KR102629157B1 - Recombinant vector for gene editing of Solanum lycopersicum using Potato Virus X vector and uses thereof - Google Patents

Recombinant vector for gene editing of Solanum lycopersicum using Potato Virus X vector and uses thereof Download PDF

Info

Publication number
KR102629157B1
KR102629157B1 KR1020230127010A KR20230127010A KR102629157B1 KR 102629157 B1 KR102629157 B1 KR 102629157B1 KR 1020230127010 A KR1020230127010 A KR 1020230127010A KR 20230127010 A KR20230127010 A KR 20230127010A KR 102629157 B1 KR102629157 B1 KR 102629157B1
Authority
KR
South Korea
Prior art keywords
vector
slpds
pvx
tomato
gene
Prior art date
Application number
KR1020230127010A
Other languages
Korean (ko)
Inventor
강병철
이서영
강화정
이세영
Original Assignee
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교산학협력단 filed Critical 서울대학교산학협력단
Application granted granted Critical
Publication of KR102629157B1 publication Critical patent/KR102629157B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8203Virus mediated transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/102Mutagenizing nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8205Agrobacterium mediated transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/12Type of nucleic acid catalytic nucleic acids, e.g. ribozymes
    • C12N2310/121Hammerhead
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/40011Tymoviridae
    • C12N2770/40041Use of virus, viral particle or viral elements as a vector
    • C12N2770/40043Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Virology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

본 발명은 Potato Virus X 벡터 내에, 엔도뉴클레아제 단백질을 암호화하는 핵산 서열; 해머헤드 리보자임(hammerhead ribozyme)을 암호화하는 핵산 서열; 및 토마토 유래 유전자의 표적 염기서열에 특이적인 가이드 RNA(guide RNA)를 암호화하는 DNA;가 작동가능하게 연결된 것을 특징으로 하는 토마토 식물체의 유전자 교정 효율 증진용 재조합 벡터 및 이의 용도에 관한 것이다. The present invention provides, within the Potato Virus X vector, a nucleic acid sequence encoding an endonuclease protein; A nucleic acid sequence encoding hammerhead ribozyme; and DNA encoding a guide RNA specific to the target base sequence of a tomato-derived gene. The present invention relates to a recombinant vector for improving gene editing efficiency in tomato plants, wherein the vector is operably linked, and its use.

Description

Potato Virus X 벡터를 이용한 토마토 식물체의 유전자 교정용 재조합 벡터 및 이의 용도{Recombinant vector for gene editing of Solanum lycopersicum using Potato Virus X vector and uses thereof}Recombinant vector for gene editing of Solanum lycopersicum using Potato Virus X vector and uses thereof}

본 발명은 Potato Virus X 벡터를 이용한 토마토 식물체의 유전자 교정용 재조합 벡터 및 이의 용도에 관한 것이다. The present invention relates to a recombinant vector for gene editing of tomato plants using the Potato Virus

2012년에 CRISPR/Cas9 바탕의 프로그래밍이 가능한 DNA 분자 가위 기술이 최초 보고된 이래로 다양한 원예작물에서 유전자 교정 사례 연구가 발표되고 있다. 특히, 2021년에 일본에서 가바 함량이 높은 최초의 유전자 교정 토마토 품종이 시장에 출시되었다. 유전자 교정 기술은 기존에 논란이 있었던 GMO (Genetically Modified Organism)와는 달리 유전자 교정 후 세대 진전을 통해 유전자 교정을 위한 구성요소를 제거하면 도입된 외래 유전자가 남지 않는다는 면에서 법적 규제에서 보다 자유로울 수 있다. 특히, CRISPR-Cas9 RNP (ribonucleoprotein)를 원형질체로 운반하여 유전자 교정을 수행하는 기술은 많은 동물 세포와 식물 세포에서 개발되었지만, 이 방법은 세포벽이 존재하지 않는 세포를 재분화시키는데 어려움이 존재한다. 또한, 텅스텐 혹은 금 입자를 이용해 Cas9 단백질과 gRNA를 세포로 운반하여 유전자 교정을 수행하는 입자 충격(particle bombardment) 방법은 유전자 교정 효율이 낮다는 어려움이 존재한다. Since the CRISPR/Cas9-based programmable DNA molecular scissors technology was first reported in 2012, case studies of gene editing have been published in various horticultural crops. In particular, in 2021, the first gene-edited tomato variety with high GABA content was launched on the market in Japan. Unlike GMO (Genetically Modified Organism), which has previously been controversial, gene editing technology can be free from legal regulations in that no introduced foreign genes remain if components for gene editing are removed through generation after gene editing. In particular, technology to carry out gene editing by transporting CRISPR-Cas9 RNP (ribonucleoprotein) into protoplasts has been developed in many animal cells and plant cells, but this method has difficulties in redifferentiating cells without cell walls. In addition, the particle bombardment method, which performs gene editing by transporting the Cas9 protein and gRNA to cells using tungsten or gold particles, has the problem of low gene editing efficiency.

한편, 바이러스를 이용한 유전자 교정 기술은 최근 Potato Virus X (PVX), Sonchus Yellow Net Virus (SYNV)와 같이 카고 능력(cargo capacity)이 큰 RNA 바이러스를 이용하여 Cas9과 gRNA를 같이 발현하여 바이러스 접종을 통해 유전자 교정 개체를 개발하는 연구들이 발표되었다. 최근 이러한 Virus-induced gene editing (VIGE) 시스템을 성공적으로 적용시킨 사례가 담배 또는 밀 등에서 보고된 바 있다.Meanwhile, gene editing technology using viruses has recently been developed by co-expressing Cas9 and gRNA using RNA viruses with large cargo capacity, such as Potato Virus Studies developing gene editing organisms have been published. Recently, cases of successful application of this Virus-induced gene editing (VIGE) system have been reported in tobacco or wheat.

한편, 토마토(Solanum lycopersicum)는 세계적으로 가장 많이 소비되는 원예작물로, 다양한 형질을 가지고 있고 농업적 가치가 큰 작물이며, 소비자들의 소득 수준이 높아지며 고부가 가치의 작물의 소비가 급증하고 있다. 하지만 전통육종 방법이나 분자마커를 이용한 육종의 경우 세대 진전을 위한 비용 및 시간이 오래 걸린다는 단점이 있으며 외래 유전자 삽입을 통한 유전자 교정의 경우 빠르게 원하는 형질을 도입할 수 있다는 장점이 있으나 GMO 규제에서 자유로울 수 없다는 단점이 존재한다.Meanwhile, tomato ( Solanum lycopersicum ) is the most consumed horticultural crop in the world, and is a crop with diverse characteristics and great agricultural value. As consumers' income levels rise, the consumption of high-value crops is rapidly increasing. However, traditional breeding methods or breeding using molecular markers have the disadvantage of being costly and time-consuming for generation advancement. Gene correction through foreign gene insertion has the advantage of being able to quickly introduce desired traits, but is free from GMO regulations. There is a downside to not being able to do this.

한편, 한국공개특허 제2023-0032679호에는 '이종 바이러스의 RNA 침묵억제 단백질을 포함하는 Potato virus X 기반 재조합 식물 발현 벡터 및 이의 용도'가 개시되어 있고, 한국등록특허 제2074744호에는 '식물체의 게놈에 레플리콘의 삽입 없이 유전체를 교정하기 위한 바이러스 기반의 레플리콘 및 이의 용도'가 개시되어 있으나, 본 발명의 'Potato Virus X 벡터를 이용한 토마토 식물체의 유전자 교정용 재조합 벡터 및 이의 용도'에 대해서는 기재된 바가 없다. Meanwhile, Korean Patent Publication No. 2023-0032679 discloses ‘Potato virus 'Virus-based replicon for genome correction without insertion of a replicon and its use' is disclosed, but in 'Recombinant vector for gene correction of tomato plants using Potato Virus X vector and its use' of the present invention. There is nothing written about it.

본 발명은 상기와 같은 요구에 의해 도출된 것으로서, 본 발명자들은 Potato Virus X 벡터 내에, 엔도뉴클레아제 단백질을 암호화하는 핵산 서열; 해머헤드 리보자임(hammerhead ribozyme)을 암호화하는 핵산 서열; 및 토마토 유래 PDS(phytoene desaturase) 유전자의 표적 염기서열에 특이적인 가이드 RNA(guide RNA)를 암호화하는 DNA;가 순차적으로 연결된 재조합 벡터(PVX-SlPDS-HH)를 제작하였고, 상기 재조합 벡터(PVX-SlPDS-HH)가 삽입된 아그로박테리움 GV3101 균주를 접종한 토마토 식물체의 유전자 교정 효율이 대조군(해머헤드 리보자임이 포함되지 않은 재조합 벡터가 삽입된 아그로박테리움 균주를 접종한 토마토 식물체) 대비 증가하는 것을 확인하였다. 또한, 상기 재조합 벡터(PVX-SlPDS-HH)가 삽입된 아그로박테리움 GV3101 균주를 접종한 후, 37℃로 열처리한 토마토 식물체의 유전자 교정 효율이 대조군(PVX-SlPDS-HH 벡터가 삽입된 아그로박테리움 GV3101 균주를 접종한 후, 37℃로 열처리하지 않은 토마토 식물체) 대비 증가하는 것을 확인함으로써, 본 발명을 완성하였다. The present invention has been derived from the above-mentioned needs, and the present inventors have provided a nucleic acid sequence encoding an endonuclease protein in the Potato Virus A nucleic acid sequence encoding hammerhead ribozyme; and DNA encoding guide RNA specific for the target base sequence of the tomato-derived PDS (phytoene desaturase) gene; a recombinant vector (PVX-SlPDS-HH) was sequentially linked, and the recombinant vector (PVX- The gene correction efficiency of tomato plants inoculated with the Agrobacterium GV3101 strain inserted (SlPDS-HH) increases compared to the control group (tomato plants inoculated with the Agrobacterium strain inserted with a recombinant vector that does not contain a hammerhead ribozyme). confirmed. In addition, after inoculation with the Agrobacterium GV3101 strain into which the recombinant vector (PVX-SlPDS-HH) was inserted, the gene correction efficiency of tomato plants heat-treated at 37°C was higher than that of the control group (Agrobacterium into which the PVX-SlPDS-HH vector was inserted). The present invention was completed by confirming an increase compared to tomato plants that were not heat-treated at 37°C after inoculation with the Leeum GV3101 strain.

상기 과제를 해결하기 위해, 본 발명은 Potato Virus X 벡터 내에, 엔도뉴클레아제 단백질을 암호화하는 핵산 서열; 해머헤드 리보자임(hammerhead ribozyme)을 암호화하는 핵산 서열; 및 토마토 유래 유전자의 표적 염기서열에 특이적인 가이드 RNA(guide RNA)를 암호화하는 DNA;가 작동가능하게 연결된 것을 특징으로 하는 토마토 식물체의 유전자 교정 효율 증진용 재조합 벡터를 제공한다.In order to solve the above problem, the present invention provides a nucleic acid sequence encoding an endonuclease protein within the Potato Virus A nucleic acid sequence encoding hammerhead ribozyme; and DNA encoding a guide RNA specific to the target base sequence of a tomato-derived gene.

