KR20230005357A - 전자원, 전자총, 및 하전 입자선 장치 - Google Patents

전자원, 전자총, 및 하전 입자선 장치 Download PDF

Info

Publication number
KR20230005357A
KR20230005357A KR1020227042250A KR20227042250A KR20230005357A KR 20230005357 A KR20230005357 A KR 20230005357A KR 1020227042250 A KR1020227042250 A KR 1020227042250A KR 20227042250 A KR20227042250 A KR 20227042250A KR 20230005357 A KR20230005357 A KR 20230005357A
Authority
KR
South Korea
Prior art keywords
electron
opening
tip
suppressor electrode
electron source
Prior art date
Application number
KR1020227042250A
Other languages
English (en)
Inventor
게이고 가스야
슈헤이 이시까와
겐지 다니모또
다까시 도이
소이찌로 마쯔나가
히로시 모리따
다이고 고메스
겐지 미야따
Original Assignee
주식회사 히타치하이테크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 히타치하이테크 filed Critical 주식회사 히타치하이테크
Publication of KR20230005357A publication Critical patent/KR20230005357A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/06Electron sources; Electron guns
    • H01J37/065Construction of guns or parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/06Electron sources; Electron guns
    • H01J37/063Geometrical arrangement of electrodes for beam-forming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • H01J1/304Field-emissive cathodes
    • H01J1/3042Field-emissive cathodes microengineered, e.g. Spindt-type
    • H01J1/3044Point emitters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/46Control electrodes, e.g. grid; Auxiliary electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/06Cathodes
    • H01J35/066Details of electron optical components, e.g. cathode cups
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/06Electron sources; Electron guns
    • H01J37/073Electron guns using field emission, photo emission, or secondary emission electron sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3174Particle-beam lithography, e.g. electron beam lithography
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/063Electron sources
    • H01J2237/06308Thermionic sources
    • H01J2237/06316Schottky emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/063Electron sources
    • H01J2237/06325Cold-cathode sources
    • H01J2237/06341Field emission

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electron Sources, Ion Sources (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

중심축을 따른 방향에 있어서의 한쪽의 단부에 개구부를 갖는 서프레서 전극과, 개구부로부터 선단이 돌출한 전자 방출재를 구비하는 전자원에 있어서, 서프레서 전극은, 개구부보다도 외주 방향의 위치에, 중심축을 따른 방향에 있어서 개구부보다도 전자 방출재의 선단으로부터 멀어지는 위치로 후퇴한 후퇴부를 더 구비하고, 후퇴부의 적어도 일부는 개구부의 중심으로부터 직경 2810㎛ 이내에 배치된다는 등의 구조를 구비한다. 이에 의해, 전자 방출재와 서프레서 전극의 축 어긋남에 의한 장치 성능의 기차를 저감한 전자원, 전자총, 및 그것을 사용한 전자 현미경 등의 하전 입자선 장치가 실현된다.

