KR20230001450A - Method for producing cabbage plant having late-flowering trait using CRISPR/Cas complex - Google Patents

Method for producing cabbage plant having late-flowering trait using CRISPR/Cas complex Download PDF

Info

Publication number
KR20230001450A
KR20230001450A KR1020210084294A KR20210084294A KR20230001450A KR 20230001450 A KR20230001450 A KR 20230001450A KR 1020210084294 A KR1020210084294 A KR 1020210084294A KR 20210084294 A KR20210084294 A KR 20210084294A KR 20230001450 A KR20230001450 A KR 20230001450A
Authority
KR
South Korea
Prior art keywords
cabbage
flowering
genome
dna
gene
Prior art date
Application number
KR1020210084294A
Other languages
Korean (ko)
Inventor
이긍주
안주영
Original Assignee
(주)이지템
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)이지템 filed Critical (주)이지템
Priority to KR1020210084294A priority Critical patent/KR20230001450A/en
Publication of KR20230001450A publication Critical patent/KR20230001450A/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H1/00Processes for modifying genotypes ; Plants characterised by associated natural traits
    • A01H1/12Processes for modifying agronomic input traits, e.g. crop yield
    • A01H1/121Plant growth habits
    • A01H1/1215Flower development or morphology, e.g. flowering promoting factor [FPF]
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H1/00Processes for modifying genotypes ; Plants characterised by associated natural traits
    • A01H1/06Processes for producing mutations, e.g. treatment with chemicals or with radiation
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H5/00Angiosperms, i.e. flowering plants, characterised by their plant parts; Angiosperms characterised otherwise than by their botanic taxonomy
    • A01H5/10Seeds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H6/00Angiosperms, i.e. flowering plants, characterised by their botanic taxonomy
    • A01H6/20Brassicaceae, e.g. canola, broccoli or rucola
    • A01H6/203Brassica oleraceae, e.g. broccoli or kohlrabi
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/102Mutagenizing nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8262Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield involving plant development
    • C12N15/827Flower development or morphology, e.g. flowering promoting factor [FPF]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]

Abstract

The present invention relates to a manufacturing method of flowering-delayed cabbage plants using a CRISPR/Cas complex targeting flowering control genes of cabbage.

Description

CRISPR/Cas 복합체를 이용한 개화지연 양배추 식물체의 제조방법{Method for producing cabbage plant having late-flowering trait using CRISPR/Cas complex}Manufacturing method of delayed flowering cabbage plants using CRISPR / Cas complex {Method for producing cabbage plant having late-flowering trait using CRISPR/Cas complex}

본 발명은 CRISPR/Cas 복합체를 이용한 개화지연 양배추 교정체의 제조방법에 관한 것이다.The present invention relates to a method for preparing a flowering-delayed cabbage corrector using a CRISPR/Cas complex.

양배추는 배추과(Cruciterae)에 속하는 Brassica 속(Gunus) 작물 중 oleracea 종(species)으로 학명은 Brassica oleracea L. var capitata L.이다. 같은 oleracea 종에는 불-결구성의 케일(var. acephala), 꽃봉오리를 이용하는 꽃양배추(var. botrytis), 브로콜리(var. italica), 엽액에서 작은 액아가 결구되는 방울다다기 양배추(var. gemmifera) 등 다양한 변종이 있다. 영명은 cabbage, white cabbage 등으로 불리어지며, 중국명은 捲心菜, 圓白菜, 甘藍이다.Cabbage is an oleracea species among Brassica genus ( Gunus ) crops belonging to the Brassica family ( Cruciterae ), and its scientific name is Brassica oleracea L. var capitata L. The same oleracea species includes kale (var. acephala ), which uses buds, cauliflower (var. botrytis ), broccoli (var. italica ), and Brussels sprouts (var. gemmifera ), which use small axils. There are various variants such as The English names are called cabbage, white cabbage, etc., and the Chinese names are 捲心菜, 圓白菜, and 甘藍.

양배추는 서늘한 기후를 좋아하는 호냉성 채소로서 배추(chinese cabbage, 학명 Brassica rapa)보다 고온과 저온에 잘 견디므로 여름재배가 가능하며 겨울동안에 밖에서 저장할 수도 있다. 또한 영양가가 높은 채소로서 보건상 중요하며 위궤양에 좋은 효과를 내는 성분이 함유되어 있다. 배추와 같이 저온감응 채소이지만 모가 어릴 때는 저온에 감응되지 않고 모의 줄기직경이 5∼6mm 이상 되어야 저온에 감응되는 녹식물춘화형이다. 봄 파종 품종은 추파성이 아니기 때문에 저온감응성이 민감하여 조기추개에 대비 저온기의 관리에 주의해야 한다.Cabbage is a thermophilic vegetable that likes a cool climate. It tolerates both high and low temperatures better than Chinese cabbage (scientific name: Brassica rapa ), so it can be grown in summer and stored outside during winter. Also, as a vegetable with high nutritional value, it is important for health and contains ingredients that have a good effect on stomach ulcers. Although it is a cold-sensitive vegetable like Chinese cabbage, it is not sensitive to low temperature when the hair is young, and it is a green plant vernal type that responds to low temperature only when the stem diameter of the hair is 5~6mm or more. Spring-sown varieties are sensitive to cold because they are not cold-resistant, so care must be taken in preparation for early sowing.

CRISPR/Cas9 시스템은 매우 높은 표적 특이성을 가지고 있고 메틸화된 DNA도 표적으로 인지할 수 있기 때문에 매우 다양한 유전자에 적용할 수 있으며 멘델의 유전법칙에 따라 자손에게 전달되어 형질의 세대고정이 가능하다는 장점이 있다. 또한, Cas9 단백질과 sgRNA (single guide RNA)만을 필요로 하기 때문에 위의 두 방법에 비해 적은 비용으로 목표 형질의 도입이 가능하다는 장점이 있어 최근 동물 및 식물 등에서 널리 적용되고 있는 신육종 기술이다.The CRISPR/Cas9 system has a very high target specificity and can recognize methylated DNA as a target, so it can be applied to a wide variety of genes, and it has the advantage of being passed on to offspring according to Mendel's genetic law and enabling generational fixation of traits. there is. In addition, since it requires only Cas9 protein and sgRNA (single guide RNA), it has the advantage of being able to introduce target traits at a lower cost than the above two methods, and is a new breeding technology that has recently been widely applied in animals and plants.