또한, 본 발명은 상기 재조합 벡터를 유효성분으로 포함하는 토마토 식물체의 유전자 교정 효율 증진용 조성물을 제공한다.Additionally, the present invention provides a composition for improving gene editing efficiency in tomato plants containing the recombinant vector as an active ingredient.

또한, 본 발명은 상기 재조합 벡터를 포함하는 아그로박테리움(Agrobacterium) 균주를 토마토 식물체의 조직에 접종하여 배양하는 단계; 및 상기 배양한 조직을 열처리하는 단계;를 포함하는 토마토 식물체의 유전자 교정 효율 증진 방법을 제공한다. In addition, the present invention includes the steps of inoculating an Agrobacterium strain containing the recombinant vector into the tissue of a tomato plant and culturing it; and heat-treating the cultured tissue. A method for improving gene editing efficiency in tomato plants is provided.

본 발명에 따른 Potato Virus X 벡터를 이용한 토마토 식물체의 유전자 교정용 재조합 벡터는 토마토 식물체에서 외래 유전자 도입 없이 유전자 교정이 가능하므로 GMO(Genetically Modified Organism) 규제에서 보다 자유로울 수 있고, 토마토의 다양한 형질을 교정하여 육성할 수 있어 육종에 소요되는 시간, 비용 및 노력을 절감하는데 매우 유용할 것으로 기대된다. 또한, 본 발명에 따른 재조합 벡터는 기존의 Potato Virus X 벡터를 이용한 유전자 교정 시스템보다 유전자 교정 효율이 우수하다는 장점이 있다. The recombinant vector for gene correction of tomato plants using the Potato Virus It is expected to be very useful in reducing the time, cost and effort required for breeding. Additionally, the recombinant vector according to the present invention has the advantage of superior gene editing efficiency over the existing gene editing system using the Potato Virus

도 1은 본 발명에서 사용한 PVX-SlPDS 벡터의 모식도(A), PVX-SlPDS-HH 벡터의 모식도(B), PVX-SlPDS-HH-Ter4 벡터의 모식도(C) 및 PVX-SlPDS-HH 벡터 제조에 사용한 해머헤드 리보자임(hammerhead ribozyme)의 서열과 구조(D)를 나타낸 것이다. RdRp: RNAdependent RNA polymerase, TGB: triple gene block, CP: coat protein, nosT: nopaline synthase terminator.
도 2는 유전자의 교정 부위를 포함하는 서열을 증폭시키는 프라이머 및 제한효소(restriction enzyme, RE)를 이용하여 형질전환체의 돌연변이 여부를 확인하는 방법을 나타낸 모식도이다.
도 3은 PVX-SlPDS 벡터를 이용한 토마토의 형질전환 유도한 후, 외래 유전자의 발현 확인한 결과로, (A)는 아무것도 처리하지 않은 음성 대조군(Mock) 식물체 및 PVX-SlPDS 벡터를 토마토(Micro-Tom)의 자엽에 접종한지 10일 뒤에 식물체의 표현형을 확인한 사진이고, (B)는 PVX-SlPDS 벡터에서 Cas9 및 gRNA 대신 GFP가 포함되어 있는 PVX-GFP 벡터를 토마토의 자엽에 접종한지 10일 뒤에 GFP 시그널을 공초점 현미경을 통해 촬영한 사진이며, (C)는 PVX-SlPDS 벡터를 토마토의 자엽에 접종한지 10일 뒤에 Cas9과 PVX coat protein(CP)의 발현양을 확인한 RT-PCR 결과이다.
도 4는 PVX-SlPDS-HH 벡터가 삽입된 아그로박테리움 GV3101, EHA105 또는 LBA4404 균주를 토마토 자엽에 각각 접종한 후 Cas9 단백질의 발현량을 확인한 결과이다. WT는 아그로박테리움 균주를 포함하지 않은 버퍼를 접종한 토마토 자엽이고, H3은 내부 대조군으로 이용한 Histone 3 단백질이다. 도면 내 서로 다른 문자 a, b는 서로 유의미한 차이가 있다는 것이며, p<0.05이다.
도 5는 PVX-SlPDS 벡터가 삽입된 아그로박테리움 GV3101 균주를 토마토 자엽에 접종한 후, 접종 7일차(H7) 또는 9일차(H9)에 37℃, 24시간 동안 열처리한 후, 제한효소를 이용하여 PDS 유전자의 돌연변이를 확인한 결과이다. MOCK은 PVX-SlPDS 벡터를 접종한 후, 열처리하지 않은 대조군이고, C는 PVX-SlPDS 벡터가 삽입된 아그로박테리움 GV3101 균주를 토마토 자엽에 접종한 후, 접종 7일차에 26℃, 24시간 동안 열처리한 대조군이다.
도 6은 PVX-SlPDS 벡터가 삽입된 아그로박테리움 GV3101 균주를 토마토 자엽에 접종한 후, 접종 7일차(H7) 또는 9일차(H9)에 37℃, 24시간 동안 열처리한 후, NGS(Next Generation Sequencing) 분석을 통해 PDS 유전자 교정 효율을 확인한 결과이다. C는 PVX-SlPDS 벡터가 삽입된 아그로박테리움 GV3101 균주를 토마토 자엽에 접종한 후, 접종 7일차에 26℃, 24시간 동안 열처리한 대조군이다.
도 7은 PVX-SlPDS 벡터(A) 또는 PVX-SlPDS-HH 벡터(B)가 삽입된 아그로박테리움 GV3101 균주를 토마토 자엽에 각각 접종하고 26℃, 24시간 동안 열처리한 후, 제한효소를 이용하여 자엽 또는 상엽에서 PDS 유전자의 돌연변이를 확인한 결과이다.
도 8은 PVX-SlPDS 벡터 또는 PVX-SlPDS-HH 벡터가 삽입된 아그로박테리움 GV3101 균주를 토마토 자엽에 각각 접종하고 26℃, 24시간 동안 열처리한 후, NGS(Next Generation Sequencing) 분석을 통해 PDS 유전자 교정 효율을 확인한 결과이다.
도 9는 PVX-SlPDS 벡터 또는 PVX-SlPDS-HH 벡터가 삽입된 아그로박테리움 GV3101 균주를 토마토 자엽에 각각 접종하고 37℃, 24시간 동안 열처리한 후, 제한효소를 이용하여 PDS 유전자의 돌연변이를 확인한 결과이다.
도 10은 PVX-SlPDS-HH 벡터 또는 PVX-SlPDS-HH-Ter4 벡터가 삽입된 아그로박테리움 GV3101 균주를 토마토 자엽에 각각 접종하고 26℃, 24시간 동안 열처리한 후, NGS(Next Generation Sequencing) 분석을 통해 PDS 유전자 교정 효율을 확인한 결과이다.
Figure 1 shows a schematic diagram of the PVX-SlPDS vector used in the present invention (A), a schematic diagram of the PVX-SlPDS-HH vector (B), a schematic diagram of the PVX-SlPDS-HH-Ter4 vector (C), and the production of the PVX-SlPDS-HH vector. This shows the sequence and structure (D) of the hammerhead ribozyme used in . RdRp: RNAdependent RNA polymerase, TGB: triple gene block, CP: coat protein, nosT: nopaline synthase terminator.
Figure 2 is a schematic diagram showing a method for checking whether a transformant is mutated using a primer and a restriction enzyme (RE) that amplifies a sequence containing a gene correction site.
Figure 3 shows the results of confirming the expression of foreign genes after inducing transformation of tomatoes using the PVX-SlPDS vector. (A) shows the negative control (Mock) plants that were not treated with anything and the PVX-SlPDS vector in tomato (Micro-Tom) plants. ) is a photo confirming the plant's phenotype 10 days after inoculation into the cotyledons, and (B) is a photo showing the PVX-GFP vector, which contains GFP instead of Cas9 and gRNA in the PVX-SlPDS vector, 10 days after inoculation into the cotyledons of tomato. This is a picture of the signal taken through a confocal microscope, and (C) is the RT-PCR result confirming the expression level of Cas9 and PVX coat protein (CP) 10 days after inoculation of the PVX-SlPDS vector into tomato cotyledons.
Figure 4 shows the results of confirming the expression level of Cas9 protein after inoculating tomato cotyledons with Agrobacterium GV3101, EHA105, or LBA4404 strains inserted with the PVX-SlPDS-HH vector, respectively. WT is tomato cotyledons inoculated with buffer not containing Agrobacterium strains, and H3 is Histone 3 protein used as an internal control. Different letters a and b in the drawing are significantly different from each other, p<0.05.
Figure 5 shows the inoculation of the Agrobacterium GV3101 strain into which the PVX-SlPDS vector was inserted into tomato cotyledons, followed by heat treatment at 37°C for 24 hours on the 7th day (H7) or 9th day (H9) of inoculation, and then using restriction enzymes. This is the result of confirming a mutation in the PDS gene. MOCK is the control group without heat treatment after inoculation with the PVX-SlPDS vector, and C is the control group that was inoculated with the Agrobacterium GV3101 strain into which the PVX-SlPDS vector was inserted into tomato cotyledons, and then heat treated at 26°C for 24 hours on the 7th day of inoculation. This is a control group.
Figure 6 shows that after inoculating the Agrobacterium GV3101 strain into which the PVX-SlPDS vector was inserted into tomato cotyledons, heat treatment was performed at 37°C for 24 hours on the 7th day (H7) or 9th day (H9) of inoculation, and then NGS (Next Generation) This is the result of confirming the PDS gene correction efficiency through Sequencing analysis. C is a control group that was inoculated into tomato cotyledons with the Agrobacterium GV3101 strain into which the PVX-SlPDS vector was inserted and then heat-treated at 26°C for 24 hours on the 7th day of inoculation.
Figure 7 shows that the Agrobacterium GV3101 strain inserted with the PVX-SlPDS vector (A) or the PVX-SlPDS-HH vector (B) was inoculated into tomato cotyledons, heat-treated at 26°C for 24 hours, and then treated with restriction enzymes. This is the result of confirming a mutation in the PDS gene in the cotyledons or upper leaves.
Figure 8 shows the Agrobacterium GV3101 strain inserted with the PVX-SlPDS vector or the PVX-SlPDS-HH vector was inoculated into tomato cotyledons and heat-treated at 26°C for 24 hours, and then the PDS gene was analyzed through NGS (Next Generation Sequencing) analysis. This is the result of confirming the correction efficiency.
Figure 9 shows the Agrobacterium GV3101 strain inserted with the PVX-SlPDS vector or the PVX-SlPDS-HH vector inoculated into tomato cotyledons, heat-treated at 37°C for 24 hours, and then confirmed for mutation in the PDS gene using restriction enzymes. It is a result.
Figure 10 shows NGS (Next Generation Sequencing) analysis after inoculating the Agrobacterium GV3101 strain into which the PVX-SlPDS-HH vector or PVX-SlPDS-HH-Ter4 vector was inserted into tomato cotyledons, respectively, and heat-treating them at 26°C for 24 hours. This is the result of confirming the efficiency of PDS gene editing.