Description

전자원, 전자총, 및 하전 입자선 장치
본 발명은 시료에 조사되는 전자선을 공급하는 전자원, 전자총, 및 그것을 사용한 하전 입자선 장치에 관한 것이다.
하전 입자선 장치는, 전자원 및 전자총으로부터 방출되는 전자선, 전자선을 X선원의 타깃에 쏴서 방출되는 X선, 또는, 이온원으로부터 방출되는 이온선을 시료에 조사하여, 시료에 가공을 행하거나, 시료로부터 방출되는 2차 전자나 투과 전자, 반사 전자, X선 등을 이용하여, 관찰 화상을 생성하거나 하는 장치이다. 하전 입자선 장치의 예로서, 전자 현미경이나 전자선 묘화 장치, X선 현미경, CT, 이온 현미경 등이 있다.
이들 하전 입자선 장치에 있어서, 생성되는 화상이나 그의 조사 상태는, 공간 분해능이 높고, 반복 관찰·조사한 경우의 재현성이 좋을 것 등이 요구된다.
예를 들어, 전자 현미경에 있어서는, 높은 공간 분해능을 실현하기 위해서는, 시료에 조사하는 전자선의 휘도가 높을 필요가 있다. 휘도가 높은 전자선을 방출하는 전자원으로서, 쇼트키 전자원(Schottky Emitter: 이하, SE 전자원)이나 냉음극 전계 방출 전자원(Cold Field Emitter: 이하, CFE 전자원)이 널리 사용되고 있다. 특허문헌 1에는 SE 전자원의 구조의 일례가 기재되어 있다.
또한, 근년, 반도체 디바이스의 미세화와 복잡화가 진행하여, 그의 제조 공정의 프로세스 관리에 전자 현미경이 많이 사용되고 있다. 반도체의 계측을 담당하는 전자 현미경에는, 상기 고분해능 성능에 추가로, 동일한 시료를 관찰한 경우에 어느 장치이든 동일 치수의 계측 결과를 얻을 것, 즉, 장치 간의 측정 결과의 기차(機差: 계측 치수차)가 작을 것이 요구된다.
일본 특허 공개 평8-171879호 공보
특허문헌 1에 기재된 바와 같이, SE 전자원은 개구부를 갖는 서프레서 전극과, 선단부로부터 전자를 방출하는 전자 방출재인 단결정선(이하, 팁이라고 칭한다)을 구비하고, 서프레서 전극의 개구부로부터 팁의 선단부(전자 방출부)가 돌출된 구조를 갖는다. 또한, SE 전자원에 인출 전극 등을 부가하여 전자총(SE 전자총)을 구성한다. SE 전자총에서는, 팁을 가열함과 함께 인출 전극에 의한 전계 인가를 행하여 팁 선단으로부터 전자를 방출시킨다. 서프레서 전극은 팁 선단에 대하여 부의 전위가 인가되어, 팁 선단부 이외로부터 방출되는 불필요한 열전자를 억제하는 기능을 갖는다.
이 기능을 행하기 위해서, 팁과 서프레서 전극의 개구부의 중심축은 높은 정밀도로 위치 정렬할 것이 요구된다. 그 때문에 팁과 서프레서 전극의 개구부와는 기계적으로 동축상으로 되도록 위치 정렬하여 조립되어, 전자원으로서 일체화된다. 이 전자원이 전자 현미경 등의 각 장치에 탑재되어, 전자선이 방출되어 사용된다.
여기서, 발명자들의 연구 결과, 전자원의 개체마다, 팁의 중심축과 서프레서 전극의 개구부의 중심축은, 예를 들어 서프레서 전극의 개구 직경이 400㎛ 정도인 경우에 대하여 수㎛ 내지 수십㎛ 어긋나는 경우가 있음을 알았다. 팁과 서프레서 전극의 중심축이 어긋나면, 서프레서 전극이 생성하는 전계가 팁을 대하여 축이 어긋난 분포로 되어, 중심축에 대하여 수직 방향(가로 방향)의 전계가, 팁의 전방의 공간에 발생한다. 팁 선단으로부터 방출된 전자선은, 이 전계에 의해 가로 방향으로 구부러지고, 하류에 있는 렌즈의 축외를 통과한다. 이 결과, 렌즈에서 축외 수차가 발생하여, 시료에 조사한 전자선의 집광 직경이 커짐으로써 분해능이 악화된다.
팁과 서프레서 전극의 축 어긋남양이 커질수록, 가로 방향의 전계는 커진다. 따라서, 전자선이 크게 구부러져서 축외 수차도 커진다. 팁과 서프레서 전극의 축 어긋남양은, 전자원의 개체마다 다른 것으로부터, 전자원을 탑재한 장치마다 축외 수차의 크기도 바뀌어, 분해능에 차가 발생한다. 이 결과, 전자 현미경 등의 장치 간의 기차가 커진다는 과제가 발생한다.
그 밖에, 팁과 서프레서 전극의 축 어긋남양이 특히 큰 경우, 전자선이 크게 구부러지는 것에 의해, 하류에 배치한 조리개나 전극의 개구를 통과할 수 없게 된다. 이 경우, 전자선이 시료에 도달할 수 없게 되어, 전자원, 전자총, 또는, 전자 현미경의 제조 불량이 된다. 이것은, 제조 비용의 증가나, 리드 타임의 증가 등의 과제가 된다.
본 발명의 목적은, 기차를 저감한 전자원, 전자총, 및 그것을 사용한 전자 현미경 등의 하전 입자선 장치를 제공하는 것이다.
본 발명의 일 실시 형태인 전자원은, 중심축을 따른 방향에 있어서의 한쪽의 단부에 개구부를 갖는 서프레서 전극과, 개구부로부터 선단이 돌출한 전자 방출재를 갖고, 서프레서 전극은, 개구부보다도 외주 방향의 위치에, 중심축을 따른 방향에 있어서 서프레서 전극의 단부보다도 전자 방출재의 선단으로부터 멀어지는 위치로 후퇴한 후퇴부를 더 구비하고, 후퇴부의 적어도 일부는, 개구부의 중심으로부터 직경 2810㎛ 이내에 배치되는 것을 특징으로 하는 전자원으로서 구성한다.
본 발명에 따르면, 기차를 저감한 전자원, 전자총, 및 그것을 사용한 전자 현미경 등의 하전 입자선 장치를 제공할 수 있다. 기타의 과제와 신규의 특징은, 본 명세서의 기술 및 첨부 도면으로부터 밝혀질 것이다.
도 1은 실시예 1에 관계되는 주사 전자 현미경의 개략을 도시하는 도면이다.
도 2는 종래의 SE 전자원의 구성을 설명하는 도면이다.
도 3a는 종래의 SE 전자원에 있어서 구부러지는 원리를 설명하는 도면이다.
도 3b는 종래의 SE 전자원에 있어서 구부러지는 원리를 설명하는 도면이다.
도 4는 실시예 1에 관계되는 SE 전자원의 구성을 설명하는 도면이다.
도 5a는 종래의 SE 전자원에 있어서 전자선의 궤도에 관한 원리를 설명하는 도면이다.
도 5b는 종래의 SE 전자원에 있어서 전자선의 궤도에 관한 원리를 설명하는 도면이다.
도 5c는 실시예 1에 관계되는 SE 전자원에 있어서 전자선의 궤도에 관한 원리를 설명하는 도면이다.
도 5d는 실시예 1에 관계되는 SE 전자원에 있어서 전자선의 궤도에 관한 원리를 설명하는 도면이다.
도 6a는 실시예 1에 관계되는 SE 전자원에 있어서 테이퍼면의 각도 θ가 전자선에 끼치는 영향을 도시하는 도면이다.
도 6b는 실시예 1에 관계되는 SE 전자원에 있어서 테이퍼면의 각도 θ가 전자선에 끼치는 영향을 도시하는 도면이다.
도 7a는 종래의 SE 전자원에 있어서 팁과 서프레서 전극의 축 어긋남양이 전자선에 끼치는 영향을 도시하는 도면이다.
도 7b는 실시예 1에 관계되는 SE 전자원에 있어서 팁과 서프레서 전극의 축 어긋남양이 전자선에 끼치는 영향을 도시하는 도면이다.
도 7c는 종래형과 실시예 1에 관계되는 SE 전자원에 있어서 팁과 서프레서 전극의 축 어긋남양이 전자선에 끼치는 영향을 도시하는 도면이다.
도 8a는 실시예 1에 관계되는 SE 전자원에 있어서, L과 θ와 전자선에 대한 영향의 관계를 도시하는 도면이다.
도 8b는 실시예 1에 관계되는 SE 전자원에 있어서, L과 θ와 전자선에 대한 영향의 관계를 도시하는 도면이다.
도 9는 실시예 1에 관계되는 SE 전자원에 있어서, 필요로 되는 서프레서 전압의 예를 도시하는 도면이다.
도 10은 종래의 SE 전자원에 있어서, 팁의 돌출 길이 T를 바꾸었을 경우의 전자선에 대한 영향을 도시하는 도면이다.
도 11a는 실시예 2에 관계되는 SE 전자원에 있어서, L과 θ와 전자선에 대한 영향의 관계를 도시하는 도면이다.
도 11b는 실시예 2에 관계되는 SE 전자원에 있어서, L과 θ와 전자선에 대한 영향의 관계를 도시하는 도면이다.
도 12a는 실시예 2에 관계되는 SE 전자원에 있어서, L과 θ와 전자선에 대한 영향의 관계를 도시하는 도면이다.
도 12b는 실시예 2에 관계되는 SE 전자원에 있어서, L과 θ와 전자선에 대한 영향의 관계를 도시하는 도면이다.
도 13은 실시예 2에 관계되는 SE 전자원에 있어서, T와 L과 전자선에 대한 영향의 관계를 도시하는 도면이다.
도 14는 실시예 3에 관계되는 SE 전자원의 구성을 설명하는 도면이다.
도 15는 실시예 4에 관계되는 SE 전자원의 구성을 설명하는 도면이다.
도 16은 실시예 5에 관계되는 SE 전자원의 구성을 설명하는 도면이다.
도 17은 실시예 6에 관계되는 SE 전자원의 구성을 설명하는 도면이다.
도 18은 실시예 7에 관계되는 SE 전자원의 구성을 설명하는 도면이다.
이하, 본 발명의 전자원, 전자총, 및 전자 현미경 등의 하전 입자선 장치의 다양한 실시예를, 도면을 사용하여 순차 설명한다. 하전 입자선 장치로서, 전자선을 시료에 조사하고, 시료로부터 방출되는 2차 전자, 반사 전자, 또는 투과 전자 등을 검출함으로써 시료의 관찰 화상을 생성하는 전자 현미경이 있다. 이하, 하전 입자선 장치의 일례로서, 전자 현미경 중에서 주사 전자 현미경에 대하여 설명하지만, 본 발명은 그에 한정되지 않고, 다른 전자 현미경, 하전 입자선 장치에도 적용할 수 있다.
실시예 1
도 1에 실시예 1에 관계되는 주사 전자 현미경의 전체의 개략 구성을 도시한다. 주사 전자 현미경은, 전자원(101)으로부터 출사한 전자선(115)을 시료(112)에 주사하면서 조사하고, 시료(112)로부터 방출되는 2차 전자나 반사 전자 등을 검출기(114)로 검출하여 시료(112)의 관찰 화상을 생성한다. 이 관찰 화상은, 미소 스폿에 집광한 전자선(115)을 시료(112) 상에 주사하고, 전자선(115)이 조사된 위치와 2차 전자 등의 검출량을 관련지어서 생성한다. 도면 중에서, 전자선(115)의 출사 방향을 Z축, Z축에 직교하는 수평축을 X축으로 한다.
주사 전자 현미경은, 통체(125)와 시료실(113)을 구비하고, 통체(125)의 내부는, 위로부터 제1 진공실(126)과 제2 진공실(127), 제3 진공실(128)로 나뉜다. 각각의 진공실의 경계 부분에는 전자선(115)이 통과하는 조리개(도시하지 않음)가 있고, 각 진공실의 내부는 차동 배기로 진공으로 유지한다. 이하, 각 진공실에 대하여 장치 구성을 설명한다.
제1 진공실(126)의 내부에 전자원(101)을 배치한다. 전자원(101)에는 SE 전자원을 사용한다. SE 전자원(101)은 애자(116)로 보유 지지되고, 통체(125)와 전기적으로 절연된다. SE 전자원(101)의 하방(하류)에는, 인출 전극(102)을 대향시켜서 배치한다. 인출 전극(102)의 하방에는, 가속 전극(103)을 대향시켜서 배치한다. SE 전자원(101), 인출 전극(102), 가속 전극(103)에 의해, 전자총(104)을 구성한다. SE 전자원(101)으로부터 전자선(115)을 방출하고, 최종적으로 시료(112)에 조사함으로써 관찰 화상을 얻는다. SE 전자원(101)의 구성의 상세는 후술한다. 제1 진공실(126)은 이온 펌프(120)와 비증발 게터 펌프(118)로 진공 배기하고, 압력을 10-8Pa대의 초고진공, 보다 바람직하게는 10-9Pa 이하의 극고진공으로 한다.
제2 진공실(127)에는 콘덴서 렌즈(110)를 배치한다. 제2 진공실(127)은 이온 펌프(121)로 배기한다.
제3 진공실(128)에는, 검출기(114)를 배치한다. 제3 진공실에도 이온 펌프(도시하지 않음)를 배치하여 진공 배기한다.
시료실(113)에는, 대물 렌즈(111)와 시료(112)를 배치한다. 또한, 도시하지 않지만, 전자선(115)을 주사하기 위한 주사 편향기 등도 배치한다. 시료실(113)은 터보 분자 펌프(109)로 진공 배기한다.
여기서부터는, 상기 각 구성의 작용과, SE 전자원(101)으로부터 방출된 전자선(115)이 관찰 화상을 생성할 때까지의 공정을 설명한다.
전자총(104)의 각 전극에는, 도시하고 있지 않은 전원을 사용하여 전압이 인가된다. 인출 전극(102)에는, SE 전자원(101)에 대하여 정의 인출 전압 V1을 인가하여, SE 전자원(101)으로부터 전자선(115)을 방출시킨다. 인출 전압 V1의 크기는 전형적으로는 1kV 내지 10kV 정도, 보다 적합하게는 2kV 내지 6kV 정도로 한다. 가속 전극(103)에는, SE 전자원(101)에 대하여 0.5kV 내지 100kV 정도의 가속 전압 V0을 인가하여, 전자선(115)을 가속한다. 인출 전극(102)과 가속 전극(103) 사이에는, 전압차에 의해 정전 렌즈가 형성된다.
전자총(104)의 하방에는 콘덴서 렌즈(110)를 배치하여, 전자총(104)을 출사한 전자선(115)을 집광하고, 전자선(115)의 전류량이나 개방각을 조정한다. 또한, 콘덴서 렌즈는 복수 마련해도 되고, 기타의 진공실에 배치해도 된다. 또한, 전자원(101)부터 콘덴서 렌즈(110)까지를 전자총(104)으로 해도 된다.
마지막으로, 또한 하방의 시료실(113)에 배치한 대물 렌즈(111)로 전자선(115)을 미소 스폿에 집광하고, 도시하지 않은 주사 편향기에 의해 시료(112) 상에 주사하면서 조사한다. 이때, 시료(112)로부터는, 표면 형상이나 재질을 반영한 2차 전자나 반사 전자, X선이 방출된다. 이들을 검출기(114)로 검출함으로써, 시료의 관찰 화상을 얻는다. 검출기(114)는 복수 마련해도 되고, 시료실(113) 등, 기타의 진공실에 배치해도 된다.
이어서, 도 2에, 일반적인 주사 전자 현미경에서 사용하는 SE 전자원으로서 종래의 SE 전자원(201)의 구성을 도시한다. 종래의 SE 전자원(201)은 전자 방출재인 단결정선(이하, 팁이라고 칭한다)(202)과, 서프레서 전극(203)을 구비하여 구성된다.
팁(202)은 텅스텐 <100> 방위의 단결정선이며, 그의 직경은 0.12㎜ 정도이다. 팁(202)의 선단은 첨예화하고, 전자가 방출되는 선단 부분의 곡률 반경은 1㎛ 이하 정도로 하고 있다. 팁(202)의 단결정선의 중간 부분 등의 일부분에는 산화지르코늄을 도포한다. 팁(202)은 필라멘트(206)로 용접된다. 필라멘트(206)의 양단은, 2개의 단자(207)에 접속된다. 2개의 단자(207)는 애자(208)에 보유 지지되고, 각각 전기적으로 절연된다. 2개의 단자(207)는 SE 팁(202)과 동축 방향으로 신장하고, 도시하고 있지 않은 피드스루를 통하여 전류원에 접속된다.
이와 같은 구성에 있어서, 단자(207)에는 정상적으로 전류를 흘리고, 필라멘트(206)를 통전 가열함으로써, 팁(202)을 1500K 내지 1900K로 가열한다. 이 온도에서는, 팁(202)에 도포한 산화지르코늄이 표면을 확산 이동하여, 전자원이 되는 팁(202)의 선단 중앙에 있는 (100) 결정면을 피복한다. (100)면이 산화지르코늄으로 덮이면, 그 부분의 일함수가 저감된다. 또한, 서프레서 전극(203)의 하방에 배치한 인출 전극(102)(도 1에 도시한다)에는 전술한 바와 같이 수kV 정도의 인출 전압 V1을 인가함으로써, 첨예화된 팁(202)의 선단에는, 중심축(Z) 방향으로 108V/m 정도의 강한 인출 전계가 인가된다. 이 결과, 쇼트키 효과가 발생하여, 일함수가 더 저하된다. 이들의 결과, 가열된 팁(202)의 선단 (100)면으로부터 열전자가 방출되어, 전자선(115)이 얻어진다.
서프레서 전극(203)은 전형적인 형상으로서, 저면(평면)(205)을 갖는 컵형의 원통 금속 등이다. 그 저면(평면)(205)에는 개구부(204)가 배치된다. 서프레서 전극(203)과 개구부(204)는 동축 가공되어, 중심축이 일치한다. 이 중심축은 전자선(115)의 출사 방향과 동일한 Z축으로 한다. 팁(202)은 개구부(204)의 내부에 배치되고, 팁(202)의 선단은, 이 개구부(204)로부터 일정한 길이 T만큼 돌출시켜서 배치된다. 팁(202)의 선단 이외의 부분은 서프레서 전극(203)으로 덮인다.
서프레서 전극(203)은 애자(208)와 끼워 맞춤으로 조립되고, 보유 지지된다. 서프레서 전극(203)과 단자(207)는, 애자(208)에 의해 전기적으로 절연되어 있다.
평면(205)은 본 예에서는 중심축(Z)에 대하여 수직한 평면 부분이다. 평면(205)의 직경은 전형적으로는 4㎜ 내지 10㎜ 정도이다. 개구부(204)의 직경 d는, 전형적으로는 0.2㎜ 내지 1.2㎜ 정도, 보다 적합하게는 0.4㎜ 정도이다. 서프레서 전극(203)의 측면은, 전형적으로는 서프레서 전극(203)의 중심축(Z)과 평행한 원통면(210)을 갖고, 평면(205)과 원통면(210)의 접속부에는 모따기부(209)가 있다.
상기한 바와 같이 팁(202)의 선단은 개구부(204)로부터 길이 T만큼 돌출시켜서 배치된다. 팁(202)의 선단 돌출 길이 T는, 전형적으로는 0.15㎜ 내지 0.35㎜ 정도, 보다 적합하게는 0.25㎜ 정도이다.