한편, 한국공개특허 제2016-0052350호에는 '식물체의 개화시기를 조절하는 무 유래의 FLC 유전자 및 이의 용도'가 개시되어 있고, 한국등록특허 제2113500호에는 'SOC1 유전자를 교정하여 만추성 형질을 가지는 유전체 교정 배추 식물체의 제조방법 및 그에 따른 식물체'가 개시되어 있으나, 본 발명의 'CRISPR/Cas 복합체를 이용한 개화지연 양배추 교정체의 제조방법'에 대해서는 기재된 바가 없다.On the other hand, Korean Patent Publication No. 2016-0052350 discloses 'a radish-derived FLC gene that regulates the flowering period of a plant and its use', and Korean Patent No. 2113500 discloses 'late autumn traits by correcting the SOC1 gene. A method for producing an eggplant genome-corrected cabbage plant and a plant thereof' is disclosed, but the 'method for producing a flowering-delayed cabbage corrector using a CRISPR/Cas complex' of the present invention is not described.

본 발명은 상기와 같은 요구에 의해 도출된 것으로서, 본 발명자들은 양배추 식물체의 개화를 지연시키기 위해 양배추의 개화조절 유전자를 표적으로 하는 CRISPR/Cas9 벡터를 구축하여 유전체 교정 양배추를 개발하고자 한다.The present invention has been derived from the above needs, and the present inventors intend to develop genome-edited cabbage by constructing a CRISPR/Cas9 vector targeting the flowering control gene of cabbage to delay flowering of cabbage plants.

상기 과제를 해결하기 위해, 본 발명은 양배추의 개화조절 유전자의 표적 염기서열에 특이적인 가이드 RNA(guide RNA)를 암호화하는 DNA 및 엔도뉴클레아제(endonuclease) 단백질을 암호화하는 핵산 서열을 포함하는 재조합 벡터를 유효성분으로 함유하는, 양배추의 개화를 지연시키기 위한 유전체 교정용 조성물을 제공한다.In order to solve the above problems, the present invention is a recombinant DNA encoding a guide RNA specific to a target sequence of a flowering control gene of cabbage and a nucleic acid sequence encoding an endonuclease protein. Provided is a genome editing composition for delaying flowering of cabbage, containing a vector as an active ingredient.

또한, 본 발명은 (a) 양배추의 개화조절 유전자의 표적 염기서열에 특이적인 가이드 RNA를 암호화하는 DNA 및 엔도뉴클레아제 단백질을 암호화하는 핵산 서열을 포함하는 재조합 벡터를 양배추 식물세포에 도입하여 유전체를 교정하는 단계; 및 (b) 상기 유전체가 교정된 양배추 식물세포로부터 양배추 식물체를 재분화하는 단계;를 포함하는, 개화가 지연된 유전체 교정 양배추 식물체의 제조방법을 제공한다.In addition, the present invention (a) introduces a recombinant vector containing DNA encoding a guide RNA specific to the target sequence of the flowering control gene of cabbage and a nucleic acid sequence encoding an endonuclease protein into cabbage plant cells, correcting; and (b) regenerating cabbage plants from the genome-corrected cabbage plant cells.

또한, 본 발명은 상기 방법에 의해 제조된 개화가 지연된 유전체 교정 양배추 식물체 및 이의 유전체가 교정된 종자를 제공한다.In addition, the present invention provides a genome-corrected cabbage plant with delayed flowering prepared by the above method and a genome-corrected seed thereof.

본 발명에서 제시한 개화조절 유전자 편집을 통한 돌연변이 유도는 개화가 지연된 식물체를 개발하는데 유용하게 이용할 수 있다. 또한, 본 발명에 따른 방법은 자연적 변이와 구별할 수 없는 변이를 유도하므로, 안전성과 환경 유해성 여부를 평가하기 위해 막대한 비용과 시간이 소모되는 GMO(Genetically Modified Organism) 작물과 달리 비용과 시간을 절약할 수 있을 것으로 기대된다.The induction of mutations through editing of flowering control genes proposed in the present invention can be usefully used to develop plants with delayed flowering. In addition, since the method according to the present invention induces mutations that are indistinguishable from natural mutations, cost and time are saved, unlike GMO (Genetically Modified Organism) crops, which require enormous costs and time to evaluate safety and environmental hazards. Expect to be able to do it.

도 1은 양배추 유래 FLC 유전자의 클로닝 과정 모식도이다.
도 2는 CRISPR/Cas9 시스템을 이용한 양배추 식물체의 유전자 교정 과정을 나타낸다.
도 3는 CRISPR RGEN Tools을 사용하여 결정된 FLC (Flowering Locus C) 타겟 sgRNA 부위를 나타낸다.
도 4는 GI (GIGANTEA) 유전자 타겟 부위를 대상으로 Targeted deep sequencing을 이용하여 야생형(wild type), Cas9 protein transformant, RGEN transformants 양배추 원형질체의 돌연변이 비율을 분석한 결과이다.
1 is a schematic diagram of the cloning process of cabbage-derived FLC gene.
Figure 2 shows the gene editing process of cabbage plants using the CRISPR / Cas9 system.
Figure 3 shows the Flowering Locus C ( FLC ) target sgRNA site determined using CRISPR RGEN Tools.
Figure 4 is a result of analyzing the mutation ratio of wild type (wild type), Cas9 protein transformant, RGEN transformants cabbage protoplasts using targeted deep sequencing targeting the GI ( GIGANTEA ) gene target site.

본 발명의 목적을 달성하기 위하여, 본 발명은 양배추의 개화조절 유전자의 표적 염기서열에 특이적인 가이드 RNA(guide RNA)를 암호화하는 DNA 및 엔도뉴클레아제(endonuclease) 단백질을 암호화하는 핵산 서열을 포함하는 재조합 벡터를 유효성분으로 함유하는, 양배추의 개화를 지연시키기 위한 유전체 교정용 조성물을 제공한다.In order to achieve the object of the present invention, the present invention includes DNA encoding a guide RNA specific to the target sequence of the flowering control gene of cabbage and a nucleic acid sequence encoding an endonuclease protein. It provides a composition for genome correction for delaying flowering of cabbage, containing a recombinant vector as an active ingredient.

본 발명의 조성물에 있어서, 상기 개화조절 유전자는 FLC (Flowering Locus C) 또는 GI (GIGANTEA) 일 수 있으나, 이에 제한되지 않는다.In the composition of the present invention, the flowering control gene may be FLC ( Flowing Locus C ) or GI ( GIGANTEA ), but is not limited thereto.