본 발명의 목적을 달성하기 위하여, 본 발명은 Potato Virus X 벡터 내에, 엔도뉴클레아제 단백질을 암호화하는 핵산 서열; 해머헤드 리보자임(hammerhead ribozyme)을 암호화하는 핵산 서열; 및 토마토 유래 유전자의 표적 염기서열에 특이적인 가이드 RNA(guide RNA)를 암호화하는 DNA;가 작동가능하게 연결된 것을 특징으로 하는 토마토 식물체의 유전자 교정 효율 증진용 재조합 벡터를 제공한다. In order to achieve the object of the present invention, the present invention includes a nucleic acid sequence encoding an endonuclease protein in a Potato Virus A nucleic acid sequence encoding hammerhead ribozyme; and DNA encoding a guide RNA specific to the target base sequence of a tomato-derived gene.

본 명세서에서 용어 "유전체/유전자 교정(genome/gene editing)"은, 인간 세포를 비롯한 동·식물 세포의 유전체 염기서열에 표적지향형 변이를 도입할 수 있는 기술로서, DNA 절단에 의한 하나 이상의 핵산 분자의 결실(deletion), 삽입(insertion), 치환(substitutions) 등에 의하여 특정 유전자를 녹-아웃(knock-out) 또는 녹-인(knock-in)하거나, 단백질을 생성하지 않는 비-코딩(non-coding) DNA 서열에도 변이를 도입할 수 있는 기술을 말한다. 본 발명의 목적상 상기 유전체 교정은 특히 엔도뉴클레아제(endonuclease) 예컨대, Cas9(CRISPR associated protein 9) 단백질 및 가이드 RNA를 이용하여 식물체에 변이를 도입하는 것일 수 있다. 또한, "유전자 교정"은 "유전자 편집"과 혼용되어 사용될 수 있다.As used herein, the term "genome/gene editing" refers to a technology that can introduce target-oriented mutations into the genome sequence of animal and plant cells, including human cells, and refers to one or more nucleic acid molecules by cutting DNA. Knock-out or knock-in of specific genes by deletion, insertion, substitutions, etc., or non-coding that does not produce proteins. coding) refers to a technology that can introduce mutations into the DNA sequence. For the purpose of the present invention, the genome editing may be to introduce mutations into plants using endonuclease, such as Cas9 (CRISPR associated protein 9) protein and guide RNA. Additionally, “gene editing” can be used interchangeably with “gene editing.”

또한, 용어 "표적 유전자"는 본 발명을 통해 교정하고자 하는 식물체의 유전체 내에 있는 일부 DNA를 의미하며, 그 유전자의 종류에 제한되지 않으며, 코딩 영역 및 비-코딩 영역을 모두 포함할 수 있다. 당업자는 그 목적에 따라, 제조하고자 하는 유전체 교정 식물체에 대하여 원하는 변이에 따라 상기 표적 유전자를 선별할 수 있다.Additionally, the term “target gene” refers to some DNA in the genome of a plant to be corrected through the present invention, is not limited to the type of gene, and may include both coding regions and non-coding regions. A person skilled in the art can select the target gene according to the desired mutation for the genome editing plant to be manufactured, depending on the purpose.

본 발명에서 용어 "재조합"은 세포가 이종의 핵산을 복제하거나, 상기 핵산을 발현하거나 또는 펩티드, 이종의 펩티드 또는 이종의 핵산에 의해 암호화된 단백질을 발현하는 세포를 지칭하는 것이다. 재조합 세포는 상기 세포의 천연 형태에서는 발견되지 않는 유전자 또는 유전자 절편을, 센스 또는 안티센스 형태 중 하나로 발현할 수 있다. 또한 재조합 세포는 천연 상태의 세포에서 발견되는 유전자를 발현할 수 있으며, 그러나 상기 유전자는 변형된 것으로써 인위적인 수단에 의해 세포 내 재도입된 것이다.As used herein, the term “recombinant” refers to a cell that replicates a heterologous nucleic acid, expresses the nucleic acid, or expresses a peptide, a heterologous peptide, or a protein encoded by a heterologous nucleic acid. Recombinant cells can express genes or gene segments that are not found in the natural form of the cell, either in sense or antisense form. Additionally, recombinant cells can express genes found in cells in their natural state, but the genes have been modified and reintroduced into the cells by artificial means.

용어 "벡터"는 세포 내로 전달하는 DNA 단편(들), 핵산 분자를 지칭할 때 사용된다. 벡터는 DNA를 복제시키고, 숙주세포에서 독립적으로 재생산될 수 있다. 용어 "전달체"는 흔히 "벡터"와 호환하여 사용된다..The term “vector” is used to refer to a DNA fragment(s) or nucleic acid molecule that is delivered into a cell. Vectors replicate DNA and can reproduce independently in host cells. The term "vector" is often used interchangeably with "vector".

본 발명의 토마토 식물체의 유전자 교정 효율 증진용 재조합 벡터에 있어서, 상기 해머헤드 리보자임(hammerhead ribozyme)을 암호화하는 핵산 서열은 서열번호 4의 염기서열로 이루어진 것일 수 있으나, 이에 제한되지 않는다. In the recombinant vector for improving the gene editing efficiency of tomato plants of the present invention, the nucleic acid sequence encoding the hammerhead ribozyme may be composed of the base sequence of SEQ ID NO: 4, but is not limited thereto.

또한, 본 발명의 토마토 식물체의 유전자 교정 효율 증진용 재조합 벡터에 있어서, 상기 토마토 유래 유전자는 PDS(phytoene desaturase) 유전자일 수 있고, 바람직하게는 서열번호 1의 염기서열로 또는 서열번호 2의 아미노산 서열로 이루어진 것일 수 있으나, 이에 제한되지 않는다. In addition, in the recombinant vector for improving the gene editing efficiency of tomato plants of the present invention, the tomato-derived gene may be a PDS (phytoene desaturase) gene, and preferably has the base sequence of SEQ ID NO: 1 or the amino acid sequence of SEQ ID NO: 2. It may consist of, but is not limited to.

또한, 본 발명의 토마토 식물체의 유전자 교정 효율 증진용 재조합 벡터에 있어서, 상기 표적 염기서열은 서열번호 3의 염기서열로 이루어진 것일 수 있으나, 이에 제한되지 않는다.Additionally, in the recombinant vector for improving gene editing efficiency in tomato plants of the present invention, the target base sequence may be comprised of the base sequence of SEQ ID NO: 3, but is not limited thereto.

본 명세서에서 용어 "가이드 RNA(guide RNA)"는 짧은 단일 가닥의 RNA로, 표적 유전자를 암호화하는 염기서열 중 표적 DNA에 특이적인 RNA를 의미하며, 표적 DNA 염기서열과 전부 또는 일부가 상보적으로 결합하여 해당 표적 DNA 염기서열로 엔도뉴클레아제 단백질을 이끄는 역할을 하는 리보핵산을 의미한다. 상기 가이드 RNA는 두 개의 RNA, 즉, crRNA (CRISPR RNA) 및 tragRNA (trans-activating gRNA)를 구성 요소로 포함하는 이중 RNA (dual RNA); 또는 표적 유전자 내 염기서열과 전부 또는 일부 상보적인 서열을 포함하는 제1 부위 및 엔도뉴클레아제(특히, RNA-가이드 뉴클레아제)와 상호작용하는 서열을 포함하는 제2 부위를 포함하는 단일 사슬 가이드 RNA(single guide RNA, sgRNA) 형태를 말하나, 엔도뉴클레아제가 표적 염기서열에서 활성을 가질 수 있는 형태라면 제한없이 본 발명의 범위에 포함될 수 있으며, 함께 사용된 엔도뉴클레아제의 종류 또는 엔도뉴클레아제의 유래 미생물 등을 고려하여 당업계의 공지된 기술에 따라 제조하여 사용할 수 있다.As used herein, the term "guide RNA" refers to a short single-stranded RNA that is specific to the target DNA among the base sequences encoding the target gene, and is complementary in whole or in part to the target DNA base sequence. It refers to a ribonucleic acid that binds and guides an endonuclease protein to the target DNA base sequence. The guide RNA is a dual RNA containing two RNAs, a crRNA (CRISPR RNA) and a tragRNA (trans-activating gRNA) as components; or a single chain comprising a first portion comprising a sequence that is fully or partially complementary to a base sequence in the target gene and a second portion comprising a sequence that interacts with an endonuclease (particularly an RNA-guided nuclease). It refers to a guide RNA (single guide RNA, sgRNA) form, but as long as the endonuclease is in a form that can be active at the target base sequence, it can be included within the scope of the present invention without limitation, and the type of endonuclease used together or endonuclease It can be manufactured and used according to techniques known in the art, taking into account the microorganism from which the nuclease is derived.

또한, 상기 가이드 RNA는 플라스미드 주형으로부터 전사된 것, 생체 외(in vitro)에서 전사된(transcribed) 것(예컨대, 올리고뉴클레오티드 이중가닥) 또는 합성한 가이드 RNA 등일 수 있으나, 이에 제한되지 않는다.Additionally, the guide RNA may be transcribed from a plasmid template, transcribed in vitro (e.g., oligonucleotide double-stranded), or synthesized guide RNA, but is not limited thereto.

또한, 본 발명의 토마토 식물체의 유전자 교정 효율 증진용 재조합 벡터에 있어서, 상기 재조합 벡터는 서열번호 36의 염기서열로 이루어진 Ter4 터미네이터(terminator)를 포함하는 것일 수 있으나, 이에 제한되지 않는다. Additionally, in the recombinant vector for improving the gene editing efficiency of tomato plants of the present invention, the recombinant vector may include a Ter4 terminator consisting of the base sequence of SEQ ID NO: 36, but is not limited thereto.

또한, 본 발명의 토마토 식물체의 유전자 교정 효율 증진용 재조합 벡터에 있어서, 상기 엔도뉴클레아제 단백질은 Cas9(CRISPR associated protein 9), Cpf1(CRISPR from Prevotella and Francisella 1), TALEN(Transcription activator-like effector nuclease), ZFN (Zinc Finger Nuclease) 또는 이의 기능적 유사체로 이루어진 군으로부터 선택되는 하나 이상일 수 있고, 바람직하게는 Cas9 단백질일 수 있으나, 이에 제한되지 않는다.In addition, in the recombinant vector for improving the gene editing efficiency of tomato plants of the present invention, the endonuclease protein is Cas9 (CRISPR associated protein 9), Cpf1 (CRISPR from Prevotella and Francisella 1), and TALEN (Transcription activator-like effector nuclease), ZFN (Zinc Finger Nuclease), or a functional analog thereof, and preferably Cas9 protein, but is not limited thereto.