서프레서 전극(203)에는, 팁(202)에 대하여 전형적으로는 -0.1kV 내지 -1.2kV, 보다 적합하게는 -300V 내지 -600V 정도의 부의 서프레서 전압 VS를 인가한다. 부의 서프레서 전압 VS가 형성하는 전계에 의해, 팁(202)의 근원이나 필라멘트(206) 등, 팁(202)의 선단부 이외의 개소로부터 방출하려고 하는 불필요한 열전자는, 방출이 억제된다. 그 결과, 불필요한 열전자에 의한 전자 빔(115)의 고휘도 성능, 고분해능 성능의 열화를 방지할 수 있다.
또한, 팁(202)의 선단과, 도 1에 도시한 인출 전극(102)의 거리는 전형적으로는 0.15㎜ 내지 1.5㎜ 정도이다. 팁(202)의 선단과 도 1에 도시한 가속 전극(103)의 거리는 전형적으로는 1㎜ 내지 50㎜ 정도이다.
여기서, 서프레서 전극(203)과 애자(208)는 끼워 맞춤으로 조립하기 때문에, 기본적으로는 팁(202)의 중심축과 서프레서 전극(203)의 개구부(204)의 중심축은 일치하도록 일체 형성된다. 그러나, 가공 형성 공정에서는, 기계 공차나, 조립 오차, 열에 의한 변형의 영향으로 어긋남이 발생한다. 이 때문에, 현실적으로는, 팁(202)의 중심축과, 개구부(204)의 중심축은, 서프레서 전극(203)의 개구부(204)에 있어서 Z축에 직교하는 방향(X축 방향 등)으로 어긋나는 경우가 있고, 그 어긋남양, 즉 팁(202)의 개구부(204)의 면 내에 있어서의 개구부(204)의 중심과 팁(202)의 어긋남양(이하, 축 어긋남양이라고 칭한다) Δ는 현실적으로는 수㎛ 내지 수십㎛ 정도가 되고, 또한 이 축 어긋남양 Δ는 전자원의 개체마다 다르다. 또한, 서프레서 전극(203)의 중심축과 개구부(204)의 중심축은 상술한 바와 같이 동축 가공되기 때문에, 이하, 팁(202)과 개구부(204)의 축 어긋남에 대해서, 팁(202)과 서프레서 전극(203)의 축 어긋남이라고 칭하는 경우가 있지만, 마찬가지의 의미이다. 이러한 축 어긋남 Δ가 발생함으로써, 전자선(115)의 궤도가 구부러진다고 하는 영향이 있고, 그 결과, 후술하는 바와 같이, 하류에 있는 렌즈의 축외를 통과하는 것에 의한 축외 수차의 발생 등의 문제가 발생한다.
이어서, 도 3을 사용하여, 팁(202)과 서프레서 전극(203)의 개구부(204)의 축이 어긋남으로써, 전자선(115)이 구부러지는 원리의 개략을 설명한다. 도 3에서는, 주사 전자 현미경에 탑재한 SE 전자원(101)에 있어서, 팁(202)의 선단 부분을 확대하여 도시하고 있다. 또한, 동일 기호의 구성은 전술 것과 동일한 구성을 의미하고, 이후의 설명은 생략한다.
도 3a는, 팁(202)과 서프레서 전극(203)의 축이 일치하는 이상적인 경우의 모식도이다. 중심축이 일치하는 경우, 후술하는 바와 같이 팁(202)의 선단으로부터 방출된 전자선(115)에는 동축상의 서프레서 전극(203)이 형성하는 Z축에 대칭인 전계 분포만이 작용하고, 전자선(115)의 진행 방향인 Z 방향만의 전계 작용을 받아서 Z 방향으로 직진하고, 구부러지는 일 없이, 중심축 상을 진행한다. 그 후, 전자선(115)은 인출 전극(102)이나 가속 전극(103)의 개구의 중심축 상을 진행하기 때문에, 축외 수차는 발생하지 않는다.
도 3b는, 팁(202)에 대하여 서프레서 전극(203)이 축 어긋남된 경우의 모식도이다. 또한, 서프레서 전극(203)은 축 어긋남 벡터(302)로 나타낸 바와 같이 서프레서 전극(203)이 도면 중에서 우방향으로 어긋난 경우를 나타내고 있다. 또한, 파선으로 나타낸 서프레서 전극(203)은 축 어긋남되어 있지 않은 경우의 위치를 나타낸다.
팁(202)과 서프레서 전극(203)의 중심축이 어긋났을 경우, 팁(202)의 전자선(115)의 방출 방향의 전방의 공간에, 후술하는 바와 같이 중심축과는 수직 방향(가로 방향)(X 방향)의 전계(301)가 발생한다. 팁(202)으로부터 방출된 전자선(115)은, 이 전계에 의해 Z축 방향뿐만 아니라 가로 방향으로도 힘을 받아, 구부러진다. 그 후, 전자선(115)은 인출 전극(102)과 가속 전극(103)으로 형성되는 정전 렌즈의 축외를 통과한다. 이 결과, 축외 수차로 전자선(115)의 궤도가 흐트러져, 시료(112) 상에 집광했을 때의 집광 직경이 커짐으로써, 주사 전자 현미경의 분해능이 악화된다. 또한, 가속 전극(103)의 하방에는 콘덴서 렌즈(110)나, 대물 렌즈(111)가 있다. 전자선(115)이 구부러짐으로써, 이들 렌즈에서도 축외 수차가 발생하여, 분해능을 악화시킨다.
전자원(101)의 축 어긋남양 Δ는 개체마다 다르기 때문에, 전자선(115)이 구부러지는 크기도 개체마다 다르다. 따라서, 전자원을 탑재한 주사 전자 현미경마다 축외 수차와 분해능이 바뀌어서, 기차가 발생한다. 주사 전자 현미경에 기차가 있으면, 예를 들어 반도체 패턴을 시료로 하여 패턴의 치수를 계측하는 것과 같은 경우에, 동일 치수의 패턴에 대하여 복수의 전자 현미경으로 계측한 경우에, 계측에 사용한 주사 전자 현미경의 기차에 따라서 다른 치수의 계측 결과가 얻어지게 되어버려, 계측의 신뢰성, 정밀도, 재현성이 저하되어버린다. 이 기차의 문제는, 반도체 패턴의 미세화에 수반하여 보다 현재화하기 쉬운 문제가 된다.
또한, 축 어긋남 Δ가 크고, 전자선(115)이 구부러지는 크기가 특히 크면, 인출 전극(102)이나 가속 전극(103)의 개구, 또는 도시하고 있지 않은 기타의 조리개를 통과할 수 없어, 시료(112)에 도달할 수 없다. 이 경우에는, 전자원, 전자총, 또는, 주사 전자 현미경의 제조 불량이 되어, 제조 비용이나 리드 타임을 증가시킨다.
상기 문제를 해결하기 위해서, 실시예 1에서는, 서프레서 전극(305)의 형상을 종래의 서프레서 전극(203)과 다른 형상으로 하였다.
도 4에, 실시예 1의 SE 전자원(101) 및 서프레서 전극(305)의 구성을 도시한다. 도 4에 도시하는 바와 같이, 실시예 1의 서프레서 전극(305)은 종래의 서프레서 전극(203)과 달리, 그의 하면(저면)인 평면(205)의 중심축(Z) 근방의 위치에, 테이퍼면(테이퍼부)(306)을 갖는다. 이 테이퍼면(306)이 작용함으로써, 후술하는 바와 같이 팁(202)과 서프레서 전극(305)이 축 어긋남된 경우에도, 전자선(115)이 구부러지지 않게 된다.
테이퍼면(306)은 중심축(Z)과 수직인 면 간에 각도(테이퍼 각도) θ를 이룬다. 테이퍼면(306)과, 평면(205)(전방 단부(213))의 접속부에는, 모퉁이부(307)가 형성된다. 테이퍼면(306)이 시작되는 위치(모퉁이부(307)의 위치에 상당한다)의 중심축으로부터 본 직경을 L로 한다. 직경 L은 평면부(205)(전방 단부(213))의 직경으로 되어 있다.
서프레서 전극(305)의 구성을 다른 표현으로 바꾸어 말하면, 다음과 같이 된다. 서프레서 전극(305)은 중심축(Z)을 갖고, 중심축(Z)을 따른 방향에 있어서의 양단부가 되는 전방 단부(213)(평면(205))와 후방 단부(214)를 구비하고, 전방 단부(213)(평면(205))에 서프레서 전극(305)과 동축상으로 개구부(204)를 구비하여 팁(202)을 배치한다. 여기서, 팁(202)의 선단부가 개구부(204)로부터 돌출시켜져서 배치되어 전자선(115)이 방출되는 방향을 전방으로 하고, 그의 반대 방향을 후방으로 하였다. 전방 단부(213)(평면(205))의 개구부(204)보다도 외주 방향의 위치에, Z 방향에 있어서 전방 단부(213)(평면(205))보다도 팁(202)의 선단으로부터 멀어지는 방향으로 후퇴한 면(후퇴부(면))(212)이 되는 테이퍼부(306)를 구비하는 구성이다.
서프레서 전극(305)은 종래의 서프레서 전극(203)과 비교하여, 평면(205)의 면 내에서 중심축(Z)의 근방부의 면을 후퇴시켜서 후퇴부(212)(테이퍼면(306))를 형성한 것이며, 평면부(205)의 직경이 종래보다도 작게 되어 있다.
중심축(Z)의 근방에 테이퍼면(306)이 존재함으로써, 팁(202)과 서프레서 전극(305)이 축 어긋남된 경우에도, 서프레서 전극(305)이 형성하는 전계 분포에 테이퍼면(306)이 작용하여, 후술하는 바와 같이 전자선(115)이 구부러지지 않게 된다. 서프레서 전극의 형상의 파라미터인 상기 직경 L과 각도 θ는, 후술하는 바와 같이 적절한 설계 범위를 갖는다.
서프레서 전극(305)은 종래의 SE 전자원(201)과 마찬가지로, 애자(208)와 끼워 맞춤으로 조립되어서 보유 지지된다.
이러한 실시예 1의 서프레서 전극의 구조에 의해 얻어지는 효과를 설명한다. 도 5a 내지 도 5d에, 실시예 1의 SE 전자원(101)에 있어서, 팁(202)과 서프레서 전극(305)이 축 어긋남되더라도, 전자선(115)이 구부러지지 않게 되는 원리를 설명하는 설명도를 도시한다. 도 5a, 도 5b는 종래형의 서프레서 전극(203)을 사용한 경우, 도 5c, 도 5d는 실시예 1의 서프레서 전극(305)을 사용한 경우의 상태를 나타내는 것이다. 그리고, 도 5a와 도 5c는 팁(202)과 개구부(204)의 축 어긋남이 없는 경우, 도 5b와 도 5d는 축 어긋남이 있는 경우를 도시하고 있다.
먼저 도 5a는, 종래의 SE 전자원(201)에 있어서, 축 어긋남이 없는 경우의 전기력선을 도시한 모식도이다. 전기력선은 공간에 발생하는 전계의 방향을 나타내는 가상적인 선이며, 전자가 받는 힘의 방향을 나타낸다.
상술한 바와 같이, 서프레서 전극(203)에는, 팁(202)이나 인출 전극(102)에 대하여 부의 전압이 인가된다. 이 결과, 팁(202)의 표면에는 복수의 양전하(401)가 발생하고, 서프레서 전극(203)의 표면에는 복수의 음전하(402)가 발생한다. 이 때문에, 전하(401)로부터 음전하(402)를 향해서, 전기력선(403)이 발생한다. 도 5a의 축 어긋남이 없는 상태에서는, 팁(202)과 서프레서 전극(203)은 중심축에 대하여 축 대칭인 구조를 갖는다. 이 경우, 중심축 상을 가로지르는 전기력선은 없어, 팁(202)의 선단으로부터 방출되는 전자선(115)에 대하여 가로 방향의 힘은 가해지지 않는다. 따라서, 전자선(115)이 구부러질 일은 없다.
도 5b는, 종래의 SE 전자원(201)에 있어서, 축 어긋남된 경우에 추가되는 전기력선을 도시한 모식도이다. 팁(202)에 대하여 서프레서 전극(203)이 어긋나는 것은, 도 5a의 상태에 새롭게 전하가 추가되는 것에 상당한다.
도 5a의 상태로부터 도 5b의 상태로, 서프레서 전극(203)이 축 어긋남 벡터(302)로 표시되는 방향, 즉 도면 중에서 우측 방향으로 약간의 양(축 어긋남양 Δ) 어긋난 것으로 한다. 또한, 도 5b 중의 파선은 축 어긋남되기 전의 서프레서 전극(203)의 위치, 실선은 축 어긋남된 후의 서프레서 전극(203)의 위치를 나타낸다. 또한, 축 어긋남양 Δ는, 엄밀하게는 개구부(204)의 면 내에 있어서의 서프레서 전극의 개구부(204)의 중심축과 팁(202)의 중심축의 어긋남으로서 정의했지만, 거의 마찬가지의 양으로서, 도 5 등에 있어서는 개구부(204)의 개구단부가 축 어긋남 전의 상태로부터 축 어긋남된 상태로 위치가 변화(변위)했을 때의 변위량으로서 간이적으로 도시하고 있다.
개구부(204)에 있어서, 서프레서 전극(203)이 팁(202)에 근접하는 공간 영역(406)에 착안한다. 이 공간 영역으로 서프레서 전극(203)이 이동하는 것은, 축 어긋남에서 이 공간에 새로운 음전하(405)가 추가되는 것과 등가이다. 또한, 공간 영역(406)의 도면 중 좌측의 공간은, 서프레서 전극(203)의 내부로 되기 때문에 전하는 발생하지 않는다. 이 때문에, 축 어긋남 전에 있었던 음전하(402)를 제거하는 양전하(420)도 추가된다. 또한, 공간 영역(406)에서는, 서프레서 전극(203)과 팁(202)의 거리가 가까워진다. 이 때문에, 정전 용량이 커져서, 축 어긋남 전과 비교하여, 이 공간의 음전하량이 증가한다. 즉, 양전하(420)와 비교하여, 음전하(405)의 수가 많아진다.
한편, 개구부(204)에 있어서, 서프레서 전극(203)이 팁(202)으로부터 이격되는 공간 영역(407)에 착안한다. 이 공간 영역으로부터 서프레서 전극(203)이 없어지는 것은, 이 부분에 새로운 양전하(404)를 추가하여, 축 어긋남 전에 있었던 음전하(421)를 제거하는 것과 등가이다. 또한, 공간 영역(407)의 도면 중 우측은, 새롭게 서프레서 전극(203)의 표면이 되는 것으로부터, 여기에 음전하(422)가 추가된다. 또한, 공간 영역(407)에서는, 서프레서 전극(203)과 팁(202)의 거리가 이격된다. 이 때문에, 정전 용량이 줄어들어, 축 어긋남 전과 비교하여, 이 공간의 음전하량이 줄어든다. 즉, 음전하(422)와 비교하여, 양전하(404)의 수가 많아진다.
이와 같이, 서프레서 전극(203)이 축 어긋남되는 것은, 도 5a에 도시한 축 어긋남이 없는 상태에서의 전하 분포에, 도 5b에 도시한, 음전하(405)와 양전하(420), 및 양전하(404)와 음전하(422)를 추가하는 것과 등가이다.
여기서, 도 5b에 있어서, 양전하(404)와 음전하(405)가 서프레서 전극(203)의 진공측 표면에 노출되고, 또한 전하량이 많아, 진공 영역에 가장 강하게 전계를 만든다. 이 결과, 팁(202)의 전방에, 양쪽 전하를 연결시키는 새로운 전기력선(408)이 발생한다. 전기력선(408)은 중심축을 가로지르도록 횡방향(도면 중의 X 방향)으로 발생하고, 팁(202)으로부터 방출되는 전자선에 힘을 가한다. 이 결과, 전자선은 도면 중에서 우측으로 구부러진다. 이것이, 서프레서 전극(203)의 축 어긋남에 의해 구부러지는 원리이다.
도 5c는, 실시예 1의 SE 전자원(101)에 있어서, 축 어긋남이 없는 경우에서의 전기력선을 도시한 모식도이다. 실시예 1의 SE 전자원(101)은 서프레서 전극(305)의 하면의 축 근방에 테이퍼면(306)을 갖는다. 축 어긋남이 없는 경우, 도 5a와 마찬가지로, 축 대칭으로 양전하(401)와 음전하(402)가 생겨서, 전기력선(403)이 발생한다. 이 경우에도, 중심축을 가로지르는 전기력선이 발생할 일은 없어, 전자선(115)이 구부러질 일은 없다.
도 5d는, 실시예 1의 SE 전자원(101)에 있어서, 도면 중의 우측으로 축 어긋남양 Δ만큼 축 어긋남된 경우에 추가되는 전기력선을 도시한 모식도이다. 실시예 1의 SE 전자원(101)에서는, 테이퍼면(306)을 마련함으로써, 테이퍼면에도 전하를 발생시켜, 전기력선(408)과는 역방향의 전기력선(412)을 발생시킨다. 이 결과, 전자선을 구부리는 힘을 완화함과 함께, 나아가, 전자선을 구부려 복귀시키는 힘을 발생시킨다. 또한, 도면 중의 파선은 도 5c에 도시한 경우와 마찬가지의 축 어긋남되기 전의 서프레서 전극(305)의 위치, 실선은 축 어긋남된 후의 서프레서 전극(305)의 위치를 나타낸다.
도 5d에 대해서, 더 자세하게 설명한다. 실시예 1의 SE 전자원(101)에 있어서도, 팁(202)과 서프레서 전극(305)이 축 어긋남된 경우, 개구부(204)에 있어서, 새로운 양전하(404)와 음전하(422), 및 새로운 음전하(405)와 양전하(420)가 발생하여, 전기력선(408)이 발생한다.
여기서, 실시예 1의 SE 전자원(101)에서는, 테이퍼면(306)에도 축 어긋남에 의해 등가인 전하가 발생한다. 테이퍼면(306)이 팁(202)에 근접하는 공간 영역(413)에 착안한다. 이 공간에 있었던 서프레서 전극(305)이 없어지는 것은, 여기에 새로운 양전하(410)를 추가하여, 축 어긋남 전에 있었던 음전하(402)를 제거하는 것과 등가이다. 또한, 공간 영역(413)의 도면 중의 우측의 공간은, 새롭게 테이퍼면(306)의 표면이 되는 것으로부터, 여기에 음전하(423)가 추가된다. 또한, 공간 영역(413)에서는, 테이퍼면(306)이 팁(202)에 근접한다. 이 결과, 팁(202)이 테이퍼면(306)에 부여하는 전계의 영향이 증가하고, (도시하지 않은) 인출 전극(102)이 테이퍼면(306)에 부여하는 전계의 영향이 줄어든다. 팁(202)과 비교하여, 인출 전극(102)에 인가하는 전압이 높은 것으로부터, 테이퍼면(306)의 전계는 줄어들게 된다. 즉, 음전하(423)와 비교하여 양전하(410)의 수가 많아진다.
