KR20220055904A - Method for producing OsSLR1 gene mutant rice plant using CRISPR/Cas9 system and rice plant having dwarf phenotype produced by the same method - Google Patents

Method for producing OsSLR1 gene mutant rice plant using CRISPR/Cas9 system and rice plant having dwarf phenotype produced by the same method Download PDF

Info

Publication number
KR20220055904A
KR20220055904A KR1020200140459A KR20200140459A KR20220055904A KR 20220055904 A KR20220055904 A KR 20220055904A KR 1020200140459 A KR1020200140459 A KR 1020200140459A KR 20200140459 A KR20200140459 A KR 20200140459A KR 20220055904 A KR20220055904 A KR 20220055904A
Authority
KR
South Korea
Prior art keywords
rice
gene
osslr1
slr1
nucleotide sequence
Prior art date
Application number
KR1020200140459A
Other languages
Korean (ko)
Inventor
강권규
정유진
Original Assignee
한경대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한경대학교 산학협력단 filed Critical 한경대학교 산학협력단
Priority to KR1020200140459A priority Critical patent/KR20220055904A/en
Publication of KR20220055904A publication Critical patent/KR20220055904A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H1/00Processes for modifying genotypes ; Plants characterised by associated natural traits
    • A01H1/06Processes for producing mutations, e.g. treatment with chemicals or with radiation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Botany (AREA)
  • Cell Biology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Developmental Biology & Embryology (AREA)
  • Environmental Sciences (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

The present invention relates to a composition for genome correction for inducing dwarf in rice plants and a use thereof. According to the present invention, the composition comprises: a complex (ribonucleoprotein) of a guide RNA specific to a target sequence of a rice-derived OsSLR1 (Oryza sativa slender rice 1) gene and endonuclease protein; or a recombinant vector including DNA encoding the guide RNA specific to the target sequence of the rice-derived OsSLR1 gene and a nucleic acid sequence encoding the endonuclease protein.

Description

CRISPR/Cas9 시스템을 이용한 OsSLR1 유전자 돌연변이 벼 식물체의 제조방법 및 상기 방법에 의해 제조된 왜성 표현형을 가지는 벼 식물체{Method for producing OsSLR1 gene mutant rice plant using CRISPR/Cas9 system and rice plant having dwarf phenotype produced by the same method}Method for producing OsSLR1 gene mutant rice plant using CRISPR/Cas9 system and rice plant having dwarf phenotype produced by the method same method}

본 발명은 CRISPR/Cas9 시스템을 이용한 OsSLR1 (Oryza sativa slender rice 1) 유전자 돌연변이 벼 식물체의 제조방법 및 상기 방법에 의해 제조된 왜성 표현형을 가지는 벼 식물체에 관한 것이다.The present invention relates to a method for producing an OsSLR1 ( Oryza sativa slender rice 1) gene mutant rice plant using a CRISPR/Cas9 system, and to a rice plant having a dwarf phenotype produced by the method.

세계 인구의 약 절반이 소비하는 주요 식량 작물 중 하나인 쌀은 매년 약 450만 헥타르에서 재배되고 있다. 벼 육종가들은 식물체의 크기 및 무게를 load라고 하는데, load가 많을수록 도복이 되어, 도복내성 즉 도복되지 않는 것(키가 작은 것)과 비생물학적 스트레스 내성을 개선하는 것이 가장 큰 육종 목표이다. 지금까지 식물에서 발견되는 많은 왜성(dwarf) 돌연변이의 특성은 지베렐린(gibberellin, GA), IAA (indole-3-acetic acid), 브라시놀라이드(brassinolide) 및 기타 호르몬의 생합성 및 신호 전달 경로에 대한 유전자와 관련이 있었다. GA는 줄기 신장, 발아, 휴면, 개화, 꽃 발달, 잎 및 과일 노화를 포함하여 고등 식물에서 다양한 성장 및 발달 과정에 관여하는 디테르페노이드(diterpenoid) 화합물 그룹으로, 중요한 식물 호르몬 중 하나이다. GA 생합성 또는 신호 전달이 부족한 돌연변이의 표현형은 일반적으로 벼에서 짙은 녹색과 거친 잎을 나타낸다. 지금까지 GA 생합성 경로에서 결함이 있는 돌연변이와 관련된 몇 가지 유전자, 즉 d18, d35, sd1eui가 벼에서 분리되고 연구되었다. GA에 민감한 벼와 애기장대 돌연변이에 대한 분자 유전 연구는 GA 신호 전달에 대한 중요한 요소를 확인했으며, 이는 개화 식물 사이에서 잘 보존된 것으로 보여진다. GA 신호 전달 경로의 가장 중요한 조절자는 GA 작용 억제자로 알려진 DELLA 단백질로, 전사인자인 DELLA 단백질은 GRAS (GAI, RGA, SCR) 계열에 속하며 N-말단 DELLA/TVHYNP 모티프와 C-말단 GRAS 도메인을 포함하는 것으로 알려져 있다. 또한, GA 수용체 GA-INSENSITIVE DWARF1 (GID1), F-box 단백질 GA-INSENSITIVE DWARF2 (GID2) 및 DELLA 단백질을 암호화하는 유전자가 클로닝되었으며 통합된 GA 신호 전달 경로가 알려졌다. 또한 DELLA 계열 단백질은 PIF (phytochrome interaction factor)와 같은 성장 관련 전사 인자와 상호 작용하여 식물 세포와 장기 크기를 조절하는 것으로 보고되었다. 일반적으로 식물 세포의 GID1-GA-DELLA 복합체는 수용체에 의해 GA를 인식하지만, 쌀의 경우 GID2의 F-box 단백질이 DELLA 단백질과 추가적으로 상호 작용하여 E3 ubiquitin-ligase에 의해 폴리 유비퀴틴화 된 후 26S 프로테아좀을 통해 분해된다. 벼에서는 GID1과 DELLA 단백질을 통한 GA 신호 전달에 의해 절간 신장이 촉진되는 것으로 알려져 있다. 지금까지 축적된 증거는 GA 작용의 억제에 필요한 DELLA의 N-말단이 강조되었다. 벼에서 GA 신호 전달 억제자 DELLA 단백질 N-말단 영역의 slr1-d1, -d2, -d3, -d4, -d5 및 -d6 돌연변이는 결과적으로 반왜성 표현형이 나타났고(Fitopatol. Bras. (2005) 30:457-469), 이러한 돌연변이체는 DELLA 단백질의 보존된 DELLA/TVHYNP 도메인에서 1 bp 치환에 의해 변형된 아미노산을 갖는 것으로 알려졌다.Rice, one of the main food crops consumed by about half of the world's population, is grown on about 4.5 million hectares annually. Rice breeders refer to the size and weight of a plant as load, and the greater the load, the more it will fall. Characteristics of many dwarf mutants found in plants to date are genes for the biosynthesis and signaling pathways of gibberellin (GA), indole-3-acetic acid (IAA), brassinolide and other hormones. was related to GA is a group of diterpenoid compounds involved in various growth and development processes in higher plants, including stem elongation, germination, dormancy, flowering, flower development, leaf and fruit aging, and is one of the important plant hormones. The phenotype of mutants deficient in GA biosynthesis or signaling usually shows dark green and rough leaves in rice. To date, several genes associated with defective mutations in the GA biosynthetic pathway, namely d18 , d35 , sd1 and eui , have been isolated and studied in rice. Molecular genetic studies of GA-sensitive rice and Arabidopsis mutants have identified important factors for GA signaling, which appear to be well conserved among flowering plants. The most important regulator of the GA signaling pathway is the DELLA protein, known as a GA action inhibitor. The transcription factor DELLA protein belongs to the GRAS (GAI, RGA, SCR) family and contains an N-terminal DELLA/TVHYNP motif and a C-terminal GRAS domain. is known to do In addition, genes encoding the GA receptor GA-INSENSITIVE DWARF1 (GID1), the F-box protein GA-INSENSITIVE DWARF2 (GID2) and the DELLA protein have been cloned and the integrated GA signaling pathway is known. In addition, it has been reported that DELLA family proteins regulate plant cell and organ size by interacting with growth-related transcription factors such as phytochrome interaction factor (PIF). In general, the GID1-GA-DELLA complex in plant cells recognizes GA by its receptor, but in rice, the F-box protein of GID2 additionally interacts with the DELLA protein, resulting in polyubiquitination by E3 ubiquitin-ligase, followed by 26S proteolysis. It is broken down via the teasome. In rice, internode elongation is known to be promoted by GA signaling through GID1 and DELLA proteins. Evidence accumulated to date has highlighted the N-terminus of DELLA, which is required for inhibition of GA action. In rice, slr1-d1, -d2, -d3, -d4, -d5 and -d6 mutations in the N-terminal region of the GA signaling inhibitor DELLA protein resulted in a semi-dwarf phenotype (Fitopatol. Bras. (2005)). 30:457-469), this mutant is known to have an amino acid modified by a 1 bp substitution in the conserved DELLA/TVHYNP domain of the DELLA protein.

한편, 한국공개특허 제2004-0019016호에는 '식물의 반왜성화에 관여하는 sd1 유전자 및 그의 이용'이 개시되어 있고, 한국공개특허 제2015-0120784호에는 '왜성 표현형을 나타내는 D-h 유전자 및 이의 용도'가 개시되어 있으나, 본 발명의 CRISPR/Cas9 시스템을 이용한 OsSLR1 유전자 돌연변이 벼 식물체의 제조방법 및 상기 방법에 의해 제조된 왜성 표현형을 가지는 벼 식물체에 대해서는 기재된 바가 없다.On the other hand, Korean Patent Application Laid-Open No. 2004-0019016 discloses ' sd1 gene involved in semi-dwarfization of plants and their use', and Korean Patent Publication No. 2015-0120784 discloses ' Dh gene exhibiting dwarf phenotype and uses thereof'. is disclosed, but there is no description of a method for producing an OsSLR1 gene mutant rice plant using the CRISPR/Cas9 system of the present invention and a rice plant having a dwarf phenotype produced by the method.