본 명세서에서 용어 "유전체/유전자 교정(genome/gene editing)"은, 인간 세포를 비롯한 동·식물 세포의 유전체 염기서열에 표적지향형 변이를 도입할 수 있는 기술로서, DNA 절단에 의한 하나 이상의 핵산 분자의 결실(deletion), 삽입(insertion), 치환(substitutions) 등에 의하여 특정 유전자를 녹-아웃(knock-out) 또는 녹-인(knock-in)하거나, 단백질을 생성하지 않는 비-코딩(non-coding) DNA 서열에도 변이를 도입할 수 있는 기술을 말한다. 본 발명의 목적상 상기 유전체 교정은 특히 엔도뉴클레아제(endonuclease) 예컨대, Cas9 (CRISPR associated protein 9) 단백질 및 가이드 RNA를 이용하여 식물체에 변이를 도입하는 것일 수 있다. 또한, '유전자 교정'은 '유전자 편집'과 혼용되어 사용될 수 있다.As used herein, the term "genome/gene editing" refers to a technology capable of introducing target-directed mutations into genomic sequences of animal and plant cells, including human cells, and includes one or more nucleic acid molecules by cutting DNA. Knock-out or knock-in of a specific gene by deletion, insertion, substitution, etc., or non-coding that does not produce a protein Coding refers to a technology that can introduce mutations into DNA sequences. For the purposes of the present invention, the genome editing may be to introduce mutations into plants using an endonuclease, such as Cas9 (CRISPR associated protein 9) protein and guide RNA. In addition, 'gene editing' may be used interchangeably with 'gene editing'.

또한, 용어 "표적 유전자"는 본 발명을 통해 교정하고자 하는 식물체의 유전체 내에 있는 일부 DNA를 의미하며, 그 유전자의 종류에 제한되지 않으며, 코딩 영역 및 비-코딩 영역을 모두 포함할 수 있다. 당업자는 그 목적에 따라, 제조하고자 하는 유전체 교정 식물체에 대하여 원하는 변이에 따라 상기 표적 유전자를 선별할 수 있다.In addition, the term "target gene" refers to some DNA in the genome of a plant to be corrected through the present invention, and is not limited to the type of gene, and may include both a coding region and a non-coding region. A person skilled in the art can select the target gene according to the desired mutation for the genome editing plant to be produced, depending on the purpose.

또한, 용어 "가이드 RNA(guide RNA)"는 짧은 단일 가닥의 RNA로, 표적 유전자를 암호화하는 염기서열 중 표적 DNA에 특이적인 RNA를 의미하며, 표적 DNA 염기서열과 전부 또는 일부가 상보적으로 결합하여 해당 표적 DNA 염기서열로 엔도뉴클레아제 단백질을 이끄는 역할을 하는 리보핵산을 의미한다. 상기 가이드 RNA는 두 개의 RNA, 즉, crRNA (CRISPR RNA) 및 tracrRNA (trans-activating crRNA)를 구성 요소로 포함하는 이중 RNA (dual RNA); 또는 표적 유전자 내 염기서열과 전부 또는 일부 상보적인 서열을 포함하는 제1 부위 및 엔도뉴클레아제(특히, RNA-가이드 뉴클레아제)와 상호작용하는 서열을 포함하는 제2 부위를 포함하는 단일 사슬 가이드 RNA(single guide RNA, sgRNA) 형태를 말하나, 엔도뉴클레아제가 표적 염기서열에서 활성을 가질 수 있는 형태라면 제한없이 본 발명의 범위에 포함될 수 있으며, 함께 사용된 엔도뉴클레아제의 종류 또는 엔도뉴클레아제의 유래 미생물 등을 고려하여 당업계의 공지된 기술에 따라 제조하여 사용할 수 있다.In addition, the term "guide RNA" refers to a short single-stranded RNA, which is specific for a target DNA among base sequences encoding a target gene, and binds to the target DNA base sequence in whole or in part complementarily. It means ribonucleic acid that serves to guide the endonuclease protein to the target DNA base sequence. The guide RNA is a dual RNA comprising two RNAs, that is, crRNA (CRISPR RNA) and tracrRNA (trans-activating crRNA) as components; or a single chain comprising a first region comprising a sequence complementary in whole or in part to a base sequence in a target gene and a second region comprising a sequence interacting with an endonuclease (particularly, an RNA-guided nuclease). Guide RNA (single guide RNA, sgRNA) form, but if the endonuclease can be active in the target sequence, it can be included in the scope of the present invention without limitation, and the type of endonuclease used together or endo It can be prepared and used according to known techniques in the art in consideration of the microorganism derived from the nuclease.

또한, 상기 가이드 RNA는 플라스미드 주형으로부터 전사된 것, 생체 외(in vitro)에서 전사된(transcribed) 것(예컨대, 올리고뉴클레오티드 이중가닥) 또는 합성한 가이드 RNA 등일 수 있으나, 이에 제한되지 않는다.In addition, the guide RNA may be a guide RNA transcribed from a plasmid template, transcribed in vitro (eg, oligonucleotide duplex), or synthesized guide RNA, but is not limited thereto.

또한, 본 발명에 따른 유전체 교정용 조성물에 있어서, 상기 엔도뉴클레아제 단백질은 Cas9, Cpf1 (also known as Cas12a), TALEN (Transcription activator-like effector nuclease), ZFN (Zinc Finger Nuclease) 또는 이의 기능적 유사체로 이루어진 군으로부터 선택되는 하나 이상일 수 있고, 바람직하게는 RNA-가이드 뉴클레아제인 Cas9 또는 Cpf1 등일 수 있으며, 더욱 바람직하게는 Cas9 단백질일 수 있으나, 이에 제한되지 않는다.In addition, in the genome editing composition according to the present invention, the endonuclease protein is Cas9, Cpf1 (also known as Cas12a), TALEN (Transcription activator-like effector nuclease), ZFN (Zinc Finger Nuclease) or a functional analogue thereof It may be one or more selected from the group consisting of, preferably an RNA-guided nuclease such as Cas9 or Cpf1, more preferably a Cas9 protein, but is not limited thereto.

