨터에서 또는 전체적으로 원격 컴퓨터나 서버에서 실행될 수 있다. 후자의 상황에서 원격 컴퓨터는 LAN(Local Area Network) 또는 WAN(Wide Area Network)을 포함한 임의의 유형의 네트워크를 통해 사용자의 컴퓨터에 연결되거나, 또는 외부 컴퓨터(예를 들면 인터넷 서비스 공급자를 사용하는 인터넷을 통해), 또는 클라우드 컴퓨팅 환경이나 또는 서비스로서의 소프트웨어(SaaS) 와 같은 서비스의 형식으로 연결될 수 있다.
또한, 본 출원의 처리 요소와 순서의 순차, 숫자 자모, 또는 기타 명칭의 사용은 청구범위에 명시된 경우를 제외하고 출원 흐름과 방법을 제한하기 위한 것이 아니다. 상기 개시는 상기 개시의 여러 다양한 유용한 실시예를 통해 현재 본 개시의 다양한 유용한 실시예로 간주되는 것이 무엇인지를 논의하지만, 이러한 상세내용은 오로지 그 목적을 위한 것이며, 첨부된 청구범위들이 개시된 실시예들에 한정되는 것이 아니라, 그 반대로, 수정과 개시된 실시예들의 요지와 범위내에 있는 방안과 동등한 방안을 포괄하기 위한 것임을 이해하여야 한다. 예를 들어, 위에서 설명한 다양한 부재들의 실행이 하드웨어 장치내에서 구현될 수 있지만, 소프트웨어 전용 솔루션(예를 들면 기존 서버나 모바일 장치에 설치하는)으로 구현될 수도 있다.
유사하게, 본 개시의 실시예들의 상기 설명에서, 개시를 간단화하고 하나 이상의 다양한 실시예의 이해를 돕기 위해, 다양한 특징들이 어떤 경우 하나의 실시예, 도면 또는 그에 대한 기재에 함께 집중될 수 있음을 이해해야 한다. 그러나 이러한 개시는 각 청구항들에서 언급된 특징보다 더 많은 특징을 요구한다는 의미가 아니다. 오히려, 청구된 주제는 상기 공개된 하나의 실시예의 모든 특징들보다 적은 특징을 가질 수 있다.
일부 실시예에서는 본 출원의 어떤 실시예에서 기술 및 주장하는데 이용되는 량 및 속성의 개수를 표시하는 여러가지 숫자는 용어 "약", "유사", 또는 "기본상" 등으로 수정하여 이해하여야 한다. 별도의 설명이 없는 경우 "약", "유사" 또는 "기본상"은 그 묘사하는 값이 ±20%의 변화가 있음을 표시할 수 있다. 따라서 일부 실시예에서 설명과 첨부 청구범위에서 사용한 수치 계수는 유사치이며, 그 유사치는 구체적인 실시예에서 얻으려는 성질에 따라 변화할 수 있다. 일부 실시예에서 수치 계수는 보고된 유효 숫자를 고려하고 일반적인 숫자 보유 방법을 채택해야 한다. 본 개시에서 사용된 수치 범위와 계수는 범위의 범위를 확인하는데 이용되지만, 이러한 수치의 설정은 구체적인 실시예에서 가능한 범위에서 될수록 정확하다.
본 명세서에서 인용한 각 특허, 특허출원, 특허출원의 출판물과 기타 자료, 예를 들면 문장, 서적, 명세서, 출판물, 서류,등은 인용되어 그 전부가 본 명세서에 결합되었다. 본 개시의 내용과 불일치하거나 충돌되는 출원역사서류에 관해서는, 본 개시(본 출원에 현재 또는 후속 추가되는 개시)의 청구범위를 한정하는 서류는 본 개시에서 제외된다. 예를 들면, 본 개시의 첨부된 출원에서 사용된 기술, 정의 및/또는 용어 사용이 본 개시에 기재된 내용과 불일치하거나 또는 충돌되면, 본 개시에서의 기술, 정의 및/또는 용어를 기준으로 한다.
마지막으로, 본 개시에서 설명한 실시예들은 단지 본 출원의 실시예들의 원칙들을 예시하는 것임을 이해할 수 있다. 기타 수정은 본 개시의 범위내에 있을수 있다. 따라서, 예를 들어, 본 개시의 실시예들의 비한정적인 대안 형태는 여기에서 주는 제시에 따라 이용될 수 있다. 그러므로 본 개시의 실시예들은 보여주고 묘사된대로 정확하게 한정된 것이 아니다.

