KR20230006030A - 차세대 셀룰러 네트워크에서 데이터 전송 방법 및 장치 - Google Patents

차세대 셀룰러 네트워크에서 데이터 전송 방법 및 장치 Download PDF

Info

Publication number
KR20230006030A
KR20230006030A KR1020227045168A KR20227045168A KR20230006030A KR 20230006030 A KR20230006030 A KR 20230006030A KR 1020227045168 A KR1020227045168 A KR 1020227045168A KR 20227045168 A KR20227045168 A KR 20227045168A KR 20230006030 A KR20230006030 A KR 20230006030A
Authority
KR
South Korea
Prior art keywords
symbol
symbols
resource
downlink data
allocated
Prior art date
Application number
KR1020227045168A
Other languages
English (en)
Other versions
KR102618292B1 (ko
Inventor
쉬에펑
류현석
아닐 에기월
이남정
정철
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Publication of KR20230006030A publication Critical patent/KR20230006030A/ko
Application granted granted Critical
Publication of KR102618292B1 publication Critical patent/KR102618292B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/231Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the layers above the physical layer, e.g. RRC or MAC-CE signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/713Spread spectrum techniques using frequency hopping
    • H04B1/715Interference-related aspects

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

4세대(4G) 시스템보다 높은 데이터 전송 속도를 지원하는 5세대(5G) 통신 시스템과 IoT 기술을 융합하기 위한 통신 방법 및 시스템이 제공된다. 상기 통신 방법 및 시스템은 스마트 홈, 스마트 빌딩, 스마트 시티, 스마트 카, 커넥티드 카, 헬스 케어, 디지털 교육, 스마트 소매, 보안 및 안전 서비스와 같은 5G 통신 기술 및 IoT 관련 기술에 기반한 지능형 서비스들에 적용될 수 있다. 단말(user equipment)의 데이터 수신을 위한 방법이 제공된다. 상기 방법은 기지국으로부터 단말에 할당된 무선 자원들에 관한 정보를 수신하는 동작, 및 무선 자원들에 관한 정보에 기초하여 데이터를 기지국으로부터 수신하는 동작을 포함한다. 무선 자원들은 시간 영역에서 복수의 심볼들 및 주파수 영역에서 복수의 자원 블록 그룹들과 연관된다. 무선 자원들에 관한 정보는 시작 심볼에 대한 제1 정보 또는 각 자원 블록 그룹의 크기에 관한 제2 정보 중 적어도 하나를 포함한다.