또한, 상기 Cas9 단백질은 스트렙토코커스 피요제네스(Streptococcus pyogenes) 유래의 Cas9 단백질, 캠필로박터 제주니(Campylobacter jejuni) 유래의 Cas9 단백질, 스트렙토코커스 써모필러스(S. thermophilus) 또는 스트렙토코커스 아우레우스(S. aureus) 유래의 Cas9 단백질, 네이쎄리아 메닝기티디스(Neisseria meningitidis) 유래의 Cas9 단백질, 파스투렐라 물토시다(Pasteurella multocida) 유래의 Cas9 단백질, 프란시셀라 노비시다(Francisella novicida) 유래의 Cas9 단백질 등으로 이루어진 군에서 선택된 하나 이상일 수 있으나, 이에 제한되지 않는다. Cas9 단백질 또는 이의 유전자 정보는 NCBI(National Center for Biotechnology Information)의 GenBank와 같은 공지의 데이터베이스에서 얻을 수 있다. 상기 Cas9 유전자 정보는 공지된 서열을 그대로 사용할 수도 있고, 형질도입되는 대상(유기체)의 코돈에 최적화된 서열을 사용할 수 있으나, 이에 제한되지 않는다.In addition, the Cas9 protein is a Cas9 protein derived from Streptococcus pyogenes , a Cas9 protein derived from Campylobacter jejuni , a Cas9 protein derived from Streptococcus thermophilus ( S. thermophilus ) or Streptococcus aureus ( S. aureus ) derived Cas9 protein, Neisseria meningitidis ( Neisseria meningitidis ) derived Cas9 protein, Pasteurella multocida ( Pasteurella multocida ) derived Cas9 protein, Francisella novicida ( Francisella novicida ) derived Cas9 protein, etc. It may be one or more selected from the group consisting of, but is not limited thereto. Cas9 protein or genetic information thereof can be obtained from known databases such as GenBank of National Center for Biotechnology Information (NCBI). For the Cas9 gene information, a known sequence may be used as it is or a sequence optimized for the codon of a target (organism) to be transduced may be used, but is not limited thereto.

Cas9 단백질은 RNA-guided DNA 엔도뉴클레아제 효소로, 이중 가닥 DNA 절단(double stranded DNA break)을 유도한다. Cas9 단백질이 정확하게 표적 염기서열에 결합하여 DNA 가닥을 잘라내기 위해서는 PAM (Protospacer Adjacent Motif)이라 알려진 3개의 염기로 이루어진 짧은 염기서열이 표적 염기서열 옆에 존재해야 하며, Cas9 단백질은 PAM 서열(NGG)로부터 3번째와 4번째 염기쌍 사이를 추정하여 절단한다.The Cas9 protein is an RNA-guided DNA endonuclease enzyme that induces double stranded DNA breaks. In order for the Cas9 protein to accurately bind to the target sequence and cut the DNA strand, a short sequence consisting of three bases known as PAM (Protospacer Adjacent Motif) must be present next to the target sequence, and the Cas9 protein has a PAM sequence (NGG) It is cut by estimating between the 3rd and 4th base pairs from .

본 발명에 따른 유전체 교정용 조성물에 있어서, 사용된 CRISPR/Cas9 시스템은 교정하고자 하는 특정 유전자의 특정위치에 이중나선 절단을 도입하여 DNA 수선 과정에서 유도되는 불완전 수선에 의한 삽입-결실(insertion-deletion, InDel) 돌연변이를 유도시키는 NHEJ(non-homologous end joining) 기작에 의한 유전자 교정 방법이다.In the composition for genome editing according to the present invention, the CRISPR/Cas9 system used introduces a double helix break at a specific position of a specific gene to be corrected to insert-deletion (insertion-deletion) caused by incomplete repair induced in the DNA repair process. , InDel) It is a gene editing method by NHEJ (non-homologous end joining) mechanism that induces mutations.

본 발명은 또한,The present invention also

(a) 양배추의 개화조절 유전자의 표적 염기서열에 특이적인 가이드 RNA(guide RNA)를 암호화하는 DNA 및 엔도뉴클레아제(endonuclease) 단백질을 암호화하는 핵산 서열을 포함하는 재조합 벡터를 양배추 식물세포에 도입하여 유전체를 교정하는 단계; 및(a) introducing a recombinant vector containing DNA encoding a guide RNA specific to a target sequence of a cabbage flowering control gene and a nucleic acid sequence encoding an endonuclease protein into cabbage plant cells Correcting the dielectric by doing; and

(b) 상기 유전체가 교정된 양배추 식물세포로부터 양배추 식물체를 재분화하는 단계;를 포함하는, 개화가 지연된 유전체 교정 양배추 식물체의 제조방법을 제공한다.(b) regenerating cabbage plants from the genome-corrected cabbage plant cells; providing a method for producing a genome-corrected cabbage plant with delayed flowering.

본 발명의 제조방법에 있어서, 상기 개화조절 유전자는 FLC (Flowering Locus C) 또는 GI (GIGANTEA) 일 수 있으나, 이에 제한되지 않는다.In the manufacturing method of the present invention, the flowering control gene may be FLC ( Flowering Locus C ) or GI ( GIGANTEA ), but is not limited thereto.

또한, 상기 표적 염기서열에 특이적인 가이드 RNA를 암호화하는 DNA 및 엔도뉴클레아제 단백질을 암호화하는 핵산 서열을 포함하는 재조합 벡터를 식물세포에 도입하는 것은 형질전환 방법을 의미한다. 식물 종의 형질전환은 이제는 쌍자엽 식물뿐만 아니라 단자엽 식물 양자를 포함한 식물 종에 대해 일반적이다. 원칙적으로, 임의의 형질전환 방법은 본 발명에 따른 재조합 벡터를 적당한 선조 세포로 도입시키는데 이용될 수 있다.In addition, introducing a recombinant vector containing DNA encoding a guide RNA specific to the target sequence and a nucleic acid sequence encoding an endonuclease protein into plant cells refers to a transformation method. Transformation of plant species is now common for plant species including both dicotyledonous as well as monocotyledonous plants. In principle, any transformation method can be used to introduce the recombinant vectors according to the invention into suitable progenitor cells.

본 발명에 따른 제조방법에 있어서, 상기 가이드 RNA는 멀티 카피 유전자에 특이적으로 결합 가능한 것일 수 있으나, 이에 제한되지 않는다.In the production method according to the present invention, the guide RNA may be capable of specifically binding to a multi-copy gene, but is not limited thereto.

본 발명에 따른 제조방법에 있어서, 상기 가이드 RNA와 엔도뉴클레아제 단백질의 복합체를 식물세포에 형질도입하는 방법은 원형질체에 대한 칼슘/폴리에틸렌 글리콜 방법(Krens et al., 1982, Nature 296:72-74; Negrutiu et al., 1987, Plant Mol. Biol. 8:363-373), 원형질체의 전기천공법(Shillito et al., 1985, Bio/Technol. 3:1099-1102), 식물 요소로의 현미주사법(Crossway et al., 1986, Mol. Gen. Genet. 202:179-185), 각종 식물 요소의(DNA 또는 RNA-코팅된) 입자 충격법(Klein et al., 1987, Nature 327:70), 아그로박테리움 튜메파시엔스(Agrobacterium tumefaciens) 매개된 유전자 전이에서(비완전성) 박테리아에 의한 감염 등으로부터 적당하게 선택될 수 있다.In the production method according to the present invention, the method of transducing the complex of the guide RNA and endonuclease protein into plant cells is the calcium/polyethylene glycol method for protoplasts (Krens et al., 1982, Nature 296:72- 74; Negrutiu et al., 1987, Plant Mol. Biol. 8:363-373), electroporation of protoplasts (Shillito et al., 1985, Bio/Technol. 3:1099-1102), brown rice as plant element injection (Crossway et al., 1986, Mol. Gen. Genet. 202:179-185), particle bombardment of various plant elements (DNA or RNA-coated) (Klein et al., 1987, Nature 327:70) , infection by bacteria in Agrobacterium tumefaciens mediated gene transfer (incomplete), and the like.

본 발명의 일 구현 예에 따른 제조방법에 있어서, 상기 재조합 벡터가 식물 세포에 형질전환되면, DNA 결합 및 절단 활성이 있는 엔도뉴클레아제 단백질과 상기 엔도뉴클레아제 단백질에 결합되며 표적 서열로 엔도뉴클레아제 단백질을 이끄는 sgRNA가 함께 발현되게 된다.In the production method according to one embodiment of the present invention, when the recombinant vector is transformed into a plant cell, it binds to an endonuclease protein having DNA binding and cutting activity and the endonuclease protein, and converts the endoplasmic recombinant vector into a target sequence. The sgRNA leading to the nuclease protein is also expressed.

본 명세서에서 용어 "재조합"은 세포가 이종의 핵산을 복제하거나, 상기 핵산을 발현하거나 또는 펩티드, 이종의 펩티드 또는 이종의 핵산에 의해 코딩된 단백질을 발현하는 세포를 지칭하는 것이다. 재조합 세포는 상기 세포의 천연 형태에서는 발견되지 않는 유전자 또는 유전자 절편을, 센스 또는 안티센스 형태 중 하나로 발현할 수 있다. 또한 재조합 세포는 천연 상태의 세포에서 발견되는 유전자를 발현할 수 있으며, 그러나 상기 유전자는 변형된 것으로서 인위적인 수단에 의해 세포 내 재도입된 것이다.As used herein, the term "recombinant" refers to a cell in which a cell replicates a heterologous nucleic acid, expresses the nucleic acid, or expresses a peptide, a protein encoded by a heterologous peptide or a heterologous nucleic acid. Recombinant cells can express genes or gene segments not found in the cell's native form, either in sense or antisense form. A recombinant cell may also express a gene found in the cell in its natural state, but the gene has been reintroduced into the cell by artificial means as a modified one.

또한, 용어 "벡터"는 세포 내로 전달하는 DNA 단편(들), 핵산 분자를 지칭할 때 사용된다. 벡터는 DNA를 복제시키고, 숙주세포에서 독립적으로 재생산될 수 있다. 용어 "전달체"는 흔히 "벡터"와 호환하여 사용된다. 용어 "발현 벡터"는 목적한 코딩 서열과, 특정 숙주 생물에서 작동가능하게 연결된 코딩 서열을 발현하는데 필수적인 적정 핵산 서열을 포함하는 재조합 DNA 분자를 의미한다. 진핵세포에서 이용 가능한 프로모터, 인핸서, 종결신호 및 폴리아데닐레이션 신호는 공지되어 있다.Also, the term "vector" is used to refer to DNA fragment(s) or nucleic acid molecules that are delivered into cells. Vectors replicate DNA and can reproduce independently in host cells. The term “delivery vehicle” is often used interchangeably with “vector”. The term "expression vector" refers to a recombinant DNA molecule comprising a coding sequence of interest and appropriate nucleic acid sequences necessary to express the operably linked coding sequence in a particular host organism. Promoters, enhancers, termination signals and polyadenylation signals available in eukaryotic cells are known.

본 발명에 따른 제조방법에 있어서, 상기 표적 염기서열에 특이적인 가이드 RNA 및 엔도뉴클레아제 단백질이 도입되는 "식물세포"는 어떤 식물세포도 된다. 식물세포는 배양 세포, 배양 조직, 배양 기관 또는 전체 식물이다. "식물 조직"은 분화된 또는 미분화된 식물의 조직, 예를 들면 이에 한정되진 않으나, 뿌리, 줄기, 잎, 꽃가루, 소포자, 난세포, 종자 및 배양에 이용되는 다양한 형태의 세포들, 즉 단일 세포, 원형질체(protoplast), 싹 및 캘러스 조직을 포함한다. 식물 조직은 인 플란타(in planta)이거나 기관 배양, 조직 배양 또는 세포 배양 상태일 수 있다. In the manufacturing method according to the present invention, the "plant cell" into which the target sequence-specific guide RNA and endonuclease protein are introduced can be any plant cell. A plant cell is a cultured cell, cultured tissue, cultured organ or whole plant. "Plant tissue" refers to differentiated or undifferentiated plant tissue, including, but not limited to, roots, stems, leaves, pollen, microspores, ovules, seeds, and various types of cells used in culture, i.e., single cells, Includes protoplast, shoot and callus tissues. Plant tissue may be in planta or may be in organ culture, tissue culture or cell culture.

본 발명의 제조방법에 있어서, 유전체가 교정된 식물세포로부터 유전체가 교정된 식물을 재분화하는 방법은 당업계에 공지된 임의의 방법을 이용할 수 있다. 유전체가 교정된 식물세포는 전식물로 재분화되어야 한다. 캘러스 또는 원형질체 배양으로부터 성숙한 식물의 재분화를 위한 기술은 수많은 여러 가지 종에 대해서 당업계에 주지되어 있다(Handbook of Plant Cell Culture, 1-5권, 1983-1989 Momillan, N.Y.).In the production method of the present invention, any method known in the art may be used as a method for regenerating genome-corrected plants from genome-corrected plant cells. The genome-corrected plant cell must regenerate into a whole plant. Techniques for regeneration of mature plants from callus or protoplast cultures are well known in the art for a number of different species (Handbook of Plant Cell Culture, Vols. 1-5, 1983-1989 Momillan, N.Y.).

본 발명은 또한, 상기 방법에 의해 제조된 개화가 지연된 유전체 교정 양배추 식물체 및 이의 유전체가 교정된 종자를 제공한다.The present invention also provides a genome-corrected cabbage plant with delayed flowering prepared by the above method and a genome-corrected seed thereof.

이하, 본 발명을 실시예에 의해 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail by examples. However, the following examples are only to illustrate the present invention, and the content of the present invention is not limited to the following examples.

1. 양배추 1. Cabbage FLCFLC 유전자의 클로닝 cloning of genes

양배추 FLC 유전자를 클로닝하기 위해서 기내에서 종자를 발아시켜 얻은 양배추 품종 '스피드' ('Speed': Jeil Seed, Korea)의 배양묘를 10일간 생육시킨 후 어린잎을 취하여 DNA를 추출하였다. 상기 추출한 DNA를 가지고 NCBI에 공개된 양배추 FLC1, FLC3FLC2/4 유전자 각각의 특이적 프라이머 세트를 디자인하여 PCR을 수행한 후, 증폭산물을 정제하고 서열분석을 진행하였다(도 1). 프라이머를 제작하기 위해 FLC1(CAJ77613), FLC2/4(AAQ76275), FLC3(CAJ77614) 유전자 서열의 보존된(conserved) 영역을 참조하여 프라이머를 제작하였다(표 1). PCR 증폭산물을 TA 클로닝 벡터에 라이게이션(ligation)시킨 후 대장균에 다시 삽입하여 LB 배지에 배양한 후 카나마이신(Kanamycin) 항생제 고체 배지에 옮겨 밤새 배양한 후 콜로니 PCR을 수행한 후 1.2% 아가로스 겔에 전기영동하여 표적 유전자의 밴드 크기를 확인한 후 카나마이신 항생제 액체 배지에 옮겨 24시간 증식시켰다. 그리고 Plasmid DNA를 추출하여 정제 한 후 '스피드' 품종 고유의 유전자 염기서열 확보를 진행하였다.In order to clone the cabbage FLC gene, cultured seedlings of cabbage variety 'Speed' (Jeil Seed, Korea) obtained by germinating seeds in vitro were grown for 10 days, and then young leaves were taken and DNA was extracted. PCR was performed by designing specific primer sets for each of the cabbage FLC1 , FLC3 , and FLC2/4 genes disclosed in NCBI with the extracted DNA, and then the amplified products were purified and sequenced (FIG. 1). To prepare primers, primers were prepared by referring to conserved regions of FLC1 ( CAJ77613 ), FLC2/4 (AAQ76275 ), and FLC3 ( CAJ77614 ) gene sequences (Table 1). The PCR amplification product was ligated into a TA cloning vector, reinserted into E. coli, cultured in LB medium, transferred to Kanamycin antibiotic solid medium, cultured overnight, colony PCR was performed, and 1.2% agarose gel was used. After confirming the band size of the target gene by electrophoresis, it was transferred to kanamycin antibiotic liquid medium and grown for 24 hours. Then, after extracting and purifying the plasmid DNA, we proceeded to secure the genetic sequence unique to the 'Speed' variety.

FLC 유전자 클로닝에 사용된 프라이머 정보Primer information used for FLC gene cloning Target geneTarget gene Sequence (5'→3')Sequence (5'→3') Amplicon size (bp)Amplicon size (bp) FLC1FLC1 FF AGATCAAATTAGGGCGCAAAGC (서열번호 15)AGATCAAATTAGGGCGCAAAGC (SEQ ID NO: 15) 54005400 RR ATTCGCCGATTAAAGGTAAC (서열번호 16)ATTCGCCGATTAAAGGTAAC (SEQ ID NO: 16) FLC3FLC3 FF CACTTGAACCGAACCTCTGG (서열번호 17)CACTTGAACCGAACCTCTGG (SEQ ID NO: 17) 51075107 RR ATTTCAGCCCCGTCTAAAGG (서열번호 18)ATTTCAGCCCCGTCTAAAGG (SEQ ID NO: 18) FLC2/4FLC2/4 FF ACCGAACCGAACCTCAGGATC (서열번호 19)ACCGAACCGAACCTCAGGATC (SEQ ID NO: 19) 56345634 RR GTAGTTTTTACACACGGGGTC (서열번호 20)GTAGTTTTTACACACGGGGTC (SEQ ID NO: 20)

2. 유전자 교정을 위한 가이드 RNA 설계 및 형질전환2. Guide RNA design and transformation for gene editing

양배추 '스피드'의 FLC 및 양배추 GI 유전자 정보를 기반으로 하여 CRISPR RGEN Tools (http://rgenome.net/)을 사용하여 멀티 카피 FLC, GI 유전자를 동시에 표적할 수 있도록 엑손 부위를 표적으로, high out-of-frame score로 여러 개의 다른 FLC, GI sgRNA의 타겟 부위를 결정했다.Based on FLC and cabbage GI gene information of cabbage 'Speed', CRISPR RGEN Tools (http://rgenome.net/) was used to target exon regions to simultaneously target multi-copy FLC and GI genes, high Target sites of several different FLC and GI sgRNAs were determined by out-of-frame scoring.

Figure pat00001
Figure pat00001

고안된 sgRNA 염기서열을 포함하는 pBAtC::FLC-sgRNA를 제작한 후, 아그로박테리움을 이용하여 양배추 잎 외식편에 형질전환하였다(도 2). 간단하게, 상기 pBAtC::FLC-sgRNA를 아그로박테리움 튜머파시엔스(Agrobacterium tumefaciens) GV3101 균주로 형질전환시킨 후, 28℃에서 18시간동안 배양하고, 상기 형질전환된 아그로박테리움 균주를 LB 배지로 옮겨 OD600 값이 0.8~1 정도될 때까지 배양하였다. 그 후 상기 아그로박테리움을 양배추 품종 '스피드'의 잎 외식편과 공동배양하여 양배추를 형질전환시켰다. 그 후, 상기 잎 외식편을 선별배지로 옮겨 배양시킨 후 신초유도배지에서 신초 성장을 유도한 후 형질전환 식물체로 키웠다.After preparing pBAtC::FLC-sgRNA containing the designed sgRNA sequence, cabbage leaf explants were transformed using Agrobacterium (Fig. 2). Briefly, the pBAtC :: FLC-sgRNA was transformed into Agrobacterium tumefaciens GV3101 strain, incubated at 28 ° C. for 18 hours, and the transformed Agrobacterium strain was converted into LB medium It was transferred and cultured until the OD 600 value was about 0.8 to 1. The Agrobacterium was then co-cultured with leaf explants of cabbage variety 'Speed' to transform cabbage. Thereafter, the leaf explants were transferred to a selection medium and cultured, and then shoot growth was induced in a shoot induction medium and then grown as transgenic plants.

3. 형질전환 식물체의 유전자 교정 확인3. Confirmation of gene correction of transgenic plants

형질전환 식물체에서 게노믹 DNA를 추출한 후, PCR을 통해 sgRNA 표적 위치를 증폭시키고 시퀀싱 분석을 통해 표적 유전자의 편집 여부를 분석하였다.After extracting genomic DNA from transgenic plants, the sgRNA target site was amplified by PCR, and the editing of the target gene was analyzed by sequencing analysis.

<110> The Industry & Academic Cooperation in Chungnam National University (IAC) <120> Method for producing cabbage plant having late-flowering trait using CRISPR/Cas complex <130> PN21188 <160> 20 <170> KoPatentIn 3.0 <210> 1 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> sgRNA target sequence <400> 1 gagaccgttg cgtcgtttgg agg 23 <210> 2 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> sgRNA target sequence <400> 2 gacggatgcg tcacagagaa cgg 23 <210> 3 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> sgRNA target sequence <400> 3 cttctcctcc ggtgataacc cgg 23 <210> 4 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> sgRNA target sequence <400> 4 tatcgatcaa ggatcttgac cgg 23 <210> 5 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> sgRNA target sequence <400> 5 acttgtggaa agcaagcttg agg 23 <210> 6 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> sgRNA target sequence <400> 6 ccatctggct agccaaaaca tgg 23 <210> 7 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> sgRNA target sequence <400> 7 ctcctcgttg tctcagcctc tgg 23 <210> 8 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> sgRNA target sequence <400> 8 cgccggcgat gacctggtca agg 23 <210> 9 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> sgRNA target sequence <400> 9 cagtcagaag ctccgaagta tgg 23 <210> 10 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> sgRNA target sequence <400> 10 gcttgtcgaa agtaagcttg tgg 23 <210> 11 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> sgRNA target sequence <400> 11 ggagacaacg agaagcgcga tgg 23 <210> 12 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> sgRNA target sequence <400> 12 cctgaccagg ttatcaccgg cgg 23 <210> 13 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> sgRNA target sequence <400> 13 cagtcaaaag ctctgagcta tgg 23 <210> 14 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> sgRNA target sequence <400> 14 ttagagagag agcattctca agg 23 <210> 15 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 15 agatcaaatt agggcgcaaa gc 22 <210> 16 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 16 attcgccgat taaaggtaac 20 <210> 17 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 17 cacttgaacc gaacctctgg 20 <210> 18 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 18 atttcagccc cgtctaaagg 20 <210> 19 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 19 accgaaccga acctcaggat c 21 <210> 20 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 20 gtagttttta cacacggggt c 21 <110> The Industry & Academic Cooperation in Chungnam National University (IAC) <120> Method for producing cabbage plant having late-flowering trait using CRISPR/Cas complex <130> PN21188 <160> 20 <170> KoPatentIn 3.0 <210> 1 <211> 23 <212> DNA <213> artificial sequence <220> <223> sgRNA target sequence <400> 1 gagaccgttg cgtcgtttgg agg 23 <210> 2 <211> 23 <212> DNA <213> artificial sequence <220> <223> sgRNA target sequence <400> 2 gacggatgcg tcacagagaa cgg 23 <210> 3 <211> 23 <212> DNA <213> artificial sequence <220> <223> sgRNA target sequence <400> 3 cttctcctcc ggtgataacc cgg 23 <210> 4 <211> 23 <212> DNA <213> artificial sequence <220> <223> sgRNA target sequence <400> 4 tatcgatcaa ggatcttgac cgg 23 <210> 5 <211> 23 <212> DNA <213> artificial sequence <220> <223> sgRNA target sequence <400> 5 acttgtgggaa agcaagcttg agg 23 <210> 6 <211> 23 <212> DNA <213> artificial sequence <220> <223> sgRNA target sequence <400> 6 ccatctggct agccaaaaca tgg 23 <210> 7 <211> 23 <212> DNA <213> artificial sequence <220> <223> sgRNA target sequence <400> 7 ctcctcgttg tctcagcctc tgg 23 <210> 8 <211> 23 <212> DNA <213> artificial sequence <220> <223> sgRNA target sequence <400> 8 cgccggcgat gacctggtca agg 23 <210> 9 <211> 23 <212> DNA <213> artificial sequence <220> <223> sgRNA target sequence <400> 9 cagtcagaag ctccgaagta tgg 23 <210> 10 <211> 23 <212> DNA <213> artificial sequence <220> <223> sgRNA target sequence <400> 10 gcttgtcgaa agtaagcttg tgg 23 <210> 11 <211> 23 <212> DNA <213> artificial sequence <220> <223> sgRNA target sequence <400> 11 ggagacaacg agaagcgcga tgg 23 <210> 12 <211> 23 <212> DNA <213> artificial sequence <220> <223> sgRNA target sequence <400> 12 cctgaccagg ttatcaccgg cgg 23 <210> 13 <211> 23 <212> DNA <213> artificial sequence <220> <223> sgRNA target sequence <400> 13 cagtcaaaag ctctgagcta tgg 23 <210> 14 <211> 23 <212> DNA <213> artificial sequence <220> <223> sgRNA target sequence <400> 14 ttatagagagag agcattctca agg 23 <210> 15 <211> 22 <212> DNA <213> artificial sequence <220> <223> primer <400> 15 agatcaaatt agggcgcaaa gc 22 <210> 16 <211> 20 <212> DNA <213> artificial sequence <220> <223> primer <400> 16 attcgccgat taaaggtaac 20 <210> 17 <211> 20 <212> DNA <213> artificial sequence <220> <223> primer <400> 17 cacttgaacc gaacctctgg 20 <210> 18 <211> 20 <212> DNA <213> artificial sequence <220> <223> primer <400> 18 atttcagccc cgtctaaagg 20 <210> 19 <211> 21 <212> DNA <213> artificial sequence <220> <223> primer <400> 19 accgaaccga acctcaggat c 21 <210> 20 <211> 21 <212> DNA <213> artificial sequence <220> <223> primer <400> 20 gtagttttta cacacggggt c 21

Claims (7)

양배추의 개화조절 유전자의 표적 염기서열에 특이적인 가이드 RNA(guide RNA)를 암호화하는 DNA 및 엔도뉴클레아제(endonuclease) 단백질을 암호화하는 핵산 서열을 포함하는 재조합 벡터를 유효성분으로 함유하는, 양배추의 개화를 지연시키기 위한 유전체 교정용 조성물.Cabbage containing, as an active ingredient, a recombinant vector containing DNA encoding a guide RNA specific to the target sequence of the flowering control gene of cabbage and a nucleic acid sequence encoding an endonuclease protein. A composition for genome correction for delaying flowering. 제1항에 있어서, 상기 개화조절 유전자는 FLC (Flowering Locus C) 또는 GI (GIGANTEA)인 것을 특징으로 하는 양배추의 개화를 지연시키기 위한 유전체 교정용 조성물.The composition for genome editing according to claim 1, wherein the flowering control gene is FLC ( Flowering Locus C ) or GI ( GIGANTEA ). (a) 양배추의 개화조절 유전자의 표적 염기서열에 특이적인 가이드 RNA(guide RNA)를 암호화하는 DNA 및 엔도뉴클레아제(endonuclease) 단백질을 암호화하는 핵산 서열을 포함하는 재조합 벡터를 양배추 식물세포에 도입하여 유전체를 교정하는 단계; 및
(b) 상기 유전체가 교정된 양배추 식물세포로부터 양배추 식물체를 재분화하는 단계;를 포함하는, 개화가 지연된 유전체 교정 양배추 식물체의 제조방법.
(a) introducing a recombinant vector containing DNA encoding a guide RNA specific to a target sequence of a cabbage flowering control gene and a nucleic acid sequence encoding an endonuclease protein into cabbage plant cells Correcting the dielectric by doing; and
(b) regenerating cabbage plants from the genome-corrected cabbage plant cells; a method for producing a genome-corrected cabbage plant with delayed flowering.
제3항에 있어서, 상기 개화조절 유전자는 FLC (Flowering Locus C) 또는 GI (GIGANTEA)인 것을 특징으로 하는 제조방법.The method according to claim 3, wherein the flowering control gene is FLC ( Flowering Locus C ) or GI ( GIGANTEA ). 제3항에 있어서, 상기 가이드 RNA는 멀티 카피 유전자에 특이적으로 결합 가능한 것을 특징으로 하는 제조방법.The method according to claim 3, wherein the guide RNA is capable of specifically binding to a multi-copy gene. 제3항 내지 제5항 중 어느 한 항의 방법에 의해 제조된 개화가 지연된 유전체 교정 양배추 식물체.A genome corrected cabbage plant with delayed flowering prepared by the method of any one of claims 3 to 5. 제6항에 따른 양배추 식물체의 유전체가 교정된 종자.The genome of the cabbage plant according to claim 6 is corrected.
KR1020210084294A 2021-06-28 2021-06-28 Method for producing cabbage plant having late-flowering trait using CRISPR/Cas complex KR20230001450A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210084294A KR20230001450A (en) 2021-06-28 2021-06-28 Method for producing cabbage plant having late-flowering trait using CRISPR/Cas complex

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210084294A KR20230001450A (en) 2021-06-28 2021-06-28 Method for producing cabbage plant having late-flowering trait using CRISPR/Cas complex

Publications (1)

Publication Number Publication Date
KR20230001450A true KR20230001450A (en) 2023-01-04

Family

ID=84925102

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210084294A KR20230001450A (en) 2021-06-28 2021-06-28 Method for producing cabbage plant having late-flowering trait using CRISPR/Cas complex

Country Status (1)

Country Link
KR (1) KR20230001450A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117586369A (en) * 2024-01-12 2024-02-23 中国热带农业科学院三亚研究院 ScFT2 protein for delaying flowering or prolonging growth period, and encoding gene and application thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117586369A (en) * 2024-01-12 2024-02-23 中国热带农业科学院三亚研究院 ScFT2 protein for delaying flowering or prolonging growth period, and encoding gene and application thereof
CN117586369B (en) * 2024-01-12 2024-03-26 中国热带农业科学院三亚研究院 ScFT2 protein for delaying flowering or prolonging growth period, and encoding gene and application thereof

Similar Documents

Publication Publication Date Title
US20170327833A1 (en) Tal-mediated transfer dna insertion
CN109097387B (en) Method for creating purple tomato mutant by using CRISPR/Cas9 gene editing system and application
WO2014144094A1 (en) Tal-mediated transfer dna insertion
DE19708774A1 (en) Enzymes encoding nucleic acid molecules which have fructosyl polymerase activity
JP3431177B2 (en) Plasmids producing transgenic plants altered in habit and yield
WO2021169925A1 (en) Fusion protein and application thereof
CN110066824B (en) Artificial base editing system for rice
CN113999850A (en) Potato U6 RNA polymerase III type promoter and cloning and application thereof
KR20230001450A (en) Method for producing cabbage plant having late-flowering trait using CRISPR/Cas complex
CN116479038B (en) Method for obtaining non-transgenic quinoa with increased fragrance
KR102547766B1 (en) Method for producing genome-edited Petunia plant with enhanced flower longevity by PhACO1 gene editing and genome-edited Petunia plant with enhanced flower longevity produced by the same method
JP5186076B2 (en) Engineering plant senescence using the myb gene promoter and cytokinin biosynthesis genes
KR20220055904A (en) Method for producing OsSLR1 gene mutant rice plant using CRISPR/Cas9 system and rice plant having dwarf phenotype produced by the same method
KR102516522B1 (en) pPLAⅡη gene inducing haploid plant and uses thereof
KR20200066967A (en) Method for producing genome-edited Brassica rapa plant having late flowering trait by FT gene editing and the plant thereof
CN110452914B (en) Gene BnC04BIN2-like1 for regulating brassinolide signal transduction and application thereof
KR20230048237A (en) Method for producing Brassica plant having delayed silique dehiscence using gene editing and Brassica plant produced by the same method
CN111235167B (en) Gene for coding spatholobus stem anthocyanin reductase and application thereof
CN114214332B (en) Tianmu rehmannia anthocyanin related gene RcMYB1 and application thereof
CN113416732B (en) Dendrobium officinale salt inducible promoter proDoMYB75 and application thereof
CN106244595A (en) Lignum seu Ramulus Cunninghamiae Lanceolatae phytosulfokine-α CLPSK1 gene and application thereof
KR20230055543A (en) Method for producing tomato plant having increased multi-stress tolerance using gene editing and tomato plant produced by the same method
CN116676329A (en) Cloning and expression vector construction method of oil tea SQS gene
KR20230067161A (en) Method for producing lettuce plant having late flowering trait by SOC1 gene editing and lettuce plant produced by the same method
CN115747227A (en) Tobacco NtGA3ox1 gene and application thereof in regulating and controlling epidermal glandular hair density