Claims (22)

  1. 마이크로폰으로서,
    셸 구조(shell structure);
    상기 셸 구조안에 수용되고, 상기 셸 구조에 전송된 외부 소리신호에 응답하여 진동을 발생하는 진동픽업조립체; 및
    각각 상기 진동픽업조립체의 진동을 수신하여 전기신호를 생성하도록 구성된 적어도 2개의 음향전기변환소자를 포함하고,
    상기 적어도 2개의 음향전기변환소자는 상기 진동픽업조립체의 진동에 대하여 상이한 주파수응답을 가지는, 마이크로폰.
  2. 제 1 항에 있어서,
    각 음향전기변환소자에 대응되는 주파수응답은 적어도 하나의 공진 주파수를 포함하고, 상기 적어도 2개의 음향전기변환소자에 대응되는 복수의 공진 주파수 중 적어도 2개는 20Hz 내지 16000Hz의 범위내에 있는, 마이크로폰.
  3. 제 1 항에 있어서,
    상기 적어도 2개의 음향전기변환소자에 대응되는 서브대역의 수량은 5 이상인, 마이크로폰.
  4. 제 1 항에 있어서,
    상기 진동픽업조립체와 상기 셸 구조는 적어도 하나의 음향캐비티를 정의하고, 상기 적어도 하나의 음향캐비티는 제1 음향캐비티를 포함하고,
    상기 셸 구조는 적어도 하나의 홀을 포함하고, 상기 적어도 하나의 홀은 상기 제1 음향캐비티에 위치하고, 상기 적어도 하나의 홀은 상기 외부 소리신호를 상기 제1 음향캐비티에 진입하도록 안내하며,
    상기 진동픽업조립체는 상기 제1 음향캐비티안에서 소리신호에 응답하여 진동하고, 상기 적어도 2개의 음향전기변환소자는 각각 상기 진동픽업조립체의 진동을 수신하여 상기 전기신호를 생성하는, 마이크로폰.
  5. 제 1 항에 있어서,
    상기 진동픽업조립체는 상기 진동픽업조립체의 둘레측을 통해 상기 셸 구조에 연결되고, 상기 진동픽업조립체의 적어도 일부분 구조는 상기 외부 소리신호에 응답하여 진동을 발생하는, 마이크로폰.
  6. 제 5 항에 있어서,
    상기 진동픽업조립체는 제1 진동픽업조립체를 포함하고, 상기 적어도 2개의 음향전기변환소자는 상기 제1 진동픽업조립체에 직접 또는 간접적으로 연결되는, 마이크로폰.
  7. 제 5 항에 있어서,
    상기 진동픽업조립체는 위로부터 아래로 순차로 배치된 제1 진동픽업조립체와 제2 진동픽업조립체를 포함하고, 상기 제1 진동픽업조립체와 상기 제2 진동픽업조립체는 둘레측을 통해 상기 셸 구조에 연결되고, 상기 제1 진동픽업조립체, 상기 제2 진동픽업조립체, 및 상기 셸 구조는 캐비티를 정의하고, 상기 제1 진동픽업조립체와 상기 제2 진동픽업조립체의 적어도 일부분 구조는 상기 외부 소리신호에 응답하여 진동하는, 마이크로폰.
  8. 제 7 항에 있어서,
    관 구조의 진동전도조립체는 상기 제1 진동픽업조립체와 상기 제2 진동픽업조립체 사이에 배치되고, 상기 진동전도조립체, 상기 제1 진동픽업조립체, 및 상기 제2 진동픽업조립체는 캐비티를 정의하는, 마이크로폰.
  9. 제 5 항에 있어서,
    상기 진동픽업조립체는 제1 진동픽업조립체, 제2 진동픽업조립체, 및 제3 진동픽업조립체를 포함하고, 상기 제1 진동픽업조립체와 상기 제2 진동픽업조립체는 서로 마주하여 설치되고, 관 구조의 진동전도조립체는 상기 제1 진동픽업조립체와 상기 제2 진동픽업조립체 사이에 배치되고, 상기 진동전도조립체, 상기 제1 진동픽업조립체, 및 상기 제2 진동픽업조립체는 캐비티를 정의하며,
    상기 제3 진동픽업조립체는 상기 진동전도조립체와 상기 셸 구조의 내벽 사이에 연결되고,
    상기 제3 진동픽업조립체는 상기 외부 소리신호에 응답하여 진동을 생성하는, 마이크로폰.
  10. 제 7 항 내지 제 9 항 중 어느 한 항에 있어서,
    각 음향전기변환소자는 외팔보 구조를 포함하고, 상기 외팔보 구조의 일단부는 상기 진동전도조립체의 내벽에 연결되고 상기 외팔보 구조의 다른 일단부는 상기 캐비티안에 현수되며, 상기 외팔보 구조는 진동신호에 근거하여 변형되어 상기 진동신호를 전기신호로 변환하는, 마이크로폰.
  11. 제 10 항에 있어서,
    상이한 외팔보 구조는 상기 진동전도조립체의 내벽에서 간격을 두고 분포되는, 마이크로폰.