또한, 상기 Cas9 단백질은 스트렙토코커스 피요제네스(Streptococcus pyogenes) 유래의 Cas9 단백질, 캠필로박터 제주니(Campylobacter jejuni) 유래의 Cas9 단백질, 스트렙토코커스 써모필러스(S. thermophilus) 또는 스트렙토코커스 아우레우스(S. aureus) 유래의 Cas9 단백질, 네이쎄리아 메닝기티디스(Neisseria meningitidis) 유래의 Cas9 단백질, 파스투렐라 물토시다(Pasteurella multocida) 유래의 Cas9 단백질, 프란시셀라 노비시다(Francisella novicida) 유래의 Cas9 단백질 등으로 이루어진 군에서 선택된 하나 이상일 수 있으나, 이에 제한되지 않는다. Cas9 단백질 또는 이의 유전자 정보는 NCBI(National Center for Biotechnology Information)의 GenBank와 같은 공지의 데이터베이스에서 얻을 수 있다. 상기 Cas9 유전자 정보는 공지된 서열을 그대로 사용할 수도 있고, 형질도입되는 대상(유기체)의 코돈에 최적화된 서열을 사용할 수 있으나, 이에 제한되지 않는다.In addition, the Cas9 protein is a Cas9 protein derived from Streptococcus pyogenes, a Cas9 protein derived from Campylobacter jejuni, a Streptococcus thermophilus ( S. thermophilus ) or a Streptococcus aureus ( S. aureus )-derived Cas9 protein, Neisseria meningitidis -derived Cas9 protein, Pasteurella multocida -derived Cas9 protein, Francisella novicida -derived Cas9 protein, etc. It may be one or more selected from the group consisting of, but is not limited thereto. Cas9 protein or its genetic information can be obtained from known databases such as GenBank of the National Center for Biotechnology Information (NCBI). The Cas9 gene information may be a known sequence, or a sequence optimized for the codon of the target (organism) to be transduced, but is not limited thereto.

Cas9 단백질은 RNA-guided DNA 엔도뉴클레아제 효소로, 이중 가닥 DNA 절단(double stranded DNA break)을 유도한다. Cas9 단백질이 정확하게 표적 염기서열에 결합하여 DNA 가닥을 잘라내기 위해서는 PAM(Protospacer Adjacent Motif)이라 알려진 3개의 염기로 이루어진 짧은 염기서열이 표적 염기서열 옆에 존재해야 하며, Cas9 단백질은 PAM 서열(NGG)로부터 3번째와 4번째 염기쌍 사이를 추정하여 절단한다.The Cas9 protein is an RNA-guided DNA endonuclease enzyme that induces double stranded DNA breaks. In order for the Cas9 protein to accurately bind to the target base sequence and cut the DNA strand, a short base sequence consisting of three bases known as PAM (Protospacer Adjacent Motif) must exist next to the target base sequence, and the Cas9 protein must contain the PAM sequence (NGG) It is estimated and cut between the 3rd and 4th base pairs.

본 발명에 따른 재조합 벡터에 있어서, 상기 gRNA와 엔도뉴클레아제 단백질은 리보핵산-단백질(ribonucleoprotein) 복합체를 형성하여 RNA 유전자 가위(RNA-Guided Engineered Nuclease, RGEN)로 작동할 수 있다.In the recombinant vector according to the present invention, the gRNA and the endonuclease protein form a ribonucleoprotein complex and can operate as RNA-Guided Engineered Nuclease (RGEN).

본 발명에서 사용된 CRISPR/Cas9 시스템은 교정하고자 하는 특정 유전자의 특정위치에 이중나선 절단을 도입하여 DNA 수선 과정에서 유도되는 불완전 수선에 의한 삽입-결실(insertion-deletion, InDel) 돌연변이를 유도시키는 NHEJ(non-homologous end joining) 기작에 의한 유전자 교정 방법이다.The CRISPR/Cas9 system used in the present invention is NHEJ, which induces insertion-deletion (InDel) mutations due to incomplete repair induced during the DNA repair process by introducing a double-strand break at a specific position of a specific gene to be corrected. It is a gene editing method using the (non-homologous end joining) mechanism.

본 발명은 또한, 상기 재조합 벡터를 유효성분으로 포함하는 토마토 식물체의 유전자 교정 효율 증진용 조성물을 제공한다. The present invention also provides a composition for improving gene editing efficiency in tomato plants containing the recombinant vector as an active ingredient.

본 발명의 토마토 식물체의 유전자 교정 효율 증진용 조성물에 있어서, 상기 재조합 벡터는 전술한 것과 같다. In the composition for improving gene editing efficiency in tomato plants of the present invention, the recombinant vector is the same as described above.

본 발명은 또한, 상기 재조합 벡터를 포함하는 아그로박테리움(Agrobacterium) 균주를 토마토 식물체의 조직에 접종하여 배양하는 단계; 및 상기 배양한 조직을 열처리하는 단계;를 포함하는 토마토 식물체의 유전자 교정 효율 증진 방법을 제공한다. The present invention also includes the steps of inoculating and culturing an Agrobacterium strain containing the recombinant vector into the tissue of a tomato plant; and heat-treating the cultured tissue. A method for improving gene editing efficiency in tomato plants is provided.

본 발명의 토마토 식물체의 유전자 교정 효율 증진 방법에 있어서, 상기 재조합 벡터는 전술한 것과 같다. In the method for improving gene editing efficiency in tomato plants of the present invention, the recombinant vector is the same as described above.

본 발명의 토마토 식물체의 유전자 교정 효율 증진 방법에 있어서, 상기 열처리는 32~42℃에서 20~28시간 동안 수행하는 것일 수 있으며, 바람직하게는 37℃에서 24시간 동안 수행하는 것일 수 있으나, 이에 제한되지 않는다. In the method for improving the gene editing efficiency of tomato plants of the present invention, the heat treatment may be performed at 32 to 42 ° C. for 20 to 28 hours, and preferably may be performed at 37 ° C. for 24 hours, but is limited thereto. It doesn't work.

본 발명의 일 구현 예에 따른 토마토 식물체의 유전자 교정 효율 증진 방법에 있어서, 상기 아그로박테리움(Agrobacterium) 균주는 바람직하게는 아그로박테리움 GV3101 균주일 수 있으나, 이에 제한되지 않는다. In the method for improving the gene editing efficiency of tomato plants according to an embodiment of the present invention, the Agrobacterium strain may be preferably the Agrobacterium GV3101 strain, but is not limited thereto.

본 발명에 따른 토마토 식물체의 유전자 교정 효율 증진 방법에 있어서, 상기 조성물을 토마토 식물체의 조직에 처리하는 것은 형질전환 방법을 의미한다. 식물 종의 형질전환은 이제는 쌍자엽 식물뿐만 아니라 단자엽 식물 양자를 포함한 식물 종에 대해 일반적이다. 원칙적으로, 임의의 형질전환 방법은 본 발명에 따른 재조합 벡터를 적당한 선조 세포로 도입시키는데 이용될 수 있다. 방법은 원형질체에 대한 칼슘/폴리에틸렌 글리콜 방법(Krens et al., 1982, Nature 296: 72-74; Negrutiu et al., 1987, Plant Mol. Biol. 8: 363-373), 원형질체의 전기천공법(Shillito et al., 1985, Bio/Technol.3: 1099-1102), 식물 요소로의 현미주사법(Crossway et al.,1986, Mol. Gen. Genet. 202: 179-185), 각종 식물 요소의(DNA 또는 RNA-코팅된) 입자 충격법(Klein et al.,1987, Nature 327: 70), 식물의 침윤 또는 성숙 화분 또는 소포자의 형질전환에 의한 아그로박테리움 튜메파시엔스(Agrobacterium tumefaciens) 매개된 유전자 전이에서(비완전성) 바이러스에 의한 감염(EP 0 301 316호) 등으로부터 적당하게 선택될 수 있다. 본 발명에 따른 바람직한 방법은 아그로박테리움 매개된 DNA 전달을 포함한다.In the method for improving gene editing efficiency in tomato plants according to the present invention, treating the tissues of tomato plants with the composition refers to a transformation method. Transformation of plant species is now common for plant species including both monocots as well as dicots. In principle, any transformation method can be used to introduce the recombinant vector according to the invention into suitable progenitor cells. Methods include the calcium/polyethylene glycol method for protoplasts (Krens et al., 1982, Nature 296: 72-74; Negrutiu et al., 1987, Plant Mol. Biol. 8: 363-373), electroporation of protoplasts ( Shillito et al., 1985, Bio/Technol.3: 1099-1102), microinjection method into plant elements (Crossway et al., 1986, Mol. Gen. Genet. 202: 179-185), various plant elements ( Agrobacterium tumefaciens (DNA or RNA-coated) particle bombardment (Klein et al., 1987, Nature 327: 70), invasion of plants or transformation of mature pollen or spores. It can be suitably selected from metastasis (non-complete) infection by a virus (EP 0 301 316), etc. A preferred method according to the invention involves Agrobacterium mediated DNA transfer.

본 발명에 따른 토마토 식물체의 유전자 교정 효율 증진 방법에 있어서, 상기 균주를 접종하는 "조직"은 분화된 또는 미분화된 식물의 조직, 예를 들면 이에 한정되진 않으나, 뿌리, 줄기, 잎, 꽃가루, 소포자, 난세포, 종자 및 배양에 이용되는 다양한 형태의 세포들, 즉 단일 세포, 원형질체(protoplast), 싹 및 캘러스 조직을 포함한다. 식물 조직은 인 플란타(in planta)이거나 기관 배양, 조직 배양 또는 세포 배양 상태일 수 있다. In the method for improving the gene editing efficiency of tomato plants according to the present invention, the “tissue” inoculated with the strain is differentiated or undifferentiated plant tissue, such as, but not limited to, roots, stems, leaves, pollen, and spores. , egg cells, seeds and various types of cells used in culture, including single cells, protoplasts, shoots and callus tissue. Plant tissue may be in planta or in organ culture, tissue culture, or cell culture.

이하, 본 발명을 실시예에 의해 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail by examples. However, the following examples only illustrate the present invention, and the content of the present invention is not limited to the following examples.

재료 및 방법Materials and Methods

1. 식물 재료1. Plant material

본 발명에서는 서울대학교 원예작물유전육종학 실험실의 유전자원인 토마토(Solanum lycopersicum) 'Micro-Tom'을 사용하였다. 상기 'Micro-Tom'의 종자를 70%(v/v) 에탄올로 1분, Tween 20을 포함하는 2%(v/v) NaOCl로 15분 동안 표면 소독을 실시한 후, 멸균된 증류수로 4~5번 세척하여 준비하였다. 1/2 MS(Murashige and Skoog) 배지에 20 g/L 수크로스, 8 g/L 플랜트 아가를 첨가하고, pH 5.8±1로 조정한 후, 상기 소독하여 준비한 종자를 치상하였고, 알루미늄 호일로 감싸 3일 동안 암조건에서 배양하였고, 이후에는 호일을 제거하여 광조건에서 균일한 발아를 유도하였다. 모든 배양체들은 24℃의 온도, 16시간 광/8시간 암 조건의 광주기의 형광등 아래에서 배양하였다. 파종 후 7일 된 유묘의 자엽을 이용하여 아그로박테리움 매개 형질전환을 유도하였고, 접종 후 4일차에 조직을 소독하여 배지에 치상하였다. In the present invention, tomato ( Solanum lycopersicum ) 'Micro-Tom', a genetic resource from the Horticultural Crop Genetic Breeding Laboratory of Seoul National University, was used. The seeds of the 'Micro-Tom' were surface disinfected with 70% (v/v) ethanol for 1 minute, 2% (v/v) NaOCl containing Tween 20 for 15 minutes, and then washed with sterilized distilled water for 4~4 minutes. It was prepared by washing five times. 20 g/L sucrose and 8 g/L plant agar were added to 1/2 MS (Murashige and Skoog) medium, the pH was adjusted to 5.8 ± 1, and the disinfected and prepared seeds were plated and wrapped with aluminum foil. Cultured under dark conditions for 3 days, after which the foil was removed to induce uniform germination under light conditions. All cultures were cultured under fluorescent lights at a temperature of 24°C and a photoperiod of 16 hours of light/8 hours of darkness. Agrobacterium-mediated transformation was induced using cotyledons from seedlings 7 days after sowing, and on the 4th day after inoculation, the tissues were disinfected and placed on medium.