본 발명은 상기와 같은 요구에 의해 도출된 것으로서, 본 발명자들은 DELLA 단백질로 알려진 OsSLR1 유전자의 TVHYNP 도메인을 표적으로 CRISPR/Cas9 시스템을 이용하여 변이를 유도하였고, 새로운 대립 유전자 변이를 가진 총 6개의 동형 접합 편집 식물체, 즉 slr1-d7, slr1-d8, slr1-d9, slr1-d10, slr1-d11 및 slr1-d12가 왜성의 표현형을 나타내는 것을 확인함으로써, 본 발명을 완성하였다.The present invention was derived from the above needs, and the present inventors induced mutations using the CRISPR/Cas9 system targeting the TVHYNP domain of the OsSLR1 gene known as DELLA protein, and a total of 6 isoforms with new allelic mutations The present invention was completed by confirming that zygote editing plants, ie, slr1-d7, slr1-d8, slr1-d9, slr1-d10, slr1-d11 and slr1-d12, exhibit a dwarf phenotype.

상기 과제를 해결하기 위해, 본 발명은 벼 유래 OsSLR1 (Oryza sativa slender rice 1) 유전자의 표적 염기서열에 특이적인 가이드 RNA(guide RNA)와 엔도뉴클레아제(endonuclease) 단백질의 복합체(ribonucleoprotein); 또는 벼 유래 OsSLR1 유전자의 표적 염기서열에 특이적인 가이드 RNA를 암호화하는 DNA 및 엔도뉴클레아제 단백질을 암호화하는 핵산 서열을 포함하는 재조합 벡터;를 유효성분으로 함유하는, 벼 식물체의 왜성을 유도하기 위한 유전체 교정용 조성물을 제공한다.In order to solve the above problems, the present invention provides a complex of a guide RNA and an endonuclease protein specific to the target nucleotide sequence of the rice-derived OsSLR1 ( Oryza sativa slender rice 1) gene (ribonucleoprotein); Or a recombinant vector comprising a nucleic acid sequence encoding an endonuclease protein and DNA encoding a guide RNA specific for the target nucleotide sequence of the rice-derived OsSLR1 gene; A composition for genome editing is provided.

또한, 본 발명은 (a) 벼 유래 OsSLR1 유전자의 표적 염기서열에 특이적인 가이드 RNA 및 엔도뉴클레아제 단백질을 벼 식물세포에 도입하여 유전체를 교정하는 단계; 및 (b) 상기 유전체가 교정된 벼 식물세포로부터 벼 식물체를 재분화하는 단계;를 포함하는, 왜성(dwarf)이 유도된 유전체 교정 벼 식물체의 제조방법을 제공한다.In addition, the present invention comprises the steps of (a) correcting the genome by introducing a guide RNA and an endonuclease protein specific to the target nucleotide sequence of the rice-derived OsSLR1 gene into rice plant cells; And (b) re-differentiating the rice plant from the genome-corrected rice plant cells; provides a method for producing a dwarf-induced genome-corrected rice plant comprising a.

또한, 본 발명은 상기 방법에 의해 제조된 왜성(dwarf)이 유도된 유전체 교정 벼 식물체를 제공한다.In addition, the present invention provides a dwarf-induced genome-corrected rice plant produced by the above method.

돌연변이의 유도 및 고정, 그리고 교배육종에 의한 MAS 선발 등은 비교적 많은 시간이 소요되나, CRISPR 시스템을 적용하면 보다 단 시간에 목적하는 부위의 변이를 유발시켜 변이체를 확보할 수 있는 장점이 있다. 또한, 본 발명에 따른 반우성 왜성 돌연변이 대립유전자형은, 신품종 개발을 위한 육종에 유용하게 활용될 수 있을 것이다.Induction and fixation of mutations, and MAS selection by crossbreeding takes a relatively long time, but the application of the CRISPR system has the advantage of inducing mutations in the desired site in a shorter time to secure mutants. In addition, the anti-dominant dwarf mutant allele according to the present invention may be usefully utilized in breeding for the development of new varieties.

도 1A는 OsSLR1 유전자 편집을 위한 sgRNA 표적 위치를 보여주고, 1B 및 1C는 유전체 교정 식물체의 표적 심층 시퀀싱 분석 결과에 따른 각 돌연변이 식물체의 염기서열 및 아미노산 서열을 나타낸다.
도 2는 본 발명에서 사용된 CRISPR/Cas9 binary 벡터의 모식도(A), 후보 sgRNA를 포함하는 각 벡터의 시퀀싱 분석을 위해 수행된 PCR 산물의 겔 전기영동 사진(B), 및 후보 sgRNA로 각각 형질전환된 식물체의 핵산 시료를 대상으로 수행한 PCR 산물의 겔 전기영동 사진(C)을 보여준다.
도 3은 T7-endonuclease I 효소를 이용한 sgRNA의 변이 효율을 확인한 것으로, WT는 표적 부위 DNA 단편이고, sg1 내지 sg5는 각각 sgRNA1 내지 sgRNA5와 Cas9의 혼합물을 표적 부위 DNA 단편과 반응시킨 산물을 로딩한 것으로, -는 표적 부위가 편집되지 않은 것을 의미하고, +는 표적 부위가 편집된 것을 의미한다.
도 4는 CRISPR/Cas9 시스템을 이용하여 유도된 OsSLR1 유전자 돌연변이 식물체(T0)의 시퀀싱 결과(A) 및 표현형 결과(B)이다.
도 5A는 야생형(WT, Dongjin)과 돌연변이체(slr1-d7, -d8)의 표현형을 확인한 결과이고, 5B는 기공의 SEM(scanning electron microscopy) 이미지이고, 5C는 야생형과 돌연변이체의 성숙기(mature stage) 주경의 종단면을 보여주는 이미지이며 (bar=100 μm), 5D는 절간(internode) 길이를 측정한 결과이고, 5E는 각기 다른 농도의 지베렐린(GA3) 처리 후 각 식물체의 두 번째 잎집(leaf sheath)의 길이를 측정한 그래프이다.
도 6은 OsSLR1 돌연변이체(slr1-d7, -d8)와 야생형 식물체(WT)에서 유전자 발현 수준의 변화를 분석한 것이다.
도 7은 야생형과 돌연변이체(slr1-d7, -d8)의 이삭(panicle)과 잎의 모습을 보여준다.
Figure 1A shows the sgRNA target site for OsSLR1 gene editing, 1B and 1C are targeted deep sequencing of genome editing plants. The base sequence and amino acid sequence of each mutant plant according to the analysis result are shown.
2 is a schematic diagram of the CRISPR/Cas9 binary vector used in the present invention (A), a gel electrophoresis photograph of a PCR product performed for sequencing analysis of each vector containing a candidate sgRNA (B), and transfection with the candidate sgRNA, respectively. A gel electrophoresis photograph (C) of a PCR product performed on a nucleic acid sample of a converted plant is shown.
Figure 3 confirms the mutation efficiency of sgRNA using the T7-endonuclease I enzyme, WT is a target site DNA fragment, sg1 to sg5 are a mixture of sgRNA1 to sgRNA5 and Cas9, respectively, and a product obtained by reacting the target site DNA fragment with the target site DNA fragment. That is, - means that the target site is not edited, and + means that the target site is edited.
4 is a sequencing result (A) and a phenotypic result (B) of an OsSLR1 gene mutant plant (T 0 ) induced using the CRISPR/Cas9 system.
Figure 5A is the result of confirming the phenotype of the wild-type (WT, Dongjin) and the mutant (slr1-d7, -d8), 5B is a scanning electron microscopy (SEM) image of the pores, 5C is the mature stage (mature) of the wild-type and the mutant stage) is an image showing the longitudinal section of the main diameter (bar=100 μm), 5D is the result of measuring the internode length, and 5E is the second leaf of each plant after treatment with different concentrations of gibberellin (GA 3 ). It is a graph measuring the length of sheath).
6 is an analysis of changes in gene expression levels in OsSLR1 mutants (slr1-d7, -d8) and wild-type plants (WT).
Figure 7 shows the appearance of the spike (panicle) and leaves of the wild-type and mutant (slr1-d7, -d8).

본 발명의 목적을 달성하기 위하여, 본 발명은 벼 유래 OsSLR1 (Oryza sativa slender rice 1) 유전자의 표적 염기서열에 특이적인 가이드 RNA(guide RNA)와 엔도뉴클레아제(endonuclease) 단백질의 복합체(ribonucleoprotein); 또는 벼 유래 OsSLR1 유전자의 표적 염기서열에 특이적인 가이드 RNA를 암호화하는 DNA 및 엔도뉴클레아제 단백질을 암호화하는 핵산 서열을 포함하는 재조합 벡터;를 유효성분으로 함유하는, 벼 식물체의 왜성을 유도하기 위한 유전체 교정용 조성물을 제공한다.In order to achieve the object of the present invention, the present invention provides a complex of a guide RNA and an endonuclease protein specific to the target nucleotide sequence of the rice-derived OsSLR1 ( Oryza sativa slender rice 1) gene (ribonucleoprotein) ; Or a recombinant vector comprising a nucleic acid sequence encoding an endonuclease protein and DNA encoding a guide RNA specific for the target nucleotide sequence of the rice-derived OsSLR1 gene; A composition for genome editing is provided.

용어 "유전체/유전자 교정(genome/gene editing)"은, 인간 세포를 비롯한 동·식물 세포의 유전체 염기서열에 표적지향형 변이를 도입할 수 있는 기술로서, DNA 절단에 의한 하나 이상의 핵산 분자의 결실(deletion), 삽입(insertion), 치환(substitutions) 등에 의하여 특정 유전자를 녹-아웃(knock-out) 또는 녹-인(knock-in)하거나, 단백질을 생성하지 않는 비-코딩(non-coding) DNA 서열에도 변이를 도입할 수 있는 기술을 말한다. 본 발명의 목적상 상기 유전체 교정은 특히 엔도뉴클레아제(endonuclease) 예컨대, Cas9 (CRISPR associated protein 9) 단백질 및 가이드 RNA를 이용하여 식물체에 변이를 도입하는 것일 수 있다. 또한, '유전자 교정'은 '유전자 편집'과 혼용되어 사용될 수 있다.The term "genome/gene editing" is a technology that can introduce target-directed mutations into the genome sequence of animal and plant cells, including human cells, and is a technique for deleting one or more nucleic acid molecules by DNA cleavage. Deletion), insertion (insertion), substitution (substitutions), etc. knock-out (knock-out) or knock-in (knock-in) a specific gene, or non-coding DNA that does not produce a protein It refers to a technology that can introduce mutations into sequences as well. For the purpose of the present invention, the genome editing may be to introduce a mutation into a plant using an endonuclease, such as a Cas9 (CRISPR associated protein 9) protein and a guide RNA. Also, 'gene editing' may be used interchangeably with 'gene editing'.