한편, 테이퍼면(306)이 팁(202)으로부터 이격되는 공간 영역(414)에 착안한다. 이 공간으로 서프레서 전극(305)이 이동하는 것은, 여기에 새로운 음전하(411)를 추가하는 것과 등가이다. 또한, 공간 영역(414)의 좌측은, 서프레서 전극(305)의 내부로 되는 것으로부터, 축 어긋남 전에 있었던 음전하를 제거하는 양전하(424)가 추가된다. 또한, 공간 영역(414)에서는, 테이퍼면(306)이 팁(202)으로부터 이격된다. 이 결과, 팁(202)이 테이퍼면(306)에 부여하는 전계의 영향이 줄어들고, 도시하지 않은 인출 전극(102)이 테이퍼면(306)에 부여하는 전계의 영향이 증가한다. 팁(202)과 비교하여, 인출 전극(102)에 인가하는 전압이 높은 것으로부터, 테이퍼면(306)의 전계가 증가한다. 즉, 양전하(424)와 비교하여, 음전하(411)의 수가 많아진다.
이와 같이, 테이퍼면(306)의 표면에 있어서, 공간 영역(413)에서는 양전하(410)가 많고, 공간 영역(414)에서는 음전하(411)가 많게 된다. 이 결과, 양자를 연결시키는 새로운 전기력선(412)이 발생한다. 전기력선(412)은 개구부(204)가 발생하는 전기력선(408)과 역방향이 된다. 이것은, 개구부(204)에서 발생하는 전계를 약화시키는 것으로 되어, 전기력선(408)이 미치는 힘을 저감하여, 전자선을 구부러지기 어렵게 할 수 있다.
또한, 테이퍼면(306)에 발생하는 양전하(410)와 음전하(411)의 전하량이 클수록, 또는, 양전하(410)와 음전하(411)의 거리가 가까울수록, 양자가 만드는 전계가 강해져, 전기력선(412)이 미치는 힘도 강해진다. 그래서, 전하량과 거리를 적절한 양으로 함으로써 전기력선(408)에 의해 구부러진 전자선을, 전기력선(412)으로 구부려 복귀시켜서, 전자선을 중심축 상에 복귀시킬 수도 있다.
한편, 전하량을 과잉으로 너무 크게 하거나, 또는 거리를 과잉으로 너무 가깝게 하면, 전기력선(412)의 힘이 전기력선(408)의 힘보다도 너무 강해져서, 전자선이 도면 중의 왼쪽으로 구부러지게 된다. 전기력선(412)의 힘이 과잉일 경우, 종래의 서프레서 전극(203)이 축 어긋남된 경우에 비하여, 전자선이 구부러지는 정도가 커져서, 종래보다도 축 어긋남의 영향이 커서, 문제가 도리어 악화되게 된다.
테이퍼면(306)에 발생하는 양전하(410)와 음전하(411)의 전하량, 및 양쪽 전하의 거리는, 도 4에 도시한 테이퍼면(306)의 개시 위치의 직경 L과, 테이퍼면(306)의 각도 θ에 의해 결정된다. 직경 L은, 테이퍼면(306)에 발생하는 정과 부(-)의 전하 간의 거리를 결정한다. 각도 θ는, 테이퍼면(306)과 그의 모퉁이부(307)의 전계 집중의 정도를 정하고, 테이퍼면(306)과 모퉁이부(307)에 발생하는 전하량을 정한다. 따라서, 축 어긋남되더라도 전자선이 구부러지지 않도록 하기 위해서는, 직경 L과 각도 θ를 적절한 범위에서 설계할 필요가 있다.
여기서, 면에 발생하는 전하가 만드는 전계는, 정과 부(-)의 전하 간의 거리, 즉 면 간의 거리에 반비례하여 약해진다. 따라서, 테이퍼면(306)에 의해 중심축 상에 충분한 전계를 발생시키기 위해서는, 테이퍼면(306)을 중심축 근방에 배치할 필요가 있다. 즉, 직경 L을 일정한 거리 이하로 할 필요가 있다. 또한, 종래의 서프레서 전극(203)에서는, 모따기부(209)가 배치되어 있기는 하지만, 통상적으로는 서프레서 전극(305)의 모퉁이부의 전계 집중을 피하는 등의 목적으로 하는 것이고, 모따기부(209)의 개시 위치의 직경, 즉 평면(205)의 직경 L에 대해서는 고려되어 있지 않고, 전형적으로는 4㎜ 이상의 큰 직경을 갖는다. 이와 같이 직경 L이 큰 경우, 평면(205)의 외측에 어떤 구조를 마련하더라도, 이 구조가 중심축 상에 만드는 전계는 매우 작아, 전자선(115)에 영향을 미칠 일은 없다. 이 때문에, 종래의 서프레서 전극(203)에 있어서 모따기부(209)가 어떤 형상이나 각도이더라도, 그의 영향은 없다. 평면(205)의 직경이, 이와 같이 큰 경우, 개구부(204)가 만드는 전계만으로 가로 방향의 전계와 전자선(115)의 구부러지는 형태가 결정된다.
또한, 상술한 전자선(115)이 구부러지지 않게 되는 원리는, 중심축 근방에 도 4와 다른 형상을 마련함으로써도 실현할 수 있다. 도 5d에 도시한 구성은, 본질적으로는, 서프레서 전극(305)의 개구부(204)보다도 외주 방향으로, 서프레서 전극의 최하면(205)(전방 단부(213))보다도 후방(도면 중 상방)을 향하는 면(후퇴부(면)(212))을 중심축 근방의 위치에 마련함으로써, 축 어긋남 시에 여기에 전하가 발생하여, 반대 방향의 전계를 발생시키는 것이다. 이 결과, 개구부(204)가 형성하는 전계를 제거하고, 나아가 전자선을 구부려 복귀시킴으로써, 전자선(115)이 구부러지지 않게 된다. 다른 표현을 하면, 팁(202)으로부터 시료를 향하는 방향을 전방, 역방향을 후방으로 하고, 서프레서 전극(305)의 개구부(204)보다도 외주 방향으로, 중심축(Z) 근방의 위치에, 서프레서 전극(305)의 최전면(전방 단부)(213)보다도 후방으로 후퇴한 면(후퇴면)(실시예 1에서는 테이퍼부(306)), 즉 팁(202)의 선단으로부터 중심축 방향으로 전방 단부(213)보다도 이격된(멀어지는) 부분을 후퇴부(212)의 일부로서 마련한다. 이 결과, 축 어긋남 시에 개구부(204)가 발생하는 전계와 반대 방향의 전계를, 이 후퇴면(212)의 중심축 근방 부분(실시예 1에서는 테이퍼부(306))이 발생시킨다. 이 결과, 전자선이 구부러지는 것을 방지할 수 있다.
도 4의 테이퍼(306) 이외의 후퇴면의 예로서, 스텝상의 단(θ=90도(°)에 상당)이나, 공이나 타원 등의 곡면, 복수의 테이퍼나 단, 곡면을 조합한 면이어도 된다. 또한, 스텝상의 단은 테이퍼 각도 90°의 테이퍼부, 공이나 타원 등의 곡면은 연속적으로 변화하는 무수한 다른 테이퍼 각도의 미소 부분에 의해 형성되는, 일종의 테이퍼부라고 생각할 수도 있다. 이들 기타의 형상은 다른 실시예로서 후술한다.
여기서부터는, 서프레서 전극(305)의 형상 파라미터 L, θ, 및 서프레서 전극(305)과 팁(202)의 축 어긋남양 Δ과 전자선(115)의 궤도 구부러짐양(도 5에 있어서의 X 방향의 변위)의 관계 및 서프레서 전극(305)의 형상 파라미터의 적절한 설계 범위에 대하여 설명한다.
먼저, 도 6에, 실시예 1의 SE 전자원(101)에 있어서 테이퍼면(306)의 각도 θ가 전자선(115)에 부여하는 가로 방향의 구부러짐(X 방향의 변위)에 대한 영향의 일례를 도시한다.
도 6a는, 테이퍼면(306)의 각도 θ를 0°로부터 14°까지 바꾸었을 경우에, 중심축(Z) 상에 발생하는, 중심축과는 수직인 방향(X 방향, 가로 방향)의 전계 Ex를 계산한 결과이다. 여기서, 팁(202)의 중심축을 Z축, 그 수직 방향을 X축으로 하고, 팁(202)의 선단 표면을 Z=0, 시료측을 Z>0으로 하였다. 계산 조건의 일례로서, 서프레서 전극(305)의 전방 단부(213)(평면(205))의 직경 L, 팁(202)의 돌출 길이 T, 개구부(204)의 직경 d, 팁(202)과 서프레서 전극(305)의 축 어긋남양 Δ를 각각 L=800㎛, T=250㎛, d=400㎛, Δ=1㎛로 하고, 팁(202)의 전위를 0V, 인출 전압 V1을 2kV로 하였다. 또한, 서프레서 전압 VS는, 팁(202)의 선단에 가해지는 중심축 방향(Z 방향)의 전계가, 각 형상에서 동등해지도록 조정하였다. 가로 방향의 전계 Ex는, θ=0°인 때의 최대 전계의 절댓값을 1로서 규격화하였다. 또한, θ=0°은, 테이퍼면(306)이 없는 조건이며, 종래의 서프레서 전극(203)의 형상이다. 또한, 상기 계산 조건은, 상술한 바와 같이 일례이며, 각종 파라미터(계산 조건)가 변화한 경우에 대해서도 후술하는 바와 같이 전자선의 구부러짐을 저감하는 효과의 경향을 고찰할 수 있다.
θ=0°의 경우, 팁(202)의 선단 부근에서 Ex=-1의 최대 전계가 발생하고, Z가 커짐에 따라서 전계가 저하되었다. Z=800㎛ 부근에서 Ex는 거의 0이 되었다. θ를 2°로 하면, 팁(202) 선단의 전계가 저하되었다. θ를 6°, 10°, 14°로 크게 하면, 팁(202) 선단의 전계가 서서히 약해지는 데다가, Z=200㎛ 부근을 정점으로 하여 +측의 전계가 발생하였다. 전계의 정부가 역전하고 있는 것으로부터, 이 +측의 전계는, 팁 근방에서 한번 구부러진 전자선을 되돌리도록 작용한다.
도 6b는, 테이퍼면(306)의 각도 θ를 0°로부터 14°까지 바꾸었을 경우의, 전자선의 궤도의 계산 결과이다. Z축 상의 거리 Z에 대한 전자선의 궤도의 X 방향의 위치(변위량 혹은 이축(離軸) 거리 X)를 나타내는 것이다. 횡축 Z에 대한 종축 X의 변화율(dX/dZ)은 전자선의 궤도의 기울기가 된다. 또한, 도면에서는 Z는 20㎜까지 표기하고, 하류에 있는 가속 전극(103) 부근까지 도시하였다. 또한, 종축 X는, θ=0°의 종래의 서프레서 전극에 있어서, Z=20㎜에서의 전자선의 이축 거리 X를 1로서 규격화하였다. 서프레서 전극(305)의 형상 등의 파라미터는 도 6a와 마찬가지이다.
θ=0°의 종래의 서프레서 전극의 경우, 전자선은 +측으로 구부러지고, Z가 커짐에 따라서 중심축으로부터 이축한다. θ를 크게 함에 따라서 전자선의 기울기(dX/dZ)는 저감되고, 이축량 X도 저감된다. Z=20㎜에 있어서의 전자선의 기울기(dX/dZ)를 종래와 비교하면, θ=2°, 6°, 10°의 기울기는 각각, 80%, 39%, 0.1%이다. 즉 θ=10°의 경우, 팁(202)과 서프레서 전극(305)이 축 어긋남되더라도 전자선이 거의 구부러지지 않는 상태가 된다. 전자선이 구부러지지 않는 것에 의해, 전자선은 중심축 상을 진행하여, 정전 렌즈나 기타의 렌즈에서 축외 수차가 발생하지 않게 된다. 한편, θ=14°에서는, 전자선을 구부려 복귀시키는 힘이 너무 강해져서, 전자선은 -측으로 기울었다. θ를 더욱 크게 하면 전자선은 더욱 -측으로 기울어, 전자선의 구부러짐양은 종래보다도 악화되는 경우가 있다. 이와 같이, 종래보다도 전자선의 구부러짐을 저감하기 위해서는, θ를 일정한 범위 내로 할 필요가 있다.
이어서, 도 7을 사용하여, 실시예 1의 SE 전자원(101)에 있어서, 팁(202)과 서프레서 전극(305)의 축 어긋남양 Δ가 커진 경우의 영향의 일례를 설명한다.
도 7a에, 종래의 서프레서 전극(203)을 사용한 SE 전자원(201)에 있어서, 축 어긋남양 Δ가 1㎛로부터 20㎛로 증가한 경우, 중심축(Z) 상에 발생하는, 중심축과는 수직인 방향(X 방향, 가로 방향)의 전계 EX를 계산한 결과를 나타낸다. 또한, 가로 방향의 전계 EX는, 축 어긋남 Δ=1㎛의 경우의 최대 전계의 절댓값을 1로서 규격화하였다.
EX는 축 어긋남양 Δ에 거의 비례하여 증가하고, 그 분포는 상사형이 되었다. 축 어긋남양 Δ=1㎛, 5㎛, 10㎛, 20㎛에서의 EX의 최댓값의 절댓값은 1, 5, 10, 20이 되었다. 따라서, 축 어긋남양 Δ에 비례하여 횡방향의 전계 EX가 커져서, 전자선이 크게 구부러진다.
도 7b는, 실시예 1의 서프레서 전극(305)을 사용한 SE 전자원(101)에 있어서, θ=10°의 조건에서 축 어긋남양 Δ가 증가한 경우의 가로 방향 전계 EX의 계산 결과이다. 또한, 기타의 계산에 사용한 조건은 도 6에서 설명한 조건과 동일하다.
실시예 1의 SE 전자원(101)에 대해서도, 축 어긋남양 Δ에 비례하여 EX가 증가하고, 그 분포는 상사형이 되었다. 단, 실시예 1의 SE 전자원(101)에 있어서는, 축 어긋남양 Δ에 비례하여, Z=200㎛ 부근에 정점을 갖는 +측의 전계도 증가하였다. 이 결과, 축 어긋남양 Δ가 증가하더라도, 그에 따라 전자선을 구부려 복귀시키는 힘도 증가하여, 전자선이 구부러지지 않는 상태가 유지된다.
도 7c에, 종래의 SE 전자원(201)과, 실시예 1의 SE 전자원(101)에 대해서, 축 어긋남양 Δ를 횡축으로 하고, Z=20㎜의 위치에 있어서의 전자선의 기울기(dX/dZ)를 종축에 나타내었다. 도 7c의 실시예 1의 서프레서 전극(305)의 형상은 도 7b와 마찬가지이다. 또한, 종축의 전자선의 기울기(dX/dZ)는 종래의 서프레서 전극(203)을 사용한 SE 전자원(201)에 있어서, 축 어긋남양 Δ=1㎛에서의 Z=20㎜에 있어서의 기울기를 1로서 규격화하였다.
종래의 서프레서 전극(203)에서는, 축 어긋남양 Δ에 비례하여 전자선의 기울기(dX/dZ)가 커졌다. 한편, 실시예 1의 서프레서 전극(305)에서는, 축 어긋남양 Δ가 증가하더라도, 전자선의 기울기는 거의 0이 되었다. 이와 같이, 실시예 1에 의한 서프레서 전극(305)이 축 어긋남되더라도, 전자선(115)이 구부러지지 않는 상태를 실현할 수 있다.
또한, 종래에는 팁(202)과 서프레서 전극(203)의 축 어긋남양이 일정 이하로 되도록, 전자원의 조립 공정에 있어서 기준을 마련하고, 품질 관리를 행하였다. 그리고, 제조된 전자원 중, 축 어긋남양 Δ를 일정 이하로 할 수 없었던 개체는 제조 불량이 되어 있었다. 한편, 실시예 1의 서프레서 전극(305)을 사용함으로써 축 어긋남양 Δ가 크더라도 전자선(115)이 구부러질 일이 없기 때문에, 조립 공정의 기준을 대폭으로 완화시킬 수 있다. 이것은, 전자원의 제조 비용의 저하나, 수율 향상, 리드 타임 저감 등의 효과가 있다.
이상의 결과를 근거로 하여, 실시예 1의 서프레서 전극(305)의 형상의 적절한 설계에 대하여 또한 검토한다.
도 8을 사용하여, 실시예 1의 서프레서 전극(305)을 사용한 SE 전자원(101)에 있어서, 적절한 L과 θ의 관계를 설명한다. 도 8a에, 실시예 1의 서프레서 전극(305)에 있어서, L과 θ를 바꾸었을 경우에 얻어지는 Z=20㎜에 있어서의 전자선(115)의 기울기(dX/dZ)를 계산한 결과를 나타낸다. 횡축을 L, 종축을 θ로 하여 동일한 전자선의 기울기가 되는 점을 연결한 등고선을 표시하고 있다. 또한, 전자선의 기울기는, 종래의 서프레서 전극(203)을 사용한 종래의 SE 전자원(201)의 전자선의 기울기와 비교한 퍼센티지로 나타냈다. 도면 중의 90%, 50%, 0%, -50%, -90%의 선은, 종래의 SE 전자원(201)과 비교하여, 전자선의 기울기가 90%, 50%, 0%, -50%, -90%가 되는 것을 나타낸다. -가 나타내는 의미는, 종래와 비교하여 전자선의 기울기가 역전되는 것을 나타낸다. 계산에 사용한 기타의 조건은 도 6과 동일하다.
실시예 1의 SE 전자원(101)은 원리적으로, L을 짧게 할수록, 또는, θ를 크게 할수록, 테이퍼면(306)이 만드는 전계가 강해진다. 반대로, 과잉으로 L이 크거나, 또는, 과잉으로 θ가 작은 경우, 테이퍼면(306)이 만드는 전계는 매우 약해져서, 종래와 비교하여 전자선의 기울기를 저감하는 효과는 무시할 수 있을 만큼 작아진다. 한편, 과잉으로 L이 작거나, 또는, 과잉으로 θ가 큰 경우, 테이퍼면(306)이 만드는 전계는 매우 커져서, 종래와 비교하여 전자선의 기울기는 역방향으로 매우 커진다. 이 경우, 종래의 SE 전자원(201)과 비교하여, 전자선이 역방향으로 크게 구부러지게 된다. 따라서, 직경 L과 각도 θ는 적절한 범위 내에서 설계할 필요가 있다.
실시예 1의 서프레서 전극(305)을 사용한 SE 전자원(101)의 효과로서, 전자선(115)의 기울기의 절댓값이 종래보다도 10% 이상 저감되는 것, 즉, 기울기의 절댓값이 종래의 90% 이하로 되는 것을 역치로 하면, L과 θ는, 도 8a에서 도시한 90% 내지 -90%의 선으로 둘러싸인 범위 내에서 설계하는 것이 바람직하다.
보다 적합하게는, 전자선(115)의 기울기의 절댓값이 종래보다도 50% 이상 저감하는 것, 즉, 기울기의 절댓값이 종래의 50% 이하로 되는 것을 역치로 하면, L과 θ는 도 8a에 도시한 50% 내지 -50%의 선으로 둘러싸인 범위 내에서 설계하는 것이 바람직하다.
더욱 적합하게는, 전자선(115)의 기울기가 종래의 0%가 되는 것, 즉, 전자선이 전혀 구부러지지 않게 되도록 하기 위해서는, 도 8a에서 도시한 0%의 선 상의 조건에서 설계하는 것이 바람직하다.
테이퍼면(306)의 각도 θ는, 적합하게는 90°이 최대이다. θ=90°인 때, 테이퍼면(306)의 형상은, 테이퍼가 아니라 스텝상의 단으로 간주할 수 있다. 도 8a에 도시한 바와 같이, θ=90°의 조건에 있어서, 전자선의 기울기를 종래 90%로 하는 L은 약 2540㎛이다. 기타의 θ에서는, 테이퍼면(306)이 만드는 전계가 약해지는 것으로부터, 90%의 기울기를 얻기 위해서는 L을 이 값보다도 작게 할 필요가 있다. 따라서, 어느 각도이든, 90% 이하의 전자선의 기울기를 얻기 위해서는, L을 2540㎛ 이하로 할 필요가 있다. 이것이 테이퍼면(306)을 축 근방에 배치할 때의 하나의 기준이 된다.
마찬가지로, θ=90°의 조건에 있어서, 전자선의 기울기를 종래의 50%로 하는 L은 약 1940㎛이다. 따라서, 어느 각도이든, 50% 이하의 전자선의 기울기를 얻기 위해서는, L을 1940㎛ 이하로 할 필요가 있다.
마찬가지로, θ=90°의 조건에 있어서, 전자선의 기울기를 0%로 하는 L은 1650㎛이다. 따라서, 어느 각도이든, 0%의 전자선의 기울기를 얻기 위해서는, L을 1650㎛ 이하로 할 필요가 있다.
도 8b는, 도 8a의 종축을 logθ로 한 도면이다. 또한, θ의 단위는 도(°), L의 단위는 ㎛이다. 90%, 50%, 0%, -50%, -90%의 선은, 종축을 logθ로 함으로써 이하의 각각의 2차 함수로 근사된다.
90%, 50%, 0%, -50%, -90%의 선은, 순서대로, 이하와 같이 표현된다.
logθ=2.40×10-7×L2+3.18×10-4×L-4.08×10-1
logθ=3.80×10-7×L2+6.77×10-5×L+3.92×10-1
logθ=4.96×10-7×L2-8.31×10-5×L+7.43×10-1
logθ=5.86×10-7×L2-1.81×10-4×L+9.49×10-1
logθ=6.68×10-7×L2-2.68×10-4×L+1.08
따라서, 실시예 1의 SE 전자원(101)은 상기 식으로 둘러싸인 범위 내의 L과 θ를 사용하여 설계하는 것이 기타의 하나의 기준이 된다. 예를 들어, 전자선의 기울기를 종래의 90%로부터 -90%로 저감하는 경우에는, 상기 90%와 -90%의 경우의 식을 사용하여, 2.40×10-7×L2+3.18×10-4×L-4.08×10-1≤logθ≤6.68×10-7×L2-2.68×10-4×L+1.08의 관계를 충족하도록 설계하면 된다.
여기서, 도 8a와 도 8b에 도시한 적절한 범위는, 팁의 돌출 길이 T나, 개구부(204)의 직경, 팁이나 인출 전극의 형상, 서프레서 전압, 인출 전압 등의 기타의 조건에 따라, +-20% 정도 변화한다. 또한, 이들 여러 조건마다 경우 분류를 하여 기준을 마련하는 것은 어렵다. 이 때문에, 상기 범위는 엄밀하지 않고, 일정한 우도를 갖고, 변화하는 경우가 있음을 유의해야 한다.
일례로서, 본 계산은, 팁(202)의 돌출 길이 T=250㎛의 결과인데, 돌출 길이에 반비례하여, 가로 방향의 전계(301)의 영향은 증감한다. 이 결과, 전자선이 구부러지는 정도가 변화하고, 적절한 L과 θ의 범위도 변화한다. T가 200㎛ 내지 300㎛ 정도의, 250㎛에 가까운 값이면, 약 도 8에 도시한 L과 θ의 범위 내에서 설계함으로써, 종래보다도 전자선의 기울기를 저감할 수 있다. 그러나, 돌출 길이 T가 이 범위로부터 벗어났을 경우, 적절한 L과 θ는 도 8의 범위에서는 불충분하게 된다. 이들 돌출 길이가 다른 경우에 대해서는 후술한다.
본 계산은, 개구부(204)의 직경이 400㎛의 결과인데, 그 밖의 일례로서, 개구부(204)의 직경을 보다 크게 한 경우, 인출 전극(102)이 개구부(204)에 부여하는 전계의 영향이 강해져, 양전하(404)와 음전하(405)의 전하량이 증가한다. 이 결과, 전자선(115)이 보다 크게 구부러지게 된다. 이때, 전자선(115)이 구부러지는 것을 방지하기 위해서는, 도 8에 도시한 범위보다도 각도 θ를 크게, 직경 L을 작게 할 필요가 있다. 전술한 것과 동일한 계산을 행함으로써, 예를 들어, 개구부(204)의 직경이 600㎛인 경우, 직경 L은 약 20% 작게 할 필요가 있음을 알았다.
이어서, 실시예 1의 서프레서 전극(305)을 사용한 SE 전자원(101)에 필요한 서프레서 전압에 대하여 설명한다. 도 9에 θ=10°의 조건에서 직경 L을 바꾸었을 경우에 있어서, 팁(202)의 선단에 걸리는 중심축 방향(Z 방향)의 전계를, 종래와 동일하게 하기 위하여 필요한 서프레서 전압을 계산한 결과를 도시한다. 기타의 계산 조건은 도 6과 동일하다. 또한, 종축은, 종래의 서프레서 전극(203)을 사용한 SE 전자원(201)에 인가하는 서프레서 전압을 1로서 정규화하였다.
실시예 1의 서프레서 전극(305)은 테이퍼면(306)과 같은 후퇴면(212)을 중심축의 근방에 갖는 것에 의해, 서프레서 전극(305)의 본래 목적인 팁(202)의 선단에 가해지는 중심축 방향(Z 방향)의 전계를 억제하는 효과는 약해져버린다. 즉, 팁(202)의 선단에 걸리는 중심축 방향의 인출·가속 전계가 강해진다. 이 경우, 서프레서 전극의 기능인 불필요한 전자를 억제하는 효과가 저하되어, 종래보다도 과잉으로 불필요한 전자가 방출되는 문제가 발생한다. 이의 대책을 위해, 실시예 1에서는, 종래보다도 서프레서 전압 VS를 높게 하고, 팁(202)의 선단 중심축 방향의 전계를 종래와 동일하게 할 필요가 있다.
도 9에서 도시한 L=400㎛의 계산 결과는, 테이퍼면(306)의 개시 위치를 개구부(204)의 하면과 일치시킨 조건이며, 평면(205)이 없는 형상을 의미한다. 이 경우, 필요한 서프레서 전압은 1.54가 되어, 종래보다도 54% 전압을 높여야만 한다. 이것은 전원 비용의 증가나, 애자(208) 연면에서의 방전의 위험성이 증가한다는 과제가 발생한다. 또한, 개구부(204)와 테이퍼면(306)의 개시 위치가 일치하는 것으로부터, 이 점에 전계가 집중되어, 인출 전극(102)과의 사이에서 공간 방전될 위험성이 증가한다. 이들 방전이 일어났을 경우, 팁(202)의 선단이 용손되어, 전자원은 사용할 수 없게 된다. 또한, 통상적으로, 팁의 돌출 길이 T는 평면(205)을 기준면으로 하여, 실체 현미경 하에서 조정하여 조립하는데, 평면(205)이 없어짐으로써, 이 돌출 길이의 조정이 어려워져서, 수율의 악화나, 제조 비용이 증가하는 문제가 발생한다.
도 9에서 도시한 바와 같이, 직경 L을 400㎛보다도 크게 하는, 즉 평면(205)의 직경을 크게 함으로써 필요한 서프레서 전압이 저감한다. 또한, 상기 평면(205)이 없는 경우의 문제를 해소할 수 있다. 특히 도 9에 도시한 그래프는 아래로 볼록하게 되어 있어, 조금 L을 크게 함으로써 필요한 서프레서 전압을 크게 저감할 수 있다는 이점이 있다.
L의 크기의 하나의 기준으로서, L=400㎛의 경우에 필요한 서프레서 전압의 증가량 54%의 절반인 27% 이하로 하는, 즉, 도 9의 종축에서 1.27 이하로 하는 것을 역치로 하면, 이것을 실현하는 L은 720㎛ 이상이다. 따라서, L을 720㎛ 이상으로 함으로써, 평면(205)이 없는 경우에 비하여, 필요한 서프레서 전압의 증가를 절반 이하로 할 수 있다. 이와 같이, 개구부(204)의 직경 d가 400㎛ 정도인 전형적인 서프레서 전극에 있어서, L을 720㎛ 이상으로 하는 것이 하나의 지침으로서 얻어졌다.
보다 적합하게는, L=400㎛의 경우에 필요한 서프레서 전압의 증가량 54%를 3분의 1인 18% 이하(종축에서 1.18 이하)로 하는 것을 역치로 한다. 이것을 실현하는 L은 910㎛ 이상이다. 따라서, L을 910㎛ 이상으로 함으로써, 평면(205)이 없는 경우와 비교하여 필요한 서프레서 전압의 증가를 3분의 1 이하로 할 수 있다.
L을 2000㎛ 이상으로 하면, 필요하게 되는 서프레서 전압은 1.01 이하가 되어, 종래와 거의 다름없게 된다. 단, 상술한 바와 같이 테이퍼면(306)이 발생시키는 전계는 L에 반비례하여 작아진다. 이 때문에, L을 크게 하여 필요한 서프레서 전압을 낮추는 것과, 전자선의 굽힘을 방지하는 것은, 트레이드오프의 관계가 된다. 설계자는, 전체의 장치 설계를 감안하여, 전자선의 구부러짐양의 허용값과 서프레서 전압의 증가의 허용값을 정하고, 이것을 바탕으로, 적절한 L을 결정한다. 그 후, θ를 결정하고, 원하는 범위 내에 전자선의 구부러짐을 저감한다. 또는, 팁(202)과 서프레서 전극(305)의 중심축의 조립 오차의 조정 기준을 완화한다.
본 계산은 θ=10°에 대하여 행하였지만, 기타의 각도 θ에 대해서도 마찬가지의 계산을 행한 결과, 도 9와 상사인 계산 결과가 되었다. 따라서, 기타의 θ에 있어서도, 상술한 L을 720㎛ 이상으로 함으로써, 그 θ에서의 평면(205)이 없는 경우에 비하여, 필요한 서프레서 전압의 증가는 절반 이하로 할 수 있다. 또한, L을 910㎛ 이상으로 함으로써, 그 θ에서의 평면(205)이 없는 경우에 비하여, 필요한 서프레서 전압의 증가를 3분의 1 이하로 할 수 있다.
실시예 2
실시예 1에서는, 팁(202)의 돌출 길이 T가 200㎛ 내지 300㎛ 정도의 조건에 있어서, 서프레서 전극(305)에 테이퍼면(306)을 마련함으로써, 축 어긋남 시에 전자선이 구부러지는 것을 방지하는 구성을 나타냈다. 실시예 2에서는, 실시예 1과 동일한 구조의 서프레서 전극(305) 및 SE 전자원(101)을 사용하여, 팁(202)의 돌출 길이 T가 실시예 1에서 기재한 상술한 범위 이외의 경우의 구성에 대하여 설명한다.
도 10에, 종래의 서프레서 전극(203)을 사용한 SE 전자원(201)에 있어서, 팁(202)의 돌출 길이 T를 바꾸었을 경우의 가로 방향 전계 EX를 나타낸다. 도 10은, T=150㎛, 250㎛, 350㎛로 바꾸었을 경우의 계산 결과이다. T=250㎛의 결과는, 실시예 1의 도 6a에서 도시한 θ=0°의 결과에 상당한다. 또한, Z=0은, T=250㎛에서의 팁(202)의 선단 표면의 위치로 하였다. 이 때문에, T=150㎛에서의 팁(202)의 선단 표면은 Z=-100㎛, T=350㎛에서의 팁(202)의 선단 표면은 Z=100㎛가 된다. 계산 조건은, 개구부(204)의 직경 d를 400㎛, 인출 전압 V1을 2kV로 하였다. 또한, 서프레서 전압 VS는 팁(202)의 선단에 가해지는 중심축 방향(Z 방향)의 전계가, 각 형상에서 동등해지도록 조정하였다. 팁(202)과 서프레서 전극(203)의 축 어긋남양 Δ는 1㎛로 하였다. 종축인 가로 방향의 전계 EX는, T=250㎛인 때의 최대 전계의 절댓값을 1로서 규격화하였다.
T를 바꾸었을 경우, 개구부(204)가 만드는 가로 방향의 전계는 크게 바뀌었다. T=250㎛에서의 전계의 피크의 값은 -1이었던 데 반해, T=150㎛에서는 -3.4, T=350㎛에서는 -0.33이 되었다. 이의 원인은, 팁(202)의 돌출 길이 T에 따라, 도 5b에서 도시한 전기력선(408)을 차폐하는 영역이 바뀌기 때문이다.
팁(202)의 돌출 길이 T를 250㎛보다도 짧게 한 경우, 팁(202)이 없어진 영역에도 전계가 침입하여, 전자선이 보다 구부러지게 된다. 이 때문에, 전자선의 굽힘을 방지하기 위해서는, 도 5d에 도시한, 역방향의 전계(412)를 강하게 할 필요가 있다. 이것을 실현하기 위해서는, 테이퍼면(306)의 직경 L을 보다 짧고, 또는, 각도 θ를 보다 크게 할 필요가 있다.
팁(202)의 돌출 길이 T를 250㎛보다도 길게 한 경우, 팁(202)이 이동한 영역의 전계는 차폐되어, 전자선은 보다 구부러지기 어려워진다. 이 때문에, 실시예 1로 나타낸 L과 θ에서는 과잉으로 전자선을 구부려 복귀시켜서, 전자선의 기울기는 종래보다도 악화될 가능성이 있다. 그래서, 테이퍼면(306)의 L은 보다 길게, 또는, θ를 보다 작게 할 필요가 있다.
도 11을 사용하여, 실시예 2의 서프레서 전극(305)을 사용한 SE 전자원(101)에 있어서, 돌출 길이 T를 150㎛로 한 경우의 적절한 L과 θ의 관계를 설명한다. 도 11a에, 실시예 2의 SE 전자원(101)에 있어서, T=150㎛의 조건에 있어서, L과 θ를 바꾸었을 경우에 얻어지는 전자선의 기울기를 계산한 결과를 나타낸다. 또한, 전자선(115)의 기울기는, 종래의 SE 전자원(201)으로, T=150㎛로 한 경우의 전자선(115)의 기울기와 비교하여, 퍼센티지로 나타냈다. 그 밖의 계산에 사용한 조건은 도 10과 동일하다.
도 11a에 도시한 90%, 50%, 0%, -50%, -90%의 각 선은, 도 8의 그들과 비교하여, L이 보다 짧고, θ가 보다 커졌다.
θ=90°의 조건에 있어서, 전자선(115)의 기울기를 종래의 90%가 되는 L은 약 2110㎛이다. 기타의 θ에서는, 테이퍼면(306)이 만드는 전계는 약해지기 때문에, 90%의 기울기를 얻기 위해서는, L을 이 값보다도 작게 할 필요가 있다. 따라서, 어느 각도이든, 90% 이하의 전자선의 기울기를 얻기 위해서는, L을 2110㎛ 이하로 할 필요가 있다.
마찬가지로, θ=90°의 조건에 있어서, 전자선(115)의 기울기를 종래의 50%로 하는 L은 약 1450㎛이다. 따라서, 어느 각도이든, 50% 이하의 전자선의 기울기를 얻기 위해서는, L을 1450㎛ 이하로 할 필요가 있다.
마찬가지로, θ=90°의 조건에 있어서, 전자선(115)의 기울기를 0%로 하는 L은 1130㎛이다. 따라서, 어느 각도이든, 0%의 전자선의 기울기를 얻기 위해서는, L을 1130㎛ 이하로 할 필요가 있다.
도 11b는, 도 11a의 종축을 logθ로 한 도면이다. θ의 단위는 도(°), L의 단위는 ㎛이며, 90%, 50%, 0%, -50%, -90%의 선은, 종축을 logθ로 함으로써 이하의 각각의 2차 함수로 근사된다.
90%, 50%, 0%, -50%, -90%의 선은, 순서대로, 이하와 같이 표현된다.
logθ=2.69×10-7×L2+3.64×10-4×L-2.21×10-2
logθ=4.62×10-7×L2+1.70×10-4×L+0.74
logθ=6.92×10-7×L2-6.94×10-6×L+1.08
logθ=9.88×10-7×L2-2.25×10-4×L+1.31
logθ=1.27×10-6×L2-4.18×10-4×L+1.45
따라서, 실시예 2의 서프레서 전극(305)을 사용한 SE 전자원(101)에 있어서, 돌출 길이 T가 150㎛인 경우에는, 상기 식으로 둘러싸인 범위 내의 L과 θ를 사용하여 설계하는 것이 하나의 지침이 된다. 예를 들어, 전자선의 기울기를 종래의 90%로부터 -90%로 저감하는 경우에는, 상기 90%와 -90%의 경우의 식을 사용하여, 2.69×10-7×L2+3.64×10-4×L-2.21×10-2≤logθ≤1.27×10-6×L2-4.18×10-4×L+1.45의 관계를 충족하도록 설계하면 된다.
또한, 후술하는 바와 같이 돌출 길이 T와 허용되는 L의 범위는 비례 관계가 있다. 이 때문에, T가 150㎛부터 250㎛까지의 사이의 L과 θ의 적절한 범위는, 도 8과 도 11에서 도시한 범위의 중간 영역에 있다. 실시예 2에서는, 하나의 역치로서, T가 200㎛보다도 작은 경우, 도 11에서 도시한 범위 내의 L과 θ를 사용한다. 이 범위이면, T가 200㎛보다도 작은 경우이더라도, 대체로 종래보다도 전자선의 기울기를 저감할 수 있다.
이어서, 도 12를 사용하여, 실시예 2의 SE 전자원(101)에 있어서, 돌출 길이 T를 350㎛로 한 경우의 적절한 L과 θ의 관계를 설명한다. 도 12a에, 실시예 2의 서프레서 전극(305)을 사용한 SE 전자원(101)에 있어서, T=350㎛의 조건에 있어서, L과 θ를 바꾸었을 경우에 얻어지는 전자선의 기울기를 계산한 결과를 나타낸다. 또한, 전자선(115)의 기울기는, 종래의 SE 전자원(201)에 있어서, T=350㎛로 한 경우의 전자선(115)의 기울기와 비교하여, 퍼센티지로 나타냈다. 그 밖의 계산에 사용한 조건은 도 10과 같다.
도 12a에 도시한 90%, 50%, 0%, -50%, -90%의 각 선은, 도 8의 그들과 비교하여, L이 보다 길고, θ가 보다 작아졌다.
θ=90°의 조건에 있어서, 전자선(115)의 기울기를 종래의 90%로 하는 L은 약 2810㎛이다. 기타의 θ에서는, 테이퍼면(306)이 만드는 전계가 약해지기 때문에, 90%의 기울기를 얻기 위해서는, L을 이 값보다도 작게 할 필요가 있다. 따라서, 어느 각도이든, 90% 이하의 전자선의 기울기를 얻기 위해서는, L을 2810㎛ 이하로 할 필요가 있다.
마찬가지로, θ=90°의 조건에 있어서, 전자선(115)의 기울기를 종래의 50%로 하는 L은 약 2270㎛이다. 따라서, 어느 각도이든, 50% 이하의 전자선의 기울기를 얻기 위해서는, L을 2270㎛ 이하로 할 필요가 있다.
마찬가지로, θ=90°의 조건에 있어서, 전자선(115)의 기울기를 0%로 하는 L은 1990㎛이다. 따라서, 어느 각도이든, 0%의 전자선의 기울기를 얻기 위해서는, L을 1990㎛ 이하로 할 필요가 있다.
도 12b는, 도 12a의 종축을 logθ로 한 도면이다. θ의 단위는 도(°), L의 단위는 ㎛이며, 90%, 50%, 0%, -50%, -90%의 선은, 종축을 logθ로 함으로써 이하의 각각의 2차 함수로 근사된다.
90%, 50%, 0%, -50%, -90%의 선은, 순서대로, 이하와 같이 표현된다.
logθ=2.59×10-7×L2+1.82×10-4×L-6.04×10-1
logθ=3.32×10-7×L2+5.07×10-5×L+1.26×10-1
logθ=4.12×10-7×L2-8.01×10-5×L+4.75×10-1
logθ=4.62×10-7×L2-1.49×10-4×L+6.76×10-1
logθ=5.15×10-7×L2-2.29×10-4×L+8.10×10-1
따라서, 실시예 2의 SE 전자원(101)에 있어서, 돌출 길이 T가 350㎛인 경우에는, 상기 식으로 둘러싸인 범위 내의 L과 θ를 사용하여 설계하는 것이 하나의 지침이 된다. 예를 들어, 전자선의 기울기를 종래의 90%로부터 -90%로 저감하는 경우에는, 상기 90%와 -90%의 경우의 식을 사용하여, 2.59×10-7×L2+1.82×10-4×L-6.04×10-1≤logθ≤5.15×10-7×L2-2.29×10-4×L+8.10×10-1의 관계를 충족하도록 설계하면 된다.
T가 250㎛부터 350㎛까지의 사이의 L과 θ의 적절한 범위는, 도 8과 도 12에서 도시한 범위의 중간 영역에 있다. 실시예 2에서는, 하나의 역치로서, T가 300㎛보다도 큰 경우, 도 12에서 도시한 범위 내의 L과 θ를 사용한다. 이 범위이면, T가 300㎛보다도 큰 경우에도, 대체로 종래보다도 전자선의 기울기를 저감할 수 있다.
이상과 같은 계산을 행하고, 실시예 2의 서프레서 전극(305)을 사용한 SE 전자원(101)에 있어서, 돌출 길이 T를 바꾸었을 경우에 전자선(115)의 기울기의 양이 허용되기 위한 L의 최댓값을 구하면 이하와 같이 된다. 도 13에, 돌출 길이 T=150㎛ 내지 350㎛에 있어서, θ=90°의 조건에서, 종래와 비교하여, 전자선의 기울기를 90%, 50%, 0%로 하기 위한 L의 값을 나타낸다.
θ=90° 이외의 기타의 θ에서는, 테이퍼면(306)이 만드는 전계는 약해져서, L을 더욱 짧게 할 필요가 있다. 따라서, 도 13에 도시한 L은 각 퍼센티지의 전자선(115)의 기울기를 얻기 위하여 허용되는 최대한의 L이 된다. 어느 퍼센티지의 선이더라도, L과 T는 직선적인 관계가 되고, T에 비례하여 L도 커진다. 이 때문에, 상기에서 계산한 이외의 돌출 길이이더라도, 적절한 범위를 알 수 있다.
돌출 길이 350㎛에 있어서, 종래의 90% 이하의 기울기로 하기 위해서는, 도 12에서 도시한 바와 같이, 적어도 L을 2810㎛ 이하로 할 필요가 있다. 또한, 이 L의 값 이하이면 돌출 길이가 350㎛보다 짧은 경우에도, 전자선의 기울기를 90% 이하로 할 수 있다. 또한, 도 13에 도시한 T와 L은 거의 직선의 관계로 근사할 수 있는 것으로부터, 기타의 표현을 하면, 전자선의 기울기가 90%가 되는 직선의 근사식인 L≤3.53T+1607을 충족하는 L과 T의 관계이면, 전자선의 기울기를 90% 이하로 할 수 있다. 여기서, L과 T의 단위는 ㎛이다.
마찬가지로, 돌출 길이 350㎛에 있어서, 종래의 50% 이하의 기울기로 하기 위해서는, 도 12에서 도시한 바와 같이 적어도 L을 2270㎛ 이하로 할 필요가 있다. 또한, 이 L의 값 이하이면 돌출 길이가 350㎛보다 짧은 경우에도, 전자선의 기울기를 50% 이하로 할 수 있다. 기타의 표현을 하면, 전자선의 기울기가 50%가 되는 직선의 근사식인 L≤4.10T+861을 충족하는 L과 T의 관계이면, 전자선의 기울기를 50% 이하로 할 수 있다.
또한 마찬가지로, 돌출 길이 350㎛에 있어서, 종래 0%의 기울기로 하기 위해서는, 도 12에서 도시한 바와 같이 적어도 L을 1990㎛ 이하로 할 필요가 있다. 또한, 이 L의 값 이하이면 돌출 길이가 350㎛보다 짧은 경우에도, 전자선의 기울기를 0%로 할 수 있다. 기타의 표현을 하면, 전자선의 기울기가 0%가 되는 직선의 근사식인 L≤4.29T+522를 충족하는 L과 T의 관계이면, 전자선의 기울기를 0%로 할 수 있다.
이상의 결과를 통합하면, 전자선의 기울기의 양을 적어도 10% 저감시키는, 즉 90% 이하의 양으로 저감시키기 위해서는 돌출 길이 T=350㎛의 경우에 직경 L을 2810㎛ 이하로 할 필요가 있음을 알았다. 그리고, 이 L의 값 이하이면 돌출 길이가 350㎛보다 짧은 경우에도, 전자선의 기울기를 90% 이하로 할 수 있음을 알았다. 또한, 상술한 바와 같이, 팁(202)의 돌출 길이 T는, 전형적으로는 150 내지 350㎛ 정도로 사용되는 경우가 많다. 그래서, 평면(205)(전방 단부(213))의 직경 L을 2810㎛ 이하로 하는 것을 하나의 지침으로서 얻을 수 있었다.
실시예 3
실시예 2에서는, 팁(202)의 돌출 길이 T가 다른 조건에 있어서, 서프레서 전극(305)에 테이퍼면(306)을 마련함으로써, 축 어긋남 시에 전자선이 구부러지는 것을 방지하는 구성을 나타냈다. 실시예 3에서는, 기타의 후퇴면의 일례로서, 스텝상의 단을 사용한 구성으로 한다.
도 14에, 실시예 3의 SE 전자원(501)의 구성을 나타낸다. 실시예 3에서는 서프레서 전극(305)의 하면에 스텝상의 단(502)을 마련하였다. 즉, 전방 단부(213)(평면(205))의 직경을 L로 하고, 중심축(Z)의 근방에, 모퉁이부(503)에 있어서 θ=90°가 되는 스텝상의 단(502)을 마련하고, 모퉁이부(503), 단(502), 평면부(504)로 후퇴부(212)를 형성하였다. 스텝상의 단(502)은 실시예 1과 실시예 2에 있어서, 테이퍼부(306)의 테이퍼 각도 θ를 θ=90°로 한 상태에 상당한다. 상술한 바와 같이, 축 어긋남 시에 후퇴부(212)의 후퇴면 즉 테이퍼부(306)가 만드는 전계는, θ를 크게 할수록 강해진다. 따라서, 테이퍼면(306)과 비교하여, 스텝상의 단(502)을 사용함으로써 L을 크게 할 수 있다는 이점이 있다. 또한, 실시예 3의 서프레서 전극은, 테이퍼 각도 90°의 면(단)(502)과 테이퍼 각도 0°의 평면(504)을 갖는 테이퍼 형상이라고 생각할 수도 있다.
또한, 스텝상의 단(502) 중, 평면(205)과 접속하는 모퉁이부(503)에는, 인출 전압에 의해 전계가 집중하여, 방전될 가능성이 있다. 이 때문에, 모퉁이부(503)는 모따기나 코너 R 가공을 해도 된다.
실시예 4
실시예 3에서는, 서프레서 전극(305)에 마련하는 기타의 후퇴면의 일례로서, 스텝상의 단을 사용한 구성을 설명하였다. 실시예 4에서는, 기타의 후퇴면의 일례로서, 쐐기형 형상의 면을 사용한 구성으로 한다.
도 15에, 실시예 4의 SE 전자원(505)의 구성을 나타낸다. 실시예 4에서는 서프레서 전극(305)의 하면에 쐐기형 형상의 면(506)을 마련하였다. 쐐기형 형상의 면(506)은 실시예 1과 실시예 2에 있어서, 테이퍼부(306)의 테이퍼 각도 θ를 θ>90°로 한 상태에 상당한다. 본 구성에서도, 축 어긋남 시에 역방향의 전계를 발생시켜서, 전자선의 구부러짐을 억제할 수 있다. 특히, 쐐기형 형상의 면(506)의 정점(507)에 전계가 집중함으로써, 여기에 많은 전하가 발생하여, 전자선(115)의 구부러짐을 효과적으로 억제할 수 있다. 그러나, 그 반면, 정점(507)에는, 실시예 3에서 나타낸 모퉁이부(503)보다도 더욱 큰 전계가 인가되어, 방전될 가능성이 더욱 커진다. 이 때문에, 적합하게는 θ≤90°인 것이 바람직하다.
실시예 5
실시예 4에서는, 서프레서 전극(305)에 마련하는 기타의 후퇴면의 일례로서, 쐐기형 형상의 면을 사용한 구성을 설명하였다. 실시예 5에서는, 서프레서 전극(305)에 마련하는 기타의 후퇴면의 일례로서, 곡면을 사용한 구성으로 한다.
도 16에 실시예 5의 SE 전자원(510)의 구성을 도시한다. 실시예 5에서는 서프레서 전극(305)의 하면에 곡면(511)을 마련하였다. 즉, 서프레서 전극(305)의 중심축(Z)을 통하는 단면(도 16의 사선부)에 있어서, 곡선 부분(511)을 갖는 구조로 하였다. 이하, 이 단면 상의 곡선부를 간단히 곡선부, 또는 곡면이라고 칭한다. 이 곡면(511)은 다른 표현에 의하면, 중심축에 수직인 면과 이루는 각(테이퍼 각)이 연속적으로 변화하는 곡면 부분으로 표현할 수 있다. 후퇴면이 곡선부(곡면)이더라도, 서프레서 전극의 전방 단부(213)(평면(205))보다도 팁(202)의 선단으로부터 Z 방향으로 멀어지는 면이며, 후퇴하고 있다. 이 결과, 축 어긋남 시에는, 도 5d에서 도시한 양전하(410)와 음전하(411)가 곡면(511)에 발생하고, 같은 원리로 전자선의 구부러짐을 방지할 수 있다. 실시예 5의 경우 평면(205)의 직경 L은, 곡선부(곡면)(511)가 개시하는 위치에서의 직경이 된다.
곡선부(곡면)(511)는, 공이나 타원, 또는 임의의 비구면이어도 된다. 상기와 같이 곡선부(곡면)(511)는 연속하는 미소한 각도의 변화를 갖는 테이퍼 부분을 무수하게 조합한 면으로 간주할 수 있다. 이 때문에, 곡선부(곡면)(511) 상의 어느 것의 위치에 있어서의 직경을 새롭게 L'로 간주하고, 그 위치에서의 기울기의 각도를 새로운 θ'로 간주한 경우, 적어도 1점 이상의 L'과 θ'를 도 8, 내지는, 도 11, 도 12의 어느 것인가에 도시한 범위 내에 포함함으로써, 원하는 전자선(115)이 구부러지는 것을 방지하는 효과가 얻어진다. 곡선부(곡면)(511)는 모퉁이부를 갖지 않는 것으로부터, 전계 집중이 완화되어, 방전될 위험성이 적어진다는 이점이 있다.
실시예 6
실시예 5에서는, 서프레서 전극(305)에 마련하는 기타의 후퇴면의 일례로서, 단면 상의 곡선부(곡면)를 사용한 구성을 설명하였다. 실시예 6에서는, 서프레서 전극(305)에 마련하는 기타의 후퇴면의 일례로서, 복수의 테이퍼면이나 단을 조합한 구성으로 한다.
도 17에, 실시예 6의 SE 전자원(515)의 구성을 나타낸다. 실시예 6에서는 서프레서 전극(305)의 하면에 테이퍼면(516)과 테이퍼면(517), 및 스텝상의 단(518)을 마련하고, 복수의 다른 테이퍼 각을 갖는 부분을 구비하는 구성으로 하였다. 복수의 테이퍼면이나 단, 곡면을 조합하더라도, 축 어긋남 시에 이들 면이 역방향의 전계를 만듦으로써, 전자선(115)의 구부러짐을 방지할 수 있다. 역방향의 전계는, 테이퍼면(516)과 테이퍼면(517), 및 스텝상의 단(518)이 만드는 전계의 합이 된다. 각각의 면의 개시 위치를 L1, L2, L3, 기울기의 각도를 θ1, θ2, θ3으로 하면, L1과 θ1, L2와 θ2, L3과 θ3의 조합의 적어도 1개 이상이, 도 8, 내지는, 도 11, 도 12에 도시한 L과 θ의 범위 내에 포함됨으로써, 원하는 전자선이 구부러지는 것을 방지하는 효과가 얻어진다. 또한, 테이퍼면이나 단의 조합은, 더욱 수를 증가시켜도 되고, 테이퍼면이나 단은, 곡면이나 쐐기형 형상의 면으로 바꿔 놓아도 된다.
실시예 7
실시예 6에서는, 서프레서 전극(305)에 마련하는 기타의 후퇴면의 일례로서, 복수의 테이퍼면이나 단을 조합한 구성을 설명하였다. 실시예 7에서는, 서프레서 전극(305)에 마련하는 기타의 후퇴면의 일례로서, 단일의 테이퍼면의 구성을 채용한다.
도 18에 실시예 7의 SE 전자원(520)의 구조를 도시한다. 실시예 7에서는 서프레서 전극(305)의 하면에 단일의 테이퍼면(306)을 마련하였다. 이 실시예 7의 구성에서는, 도 4에 도시한 평면(205)은 없다. 이것은, 실시예 1과 실시예 2에 있어서, L=d=400㎛로 한 상태에 상당한다. 이 조건에 있어서, L과 θ의 관계, L과 T의 관계를 실시예 1, 실시예 2에 기재한 관계를 충족하도록 설계함으로써, 전자선(115)의 구부러짐을 효과적으로 억제하는 서프레서 전극(305)을 얻을 수 있다.
본 구성은, 서프레서 전극(305)의 하면 가공이 단순하게 되기 때문에, 제조 비용을 저감할 수 있다는 이점이 있다. 그러나, 상술한 바와 같이, 테이퍼면(306)의 선단(521)에 전계가 집중하여, 방전될 위험성이 있다. 또한, 전술한 바와 같이 조립 시에 팁(202)의 돌출 길이 T의 조정이 어려워진다. 그 밖에, 도 9에 도시한 바와 같이, 필요한 서프레서 전압이 상승한다. 이 때문에, 기타의 설계 사항이 허용하는 한은, 실시예 1과 같이 평면(205)을 마련하는 형상쪽이 바람직하다.
이상, 본 발명에 있어서의 실시 형태에 대하여 구체적으로 설명했지만, 본 발명은 상기한 실시예에 한정되는 것은 아니며, 그 요지를 일탈하지 않는 범위에서 다양한 변형이 가능한 것이다. 예를 들어, 도 6 내지 도 13에 도시한 계산 결과에 대해서도, 계산 조건은 일례이며 이것에 한정하는 것은 아니다. 또한, 본 발명은 서프레서 전극(305)의 형상이 전자선(115)에 작용함으로써 효과를 발현한다. 따라서, 본 발명의 실시예에 있어서의 전자원(101)이나 팁(202)은 실시예에서 기재한 SE 전자원의 것에 한정하는 것은 아니고, CFE 전자원이나, 열 전자원, 광 여기 전자원 등의, 다른 방식의 전자원이나 팁, 이온원이어도 된다. 이들 전자원이나 팁, 이온원이더라도, 본 발명의 실시예와 마찬가지의 서프레서 전극을 탑재함으로써 마찬가지의 작용, 효과를 얻을 수 있다. 또한, 팁(202)의 재료는 텅스텐에 한하지 않고, LaB6, CeB6, 카본계 재료 등, 기타의 재료여도 된다. 또한, 본 발명의 실시예에 기재한 전자원을 X선원의 타깃에 조사하여 X선을 방출시키는 X선원으로서 사용하는 것도 가능하다. 기타, 상기한 실시예는 본 발명을 이해하기 쉽게 설명하기 위하여 일례에 대하여 상세하게 설명한 것이며, 설명한 구성을 구비하는 것에 한정되는 것은 아니다. 예를 들어, 전자 현미경의 예로서 주사 전자 현미경(SEM)의 예에 대하여 설명했지만, 이것에 한정하지 않고, 투과 전자 현미경(TEM), 주사 투과 전자 현미경(STEM) 등의 다른 각종 전자 현미경, 하전 입자선 장치에 적용할 수 있다. 시료로부터 발생하는 신호에 대해서도, 전자(2차 전자, 반사 전자 등)의 경우에 한하지 않고, 특성 X선을 검출하는 것이어도 된다. 또한, 하전 입자선 장치로서는, 전자 현미경뿐만 아니라 전자선을 사용한 전자선 묘화 장치나 X선 현미경, CT, 또는 이온 현미경 등에도 적용할 수 있다. 또한, 어떤 실시예의 구성 일부를 다른 실시예의 구성으로 치환하거나, 어떤 실시예의 구성에 다른 실시예의 구성을 추가하거나 하는 것도 가능하다. 또한, 각 실시예의 구성 일부에 대해서, 다른 구성의 추가·삭제·치환을 하는 것도 가능하다.
101: SE 전자원
102: 인출 전극
103: 가속 전극
104: 전자총
109: 터보 분자 펌프
110: 콘덴서 렌즈
111: 대물 렌즈
112: 시료
113: 시료실
114: 검출기
115: 전자선
116: 애자
118: 비증발 게터 펌프
120: 이온 펌프
121: 이온 펌프
122: 이온 펌프
125: 통체
126: 제1 진공실
127: 제2 진공실
128: 제3 진공실
201: 종래의 SE 전자원
202: 팁(전자 방출재인 단결정선)
203: 종래의 서프레서 전극
204: 개구부
205: 평면(저면)
206: 필라멘트
207: 단자
208: 애자
209: 모따기부
210: 원통면
212: 후퇴부(면)
213: 전방 단부
214: 후단부
301: 전계
302: 축 어긋남 벡터
305: 서프레서 전극
306: 테이퍼면(부)
307: 모퉁이부
401: 양전하
402: 음전하
403: 전기력선
404: 양전하
405: 음전하
406: 공간 영역
407: 공간 영역
408: 전기력선
410: 양전하
411: 음전하
412: 전기력선
413: 공간 영역
414: 공간 영역
420: 양전하
421: 음전하
422: 음전하
423: 음전하
424: 양전하
501: SE 전자원
502: 단
503: 모퉁이부
504: 평면
505: SE 전자원
506: 쐐기형 형상의 면
507: 정점
510: SE 전자원
511: 곡면
515: SE 전자원
516: 테이퍼면
517: 테이퍼면
518: 단
520: SE 전자원
521: 선단

Claims (17)

  1. 중심축을 따른 방향에 있어서의 한쪽의 단부에 개구부를 갖는 서프레서 전극과,
    상기 개구부로부터 선단이 돌출한 전자 방출재를 갖고,
    상기 서프레서 전극은,
    상기 개구부보다도 외주 방향의 위치에, 상기 중심축을 따른 방향에 있어서 상기 서프레서 전극의 상기 단부보다도 상기 전자 방출재의 상기 선단으로부터 멀어지는 위치로 후퇴한 후퇴부를 더 구비하고,
    상기 후퇴부의 적어도 일부는, 상기 개구부의 중심으로부터 직경 2810㎛ 이내에 배치되는 것을 특징으로 하는 전자원.
  2. 제1항에 있어서, 상기 서프레서 전극의 상기 단부는 상기 중심축에 수직한 평면인 것을 특징으로 하는 전자원.
  3. 제2항에 있어서, 상기 평면의 직경은 720㎛ 이상인 것을 특징으로 하는 전자원.
  4. 제1항에 있어서, 상기 후퇴부는, 상기 중심축에 수직인 면과 이루는 각도가 적어도 2개 이상의 다른 각도를 갖는 테이퍼부를 구비하는 것을 특징으로 하는 전자원.
  5. 제1항에 있어서, 상기 후퇴부는, 상기 중심축과 평행한 부분을 구비하는 것을 특징으로 하는 전자원.
  6. 제1항에 있어서, 상기 후퇴부는, 상기 중심축에 수직인 면과 이루는 각도가 연속적으로 변화하는 곡면 부분을 구비하는 것을 특징으로 하는 전자원.
  7. 제1항에 있어서,
    상기 후퇴부는 상기 중심축에 수직인 면과 각도 θ를 이루는 테이퍼부를 구비하고,
    상기 테이퍼부의 적어도 일부는, 상기 개구부의 상기 중심으로부터 직경 L 이내에 배치되고,
    상기 직경 L과 상기 각도 θ는,
    상기 직경 L은 단위를 ㎛로 하고, 상기 각도 θ는 단위를 도(°)로 하고,
    2.40×10-7×L2+3.18×10-4×L-4.08×10-1≤logθ≤6.68×10-7×L2-2.68×10-4×L+1.08의 관계를 충족하는 것을 특징으로 하는 전자원.
  8. 제1항에 있어서,
    상기 후퇴부의 적어도 일부는, 상기 개구부의 상기 중심으로부터 직경 L 이내에 배치되고,
    상기 전자 방출재는, 상기 개구부로부터 길이 T 돌출되고,
    상기 직경 L과 상기 길이 T는, 상기 직경 L 및 길이 T의 단위를 모두 ㎛로 하고,
    L=3.53T+1607의 관계를 충족하는 것을 특징으로 하는 전자원.
  9. 제1항에 있어서,
    상기 후퇴부는 상기 중심축에 수직인 면과 각도 θ를 이루는 테이퍼부를 구비하고,
    상기 테이퍼부의 적어도 일부는, 상기 개구부의 상기 중심으로부터 직경 L 이내에 배치되고,
    상기 전자 방출재는, 상기 개구부로부터 돌출시킨 길이가 200㎛보다도 작고,
    상기 직경 L과 상기 각도 θ는,
    상기 직경 L은 단위를 ㎛로 하고, 상기 각도 θ는 단위를 도(°)로 하고,
    2.69×10-7×L2+3.64×10-4×L-2.21×10-2≤logθ≤1.27×10-6×L2-4.18×10-4×L+1.45의 관계를 충족하는 것을 특징으로 하는 전자원.
  10. 제1항에 있어서,
    상기 후퇴부는 상기 중심축에 수직인 면과 각도 θ를 이루는 테이퍼부를 구비하고,
    상기 테이퍼부의 적어도 일부는, 상기 개구부의 상기 중심으로부터 직경 L 이내에 배치되고,
    상기 전자 방출재는, 상기 개구부로부터 돌출시킨 길이가 300㎛보다도 크고,
    상기 직경 L과 상기 각도 θ는,
    상기 직경 L은 단위를 ㎛로 하고, 상기 각도 θ는 단위를 도(°)로 하고,
    2.59×10-7×L2+1.82×10-4×L-6.04×10-1≤logθ≤5.15×10-7×L2-2.29×10-4×L+8.10×10-1의 관계를 충족하는 것을 특징으로 하는 전자원.
  11. 제1항 내지 제10항 중 어느 한 항에 기재된 전자원을 구비하는 것을 특징으로 하는 전자총.
  12. 제1항 내지 제10항 중 어느 한 항에 기재된 전자원 또는 제11항에 기재된 전자총을 구비하는 것을 특징으로 하는 하전 입자선 장치.
  13. 중심축을 따른 방향에 있어서의 한쪽의 단부에 개구부를 갖는 서프레서 전극과,
    상기 개구부로부터 선단이 돌출한 전자 방출재를 갖고,
    상기 서프레서 전극은,
    상기 개구부보다도 외주 방향의 위치에, 상기 중심축을 따른 방향에 있어서 상기 서프레서 전극의 상기 단부보다도 상기 전자 방출재의 상기 선단으로부터 멀어지는 위치로 후퇴한 후퇴부를 더 구비하고,
    상기 후퇴부는, 상기 중심축에 수직인 면과 이루는 각도가 적어도 2개 이상의 다른 각도를 갖는 테이퍼부를 구비하는 것을 특징으로 하는 전자원.
  14. 중심축을 따른 방향에 있어서의 한쪽의 단부에 개구부를 갖는 서프레서 전극과,
    상기 개구부로부터 선단이 돌출한 전자 방출재를 갖고,
    상기 서프레서 전극은,
    상기 개구부보다도 외주 방향의 위치에, 상기 중심축을 따른 방향에 있어서 상기 서프레서 전극의 상기 단부보다도 상기 전자 방출재의 상기 선단으로부터 멀어지는 위치로 후퇴한 후퇴부를 더 구비하고,
    상기 후퇴부는 상기 중심축에 수직인 면과 각도 θ를 이루는 테이퍼부를 구비하고,
    상기 테이퍼부의 적어도 일부는, 상기 개구부의 중심으로부터 직경 L 이내에 배치되고,
    상기 직경 L과 상기 각도 θ는,
    상기 직경 L은 단위를 ㎛로 하고, 상기 각도 θ는 단위를 도(°)로 하고,
    2.40×10-7×L2+3.18×10-4×L-4.08×10-1≤logθ≤6.68×10-7×L2-2.68×10-4×L+1.08의 관계를 충족하는 것을 특징으로 하는 전자원.
  15. 중심축을 따른 방향에 있어서의 한쪽의 단부에 개구부를 갖는 서프레서 전극과,
    상기 개구부로부터 선단이 돌출한 전자 방출재를 갖고,
    상기 서프레서 전극은,
    상기 개구부보다도 외주 방향의 위치에, 상기 중심축을 따른 방향에 있어서 상기 서프레서 전극의 상기 단부보다도 상기 전자 방출재의 상기 선단으로부터 멀어지는 위치로 후퇴한 후퇴부를 더 구비하고,
    상기 후퇴부의 적어도 일부는, 상기 개구부의 중심으로부터 직경 L 이내에 배치되고,
    상기 전자 방출재는, 상기 개구부로부터 길이 T 돌출되고,
    상기 직경 L과 상기 길이 T는, 상기 직경 L 및 길이 T의 단위를 모두 ㎛로 하고,
    L=3.53T+1607의 관계를 충족하는 것을 특징으로 하는 전자원.
  16. 제13항 내지 제15항 중 어느 한 항에 기재된 전자원을 구비하는 것을 특징으로 하는 전자총.
  17. 제13항 내지 제15항 중 어느 한 항에 기재된 전자원 또는 제16항에 기재된 전자총을 구비하는 것을 특징으로 하는 하전 입자선 장치.
KR1020227042250A 2020-06-29 2020-06-29 전자원, 전자총, 및 하전 입자선 장치 KR20230005357A (ko)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/025496 WO2022003770A1 (ja) 2020-06-29 2020-06-29 電子源、電子銃、及び荷電粒子線装置

Publications (1)

Publication Number Publication Date
KR20230005357A true KR20230005357A (ko) 2023-01-09

Family

ID=79315762

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020227042250A KR20230005357A (ko) 2020-06-29 2020-06-29 전자원, 전자총, 및 하전 입자선 장치

Country Status (7)

Country Link
US (1) US20230352262A1 (ko)
JP (1) JP7366266B2 (ko)
KR (1) KR20230005357A (ko)
CN (1) CN115668429A (ko)
DE (1) DE112020006925T5 (ko)
TW (1) TWI808441B (ko)
WO (1) WO2022003770A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11848169B1 (en) * 2023-01-21 2023-12-19 Dazhi Chen Field-emission type electron source and charged particle beam device using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08171879A (ja) 1994-12-16 1996-07-02 Hitachi Ltd ショットキーエミッション電子源の動作温度設定方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010080286A (ko) * 1998-10-21 2001-08-22 추후제출 열전계 방출 정렬 방법 및 장치
JP2001283758A (ja) * 2000-03-28 2001-10-12 Hitachi Ltd 荷電粒子銃及び荷電粒子線装置
JP2007250491A (ja) 2006-03-20 2007-09-27 Fujitsu Ltd ZrO/Wエンハンスドショットキー放出型電子銃
US9257257B2 (en) * 2006-06-30 2016-02-09 Shimadzu Corporation Electron beam control method, electron beam generating apparatus, apparatus using the same, and emitter
US8319192B2 (en) * 2010-08-24 2012-11-27 Hermes Microvision Inc. Charged particle apparatus
JP6809809B2 (ja) * 2016-05-09 2021-01-06 松定プレシジョン株式会社 絶縁構造、荷電粒子銃及び荷電粒子線応用装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08171879A (ja) 1994-12-16 1996-07-02 Hitachi Ltd ショットキーエミッション電子源の動作温度設定方法

Also Published As

Publication number Publication date
CN115668429A (zh) 2023-01-31
US20230352262A1 (en) 2023-11-02
JPWO2022003770A1 (ko) 2022-01-06
JP7366266B2 (ja) 2023-10-20
WO2022003770A1 (ja) 2022-01-06
TW202217897A (zh) 2022-05-01
DE112020006925T5 (de) 2022-12-29
TWI808441B (zh) 2023-07-11

Similar Documents

Publication Publication Date Title
EP3093867B1 (en) X-ray generator and adjustment method therefor
TWI435362B (zh) 帶電粒子裝置
US10014151B2 (en) Composite charged particle beam device
US8895922B2 (en) Electron beam apparatus
US20180114672A1 (en) Monochromator and charged particle beam apparatus comprising the same
JP7442299B2 (ja) 電子銃、電子放出装置、及び電子銃の製造方法
KR20230005357A (ko) 전자원, 전자총, 및 하전 입자선 장치
JP5458472B2 (ja) X線管
JP7474889B2 (ja) 荷電粒子源、荷電粒子線装置
KR102640728B1 (ko) 전자원 및 하전 입자선 장치
US10636610B2 (en) Target geometry for small spot X-ray tube
CN110192262B (zh) 用于电子源的提取器电极
US11978609B2 (en) Electron gun and charged particle beam device equipped with electron gun
US20240062985A1 (en) X-ray tube with flexible intensity adjustment
CN115346850A (zh) 具有偏转单元的粒子束装置
CN113436952A (zh) 会聚离子束加工装置