2. guide RNA(gRNA) 제작 및 벡터 제작2. Guide RNA (gRNA) production and vector production

본 발명에서 사용한 Potato Virus X(PVX) 벡터는 National Institute of Agrobiological Sciences Tsukuba(Ibaraki-ken, Japan Kazuhiro Ishibashi)로부터 구입하여 사용하였다. CRISPR/Cas9 온라인 예측 프로그램인 CCTop(https://crispr.cos.uni-heidelberg.de/index.html)을 이용하여 토마토 PDS(phytoene desaturase) 유전자의 첫번째 엑손(Sol Genomics Network, https://solgenomics.net/)을 표적으로 하는 gRNA를 제작하였고, PAM 사이트로부터 2bp 떨어진 위치에 제한효소 HinFⅠ을 인식하는 부위를 삽입하였다. 이후, Cas9이 포함되어 있는 PVX-Cas9 벡터를 상기 PVX 벡터와 동일한 곳으로부터 구입하여 상기 gRNA 서열을 삽입하여 PVX-SlPDS 벡터(도 1A)를 제작하였고, PVX-SlPDS 벡터의 gRNA 서열 앞쪽에 해머헤드 리보자임(hammerhead ribozyme)을 삽입하여 PVX-SlPDS-HH 벡터(도 1B)를 제작하였다. 벡터 제작에 사용한 프라이머는 하기 표 1과 같다. Cas9 및 gRNA 대신 GFP가 포함되어 있는 PVX-GFP 벡터를 제작하여 대조군으로 이용하였다.The Potato Virus The first exon of the tomato PDS (phytoene desaturase) gene (Sol Genomics Network, https://solgenomics) was identified using the CRISPR/Cas9 online prediction program CCTop (https://crispr.cos.uni-heidelberg.de/index.html). A gRNA targeting .net/) was produced, and a site that recognizes the restriction enzyme HinF I was inserted 2 bp away from the PAM site. Afterwards, the PVX-Cas9 vector containing Cas9 was purchased from the same place as the PVX vector, the gRNA sequence was inserted to construct the PVX-SlPDS vector (Figure 1A), and a hammerhead was inserted in front of the gRNA sequence of the PVX-SlPDS vector. The PVX-SlPDS-HH vector (Figure 1B) was created by inserting a ribozyme (hammerhead ribozyme). Primers used for vector construction are listed in Table 1 below. A PVX-GFP vector containing GFP instead of Cas9 and gRNA was created and used as a control.

PVX-SlPDS 벡터 제작을 위한 프라이머Primers for PVX-SlPDS vector construction 프라이머primer 염기서열 5'-3' (서열번호)Base sequence 5'-3' (SEQ ID NO) Tm(℃)Tm(℃) GC 함량(%)GC content (%) SIPDS-Mlu1-F1SIPDS-Mlu1-F1 TTAACTTGAGAGTCCAGTTTTAGAGCTAGAAATA (5)TTAACTTGAGAGGTCCAGTTTTAGAGCTAGAAATA (5) 66.066.0 32.432.4 SlPDS-Mlu1-F2SlPDS-Mlu1-F2 ATGCACGCGTCTGTTAACTTGAGAGTCCA (6)ATGCACGCGTCTGTTAACTTGAGAGTCCA (6) 75.075.0 48.348.3 SIPDSH-Mlu1-F1SIPDSH-Mlu1-F1 TGAGGACGAAACGAGTAAGCTCGTCCTGTTAACTTGAGAG (7)TGAGGACGAAACGAGTAAGCTCGTCCTGTTAACTTGAGAG (7) 78.978.9 47.547.5 SlPDSH-Mlu1-F2SlPDSH-Mlu1-F2 TTGAACGCGTTAACAGCTGATGAGTCCGTGAGGACGAAAC (8)TTGAACGCGTTAACAGCTGATGAGTCCGTGAGGACGAAAC (8) 83.783.7 50.050.0 PVX-Vec_RPVX-Vec_R CGGCGGTCGACTGGGTCTAGAAAAAAAGCA (9)CGGCGGTCGACTGGGTCTAGAAAAAAAGCA (9) 79.179.1 53.353.3

3. 아그로박테리움 매개 토마토 형질전환3. Agrobacterium-mediated tomato transformation

토마토 식물체의 형질전환을 위해 상기 PVX-GFP 벡터, PVX-SlPDS 벡터 또는 PVX-SlPDS-HH 벡터를 전기천공법을 이용하여 아그로박테리움 균주에 각각 삽입하였고, 카나마이신과 스펙티노마이신이 포함된 고체 배지를 이용하여 형질전환된 단일 콜로니를 선발하였다. 상기 선발된 아그로박테리움을 24시간 동안 배양한 후, 10 mM의 MgCl2, MES(2-(N-morpholino)ethanesulfonic acid) 버퍼 및 200 uM의 아세토시린곤이 포함된 접종액에 OD600=0.3이 되도록 희석하였고, 교반기에 접종액을 올려 3시간 동안 배양하여 현탁액을 준비하였다. For transformation of tomato plants, the PVX-GFP vector, PVX-SlPDS vector, or PVX-SlPDS-HH vector was inserted into the Agrobacterium strain using electroporation, respectively, and cultured on a solid medium containing kanamycin and spectinomycin. A single transformed colony was selected using . After culturing the selected Agrobacterium for 24 hours, OD 600 = 0.3 in the inoculum containing 10 mM MgCl 2 , MES (2-(N-morpholino)ethanesulfonic acid) buffer, and 200 uM acetosyringone. It was diluted as much as possible, and the inoculum was placed on a stirrer and incubated for 3 hours to prepare a suspension.

또한, 파종 후 4일 된 토마토 식물체의 자엽을 70%(v/v) 에탄올로 1분, 0.4%(v/v) 락스로 10분 동안 소독하여 멸균하였으며, 자엽의 말단 부분은 자른 후 한 개의 자엽을 두 조각으로 나누어 프리컬처 배지(표 2)에서 2일 동안 배양한 후, 상기 준비된 아그로박테리움 현탁액을 접종한 후 20분 동안 반응시켰으며, 멸균필터 종이에 잔여 아그로박테리움 현탁액을 가볍게 말린 후 동일한 조성을 가진 MS 배지에 치상하였다. 2일 후, 슈트 도입 배지(표 2)에 치상하여 14~21일 동안 배양한 후, 슈트 신장 배지(표 2)에 치상하여 배양하였고 30~50일 후, 약 1~2 cm 정도로 자란 줄기 부위를 잘라 뿌리 형성 배지(표 2)에 치상하여 배양하였다. 이후, 접종 후 3일 된 토마토 식물체의 자엽을 이용하여 웨스턴 블롯을 수행하여 외래 단백질 생산량을 분석하였다.In addition, the cotyledons of tomato plants 4 days after sowing were sterilized by disinfecting with 70% (v/v) ethanol for 1 minute and 0.4% (v/v) bleach for 10 minutes. The terminal part of the cotyledons was cut and then cut into one piece. The cotyledons were divided into two pieces and cultured in preculture medium (Table 2) for 2 days, then inoculated with the prepared Agrobacterium suspension and reacted for 20 minutes, and the remaining Agrobacterium suspension was lightly dried on sterile filter paper. Then, it was plated on MS medium with the same composition. After 2 days, the seedlings were placed on shoot introduction medium (Table 2) and cultured for 14 to 21 days, and then the seedlings were placed on shoot elongation medium (Table 2) and cultured. After 30 to 50 days, the stem part grew to about 1 to 2 cm. were cut and cultured on root formation medium (Table 2). Afterwards, Western blot was performed using cotyledons of tomato plants 3 days after inoculation to analyze the production of foreign proteins.

식물조직배양 배지 정보 Plant tissue culture media information 배지badge 조성Furtherance 배양일Culture date 프리컬처 배지Freeculture Badge MS, 30 g/L 수크로스, 4 g/L 피타겔, 1 mg/L NAA, 1 mg/L BAPMS, 30 g/L sucrose, 4 g/L Phytagel, 1 mg/L NAA, 1 mg/L BAP 2일2 days 슈트 도입 배지suit introduction badge MS, 30 g/L 수크로스, 4 g/L 피타겔, 2 mg/L trans zeatin riboside, 1 mg/L IAA, 250 mg/L 카르베니실린MS, 30 g/L sucrose, 4 g/L phytagel, 2 mg/L trans zeatin riboside, 1 mg/L IAA, 250 mg/L carbenicillin 14~21일14~21 days 슈트 신장 배지suit height badge MS, 30 g/L 수크로스, 4 g/L 피타겔, 1 mg/L trans zeatin riboside, 1 mg/L IAA, 250 mg/L 카르베니실린MS, 30 g/L sucrose, 4 g/L phytagel, 1 mg/L trans zeatin riboside, 1 mg/L IAA, 250 mg/L carbenicillin 30~50일30~50 days 뿌리 형성 배지root formation medium MS, 30 g/L 수크로스, 4 g/L 피타겔, 1 mg/L IAA, 250 mg/L 카르베니실린MS, 30 g/L sucrose, 4 g/L Phytagel, 1 mg/L IAA, 250 mg/L carbenicillin 14~21일14~21 days

NAA: 1-Naphthaleneacetic acid, BAP: benzylaminopurine, IAA: Indole-3-acetic acidNAA: 1-Naphthaleneacetic acid, BAP: benzylaminopurine, IAA: Indole-3-acetic acid

4. 핵산 추출 및 PCR 분석4. Nucleic acid extraction and PCR analysis

토마토 식물체의 잎 조직을 3 mm 쇠 구슬 및 조직파쇄기(TissueLyserⅡ, Qiagen)를 이용하여 균질화한 후, CTAB(cetyltrimethylammonium bromide) 방법(Porebski et al., 1997, Plant Mol. Biol. Rep. 15;8-15)을 통해 게노믹 DNA를 추출하였고, 20 ng/㎕ 농도로 준비하였다. 추출한 게노믹 DNA 및 하기 표 3의 프라이머를 이용하여 삽입된 외래 유전자 Cas9PVX-CP의 발현을 확인하였다. The leaf tissue of the tomato plant was homogenized using 3 mm steel beads and a tissue crusher (TissueLyserⅡ, Qiagen), and then subjected to CTAB (cetyltrimethylammonium bromide) method (Porebski et al., 1997, Plant Mol. Biol. Rep. 15;8- Genomic DNA was extracted through 15) and prepared at a concentration of 20 ng/μl. Expression of the inserted foreign genes Cas9 and PVX-CP was confirmed using the extracted genomic DNA and the primers shown in Table 3 below.