  12. 제 10 항에 있어서,
    상기 적어도 2개의 음향전기변환소자의 각 음향전기변환소자에 대응되는 상기 외팔보 구조의 크기 또는 재료는 다른, 마이크로폰.
  13. 제 12 항에 있어서,
    상기 적어도 2개의 음향전기변환소자는 제1 외팔보 구조와 제2 외팔보 구조를 포함하고, 상기 제1 외팔보의 진동방향에 수직이 되는 방향에서의 상기 제1 외팔보의 길이는 상기 제2 외팔보의 진동방향에 수직이 되는 방향에서의 상기 제2 외팔보의 길이보다 크며, 상기 제1 외팔보에 대응되는 공진 주파수는 상기 제2 외팔보에 대응되는 공진 주파수보다 낮은, 마이크로폰.
  14. 제 10 항에 있어서,
    상기 외팔보 구조는 제1 전극층, 압전층, 제2 전극층, 탄성층, 및 기판층을 포함하고, 상기 제1 전극층, 상기 압전층, 및 상기 제2 전극층은 순차로 배치되고, 상기 탄성층은 상기 제1 전극층의 상면 또는 상기 제2 전극층의 하면에 위치하고, 상기 기판층은 상기 탄성층의 상면 또는 하면에 위치하는, 마이크로폰.
  15. 제 10 항에 있어서,
    상기 외팔보 구조는 적어도 하나의 탄성층, 전극층, 및 압전층을 포함하고, 상기 적어도 하나의 탄성층은 상기 전극층의 표면에 위치하고,
    상기 전극층은 제1 전극과 제2전극을 포함하고, 상기 제1 전극은 제1 빗모양 구조로 구부러지고, 상기 제2 전극은 제2 빗모양 구조로 구부러지고, 상기 제1 빗모양 구조는 상기 제2 빗모양 구조와 결합하여 상기 압전층의 상면 또는 하면에 위치하는 상기 전극층을 형성하고, 상기 제1 빗모양 구조와 상기 제2 빗모양 구조는 상기 외팔보 구조의 길이를 따라 연장되는, 마이크로폰.
  16. 제 7 항 내지 제 9 항 중 어느 한 항에 있어서,
    각 음향전기변환소자는 제1 외팔보 구조와 제2 외팔보 구조를 포함하고, 상기 제1 외팔보 구조는 상기 제2 외팔보 구조와 마주하여 배치되고, 상기 제1 외팔보 구조와 상기 제2 외팔보 구조는 제1 거리를 가지고, 상기 제1 외팔보 구조와 상기 제2 외팔보 구조 사이의 제1 거리는 진동신호에 근거하여 변화하여 상기 진동신호를 전기신호로 변환시키는, 마이크로폰.
  17. 제 16 항에 있어서,
    각 음향전기변환소자에 대응되는 상기 제1 외팔보 구조와 상기 제2 외팔보 구조는 상기 진동전도조립체의 둘레측의 내벽에서 간격을 두고 분포되는, 마이크로폰.
  18. 제 17 항에 있어서,
    상기 제1 외팔보 구조의 강도는 상기 제2 외팔보 구조의 강도와 다른, 마이크로폰.
  19. 제 1 항에 있어서,
    상기 마이크로폰은 적어도 하나의 막구조를 포함하고, 상기 적어도 하나의 막구조는 상기 음향전기변환소자의 상면 및/또는 하면에 위치하는, 마이크로폰.
  20. 제 19 항에 있어서,
    상기 적어도 하나의 막구조는 상기 음향전기변환소자의 상면 및/또는 하면의 전체 또는 일부분을 커버하는, 마이크로폰.
  21. 제 1 항에 있어서,
    상기 마이크로폰은 적어도 하나의 지지구조를 포함하고, 상기 적어도 하나의 지지구조의 일단부는 상기 진동픽업조립체의 제1 진동픽업조립체에 연결되고, 상기 적어도 하나의 지지구조의 다른 일단부는 상기 진동픽업조립체의 제2 진동픽업조립체에 연결되고, 상기 적어도 2개의 음향전기변환소자의 자유 단부와 상기 지지구조는 제2 거리를 가지는, 마이크로폰.
  22. 제 1 항에 있어서,
    상기 마이크로폰은 상이한 음향전기변환소자에 의해 출력되는 전기신호를 디지털신호로 변환하도록 구성된 적어도 하나의 샘플링모듈을 더 포함하고, 상기 샘플링모듈은 상이한 샘플링 주파수를 이용하여 상이한 음향전기변환소자에 의해 출력되는 상기 전기신호를 샘플링하는, 마이크로폰.
KR1020227032981A 2021-08-11 2021-08-11 마이크로폰 KR20230024872A (ko)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/112016 WO2023015477A1 (zh) 2021-08-11 2021-08-11 一种传声器