용어 "표적 유전자"는 본 발명을 통해 교정하고자 하는 식물체의 유전체 내에 있는 일부 DNA를 의미하며, 그 유전자의 종류에 제한되지 않으며, 코딩 영역 및 비-코딩 영역을 모두 포함할 수 있다. 당업자는 그 목적에 따라, 제조하고자 하는 유전체 교정 식물체에 대하여 원하는 변이에 따라 상기 표적 유전자를 선별할 수 있다.The term "target gene" refers to some DNA in the genome of a plant to be corrected through the present invention, is not limited to the type of the gene, and may include both a coding region and a non-coding region. A person skilled in the art can select the target gene according to the desired mutation for the genome-corrected plant to be prepared, depending on the purpose.

용어 "가이드 RNA(guide RNA)"는 표적 유전자의 염기서열을 암호화하는 DNA에 특이적인 RNA를 의미하며, 표적 DNA 염기서열과 전부 또는 일부가 상보적으로 결합하여 해당 표적 DNA 염기서열로 엔도뉴클레아제 단백질을 이끄는 역할을 하는 리보핵산을 의미한다. 상기 가이드 RNA는 두 개의 RNA, 즉, crRNA (CRISPR RNA) 및 tracrRNA (trans-activating crRNA)를 구성 요소로 포함하는 이중 RNA (dual RNA); 또는 표적 유전자 내 염기서열과 전부 또는 일부 상보적인 서열을 포함하는 제1 부위 및 RNA-가이드 뉴클레아제와 상호작용하는 서열을 포함하는 제2 부위를 포함하는 단일 사슬 가이드 RNA(sgRNA) 형태를 말하나, RNA-가이드 뉴클레아제가 표적 염기서열에서 활성을 가질 수 있는 형태라면 제한없이 본 발명의 범위에 포함될 수 있으며, 함께 사용된 엔도뉴클레아제의 종류 또는 엔도뉴클레아제의 유래 미생물 등을 고려하여 당업계의 공지된 기술에 따라서 적절히 선택할 수 있다.The term “guide RNA” refers to an RNA specific for DNA encoding a nucleotide sequence of a target gene, and all or part of the target DNA nucleotide sequence and all or part of the nucleotide sequence are complementarily bound to form endonuclease with the target DNA nucleotide sequence. It refers to ribonucleic acid that plays a role in guiding the first protein. The guide RNA may be a dual RNA comprising two RNAs, ie, crRNA (CRISPR RNA) and tracrRNA (trans-activating crRNA); Or it refers to a single-chain guide RNA (sgRNA) form comprising a first site comprising a sequence that is completely or partially complementary to a nucleotide sequence in a target gene and a second site comprising a sequence that interacts with RNA-guided nucleases. , the RNA-guided nuclease may be included in the scope of the present invention without limitation as long as it has a form capable of having activity in the target nucleotide sequence, taking into account the type of endonuclease used together or the microorganism derived from the endonuclease, etc. It can be appropriately selected according to a technique known in the art.

또한, 상기 가이드 RNA는 플라스미드 주형으로부터 전사된 것, 생체 외(in vitro)에서 전사된(transcribed) 것(예컨대, 올리고뉴클레오티드 이중가닥) 또는 합성한 가이드 RNA 등일 수 있으나, 이에 제한되지 않는다.In addition, the guide RNA may be transcribed from a plasmid template, transcribed in vitro (eg, oligonucleotide double-stranded), or synthesized guide RNA, but is not limited thereto.

본 발명에 따른 유전체 교정용 조성물에 있어서, 상기 가이드 RNA는 벼 유래 OsSLR1 유전자의 표적 염기서열에 특이적으로 고안된 것으로서, OsSLR1 유전자의 표적 염기서열은 바람직하게는 서열번호 2의 염기서열로 이루어진 것일 수 있으나, 이에 제한되지 않는다. 상기 서열번호 2의 염기서열은 서열번호 1의 염기서열로 이루어진 벼 유래 OsSLR1 유전자의 N-말단에 위치한 TVHYNP 모티프 부위의 서열이다.In the composition for genome editing according to the present invention, the guide RNA is specifically designed for the target nucleotide sequence of the rice-derived OsSLR1 gene, and the target nucleotide sequence of the OsSLR1 gene preferably consists of the nucleotide sequence of SEQ ID NO: 2 However, the present invention is not limited thereto. The nucleotide sequence of SEQ ID NO: 2 is a sequence of the TVHYNP motif region located at the N-terminus of the rice-derived OsSLR1 gene consisting of the nucleotide sequence of SEQ ID NO: 1.

또한, 본 발명에 따른 유전체 교정용 조성물에 있어서, 상기 엔도뉴클레아제 단백질은 Cas9, Cpf1 (CRISPR from Prevotella and Francisella 1), TALEN (Transcription activator-like effector nuclease), ZFN (Zinc Finger Nuclease) 또는 이의 기능적 유사체로 이루어진 군으로부터 선택되는 하나 이상일 수 있고, 바람직하게는 Cas9 단백질일 수 있으나, 이에 제한되지 않는다.In addition, in the composition for genome editing according to the present invention, the endonuclease protein is Cas9, Cpf1 (CRISPR from Prevotella and Francisella 1), TALEN (Transcription activator-like effector nuclease), ZFN (Zinc Finger Nuclease) or its It may be one or more selected from the group consisting of functional analogs, and may preferably be a Cas9 protein, but is not limited thereto.

또한, 상기 Cas9 단백질은 스트렙토코커스 피요제네스(Streptococcus pyogenes) 유래의 Cas9 단백질, 캠필로박터 제주니(Campylobacter jejuni) 유래의 Cas9 단백질, 스트렙토코커스 써모필러스(S. thermophilus) 또는 스트렙토코커스 아우레우스(S. aureus) 유래의 Cas9 단백질, 네이쎄리아 메닝기티디스(Neisseria meningitidis) 유래의 Cas9 단백질, 파스투렐라 물토시다(Pasteurella multocida) 유래의 Cas9 단백질, 프란시셀라 노비시다(Francisella novicida) 유래의 Cas9 단백질 등으로 이루어진 군에서 선택된 하나 이상일 수 있으나, 이에 제한되지 않는다. Cas9 단백질 또는 이의 유전자 정보는 NCBI(National Center for Biotechnology Information)의 GenBank와 같은 공지의 데이터베이스에서 얻을 수 있다.In addition, the Cas9 protein is a Cas9 protein derived from Streptococcus pyogenes , a Cas9 protein derived from Campylobacter jejuni , S. thermophilus or Streptococcus aureus ( S. aureus )-derived Cas9 protein, Neisseria meningitidis -derived Cas9 protein, Pasteurella multocida -derived Cas9 protein, Francisella novicida ) derived Cas9 protein, etc. It may be one or more selected from the group consisting of, but is not limited thereto. Cas9 protein or genetic information thereof can be obtained from a known database such as GenBank of the National Center for Biotechnology Information (NCBI).

Cas9 단백질은 RNA-guided DNA 엔도뉴클레아제 효소로, 이중 가닥 DNA 절단(double stranded DNA break)을 유도한다. Cas9 단백질이 정확하게 표적 염기서열에 결합하여 DNA 가닥을 잘라내기 위해서는 PAM (Protospacer Adjacent Motif)이라 알려진 3개의 염기로 이루어진 짧은 염기서열이 표적 염기서열 옆에 존재해야 하며, Cas9 단백질은 PAM 서열(NGG)로부터 3번째와 4번째 염기쌍 사이를 추정하여 절단한다.Cas9 protein is an RNA-guided DNA endonuclease enzyme that induces double-stranded DNA breaks. In order for the Cas9 protein to accurately bind to the target sequence and cut the DNA strand, a short sequence of three bases known as PAM (Protospacer Adjacent Motif) must exist next to the target sequence, and the Cas9 protein has a PAM sequence (NGG). cleavage by inferring between the 3rd and 4th base pairs from

본 발명에 따른 유전체 교정용 조성물에 있어서, 상기 가이드 RNA와 엔도뉴클레아제 단백질은 리보핵산-단백질(ribonucleoprotein) 복합체를 형성하여 RNA 유전자 가위(RNA-Guided Engineered Nuclease, RGEN)로 작동할 수 있다.In the composition for genome editing according to the present invention, the guide RNA and the endonuclease protein form a ribonucleoprotein complex to operate as RNA-Guided Engineered Nuclease (RGEN).

본 발명은 또한, (a) 벼 유래 OsSLR1 (Oryza sativa slender rice 1) 유전자의 표적 염기서열에 특이적인 가이드 RNA(guide RNA) 및 엔도뉴클레아제(endonuclease) 단백질을 벼 식물세포에 도입하여 유전체를 교정하는 단계; 및 (b) 상기 유전체가 교정된 벼 식물세포로부터 벼 식물체를 재분화하는 단계;를 포함하는, 왜성(dwarf)이 유도된 유전체 교정 벼 식물체의 제조방법을 제공한다.The present invention also provides (a) a guide RNA and an endonuclease protein specific to the target nucleotide sequence of the rice-derived OsSLR1 ( Oryza sativa slender rice 1) gene into rice plant cells to generate the genome. correcting; And (b) re-differentiating the rice plant from the genome-corrected rice plant cells; provides a method for producing a dwarf-induced genome-corrected rice plant comprising a.

본 발명의 일 구현 예에 따른 제조방법에 있어서, 상기 벼 유래 OsSLR1 유전자의 표적 염기서열에 특이적인 가이드 RNA 및 엔도뉴클레아제 단백질은 전술한 것과 같다.In the preparation method according to an embodiment of the present invention, the guide RNA and endonuclease protein specific for the target nucleotide sequence of the rice-derived OsSLR1 gene are the same as described above.