외래 유전자 발현 확인을 위한 프라이머Primers for confirming foreign gene expression 프라이머primer 염기서열 5'-3' (서열번호)Base sequence 5'-3' (SEQ ID NO) Tm (℃)Tm (℃) GC 함량 (%)GC content (%) PVX-Cas-FPVX-Cas-F TGGTTTCGATTCTCCTACCG (10)TGGTTTCGATTCTCCTACCG (10) 64.364.3 50.050.0 PVX-Cas-RPVX-Cas-R ATCAGCCCTTGAATCACCAC (11)ATCAGCCCTTGAATCACCAC (11) 64.364.3 50.050.0 PVX-CP-FPVX-CP-F ACCAGCTAGCACAACACAGC (12)ACCAGCTAGCACAACACAGC (12) 63.663.6 55.055.0 PVX-CP-RPVX-CP-R GTAGTTATGGTGGTGGTAGAGTG (13)GTAGTTATGGTGGTGGTAGAGTG (13) 59.559.5 47.847.8 SlActin-FSlActin-F AGTGGTGGTACTACCATGTTCCCA (14)AGTGGTGGTACTACCATGTTCCCA (14) 67.567.5 50.050.0 SlActin-RSlActin-R GAGGGAAGCCAAGATAGAGCCTCCA (15)GAGGGAAGCCAAGATAGAGCCTCCA (15) 72.172.1 56.056.0 NbActin-FNbActin-F CCAGGTATTGCTGATAGAATGAG (16)CCAGGTATTGCTGATAGAATGAG (16) 61.861.8 43.543.5 NbActin-RNbActin-R CTGAGGGAAGCCAAGATAGAG (17)CTGAGGGAAGCCAAGATAGAG (17) 62.362.3 52.452.4

5. 제한효소를 이용한 돌연변이 개체 선발5. Selection of mutant individuals using restriction enzymes

PDS(phytoene desaturase) 유전자의 교정 부위를 포함하는 525bp의 산물을 증폭시키는 프라이머(표 4) 및 제한효소를 이용한 방법으로 형질전환체의 돌연변이 여부를 확인하였다(도 2). PAM 사이트로부터 2bp 떨어진 위치에 삽입된 6bp를 인식하는 제한효소 HinFⅠ(NEB, USA)을 처리하고, 37℃에서 12시간 동안 반응시킨 뒤 2% 아가로스 젤에 135V의 전압을 걸어 30분간 내려주었다. 이후, 밴드 분석을 통해 2개의 밴드가 관찰되면 돌여변이가 일어나지 않은 개체로, 3개의 밴드가 관찰되면 돌연변이가 일어난 개체로 확인하였다.Mutation of the transformant was confirmed by using a primer (Table 4) and restriction enzymes to amplify a 525bp product containing the correction site of the PDS (phytoene desaturase) gene (Figure 2). It was treated with the restriction enzyme HinF Ⅰ (NEB, USA), which recognizes 6bp inserted at a position 2bp away from the PAM site, and reacted at 37°C for 12 hours, then applied a voltage of 135V to a 2% agarose gel and lowered it for 30 minutes. . Afterwards, through band analysis, if two bands were observed, it was confirmed that the individual had not undergone a mutation, and if three bands were observed, it was confirmed that the individual had undergone a mutation.

제한효소를 이용한 돌연변이 확인을 위한 프라이머Primers for mutation confirmation using restriction enzymes 프라이머primer 염기서열 5'-3' (서열번호)Base sequence 5'-3' (SEQ ID NO) Tm(℃)Tm(℃) GC 함량(%)GC content (%) SlPDS-T-FSlPDS-T-F AGCATTCGGTATCTTTTTCTGGGTAACT (18)AGCATTCGGTATCTTTTTCTGGGTAACT (18) 68.168.1 39.339.3 SlPDS-T-RSlPDS-T-R CCAGCAAAACATAACGAATTCCTTTGCA (19)CCAGCAAAACATAACGAATTCCTTTGCA (19) 72.972.9 39.339.3

6. NGS를 통한 유전자 교정 효율 분석6. Analysis of gene editing efficiency through NGS

PVX-SlPDS 벡터 또는 PVX-SlPDS-HH 벡터를 이용한 토마토 식물체에서의 유전자 교정 효율을 분석하기 위하여 Illumina Miseq platform을 이용한 NGS(next generation sequencing) 분석을 수행하였다. 프라이머(표 5)는 표적 부위를 포함하여 569bp의 산물을 증폭시킬 수 있게 디자인하였고, 이후 시퀀싱 분석을 수행하였다.To analyze the gene editing efficiency in tomato plants using the PVX-SlPDS vector or PVX-SlPDS-HH vector, next generation sequencing (NGS) analysis was performed using the Illumina Miseq platform. Primers (Table 5) were designed to amplify a 569bp product including the target region, and then sequencing analysis was performed.

유전자 교정 효율 분석에 사용된 프라이머Primers used to analyze gene editing efficiency 프라이머primer 염기서열 (5'-3')Base sequence (5'-3') SlPDS_Miseq_1PCR_1FSlPDS_Miseq_1PCR_1F TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGNNNNNAACACTTTGCTTAATTGTGCAGAAC (20)TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGNNNNNAACACTTTGCTTAATTGTGCAGAAC (20) SlPDS_Miseq_1PCR_1F-1SlPDS_Miseq_1PCR_1F-1 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGNNNNNAACACNTTTGCTTAATTGTGCAGAAC (21)TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGNNNNNAACACNTTTGCTTAATTGTGCAGAAC (21) SlPDS_Miseq_1PCR_1F-2SlPDS_Miseq_1PCR_1F-2 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGNNNNNAACACNNTTTGCTTAATTGTGCAGAAC (22)TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGNNNNNAACACNNTTTGCTTAATTGTGCAGAAC (22) SlPDS_Miseq_1PCR_1F-3SlPDS_Miseq_1PCR_1F-3 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGNNNNNAACACNNNTTTGCTTAATTGTGCAGAAC (23)TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGNNNNNAACACNNNTTTGCTTAATTGTGCAGAAC (23) SlPDS_Miseq_1PCR_2FSlPDS_Miseq_1PCR_2F TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGNNNNNACTATTTTGCTTAATTGTGCAGAAC (24)TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGNNNNNACTATTTTGCTTAATTGTGCAGAAC (24) SlPDS_Miseq_1PCR_2F-1SlPDS_Miseq_1PCR_2F-1 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGNNNNNACTATNTTTGCTTAATTGTGCAGAAC (25)TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGNNNNNACTATNTTTGCTTAATTGTGCAGAAC (25) SlPDS_Miseq_1PCR_2F-2SlPDS_Miseq_1PCR_2F-2 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGNNNNNACTATNNTTTGCTTAATTGTGCAGAAC (26)TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGNNNNNACTATNNTTTGCTTAATTGTGCAGAAC (26) SlPDS_Miseq_1PCR_2F-3SlPDS_Miseq_1PCR_2F-3 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGNNNNNACTATNNNTTTGCTTAATTGTGCAGAAC (27)TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGNNNNNACTATNNNTTTGCTTAATTGTGCAGAAC (27) SlPDS_Miseq_1PCR_3FSlPDS_Miseq_1PCR_3F TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGNNNNNATCACGTTTGCTTAATTGTGCAGAAC (28)TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGNNNNNATCACGTTTGCTTAATTGTGCAGAAC (28) SlPDS_Miseq_1PCR_3F-1SlPDS_Miseq_1PCR_3F-1 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGNNNNNATCACGNTTTGCTTAATTGTGCAGAAC (29)TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGNNNNNATCACGNTTTGCTTAATTGTGCAGAAC (29) SlPDS_Miseq_1PCR_3F-2SlPDS_Miseq_1PCR_3F-2 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGNNNNNATCACGNNTTTGCTTAATTGTGCAGAAC (30)TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGNNNNNATCACGNNTTTGCTTAATTGTGCAGAAC (30) SlPDS_Miseq_1PCR_3F-3SlPDS_Miseq_1PCR_3F-3 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGNNNNNATCACGNNNTTTGCTTAATTGTGCAGAAC (31)TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGNNNNNATCACGNNNTTTGCTTAATTGTGCAGAAC (31) SlPDS_Miseq_1PCR_1RSlPDS_Miseq_1PCR_1R GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGCCTTGAGATAATAATTCAAGTC (32)GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGCCTTGAGATAATAATTCAAGTC (32) SlPDS_Miseq_1PCR_1R-1SlPDS_Miseq_1PCR_1R-1 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGNGCCTTGAGATAATAATTCAAGTC (33)GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGNGCCTTGAGATAATAATTCAAGTC (33) SlPDS_Miseq_1PCR_1R-2SlPDS_Miseq_1PCR_1R-2 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGNNGCCTTGAGATAATAATTCAAGTC (34)GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGNNGCCTTGAGATAATAATTCAAGTC (34) SlPDS_Miseq_1PCR_1R-3SlPDS_Miseq_1PCR_1R-3 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGNNNGCCTTGAGATAATAATTCAAGTC (35)GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGNNNGCCTTGAGATAATAATTCAAGTC (35)

실시예 1. PVX 벡터를 이용한 토마토의 형질전환 유도Example 1. Induction of transformation in tomato using PVX vector

토마토 PDS 유전자를 표적으로 하는 gRNA가 삽입된 PVX-SlPDS 벡터(도 1A) 및 PVX-SlPDS 벡터에서 Cas9 및 gRNA 대신 GFP가 삽입된 PVX-GFP 벡터를 아그로박테리움 균주 접종을 통해 토마토 식물체에 도입하여 형질전환을 유도하였다. 이후, PVX-GFP 벡터가 삽입된 아그로박테리움 균주를 접종한지 10일이 지난 접종엽에서 공초점 현미경 관찰을 통해 GFP 시그널을 확인하였고, PVX-SlPDS 벡터가 삽입된 아그로박테리움 균주를 접종한 접종한지 10일이 지난 접종엽에서 Cas9CP 유전자에 대한 RT-PCR을 수행하였다. The PVX-SlPDS vector with gRNA targeting the tomato PDS gene inserted (Figure 1A) and the PVX-GFP vector with GFP inserted instead of Cas9 and gRNA in the PVX-SlPDS vector were introduced into tomato plants through Agrobacterium strain inoculation. Transformation was induced. Afterwards, GFP signals were confirmed through confocal microscopy in the inoculated leaves 10 days after inoculation with the Agrobacterium strain into which the PVX-GFP vector was inserted, and inoculation with the Agrobacterium strain into which the PVX-SlPDS vector was inserted RT-PCR for Cas9 and CP genes was performed on inoculated leaves 10 days after cold storage.