Description

차세대 셀룰러 네트워크에서 데이터 전송 방법 및 장치 {METHOD AND APPARATUS FOR DATA TRANSMISSION IN NEW RADIO CELLULAR NETWORK}
본 개시는 데이터 전송 방법 및 장치에 관한 것이다. 특히, 본 개시는 차세대 셀룰러 네트워크에서 자원 구성 및 스케줄링 방법에 관한 것이다.
4G 통신 시스템의 배치 이후 증가된 무선 데이터 트래픽에 대한 수요를 충족시키기 위해, 개선된 5G 또는 프리(pre)-5G 통신 시스템을 개발하기 위한 노력을 해왔다. 따라서, 5G 또는 프리-5G 통신 시스템은 'Beyond 4G Network'또는 'Post LTE 시스템'이라고도 한다. 5G 통신 시스템은 더 고주파 대역(mmWave) 예를 들어 60 GHz 대역에서 구현되어 더 높은 데이터 속도를 달성하는 것으로 고려된다. 무선파(radio wave)의 전파 손실을 감소시키고, 송신 거리를 증가시키기 위해, 빔포밍(beamforming), 대용량 MIMO, FD-MIMO, 어레이 안테나, 아날로그 빔포밍, 대규모 안테나 기술 등이 5G 통신 시스템에서 논의된다. 게다가, 5G 통신 시스템에서, 첨단(advanced) 소형 셀, 클라우드 RAN(Radio Access Network), 초 고밀도 네트워크(ultra-dense network), D2D(device-to-device) 통신, 무선 백홀, 이동 네트워크, 협력 통신, CoMP(Coordinated Multi-Point), 수신 단 간섭 제거 등을 기반으로 시스템 네트워크 개선을 위한 개발이 진행되고 있다. 5G 시스템에서, 하이브리드 FQAM(FSK and QAM Modulation) 및 SWSC(sliding window superposition coding)이 ACM(advanced coding modulation) 기법으로서 개발되었고, FBMC(filter bank multi carrier), NOMA(non-orthogonal multiple access) 및 SCMA(sparse code multiple access)가 첨단 액세스 기술로서 개발되었다.
최근 몇 년 동안 점점 증가하는 광대역 가입자를 만족시키고 더 다양하고 좋은 응용과 서비스들을 제공하기 위해 몇 가지의 광대역 무선 기술이 개발되었다. 제 2세대 무선 통신 시스템은 사용자들의 이동성을 보장하면서 음성 서비스를 제공하도록 개발되었다. 제 3세대 무선 통신 시스템은 음성 서비스뿐만 아니라 데이터 서비스도 지원한다. 제 4세대 무선 통신 시스템은 고속 데이터 서비스를 제공하도록 개발되었다. 그러나, 제 4세대 무선 통신 시스템은 현재 고속 데이터 서비스에 대한 증가하는 수요를 충족시키기 위한 자원의 부족으로 어려움을 겪고 있다. 따라서, 제 5세대 무선 통신 시스템은 고속 데이터 서비스, 초 신뢰성 및 저 지연 애플리케이션 및 대용량 기계 유형 통신과 같은 다양한 요구 사항들을 갖는 다양한 서비스들에 대한 증가하는 수요를 충족시키도록 개발되고 있다. 스펙트럼 이용 효율이 개선될 필요가 있다. 단일 5G 셀룰러 네트워크에서 다양한 서비스가 지원 될 가능성이 높으므로 다중 서비스들의 유연한 다중화(multiplexing)가 필요하다. 또한, 미래의 새로운 서비스를 원활하게 추가하기 위해서 시스템 설계는 순방향 호환성(forward compatibility)을 고려해야 한다.
도 1은 종래 기술에 따른 LTE 시스템에서 자원 할당의 예를 도시한다. 도 1은 종래 기술에 따른 LTE 시스템에서 자원 할당의 예를 도시한다. 셀룰러 네트워크에서, 시스템 설계는 일반적으로 자원 할당에 대한 유연성이 제한적이다. 하나의 예로서 4G LTE 시스템을 살펴보면, 도 1에 나타난 바와 같이, 상향링크 및 하향링크 데이터 전송을 위해 할당되는 자원은 통상적으로, 기준선(baseline)으로서, 시간 영역에서 하나의 서브프레임 및 주파수 영역에서 몇 개의 연속적인 또는 비 연속적인 PRB들을 점유하는 다수의 물리적 자원 블록 쌍(PRB pair) 이다. 현재 기법은 5G 네트워크에서 다양한 자원할당 시나리오를 지원하는데 있어서 한계가 있다. 예를 들면, 스펙트럼 사용 효율을 향상시키기 위해, 데이터 전송이 사용되지 않은 제어영역의 일부를 재사용하도록 하는 것이 유익하다. 또한, 전송 시간 간격(TTI) 또는 서브프레임 내에서 상이한 서비스들 또는 사용자 단말(UE)들을 시분할 다중화(TDM) 방식으로 다중화하는 것을 지원할 필요가 있다. 어떤 시나리오에서는 TTI 또는 서브프레임 내의 심볼들이 모두 하나의 UE에 할당되지는 않는다. 그러나, 어떤 자원할당 규약(protocol)도 지정되지 않았다. 본 개시에서, 예를 들어, LTE-advanced(LTE-A) 또는 5G와 같은 미래의 셀룰러 네트워크들에 대한 유연한 자원 할당 방법이 개시된다.
상기 정보는 순전히 본 개시의 이해를 돕기 위한 배경 정보로서 제시된 것이다. 위의 사항들 중 어느 것이 본 개시와 관련하여 선행 기술로서 적용될 수 있는지에 관해서는 어떠한 결정도 내려지지 않았으며 어떠한 주장도 되지 않았다.
본 개시의 측면들은 적어도 전술 한 문제점 및/또는 단점을 해소하고 적어도 후술하는 이점을 제공하는 것이다. 따라서, 본 개시의 일 측면은 4G 시스템보다 높은 데이터 전송률을 지원할 수 있는 5세대(5G) 통신 시스템을 융합하기 위한 통신 방법 및 시스템을 제공함에 있다.
본 개시의 제1 측면에 따르면, 무선 통신 시스템에서 단말에 의해 수행되는 방법이 제공된다. 상기 방법은 하향링크 데이터 수신을 위해 가능하지 않은 자원에 대한 설정 정보를 포함하는 RRC (radio resource control) 메시지를 기지국으로부터 수신하는 단계, 상기 설정 정보에 기반하여 상기 하향링크 데이터 수신을 위한 자원을 식별하는 단계 및 식별된 자원에서 하향링크 데이터를 상기 기지국으로부터 수신하는 단계를 포함한다.
본 개시의 제2 측면에 따르면, 무선 통신 시스템에서 기지국에 의해 수행되는 방법이 제공된다. 상기 방법은 하향링크 데이터 전송을 위해 가능하지 않은 자원에 대한 설정 정보를 포함하는 RRC (radio resource control) 메시지를 단말로 전송하는 단계, 상기 하향링크 데이터 전송을 위해 가능하지 않은 자원을 제외하고, 상기 하향링크 데이터 전송을 위한 자원을 할당하는 단계 및 할당된 자원에서 하향링크 데이터를 전송하는 단계를 포함한다.
본 개시의 제3 측면에 따르면, 무선 통신 시스템의 단말이 제공된다. 상기 단말은 송수신부 및 제어부를 포함하고, 상기 제어부는, 하향링크 데이터 수신을 위해 가능하지 않은 자원에 대한 설정 정보를 포함하는 RRC (radio resource control) 메시지를 기지국으로부터 수신하고, 상기 설정 정보에 기반하여 상기 하향링크 데이터 수신을 위한 자원을 식별하며, 식별된 자원에서 하향링크 데이터를 상기 기지국으로부터 수신하도록 제어한다.
본 개시의 제4 측면에 따르면, 무선 통신 시스템의 기지국이 제공된다. 상기 기지국은 송수신부 및 제어부를 포함하고, 상기 제어부는, 하향링크 데이터 전송을 위해 가능하지 않은 자원에 대한 설정 정보를 포함하는 RRC (radio resource control) 메시지를 단말로 전송하고, 상기 하향링크 데이터 전송을 위해 가능하지 않은 자원을 제외하고, 상기 하향링크 데이터 전송을 위한 자원을 할당하며, 할당된 자원에서 하향링크 데이터를 전송하도록 제어한다.
첨부된 도면들과 함께 본 개시의 다양한 실시 예들을 개시하는 다음의 상세한 설명으로부터 당업자들은 본 개시의 다른 양상들, 장점들 및 현저한 특징들은 명백하게 이해할 것이다.
본 개시의 특정 실시예에 대한 전술한 및 부가적인 양태, 특징 및 이점은 첨부된 도면 및 다음의 설명으로부터 더욱 명백해질 것이다.
도 1은 종래 기술에 따른 LTE 시스템의 자원 할당 예를 도시한다.
도 2는 본 개시의 일 실시예에 따른 자원 그리드(resource grid)의 예를 도시한다.
도 3은 본 개시의 일 실시예에 따른 NR/LTE 공존 시나리오를 위한 TTI에서 자원 공유의 예를 도시한다.
도 4는 본 개시의 일 실시예에 따른 TTI 비트맵 및 심볼 표시에 기초한 자원 예약/설정의 예를 도시한다.
도 5는 본 개시의 일 실시예에 따른 심볼 비트맵 표시에 기초한 설정의 예를 도시한다.
도 6은 본 개시의 일 실시예에 따른 시작 심볼 및 종료 심볼에 대한 설정 기반 표시(configuration based indication)의 예를 도시한다.
도 7은 본 개시의 일 실시예에 따른 연속적으로 할당된 심볼들에 대한 설정 기반 표시의 예를 도시한다.
도 8A, 8B, 8C는 본 개시의 다양한 실시예에 따른 주파수 영역에서 RB/부반송파 설정의 예들을 도시한다.
도 9는 본 개시의 일 실시예에 따른 NR/LTE 공존 시나리오에서 RB/부반송파 설정의 예를 도시한다.
도 10은 본 개시의 일 실시예에 따른 시간/주파수 자원 설정/예약의 조합을 도시한다.
도 11은 본 개시의 일 실시예에 따른 DCI 모니터링을 위해 구성된 BWP 및 CORESET의 예를 도시한다.
도 12는 본 개시의 일 실시예에 따른 동적 자원 할당의 예를 도시한다.
도 13은 본 개시의 일 실시예에 따른 동적 심볼 비트맵 표시의 예를 도시한다.
도 14는 본 개시의 일 실시예에 따른 시작 심볼 및 종료 심볼에 대한 동적 표시의 예를 도시한다.
도 15는 본 개시의 일 실시예에 따른 심볼 부분집합으로부터 시작 심볼 및 종료 심볼에 대한 동적 표시의 예를 도시한다.
도 16은 본 개시의 일 실시예에 따른 심볼 할당 절차를 도출하기 위한 UE 절차의 순서도를 나타낸다.
도 17은 본 개시의 일 실시예에 따른 빔포밍 동작을 수반하는 자원 할당의 예를 도시한다.
도 18은 본 개시의 일 실시예에 따른 심볼 할당 정보를 도출하기 위한 UE 절차의 순서도를 나타낸다.
도 19 및 도 20은 본 개시의 다양한 실시예에 따른 트리 기반 시그널링 방식을 이용한 연속적인 심볼 할당의 예들을 도시한다.
도 21은 본 개시의 일 실시예에 따른 트리 기반 시그널링 방식을 이용한 연속적인 심볼 할당의 다른 예를 도시한다.
도 22 및 도 23은 본 개시의 다양한 실시예에 따른 트리 기반 시그널링 방식으로 비 할당 심볼들을 표시하는 예들을 도시한다.
도 24 및 도 25는 본 개시의 다양한 실시예에 따른 트리 기반 시그널링 방식으로 할당 또는 비 할당된 심볼을 표시하는 예들을 도시한다.
도 26은 본 개시의 일 실시예에 따른 트리 기반 시그널링 방식으로 할당되거나 할당되지 않은 심볼들을 결정하기 위한 UE 절차의 순서도를 나타낸다.
도 27은 본 개시의 일 실시예에 따른 2 RB의 지시 입도(indication granularity)를 갖는 연속적인 RB 할당의 예를 도시한다.
도 28은 본 개시의 일 실시예에 따른 서로 다른 TTI 또는 전송 기간들에 해당하는 서로 다른 RBG 크기들의 예를 도시한다.
도 29는 본 개시의 일 실시예에 따른 서로 다른 RBG 크기 및 서로 다른 RBG 개수의 예를 도시한다.
도 30은 본 개시의 실시예에 따라 상이한 RBG 크기로 주어진 상이한 DCI 크기의 예를 도시한다.
도 31은 본 개시의 일 실시예에 따른 스케줄링 입도, DCI 크기 및 자원 할당을 결정하기 위한 UE 절차의 순서도를 나타낸다.
도 32는 본 개시의 일 실시예에 따른 스케줄링 입도, DCI 크기 및 자원 할당을 결정하기 위한 다른 UE 절차의 순서도를 나타낸다.
도 33A 및 도 33B는 본 개시의 다양한 실시예에 따른 반 정적으로(semi-statically) 설정된 자원 예약 및 동적 자원 할당에 기초하여 데이터 송수신을 위한 자원을 결정하기 위한 UE 절차를 도시한다.
도 34는 본 개시의 일 실시예에 따른 UE의 데이터 송수신 방법을 도시한다.
도 35는 본 개시의 일 실시예에 따른 기지국의 데이터 송수신 방법을 도시한다.
도 36은 본 개시의 일 실시예에 따른 셀룰러 네트워크에서 UE의 블록도이다.
도 37은 본 개시의 일 실시예에 따른 셀룰러 네트워크에서 기지국의 블록도이다.
도면 전체에 걸쳐 동일한 참조 번호는 동일한 부분, 구성요소 및 구조를 지칭하는 것으로 이해될 것이다.
첨부 된 도면을 참조한 다음의 설명은 청구 범위 및 그 균등물에 의해 정의된 본 개시의 다양한 실시 예에 대한 포괄적인 이해를 돕기 위해 제공된 것이다. 그것은 이해를 돕기 위한 다양한 특정 세부사항들을 포함하지만 이들은 단지 예시적인 것으로 간주되어야 한다. 따라서, 당업자들은 여기에 기재된 다양한 실시예들에 대한 다양한 변경 및 수정이 본 개시의 범위 및 사상을 벗어나지 않고 이루어질 수 있음을 인식할 것이다. 또한, 명료함 및 간결성을 위해 잘 알려진 기능 및 구성에 대한 설명은 생략될 수 있다.
다음의 설명 및 청구 범위에서 사용된 용어 및 단어들은 서지적 의미에 한정되지는 않으며, 단지 본 개시에 대한 명확하고 일관된 이해를 가능하게 하기 위해 발명자에 의해 사용된 것이다. 따라서, 본 개시의 다양한 실시 형태에 대한 다음의 설명은 예시의 목적으로만 제공된 것이며 첨부된 청구 범위 및 그 균등물에 의해 정의된 본 개시를 제한하기 위한 것이 아님은 당업자에게 명백할 것이다.
단수의 표현("a", "an" 및 "the")은 문맥상 명백하게 달리 지시되지 않는 한 복수의 표현을 포함한다는 것을 이해해야 한다. 따라서, 예를 들어, "구성 요소 표면"에 대한 언급은 하나 이상의 그러한 표면에 대한 참조를 포함한다.
"실질적으로(substantially)"라는 용어는 언급된 특성, 파라미터 또는 값이 정확히 달성 될 필요는 없지만, 편차 또는 변동 (예를 들어, 허용 오차, 측정 오차, 측정 정확도 제약 및 해당 분야의 당업자에게 알려진 기타 요인들)이 특성이 제공하고자 하는 효과를 배제하지 않는 양으로 발생할 수 있을 의미한다.
순서도(또는 시퀀스 다이어그램)의 블록들 및 순서도들의 조합이 컴퓨터 프로그램 명령(instruction)들에 의해 표현되고 실행될 수 있다는 것이 당업자에게 알려져 있다. 이러한 컴퓨터 프로그램 명령들은 범용 컴퓨터, 전용 컴퓨터, 또는 프로그램 가능한 데이터 처리 장치의 프로세서 상에 적재될 수 있다. 적재된 프로그램 명령들이 프로세서에 의해 실행되면, 이들은 순서도에 기술된 기능을 수행하기 위한 수단을 생성한다. 컴퓨터 프로그램 명령은 특수한 컴퓨터 또는 프로그램 가능한 데이터 처리 장치에서 사용 가능한 컴퓨터 판독가능 메모리에 저장 될 수 있기 때문에, 순서도에 기술된 기능을 수행하는 제조물품을 생성하는 것도 가능하다. 컴퓨터 프로그램 명령은 컴퓨터 또는 프로그램 가능한 데이터 처리 장치 상에 적재될 수 있기 때문에, 프로세스로서 실행될 때, 그들은 순서도에 기술된 기능의 단계들을 수행할 수 있다.
순서도의 블록은 적어도 하나의 논리적 기능을 구현하는 적어도 하나의 실행 가능한 명령을 포함하는 모듈, 세그먼트 또는 코드에 대응될 수 있거나 또는 그 일부에 대응될 수 있다. 어떤 경우에는 블록에 서술된 기능들이 나열된 순서와 다른 순서로 실행될 수 있다. 예를 들어, 순서대로 나열된 두 블록은 동시에 실행되거나 역순으로 실행될 수 있다.
본 개시에서 사용되는 "~부(unit 또는 module)"라는 용어는 특정 기능 또는 동작을 수행할 수 있는 소프트웨어 구성요소 또는 FPGA 또는 ASIC과 같은 하드웨어 구성요소를 의미할 수 있다. 그렇지만 '~부'는 소프트웨어 또는 하드웨어에 한정되는 의미는 아니다. '~부'는 어드레싱 가능한 저장 매체에 상주하도록 구성될 수 있고 하나 또는 그 이상의 프로세서들을 구동하도록 구성될 수도 있다. '~부'는 소프트웨어 구성요소, 객체지향 소프트웨어 구성요소, 클래스 구성요소, 태스크 구성요소, 프로세스, 함수, 속성, 프로시저, 서브루틴, 프로그램 코드 세그먼트, 드라이버, 펌웨어, 마이크로 코드, 회로, 데이터, 데이터베이스, 데이터 구조, 테이블, 배열 및 변수들을 지칭할 수 있다. 구성요소 및 '~부'에서 제공되는 기능은 더 작은 구성요소들 및 '~부'들의 결합이거나, 기타의 것들과 결합되어 더 큰 구성요소 및 '~부'를 구성할 수 있다. 구성요소들 및 '~부'들은 장치 또는 보안 멀티미디어 카드 내의 하나 또는 그 이상의 프로세서들을 구동하도록 구성될 수도 있다.
도 1은 종래 기술에 따른 LTE 시스템의 자원 할당 예를 도시한다.
도 2는 본 개시의 일 실시예에 따른 자원 그리드(resource grid)의 예를 도시한다.
도 2를 참조하면, OFDM (orthogonal frequency division multiplexing) 기반 통신 시스템을 고려할 때, 자원 요소(resource element)는 OFDM 심볼 기간 동안의 한 부반송파에 의해 정의될 수 있다. 시간 영역에서, 복수의 OFDM 심볼들로 구성되는 전송 시간 간격(transmission time interval, TTI)이 정의될 수 있다. 주파수 영역에서, 복수의 OFDM 부반송파로 구성된 자원 블록(RB)이 정의될 수 있다.
도 2에 도시 된 바와 같이, 자원들은 시간 영역에서 TTI들과 주파수 영역에서 RB들로 분할 될 수 있다. 대체로, RB는 주파수 영역에서의 스케쥴링을 위한 베이스라인 자원 단위일 수 있고, TTI는 시간 영역을 스케쥴링하기 위한 베이스라인 자원 단위일 수 있다. 그러나, 다른 서비스 특징 및 시스템 요구사항에 따라 다른 옵션들이 있을 수 있다.
1) 반-정적(semi-static) 자원 설정
상이한 서비스들의 다중화를 지원하기 위해, 차세대 무선 네트워크 또는 새로운 라디오(NR)의 기지국(BS, gNodeB(gNB))은 상이한 서비스들에 대한 일부 자원들을 반-정적으로 미리 설정할 수 있다. 순방향 호환성을 지원하기 위해, 향후 지원될 서비스에 대한 일부 자원들을 미리 설정할 수도 있다. 예를 들어, 네트워크가 LTE와 같은 다른 네트워크와 공존해야 할 경우, LTE를 위해 예약된 자원은 정적일 수 있다. BS(또는 gNB)는 특정 서비스의 성능 요구사항 및 트래픽 특성을 기반으로 효율적이고 유연한 방식으로 자원들을 미리에 설정하는 방법을 결정한다. 자원 설정은 셀의 시스템 정보로 통지(signal)될 수 있다.
시간 영역 자원 설정
도 3은 본 개시의 일 실시예에 따른 NR/LTE 공존 시나리오를 위한 TTI에서 자원 공유의 예를 도시한다.
도 3을 참조하면, 저 지연 요구사항을 갖는 일부 서비스를 지원하기 위해, TTI 내의 일부 심볼들이 주기적으로 예약될 수 있다. 또는, 다른 네트워크/서비스에 대한 일부 자원들을 예약하기 위해 (예, LTE와 같은 다른 네트워크와 공존 할 때), 예약된 자원은 정적일 수 있으며 미리 정의된 패턴을 가질 수 있다. 예를 들어, LTE와 공존하는 경우 및 TTI가 LTE와 동일한 14 개의 심볼을 갖는 경우, TTI의 일부 심볼들은 LTE 제어 영역 및 셀 특정 참조 신호 (CRS) 심볼을 위해 예약될 수 있는데, 이러한 채널/신호는 항상 LTE에서 전송되기 때문이다.
도 3에 예시된 바와 같이, 하나의 TTI 동안, LTE 제어 영역에 대한 첫 2 개의 심볼 및 CRS 심볼에 대한 3 개의 다른 심볼을 포함하여 5 개의 심볼들이 LTE를 위해 예약될 수 있다. 해당 TTI 내의 다른 9 개의 심볼들은 NR을 위해 사용될 수 있다. 자원들은 TTI 할당(TTI allocation) 및 심볼 할당(symbol assignment)의 조합을 기반으로 설정될 수 있다.
도 4는 본 개시의 일 실시예에 따른 TTI 비트맵 및 심볼 표시에 기초한 자원 예약/설정의 예를 도시한다.
도 4를 참조하면, 미리 정의된 길이 M을 갖는 TTI 비트맵에 기초하여 도출될 수 있는 TTI 할당은 해당 서비스에 할당될 TTI (예, 서브프레임)를 지시한다. 비트맵은 M 개의 TTI들마다 적용되어 도 4에 도시된 바와 같이 할당된 TTI들을 도출할 수 있다. TTI 비트맵이 없는 경우, 심볼 예약/설정이 각 TTI에 적용된다고 가정될 수 있다. 시간 자원들은 결합된 TTI 할당 및 심볼 할당의 하나 이상의 집합에 기초하여 설정될 수 있다.
심볼 할당은 대응하는 할당된 TTI들 내의 심볼들을 나타낸다. 주어진 TTI 기간에 N 개의 심볼이 있다고 가정하면, 할당된 심볼들을 나타내기 위해 다수의 시그널링 옵션이 사용될 수 있다.