본 발명에서 사용된 CRISPR/Cas9 시스템은 교정하고자 하는 특정 유전자의 특정위치에 이중나선 절단을 도입하여 DNA 수선 과정에서 유도되는 불완전 수선에 의한 삽입-결실(insertion-deletion, InDel) 돌연변이를 유도시키는 NHEJ (non-homologous end joining) 기작에 의한 유전자 교정 방법이다.The CRISPR/Cas9 system used in the present invention introduces a double helix break at a specific position of a specific gene to be corrected, and NHEJ induces an insertion-deletion (InDel) mutation due to incomplete repair induced in the DNA repair process. (non-homologous end joining) It is a gene editing method based on the mechanism.

본 발명에 따른 제조방법에 있어서, 상기 (a) 단계의 가이드 RNA 및 엔도뉴클레아제 단백질을 벼 식물세포에 도입하는 것은, 벼 유래 OsSLR1 유전자의 표적 염기서열에 특이적인 가이드 RNA와 엔도뉴클레아제 단백질의 복합체(ribonucleoprotein); 또는 벼 유래 OsSLR1 유전자의 표적 염기서열에 특이적인 가이드 RNA를 암호화하는 DNA 및 엔도뉴클레아제 단백질을 암호화하는 핵산 서열을 포함하는 재조합 벡터;를 이용하는 것일 수 있으나, 이에 제한되는 것은 아니다.In the production method according to the present invention, the introduction of the guide RNA and the endonuclease protein in step (a) into the rice plant cells comprises a guide RNA and an endonuclease specific to the target nucleotide sequence of the rice-derived OsSLR1 gene. ribonucleoprotein; Alternatively, a recombinant vector comprising DNA encoding a guide RNA specific for the target nucleotide sequence of the rice-derived OsSLR1 gene and a nucleic acid sequence encoding an endonuclease protein; may be used, but is not limited thereto.

본 발명에 따른 제조방법에 있어서, 상기 가이드 RNA와 엔도뉴클레아제 단백질의 복합체를 식물세포에 형질도입하는 방법은 원형질체에 대한 칼슘/폴리에틸렌 글리콜 방법(Krens et al., 1982, Nature 296:72-74; Negrutiu et al., 1987, Plant Mol. Biol. 8:363-373), 원형질체의 전기천공법(Shillito et al., 1985, Bio/Technol. 3:1099-1102), 식물 요소로의 현미주사법(Crossway et al., 1986, Mol. Gen. Genet. 202:179-185), 각종 식물 요소의(DNA 또는 RNA-코팅된) 입자 충격법(Klein et al., 1987, Nature 327:70), 아그로박테리움 튜메파시엔스(Agrobacterium tumefaciens) 매개된 유전자 전이에서(비완전성) 바이러스에 의한 감염(EP 0 301 316호) 등으로부터 적당하게 선택될 수 있다.In the production method according to the present invention, the method of transducing the complex of the guide RNA and the endonuclease protein into plant cells is a calcium/polyethylene glycol method for protoplasts (Krens et al., 1982, Nature 296:72- 74; Injection (Crossway et al., 1986, Mol. Gen. Genet. 202:179-185), particle bombardment of various plant elements (DNA or RNA-coated) (Klein et al., 1987, Nature 327:70) , Agrobacterium tumefaciens ) In mediated gene transfer (incomplete) infection by a virus (EP 0 301 316) and the like.

또한, 상기 표적 염기서열에 특이적인 가이드 RNA를 암호화하는 DNA 및 엔도뉴클레아제 단백질을 암호화하는 핵산 서열을 포함하는 재조합 벡터를 식물세포에 도입하는 것은 형질전환 방법을 의미한다. 식물 종의 형질전환은 이제는 쌍자엽 식물뿐만 아니라 단자엽 식물 양자를 포함한 식물 종에 대해 일반적이다. 원칙적으로, 임의의 형질전환 방법은 본 발명에 따른 재조합 벡터를 적당한 선조 세포로 도입시키는데 이용될 수 있다.In addition, introducing a recombinant vector comprising a DNA encoding a guide RNA specific for the target nucleotide sequence and a nucleic acid sequence encoding an endonuclease protein into a plant cell means a transformation method. Transformation of plant species is now common for plant species including both monocots as well as dicots. In principle, any transformation method can be used to introduce the recombinant vector according to the invention into suitable progenitor cells.

본 발명에 따른 제조방법에 있어서, 상기 표적 염기서열에 특이적인 가이드 RNA 및 엔도뉴클레아제 단백질이 도입되는 "식물세포"는 어떤 식물세포도 된다. 식물세포는 배양 세포, 배양 조직, 배양 기관 또는 전체 식물이다. "식물 조직"은 분화된 또는 미분화된 식물의 조직, 예를 들면 이에 한정되진 않으나, 뿌리, 줄기, 잎, 꽃가루, 종자, 암 조직 및 배양에 이용되는 다양한 형태의 세포들, 즉 단일 세포, 원형질체(protoplast), 싹 및 캘러스 조직을 포함한다. 식물 조직은 인 플란타(in planta)이거나 기관 배양, 조직 배양 또는 세포 배양 상태일 수 있다.In the production method according to the present invention, the "plant cell" into which the guide RNA and endonuclease protein specific for the target nucleotide sequence are introduced may be any plant cell. Plant cells are cultured cells, cultured tissues, cultured organs or whole plants. "Plant tissue" refers to a tissue of a differentiated or undifferentiated plant, such as, but not limited to, roots, stems, leaves, pollen, seeds, cancer tissues and various types of cells used in culture, ie, single cells, protoplasts. (protoplast), shoots and callus tissues. The plant tissue may be in planta or in an organ culture, tissue culture or cell culture state.

본 발명의 제조방법에 있어서, 유전체가 교정된 식물세포로부터 유전체가 교정된 식물을 재분화하는 방법은 당업계에 공지된 임의의 방법을 이용할 수 있다. 유전체가 교정된 식물세포는 전식물로 재분화되어야 한다. 캘러스 또는 원형질체 배양으로부터 성숙한 식물의 재분화를 위한 기술은 수많은 여러 가지 종에 대해서 당업계에 주지되어 있다(Handbook of Plant Cell Culture, 1-5권, 1983-1989 Momillan, N.Y.).In the production method of the present invention, any method known in the art may be used as a method of redifferentiating a plant having a corrected genome from a plant cell having a corrected genome. Plant cells whose genome has been corrected must be redifferentiated into whole plants. Techniques for the redifferentiation of mature plants from callus or protoplast cultures are well known in the art for a number of different species (Handbook of Plant Cell Culture, Vol. 1-5, 1983-1989 Momillan, N.Y.).

또한, 본 발명은 상기 방법에 의해 제조된 왜성(dwarf)이 유도된 유전체 교정 벼 식물체를 제공한다.In addition, the present invention provides a dwarf-induced genome-corrected rice plant produced by the above method.

이하, 본 발명을 실시예에 의해 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail by way of Examples. However, the following examples are only illustrative of the present invention, and the content of the present invention is not limited to the following examples.

재료 및 방법Materials and Methods

식물 재료plant material

쌀 품종 동진 (Oryza sativar L., ssp. Japonica)은 형질전환 실험에 사용하였다. 상기 식물은 한경대학교의 GMO 온실 시설과 논에서 재배되었고, 수확된 종자는 ~14% 수분 함량으로 건조시킨 후, 4℃에서 건조 상태로 보관하였다.The rice variety Dongjin ( Oryza sativar L., ssp. Japonica) was used for transformation experiments. The plant was grown in the GMO greenhouse facility and paddy field of Hankyong University, and the harvested seeds were dried to a moisture content of ~14%, and then stored in a dry state at 4°C.

CRISPR/Cas9 벡터 구축 및 벼 형질전환CRISPR/Cas9 vector construction and rice transformation

TVHYNP motif를 표적하는 sgRNA는 박 등(Bioinformatics 2015, 31, 4014-4016)에 의해 설명된 방법대로 설계되었다. OsSLR1 유전자의 TVHYNPSD 아미노산 코딩 서열 및 PAM 서열인 TGG를 포함한 표적서열이 선택되었다. The sgRNA targeting the TVHYNP motif was designed according to the method described by Park et al. (Bioinformatics 2015, 31, 4014-4016). A target sequence including the TVHYNPSD amino acid coding sequence of the OsSLR1 gene and TGG, which is the PAM sequence, was selected.

OsSLR1 유전자 편집을 위한 sgRNAsgRNA for editing rice OsSLR1 gene RGEN target (5'→3')
(서열번호)
RGEN target (5'→3')
(SEQ ID NO:)
방향direction GC content
(%, w/o PAM)
GC content
(%, w/o PAM)
Out-of frame scoreOut-of frame score MismatchsMismatches
00 1One 22 33 sgRNA1sgRNA1 ACCCCTCGGACCTCTCCTCCTGG (2)ACCCCTCGGACCTCTCCTCCTGG (2) ++ 70.070.0 49.849.8 1One 00 00 00 sgRNA2sgRNA2 TGGACGAGGTGGAAGCATGGCGG (3)TGGACGAGGTGGAAGCATGGCGG (3) -- 60.060.0 72.372.3 1One 00 00 00 sgRNA3sgRNA3 TGGACGAGGTGGAAGCATGGCGG (4)TGGACGAGGTGGAAGCATGGCGG (4) -- 60.060.0 72.372.3 1One 00 00 00 sgRNA4sgRNA4 TGGTTGACACGCAGGAGGCTGGG (5)TGGTTGACACGCAGGAGGCTGGG (5) ++ 60.060.0 67.067.0 1One 00 00 00 sgRNA5sgRNA5 GCATCAAGCAGGGGATGCAATGG (6)GCATCAAGCAGGGGATGCAATGG (6) ++ 55.055.0 68.868.8 1One 00 00 00

20nt sgRNA scaffold 서열은 (주)바이오니아(대전, 한국)에서 합성하였다. slr-sgRNA 주형은 2 개의 프라이머, 5'-ggcagACCCCTCGGACCTCTCCTCC-3' (서열번호 7) 및 5'-aaacGGAGGAGAGGTCCGAGGGGTc-3' (서열번호 8)을 사용하여 어닐링하였고, AarI 제한효소로 자른 OsU3:pBOsC 바이너리 벡터로 클로닝하였다. sgRNA 발현을 위한 Ti-plasmid 벡터, OsU3:slr1-sgRNA/pBOsC 및 flanking 서열은 Sanger sequencing 방법으로 확인하였고 아그로박테리움 튜메파시엔스(Agrobacterium tumefaciens) EHA105 균주에 도입하였다. 식물체의 형질전환은 이전에 설명된 프로토콜에 따라 수행하였다(Bioinformatics (2017) 33:286-288). T-DNA를 확인하기 위해 재분화 개체로부터 핵산을 분리하여 PCR 분석을 수행하였다. 뿌리가 발생된 재분화 개체를 화분에 심고 점차적으로 유리 온실에 순화하였다.A 20nt sgRNA scaffold sequence was synthesized by Bioneer (Daejeon, Korea). The slr-sgRNA template was annealed using two primers, 5'-ggcagACCCCTCGGACCTCTCCTCC-3' (SEQ ID NO: 7) and 5'-aaacGGAGGAGAGGTCCGAGGGGTc-3' (SEQ ID NO: 8), and OsU3:pBOsC binary digested with Aar I restriction enzymes. It was cloned into a vector. Ti-plasmid vector for sgRNA expression, OsU3:slr1-sgRNA/pBOsC and flanking sequence were confirmed by Sanger sequencing method and introduced into Agrobacterium tumefaciens EHA105 strain. Plant transformation was performed according to the previously described protocol (Bioinformatics (2017) 33:286-288). In order to identify T-DNA, nucleic acids were isolated from the redifferentiated individuals and PCR analysis was performed. Redifferentiated individuals with developed roots were planted in pots and gradually acclimatized in a glass greenhouse.

표적 심층 시퀀싱(Targeted Deep Sequencing) 및 돌연변이 분석 Targeted Deep Sequencing and Mutation Analysis

DNA Quick Plant Kit (Inclone, Korea)를 사용하여 식물 조직에서 genomic DNA를 추출하였다. 표적 심층 시퀀싱 분석은 박 등(Bioinformatics (2015) 31:4014 -4016)에 의해 설명된 대로 수행되었다. MiniSeq (Illumina, San Diego, CA, USA)를 사용하여 PCR 앰플리콘(amplicon)의 paired-end read 시퀀싱을 수행하였다. MiniSeq에서 파생된 모든 데이터는 Cas-Analyzer (http://www.rgenome.net/cas-analyzer)에 의해 분석되었다.Genomic DNA was extracted from plant tissues using the DNA Quick Plant Kit (Inclone, Korea). Targeted deep sequencing analysis was performed as described by Park et al. (Bioinformatics (2015) 31:4014 -4016). Paired-end read sequencing of PCR amplicons was performed using MiniSeq (Illumina, San Diego, CA, USA). All data derived from MiniSeq were analyzed by Cas-Analyzer (http://www.rgenome.net/cas-analyzer).

RNA-Seq 및 결과 분석RNA-Seq and results analysis

CRISPR/Cas9 시스템을 통해 OsSLR1 유전자를 편집하여 얻은 편집된 계통의 전사체를 조사하기 위해 야생형(WT), slr1-d7 (T/T) 및 slr1-d8 (-3/-3 bp) 식물을 RNA-seq 분석에 사용하였다. RNA 추출은 4주령 식물체의 잎 조직을 사용하였다. RNA 농도 (A260/A280 및 A260/A230)는 분광 광도계 (Nanodrop 2000, Thermo Scientific, Hudson, NH, USA)로 측정되었다. RNA 품질을 평가하기 위해 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA)를 사용하였다. RNA-sequencing은 마크로젠 (한국)에서 수행하였다. 명확한 리딩 결과는 저품질의 리드를 제거하여 생성되었으며, TopHat2 (https://ccb.jhu.edu/software/tophat)를 사용하여 참조(reference) 게놈 (https://plants.ensembl.org/)에 매핑되었다. 매핑된 리드의 위치 정보를 기반으로, 유전자의 발현 수준은 reads per kilobase per million mapped reads로 표준화시켰다. 편집된 식물체(slr1-d7, slr1-d8)의 RNA 간의 DEG (differentially expressed genes) 분석은 표준 배수 변화(fold change, FC) ≥ 2 및 FDR (false discovery rate) <0.05를 사용하여 수행되었다. 유전자 온톨로지(gene ontology, GO) 분석은 이전 Chow 등(J. Exp. Bot. (2007) 58:2429-2440)이 보고한 대로 수행되었다.RNA wild-type (WT), slr1-d7 (T/T) and slr1-d8 (-3/-3 bp) plants to examine transcripts of the edited lineages obtained by editing the OsSLR1 gene via the CRISPR/Cas9 system. -seq was used for analysis. For RNA extraction, leaf tissues of 4-week-old plants were used. RNA concentrations (A260/A280 and A260/A230) were measured with a spectrophotometer (Nanodrop 2000, Thermo Scientific, Hudson, NH, USA). A Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA) was used to evaluate RNA quality. RNA-sequencing was performed at Macrogen (Korea). Unambiguous reading results were generated by removal of low-quality reads and were placed on the reference genome (https://plants.ensembl.org/) using TopHat2 (https://ccb.jhu.edu/software/tophat). mapped. Based on the location information of the mapped reads, the expression level of the gene was normalized to reads per kilobase per million mapped reads. Differentially expressed genes (DEG) analysis among RNAs of edited plants (slr1-d7, slr1-d8) was performed using standard fold change (FC) ≥ 2 and FDR (false discovery rate) <0.05. Gene ontology (GO) analysis was performed as previously reported by Chow et al. (J. Exp. Bot. (2007) 58:2429-2440).

선별된 DEGs의 검증 실험Verification experiment of selected DEGs

RNA-seq 데이터의 정확성을 검증하기 위해 선택된 21개의 유전자에 대해 qRT-PCR을 수행하였다. slr1-d7 및 slr1-d8 계통은 WT에 따라 평가되었고 상대적 유전자 발현 수준은 Actin 유전자 (XM_015761709)에 의해 표준화되었다. 각 유전자에 대한 모든 분석은 3반복으로 수행되었으며 RNA-seq 데이터는 NCBI 데이터베이스에 저장되었다.To verify the accuracy of RNA-seq data, qRT-PCR was performed on selected 21 genes. The slr1-d7 and slr1-d8 lines were assessed according to WT and relative gene expression levels were normalized by the Actin gene (XM_015761709). All analyzes for each gene were performed in triplicate and RNA-seq data were stored in the NCBI database.

GAGA 33 처리 process

4주 동안 화분에서 자란 slr1-d7, slr1-d8 및 WT 묘목에 50 μM GA3 (Sigma-Aldrich, Seoul, Korea)를 처리하였다. GA3의 스톡 용액은 에탄올에 용해시키고, 멸균 후 약 60℃로 냉각한 물을 첨가하여 최종 50 μM 용액을 만들었다. WT는 동일한 양의 에탄올을 함유하는 물로 처리되었다.Potted slr1-d7, slr1-d8 and WT seedlings were treated with 50 μM GA 3 (Sigma-Aldrich, Seoul, Korea) for 4 weeks. A stock solution of GA 3 was dissolved in ethanol, and after sterilization, water cooled to about 60° C. was added to make a final 50 μM solution. WT was treated with water containing the same amount of ethanol.

Light MicroscopyLight Microscopy

파라핀 섹션의 경우 slr1-d7, slr1-d8 및 WT 식물에서 줄기와 잎을 수확하여 제조하였다. 먼저 식물체의 조직을 15% 플루오린화수소산(hydrofluoric acid)으로 처리한 후 70% 에탄올로 탈수, 제거, 침투 및 포매하였다. 이미징을 위해 10 μm 마이크로톰 섹션을 유리 슬라이드에 놓고 탈이온수가 들어있는 37℃ 수조에 띄웠다. 섹션을 깨끗한 유리 슬라이드 위에 떠서 65℃에서 15분 동안 마이크로파 처리한 후, 조직을 유리에 결합하고 각 슬라이드를 즉시 화학적 염색에 사용하였다.Paraffin sections were prepared by harvesting stems and leaves from slr1-d7, slr1-d8 and WT plants. First, the tissue of the plant was treated with 15% hydrofluoric acid, and then dehydrated, removed, penetrated and embedded with 70% ethanol. For imaging, 10 μm microtome sections were placed on glass slides and floated in a 37°C water bath containing deionized water. Sections were floated on clean glass slides and microwaved at 65° C. for 15 minutes, after which the tissues were bound to the glass and each slide was immediately used for chemical staining.

실시예 1. CRISPR/Cas9 시스템을 이용한 Example 1. Using the CRISPR/Cas9 system OsSLR1OSSLR1 유전자의 TVHYNP 도메인 편집 Editing the TVHYNP domain of a gene

OsSLR1 유전자의 TVHYNP 도메인을 표적으로 하는 5개의 후보 sgRNA의 돌연변이 효율을 분석하기 위해, 10일령의 벼 식물체의 잎으로부터 분리한 원형질체 세포를 이용하여 T7E1 분석을 수행하였다. 상기 T7E1 분석은 Jung 등(Plant Biotechnol. Rep. 2019, 13:511-520)이 이전에 보고한 것과 동일한 방식으로 수행되었다. 그 결과, 도 3에서와 같이 sgRNA2는 표적 부위에 돌연변이가 유발되지 않은 것으로 확인되었다.To analyze the mutation efficiency of five candidate sgRNAs targeting the TVHYNP domain of the OsSLR1 gene, T7E1 analysis was performed using protoplast cells isolated from leaves of 10-day-old rice plants. The T7E1 assay was performed in the same manner as previously reported by Jung et al. (Plant Biotechnol. Rep. 2019, 13:511-520). As a result, it was confirmed that sgRNA2 was not mutated at the target site as shown in FIG. 3 .

본 발명자는 sgRNA1을 포함하고 있는 바이너리 벡터 또는 sgRNA3을 포함하고 있는 바이너리 벡터를 이용하여 식물체를 형질전환하였고, 형질전환체 T0 식물에서 유전자 편집 여부를 확인하였다. 그 결과, 하기 표 2에서와 같이 sgRNA1을 이용한 형질전환체에서는 총 16개의 돌연변이체가 확인되었다. 반면, sgRNA3을 이용한 형질전환체에서는 유전자 편집된 식물체가 확인되지 않았고, sgRNA4를 이용한 형질전환체에서는 유전자 편집된 식물체가 3개, sgRNA5를 이용한 형질전환체에서는 유전자 편집된 식물체가 1개 확인되어, sgRNA1의 유전자 편집 효율이 가장 우수한 것을 확인할 수 있었다.The present inventors transformed a plant using a binary vector containing sgRNA1 or a binary vector containing sgRNA3, and confirmed whether or not gene editing was performed in the transformant T 0 plant. As a result, a total of 16 mutants were identified in the transformant using sgRNA1 as shown in Table 2 below. On the other hand, no gene-edited plants were identified in the transformant using sgRNA3, 3 gene-edited plants were identified in the transformant using sgRNA4, and 1 gene-edited plant was identified in the transformant using sgRNA5. It was confirmed that the gene editing efficiency of sgRNA1 was the best.

sgRNA에 따른 돌연변이율 및 유전자 편집된 식물체의 유형Mutation rate according to sgRNA and type of gene-edited plant Targeted regionTargeted region No. of Transgenic plantsNo. of Transgenic plants No. of edited plantsNo. of edited plants Mutation rate (%)Mutation rate (%) GenotypeGenotype HomoHomo HeteroHetero Bi-allelicBi-allelic sgRNA1sgRNA1 3131 1616 48.448.4 6/166/16 2/162/16 8/168/16 sgRNA3sgRNA3 1919 00 0.00.0 -- -- -- sgRNA4sgRNA4 3636 33 8.38.3 0/30/3 2/32/3 1/31/3 sgRNA5sgRNA5 2424 1One 4.24.2 0/10/1 1/11/1 0/10/1

또한, 상기 16개 돌연변이체의 표적 심층 서열 분석을 통해 6개의 동형 접합 돌연변이, 2개의 이형 접합 돌연변이 및 8개의 이중 대립 유전자 돌연변이가 검출되었다. 모든 T0 돌연변이는 왜성의 표현형을 나타내었으며(도 4), 많은 분얼을 생산하였다. 상기 6개의 동형 접합 돌연변이체 중 4개는 몇 개의 염기 결실과 2개는 몇 개의 염기 삽입으로 특징화되었다(도 1B): slr1-d7로 명명된 3bp 결실 돌연변이체, slr1-d8로 명명된 1-bp 결실 돌연변이체, slr1-d9로 명명된 5bp 결실 돌연변이체, slr1-d10이라고 명명된 14bp 결실 돌연변이체, slr1-d11로 명명된 "T" 삽입 돌연변이체 및 slr1-d12로 명명된 "C" 삽입 돌연변이체. 이론적으로 slr-d7 돌연변이는 세린(Ser, S)이 없는 단백질을 코딩하고, slr1-d8 내지 slr1-d12 돌연변이는 단백질을 코딩할 수 없는 조기 종결 코돈이 있는 녹아웃 돌연변이로 확인되었다(도 1C). 단일 염기 결실 및 삽입은 frame-shift를 유발하여 OsSLR1 유전자의 녹아웃을 유발할 것으로 예상되었다. 그러나 모든 돌연변이는 OsSLR1 유전자의 핵심 서열인 TVHYNP 모티프에 영향을 미치지는 않은 것으로 확인되었다. 본 발명에 따른 돌연변이는 번역되지 않았거나 변형된 SLR1 단백질이며, 이전에 보고된 slr1-d1 내지 slr1-d6 대립 유전자와 비교하여 돌연변이 부위가 다른 것으로 확인되었다.In addition, 6 homozygous mutations, 2 heterozygous mutations and 8 biallelic mutations were detected through targeted deep sequencing of the 16 mutants. All T 0 mutants exhibited a dwarf phenotype ( FIG. 4 ) and produced many farrows. Four of the six homozygous mutants were characterized by a few base deletions and two by a few base insertions ( FIG. 1B ): a 3bp deletion mutant designated slr1-d7, 1 designated slr1-d8. -bp deletion mutant, 5bp deletion mutant, designated slr1-d9, 14bp deletion mutant, designated slr1-d10, "T" insertion mutant, designated slr1-d11 and "C" designated slr1-d12 insertion mutants. Theoretically, the slr-d7 mutation encodes a protein lacking serine (Ser, S), and the slr1-d8 to slr1-d12 mutations were identified as knockout mutations with an early stop codon that could not encode the protein (Fig. 1C). Single base deletions and insertions were expected to induce frame-shifts, resulting in knockout of the OsSLR1 gene. However, it was confirmed that all mutations did not affect the TVHYNP motif, which is the core sequence of the OsSLR1 gene. The mutant according to the present invention is an untranslated or modified SLR1 protein, and it was confirmed that the mutation site is different from the previously reported slr1-d1 to slr1-d6 alleles.

실시예 2. 새로운 Slr1-d7 및 Slr1-d8 돌연변이 식물체의 왜소성Example 2. Dwarfism of new Slr1-d7 and Slr1-d8 mutant plants

새로운 왜성 돌연변이(slr1-d7 내지 slr1-d12)는 식물 크기를 줄이는 것 외에도 몇 가지 결함을 보였다. 야생형 (WT)에 비해이 돌연변이체는 성장 속도가 느리고 왜소하고 주름진 잎을 보였다(도 5A). 기공은 잎의 가스 교환과 수분 증발을 조절하는 핵심 통로로, SEM 이미지로 기공 크기를 관찰 한 결과 slr1-d7 및 slr1-d8이 WT보다 작은 기공을 가지고 있음을 확인할 수 있었다(도 5B). 2개의 돌연변이체 (slr1-d7 및 slr1-d8) 및 WT로부터 절간의 세포학적 차이를 관찰하기 위해, 절간 파라핀 섹션을 조사한 결과 왜성 돌연변이체의 세포 크기가 현저히 감소하고 세포층이 증가함에 따라 노드 간이 두꺼워짐을 보여주었다(도 5C). 또한 slr1-d7 및 slr1-d8의 모든 절간 길이는 WT에 비해 감소했다(도 5D). 이러한 결과는 이전에 Takeda에 의해 보고된 dn 형 쌀 왜성 돌연변이의 특성과 유사하였다. 따라서, 본 발명의 slr1-d7 및 slr1-d8은 반우성 왜성 돌연변이체였으며, 이는 세포 길이 감소가 왜성 돌연변이 식물에서 줄기 길이 단축의 직접적인 원인이 될 수 있음을 나타내었다. 또한 왜성의 원인을 알아보기 위해 slr1-d7, slr1-d8 및 WT에서 GA3 농도 처리에 따라 잎초의 길이를 측정한 결과 slr1-d7 및 slr1-d8 돌연변이체에서 GA3 처리 후 더 확장된 잎집을 생성했지만 WT에 비해 길이 확장이 감소했음을 보여주었다(도 5E).The new dwarf mutants (slr1-d7 to slr1-d12) showed several defects in addition to reducing plant size. Compared to wild-type (WT), this mutant exhibited slower growth rates and dwarf and wrinkled leaves (Fig. 5A). The stomata is a key pathway regulating leaf gas exchange and water evaporation, and as a result of observing the stomata size with SEM images, it was confirmed that slr1-d7 and slr1-d8 had smaller pores than WT (Fig. 5B). To observe internode cytological differences from two mutants (slr1-d7 and slr1-d8) and from WT, internode paraffin sections were examined. As a result, the cell size of the dwarf mutant significantly decreased and the internode thickened as the cell layer increased. load was shown (FIG. 5C). Also, all internode lengths of slr1-d7 and slr1-d8 were decreased compared to WT (Fig. 5D). These results were similar to the characteristics of dn-type rice dwarf mutants previously reported by Takeda. Therefore, slr1-d7 and slr1-d8 of the present invention were semi-dominant dwarf mutants, indicating that cell length reduction could be a direct cause of stem length shortening in dwarf mutant plants. In addition, to investigate the cause of dwarfism, the length of leaf sheath was measured according to GA 3 concentration treatment in slr1-d7, slr1-d8 and WT . but showed decreased length extension compared to WT (Figure 5E).

실시예 3. Slr1-d7 및 Slr1-d8 돌연변이체에서 변형된 Transcriptome 프로파일Example 3. Modified Transcriptome Profiles in Slr1-d7 and Slr1-d8 Mutants

전체 게놈 수준에서 왜성이 유전자 발현에 미치는 영향을 이해하기 위해 WT, slr1-d7 및 slr1-d8 계통으로부터 RNA-Seq를 수행하여 전사 프로파일링 변화를 분석하였다. RNA-seq 결과는 WT와 slr1-d7 및 slr1-d8 계통 사이에서 유전자 발현이 크게 변화되었음을 보여주었다(도 6A). WT 식물에 비해 slr1-d7 돌연변이에서 상향 조절된 214개의 유전자와 하향 조절된 154개의 유전자가 확인되었고, slr1-d8 돌연변이체에서는 334개의 유전자가 상향 조절되었고 104개의 유전자가 하향 조절되었다(도 6B). 벤다이어그램 분석을 통해 WT 및 slr1-d7 또는 slr1-d8 돌연변이체 모두에서 발현된 806개의 유전자를 밝혀냈다(도 6B 및 6C).To understand the effect of dwarfism on gene expression at the whole genome level, RNA-Seq was performed from WT, slr1-d7 and slr1-d8 strains to analyze transcriptional profiling changes. RNA-seq results showed that gene expression was significantly changed between WT and slr1-d7 and slr1-d8 strains ( FIG. 6A ). 214 genes up-regulated and 154 genes down-regulated were identified in the slr1-d7 mutant compared to WT plants, and 334 genes were up-regulated and 104 genes down-regulated in the slr1-d8 mutant (Fig. 6B). . Venn diagram analysis revealed 806 genes expressed in both WT and slr1-d7 or slr1-d8 mutants ( FIGS. 6B and 6C ).

<110> Hankyong Industry Academic Cooperation Center <120> Method for producing OsSLR1 gene mutant rice plant using CRISPR/Cas9 system and rice plant having dwarf phenotype produced by the same method <130> PN20303 <160> 8 <170> KoPatentIn 3.0 <210> 1 <211> 2553 <212> DNA <213> Oryza sativa <400> 1 tgccttcctc tctgatcacc tgatgccctt cctcttctcc ccccttgcta ctactagttg 60 cttgcctctt cccacctcac ctcgcattgc aatctcgcat cgcctcttcc ttctcttctt 120 ccccttcttc tccccttctc atccaacctc gcttcccaac cctggatcca aatcccaacc 180 tatcccaaag ccgaaaccga ggagaggaaa aaggttacgc gcaattatta ctagctatag 240 ctaggtaggt ttgggggagg cgagatcatg aagcgcgagt accaagaagc cggcgggagc 300 agcggcggcg ggagcagcgc cgatatgggg tcgtgcaagg acaaggtgat ggcgggggcg 360 gcgggggagg aggaggacgt cgacgagctg ctggcggcgc tcgggtacaa ggtgcggtcg 420 tccgacatgg ccgacgtcgc gcagaagctg gagcagctgg agatggccat ggggatgggc 480 ggcgtgagcg cccccggcgc cgcggatgac gggttcgtgt cgcacctggc cacggacacc 540 gtgcactaca acccctcgga cctctcctcc tgggtcgaga gcatgctttc cgagctcaac 600 gcgccgctgc cccctatccc gccagcgccg ccggctgccc gccatgcttc cacctcgtcc 660 actgtcaccg gcggcggtgg tagcggcttc tttgaactcc cagccgctgc cgactcgtcg 720 agtagcacct acgccctcag gccgatctcc ttaccggtgg tggcgacggc tgacccgtcg 780 gctgctgact cggcgaggga caccaagcgg atgcgcactg gcggcggcag cacgtcgtcg 840 tcctcatcgt cgtcttcctc tctgggcggt ggggcctcgc ggggctctgt ggtggaggct 900 gctccgccgg cgacgcaagg ggccgcggcg gcgaatgcgc ccgccgtgcc ggttgtggtg 960 gttgacacgc aggaggctgg gatccggctg gtgcacgcgt tgctggcgtg cgcggaggcc 1020 gtgcagcagg agaacttcgc ggccgcggag gcgctggtca agcagatccc cacgctggcc 1080 gcgtcccagg gcggcgccat gcgcaaggtc gctgcctact tcggcgaggc cctcgcccgc 1140 cgcgtgtacc gcttccgccc cgcggacagc accctcctcg acgccgcctt cgccgacctt 1200 ctgcacgccc acttctacga gtcctgcccc tacctcaagt tcgcccactt caccgcaaat 1260 caagccatcc tcgaggcttt cgccggctgc caccgcgtcc acgtcgtcga cttcggcatc 1320 aagcagggga tgcaatggcc agctctcctc caggccctcg cccttcgtcc cggcggcccc 1380 ccatcgttcc gcctcaccgg cgtcggcccc ccgcagccgg acgagaccga cgccttgcag 1440 caggtgggtt ggaagcttgc ccagttcgcg cacaccattc gcgtcgactt ccagtaccgg 1500 ggactcgtcg ccgccactct cgcggacttg gagccgttca tgctgcagcc ggagggcgag 1560 gcggacgcga acgaggagcc tgaggtgatc gccgtcaact cggtgttcga gctgcaccgg 1620 ctgctcgcgc agcccggcgc gctggagaag gtcctgggca cggtgcacgc ggtgcggcca 1680 aggatcgtca ccgtggtaga gcaggaggcc aaccacaact ccggctcatt cctcgaccgg 1740 ttcaccgagt cgctgcacta ctactccacc atgttcgatt ccctcgaggg cggcagctcc 1800 ggccaggccg agctctctcc gccggctgcc gggggcggcg gtggcacgga ccaggtcatg 1860 tccgaggtgt acctcggccg gcagatctgc aacgtcgtgg cgtgcgaggg cgcggagcgc 1920 acggagcgcc acgagacgct ggggcagtgg cgcaaccgcc tcggccgcgc cggcttcgag 1980 cccgtgcacc tgggctccaa tgcctacaaa caggcgagca cgctcctcgc gcttttcgcc 2040 ggcggcgacg gctaccgggt ggaggagaag gagggctgcc tcacgctggg ctggcacacg 2100 cgcccgctca tcgccacctc ggcatggcgc gtcgccgcgg cgtgatcgca aagtttttgg 2160 gacgctgcac cacgtgtttg ccgccgatca cggcgcgacc cccccccccc cccctctctc 2220 tctccccggc tcaccggcgg cacaattgaa gcttgacgtc aacgaacgct caattgcagc 2280 gaccgatcgg gcttacggtt ctcgccggcg tgaagagatc gacgactgga ctccgaccag 2340 accgacggct tgttcgttct cctttcccaa ttaccccgtt ccttggtcct cctagcccat 2400 ctattatgtt taaatgtcaa ttattatgtg taatttctcc aatcgctcat attaaataag 2460 gacgaaccga actggatttc attagctcca atgagaattt tgtatacaag gcaccgatct 2520 aaaaattgag ctatatgttc atgagttaca gaa 2553 <210> 2 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> SLR1-sgRNA1 target sequence <400> 2 acccctcgga cctctcctcc tgg 23 <210> 3 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> SLR1-sgRNA2 target sequence <400> 3 tggacgaggt ggaagcatgg cgg 23 <210> 4 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> SLR1-sgRNA3 target sequence <400> 4 tggacgaggt ggaagcatgg cgg 23 <210> 5 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> SLR1-sgRNA4 target sequence <400> 5 tggttgacac gcaggaggct ggg 23 <210> 6 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> SLR1-sgRNA5 target sequence <400> 6 gcatcaagca ggggatgcaa tgg 23 <210> 7 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 7 ggcagacccc tcggacctct cctcc 25 <210> 8 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 8 aaacggagga gaggtccgag gggtc 25 <110> Hankyong Industry Academic Cooperation Center <120> Method for producing OsSLR1 gene mutant rice plant using CRISPR/Cas9 system and rice plant having dwarf phenotype produced by the same method <130> PN20303 <160> 8 <170> KoPatentIn 3.0 <210> 1 <211> 2553 <212> DNA <213> Oryza sativa <400> 1 tgccttcctc tctgatcacc tgatgccctt cctcttctcc ccccttgcta ctactagttg 60 cttgcctctt cccacctcac ctcgcattgc aatctcgcat cgcctcttcc ttctcttctt 120 ccccttcttc tccccttctc atccaacctc gcttcccaac cctggatcca aatcccaacc 180 tatcccaaag ccgaaaccga ggagaggaaa aaggttacgc gcaattatta ctagctatag 240 ctaggtaggt ttgggggagg cgagatcatg aagcgcgagt accaagaagc cggcgggagc 300 agcggcggcg ggagcagcgc cgatatgggg tcgtgcaagg acaaggtgat ggcgggggcg 360 gcgggggagg aggaggacgt cgacgagctg ctggcggcgc tcgggtacaa ggtgcggtcg 420 tccgacatgg ccgacgtcgc gcagaagctg gagcagctgg agatggccat ggggatgggc 480 ggcgtgagcg cccccggcgc cgcggatgac gggttcgtgt cgcacctggc cacggacacc 540 gtgcactaca acccctcgga cctctcctcc tgggtcgaga gcatgctttc cgagctcaac 600 gcgccgctgc cccctatccc gccagcgccg ccggctgccc gccatgcttc cacctcgtcc 660 actgtcaccg gcggcggtgg tagcggcttc tttgaactcc cagccgctgc cgactcgtcg 720 agtagcacct acgccctcag gccgatctcc ttaccggtgg tggcgacggc tgacccgtcg 780 gctgctgact cggcgaggga caccaagcgg atgcgcactg gcggcggcag cacgtcgtcg 840 tcctcatcgt cgtcttcctc tctgggcggt ggggcctcgc ggggctctgt ggtggaggct 900 gctccgccgg cgacgcaagg ggccgcggcg gcgaatgcgc ccgccgtgcc ggttgtggtg 960 gttgacacgc aggaggctgg gatccggctg gtgcacgcgt tgctggcgtg cgcggaggcc 1020 gtgcagcagg agaacttcgc ggccgcggag gcgctggtca agcagatccc cacgctggcc 1080 gcgtcccagg gcggcgccat gcgcaaggtc gctgcctact tcggcgaggc cctcgcccgc 1140 cgcgtgtacc gcttccgccc cgcggacagc accctcctcg acgccgcctt cgccgacctt 1200 ctgcacgccc acttctacga gtcctgcccc tacctcaagt tcgcccactt caccgcaaat 1260 caagccatcc tcgaggcttt cgccggctgc caccgcgtcc acgtcgtcga cttcggcatc 1320 aagcagggga tgcaatggcc agctctcctc caggccctcg cccttcgtcc cggcggcccc 1380 ccatcgttcc gcctcaccgg cgtcggcccc ccgcagccgg acgagaccga cgccttgcag 1440 caggtgggtt ggaagcttgc ccagttcgcg cacaccattc gcgtcgactt ccagtaccgg 1500 ggactcgtcg ccgccactct cgcggacttg gagccgttca tgctgcagcc ggagggcgag 1560 gcggacgcga acgaggagcc tgaggtgatc gccgtcaact cggtgttcga gctgcaccgg 1620 ctgctcgcgc agcccggcgc gctggagaag gtcctgggca cggtgcacgc ggtgcggcca 1680 aggatcgtca ccgtggtaga gcaggaggcc aaccacaact ccggctcatt cctcgaccgg 1740 ttcaccgagt cgctgcacta ctactccacc atgttcgatt ccctcgaggg cggcagctcc 1800 ggccaggccg agctctctcc gccggctgcc gggggcggcg gtggcacgga ccaggtcatg 1860 tccgaggtgt acctcggccg gcagatctgc aacgtcgtgg cgtgcgaggg cgcggagcgc 1920 acggagcgcc acgagacgct ggggcagtgg cgcaaccgcc tcggccgcgc cggcttcgag 1980 cccgtgcacc tgggctccaa tgcctacaaa caggcgagca cgctcctcgc gcttttcgcc 2040 ggcggcgacg gctaccgggt ggaggagaag gagggctgcc tcacgctggg ctggcacacg 2100 cgcccgctca tcgccacctc ggcatggcgc gtcgccgcgg cgtgatcgca aagtttttgg 2160 gacgctgcac cacgtgtttg ccgccgatca cggcgcgacc cccccccccc cccctctctc 2220 tctccccggc tcaccggcgg cacaattgaa gcttgacgtc aacgaacgct caattgcagc 2280 gaccgatcgg gcttacggtt ctcgccggcg tgaagagatc gacgactgga ctccgaccag 2340 accgacggct tgttcgttct cctttcccaa ttaccccgtt ccttggtcct cctagcccat 2400 ctattatgtt taaatgtcaa ttattatgtg taatttctcc aatcgctcat attaaataag 2460 gacgaaccga actggatttc attagctcca atgagaattt tgtatacaag gcaccgatct 2520 aaaaattgag ctatatgttc atgagttaca gaa 2553 <210> 2 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> SLR1-sgRNA1 target sequence <400> 2 acccctcgga cctctcctcc tgg 23 <210> 3 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> SLR1-sgRNA2 target sequence <400> 3 tggacgaggt ggaagcatgg cgg 23 <210> 4 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> SLR1-sgRNA3 target sequence <400> 4 tggacgaggt ggaagcatgg cgg 23 <210> 5 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> SLR1-sgRNA4 target sequence <400> 5 tggttgacac gcaggaggct ggg 23 <210> 6 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> SLR1-sgRNA5 target sequence <400> 6 gcatcaagca ggggatgcaa tgg 23 <210> 7 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 7 ggcagacccc tcggacctct cctcc 25 <210> 8 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 8 aaacggagga gaggtccgag gggtc 25

Claims (6)

벼 유래 OsSLR1 (Oryza sativa slender rice 1) 유전자의 표적 염기서열에 특이적인 가이드 RNA(guide RNA)와 엔도뉴클레아제(endonuclease) 단백질의 복합체(ribonucleoprotein); 또는 벼 유래 OsSLR1 유전자의 표적 염기서열에 특이적인 가이드 RNA를 암호화하는 DNA 및 엔도뉴클레아제 단백질을 암호화하는 핵산 서열을 포함하는 재조합 벡터;를 유효성분으로 함유하는, 벼 식물체의 왜성을 유도하기 위한 유전체 교정용 조성물.a complex of a guide RNA and an endonuclease protein specific to the target nucleotide sequence of the rice-derived OsSLR1 ( Oryza sativa slender rice 1) gene (ribonucleoprotein); Or a recombinant vector comprising a nucleic acid sequence encoding an endonuclease protein and DNA encoding a guide RNA specific for the target nucleotide sequence of the rice-derived OsSLR1 gene; A composition for genome editing. 제1항에 있어서, 상기 OsSLR1 유전자의 표적 염기서열은 서열번호 2의 염기서열로 이루어진 것을 특징으로 하는 조성물.The composition according to claim 1, wherein the target nucleotide sequence of the OsSLR1 gene consists of the nucleotide sequence of SEQ ID NO: 2. (a) 벼 유래 OsSLR1 (Oryza sativa slender rice 1) 유전자의 표적 염기서열에 특이적인 가이드 RNA(guide RNA) 및 엔도뉴클레아제(endonuclease) 단백질을 벼 식물세포에 도입하여 유전체를 교정하는 단계; 및
(b) 상기 유전체가 교정된 벼 식물세포로부터 벼 식물체를 재분화하는 단계;를 포함하는, 왜성(dwarf)이 유도된 유전체 교정 벼 식물체의 제조방법.
(a) correcting the genome by introducing a guide RNA and an endonuclease protein specific to the target nucleotide sequence of the rice-derived OsSLR1 ( Oryza sativa slender rice 1) gene into plant cells of rice; and
(b) re-differentiating the rice plant from the genome-corrected rice plant cells; A method for producing a dwarf-induced genome-corrected rice plant comprising a.
제3항에 있어서, 상기 (a) 단계의 가이드 RNA 및 엔도뉴클레아제 단백질을 벼 식물세포에 도입하는 것은, 벼 유래 OsSLR1 유전자의 표적 염기서열에 특이적인 가이드 RNA와 엔도뉴클레아제 단백질의 복합체(ribonucleoprotein); 또는 벼 유래 OsSLR1 유전자의 표적 염기서열에 특이적인 가이드 RNA를 암호화하는 DNA 및 엔도뉴클레아제 단백질을 암호화하는 핵산 서열을 포함하는 재조합 벡터;를 이용하는 것을 특징으로 하는 제조방법.The complex of claim 3, wherein the introduction of the guide RNA and endonuclease protein in step (a) into rice plant cells comprises a guide RNA specific for the target nucleotide sequence of the rice-derived OsSLR1 gene and an endonuclease protein. (ribonucleoprotein); or a recombinant vector comprising a nucleic acid sequence encoding an endonuclease protein and DNA encoding a guide RNA specific for the target nucleotide sequence of the rice-derived OsSLR1 gene. 제3항에 있어서, 상기 OsSLR1 유전자의 표적 염기서열은 서열번호 2의 염기서열로 이루어진 것을 특징으로 하는 제조방법.The method according to claim 3, wherein the target nucleotide sequence of the OsSLR1 gene consists of the nucleotide sequence of SEQ ID NO: 2. 제3항 내지 제5항 중 어느 한 항의 방법에 의해 제조된 왜성(dwarf)이 유도된 유전체 교정 벼 식물체.A dwarf-induced genome-corrected rice plant produced by the method of any one of claims 3 to 5.
KR1020200140459A 2020-10-27 2020-10-27 Method for producing OsSLR1 gene mutant rice plant using CRISPR/Cas9 system and rice plant having dwarf phenotype produced by the same method KR20220055904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200140459A KR20220055904A (en) 2020-10-27 2020-10-27 Method for producing OsSLR1 gene mutant rice plant using CRISPR/Cas9 system and rice plant having dwarf phenotype produced by the same method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200140459A KR20220055904A (en) 2020-10-27 2020-10-27 Method for producing OsSLR1 gene mutant rice plant using CRISPR/Cas9 system and rice plant having dwarf phenotype produced by the same method

Publications (1)

Publication Number Publication Date
KR20220055904A true KR20220055904A (en) 2022-05-04

Family

ID=81584262

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200140459A KR20220055904A (en) 2020-10-27 2020-10-27 Method for producing OsSLR1 gene mutant rice plant using CRISPR/Cas9 system and rice plant having dwarf phenotype produced by the same method

Country Status (1)

Country Link
KR (1) KR20220055904A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117051015A (en) * 2023-10-11 2023-11-14 中国农业科学院植物保护研究所 Application of rice OsFbx156 gene in improving rice blast resistance of rice
CN117402855A (en) * 2023-12-14 2024-01-16 中国农业科学院植物保护研究所 Cas protein, gene editing system and application

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117051015A (en) * 2023-10-11 2023-11-14 中国农业科学院植物保护研究所 Application of rice OsFbx156 gene in improving rice blast resistance of rice
CN117051015B (en) * 2023-10-11 2023-12-12 中国农业科学院植物保护研究所 Application of rice OsFbx156 gene in improving rice blast resistance of rice
CN117402855A (en) * 2023-12-14 2024-01-16 中国农业科学院植物保护研究所 Cas protein, gene editing system and application
CN117402855B (en) * 2023-12-14 2024-03-19 中国农业科学院植物保护研究所 Cas protein, gene editing system and application

Similar Documents

Publication Publication Date Title
Jeong et al. Generation of early-flowering Chinese cabbage (Brassica rapa spp. pekinensis) through CRISPR/Cas9-mediated genome editing
CN116058286A (en) Tobacco plant body and preparation method thereof
CN109705198B (en) Application of OsCKX7 protein and coding gene thereof in regulation and control of resistance to plant sheath blight
Yan et al. Fine mapping and isolation of Bc7 (t), allelic to OsCesA4
KR20220055904A (en) Method for producing OsSLR1 gene mutant rice plant using CRISPR/Cas9 system and rice plant having dwarf phenotype produced by the same method
WO2018168015A1 (en) Tobacco plant and production method thereof
Chang et al. Robust CRISPR/Cas9 mediated gene editing of JrWOX11 manipulated adventitious rooting and vegetative growth in a nut tree species of walnut
CN108003227B (en) Rice early flowering time related protein and coding gene thereof
WO2023191428A1 (en) PPLAⅡη GENE FOR INDUCING HAPLOID PLANTS AND USE THEREOF
JP3051874B2 (en) How to make plants dwarf
KR102547766B1 (en) Method for producing genome-edited Petunia plant with enhanced flower longevity by PhACO1 gene editing and genome-edited Petunia plant with enhanced flower longevity produced by the same method
KR20200066967A (en) Method for producing genome-edited Brassica rapa plant having late flowering trait by FT gene editing and the plant thereof
KR20230001450A (en) Method for producing cabbage plant having late-flowering trait using CRISPR/Cas complex
CN104805100B (en) Paddy gene OsS μ 2 applications in plant leaf blade aging is delayed of BP
CN115838756A (en) Preparation method and application of tobacco NtMAB1 gene silencing plant
KR20220006485A (en) Donor nucleic acid for gene editing via microhomology mediated end joining and uses therof
CN113461794A (en) Kit and method for regulating seed germination and application thereof
US20220213499A1 (en) Abiotic stress tolerant plants and methods
CA3131193A1 (en) Methods and compositions for generating dominant short stature alleles using genome editing
KR102629157B1 (en) Recombinant vector for gene editing of Solanum lycopersicum using Potato Virus X vector and uses thereof
CN114164291B (en) Application of rice grain length gene GL10 allele
CN110229801B (en) Gene for controlling rice leaf senescence and protein coded by same
KR102453800B1 (en) Method for producing SlMS10 gene knock-out tomato plant using CRISPR/Cas9 system and male-sterile tomato plant produced by the same method
EP4130262A1 (en) Plant cells having engineered qpt gene and method for using same
CN117947043A (en) Gene for regulating rice grain yield and appearance quality and application thereof

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E601 Decision to refuse application