Publications (1)

Publication Number Publication Date
KR20230024872A true KR20230024872A (ko) 2023-02-21

Family

ID=85177556

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020227032981A KR20230024872A (ko) 2021-08-11 2021-08-11 마이크로폰

Country Status (6)

Country Link
US (1) US11924608B2 (ko)
EP (1) EP4164245A4 (ko)
JP (1) JP2023539967A (ko)
KR (1) KR20230024872A (ko)
CN (1) CN115968549A (ko)
WO (1) WO2023015477A1 (ko)

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3731196A1 (de) 1987-09-17 1989-03-30 Messerschmitt Boelkow Blohm Frequenzselektiver schallwandler
JPH09163477A (ja) * 1995-12-04 1997-06-20 Mitsubishi Electric Corp 骨伝導音声振動検出素子
JP3876061B2 (ja) 1997-10-06 2007-01-31 Necトーキン株式会社 音声ピックアップ装置
CN1119917C (zh) 2000-03-31 2003-08-27 清华大学 用于微麦克风和扬声器的悬臂式振膜结构及其制备方法
US7104134B2 (en) * 2004-03-05 2006-09-12 Agilent Technologies, Inc. Piezoelectric cantilever pressure sensor
US20070253570A1 (en) 2004-12-07 2007-11-01 Ntt Docomo, Inc. Microphone System
JP4256367B2 (ja) 2005-07-06 2009-04-22 東京エレクトロン株式会社 振動波検出装置
KR102207928B1 (ko) 2014-08-13 2021-01-26 삼성전자주식회사 음향 센싱 소자 및 주파수 정보 획득 방법
KR102452952B1 (ko) * 2017-12-06 2022-10-12 삼성전자주식회사 방향성 음향 센서 및 이를 포함하는 전자 장치
KR20200083818A (ko) 2018-12-28 2020-07-09 삼성전자주식회사 공진기 및 그 제조방법과, 공진기를 포함하는 스트레인 센서 및 센서 어레이
CN209897223U (zh) 2018-12-31 2020-01-03 瑞声科技(新加坡)有限公司 Mems麦克风
CN113330754A (zh) * 2019-01-11 2021-08-31 海米迪纳私人有限公司 声学设备
KR20210089292A (ko) 2020-01-07 2021-07-16 삼성전자주식회사 음성 인식 시스템 및 이를 이용한 디스플레이 장치
EP4050910A4 (en) 2020-01-17 2023-01-04 Shenzhen Shokz Co., Ltd. BONE CONDUCTIVE MICROPHONE
CN112601169B (zh) 2020-12-15 2021-09-24 武汉大学 一种宽频带高灵敏度谐振式压电mems麦克风

Also Published As

Publication number Publication date
US20230049593A1 (en) 2023-02-16
US11924608B2 (en) 2024-03-05
EP4164245A1 (en) 2023-04-12
WO2023015477A1 (zh) 2023-02-16
JP2023539967A (ja) 2023-09-21
EP4164245A4 (en) 2023-04-26
CN115968549A (zh) 2023-04-14

Similar Documents

Publication Publication Date Title
WO2021143548A1 (zh) 一种骨传导麦克风
WO2009145096A1 (ja) 音声入力装置及びその製造方法、並びに、情報処理システム
US11875815B2 (en) Signal processing device having multiple acoustic-electric transducers
US20230045906A1 (en) Microphones
US20230188911A1 (en) Bone conduction sound transmission devices
KR100785803B1 (ko) 판 스프링 구조를 갖는 초소형 마이크로 폰, 스피커 및이를 이용한 음성 인식/합성장치
KR20230024872A (ko) 마이크로폰
RU2800552C1 (ru) Микрофон
TW202308403A (zh) 傳聲器
WO2023015485A1 (zh) 一种传声器
RU2793293C1 (ru) Микрофон
JP4212635B1 (ja) 音声入力装置及びその製造方法、並びに、情報処理システム
CN115706880A (zh) 一种传声器
RU2792082C1 (ru) Микрофоны
WO2023272906A1 (zh) 一种振动传感器
TW202308406A (zh) 傳聲器
TW202303112A (zh) 振動感測器