그 결과, PVX-SlPDS 벡터가 도입된 토마토 식물체는 아무것도 처리하지 않은 음성 대조군(Mock) 식물체와 표현형에 차이가 없는 것을 확인하였고(도 3A), PVX-GFP 벡터가 도입된 토마토 식물체에서는 GFP가 정상적으로 발현하는 것을 확인하였으며(도 3B), PVX-SlPDS 벡터가 도입된 토마토 식물체에서는 Cas9CP 유전자가 정상적으로 발현하는 것을 확인함으로써, PVX-SlPDS 벡터가 토마토 식물체에 정상적으로 도입되어 작동하는 것을 확인하였다(도 3C).As a result, it was confirmed that the tomato plants into which the PVX-SlPDS vector was introduced had no phenotypic differences from the negative control (Mock) plants that were not treated with anything (Figure 3A), and in the tomato plants into which the PVX-GFP vector was introduced, GFP was expressed normally. Expression was confirmed (Figure 3B), and Cas9 and CP genes were confirmed to be expressed normally in the tomato plants into which the PVX-SlPDS vector was introduced, confirming that the PVX-SlPDS vector was introduced and operated normally in the tomato plants (Figure 3C).

실시예 2. 아그로박테리움 균주의 strain에 따른 차이 분석Example 2. Analysis of differences according to strain of Agrobacterium strains

본 발명에 따른 PVX-SlPDS-HH 벡터를 아그로박테리움 GV3101, LBA4404 또는 EHA105 균주에 각각 삽입하고 토마토 자엽에 각각 접종한 후, 3일차에 접종엽을 샘플링하여 웨스턴 블롯을 통해 Cas9 단백질을 검출하였다. 대조군으로는 균주를 포함하지 않은 버퍼를 접종한 자엽(WT)을 이용하였다. The PVX-SlPDS-HH vector according to the present invention was inserted into Agrobacterium GV3101, LBA4404, or EHA105 strains and inoculated into tomato cotyledons, respectively. On the 3rd day, the inoculated leaves were sampled and Cas9 protein was detected through Western blot. As a control group, cotyledons (WT) inoculated with a buffer not containing the strain were used.

그 결과, 아그로박테리움 GV3101 균주에서는 Cas9 단백질이 정상적으로 검출된 반면, 아그로박테리움 EHA105 균주에서는 Cas9 단백질이 소량 검출되었고, 아그로박테리움 LBA4044 균주에서는 Cas9 단백질이 거의 검출되지 않는 것을 확인하였다(도 4). As a result, it was confirmed that Cas9 protein was normally detected in the Agrobacterium GV3101 strain, while a small amount of Cas9 protein was detected in the Agrobacterium EHA105 strain, and that Cas9 protein was almost not detected in the Agrobacterium LBA4044 strain (Figure 4) .

상기 결과를 통해 아그로박테리움 GV3101 균주가 PVX-SlPDS-HH 벡터를 이용한 토마토의 유전자 교정에 가장 적합하다는 것을 알 수 있었다.The above results showed that Agrobacterium GV3101 strain was most suitable for gene editing of tomatoes using the PVX-SlPDS-HH vector.

실시예 3. 열처리에 의한 Example 3. By heat treatment PDSPDS 유전자 교정 효율 분석 Gene editing efficiency analysis

본 발명에 따른 PVX-SlPDS 벡터가 삽입된 아그로박테리움 GV3101 균주를 토마토 자엽에 접종 후 7일차 또는 9일차의 접종엽을 37℃의 인큐베이터(한백과학, KOREA)에서 24시간 동안 열처리를 수행하였다. 이후, 제한효소 HinFⅠ(NEB, USA)을 처리하고, 37℃에서 12시간 동안 반응시킨 뒤 2%의 아가로스 젤에 내린 후, 밴드를 관찰하였고, NGS(Next Generation Sequencing) 분석을 통해 토마토 PDS 유전자 교정 효율을 분석하였다. 대조군으로는 PVX-SlPDS 벡터가 삽입된 아그로박테리움 GV3101 균주를 접종 후 26℃의 인큐베이터에서 키운 접종엽을 이용하였다. After inoculating tomato cotyledons with the Agrobacterium GV3101 strain into which the PVX-SlPDS vector according to the present invention was inserted, the inoculated leaves on the 7th or 9th day were heat-treated in an incubator at 37°C (Hanbaek Science, KOREA) for 24 hours. Afterwards, it was treated with restriction enzyme HinF Ⅰ (NEB, USA), reacted at 37°C for 12 hours, placed on a 2% agarose gel, observed the band, and identified tomato PDS through NGS (Next Generation Sequencing) analysis. Gene editing efficiency was analyzed. As a control, inoculated leaves grown in an incubator at 26°C after inoculation with the Agrobacterium GV3101 strain into which the PVX-SlPDS vector was inserted were used.

그 결과, 아무것도 처리하지 않은 음성 대조군(Mock) 식물체는 102bp 및 423bp의 밴드만 확인된 반면, 열처리를 한 식물체는 102bp, 423bp 및 525bp의 밴드가 확인되었다(도 5). As a result, only bands of 102bp and 423bp were identified in the negative control (Mock) plant that was not treated with anything, while bands of 102bp, 423bp, and 525bp were identified in the heat-treated plant (FIG. 5).

또한, NGS 분석 결과, 26℃ 열처리한 대조군(C) 식물체보다 7일차 접종엽에 37℃ 열처리한 식물체(H7) 또는 9일차 접종엽에 37℃ 열처리한 식물체(H9)의 PDS 유전자 교정 효율이 증가된 것을 확인하였다. 특히, 26℃ 열처리한 대조군(C) 식물체의 유전자 교정 효율은 31.11%이고, 7일차 접종엽에 37℃ 열처리한 식물체(H7)의 유전자 교정 효율은 38.54%이며, 9일차 접종엽에 37℃ 열처리한 식물체(H9)의 유전자 교정 효율은 38.02%인 것을 확인함으로써, 37℃ 열처리에 의해 유전자 교정 효율이 약 7% 증가하는 것을 알 수 있었다(도 6).In addition, as a result of NGS analysis, the PDS gene correction efficiency of plants heat-treated at 37°C on day 7 (H7) or plants heat-treated at 37°C on day 9 (H9) was higher than that of control (C) plants heat-treated at 26°C. It was confirmed that it was done. In particular, the gene correction efficiency of control (C) plants heat-treated at 26°C is 31.11%, the gene correction efficiency of plants (H7) heat-treated at 37°C on day 7 inoculated leaves is 38.54%, and the gene correction efficiency of plants heat-treated at 37°C on day 9 are 38.54%. By confirming that the gene editing efficiency of one plant (H9) was 38.02%, it was found that the gene editing efficiency increased by about 7% by heat treatment at 37°C (FIG. 6).

실시예 5. 해머헤드 리보자임(hammerhead ribozyme) 추가에 따른 유전자 교정 효율 분석Example 5. Analysis of gene editing efficiency by adding hammerhead ribozyme

열처리를 수행하였을 때 상엽에서는 유전자 교정이 일어나지 않는 문제점을 극복하기 위하여 PVX-SlPDS 벡터에 해머헤드 리보자임(hammerhead ribozyme)이 추가된 PVX-SlPDS-HH 벡터를 이용하여 유전자 교정 효율을 증대시키고자 하였다.To overcome the problem that gene correction does not occur in upper leaves when heat treatment is performed, we attempted to increase gene correction efficiency by using the PVX-SlPDS-HH vector, in which a hammerhead ribozyme was added to the PVX-SlPDS vector. .

5-1. 상엽에서의 유전자 교정 효율 분석5-1. Analysis of gene editing efficiency in upper leaves

PVX-SlPDS-HH 벡터가 삽입된 아그로박테리움 GV3101 균주를 토마토 자엽에 접종 후 10일차의 접종엽을 26℃의 인큐베이터(한백과학, KOREA)에서 24시간 동안 열처리를 수행하였다. 이후, 제한효소 HinFⅠ(NEB, USA)을 처리하고, 37℃에서 12시간 동안 반응시킨 뒤 2%의 아가로스 젤에 내린 후, 밴드를 관찰하였고, NGS 분석을 통해 토마토 PDS 유전자 교정 효율을 분석하였다. 대조군으로는 균주를 포함하지 않은 버퍼를 접종한 자엽(WT)을 이용하였다. After inoculating tomato cotyledons with the Agrobacterium GV3101 strain containing the PVX-SlPDS-HH vector, heat treatment was performed on the inoculated leaves on the 10th day in an incubator (Hanbaek Science, KOREA) at 26°C for 24 hours. Afterwards, it was treated with restriction enzyme HinF Ⅰ (NEB, USA), reacted at 37°C for 12 hours, placed on a 2% agarose gel, observed the band, and analyzed the tomato PDS gene editing efficiency through NGS analysis. did. As a control group, cotyledons (WT) inoculated with a buffer not containing the strain were used.

그 결과, PVX-SlPDS 벡터가 삽입된 아그로박테리움을 접종한 식물체의 상엽(자엽에서 가장 가까운 첫번째 상엽)에서는 잘리지 않은 밴드(525 bp)가 확인되지 않은 반면, PVX-SlPDS-HH 벡터가 삽입된 아그로박테리움을 접종한 식물체의 상엽에서는 525 bp의 밴드가 확인되었다(도 7). As a result, an uncut band (525 bp) was not confirmed in the upper leaves (the first upper leaf closest to the cotyledons) of plants inoculated with Agrobacterium into which the PVX-SlPDS vector was inserted, whereas the uncut band (525 bp) was not confirmed in the plants inoculated with Agrobacterium into which the PVX-SlPDS-HH vector was inserted. A band of 525 bp was confirmed in the upper leaves of plants inoculated with Agrobacterium (Figure 7).

또한, NGS 분석 결과, PVX-SlPDS-HH가 삽입된 아그로박테리움을 접종한 식물체의 PDS 유전자 교정 효율이 PVX-SlPDS 벡터를 접종한 식물체 대비 약 20% 이상 증가하는 것을 확인하였다(도 8).In addition, as a result of NGS analysis, it was confirmed that the PDS gene correction efficiency of plants inoculated with Agrobacterium inserted with PVX-SlPDS-HH increased by more than about 20% compared to plants inoculated with the PVX-SlPDS vector (FIG. 8).

5-2. 열처리에 따른 유전자 교정 효율 분석5-2. Analysis of gene editing efficiency according to heat treatment

PVX-SlPDS-HH 벡터가 삽입된 아그로박테리움 GV3101 균주를 토마토 자엽에 접종 후 10일차의 접종엽을 37℃의 인큐베이터(한백과학, KOREA)에서 24시간 동안 열처리를 수행하였다. 이후, 제한효소 HinFⅠ(NEB, USA)을 처리하고, 37℃에서 12시간 동안 반응시킨 뒤 2%의 아가로스 젤에 내린 후, 밴드를 관찰하였다. 대조군으로는 PVX-SlPDS 벡터가 삽입된 아그로박테리움 GV3101 균주를 접종 후 37℃의 인큐베이터에서 키운 접종엽을 이용하였다. After inoculating tomato cotyledons with the Agrobacterium GV3101 strain containing the PVX-SlPDS-HH vector, heat treatment was performed on the inoculated leaves on the 10th day in an incubator at 37°C (Hanbaek Science, KOREA) for 24 hours. Afterwards, it was treated with restriction enzyme HinF I (NEB, USA), reacted at 37°C for 12 hours, placed on a 2% agarose gel, and the band was observed. As a control, inoculated leaves grown in an incubator at 37°C after inoculation with the Agrobacterium GV3101 strain inserted with the PVX-SlPDS vector were used.