실시예 1: 심볼 비트맵
도 5는 본 개시의 일 실시예에 따른 심볼 비트맵 표시에 기초한 설정의 예를 도시한다.
도 5를 참조하면, 주어진 TTI 기간에 N 개의 심볼이 존재한다면, 길이 N의 비트맵{b0,b1,...,bn,bn+1,...,bN-1}을 사용하여, 예컨대 bn에 1 또는 0을 설정함으로써, n 번째 심볼이 할당되었는지 여부를 명시적으로 나타낼 수 있다. 이것은 심볼의 표시를 위해 N 비트를 요구한다. 예를 들어, N = 14 일 경우 14 비트의 비트맵 표시가 필요하다.
실시예 2: 시작 심볼 인덱스, 종료 심볼 인덱스 (또는 심볼의 수)
도 6은 본 개시의 일 실시예에 따른 시작 심볼 및 종료 심볼에 대한 설정 기반 표시(configuration based indication)의 예를 도시한다.
도 6을 참조하면, 주어진 TTI 기간에 N 개의 심볼이 있다면, 표시 (nstart, nsymbol)는 인덱스 nstart에서 nend까지의 심볼들이 할당되었음을 나타내기 위해 사용될 수 있다. 대안으로, 표시 (nstart, nsymbol)는 nstart로부터 시작하여 연속된 nsymbol 개의 심볼들이 할당 - 즉 인덱스 (nstart+nsymbol-1)를 갖는 심볼까지 할당 - 됨을 나타내기 위해 사용될 수 있다. 환언하면, 시작 심볼 및 할당된 연속 심볼의 지속에 대한 정보가 전달될 수 있다. 이것은 표시를 위해
Figure pat00001
비트가 필요하다. 예를 들어, N = 14 이면 8 비트의 표시가 필요하다.
실시예 3: 연속적으로 할당된 심볼의 표시
도 7은 본 개시의 일 실시예에 따른 연속적으로 할당된 심볼들에 대한 설정 기반 표시의 예를 도시한다.
도 7을 참조하면, 오버헤드를 더 줄이기 위해, 항상 연속적인 심볼들이 할당된다면, 그 표시를 위해 트리 기반 시그널링 방식이 사용될 수 있다. 시작 심볼의 인덱스 nstart 및 할당된 연속 심볼의 수 nsymbol를 도출하기 위해, 자원 지시 값(resource indication value, RIV)이 시그널링 될 수 있다. RIV와 nstart / nsymbol 사이의 관계는 다음과 같이 표현될 수 있다:
- 만약
Figure pat00002
이면,
Figure pat00003
- 그렇지 않으면 (즉,
Figure pat00004
),
Figure pat00005
이것은 표시를 위해
Figure pat00006
비트들을 필요로 한다. 예를 들어, N = 14 이면 7 비트의 표시가 필요하다. N = 6 인 경우의 예가 도 7에 도시되어 있다.
주파수 영역 자원 설정
협대역 요건을 갖는 일부 서비스를 지원하기 위해, RB6 내의 일부 서브캐리어들이 예약될 수 있다. 주파수 자원은 RB 할당 및 부반송파 할당의 조합에 기초하여 설정될 수 있다.
RB 할당은 해당 서비스에 할당 될 RB를 나타낸다. 예를 들어, 이는 시작 RB 및 종료 RB의 인덱스 예컨대 Start_RB_Index, End_RB_Index 에 의해 시그널링 될 수 있는데, 이는 Start_RB_Index로부터 End_RB_Index까지의 인덱스를 갖는 RB들이 할당되는 것을 의미한다. 대안으로, 이것은 시작 RB 인덱스 및 할당된 RB의 수 예컨대 Start_RB_Index, Num_RB에 의해 시그널링 될 수 있는데, 이는 Start_RB_Index로부터 (Start_RB_Index + Num_RB-1)까지의 인덱스를 갖는 RB들이 할당됨을 의미한다. LTE에서의 RB 할당 방식은 재사용될 수 있다.
부반송파 할당은 대응하는 할당된 RB 내의 부반송파를 나타낸다. RB에 K 개의 부반송파가 있다면, 할당된 부반송파들을 나타내기 위해 다수의 시그널링 옵션이 사용될 수 있다.
실시예 1: 첫 번째 RB에서 시작 부반송파 인덱스 및 마지막 RB에서 종료 부반송파 인덱스
도 8A는 본 개시의 일 실시 예에 따른 주파수 영역에서 RB/부반송파의 설정 예를 나타낸다.
도 8A를 참조하면, 시그널링 된 RB 인덱스 외에 Start_Subcarrier_Index 및 End_Subcarrier_Index가 시그널링 될 수 있다. 도 8A에 도시 된 바와 같이, Start_Subcarrier_Index는 첫 번째로 할당된 RB에서 시작 부반송파 인덱스를 나타내며, End_Subcarrier_Index는 마지막으로 할당된 RB에서 종료 부반송파 인덱스를 나타낸다. 중간 RB들의 모든 부반송파들이 할당된다.
실시예 2: 가장자리 RB 내 부반송파의 수
도 8B는 본 개시의 일 실시 예에 따른 주파수 영역에서 RB/부반송파 설정의 다른 예를 나타낸다.
도 8B를 참조하면, 시그널링 된 RB 인덱스 외에 Num_Subcarrier가 시그널링 될 수 있다. Num_Subcarrier는 가장자리 RB들에서 사용되는 부반송파들의 개수를 나타낸다. 예를 들어, 첫 번째로 할당된 RB에서 끝 Num_Subcarrier 부반송파들이 할당되고 마지막으로 할당된 RB에서 첫 Num_Subcarrier 부반송파들이 할당된다. 중간 RB들에서 모든 부반송파가 할당된다.
대안적으로, Num_Subcarrier는 가장자리 RB들에서 할당되지 않은 부반송파들의 수를 나타낼 수 있다. 예를 들어, 첫 번째로 할당된 RB에서 첫 Num_Subcarrier 부반송파들이 할당되지 않고 마지막으로 할당된 RB에서 끝 Num_Subcarrier 부반송파들이 할당되지 않는다. 중간 RB들에서 모든 부반송파가 할당된다. 도 8B는 Num_Subcarrier = 3 인 경우의 이러한 접근법의 예를 도시한다.
실시예 3: 가장자리 RB 내 부반송파의 수
도 8C는 본 개시의 일 실시 예에 따른 주파수 영역에서 RB/부반송파 설정의 다른 예를 나타낸다.
도 8C를 참조하면, 실시예 2에서, 첫 RB 및 최종 RB에서 파라미터 Num_Subcarrier는 동일하다고 가정된다. 해당 파라미터의 값이 상이할 수도 있다(예, 첫 RB에서 Num_Subcarrier_Start_PRB 및 최종 RB에서 Num_Subcarrier_End_PRB). 이 파라미터는 실시예 2의 경우와 유사하게 할당된 부반송파 또는 할당되지 않은 부반송파의 수를 나타낼 수 있다. 도 8C에 도시된 예에서 Num_Subcarrier_Start_RB = 3 및 Num_Subcarrier_End_RB = 2 는 첫 RB 및 최종 RB에서 각각 할당되지 않은 부반송파의 수를 나타낸다.
도 9는 본 개시의 일 실시예에 따른 NR/LTE 공존 시나리오에서 RB/부반송파 설정의 예를 도시한다.
도 9를 참조하면, 어떤 경우에는 지정된 RB들 중에서 일부 자원 요소만을 예약하는 것이 가능하다. 예를 들어, 레거시 LTE 네트워크와 공존 할 때, CRS와 같은 일부 LTE 신호는 예약될 수 있고 현재 네트워크에 의해 사용되지 않을 수 있다. RB에 K 개의 부반송파가 있다고 가정하면, 예약 된 부반송파들을 나타내기 위해 다수의 시그널링 옵션이 사용될 수 있다.
실시예 1
어느 RE가 예약되고 사용되지 않는지를 나타내기 위해 RE 레벨 비트맵(RE level bitmap)이 사용될 수 있다.
실시예 2: RB 내의 시작 RE 인덱스 및 간격
예를 들어, 시작 RE 인덱스 a 및 간격 b는 K 개의 RE들 중에서 인덱스 {a,a+b,a+2b,...}을 갖는 RE들이 예약되었음을 나타낼 수 있다. 도 9에서, a=0, b=3 및 K = 12 이고, 각 RB에서 인덱스 {0,3,6,9}를 갖는 RE들은 CRS 용으로 예약되고 NR 송신에 의해 사용되지 않는다.
시간/주파수 영역 자원 설정
도 10은 본 개시의 일 실시예에 따른 시간/주파수 자원 설정/예약의 조합을 나타낸다. 특정 서비스가 전체 주파수 영역 또는 전체 시간 영역에서 항상 자원을 점유하지는 않을 수 있다. 따라서, 시간 영역 및 주파수 영역 자원 설정은 조합되어 도 10에 도시된 바와 같이 셀에서 미리 설정된 자원을 나타낼 수 있다. 하나 이상의 자원 설정 집합이 있을 수 있다. 자원 설정은 시스템 정보로 시그널링될 수 있다.
예를 들어, 다른 시스템 또는 네트워크와 공존할 때, 현재 네트워크에 의해 운영되지 않는 다른 서비스를 위해 예약된 자원에 대해, 해당 자원은 현재 네트워크에 액세스하는 UE와 gNB에 의해 사용되지 않는다. 그리고 UE는 현재 네트워크에서 예약된 자원 상에 신호 또는 전송이 없다고 가정한다. 예약된 자원이 시스템 정보에서 설정된다면, 셀 내의 모든 UE는 자원이 이용 가능하지 않다고 가정할 수 있다. 설정은 RRC 시그널링을 통해 UE-특정적일 수 있고, 즉 gNB는 예약된 자원의 설정을 특정 UE 또는 UE 그룹에 지시할 수 있고, UE는 설정된 자원이 이용 가능하지 않다고 가정한다.
2) 동적 자원 설정
UE가 시스템에 접속된 후, UE는 기본 TTI 정보를 획득할 수 있다. TTI에서 가능한 심볼 수의 집합 및 numerology는 미리에 정의될 수 있다. UE는 특정 파라미터 집합 - 예, 설정된 numerology 0에서 N 개의 심볼을 갖는 TTI 기간 0, numerology 0에서 M 개의 심볼을 갖는 TTI 기간 1 등 - 으로 설정될 수 있다. UE는 데이터 송수신을 위한 주파수 자원이 전체 시스템 대역폭이라고 가정할 수 있다. 또는, 데이터 송수신을 위해 주파수 서브밴드(또는 대역폭 부분(bandwidth part, BWP) 이라고 불리는)가 UE에 설정될 수 있다. 설정된 주파수 서브밴드는 시스템 대역폭보다 작거나 같을 수 있고 또한 UE 대역폭보다 작거나 같을 수 있다. BWP에는 설정된 numerology (예, 부반송파 간격, CP 유형 등) 가 있을 수 있다. 제어 채널은 제어 영역에서 전송되며, 여기서 제어 자원 집합(CORESET)은 시스템 정보 또는 UE-특정 RRC 시그널링를 통해 반-정적으로 설정될 수 있다 (예를 들어, 시스템 대역폭 또는 구성된 BWP보다 작거나 같은 특정 주파수 부분에서 OFDM 심볼 {0,1, ..., M-1}을 포함하는 M 개의 OFDM 심볼). 하나의 TTI 기간은 UE가 CORESET을 모니터링하는 디폴트 구간일 수 있고, UE 특정 CORESET 모니터링 구간(UE-specific CORESET monitoring interval)이 설정될 수도 있다. 설정된 CORESET 내에서, 하향링크 제어 표시(DCI)를 운반하는 PDCCH가 미리 정의된 규칙에 근거하여 자원으로 전송될 수 있다. UE는 모니터링 구간에 기초하여 PDCCH를 검색하여 데이터 전송/수신을 스케줄링 하기 위한 어떤 유효한 DCI를 검출한다.
도 11은 본 개시의 일 실시예에 따른 DCI 모니터링을 위해 구성된 BWP 및 CORESET의 예를 도시한다.
도 11에 도시 된 바와 같이, 시스템 요구 사항 및 스케줄링 될 트래픽의 양에 기초하여, BS (또는 gNB)는 이용 가능한 자원을 할당하는 방법을 효율적이고 동적인 방식으로 결정한다.
도 12는 본 개시의 일 실시예에 따른 동적 자원 할당의 예를 도시한다.
도 12에 도시 된 바와 같이, 하나의 TTI에서 복수의 UE가 다중화될 수 있으므로, 유연한 자원 할당이 요구된다.
시간 영역 자원 할당
시스템에서, 시간 단위 (예, TTI) 동안 이용 가능한 자원들은 스케줄링 요구사항에 따라 UE들에게 동적으로 할당될 수 있다. 자원들은 TDM 방식으로 UE들에게 할당될 수 있다. UE에 할당된 심볼들에 대한 정보는 TTI에서, 예를 들어, DCI 또는 전용 채널을 통해 시그널링 될 필요가 있다. 그 지시는 미리 정의된 규칙에 따라 특정 UE에 대해 또는 예를 들어 어떤 서비스에 대한 UE들의 그룹에 대해 유효할 수 있다. 예를 들어, 한 서비스에 대하여 시그널링 된 심볼 할당 정보는 UE들에게 공통으로 적용될 수 있고, 다른 서비스에 대하여 다른 심볼 할당 정보가 UE들에게 시그널링 될 수 있다.
실시예 1: 전체 심볼 비트맵 표시
도 13은 본 개시의 일 실시예에 따른 동적 심볼 비트맵 표시의 예를 도시한다.
도 13은 동적 심볼 비트맵 표시의 예를 도시한다. 주어진 TTI 기간에 N 심볼들이 존재한다면, 길이 N인 비트맵 {b0, b1, ..., bn, bn+1, ..., bN-1} 을 사용하여 - 예를 들어, bn에 1 또는 0을 설정함으로써 - n번째 심볼이 할당되었는지 여부를 명시적으로 나타낼 수 있다. 할당된 심볼들이 연속적일 필요는 없다. 이는 도 13에 도시된 바와 같이 심볼 표시를 위해 N 비트를 필요로 한다. 예를 들어, N = 14일 경우 14 비트의 비트맵 표시가 필요하다. TTI의 시작 부분에 제어 심볼들이 있는 경우, 이들 심볼에 대한 정보는 비트맵에 포함되거나 또는 배제될 수 있다. 시그널링 된 심볼 비트맵의 길이는 특정 규칙 - 예, 고정된 개수의 제어 심볼은 심볼 비트맵에 포함되지 않음 - 에 기초하여 미리 정의될 수 있다.
실시예 2: 시작 심볼 인덱스, 종료 심볼 인덱스 표시 (또는 심벌들의 수)
도 14는 본 개시의 일 실시예에 따른 시작 심볼 및 종료 심볼에 대한 동적 표시의 예를 도시한다.
도 14를 참조하면, 주어진 TTI 기간에 N 개의 심볼이 존재한다면, 표시 (nstart, nend)는 nstart에서 nend까지의 인덱스를 갖는 심볼들이 할당되었음을 나타내기 위해 사용될 수 있다. 대안으로, 표시 (nstart, nsymbol)는 nstart로부터 시작하는 연속된 nsymbol 심볼들이 - 즉 인덱스 (nstart+nsymbol-1) 를 갖는 심볼까지 - 할당됨을 나타내기 위해 사용될 수 있다. 또는, 표시 (nend, nsymbol)는 nend까지 연속된 nsymbol 심볼들 - 즉 인덱스가 (nend-nsymbol+1)인 심볼부터 인덱스가 nend인 심볼까지 - 이 할당되었음을 나타내는데 사용될 수 있다. 이것은 표시를 위해
Figure pat00007
비트가 필요하다. 예를 들어, N = 14이면 8 비트의 표시가 필요하다.
도 15는 본 개시의 일 실시예에 따른 심볼 부분집합으로부터 시작 심볼 및 종료 심볼에 대한 동적 표시의 예를 도시한다.
도 15를 참조하면, 오버헤드를 감소시키기 위해, 표시 nstart 및 nend 는 제한된 수의 심볼들에 적용될 수 있다. 예를 들어, nstart는 TTI의 시작에서 첫 A 심볼들 중 하나의 심볼만을 가리키며, nend는 TTI의 마지막 B 심볼들 중 하나의 심볼만을 나타낸다 (여기서, A 및 B는 미리 정의된 정수). 한 예가 도 15에 도시되어 있는데, nstart는 처음 4 심볼들 중 하나의 심볼을 나타내고 nend는 마지막 4 심볼들 중 하나의 심볼을 나타낸다. 이러한 방식으로 nstart에 2 비트 및 nend에 2 비트가 필요하다.
어떤 경우에는, 특정 파라미터는 고정되거나 미리에 설정될 수 있다. 예를 들어, 시작 심볼 인덱스 nstart는 TTI의 첫 번째 심볼로 또는 제어 심볼이 있다면 제어 심볼 다음의 첫 번째 심볼로 디폴트 설정될 수 있다. 종료 심볼 인덱스 nend는 TTI의 마지막 심볼로 디폴트 설정될 수 있다. 심볼의 수 nsymbol는 미리 정의된 수(예, 1 또는 2)로 고정될 수 있다. 미리 설정된 파라미터들 및 동적으로 시그널링 된 파라미터들에 기초하여, UE는 할당된 심볼들을 도출할 수 있다.
어떤 경우에는, 데이터 전송을 위한 시작 심볼들의 집합이 예를 들어 BWP 설정 또는 CORESET 설정에 설정될 수 있다. 둘 이상의 값이 설정된 경우, 설정된 집합에서 선택된 정확한 시작 심볼이 데이터 전송의 DCI에 지시된다. 유사하게, 데이터 송신 또는 송신 기간을 위한 가능한 종료 심볼들의 집합이 설정될 수 있다. 둘 이상의 값이 설정된 경우, 설정된 집합에서 선택된 정확한 종료 심볼 또는 송신 기간이 데이터 전송의 DCI에 지시된다. 설정되는 시작 심볼 집합 및 종료 심볼 집합 (또는 전송 기간)의 크기는 DCI에서 관련된 지시 필드(indication field) - 예, 시간 영역 자원 할당 필드 - 의 크기를 결정한다. 가능한 시작 심볼들의 설정된 집합의 크기가 A 인 경우, DCI의 지시 필드는 log2 A 비트가 필요할 수 있다. 유사하게, 가능한 시작 심볼들의 설정된 집합의 크기가 B 라면, DCI의 지시 필드는 log2 B 비트를 요구할 수 있다. 예를 들어, 각기 log2 A 비트 및 log2 B 비트의 2 개의 개별 필드가 시작 심볼 및 종료 심볼 (또는 전송 기간)을 나타내기 위해 사용될 수 있다. 또는 전체 log2 AB 비트를 사용하여 시작 심볼 및 종료 심볼 (또는 전송 기간)을 공동으로 표시할 수 있다. 또는 DCI의 1 비트 필드를 사용하여 시작 심볼이 미리에 정의된 것인지 또는 제어 영역 설정에서 설정된 것인지를 나타낼 수 있다. 유사하게 DCI의 1 비트 필드를 사용하여 종료 심볼이 미리에 정의된 것인지 또는 제어 영역 설정에서 설정된 것인지를 나타낼 수 있다. 시작 심볼들 및 종료 심볼들의 집합 설정은 하향링크 및 상향링크 데이터 전송에 대해 상이할 수 있다. 설정은 UE-특정적일 수 있다. 미리 정의된 규칙 및 설정에 따라, UE는 대응하는 시간 영역 자원 할당 필드의 크기를 결정한다. UE가 대응하는 DCI를 검색하려고 할 때 유도된 필드 길이가 가정된다.
도 16은 본 개시의 일 실시예에 따른 심볼 할당 절차를 도출하기 위한 UE 절차의 순서도를 나타낸다.
도 16을 참조하면, UE는 동작 1610에서 제어 영역 및 제어 모니터링 구간에 대한 설정을 수신한다. UE는 동작 1620에서 설정에 근거하여 시작 심볼 및/또는 종료 심볼(또는 기간)을 나타내는 동적 DCI 필드가 존재하는지 여부를 판별한다. 만약 동적 DCI 필드가 설정되었으면, UE는 동작 1630에서 DCI에서 시작 심볼 및/또는 종료 심볼(또는 기간) 지시에 대한 필드 크기를 결정한다. 그렇지 않으면 즉 그러한 정보를 표시하는 동적 DCI 필드가 설정되지 않은 경우, UE는 동작 1640에서 시작 심볼 및/또는 종료 심볼(또는 기간)에 대해 미리 정의된 값 또는 미리 설정된 값을 가정 할 수 있다. UE는 동작 1650에서 제어 영역 내의 대응하는 DCI를 검색하기 위한 전체 DCI 크기를 결정한다. UE는 동작 1660에서 DCI를 디코딩하여 심볼 할당 정보를 도출한다.
어떤 경우에, 시작 심볼 집합과 종료 심볼 집합을 별도로 설정하면 제대로 작동하지 않을 수 있다. 예를 들어, 네트워크는 설정에서 시작 심볼 및 끝 심볼의 일부 조합만 사용할 수 있다. 기타 다른 조합은 사용되지 않는다. 이것은 설정에서 시작 심볼과 종료 심볼의 모든 조합을 나타내고자 하는 경우 시그널링 비트의 낭비를 초래한다. 예를 들어, 네트워크는 슬롯에서 TDM 방식으로 데이터 전송의 다중화를 원하고, 하나의 후보 데이터 전송은 심볼 0에서 심볼 6까지이고 다른 후보 데이터 전송은 심볼 7에서 심볼 13까지 이다. 이때, 시작 심볼에 대한 2 개의 후보들 (예, 0 및 7) 및 종료 심볼에 대한 2 개의 후보들 (예, 6 및 13)이 있다. 그러나, gNB는 0에서 13까지 및 7에서 6까지 데이터 전송을 스케줄 하지 않을 수 있다. 시작 심볼과 종료 심볼을 분리하여 표시하면, 시작 심볼을 표시하기 위해 1 비트가 필요하고 종료 심볼을 나타내기 위해 1 비트가 필요하여, 총 2 비트가 필요하다. 하지만, 네트워크에서 단지 2 개의 관심 있는 스케줄링 경우가 있으며, 이는 1 비트로 나타낼 수 있다.
도 17은 본 개시의 일 실시예에 따른 빔포밍 동작을 수반하는 자원 할당의 예를 도시한다.
도 17을 참조하면, 다른 예로서, gNB가 빔포밍을 통해 데이터를 송신할 때, gNB는 상이한 빔들에 대해 상이한 심볼 그룹을 스케줄링하고 슬롯 내에서 TDM 방식으로 빔포밍된 데이터 전송들을 다중화할 수 있다. 따라서, 시그널링 오버헤드를 줄이고 지시 오류를 피하면서 이러한 자원 할당을 지원하기 위해 네트워크에서 사용될 <시작 심볼, 종료 심볼>을 직접 설정하는 방법이 있다. 데이터 전송을 위한 하나 이상의 <시작 심볼, 전송 기간> (또는 등가적으로 <시작 심볼, 종료 심볼>) 집합은 예를 들어 제어 영역 설정에서 설정될 수 있다. 복수의 집합이 설정된 경우, 설정된 집합들에서 선택된 정확한 집합은 데이터 전송의 DCI에서 지시된다. <시작 심볼, 전송 기간>의 설정된 집합의 수는 DCI에서 관련된 지시 필드, 예컨대 시간 영역 자원 할당 필드의 크기를 결정한다. 설정된 집합의 수가 A 인 경우, DCI에서 지시 필드는
Figure pat00008
비트가 필요할 수 있다. <시작 심볼, 전송 기간> 집합의 설정은 하향링크 및 상향링크 데이터 전송에 대해 서로 다를 수 있다. 설정은 UE-특정적일 수 있다, 예컨대 RRC에 의해 설정될 수 있다. 상기 설정에 기초하여, UE는 DCI에서 대응하는 시간 영역 자원 할당 필드의 크기를 결정하고, 따라서 미리 정의된 규칙에 기초하여 DCI 크기를 결정할 수 있다. UE가 대응하는 DCI를 검색할 때 도출된 필드 길이가 가정된다.
도 18은 본 개시의 일 실시예에 따른 심볼 할당 정보를 도출하기 위한 UE 절차의 순서도를 나타낸다.
도 18을 참조하면, UE는 동작 1810에서 제어 영역 및 제어 모니터링 구간에 대한 설정을 수신한다. UE는 동작 1820에서 하나 이상의 <시작 심볼, 종료 심볼>) (또는 등가적으로 <시작 심볼, 전송 기간>) 집합을 나타내는 <시작 심볼, 종료 심볼> 설정이 존재하는지 여부를 판별한다. 만약 하나 이상의 <시작 심볼, 종료 심볼>) 집합을 나타내는 설정이 존재하면, UE는 동작 1830에서 <시작 심볼, 종료 심볼>의 설정된 집합의 수에 근거하여 DCI에서 시간 자원 할당에 대한 필드 크기를 결정한다. 그렇지 않으면 즉 그러한 설정이 없으면, UE는 동작 1840에서 시작 심볼 및/또는 종료 심볼(또는 기간)에 대해 미리 정의된 값 또는 미리 설정된 값을 가정한다. UE는 동작 1850에서 제어 영역 내의 대응하는 DCI를 검색하기 위한 전체 DCI 크기를 결정한다. UE는 동작 1860에서 DCI를 디코딩한 후에 심볼 할당 정보를 도출한다.
실시예 3: 연속적으로 할당된 심볼들의 트리 기반 표시
도 19 및 도 20은 본 개시의 다양한 실시예에 따른 트리 기반 시그널링 방식을 이용한 연속적인 심볼 할당의 예들을 도시한다.
도 19 및 도 20를 참조하면, 오버헤드를 더 줄이기 위해, 연속된 심볼들이 할당된다면, 트리 기반 시그널링 방식이 사용될 수 있다. 주어진 TTI 기간에 N 개의 심볼들이 존재한다면, 각각 1, 2,??,N 개의 연속적인 심볼들을 선택하기 위해, 연속된 심볼들을 선택하는 가능한 경우들은 N, N-1, N-2, ??, 1 로 표현될 수 있다. 전체적으로 연속적인 심볼 할당에 대해
Figure pat00009
개의 조합이 있다. 시작 심볼의 인덱스 nstart 및 할당된 연속 심볼의 수 nsymbol를 도출하기 위해 자원 지시 값(RIV)이 시그널링 될 수 있다. RIV 및 nstart / nsymbol 사이의 관계는 다음과 같이 표현될 수 있다:
- 만약
Figure pat00010
이면,
Figure pat00011
- 그렇지 않으면(즉,
Figure pat00012
),
Figure pat00013
이것은 지시를 위해
Figure pat00014
비트가 필요하다. 예를 들어, N = 14 이면 7 비트의 지시가 필요하다. 도 19에는 N = 6 인 경우가 도시되어있다.
지시된 RIV에 기초하여, UE는 다음과 같이 nstart 및 nsymbol 값을 유도할 수 있다:
-
Figure pat00015
,
Figure pat00016
- 만약
Figure pat00017
이면,
Figure pat00018
,
Figure pat00019
;
- 그렇지 않으면(즉,
Figure pat00020
),
Figure pat00021
,
Figure pat00022
.
이 방식은 순람표(lookup table)를 필요로 하지 않으며, UE는 간단하게 nstart 및 nsymbol의 값을 유도하고 할당된 심볼들의 정보를 얻을 수 있다. 도 20은 시그널링 된 RIV에 기초하여 할당된 심볼들을 도출하는 방법을 예시한다.
도 21은 본 개시의 일 실시예에 따른 트리 기반 시그널링 방식을 이용한 연속적인 심볼 할당의 다른 예를 도시한다.
도 21을 참조하면, 연속된 심볼들이 할당된다면, 다른 트리 기반 시그널링 방식이 사용될 수 있다. 전체적으로 연속적인 심볼 할당에 대해
Figure pat00023
개의 조합이 있다. 자원 지시 값(RIV)은 미리 정의된 규칙에 따라 다른 순서로 배열될 수 있다. 예를 들어, 할당된 심볼 수에 대해 증가하는 순서로 배열된 RIV는 1, N, 2, N-1, 3, N-2 등 이다. 할당된 심볼 수 n 및 N + 1-n 에 대한 조합의 수는 항상 N+1 이다. 그에 따라 RIV 값들 결정할 수 있다. 규칙이 명확하게 정의된다면, 다른 배열 옵션도 가능하다. 시그널링 된 RIV에 근거하여, 시작 심볼의 인덱스 nstart 및 할당된 연속 심볼의 수 nsymbol 가 도출될 수 있다. RIV 및 nstart / nsymbol 사이의 관계는 다음과 같이 표현될 수 있다:
- 만약
Figure pat00024
이라면,
Figure pat00025
- 그렇지 않으면 (즉,
Figure pat00026
),
Figure pat00027
지시된 RIV에 기초하여, UE는 다음과 같이 nstart 및 nsymbol 값을 도출할 수 있다:
-
Figure pat00028
,
Figure pat00029
- 만약
Figure pat00030
이라면,
Figure pat00031
,
Figure pat00032
;
- 그렇지 않으면 (즉,
Figure pat00033
),
Figure pat00034
,
Figure pat00035
.
유사하게, 이 방식은 순람표를 필요로 하지 않으며, UE는 간단하게 nstart 및 nsymbol의 값을 유도하고 할당된 심볼들의 정보를 얻을 수 있다. 도 21에서, N = 6 의 예가 도시되고, 할당된 심볼의 수가 1, 6, 2, 5, 3, 4 인 경우에 대해 RIV가 증가하는 순서로 배열된다.
실시예 4: 할당되지 않은 심볼들의 표시
도 22 및 도 23은 본 개시의 다양한 실시예에 따른 트리 기반 시그널링 방식으로 비 할당된 심볼을 표시하는 예들을 도시한다.
도 22 및 도 23을 참조하면, 예를 들어, 소수의 심볼들이 다른 서비스에 사용될 수 있는 경우, TTI 내의 비 할당 심볼들의 정보를 UE들에게 지시하는 것이 가능하다. 할당되지 않은 심볼들을 제외하고, TTI 내의 나머지 심볼들은 UE에 할당된 심볼로 간주된다.
할당되지 않은 심볼들이 연속해서 위치하고, 트리 기반 시그널링 방법이 연속적인 비 할당 심볼들을 나타내기 위해 사용될 수 있다고 가정한다. 비 할당 심볼들의 최대 수가 N_1 이라고 가정하면, 가능한 조합의 총 수가 N+(N-1)+(N-2)+??+(N-N 1 +1) 이다. 비 할당 자원 지시 값(non-assigned resource indication value, NRIV)은 미리 정의된 규칙에 기초하여 다른 순서로 정렬될 수 있다. 예를 들어, 비 할당 심볼 수에 대해 증가하는 순서로 배열된 NRIV는 1, N 1 , 2, N 1 -1, 3, N 1 -2 등 이다. 규칙이 명확하게 정의된다면 다른 정렬 옵션도 가능하다. 시그널링 된 NRIV에 기초하여, 시작 비 할당 심볼의 인덱스
Figure pat00036
및 비 할당 심볼들의 수
Figure pat00037
를 도출할 수 있다. NRIV 및
Figure pat00038
/
Figure pat00039
의 관계의 예는 다음과 같이 표현될 수 있다:
- 만약
Figure pat00040
라면,
Figure pat00041
- 그렇지 않으면 (즉,
Figure pat00042
),
Figure pat00043
지시된 RIV에 기초하여, UE는
Figure pat00044
Figure pat00045
의 값을 다음과 같이 도출할 수 있다:
-
Figure pat00046
,
Figure pat00047
- 만약
Figure pat00048
라면,
Figure pat00049
,
Figure pat00050
;
- 그렇지 않으면 (즉,
Figure pat00051
),
Figure pat00052
,
Figure pat00053
.
도 22에서, N = 6 및 N1=3 의 예가 도시되고, 할당된 심볼의 수가 1, 4, 2, 3 인 경우에 대해 NRIV가 증가하는 순서로 배열된다. 도 23은 시그널링 된 NRIV에 기초하여 할당된 심볼들을 도출하는 방법을 도시한다.
실시예 5: 할당된 심볼과 비 할당 심볼에 대한 결합된 표시
도 24 및 도 25는 본 개시의 다양한 실시예에 따른 트리 기반 시그널링 방식으로 할당 또는 비 할당된 심볼을 표시하는 예들을 도시한다.
도 24 및 도 25를 참조하면, 트리 기반 시그널링 방법을 이용하여 연속적인 할당된 심볼들 및 비 할당 심볼들을 결합하여 지시하는 것이 또한 가능하다. RIV는 두 개의 부분 집합으로 구성되며, 첫 번째 부분 집합은 연속적으로 할당 된 심볼들을 나타내고 (할당된 심볼들이 연속적이라고 가정), 두 번째 부분 집합은 불연속적으로 할당된 심볼들을 나타낸다 (비 할당 심볼들이 연속적이라고 가정).
첫 번째 RIV 부분 집합: 첫 번째 부분 집합의 RIV는 연속적으로 할당된 심볼들을 나타내는데 사용된다. 실시예 3의 RIV와 유사하게,
Figure pat00054
개의 값들(예, 0부터
Figure pat00055
까지)이 할당된 첫 심볼 인덱스 nstart 및 할당된 심볼의 수 nsymbol을 유도하기 위해 연속적으로 할당된 심볼들을 나타내는데 사용될 수 있다. RIV 및 nstart / nsymbol 사이의 관계는 다음과 같이 표현될 수 있다:
- 만약
Figure pat00056
이라면,
Figure pat00057
- 그렇지 않으면 (즉,
Figure pat00058
),
Figure pat00059
두 번째 RIV 부분 집합: 두 번째 부분 집합의 RIV는 불연속적으로 할당된 심볼들을 나타내는데 사용된다. 비 할당 심볼들이 TTI의 측면이 아닌 곳에서 연속적으로 위치한다고 가정하면, 트리 기반 시그널링 방식이 (예, N-2 심볼들 중에서) 연속적인 비 할당 심볼들을 나타내기 위해 사용될 수 있는데, 여기서 첫 번째 심볼 및 마지막 심볼은 계산되지 않는다. 따라서, 도 24에 도시된 바와 같이, 첫 비 할당 심볼의 인덱스
Figure pat00060
및 비 할당 심볼의 수
Figure pat00061
를 유도하기 위한, 이들 추가적인 조합들을 나타내기 위해
Figure pat00062
개의 값들 (예,
Figure pat00063
부터
Figure pat00064
까지) 이 사용될 수 있다. 비 할당 심볼들을 도출한 후에, 할당된 심볼들은 그에 따라 얻어질 수 있다.
이것은 지시를 위해
Figure pat00065
비트가 필요하다. 예를 들어, N = 14 이면 8 비트의 지시가 필요하다. N = 6 인 예가 도 25에 도시되었다.
도 26은 본 개시의 일 실시예에 따른 트리 기반 시그널링 방식으로 할당되거나 할당되지 않은 심볼들을 결정하기 위한 UE 절차의 순서도를 나타낸다.
도 26을 참조하면, UE는 동작 2610에서 RIV 지시를 갖는 DCI를 수신한다. UE는 동작 2620에서 RIV 값이 연속적인 심볼 할당을 위한 제1 부분 집합에 있는지 또는 불연속적인 심볼 할당을 위한 제2 부분 집합에 있는지 여부를 결정한다. RIV 값이 연속적 심볼 할당을 위한 제1 부분 집합에 있다면, UE는 동작 2630에서 시작 심볼 인덱스 및 연속적으로 할당된 심볼들의 수에 대한 정보를 도출한다. 그렇지 않으면 - 즉, RIV 값이 불연속적으로 할당된 심볼에 대한 제2 부분 집합에 존재하는 경우 -, UE는 동작 2640에서 비 할당 심볼 인덱스 및 비 할당 심볼들의 수에 대한 정보를 도출한다. UE는 동작 2650에서 할당된 심볼들에 관한 정보를 도출한다.
시그널링 된 심볼들이 할당된 심볼인지 또는 비 할당 심볼인지를 나타내기 위해 플래그(예, 1 비트 지시)가 사용될 수 있다. 심볼 지시는 플래그에 따라 - 즉, 할당된 심볼 또는 비 할당 심볼로 - 해석될 수 있다.
실시예 6: 심벌 그룹 표시
주어진 TTI 기간에 N 개의 심볼이 존재한다면, 미리 정의된 규칙에 따라 한 그룹에서 N 1 개의 심볼들을 결합함으로써
Figure pat00066
심볼 그룹이 존재할 수 있다. 자원 지시는 심벌 그룹들에 근거할 수 있으며, 즉, 지시된 심벌 그룹의 심벌들이 할당된다.
실시예 6.1: 심벌 그룹 비트맵
주어진 TTI 기간에 NG 심볼 그룹들이 존재한다면, 길이
Figure pat00067
인 비트맵 {
Figure pat00068
,
Figure pat00069
,...,
Figure pat00070
,
Figure pat00071
,...,
Figure pat00072
} 을 사용하여 - 예를 들어,
Figure pat00073
에 1 또는 0을 설정함으로써 - n 번째 심볼 그룹이 할당되었는지 여부를 명시적으로 나타낼 수 있다. 이것은 심볼 표시를 위해
Figure pat00074
비트가 필요하다.
실시예 6.2: 시작 심볼 그룹 인덱스, 종료 심볼 그룹 인덱스 (또는 심볼 그룹들의 수)
주어진 TTI 기간에
Figure pat00075
개의 심볼 그룹이 존재한다면, 표시 (nstart, nend)는 nstart에서 nend까지의 인덱스를 갖는 심볼 그룹들이 할당되었음을 나타내기 위해 사용될 수 있다. 대안으로, 표시 (nstart, ngroup) 는 nstart로부터 시작하는 연속된 ngroup 심볼 그룹들이 - 즉 인덱스 (nstart+ngroup -1) 를 갖는 심볼 그룹까지 - 할당됨을 나타내기 위해 사용될 수 있다. 이것은 지시를 위해
Figure pat00076
비트가 필요하다.
실시예 6.3: 할당된 심볼 그룹들
또 다른 예로서, 연속된 심볼 그룹들이 할당된다면, 트리 기반 시그널링 방식이 그 지시를 위해 사용될 수 있다. 시작 심볼의 인덱스 nstart 및 할당된 연속 심볼 그룹의 수 ngroup를 도출하기 위해 자원 지시 값(RIV)이 시그널링 될 수 있다. RIV 및 nstart / ngroup 사이의 관계는 다음과 같이 표현될 수 있다:
- 만약
Figure pat00077
이라면,
Figure pat00078
*- 그렇지 않으면 (즉,
Figure pat00079
),
Figure pat00080
이것은 지시를 위해
Figure pat00081
비트가 필요하다.
슬롯에서의 상기 심볼 할당은 자원 할당에서 슬롯 할당과 함께 사용될 수 있다. 예를 들어, 둘 이상의 슬롯이 데이터 전송을 위해 할당될 수 있으며, 이는 별도 필드에 의해 표시될 수 있다. 이 경우, 심볼 할당은 모든 할당된 슬롯에 적용될 수 있다.
주파수 영역 자원 할당
셀에서 RB의 수는 시스템 대역폭 및 numerology에 따라 달라질 수 있다. UE는 주파수 영역 자원 할당이 시스템 대역폭에 기초한다고 가정할 수 있다. 데이터 송수신을 위해 주파수 서브밴드 또는 대역폭 부분(BWP)이 UE에 설정되면, UE는 주파수 영역 자원 할당이 설정된 BWP에 근거한다고 가정한다. 설정된 numerology가 주어지면, UE는 시스템 대역폭 또는 설정된 BWP에서 RB 크기 및 총 RB 수를 도출할 수 있다. UE에 스케줄링 된 RB 인덱스들은 다음과 같은 방식으로 시그널링 될 수 있다.
실시예 1: RB 표시
실시예 1.1: RB 비트맵
이 옵션은 비트맵을 사용하여 UE에 할당된 RB들을 나타낸다. 할당된 RB들이 연속적일 필요는 없다. 예를 들어, 값 1은 RB가 UE에 할당됨을 나타낸다. 전체 RB의 수가 NRB 이라면, 이것은 길이 NRB의 비트맵을 필요로 한다.
실시예 1.2: RB 인덱스 및 RB들의 수
이 옵션은 시작 RB 인덱스 및 UE에 할당 된 RB의 수를 지시한다. 할당된 RB들은 연속적이다. 전체 RB의 수가 NRB 인 경우, 이는
Figure pat00082
비트의 시작 RB 인덱스 및
Figure pat00083
비트의 RB의 개수를 표시하는데 총
Figure pat00084
비트를 요구한다.
실시예 1.3: RIV 표시
트리 기반 시그널링 방식이 UE에 할당된 연속적인 RB들의 집합을 나타내기 위해 사용될 수 있다. 이는 LTE에서 하향링크 자원 할당 타입 2 및 상향링크 자원 할당 타입 0과 유사하다. 총 RB의 개수가 NRB이면, RIV는 인덱스 RBstart=0,1,2,...,NRB-1 를 갖는 시작 RB 및 할당된 RB의 수로 주어지는 길이 LRB=1,2,...,NRB 에 대응한다. RIV 및 RBstart와 LRB 간의 관계는 다음과 같이 표현될 수 있다:
- 만약
Figure pat00085
이라면,
Figure pat00086
- 그렇지 않으면 (즉,
Figure pat00087
),
Figure pat00088
여기서, LRB = 1 이고 NRB-RBstart 를 초과하지 않아야 한다. 이것은 지시를 위해
Figure pat00089
비트를 필요로 하는데, 이는 DCI의 주파수 RB 할당 필드에서 사용될 수 있다. 시스템/BWP 파라미터에 따라 시그널링 비트 길이에 있어서 많은 경우가 가능하며, 이는 DCI 크기를 가변적으로 만든다. 시그널링 비트 길이에 대한 경우의 수를 줄이기 위해 DCI 크기에 대한 경우를 어느 정도 제한하는데, 주파수 RB 할당 필드에 대한 가능한 비트 길이의 일부가 미리 정의될 수 있다. DCI에서 주파수 RB 할당 필드에 대해 미리 정의된 복수의 비트 길이 후보들(예, {L0,L1,L2,??})이 있는 경우,
Figure pat00090
보다 크거나 같은 최소값 Ln이 주파수 RB 할당 필드의 비트 길이로 사용될 수 있다. 모든 Ln 비트를 직접 사용하여 RIV를 제공하고 할당된 RB를 나타낼 수 있다. 또는, Ln 비트들 중에서
Figure pat00091
비트는 RB 할당을 나타내는데 사용될 수 있으며, 나머지
Figure pat00092
비트는 패딩(padding) 비트로 사용될 수 있다.
도 27은 본 개시의 일 실시예에 따른 2 RB의 지시 입도(indication granularity)를 갖는 연속적인 RB 할당의 예를 도시한다.
도 27를 참조하면, 오버헤드를 더 줄이기 위해, 지시 입도 또는 증가 단계(increment step)가 둘 이상의 RB (예,
Figure pat00093
RBs)일 수 있고, RIV는 인덱스
Figure pat00094
의 시작 RB 및 할당된 RB의 수를 나타내는 길이
Figure pat00095
에 대응한다. RIV 및 RBstart와 LRB 간의 관계는 다음과 같이 표현될 수 있다:
- 만약
Figure pat00096
이라면,
Figure pat00097
- 그렇지 않으면 (즉,
Figure pat00098
,),
Figure pat00099
여기서,
Figure pat00100
,
Figure pat00101
,
Figure pat00102
Figure pat00103
이고
Figure pat00104
를 초과하지 않아야 한다. 이것은 지시를 위해
Figure pat00105
비트를 필요로 한다. 지시 입도가 2 RB (
Figure pat00106
) 인 예가 도 4에 도시되었다. 후보 지시 입도는 2, 4, 8, 16, 32 등이 될 수 있다.
*이러한 간결한 자원 할당은 시스템 정보, 페이징 메시지 및 랜덤 액세스 응답의 스케줄링에 사용될 수 있고, 데이터 전송은 감소된 시그널링 오버헤드를 필요로 한다. 지시 입도의 크기
Figure pat00107
는 시스템 대역폭 또는 설정된 대역폭 부분에서 RB 수의 함수에 기초하여 고정되거나 미리 정의될 수 있다.
서로 다른 TTI 경우 또는 시스템에 의해 설정된 상이한 PDCCH 모니터링 구간에 대해, 복수의 지시 입도 집합이 존재할 수 있다. 예를 들어, 14 개의 심볼을 갖는 TTI 경우에 대한 하나의 집합, 7 개의 심볼을 갖는 TTI 경우에 대한 또 다른 집합, 7 개 미만의 심볼을 갖는 TTI 경우에 대한 하나 또는 다수의 집합일 수 있다. 기준 집합(reference set) 은 예를 들어 지시 입도 크기를 스케일링함으로써 다른 집합을 도출하는데 사용될 수 있다. 예를 들어, 표 1에서 Set 0로 표기된 바와 같이, 14 개의 심볼을 갖는 TTI에 대한 표시 입도 집합이 기준 집합일 수 있다. Set 1은 7 개의 심볼을 갖는 TTI에 대한 표시 입도 크기 집합이다. 동일한 수의 RB를 갖는 지시 입도 크기는 예를 들어, Y0=2*X0 와 같이 수를 스케일링함으로써 간단히 도출 될 수 있는데, 여기서 스칼라 2 = 14 / Num_symbol_TTI 는 시간 영역에서 심볼들의 수의 차이로부터 온 것이다. 이러한 방식으로, 지시 입도는 상이한 TTI 경우들에서 유사한 양의 RE를 가질 수 있다. 또는, 예를 들어, 7 개의 심볼을 갖는 TTI에 대해 2 배, 2 심볼을 갖는 TTI에 대해 4 배, 1 심볼을 갖는 TTI에 대해 8 배 등으로 미리 정의된 스케일링 계수들의 집합이 사용될 수 있다.
[표 1] 상이한 경우들에서 compact DCI 포맷에 대한 지시 입도의 집합
Figure pat00108
미리 정의된 기준 지시 입도 집합이 주어지면, 지시 입도
Figure pat00109
계산을 위한 스케일링 계수(scaling factor)가 특정 제어 영역 또는 특정 검색 공간에 대해 설정될 수 있다. 지시 입도는 상응하는 RB 크기의 기준 지시 입도를 설정된 스칼라 값으로 스케일링하여 계산된다. 또는, CORESET, 특정 검색 공간, 또는 RIV 기반 자원 할당 유형을 갖는 해당 DCI 포맷에 대해 지시 입도 크기
Figure pat00110
는 명시적으로 설정될 수 있다. 지시 입도 크기
Figure pat00111
는 UE-특정적 설정으로서 UE에 설정될 수 있다. 자원 할당을 위한 BW뿐만 아니라 미리 정의된 규칙 또는 설정에 기초하여 유도된 지시 입도
Figure pat00112
에 근거하여, 주파수 영역 자원 할당에 대응하는 시그널링 비트의 길이가 도출될 수 있다 (예를 들어,
Figure pat00113
여기서
Figure pat00114
). 유사하게, DCI에서 주파수 RB 할당 필드에 대해 미리 정의된 복수의 비트 길이 후보들(예, {L0,L1,L2,...})이 있는 경우,
Figure pat00115
보다 크거나 같은 최소값 Ln이 주파수 RB 할당 필드의 비트 길이로 사용될 수 있다. UE가 대응하는 DCI를 검색하고자 할 때 도출된 시그널링 비트 길이가 가정된다.
대안으로, 주파수 RB 할당 필드에 대해 미리 정의된 복수의 비트 길이 후보들(예, {L0,L1,L2,...})이 있는 경우, 특정 BWP, CORESET, 검색 공간, 또는 RIV 기반 자원 할당 유형의 해당 DCI 포맷에 대해 비트맵 크기가 명시적으로 설정될 수 있다. 설정된 BWP에 NRB RB가 있고 주파수 RB 할당 필드 비트 길이 Ln이 설정되었다고 가정하면, (2, 4, 8, 16, 32 등과 같이 미리 정의된 값들 중에서)
Figure pat00116
Figure pat00117
을 만족하는 최소 후보 지시 입도
Figure pat00118
가 지시 입도로서 사용될 수 있다. 따라서, 설정된 크기 Ln의 시그널링 비트 길이 중에서 실제로 필요한 비트 길이는
Figure pat00119
이다. 또는, Ln 비트들 중에서
Figure pat00120
비트는 RB 할당을 나타내는데 사용될 수 있으며, 나머지
Figure pat00121
비트는 패딩 비트로 사용될 수 있다.
실시예 2: RB 그룹 표시
여러 개의 RB로 구성된 RB 그룹(RBG)이 정의될 수 있다. RBG 내의 RB의 수는 시스템 대역폭의 함수에 기초하여 고정되거나 미리 정의될 수 있다. gNB가 자원 할당을 위한 대역폭 부분을 내부에서 설정한 경우 RBG 크기는 설정된 대역폭 부분의 함수가 될 수 있다. 이용 가능한 RB의 개수가 주어지면, 시스템 대역폭 또는 설정된 대역폭 부분은 다수의 온전한 RBG를 포함하고, 총 RB 수가 RBG 크기의 배수가 아니면 부분적인 RBG가 포함될 수 있다. 지시된 RBG 인덱스는 미리에 정의된 규칙에 따라 물리적 RB 인덱스와 연관될 수 있다. 예를 들어, K 개의 RBG가 존재한다면, 가상 인덱스 {0,1,??, K-1}는 RBG 인덱스 {RBG_Index(0), RBG_Index(1),..., RBG_Index(K-1)}와 연관될 수 있다.
실시예 2.1: RBG 비트맵
이 옵션은 비트맵을 사용하여 UE에 할당된 RBG들을 나타낸다. 할당된 RBG들이 연속적일 필요는 없다. 예를 들어, 값 1은 RBG가 UE에 할당됨을 나타낸다. 총 RB의 개수가 NRB이고 RBG 크기가 P RBs인 경우, 이것은 길이
Figure pat00122
의 비트맵을 필요로 한다. 이는 LTE에서 하향링크 자원 할당 타입 0과 유사하다.
실시예 2.2: RBG 인덱스 및 RBG의 수
이 옵션은 UE에 할당된 시작 RBG의 인덱스 및 할당된 RBG의 수를 나타낸다. 할당된 RBG들은 연속적이다.
실시예 3: RBG 인덱스와 RB 인덱스의 조합
이용 가능한 RB들은 다수의 RBG로 분할되고, 각 RBG는 하나 이상의 RB를 포함한다. RBG 인덱스가 먼저 지시될 수 있고, RBG 내에서 UE에 할당된 RB의 인덱스가 더 지시될 수 있다.
도 28은 본 개시의 일 실시예에 따른 서로 다른 TTI 또는 전송 기간들에 해당하는 서로 다른 RBG 크기들의 예를 도시한다.
도 29는 본 개시의 일 실시예에 따른 서로 다른 RBG 크기 및 서로 다른 RBG 개수의 예를 도시한다.
RBG 크기는 시스템 대역폭 또는 설정된 대역폭 부분에서 RB 수에 대한 함수에 기초하여 미리 정의될 수 있다. 서로 다른 TTI 경우 또는 시스템에 의해 설정된 상이한 PDCCH 모니터링 구간에 대해, 복수의 RBG 크기 집합이 존재할 수 있다. 예를 들어, 14 개의 심볼을 갖는 TTI 경우에 대한 하나의 집합, 7 개의 심볼을 갖는 TTI 경우에 대한 또 다른 집합, 7 개 미만의 심볼을 갖는 TTI 경우에 대한 하나 또는 복수의 집합이 있을 수 있다. 후보 RBG 크기는 1, 2, 4, 8, 16, 32 등이 될 수 있다. 기준 집합은, 예컨대 RBG 크기를 스케일링함으로써 다른 집합을 도출하기 위해 사용될 수 있다. 예를 들어, 표 2에서 Set 0로 표기된 바와 같이, 14 개의 심볼을 갖는 TTI에 대한 RBG 크기 집합이 기준 집합일 수 있다. Set 1은 7 개의 심볼을 갖는 TTI에 대한 RBG 크기 집합이다. 동일한 수의 RB를 갖는 RBG 크기는, 예컨대 2*P0 와 같이 수를 스케일링함으로써 간단히 도출될 수 있는데, 여기서 스칼라 2 = 14/Num_symbol_TTI 는 시간 영역에서 심볼들의 수의 차이로부터 온 것이다. 이러한 방식으로, RBG는 상이한 TTI 경우들에서 유사한 양의 RE를 가질 수 있다. 한 예가 도 28에 나타나있는데, 여기서 서로 다른 RBG 크기는 상이한 TTI 또는 전송 기간에 대응한다.
[표 2] 서로 다른 경우에 대한 RBG 크기 집합
Figure pat00123
또는, 예를 들어, 7 개의 심볼을 갖는 TTI에 대해 2 배, 2 심볼을 갖는 TTI에 대해 4 배, 1 심볼을 갖는 TTI에 대해 8 배 등으로 미리 정의된 스케일링 계수들의 집합이 사용될 수 있다. RBG 크기의 미리 정의된 기준 집합이 주어지면, RBG 크기를 계산하기 위한 스케일링 계수가 CORESET, 또는 특정 검색 공간, 또는 RBG 기반 자원 할당 유형의 해당 DCI 포맷에 대해 설정될 수 있다. RBG 크기는 해당 RB 크기의 기준 RBG 크기를 설정된 스칼라 값으로 스케일링하여 계산될 수 있다. 또는, RBG 크기는 CORESET, 또는 특정 검색 공간, 또는 RBG 기반 자원 할당 유형의 해당 DCI 포맷에 대해 명시적일 수 있다. RBG 크기는 UE-특정 설정으로 UE에게 설정될 수 있다.
도 30은 본 개시의 실시예에 따라 상이한 RBG 크기로 주어진 상이한 DCI 크기의 예를 도시한다.
도 30을 참조하면, 자원 할당을 위한 BW뿐만 아니라 미리 정의된 규칙 또는 설정에 기초하여 유도된 RBG 크기 P 에 근거하여, 주파수 영역 자원 할당에 대응하는 시그널링 비트의 길이가 도출될 수 있으며 (예,
Figure pat00124
), 이것은 DCI의 주파수 RB 할당 필드에서 사용될 수 있다. 시스템/BWP 파라미터에 따라 시그널링 비트 길이에 있어서 많은 경우가 가능하며, 이는 DCI 크기를 가변적으로 만든다. 시그널링 비트 길이에 대한 경우의 수를 줄이기 위해 DCI 크기에 대한 경우를 어느 정도 제한하는데, 주파수 RB 할당 필드에 대한 가능한 비트 길이의 일부가 미리 정의될 수 있다. RBG 비트맵 시그널링을 위한 미리 정의된 복수의 비트 길이 후보들(예, {L0,L1,L2,??})이 있는 경우,
Figure pat00125
보다 크거나 같은 최소값 Ln이 비트맵 시그널링으로 사용될 수 있다. Ln 비트들 중에서 처음
Figure pat00126
비트 (예, MSB 또는 LSB) 는 RB 할당을 나타내는데 사용될 수 있으며, 나머지
Figure pat00127
비트는 패딩 비트로 사용될 수 있다. UE가 대응하는 DCI를 검색하고자 할 때 도출된 시그널링 비트 길이가 가정된다. 도 29의 예에서, 100 개의 RB를 갖는 BWP가 주어지고, 설정된 2, 4, 8 RB의 RBG 크기가 각각 50, 25, 13 개의 RBG들을 제공한다. 도 30의 예에서, DCI의 주파수 영역 자원 할당 필드는 설정된 RBG 크기 및 그에 따른 RBG의 수에 따라 달라질 수 있다.
대안적으로, RBG 비트맵 시그널링을 위한 미리 정의된 복수의 비트 길이 후보들(예, {L0,L1,L2,...})이 있는 경우, 특정 BWP, CORESET, 검색 공간, 또는 RBG 기반 자원 할당 유형의 해당 DCI 포맷에 대하여 비트맵 크기가 명시적으로 설정될 수 있다. 설정된 BWP에 NRB RB가 있고 RBG 비트맵 크기 Ln이 설정되었다고 가정하면, (2, 4, 8, 16, 32 등과 같이 미리 정의된 RBG 크기 값들 중에서)
Figure pat00128
보다 크거나 같은 최소 후보 RBG 크기 Pm이 RBG 크기로서 사용될 수 있다. 따라서, 설정된 크기 Ln인 RBG 비트맵 중에서 RBG 시그널링을 위한 실제 비트 길이는
Figure pat00129
이다. 처음
Figure pat00130
비트 (예, MSB 또는 LSB) 는 RB 할당을 나타내는데 사용될 수 있으며, 나머지
Figure pat00131
비트는 (있다면) 패딩 비트로 사용될 수 있다.
도 31은 본 개시의 일 실시예에 따른 스케줄링 입도(scheduling granularity), DCI 크기 및 자원 할당을 결정하기 위한 UE 절차의 순서도를 나타낸다.
도 31을 참조하면, UE는 동작 3110에서 BWP, CORSET 및 PDCCH 모니터링 구간에 대한 설정을 수신한다. UE는 동작 3120에서 설정된 numerology에 기초하여 시스템 대역폭 또는 설정된 대역폭 내의 RB들의 수를 결정한다. UE는 동작 3130에서 DCI를 검색하기 위한 DCI 포맷을 결정한다. UE는 동작 3140에서 DCI 포맷에 대해 어떤 설정된 RB 스케줄링 입도가 존재하는지 판단한다. 존재한다면, UE는 동작 3150에서 해당 DCI에 대해 설정된 RB 스케줄링 입도를 사용한다. 그렇지 않으면, UE는 동작 3160에서 미리 정의된 규칙 또는 매핑 테이블에 기초하여 RB 스케줄링 입도 및 비트 길이를 결정한다. UE는 동작 3170에서 제어 영역에서 대응하는 DCI를 검색하기 위한 DCI 포맷의 전체 크기를 결정한다. UE는 동작 3180에서 DCI를 디코딩 한 후 RB 할당 정보를 도출한다. 스케줄링 입도는 RIV 기반 자원 할당 유형을 갖는 연속적인 RB 할당에서 최소 RB 수(
Figure pat00132
) 또는 RBG 기반 자원 할당 유형에서 RBG 크기일 수 있다. 상이한 자원 할당 타입은 상이한 DCI 포맷에 대응할 수 있다.
3) 스케줄링 방법
시간 및 주파수 영역에서 할당된 자원을 명시적으로 표시하기 위해, gNB는 스케줄링 그랜트(scheduling grant)를 DCI를 통해 UE에 전송할 수 있다. 상이한 지시 접근법을 갖는 복수의 DCI 포맷이 존재할 수 있다. 수신 된 DCI 포맷에 기초하여, UE는 DCI의 대응하는 지시 방법에 따라 할당된 시간/주파수 자원을 도출한다.
어떤 경우에는, DCI에 지시된 자원 정보와 추가적인 자원 지시를 결합하여 할당된 자원을 도출할 필요가 있다. 추가적인 자원 지시는 시스템 정보로 시그널링 될 수 있다. 예를 들어, 일부 자원은 다른 서비스를 위해 미리에 설정되거나 예약되어 있다. DCI에 지시가 없더라도, UE는 암묵적으로 자원 충돌을 도출할 수 있으며, 충돌되는 자원의 사용을 회피할 수 있다. 미리 정의된 규칙에 따라 충돌되는 자원은 자원 매핑 과정에서 제외될 수 있다. 대안적으로, 충돌되는 자원은 자원 매핑 과정에서 계산될 수 있지만 전송되지는 않을 수 있다.
도 33A 및 도 33B는 본 개시의 다양한 실시예에 따른 반-정적으로(semi-statically) 설정된 자원 예약 및 동적 자원 할당에 기초하여 데이터 송수신을 위한 자원을 결정하기 위한 UE 절차를 도시한다.
도 33A 및 도 33B를 참조하면, UE는 동작 3305에서 PBCH 및 시스템 정보를 수신하여 반-정적 설정으로부터 예약된 자원에 관한 정보를 획득한다. UE는 동작 3310에서 시스템 정보 또는 UE-특정 RRC 시그널링으로부터 BWP, numerology 및 CORESET에 대한 설정을 수신한다. UE는 동작 3315에서 해당 BWP 내의 CORESET의 PDCCH들을 모니터링 한다. UE는 동작 3320에서 성공적으로 디코딩 된 PDCCH로부터 유효한 DCI를 결정하고, 스케줄링 된 데이터 송수신을 위해 동적으로 할당된 자원에 관한 정보를 획득한다. UE는 동작 3325에서 동적으로 할당된 자원과 반-정적 설정에 의해 예약된 자원 간에 충돌이 있는지 결정한다. 동적으로 할당된 자원과 예약된 자원 간에 충돌이 있는 경우, UE는 동작 3330에서 충돌된 자원이 미리 정의된 규칙에 의거하여 - 예를 들어, 예약된 자원은 레이트 매칭된다(rate-matched) - 사용되지 않는다고 가정한다. 그 후에 또는 동작 3325에서 동적으로 할당된 자원과 예약된 자원 간에 충돌이 없다고 결정된 경우, UE는 동작 3335에서 동적으로 할당된 자원과 다른 시스템 필수 신호/채널(예, PSS/SSS/PBCH 등) 간에 충돌이 있는지 결정한다. 동적으로 할당된 자원과 다른 시스템 필수 신호/채널 간에 충돌이 있다면, UE는 동작 3340에서 충돌된 자원이 미리 정의된 규칙에 의거하여 - 예를 들어, 예약된 자원은 레이트 매칭된다 - 사용되지 않는다고 가정한다. 그 후에 또는 동작 3335에서 동적으로 할당된 자원과 예약된 자원 간에 충돌이 없다고 결정된 경우, UE는 동작 3345에서 미리 정의된 규칙에 기초하여 신호들이 가용 자원에 매핑된다고 가정한다. UE는 동작 3350에서 신호를 전송하거나 수신한다.
추가적인 자원 지시는 전용 채널에서 예컨대 각 TTI에서 시그널링 될 수 있다. 전형적인 경우는 gNB가 특정 서비스에 사용되는 자원에 대한 정보를 설정하는 경우이다. 지시된 자원은 다른 서비스에 대해서는 배제되어야 한다. UE는 해당 서비스에 대한 자원을 암묵적으로 도출하여 적절한 자원 사용을 할 수 있다.
도 34는 본 개시의 일 실시예에 따른 UE의 데이터 송수신 방법을 도시한다.
도 34를 참조하면, UE는 동작 3410에서 기지국으로부터 자신에게 할당된 무선 자원에 대한 정보를 수신한다. 무선 자원들은 시간 영역에서 복수의 심볼들 및 주파수 영역에서 복수의 자원 블록 그룹들과 연관된다. 무선 자원에 관한 정보는 시작 심볼에 대한 제1 정보 또는 각 자원 블록 그룹의 크기에 관한 제2 정보 중 적어도 하나를 포함한다. 시작 심볼에 대한 제1 정보는 시작 심볼의 인덱스를 포함할 수 있다. 시작 심볼의 인덱스는 시작 심볼에 대한 미리 정의된 후보들 중 하나를 나타낼 수 있다. 부가적으로 또는 대안적으로, 상기 실시예에서 설명 된 바와 같이, 전체 심볼 비트맵 지시, 종료 심볼 인덱스 지시, UE와 연관된 무선 자원의 지속 기간의 지시, 연속적으로 할당된 심볼들의 트리 기반 지시 및/또는 자원 할당 설정에 관한 다른 유형의 정보 등이 기지국으로부터 수신될 수 있다. 제1 정보는 하향링크 제어 채널상의 제어 정보 또는 상위 계층 시그널링 (예, RRC 시그널링)에 의해 전송될 수 있다. 특히, 시작 심볼의 인덱스는 PDCCH 상의 DCI로 전송될 수 있고, 시작 심볼에 대한 미리 정의된 후보들에 대한 정보는 RRC 시그널링에 의해 전송 될 수 있다. 각 자원 블록 그룹의 크기에 관한 제2 정보는 상위 계층 시그널링 (예컨대, RRC 시그널링)에 의해 전송될 수 있다. UE가 자신에게 할당된 자원 블록 그룹을 나타내는 비트맵을 수신하면, UE는 제2 정보(즉, 각 자원 블록 그룹의 크기)에 기초하여 기지국으로부터 수신하거나 기지국으로 송신한다.
또한, UE는 자신에게 할당된 무선 자원의 지속 기간(duration)을 식별할 수 있다. 도 16 및 도 18에 도시된 바와 같이, UE는 하향링크 제어 채널을 통해 수신되는 제어 정보에 지속 기간 정보가 포함되어 있는지를 판단 할 수 있다. 지속 기간에 대한 정보가 제어 정보에 포함되어 있으면, UE는 그 정보를 사용하여 지속 기간을 파악한다. 지속 기간에 대한 정보가 제어 정보에 포함되지 않으면, UE는 상위 계층 시그널링(예, RRC 시그널링)에 기초하여 지속 기간을 결정한다.
UE는 동작 3420에서 무선 자원에 관한 정보(예, 시작 심볼, 각 자원 블록 그룹의 크기, 지속 기간)에 기초하여 기지국으로부터 데이터를 수신하거나 또는 기지국으로 데이터를 송신한다.
도 35는 본 개시의 일 실시예에 따른 기지국의 데이터 송수신 방법을 도시한다.
도 35를 참조하면, 기지국은 동작 3510에서 UE로 할당된 무선 자원에 대한 정보를 전송한다. 무선 자원에 관한 정보는 시작 심볼에 대한 제1 정보 또는 각 자원 블록 그룹의 크기에 관한 제2 정보 중 적어도 하나를 포함한다. 또한, 기지국은 UE에게 할당된 무선 자원의 지속 시간에 대한 정보를 전송할 수 있다. 시작 심볼에 대한 제1 정보는 시작 심볼의 인덱스를 포함할 수 있다. 시작 심볼의 인덱스는 시작 심볼에 대한 미리 정의된 후보들 중 하나를 나타낼 수 있다. UE에게 할당된 무선 자원의 지속 시간에 대한 정보는 하향링크 제어 채널상의 제어 정보 또는 상위 계층 시그널링 (예, RRC 시그널링)에 의해 전송될 수 있다. 기지국은 동작 3520에서 UE에게 할당된 무선 자원에 대한 정보를 이용하여 UE로 데이터를 전송하거나 UE로부터 데이터를 수신한다.
도 36은 본 개시의 일 실시예에 따른 셀룰러 네트워크에서 단말의 블록도이다.
도 36을 참조하면, 단말(3600)은 송수신부(3610) 및 프로세서(3620)를 포함한다. 송수신부(3610) 및 프로세서(3620)는 도 16, 18, 26, 31, 32, 33, 33A, 33B 및 34 에 예시된 방법의 단계들 또는 전술한 단말의 동작들을 수행하도록 구성된다. 예를 들어, 송수신부(3610)는 기지국으로부터 신호를 수신하고 신호를 기지국으로 송신하도록 구성될 수 있다. 프로세서(3620)는 단말(3600)에 할당된 무선 자원에 관한 정보를 수신하도록 송수신부(3610)를 제어하고, 무선 자원에 관한 정보에 기초하여 데이터를 수신하도록 송수신부(3610)를 제어하도록 구성될 수 있다. 또한, 프로세서(3620)는 단말(3600)에 할당된 무선 자원의 지속 기간을 판별하도록 구성될 수 있다.
도 37은 본 개시의 일 실시예에 따른 셀룰러 네트워크에서 기지국의 블록도이다.
도 37을 참조하면, 기지국(3700)은 송수신부(3710) 및 프로세서(3720)를 포함한다. 송수신부(3710) 및 프로세서(3720)는 도 35에 예시된 방법의 단계들 또는 전술한 gNB의 동작들을 수행하도록 구성된다. 예를 들어, 송수신부(3710)는 단말로부터 신호를 수신하고 신호를 단말로 송신하도록 구성될 수 있다. 프로세서(3720)는 단말에 할당된 무선 자원에 관한 정보를 송신하도록 송수신부(3710)를 제어하고, 단말에 할당된 무선 자원에 관한 정보에 기초하여 데이터를 송신하도록 송수신부(3710)를 제어하도록 구성될 수 있다. 또한, 프로세서(3720)는 단말에 할당된 무선 자원의 지속 기간에 대한 정보를 전송하도록 구성될 수 있다.
본 개시는 다양한 실시예들을 참조하여 보여지고 설명되었지만, 첨부된 청구 범위 및 그 등가물에 의해 정의된 바와 같은 본 개시의 사상 및 범위를 벗어나지 않으면서 형태 및 세부 사항에 있어서 다양한 변경이 이루어질 수 있음을 당업자는 이해할 것이다.

Claims (16)

  1. 무선 통신 시스템에서 단말에 의해 수행되는 방법에 있어서,
    하향링크 데이터 수신을 위해 가능하지 않은 자원에 대한 설정 정보를 포함하는 RRC (radio resource control) 메시지를 기지국으로부터 수신하는 단계;
    상기 설정 정보에 기반하여 상기 하향링크 데이터 수신을 위한 자원을 식별하는 단계; 및
    식별된 자원에서 하향링크 데이터를 상기 기지국으로부터 수신하는 단계를 포함하는 것을 특징으로 하는 방법.
  2. 제1항에 있어서,
    시간 도메인에서의 심볼 레벨 설정 및 주파수 도메인에서의 자원 블록 레벨 설정에 기반하여 상기 하향링크 데이터 수신을 위해 가능하지 않은 자원이 식별되는 것을 특징으로 하는 방법.
  3. 제1항에 있어서,
    상기 설정 정보는 비트맵을 포함하고,
    상기 비트맵의 각 비트는 전송 시간 간격(transmission time interval)에서 상응하는 심볼이 상기 하향링크 데이터 수신을 위해 가능한지 여부를 지시하는 것을 특징으로 하는 방법.
  4. 제3항에 있어서,
    상기 전송 시간 간격은 14개의 심볼들을 포함하고, 상기 비트맵의 크기는 14 비트인 것을 특징으로 하는 방법.
  5. 무선 통신 시스템에서 기지국에 의해 수행되는 방법에 있어서,
    하향링크 데이터 전송을 위해 가능하지 않은 자원에 대한 설정 정보를 포함하는 RRC (radio resource control) 메시지를 단말로 전송하는 단계;
    상기 하향링크 데이터 전송을 위해 가능하지 않은 자원을 제외하고, 상기 하향링크 데이터 전송을 위한 자원을 할당하는 단계; 및
    할당된 자원에서 하향링크 데이터를 전송하는 단계를 포함하는 것을 특징으로 하는 방법.
  6. 제5항에 있어서,
    상기 설정 정보는 시간 도메인에서의 심볼 레벨 설정 및 주파수 도메인에서의 자원 블록 레벨 설정을 포함하는 것을 특징으로 하는 방법.
  7. 제5항에 있어서,
    상기 설정 정보는 비트맵을 포함하고,
    상기 비트맵의 각 비트는 전송 시간 간격(transmission time interval)에서 상응하는 심볼이 상기 하향링크 데이터 전송을 위해 가능한지 여부를 지시하는 것을 특징으로 하는 방법.
  8. 제7항에 있어서,
    상기 전송 시간 간격은 14개의 심볼들을 포함하고, 상기 비트맵의 크기는 14 비트인 것을 특징으로 하는 방법.
  9. 무선 통신 시스템의 단말에 있어서,
    송수신부; 및
    제어부를 포함하고,
    상기 제어부는,
    하향링크 데이터 수신을 위해 가능하지 않은 자원에 대한 설정 정보를 포함하는 RRC (radio resource control) 메시지를 기지국으로부터 수신하고,
    상기 설정 정보에 기반하여 상기 하향링크 데이터 수신을 위한 자원을 식별하며,
    식별된 자원에서 하향링크 데이터를 상기 기지국으로부터 수신하도록 제어하는 것을 특징으로 하는 단말.
  10. 제9항에 있어서,
    시간 도메인에서의 심볼 레벨 설정 및 주파수 도메인에서의 자원 블록 레벨 설정에 기반하여 상기 하향링크 데이터 수신을 위해 가능하지 않은 자원이 식별되는 것을 특징으로 하는 단말.
  11. 제9항에 있어서,
    상기 설정 정보는 비트맵을 포함하고,
    상기 비트맵의 각 비트는 전송 시간 간격(transmission time interval)에서 상응하는 심볼이 상기 하향링크 데이터 수신을 위해 가능한지 여부를 지시하는 것을 특징으로 하는 단말.
  12. 제11항에 있어서,
    상기 전송 시간 간격은 14개의 심볼들을 포함하고, 상기 비트맵의 크기는 14 비트인 것을 특징으로 하는 단말.
  13. 무선 통신 시스템의 기지국에 있어서,
    송수신부; 및
    제어부를 포함하고,
    상기 제어부는,
    하향링크 데이터 전송을 위해 가능하지 않은 자원에 대한 설정 정보를 포함하는 RRC (radio resource control) 메시지를 단말로 전송하고,
    상기 하향링크 데이터 전송을 위해 가능하지 않은 자원을 제외하고, 상기 하향링크 데이터 전송을 위한 자원을 할당하며,
    할당된 자원에서 하향링크 데이터를 전송하도록 제어하는 것을 특징으로 하는 기지국.
  14. 제13항에 있어서,
    상기 설정 정보는 시간 도메인에서의 심볼 레벨 설정 및 주파수 도메인에서의 자원 블록 레벨 설정을 포함하는 것을 특징으로 하는 기지국.
  15. 제13항에 있어서,
    상기 설정 정보는 비트맵을 포함하고,
    상기 비트맵의 각 비트는 전송 시간 간격(transmission time interval)에서 상응하는 심볼이 상기 하향링크 데이터 전송을 위해 가능한지 여부를 지시하는 것을 특징으로 하는 기지국.
  16. 제15항에 있어서,
    상기 전송 시간 간격은 14개의 심볼들을 포함하고, 상기 비트맵의 크기는 14 비트인 것을 특징으로 하는 기지국.
KR1020227045168A 2016-08-11 2017-08-11 차세대 셀룰러 네트워크에서 데이터 전송 방법 및 장치 KR102618292B1 (ko)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201662373655P 2016-08-11 2016-08-11
US62/373,655 2016-08-11
US201762501265P 2017-05-04 2017-05-04
US62/501,265 2017-05-04
KR1020227030449A KR102481800B1 (ko) 2016-08-11 2017-08-11 차세대 셀룰러 네트워크에서 데이터 전송 방법 및 장치
PCT/KR2017/008802 WO2018030864A1 (en) 2016-08-11 2017-08-11 Method and apparatus of data transmission in next generation cellular networks

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020227030449A Division KR102481800B1 (ko) 2016-08-11 2017-08-11 차세대 셀룰러 네트워크에서 데이터 전송 방법 및 장치

Publications (2)

Publication Number Publication Date
KR20230006030A true KR20230006030A (ko) 2023-01-10
KR102618292B1 KR102618292B1 (ko) 2023-12-28

Family

ID=61159781

Family Applications (3)

Application Number Title Priority Date Filing Date
KR1020227045168A KR102618292B1 (ko) 2016-08-11 2017-08-11 차세대 셀룰러 네트워크에서 데이터 전송 방법 및 장치
KR1020197003980A KR102441215B1 (ko) 2016-08-11 2017-08-11 차세대 셀룰러 네트워크에서 데이터 전송 방법 및 장치
KR1020227030449A KR102481800B1 (ko) 2016-08-11 2017-08-11 차세대 셀룰러 네트워크에서 데이터 전송 방법 및 장치

Family Applications After (2)

Application Number Title Priority Date Filing Date
KR1020197003980A KR102441215B1 (ko) 2016-08-11 2017-08-11 차세대 셀룰러 네트워크에서 데이터 전송 방법 및 장치
KR1020227030449A KR102481800B1 (ko) 2016-08-11 2017-08-11 차세대 셀룰러 네트워크에서 데이터 전송 방법 및 장치

Country Status (6)

Country Link
US (3) US10602516B2 (ko)
EP (3) EP3934357B1 (ko)
KR (3) KR102618292B1 (ko)
CN (3) CN113115462A (ko)
ES (1) ES2906677T3 (ko)
WO (1) WO2018030864A1 (ko)

Families Citing this family (85)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116599633A (zh) * 2016-09-30 2023-08-15 中兴通讯股份有限公司 一种控制信道的发送方法、装置、设备及介质
CN108282880B (zh) * 2017-01-06 2019-11-08 电信科学技术研究院 一种确定下行数据信道的起始位置的方法及装置
US10356812B2 (en) 2017-02-06 2019-07-16 Qualcomm Incorporated Variable-length transmission schemes
CN108633072B (zh) * 2017-03-16 2022-08-26 株式会社Kt 监视、发送和接收下行链路先占指示信息的方法及其装置
US10856307B2 (en) * 2017-03-21 2020-12-01 Kt Corporation Method for transmitting and receiving downlink pre-emption indication information using bitmap in new radio networks and apparatus thereof
US10897326B2 (en) * 2017-04-14 2021-01-19 Qualcomm Incorporated Sharing a single coreset bandwidth across multiple user equipments
SG11201910087XA (en) * 2017-05-02 2019-11-28 Guangdong Oppo Mobile Telecommunications Corp Ltd Methods and apparatuses for detecting control channels in wireless communication systems
CN108809587B (zh) * 2017-05-05 2021-06-08 华为技术有限公司 确定参考信号序列的方法、终端设备、网络设备
CN108966181B (zh) * 2017-05-26 2021-07-23 株式会社Kt 为新无线电配置关于分量载波的频率资源的方法及其装置
CA3066293C (en) * 2017-06-08 2022-06-28 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Data transmission method, terminal device and network device
CN109067499B (zh) 2017-06-13 2020-10-27 维沃移动通信有限公司 一种下行控制信息的发送方法、接收方法及相关设备
CN110771106B (zh) * 2017-06-15 2023-05-30 株式会社Ntt都科摩 终端、基站以及系统
EP3626009B1 (en) * 2017-06-15 2024-01-10 Huawei Technologies Co., Ltd. Method and devices for multiple transmit receive point cooperation for reliable communication
CN109150379B (zh) * 2017-06-16 2021-07-09 华为技术有限公司 一种通信方法、网络设备及终端设备
EP4145755A1 (en) * 2017-08-11 2023-03-08 Apple Inc. Determining and communicating control information in wireless telecommunication networks
KR20190027705A (ko) * 2017-09-07 2019-03-15 엘지전자 주식회사 무선 통신 시스템에서 자원 할당 방법 및 상기 방법을 이용하는 장치
KR102076821B1 (ko) * 2017-09-11 2020-05-18 엘지전자 주식회사 무선 통신 시스템에서 하향링크 제어 정보를 전송하는 방법 및 장치
CN110731109B (zh) * 2017-09-13 2023-03-28 Oppo广东移动通信有限公司 一种资源指示方法、设备和计算机存储介质
CN111030799B (zh) * 2017-09-14 2021-03-05 Oppo广东移动通信有限公司 一种确定时域资源的方法、设备、存储介质及系统
EP3694284B1 (en) * 2017-10-02 2023-09-06 LG Electronics Inc. Method and device for signal transmission or reception on basis of lte and nr in wireless communication system
CN109699054B (zh) * 2017-10-24 2020-11-06 华为技术有限公司 一种检测下行控制信息的方法、终端设备和网络设备
CN109769300A (zh) * 2017-11-10 2019-05-17 华为技术有限公司 一种通信方法、装置以及系统
KR102581454B1 (ko) * 2017-11-10 2023-09-22 삼성전자주식회사 무선 통신 시스템에서 제어 정보를 송수신하는 방법 및 장치
US10469221B2 (en) * 2017-11-10 2019-11-05 Huawei Technologies Co., Ltd. Communication method, apparatus, and system
RU2743750C1 (ru) 2017-11-14 2021-02-25 Бейджин Сяоми Мобайл Софтвеа Ко., Лтд. Способ указания информации о частотной области общего набора ресурсов управления для остаточной минимальной системной информации
CN108064466B (zh) 2017-11-15 2021-12-21 北京小米移动软件有限公司 剩余关键系统信息的公共控制资源集合的周期信息指示方法
WO2019095183A1 (zh) * 2017-11-16 2019-05-23 北京小米移动软件有限公司 剩余关键系统信息的公共控制资源集合的时域信息指示方法
CN110731110A (zh) * 2017-11-16 2020-01-24 Oppo广东移动通信有限公司 资源指示方法、用户设备、网络设备及计算机存储介质
JP7092195B2 (ja) * 2017-11-16 2022-06-28 日本電気株式会社 制御リソース領域のリソース割り当てのための方法及びデバイス
US11018910B2 (en) * 2017-11-17 2021-05-25 Mediatek Inc. On PDCCH DMRS mapping and coreset resource allocation
CN114710233A (zh) * 2017-11-17 2022-07-05 华为技术有限公司 下行控制信息确定方法和通信装置
CN108811139B (zh) * 2017-11-17 2023-06-06 华为技术有限公司 资源的配置方法、装置和存储介质
CN109803413B (zh) * 2017-11-17 2023-04-18 中兴通讯股份有限公司 资源确定、信息发送方法及装置,存储介质,处理器
US10749653B2 (en) * 2017-11-28 2020-08-18 Qualcomm Incorporated Techniques and apparatuses for providing system information updates in a system using bandwidth parts
US11457472B2 (en) * 2017-12-18 2022-09-27 Samsung Electronics Co., Ltd. Method and apparatus for initial access block on stand-alone NR unlicensed spectrum
US11626965B2 (en) * 2018-01-11 2023-04-11 Ntt Docomo, Inc. User terminal and radio communication method
US10448388B2 (en) * 2018-01-11 2019-10-15 Lg Electronics Inc. Method for receiving downlink signal in wireless communication system and terminal using the same
KR101954433B1 (ko) 2018-01-11 2019-03-05 엘지전자 주식회사 무선 통신 시스템에서 단말의 하향링크 신호 수신 방법 및 상기 방법을 이용하는 단말
WO2019139444A1 (ko) * 2018-01-13 2019-07-18 주식회사 윌러스표준기술연구소 무선 통신시스템의 자원 할당 방법, 장치 및 시스템
ES2871790T3 (es) 2018-01-18 2021-11-02 Asustek Comp Inc Procedimiento y aparato para proporcionar la configuración del conjunto de recursos de control en un sistema de comunicación inalámbrico
CN110121176B (zh) * 2018-02-07 2023-08-22 华为技术有限公司 无线通信方法、终端和网络设备
US11133908B2 (en) * 2018-02-16 2021-09-28 Nokia Technologies Oy Apparatus and method for physical layer transmission of paging and broadcasted system information
US20190260435A1 (en) * 2018-02-17 2019-08-22 Mediatek Inc. Uplink Transmission Schemes In Mobile Communications
CN110234094B (zh) * 2018-03-05 2024-03-01 华为技术有限公司 一种资源配置方法、第一通信设备、第二通信设备及系统
KR102104362B1 (ko) 2018-03-27 2020-04-24 텔레폰악티에볼라겟엘엠에릭슨(펍) 주파수 영역 자원 할당의 시그널링
CN110324069B (zh) 2018-03-28 2021-02-02 维沃移动通信有限公司 波束失败处理方法、终端、网络设备及可读存储介质
CN111406432B (zh) * 2018-04-02 2022-05-10 Oppo广东移动通信有限公司 一种资源配置的方法、设备及计算机存储介质
US20190305916A1 (en) * 2018-04-02 2019-10-03 Mediatek Inc. Efficient Bandwidth Adaptation Operation
CN112566267B (zh) * 2018-04-02 2021-10-15 华为技术有限公司 资源指示值的获取方法及装置
WO2019191873A1 (zh) * 2018-04-02 2019-10-10 富士通株式会社 资源调度方法、数据发送方法及其装置、通信系统
CN110351850B (zh) 2018-04-04 2022-07-05 维沃移动通信有限公司 信道传输方法、终端及网络设备
US11039429B2 (en) 2018-04-04 2021-06-15 Huawei Technologies Co., Ltd. Method and apparatus for downlink control information communication and interpretation
CN110351839B (zh) * 2018-04-04 2023-03-28 华为技术有限公司 通信方法及装置
CN110351809B (zh) * 2018-04-04 2024-04-26 华为技术有限公司 系统消息冗余版本确定方法及装置
CN110351843B (zh) * 2018-04-04 2022-05-13 大唐移动通信设备有限公司 资源分配指示方法、资源分配获取方法、基站及用户终端
CN112237041A (zh) 2018-04-06 2021-01-15 瑞典爱立信有限公司 带宽部分切换
KR20190117290A (ko) * 2018-04-06 2019-10-16 삼성전자주식회사 무선 셀룰라 통신 시스템에서 상향링크 데이터 스케줄링 및 전송 방법 및 장치
US11252710B2 (en) * 2018-04-12 2022-02-15 Mediatek Singapore Pte. Ltd. Frequency domain resource allocation for compact downlink control information in mobile communications
WO2019203711A1 (en) 2018-04-20 2019-10-24 Telefonaktiebolaget Lm Ericsson (Publ) Cross-carrier spatial relation indication for semi-persistent sounding reference signal (sp-srs) resources
KR20190129647A (ko) * 2018-05-11 2019-11-20 삼성전자주식회사 무선 통신 시스템에서 전송 시간 결정 방법 및 장치
CN112119606B (zh) * 2018-05-11 2023-12-08 瑞典爱立信有限公司 用于下行链路控制信息(dci)大小对齐的系统和方法
WO2019221509A1 (ko) * 2018-05-15 2019-11-21 엘지전자 주식회사 무선 통신 시스템에서 단말에 의해 수행되는 제어 정보 수신 방법 및 상기 방법을 이용하는 단말
CN110945940A (zh) * 2018-05-16 2020-03-31 Lg电子株式会社 用于发送和接收数据信道的方法和设备
US10932250B2 (en) * 2018-06-19 2021-02-23 Mediatek Singapore Pte. Ltd. Method and apparatus for enhancing time domain-resource allocation framework in mobile communications
WO2019242419A1 (zh) * 2018-06-21 2019-12-26 Oppo广东移动通信有限公司 一种bwp切换方法及装置、终端设备
CN113784451B (zh) * 2018-07-06 2024-05-14 北京小米移动软件有限公司 控制信令的指示方法、装置、终端和基站以及存储介质
US10999023B2 (en) * 2018-07-16 2021-05-04 Mediatek Singapore Pte. Ltd. Method and apparatus for frequency domain resource allocation when frequency hopping is enabled in mobile communications
CN110740025B (zh) * 2018-07-20 2021-03-02 维沃移动通信有限公司 一种信道检测指示方法、终端及网络设备
CN110769508B (zh) * 2018-07-27 2023-01-13 华为技术有限公司 信号传输方法、装置、终端设备、网络设备及系统
JP7237486B2 (ja) * 2018-07-31 2023-03-13 シャープ株式会社 端末装置、基地局装置、および、通信方法
CN110831178B (zh) * 2018-08-10 2023-06-30 华为技术有限公司 时域资源配置方法
WO2020059243A1 (ja) * 2018-09-19 2020-03-26 日本電気株式会社 基地局、無線端末、及びこれらの方法
CN109314972B (zh) * 2018-09-21 2023-12-26 北京小米移动软件有限公司 带宽部分的切换触发方法及装置、信息配置方法及装置
CN113056887B (zh) * 2018-11-02 2023-06-23 Lg电子株式会社 用于在无线通信系统中发送或接收无线信号的方法和装置
EP3911002A4 (en) * 2019-01-10 2022-07-06 Ntt Docomo, Inc. USER TERMINAL AND WIRELESS COMMUNICATION METHOD
WO2020147003A1 (en) * 2019-01-15 2020-07-23 Nokia Shanghai Bell Co., Ltd. Scheduling serving cells with signaling message
CN111565461A (zh) * 2019-02-14 2020-08-21 夏普株式会社 由用户设备执行的方法以及用户设备
JP2022528104A (ja) * 2019-03-30 2022-06-08 ウィルス インスティテュート オブ スタンダーズ アンド テクノロジー インコーポレイティド 非免許帯域で送信を行うためのリソース割り当て方法及びこれを用いる装置
CN111278127B (zh) 2019-04-03 2022-08-02 维沃移动通信有限公司 一种频域资源分配方法、终端和网络设备
CN111865486B (zh) * 2019-04-30 2022-04-05 大唐移动通信设备有限公司 一种物理下行控制信道pdcch检测方法和设备
US11849459B2 (en) * 2019-07-08 2023-12-19 Qualcomm Incorporated Bandwidth part configuration for sidelink communication
WO2021020944A1 (ko) * 2019-07-31 2021-02-04 엘지전자 주식회사 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
CN112399599B (zh) * 2019-08-12 2023-05-12 华为技术有限公司 一种指示频域资源的方法及装置
WO2021027603A1 (zh) * 2019-08-12 2021-02-18 华为技术有限公司 一种指示频域资源的方法及装置
KR102338457B1 (ko) * 2020-03-17 2021-12-15 아서스테크 컴퓨터 인코포레이션 무선 통신 시스템에서 디바이스 대 디바이스 사이드링크 리소스 선택을 위한 방법 및 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100051530A (ko) * 2008-11-07 2010-05-17 엘지전자 주식회사 참조 신호 전송 방법
WO2013009145A2 (ko) * 2011-07-14 2013-01-17 엘지전자 주식회사 무선통신 시스템에서 제어 채널 및 데이터 채널 설정 방법 및 장치
KR20140054242A (ko) * 2011-08-12 2014-05-08 인터디지탈 패튼 홀딩스, 인크 무선 시스템에서의 융통성있는 대역폭 동작을 위한 다운링크 리소스 할당
US20140177578A1 (en) * 2011-07-01 2014-06-26 Ofinno Technologies, Llc Channel Configuration in a Wireless Network

Family Cites Families (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050045223A (ko) * 2003-11-10 2005-05-17 삼성전자주식회사 광 대역 무선 접속 통신 시스템의 셀 플래닝 방법 및 그광 대역 무선 접속 통신 시스템의 인접 기지국 파워 스캔방법
KR101221821B1 (ko) * 2006-04-21 2013-01-14 삼성전자주식회사 주파수 분할 다중 접속 시스템에서 자원 할당 정보 시그널링 방법
US8400998B2 (en) * 2006-08-23 2013-03-19 Motorola Mobility Llc Downlink control channel signaling in wireless communication systems
KR20090003086A (ko) * 2007-06-28 2009-01-09 엘지전자 주식회사 신호 전송 방법, 자원 할당 방법 및 이를 위한 상향링크 맵구성 방법
CN101400131B (zh) * 2007-09-30 2010-11-17 大唐移动通信设备有限公司 基于块重复多址接入方式的资源分配/管理方法、装置
CN101971544B (zh) * 2007-11-05 2014-06-18 蜂窝通信设备有限责任公司 缓冲器状态报告系统和方法
CN101651601A (zh) * 2008-08-11 2010-02-17 华为技术有限公司 一种资源配置方法、系统及相关装置
CA2742801C (en) * 2008-11-04 2016-07-26 Nortel Networks Limited Providing a downlink control structure in a first carrier to indicate control information in a second, different carrier
EP2362725B1 (en) 2008-11-04 2015-01-07 Vymedic, Llc Antiviral supplement formulations
US8005039B2 (en) 2008-12-30 2011-08-23 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for robust transmission of control information in wireless communication network
US9014082B2 (en) 2009-06-25 2015-04-21 Lg Electronics Inc. Method and device for signal transmission on a wireless communications system
EP2448146B1 (en) 2009-06-25 2018-10-24 LG Electronics Inc. Method and device for signal transmission on a wireless communications system
KR101618782B1 (ko) * 2009-08-24 2016-05-12 엘지전자 주식회사 광대역 무선 접속 시스템에서 중계국의 기지국 시스템 정보 갱신 방법
CN102036387B (zh) * 2009-09-30 2015-04-01 中兴通讯股份有限公司 无线信道资源分配的指示方法及基站、解码方法及终端
KR101108957B1 (ko) * 2009-11-16 2012-02-09 엘지전자 주식회사 광대역 무선 접속 시스템에서의 그룹 자원 할당 방법
US8625510B2 (en) * 2010-03-25 2014-01-07 Texas Instruments Incorporated Method and system for using resources allocated to a wireless network in a coexisting wireless network
CN102223719B (zh) * 2010-04-16 2014-01-08 华为技术有限公司 资源分配指示方法、基站设备、用户设备
KR101868622B1 (ko) * 2010-06-17 2018-06-18 엘지전자 주식회사 R-pdcch 전송 및 수신 방법과 그 장치
CN102315897B (zh) * 2010-06-30 2015-10-14 上海贝尔股份有限公司 在物理上行共享信道上传输上行控制信息的方法及设备
EP2608433B1 (en) * 2010-08-20 2019-03-27 LG Electronics Inc. Method and apparatus for transmitting a signal related to a change in transmission format
EP2647149A1 (en) * 2010-12-02 2013-10-09 Interdigital Patent Holdings, Inc. Systems and methods for improving channel quality indication feedback accuracy in wireless communication using interference prediction
US9001756B2 (en) 2011-04-27 2015-04-07 Texas Instruments Incorporated Physical downlink control channel and physical hybrid automatic repeat request indicator channel enhancements
WO2012157091A1 (ja) * 2011-05-18 2012-11-22 富士通株式会社 無線通信システム、ユーザ端末、及び基地局並びに通信方法
WO2013015627A2 (en) 2011-07-28 2013-01-31 Lg Electronics Inc. Method of transmitting/receiving downlink control information and user equipment therefor in wireless access system
CN102970709B (zh) * 2011-09-01 2018-08-03 中兴通讯股份有限公司 一种配置分片载波后rbg大小和编号的确定方法和装置
KR20230145244A (ko) * 2011-09-30 2023-10-17 인터디지탈 패튼 홀딩스, 인크 감소된 채널 대역폭을 사용하는 장치 통신
US9374819B2 (en) * 2011-10-13 2016-06-21 Lg Electronics Inc. Method and device for receiving control information in wireless communication system
WO2013097120A1 (zh) * 2011-12-28 2013-07-04 富士通株式会社 下行控制信道的搜索空间的映射方法和装置
KR102065082B1 (ko) * 2012-02-29 2020-01-10 삼성전자 주식회사 이동통신 시스템에서 반이중(half duplex)전송을 지원하는 단말과 관련된 채널 송수신 방법 및 장치
CN103988563B (zh) * 2012-03-21 2018-01-23 富士通株式会社 下行控制信道的搜索空间的映射方法和装置
CN108111292B (zh) * 2012-05-09 2020-11-13 太阳专利信托公司 通信装置及通信方法
KR102088022B1 (ko) * 2012-08-01 2020-03-11 엘지전자 주식회사 제어 정보를 시그널링 하는 방법 및 이를 위한 장치
US9686772B2 (en) 2012-08-01 2017-06-20 Qualcomm Incorporated Methods and apparatus for coordinated multipoint (CoMP) communications
US9497012B2 (en) * 2012-09-26 2016-11-15 Lg Electronics Inc. Method and apparatus for receiving ACK/NACK in wireless communication system
US20150319742A1 (en) * 2012-11-03 2015-11-05 Broadcom Corporation Resource allocation methods for control channels
DK2936910T3 (en) * 2012-12-21 2017-01-09 ERICSSON TELEFON AB L M (publ) Non-consecutive subframes in the multi-TTI scheduling messages
US9295044B2 (en) * 2012-12-21 2016-03-22 Blackberry Limited Resource scheduling in direct device to device communications systems
CN103973397B (zh) 2013-01-29 2019-01-08 中兴通讯股份有限公司 Ack/nack信息的发送及接收方法、基站及终端
US9313782B2 (en) * 2013-05-08 2016-04-12 Qualcomm Incorporated Enhanced PDSCH operation
CN104427494B (zh) * 2013-09-05 2018-02-09 普天信息技术研究院有限公司 无线网络临时标识的分配方法
KR20150060118A (ko) * 2013-11-25 2015-06-03 주식회사 아이티엘 Harq ack/nack의 전송방법 및 장치
US10476615B2 (en) * 2014-07-16 2019-11-12 Qualcomm Incorporated Techniques for scaling bandwidth of an unlicensed radio frequency spectrum band
US9955465B2 (en) * 2014-10-03 2018-04-24 Intel IP Corporation Downlink control information (DCI) design for LTE devices
US10411853B2 (en) * 2014-10-10 2019-09-10 Lg Electronics Inc. Method and device for transmitting and receiving wireless signal in wireless communication system
US10070429B2 (en) * 2014-11-14 2018-09-04 Electronics And Telecommunications Research Institute Method and apparatus for transmitting information in low latency mobile communication system
US10939454B2 (en) 2014-12-11 2021-03-02 Qualcomm Incorporated Prioritizing colliding transmissions in LTE and ultra-low latency LTE communications
JP2018506246A (ja) * 2015-01-12 2018-03-01 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおける端末の端末能力情報送信方法及び装置
US20170251465A1 (en) * 2015-03-09 2017-08-31 Telefonaktiebolaget Lm Ericsson (Publ) Reducing reference signals when communicating multiple sub-subframes between a base station and a wireless terminal
US10091659B2 (en) * 2015-05-08 2018-10-02 Samsung Electronics Co., Ltd. Methods and apparatus for partial subframe transmission and broadcast channel on unlicensed spectrum in a licensed assisted access (LAA) cell
US10383105B2 (en) * 2015-07-12 2019-08-13 Lg Electronics Inc. Method and device for transmitting control information in wireless communication system
EP3334231B1 (en) * 2015-08-05 2022-03-09 Sharp Kabushiki Kaisha Terminal device, base station device, and communication method for receiving epdcch
JP2018152624A (ja) * 2015-08-05 2018-09-27 シャープ株式会社 端末装置、基地局装置、および通信方法
US10397946B2 (en) * 2015-12-17 2019-08-27 Lg Electronics Inc. Uplink reference signal transmitting or receiving method in wireless communication system, and apparatus therefor
JP6624760B2 (ja) * 2016-02-02 2019-12-25 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America Enodeb、ユーザ機器および無線通信方法
US10194432B2 (en) * 2016-02-03 2019-01-29 Ofinno Technologies, Llc Signal transmissions in one or more subframes in a wireless network
US10528902B2 (en) * 2016-03-16 2020-01-07 Triax Technologies, Inc. System and interfaces for managing workplace events
KR102134685B1 (ko) * 2016-07-01 2020-07-16 엘지전자 주식회사 무선 통신 시스템에서 기지국과 단말 간 상향링크 신호를 송수신하는 방법 및 이를 지원하는 장치
ES2915255T3 (es) * 2016-08-08 2022-06-21 Nokia Technologies Oy Soporte de señalización para una transmisión de señales de referencia de enlace ascendente
US10368345B2 (en) * 2016-08-10 2019-07-30 Qualcomm Incorporated Low latency physical downlink control channel and physical downlink shared channel
WO2019028276A1 (en) * 2017-08-02 2019-02-07 Intel IP Corporation APPARATUS, SYSTEM AND METHOD FOR IMPLEMENTING RESERVED RESOURCES FOR ASCENDING COMPATIBILITY IN NEW RADIO (NR) NETWORKS

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100051530A (ko) * 2008-11-07 2010-05-17 엘지전자 주식회사 참조 신호 전송 방법
US20140177578A1 (en) * 2011-07-01 2014-06-26 Ofinno Technologies, Llc Channel Configuration in a Wireless Network
WO2013009145A2 (ko) * 2011-07-14 2013-01-17 엘지전자 주식회사 무선통신 시스템에서 제어 채널 및 데이터 채널 설정 방법 및 장치
KR20140054242A (ko) * 2011-08-12 2014-05-08 인터디지탈 패튼 홀딩스, 인크 무선 시스템에서의 융통성있는 대역폭 동작을 위한 다운링크 리소스 할당

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
3GPP R1-156955 *
3GPP R1-161557 *
3GPP R1-164102 *
3GPP R1-165200* *
3GPP RP-161247 *

Also Published As

Publication number Publication date
EP3482596B1 (en) 2021-10-06
CN109565861B (zh) 2021-03-23
EP3482596A1 (en) 2019-05-15
US20180049203A1 (en) 2018-02-15
US20200229190A1 (en) 2020-07-16
EP3934357A1 (en) 2022-01-05
CN109565861A (zh) 2019-04-02
KR102618292B1 (ko) 2023-12-28
KR102481800B1 (ko) 2022-12-27
CN113115462A (zh) 2021-07-13
US11419115B2 (en) 2022-08-16
EP3482596A4 (en) 2019-07-24
EP3934357B1 (en) 2024-05-15
KR102441215B1 (ko) 2022-09-07
US20220394686A1 (en) 2022-12-08
CN113115463A (zh) 2021-07-13
ES2906677T3 (es) 2022-04-19
KR20220126802A (ko) 2022-09-16
WO2018030864A1 (en) 2018-02-15
EP4346109A2 (en) 2024-04-03
KR20190029648A (ko) 2019-03-20
US10602516B2 (en) 2020-03-24

Similar Documents

Publication Publication Date Title
KR102481800B1 (ko) 차세대 셀룰러 네트워크에서 데이터 전송 방법 및 장치
US11956804B2 (en) Method and apparatus of flexible data transmissions and receptions in next generation cellular networks
JP7059393B2 (ja) ダウンリンク制御情報伝送方法
US11683788B2 (en) System and method for data channel transmission and reception
EP2517516B1 (en) Method and apparatus for resource allocation with carrier extension
JP6052395B2 (ja) リソース配分シグナリング
JP2023145455A (ja) ワイヤレス通信システムにおけるアップリンク制御情報を送信するための方法、およびそれを使用する装置
CN108111281B (zh) 数据信道参数配置方法及装置
KR101767021B1 (ko) 물리적 다운링크 제어 채널의 검색 공간의 매핑 방법 및 장치
CN107734665B (zh) 资源指示、确定方法及装置、网络侧设备及移动通信终端
KR20180104092A (ko) 네트워크 노드, 사용자 디바이스 및 그 방법들
CN109906654B (zh) 无线资源分配系统及方法
KR20120080983A (ko) 통신 시스템에서 제어정보의 전송방법 및 그 기지국, 제어정보의 처리방법 및 그 단말
CN110945937A (zh) 用于数据传输时隙中数据符号的确定
WO2019160468A1 (en) Provision of granting of resources to a wireless device
EP2767103B1 (en) System and method for data channel transmission and reception

Legal Events

Date Code Title Description
A107 Divisional application of patent
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right