그 결과, PVX-SlPDS 벡터가 삽입된 아그로박테리움을 접종한 후 37℃ 열처리한 식물체 대비 PVX-SlPDS-HH가 삽입된 아그로박테리움을 접종한 후 37℃ 열처리한 식물체의 PDS 유전자 교정 효율이 증가하는 것을 확인하였다(도 9).As a result, the PDS gene correction efficiency of plants inoculated with Agrobacterium inserted with PVX-SlPDS-HH and then heat-treated at 37°C increased compared to plants inoculated with Agrobacterium inserted with the PVX-SlPDS vector and then heat-treated at 37°C. It was confirmed that (FIG. 9).

이상의 결과를 통해, 본 발명에 따른 PVX-SlPDS-HH 벡터가 삽입된 아그로박테리움 GV3101 균주를 토마토에 접종한 후, 37℃ 열처리하면 유전자 교정 효율이 증가하고, 토마토 식물체의 상엽에서도 유전자 교정을 유도함으로써 표적으로 하는 유전자를 효과적으로 편집할 수 있음을 알 수 있었다.Based on the above results, when the Agrobacterium GV3101 strain inserted with the PVX-SlPDS-HH vector according to the present invention is inoculated into tomatoes and then heat treated at 37°C, gene correction efficiency increases and gene correction is induced even in the upper leaves of tomato plants. By doing so, it was found that the targeted gene could be edited effectively.

실시예 6. PVX-SlPDS-HH의 터미네이터 교체에 따른 유전자 교정 효율 분석Example 6. Analysis of gene editing efficiency according to terminator replacement of PVX-SlPDS-HH

열처리를 수행하였을 때 상엽에서는 유전자 교정이 일어나지 않는 문제점을 극복하기 위하여 PVX-SlPDS-HH 벡터에 기존의 터미네이터(terminator)인 nosT를 Ter4로 교체한 벡터를 이용하여 유전자 교정 효율을 증대시키고자 하였다. 상기 Ter4(서열번호 36)는 꽃양배추 모자이크 바이러스(cauliflower mosaic virus)에서 유래한 3' 35S 서열 일부와 담배(Nicotiana tabacum)에서 유래한 intronless tobacco extension 3' UTRc(EU) 와 tabacco Rb7 MAR(3' Rb7 MAR) 서열 일부로 구성되어 있다.In order to overcome the problem that gene correction does not occur in the upper leaves when heat treatment is performed, we attempted to increase gene correction efficiency by using a vector in which the existing terminator, nosT, was replaced with Ter4 in the PVX-SlPDS-HH vector. Ter4 (SEQ ID NO: 36) includes a portion of the 3' 35S sequence derived from cauliflower mosaic virus and an intronless tobacco extension 3' UTRc (EU) and t abacco Rb7 MAR (3) derived from tobacco ( Nicotiana tabacum ). ' It consists of part of the Rb7 MAR) sequence.

PVX-SlPDS-HH 벡터 또는 PVX-SlPDS-Ter4가 삽입된 아그로박테리움 GV3101 균주를 토마토 자엽에 접종 후 10일차의 접종엽을 26℃의 인큐베이터(한백과학, KOREA)에서 24시간 동안 열처리를 수행하였다. 이후, 제한효소 HinFⅠ(NEB, USA)을 처리하고, 37℃에서 12시간 동안 반응시킨 뒤 2%의 아가로스 젤에 내린 후, Image J 프로그램을 통해 밴드의 강도를 분석하였다. After inoculating tomato cotyledons with the Agrobacterium GV3101 strain containing the PVX-SlPDS-HH vector or PVX-SlPDS-Ter4, the inoculated leaves were heat-treated for 24 hours in an incubator at 26°C (Hanbaek Science, KOREA) on the 10th day. . Afterwards, the reaction was treated with restriction enzyme HinFI (NEB, USA), reacted at 37°C for 12 hours, run on a 2% agarose gel, and the intensity of the band was analyzed using the Image J program.

그 결과, PVX-SlPDS-HH 벡터가 삽입된 아그로박테리움을 접종한 식물체보다 PVX-SlPDS-Ter4 벡터가 삽입된 아그로박테리움을 접종한 식물체에서의 PDS 유전자 교정 효율이 약 10% 증가하는 것을 확인하였다(도 10).As a result, it was confirmed that the PDS gene correction efficiency in plants inoculated with Agrobacterium inserted with the PVX-SlPDS-Ter4 vector increased by about 10% compared to plants inoculated with Agrobacterium inserted with the PVX-SlPDS-HH vector. (Figure 10).

이상의 결과를 통해, 본 발명에 따른 PVX-SlPDS-HH-Ter4 벡터가 삽입된 아그로박테리움 GV3101 균주를 토마토에 접종할 경우 유전자 교정 효율이 PVX-SlPDS-HH에 비해 효율적으로 증가하며, 표적으로 하는 유전자를 효과적으로 편집할 수 있음을 알 수 있었다.From the above results, when the Agrobacterium GV3101 strain inserted with the PVX-SlPDS-HH-Ter4 vector according to the present invention is inoculated into tomatoes, the gene editing efficiency is efficiently increased compared to PVX-SlPDS-HH, and the targeted It was found that genes can be edited effectively.

Claims (7)

삭제delete 삭제delete 삭제delete 삭제delete Potato Virus X 벡터 내에, Cas9 단백질을 암호화하는 핵산 서열; 서열번호 4의 염기서열로 이루어진 해머헤드 리보자임(hammerhead ribozyme)을 암호화하는 핵산 서열; 토마토 유래 유전자의 표적 염기서열에 특이적인 가이드 RNA(guide RNA)를 암호화하는 DNA; 및 서열번호 36의 염기서열로 이루어진 Ter4 터미네이터(terminator);가 작동가능하게 연결된 것을 특징으로 하는 토마토 식물체의 유전자 교정 효율 증진용 재조합 벡터를 포함하는 아그로박테리움(Agrobacterium) GV3101 균주를 토마토 식물체의 조직에 접종하여 배양하는 단계; 및 상기 배양한 조직을 32~42℃에서 열처리하는 단계;를 포함하는 토마토 식물체의 유전자 교정 효율 증진 방법.Within the Potato Virus X vector, a nucleic acid sequence encoding the Cas9 protein; A nucleic acid sequence encoding a hammerhead ribozyme consisting of the base sequence of SEQ ID NO: 4; DNA encoding a guide RNA specific to the target base sequence of a tomato-derived gene; and a Ter4 terminator consisting of the base sequence of SEQ ID NO: 36; Agrobacterium GV3101 strain containing a recombinant vector for improving the gene editing efficiency of tomato plants, characterized in that operably linked to the tissues of tomato plants. Inoculating and culturing; and heat-treating the cultured tissue at 32 to 42°C. A method for improving gene editing efficiency in tomato plants. 삭제delete 삭제delete
KR1020230127010A 2022-09-23 2023-09-22 Recombinant vector for gene editing of Solanum lycopersicum using Potato Virus X vector and uses thereof KR102629157B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220120713 2022-09-23
KR20220120713 2022-09-23

Publications (1)

Publication Number Publication Date
KR102629157B1 true KR102629157B1 (en) 2024-01-26

Family

ID=89714458

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020230127010A KR102629157B1 (en) 2022-09-23 2023-09-22 Recombinant vector for gene editing of Solanum lycopersicum using Potato Virus X vector and uses thereof

Country Status (1)

Country Link
KR (1) KR102629157B1 (en)

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Plant and Cell Physiology, 58, 11, pp.1857-1867(2017) *
Plant and Cell Physiology, 61, 11, pp.1946-1953(2020) *
The Plant Journal, 93, pp.377-386(2018) *

Similar Documents

Publication Publication Date Title
KR102107735B1 (en) Method for producing whole plants from protoplasts
US9756871B2 (en) TAL-mediated transfer DNA insertion
CN113412333A (en) Method for clonal plant production
Wang et al. Generation of marker-and/or backbone-free transgenic wheat plants via Agrobacterium-mediated transformation
US20210079409A1 (en) Regeneration of genetically modified plants
US20220235363A1 (en) Enhanced plant regeneration and transformation by using grf1 booster gene
Chakravarty et al. Rapid regeneration of stable transformants in cultures of potato by improving factors influencing Agrobacterium-mediated transformation
Nagaraju et al. Agrobacterium-mediated genetic transformation in Gerbera hybrida
Rather et al. Advances in protoplast transfection promote efficient CRISPR/Cas9-mediated genome editing in tetraploid potato
Chai et al. L-methionine sulfoximine as a novel selection agent for genetic transformation of orchids
US20220056461A1 (en) Improving plant regeneration
Rezaei et al. In planta removal of nptII selectable marker gene from transgenic tobacco plants using CRISPR/Cas9 system
KR20220055904A (en) Method for producing OsSLR1 gene mutant rice plant using CRISPR/Cas9 system and rice plant having dwarf phenotype produced by the same method
KR102629157B1 (en) Recombinant vector for gene editing of Solanum lycopersicum using Potato Virus X vector and uses thereof
Zhang et al. Regeneration and Agrobacterium-mediated genetic transformation in Dianthus chinensis
RUZYATI et al. Construction of CRISPR/Cas9_gRNA-OsCKX2 module cassette and its introduction into rice cv. Mentik Wangi mediated by Agrobacterium tumefaciens
EP3862430A1 (en) Dna construct to be used in genome editing of plant
KR102579767B1 (en) Method for producing genome-edited tomato plant with increased Potyvirus resistance by eIF4E1 gene editing and genome-edited tomato plant with increased Potyvirus resistance produced by the same method
US20230392160A1 (en) Compositions and methods for increasing genome editing efficiency
Rachmat et al. Efficiency of Agrobacterium tumefaciens-mediated transformation of tobacco (Nicotiana tabacum L.) with rice OsNAC6 gene
KR100740694B1 (en) Plastid transformation system to prevent the intramolecular recombination of transgene
WO2023038075A1 (en) Genetically modified plant, method for producing plant, and growth stimulant
Dobhal et al. Studies on plant regeneration and transformation efficiency of Agrobacterium mediated transformation using neomycin phosphotransferase II (nptII) and glucuronidase (GUS) as a reporter gene
KR20240029599A (en) Method for producing soybean plant having sulfonylurea-based herbicide resistance by acetolactate synthase gene base editing and genome-edited soybean plant having sulfonylurea-based herbicide resistance produced by the same method
Hoengenaert et al. Microparticle-mediated CRISPR DNA delivery for genome editing in poplar

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant