KR20230067161A - Method for producing lettuce plant having late flowering trait by SOC1 gene editing and lettuce plant produced by the same method - Google Patents

Method for producing lettuce plant having late flowering trait by SOC1 gene editing and lettuce plant produced by the same method Download PDF

Info

Publication number
KR20230067161A
KR20230067161A KR1020210152979A KR20210152979A KR20230067161A KR 20230067161 A KR20230067161 A KR 20230067161A KR 1020210152979 A KR1020210152979 A KR 1020210152979A KR 20210152979 A KR20210152979 A KR 20210152979A KR 20230067161 A KR20230067161 A KR 20230067161A
Authority
KR
South Korea
Prior art keywords
lettuce
gene
soc1
guide rna
genome
Prior art date
Application number
KR1020210152979A
Other languages
Korean (ko)
Inventor
김석원
최승희
조혜선
안우석
이아름
이지민
주수지
지은이
Original Assignee
한국생명공학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생명공학연구원 filed Critical 한국생명공학연구원
Priority to KR1020210152979A priority Critical patent/KR20230067161A/en
Publication of KR20230067161A publication Critical patent/KR20230067161A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8262Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield involving plant development
    • C12N15/827Flower development or morphology, e.g. flowering promoting factor [FPF]
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H1/00Processes for modifying genotypes ; Plants characterised by associated natural traits
    • A01H1/06Processes for producing mutations, e.g. treatment with chemicals or with radiation
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H5/00Angiosperms, i.e. flowering plants, characterised by their plant parts; Angiosperms characterised otherwise than by their botanic taxonomy
    • A01H5/10Seeds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H6/00Angiosperms, i.e. flowering plants, characterised by their botanic taxonomy
    • A01H6/14Asteraceae or Compositae, e.g. safflower, sunflower, artichoke or lettuce
    • A01H6/1472Lactuca sativa [lettuce]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Developmental Biology & Embryology (AREA)
  • Environmental Sciences (AREA)
  • Botany (AREA)
  • Microbiology (AREA)
  • Physiology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Medicinal Chemistry (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

본 발명은 상추 유래 SOC1(suppressor of overexpression of constans 1) 유전자의 표적 염기서열에 특이적인 가이드 RNA와 엔도뉴클레아제(endonuclease) 단백질의 복합체(ribonucleoprotein); 또는 상추 유래 SOC1 유전자의 표적 염기서열에 특이적인 가이드 RNA(guide RNA)를 암호화하는 DNA 및 엔도뉴클레아제 단백질을 암호화하는 핵산 서열을 포함하는 재조합 벡터;를 유효성분으로 함유하는, 상추 식물체의 추대를 지연시키기 위한 유전체 교정용 조성물 및 이의 용도에 관한 것이다.The present invention relates to a complex (ribonucleoprotein) of a guide RNA specific to a target sequence of a lettuce-derived SOC1 (suppressor of overexpression of constans 1) gene and an endonuclease protein; Or a recombinant vector comprising DNA encoding a guide RNA specific to the target sequence of the lettuce-derived SOC1 gene and a nucleic acid sequence encoding an endonuclease protein; It relates to a dielectric correction composition for delaying and its use.

Description

SOC1 유전자 교정에 의해 만추성 형질을 가지는 상추 식물체의 제조방법 및 이에 의해 제조된 상추 식물체{Method for producing lettuce plant having late flowering trait by SOC1 gene editing and lettuce plant produced by the same method}Method for producing lettuce plants having late autumn traits by SOC1 gene editing and lettuce plants produced thereby

본 발명은 상추 유래 SOC1(suppressor of overexpression of constans 1) 유전자 교정에 의해 만추성 형질을 가지는 유전자 교정 상추 식물체의 제조방법 및 상기 방법에 의해 제조된 만추성 형질을 가지는 유전자 교정 상추 식물체에 관한 것이다.The present invention relates to a method for producing a genetically corrected lettuce plant having late autumn traits by gene editing of SOC1 (suppressor of overexpression of constans 1) derived from lettuce, and a genetically corrected lettuce plant having late autumn traits prepared by the method.

상추(Lactuca sativa L.)는 국화과의 한해살이풀로, 쌈 채소 및 샐러드로 이용되고 있으며, 비타민, 철분, 섬유소 및 항산화 물질 등을 다량 함유하고 있다. 상추는 정식 후 30~40일부터 수확하기 시작하는데, 고온 또는 장일과 같은 환경적 요인에 의한 조기 추대가 발생하면 잎수가 충분히 확보되기 전에 꽃눈이 분화되어 수확기간이 짧아지고 생산량이 감소하며 품질도 떨어진다. 상추는 주로 25℃ 이상의 고온에서 꽃눈 분화 및 추대가 촉진되므로, 평지에서는 5월 이후의 늦은 봄이나 7월 하순 이전의 여름재배는 피해야 한다. 평지에서는 가능한 한 이른 봄 또는 8월 이후의 가을재배를 하되 15℃ 이하의 저온기에는 생육에 적합하도록 보온재배를 하는 것이 재배기간을 연장할 수 있다고 알려져 있다. 재배 도중 고온으로 인한 조기 추대의 위험이 있을 때는 단일처리를 하거나 일광을 차단하여 주는 것이 추대를 다소 지연시킬 수 있다. 생장억제제인 말레익 하이드라자이드(mealeic hydrazide, MH) 또는 시코셀(cycocel, CCC)을 처리하면 상추의 추대를 지연시킬 수 있지만, 생육 자체도 억제시킨다는 단점이 있다. 결구형 상추의 경우, 그레이트레이크 계통이 고온에 둔하여 만추성 형질을 가지는 것으로 알려져 있지만, 우리나라에서 많이 재배되는 불결구형 상추의 추대 특성은 품종별로 자세하게 밝혀져 있지 않다. Lettuce ( Lactuca sativa L.) is an annual plant of the Asteraceae family and is used as a wrap vegetable and salad, and contains a large amount of vitamins, iron, fiber and antioxidants. Lettuce begins to be harvested 30 to 40 days after planting. If early growth due to environmental factors such as high temperatures or long days occurs, flower buds are differentiated before sufficient number of leaves are secured, shortening the harvest period, reducing production, and reducing quality. It falls. As lettuce promotes differentiation and growth of flower buds at a high temperature of 25℃ or higher, cultivation in late spring after May or summer before late July should be avoided in flatlands. It is known that the cultivation period can be extended by cultivating in the early spring or autumn after August as much as possible in the flatland, but in the low temperature period of 15 ℃ or less to be suitable for growth. When there is a risk of early growth due to high temperature during cultivation, single treatment or blocking sunlight can slightly delay growth. Treatment with maleeic hydrazide (MH) or cycocel (CCC), which are growth inhibitors, can delay growth of lettuce, but has the disadvantage of inhibiting growth itself. In the case of globular lettuce, it is known that the Great Lake line is insensitive to high temperatures and has late autumn traits, but the growth characteristics of irregular globular lettuce cultivated in Korea have not been identified in detail for each variety.

한편, CRISPR/Cas9 시스템은 크리스퍼(Clustered regularly interspaced short palindromic repeat, CRISPR) 유전자 가위라 불리는 게놈(유전체) 편집 방법으로, 특정 염기서열에 특이적으로 결합하는 가이드 RNA(guide RNA)와 특정한 염기서열을 자르는 가위 역할인 Cas9(CRISPR associated protein 9) 엔도뉴클레아제 효소로 구성된다. 이러한 CRISPR/Cas9 시스템을 이용하면 세포나 동물에서 특정 유전자의 기능을 억제할 수 있는 녹-아웃(knock-out)이 가능하다.On the other hand, the CRISPR/Cas9 system is a genome (genome) editing method called CRISPR (Clustered regularly interspaced short palindromic repeat, CRISPR) gene scissors, which uses a guide RNA that specifically binds to a specific base sequence and a specific base sequence. It is composed of the Cas9 (CRISPR associated protein 9) endonuclease enzyme, which serves as a pair of scissors to cut. Using this CRISPR/Cas9 system, it is possible to knock-out the function of a specific gene in a cell or animal.

한편, 한국등록특허 제2113500호에는 'SOC1 유전자를 교정하여 만추성 형질을 가지는 유전체 교정 배추 식물체의 제조방법 및 그에 따른 식물체'가 개시되어 있고, 한국공개특허 제2020-0066967호에는 'FT 유전자를 교정하여 만추성 형질을 가지는 유전체 교정 배추 식물체의 제조방법 및 그에 따른 식물체'가 개시되어 있으나, 본 발명의 'SOC1 유전자 교정에 의해 만추성 형질을 가지는 상추 식물체의 제조방법 및 이에 의해 제조된 상추 식물체'에 대해서는 기재된 바가 없다.On the other hand, Korean Patent Registration No. 2113500 discloses 'a method for producing a genome-corrected cabbage plant having late autumn traits by correcting the SOC1 gene and the resulting plant', and Korean Patent Publication No. 2020-0066967 discloses ' FT gene A method for producing a genome-corrected Chinese cabbage plant having late autumn traits by correction and a plant accordingly is disclosed, but a 'method for producing a lettuce plant having late autumn traits by SOC1 gene correction and a lettuce plant produced thereby' are disclosed. ' Nothing is mentioned about it.

본 발명은 상기와 같은 요구에 의해 도출된 것으로서, 본 발명자들은 만추성 형질을 가지는 유전자 교정 상추 식물체를 제조하기 위해 상추 유래 SOC1(suppressor of overexpression of constans 1) 유전자를 표적으로 하는 CRISPR/Cas9 시스템을 상추 원형질체에 도입하여 특정 가이드 RNA에 의한 SOC1 유전자의 Indel 효율을 분석하였고, 그 중에서 Indel 효율이 높은 가이드 RNA를 선택하여 상추 원형질체를 대상으로 유전자 교정을 수행한 결과, 유전체가 교정된 상추 원형질체로부터 분화된 상추 식물체가 야생형 상추 식물체에 비해 추대가 지연되는 것을 확인함으로써, 본 발명을 완성하였다. The present invention was derived from the above needs, and the present inventors developed a CRISPR/Cas9 system targeting the lettuce-derived SOC1 (suppressor of overexpression of constans 1) gene to prepare genetically corrected lettuce plants having late autumn traits. It was introduced into lettuce protoplasts and the indel efficiency of the SOC1 gene by specific guide RNA was analyzed. Among them, a guide RNA with high indel efficiency was selected and gene correction was performed on the lettuce protoplasts. The present invention was completed by confirming that the lettuce plants were delayed in growth compared to wild-type lettuce plants.

상기 과제를 해결하기 위해, 본 발명은 상추 유래 SOC1(suppressor of overexpression of constans 1) 유전자의 표적 염기서열에 특이적인 가이드 RNA와 엔도뉴클레아제(endonuclease) 단백질의 복합체(ribonucleoprotein); 또는 상추 유래 SOC1 유전자의 표적 염기서열에 특이적인 가이드 RNA(guide RNA)를 암호화하는 DNA 및 엔도뉴클레아제 단백질을 암호화하는 핵산 서열을 포함하는 재조합 벡터;를 유효성분으로 함유하는, 상추 식물체의 추대를 지연시키기 위한 유전체 교정용 조성물을 제공한다.In order to solve the above problems, the present invention is a guide RNA specific to the target sequence of the lettuce-derived SOC1 (suppressor of overexpression of constans 1) gene and a complex of endonuclease (endonuclease) protein (ribonucleoprotein); Or a recombinant vector comprising DNA encoding a guide RNA specific to the target sequence of the lettuce-derived SOC1 gene and a nucleic acid sequence encoding an endonuclease protein; Provided is a composition for dielectric correction for delaying.

또한, 본 발명은 (a) 상추 유래 SOC1(suppressor of overexpression of constans 1) 유전자의 표적 염기서열에 특이적인 가이드 RNA(guide RNA) 및 엔도뉴클레아제(endonuclease) 단백질을 상추 식물세포에 도입하여 유전체를 교정하는 단계; 및 (b) 상기 유전체가 교정된 상추 식물세포로부터 상추 식물체를 재분화하는 단계;를 포함하는, 추대가 지연된 유전체 교정 상추 식물체의 제조방법을 제공한다.In addition, the present invention (a) introduces a guide RNA and an endonuclease protein specific to the target sequence of the lettuce-derived SOC1 (suppressor of overexpression of constans 1) gene into lettuce plant cells to generate genome correcting; and (b) regenerating lettuce plants from the genome-corrected lettuce plant cells.

또한, 본 발명은 상기 방법에 의해 제조된 추대가 지연된 유전체 교정 상추 식물체 및 이의 유전체가 교정된 종자를 제공한다.In addition, the present invention provides a genome-corrected lettuce plant with delayed growth prepared by the above method and a genome-corrected seed thereof.

본 발명의 제조방법을 통해 제조된 유전체 교정 상추 식물체는 유전체를 교정하지 않은 상추 식물체에 비해 추대가 지연된 형질을 가지므로, 개화 조절을 통한 상품의 가치 향상과 더불어 생산량의 증대를 기대할 수 있다. 또한, 본 발명에 따른 방법은 자연적 변이와 구별할 수 없는 변이를 유도하므로, 안전성과 환경 유해성 여부를 평가하기 위해 막대한 비용과 시간이 소모되는 GMO(Genetically Modified Organism) 작물과 달리 비용과 시간을 절약할 수 있을 것으로 기대된다.Since the genome-corrected lettuce plants prepared through the production method of the present invention have traits with delayed growth compared to lettuce plants without genome correction, increase in yield as well as product value improvement through flowering control can be expected. In addition, since the method according to the present invention induces mutations that are indistinguishable from natural mutations, cost and time are saved, unlike GMO (Genetically Modified Organism) crops, which require enormous costs and time to evaluate safety and environmental hazards. Expect to be able to do it.

도 1은 유전자 교정을 위해 상추의 SOC1 유전자 내에서 선택된 Target 1 및 Target 2 부위를 나타낸 것이다.
도 2는 Target 1 부위에 특이적인 가이드 sgRNA1과 Cas9 단백질을 포함하는 RNP(ribonuclease protein)를 상추 원형질체에 도입한 후 Indel 효율을 분석한 결과(B)이다. A는 Cas9 단백질만 주입한 대조군의 Indel 효율을 분석한 결과이다.
도 3은 Target 2 부위에 특이적인 가이드 sgRNA2와 Cas9 단백질을 포함하는 RNP(ribonuclease protein)를 상추 원형질체에 도입한 후 Indel 효율을 분석한 결과(B)이다. A는 Cas9 단백질만 주입한 대조군의 Indel 효율을 분석한 결과이다.
도 4는 sgRNA1와 Cas9 단백질을 포함하는 RNP(ribonuclease protein)가 도입된 상추 원형질체로부터 상추 식물체를 재분화하는 과정을 나타낸 것으로, A는 원형질체 세포이고, B는 원형질체 단일세포로부터 형성된 미소괴(microcalli)이고, C는 캘러스 유도 배지에서 배양된 캘러스이고, D는 신초가 형성된 캘러스이고, E는 MS 배지에서 배양된 뿌리가 형성된 신초이고, F는 토양 적응 중인 상추 식물체이며, G는 재분화가 완료된 상추 식물체이다.
도 5는 SOC1 유전자 교정 상추 식물체의 개화 조절 하위 유전자의 발현양을 분석한 결과로, LFY(A) 유전자, APL1 유전자(B), APL2 유전자(C) 및 FUL 유전자(D)의 발현양을 분석한 결과이다. WT: SOC1 유전자 교정하지 않은 야생형 상추 식물체.
도 6은 SOC1 유전자 교정 상추 식물체의 표현형을 관찰한 결과이다. WT: SOC1 유전자 교정하지 않은 야생형 상추 식물체. 스케일 바(scale bar)=2 ㎝.
Figure 1 shows the Target 1 and Target 2 sites selected in the SOC1 gene of lettuce for gene editing.
Figure 2 is a result (B) of analyzing Indel efficiency after introducing RNP (ribonuclease protein) containing a guide sgRNA1 specific to the Target 1 site and Cas9 protein into lettuce protoplasts. A is the result of analyzing the Indel efficiency of the control group injected only with Cas9 protein.
Figure 3 is a result (B) of analyzing Indel efficiency after introducing RNP (ribonuclease protein) containing a guide sgRNA2 specific to the Target 2 site and Cas9 protein into lettuce protoplasts. A is the result of analyzing the Indel efficiency of the control group injected only with Cas9 protein.
Figure 4 shows the process of regenerating lettuce plants from lettuce protoplasts into which ribonuclease protein (RNP) containing sgRNA1 and Cas9 proteins was introduced, A is a protoplast cell, B is a microcalli formed from a protoplast single cell , C is a callus cultured in a callus induction medium, D is a callus with shoot formation, E is a shoot with roots formed in MS medium, F is a lettuce plant undergoing soil adaptation, and G is a lettuce plant that has completed regeneration. .
Figure 5 is the result of analyzing the expression level of flowering control subgenes of SOC1 gene-corrected lettuce plants, analyzing the expression levels of LFY (A) gene, APL1 gene (B), APL2 gene (C) and FUL gene (D) is a result WT: wild-type lettuce plants without SOC1 gene correction.
Figure 6 is the result of observing the phenotype of SOC1 gene correction lettuce plants. WT: wild-type lettuce plants without SOC1 gene correction. Scale bar=2 cm.

본 발명의 목적을 달성하기 위하여, 본 발명은 상추 유래 SOC1(suppressor of overexpression of constans 1) 유전자의 표적 염기서열에 특이적인 가이드 RNA와 엔도뉴클레아제(endonuclease) 단백질의 복합체(ribonucleoprotein); 또는 상추 유래 SOC1 유전자의 표적 염기서열에 특이적인 가이드 RNA(guide RNA)를 암호화하는 DNA 및 엔도뉴클레아제 단백질을 암호화하는 핵산 서열을 포함하는 재조합 벡터;를 유효성분으로 함유하는, 상추 식물체의 추대를 지연시키기 위한 유전체 교정용 조성물을 제공한다.In order to achieve the object of the present invention, the present invention is a guide RNA specific to the target sequence of the lettuce-derived SOC1 (suppressor of overexpression of constans 1) gene and a complex of endonuclease (endonuclease) protein (ribonucleoprotein); Or a recombinant vector comprising DNA encoding a guide RNA specific to the target sequence of the lettuce-derived SOC1 gene and a nucleic acid sequence encoding an endonuclease protein; Provided is a composition for dielectric correction for delaying.

본 명세서에서 용어 "유전체/유전자 교정(genome/gene editing)"은, 인간 세포를 비롯한 동·식물 세포의 유전체 염기서열에 표적지향형 변이를 도입할 수 있는 기술로서, DNA 절단에 의한 하나 이상의 핵산 분자의 결실(deletion), 삽입(insertion), 치환(substitutions) 등에 의하여 특정 유전자를 녹-아웃(knock-out) 또는 녹-인(knock-in)하거나, 단백질을 생성하지 않는 비-코딩(non-coding) DNA 서열에도 변이를 도입할 수 있는 기술을 말한다. 본 발명의 목적상 상기 유전체 교정은 특히 엔도뉴클레아제(endonuclease) 예컨대, Cas9 (CRISPR associated protein 9) 단백질 및 가이드 RNA를 이용하여 식물체에 변이를 도입하는 것일 수 있다. 또한, '유전자 교정'은 '유전자 편집'과 혼용되어 사용될 수 있다.As used herein, the term "genome/gene editing" refers to a technology capable of introducing target-directed mutations into genomic sequences of animal and plant cells, including human cells, and includes one or more nucleic acid molecules by cutting DNA. Knock-out or knock-in of a specific gene by deletion, insertion, substitution, etc., or non-coding that does not produce a protein Coding refers to a technology that can introduce mutations into DNA sequences. For the purposes of the present invention, the genome editing may be to introduce mutations into plants using an endonuclease, such as Cas9 (CRISPR associated protein 9) protein and guide RNA. In addition, 'gene editing' may be used interchangeably with 'gene editing'.

또한, 용어 "표적 유전자"는 본 발명을 통해 교정하고자 하는 식물체의 유전체 내에 있는 일부 DNA를 의미하며, 그 유전자의 종류에 제한되지 않으며, 코딩 영역 및 비-코딩 영역을 모두 포함할 수 있다. 당업자는 그 목적에 따라, 제조하고자 하는 유전체 교정 식물체에 대하여 원하는 변이에 따라 상기 표적 유전자를 선별할 수 있다.In addition, the term "target gene" refers to some DNA in the genome of a plant to be corrected through the present invention, and is not limited to the type of gene, and may include both a coding region and a non-coding region. A person skilled in the art can select the target gene according to the desired mutation for the genome editing plant to be produced, depending on the purpose.

본 발명의 일 구현 예에 따른 유전체 교정용 조성물에 있어서, 표적 유전자는 상추 유래 SOC1(Supperssor of overexpression of constans 1) 유전자일 수 있고, 바람직하게는 서열번호 1의 염기서열로 이루어진 것일 수 있으나, 이에 제한되지 않는다.In the composition for genome editing according to one embodiment of the present invention, the target gene may be lettuce-derived SOC1 (Supperssor of overexpression of constans 1) gene, preferably composed of the nucleotide sequence of SEQ ID NO: 1. Not limited.

또한, 용어 "가이드 RNA(guide RNA)"는 짧은 단일 가닥의 RNA로, 표적 유전자를 암호화하는 염기서열 중 표적 DNA에 특이적인 RNA를 의미하며, 표적 DNA 염기서열과 전부 또는 일부가 상보적으로 결합하여 해당 표적 DNA 염기서열로 엔도뉴클레아제 단백질을 이끄는 역할을 하는 리보핵산을 의미한다. 상기 가이드 RNA는 두 개의 RNA, 즉, crRNA (CRISPR RNA) 및 tracrRNA (trans-activating crRNA)를 구성 요소로 포함하는 이중 RNA (dual RNA); 또는 표적 유전자 내 염기서열과 전부 또는 일부 상보적인 서열을 포함하는 제1 부위 및 엔도뉴클레아제(특히, RNA-가이드 뉴클레아제)와 상호작용하는 서열을 포함하는 제2 부위를 포함하는 단일 사슬 가이드 RNA(single guide RNA, sgRNA) 형태를 말하나, 엔도뉴클레아제가 표적 염기서열에서 활성을 가질 수 있는 형태라면 제한없이 본 발명의 범위에 포함될 수 있으며, 함께 사용된 엔도뉴클레아제의 종류 또는 엔도뉴클레아제의 유래 미생물 등을 고려하여 당업계의 공지된 기술에 따라 제조하여 사용할 수 있다.In addition, the term "guide RNA" refers to a short single-stranded RNA, which is specific for a target DNA among base sequences encoding a target gene, and binds to the target DNA base sequence in whole or in part complementarily. It means ribonucleic acid that serves to guide the endonuclease protein to the target DNA base sequence. The guide RNA is a dual RNA comprising two RNAs, that is, crRNA (CRISPR RNA) and tracrRNA (trans-activating crRNA) as components; or a single chain comprising a first region comprising a sequence complementary in whole or in part to a base sequence in a target gene and a second region comprising a sequence interacting with an endonuclease (particularly, an RNA-guided nuclease). Guide RNA (single guide RNA, sgRNA) form, but if the endonuclease can be active in the target sequence, it can be included in the scope of the present invention without limitation, and the type of endonuclease used together or endo It can be prepared and used according to known techniques in the art in consideration of the microorganism derived from the nuclease.

또한, 상기 가이드 RNA는 플라스미드 주형으로부터 전사된 것, 생체 외(in vitro)에서 전사된(transcribed) 것(예컨대, 올리고뉴클레오티드 이중가닥) 또는 합성한 가이드 RNA 등일 수 있으나, 이에 제한되지 않는다.In addition, the guide RNA may be a guide RNA transcribed from a plasmid template, transcribed in vitro (eg, oligonucleotide duplex), or synthesized guide RNA, but is not limited thereto.

본 발명에 따른 유전체 교정용 조성물에 있어서, 상기 가이드 RNA는 상추 유래 SOC1 유전자의 표적 염기서열에 특이적으로 고안된 것으로, 상기 표적 염기서열은 바람직하게는 서열번호 2의 염기서열로 이루어진 것일 수 있으나, 이에 제한되지 않는다. In the genome editing composition according to the present invention, the guide RNA is designed specifically for the target nucleotide sequence of the lettuce-derived SOC1 gene, and the target nucleotide sequence may preferably consist of the nucleotide sequence of SEQ ID NO: 2, Not limited to this.

또한, 본 발명에 따른 유전체 교정용 조성물에 있어서, 상기 엔도뉴클레아제 단백질은 Cas9, Cpf1 (also known as Cas12a), TALEN (Transcription activator-like effector nuclease), ZFN (Zinc Finger Nuclease) 또는 이의 기능적 유사체로 이루어진 군으로부터 선택되는 하나 이상일 수 있고, 바람직하게는 Cas9 또는 Cpf1 등일 수 있으며, 더욱 바람직하게는 Cas9 단백질일 수 있으나, 이에 제한되지 않는다.In addition, in the genome editing composition according to the present invention, the endonuclease protein is Cas9, Cpf1 (also known as Cas12a), TALEN (Transcription activator-like effector nuclease), ZFN (Zinc Finger Nuclease) or a functional analogue thereof It may be one or more selected from the group consisting of, preferably Cas9 or Cpf1, etc., more preferably a Cas9 protein, but is not limited thereto.

또한, 상기 Cas9 단백질은 스트렙토코커스 피요제네스(Streptococcus pyogenes) 유래의 Cas9 단백질, 캠필로박터 제주니(Campylobacter jejuni) 유래의 Cas9 단백질, 스트렙토코커스 써모필러스(S. thermophilus) 또는 스트렙토코커스 아우레우스(S. aureus) 유래의 Cas9 단백질, 네이쎄리아 메닝기티디스(Neisseria meningitidis) 유래의 Cas9 단백질, 파스투렐라 물토시다(Pasteurella multocida) 유래의 Cas9 단백질, 프란시셀라 노비시다(Francisella novicida) 유래의 Cas9 단백질 등으로 이루어진 군에서 선택된 하나 이상일 수 있으나, 이에 제한되지 않는다. Cas9 단백질 또는 이의 유전자 정보는 NCBI(National Center for Biotechnology Information)의 GenBank와 같은 공지의 데이터베이스에서 얻을 수 있다. 상기 Cas9 유전자 정보는 공지된 서열을 그대로 사용할 수도 있고, 형질도입되는 대상(유기체)의 코돈에 최적화된 서열을 사용할 수 있으나, 이에 제한되지 않는다.In addition, the Cas9 protein is a Cas9 protein derived from Streptococcus pyogenes, a Cas9 protein derived from Campylobacter jejuni, a Cas9 protein derived from Streptococcus thermophilus ( S. thermophilus ) or Streptococcus aureus ( S. aureus ) derived Cas9 protein, Neisseria meningitidis ( Neisseria meningitidis ) derived Cas9 protein, Pasteurella multocida ( Pasteurella multocida ) derived Cas9 protein, Francisella novicida ( Francisella novicida ) derived Cas9 protein, etc. It may be one or more selected from the group consisting of, but is not limited thereto. Cas9 protein or genetic information thereof can be obtained from known databases such as GenBank of National Center for Biotechnology Information (NCBI). For the Cas9 gene information, a known sequence may be used as it is or a sequence optimized for the codon of a target (organism) to be transduced may be used, but is not limited thereto.

Cas9 단백질은 RNA-guided DNA 엔도뉴클레아제 효소로, 이중 가닥 DNA 절단(double stranded DNA break)을 유도한다. Cas9 단백질이 정확하게 표적 염기서열에 결합하여 DNA 가닥을 잘라내기 위해서는 PAM(Protospacer Adjacent Motif)이라 알려진 3개의 염기로 이루어진 짧은 염기서열이 표적 염기서열 옆에 존재해야 하며, Cas9 단백질은 PAM 서열(NGG)로부터 3번째와 4번째 염기쌍 사이를 추정하여 절단한다.The Cas9 protein is an RNA-guided DNA endonuclease enzyme that induces double stranded DNA breaks. In order for the Cas9 protein to accurately bind to the target sequence and cut the DNA strand, a short sequence consisting of three bases known as PAM (Protospacer Adjacent Motif) must be present next to the target sequence, and the Cas9 protein has a PAM sequence (NGG) It is cut by estimating between the 3rd and 4th base pairs from .

본 발명에 따른 유전체 교정용 조성물에 있어서, 상기 가이드 RNA와 엔도뉴클레아제 단백질은 리보핵산-단백질(ribonucleoprotein) 복합체를 형성하여 RNA 유전자 가위(RNA-Guided Engineered Nuclease, RGEN)로 작동할 수 있다.In the composition for genome editing according to the present invention, the guide RNA and the endonuclease protein form a ribonucleoprotein complex to operate as RNA-Guided Engineered Nuclease (RGEN).

본 발명에서 사용된 CRISPR/Cas9 시스템은 교정하고자 하는 특정 유전자의 특정위치에 이중나선 절단을 도입하여 DNA 수선 과정에서 유도되는 불완전 수선에 의한 삽입-결실(insertion-deletion, InDel) 돌연변이를 유도시키는 NHEJ(non-homologous end joining) 기작에 의한 유전자 교정 방법이다.The CRISPR/Cas9 system used in the present invention introduces a double helix break at a specific position of a specific gene to be corrected, thereby inducing insertion-deletion (InDel) mutations caused by incomplete repair induced in the DNA repair process. (non-homologous end joining) is a gene editing method.

본 발명은 또한,The present invention also

(a) 상추 유래 SOC1(suppressor of overexpression of constans 1) 유전자의 표적 염기서열에 특이적인 가이드 RNA(guide RNA) 및 엔도뉴클레아제(endonuclease) 단백질을 상추 식물세포에 도입하여 유전체를 교정하는 단계; 및(a) introducing a guide RNA and an endonuclease protein specific for the target sequence of the lettuce-derived SOC1 (suppressor of overexpression of constans 1) gene into lettuce plant cells to correct the genome; and

(b) 상기 유전체가 교정된 상추 식물세포로부터 상추 식물체를 재분화하는 단계;를 포함하는, 추대가 지연된 유전체 교정 상추 식물체의 제조방법을 제공한다.(b) re-differentiating lettuce plants from the genome-corrected lettuce plant cells;

본 발명의 일 구현 예에 따른 제조방법에 있어서, 상기 상추 유래 SOC1 유전자의 표적 염기서열 및 엔도뉴클레아제 단백질은 전술한 것과 같다.In the production method according to one embodiment of the present invention, the target nucleotide sequence and endonuclease protein of the lettuce-derived SOC1 gene are the same as described above.

본 발명에 따른 제조방법에 있어서, 상기 (a) 단계의 가이드 RNA 및 엔도뉴클레아제 단백질을 상추 식물세포에 도입하는 것은, 상추 유래 SOC1 유전자의 표적 염기서열에 특이적인 가이드 RNA와 엔도뉴클레아제 단백질의 복합체(ribonucleoprotein); 또는 상추 유래 SOC1 유전자의 표적 염기서열에 특이적인 가이드 RNA를 암호화하는 DNA 및 엔도뉴클레아제 단백질을 암호화하는 핵산 서열을 포함하는 재조합 벡터;를 이용하는 것일 수 있으나, 이에 제한되지 않는다.In the production method according to the present invention, introducing the guide RNA and endonuclease protein of step (a) into lettuce plant cells is a guide RNA specific to the target sequence of the SOC1 gene derived from lettuce and an endonuclease a complex of proteins (ribonucleoprotein); Or a recombinant vector comprising DNA encoding a guide RNA specific to the target sequence of the lettuce-derived SOC1 gene and a nucleic acid sequence encoding an endonuclease protein; may be used, but is not limited thereto.

본 발명에 따른 제조방법에 있어서, 상기 가이드 RNA 와 엔도뉴클레아제 단백질의 복합체를 식물세포에 형질도입하는 방법은 원형질체에 대한 칼슘/폴리에틸렌 글리콜 방법(Krens et al., 1982, Nature 296:72-74; Negrutiu et al., 1987, Plant Mol. Biol. 8:363-373), 원형질체의 전기천공법(Shillito et al., 1985, Bio/Technol. 3:1099-1102), 식물 요소로의 현미주사법(Crossway et al., 1986, Mol. Gen. Genet. 202:179-185), 각종 식물 요소의(DNA 또는 RNA-코팅된) 입자 충격법(Klein et al., 1987, Nature 327:70), 아그로박테리움 튜메파시엔스(Agrobacterium tumefaciens) 매개된 유전자 전이에서(비완전성) 박테리아에 의한 감염 등으로부터 적당하게 선택될 수 있다.In the production method according to the present invention, the method for transducing the complex of guide RNA and endonuclease protein into plant cells is the calcium/polyethylene glycol method for protoplasts (Krens et al., 1982, Nature 296:72- 74; Negrutiu et al., 1987, Plant Mol. Biol. 8:363-373), electroporation of protoplasts (Shillito et al., 1985, Bio/Technol. 3:1099-1102), brown rice as plant element injection (Crossway et al., 1986, Mol. Gen. Genet. 202:179-185), particle bombardment of various plant elements (DNA or RNA-coated) (Klein et al., 1987, Nature 327:70) , infection by bacteria in Agrobacterium tumefaciens mediated gene transfer (incomplete), and the like.

또한, 상기 표적 염기서열에 특이적인 가이드 RNA를 암호화하는 DNA 및 엔도뉴클레아제 단백질을 암호화하는 핵산 서열을 포함하는 재조합 벡터를 식물세포에 도입하는 것은 형질전환 방법을 의미한다. 식물 종의 형질전환은 이제는 쌍자엽 식물뿐만 아니라 단자엽 식물 양자를 포함한 식물 종에 대해 일반적이다. 원칙적으로, 임의의 형질전환 방법은 본 발명에 따른 재조합 벡터를 적당한 선조 세포로 도입시키는데 이용될 수 있다.In addition, introducing a recombinant vector containing DNA encoding a guide RNA specific to the target sequence and a nucleic acid sequence encoding an endonuclease protein into plant cells refers to a transformation method. Transformation of plant species is now common for plant species including both dicotyledonous as well as monocotyledonous plants. In principle, any transformation method can be used to introduce the recombinant vectors according to the invention into suitable progenitor cells.

본 발명에 따른 제조방법에 있어서, 상기 표적 염기서열에 특이적인 가이드 RNA 및 엔도뉴클레아제 단백질이 도입되는 "식물세포"는 어떤 식물세포도 된다. 식물세포는 배양 세포, 배양 조직, 배양 기관 또는 전체 식물이다. "식물 조직"은 분화된 또는 미분화된 식물의 조직, 예를 들면 이에 한정되진 않으나, 뿌리, 줄기, 잎, 꽃가루, 소포자, 난세포, 종자 및 배양에 이용되는 다양한 형태의 세포들, 즉 단일 세포, 원형질체(protoplast), 싹 및 캘러스 조직을 포함한다. 식물 조직은 인 플란타(in planta)이거나 기관 배양, 조직 배양 또는 세포 배양 상태일 수 있다. 본 발명에 따른 바람직한 식물세포는 원형질체이다. In the manufacturing method according to the present invention, the "plant cell" into which the target sequence-specific guide RNA and endonuclease protein are introduced can be any plant cell. A plant cell is a cultured cell, cultured tissue, cultured organ or whole plant. "Plant tissue" refers to differentiated or undifferentiated plant tissue, including, but not limited to, roots, stems, leaves, pollen, microspores, ovules, seeds, and various types of cells used in culture, i.e., single cells, Includes protoplast, shoot and callus tissues. The plant tissue may be in planta or may be in organ culture, tissue culture or cell culture. Preferred plant cells according to the present invention are protoplasts.

본 발명의 제조방법에 있어서, 유전체가 교정된 식물세포로부터 유전체가 교정된 식물을 재분화하는 방법은 당업계에 공지된 임의의 방법을 이용할 수 있다. 유전체가 교정된 식물세포는 전식물로 재분화되어야 한다. 캘러스 또는 원형질체 배양으로부터 성숙한 식물의 재분화를 위한 기술은 수많은 여러 가지 종에 대해서 당업계에 주지되어 있다(Handbook of Plant Cell Culture, 1-5권, 1983-1989 Momillan, N.Y.).In the production method of the present invention, any method known in the art may be used as a method for regenerating genome-corrected plants from genome-corrected plant cells. The genome-corrected plant cell must regenerate into a whole plant. Techniques for regeneration of mature plants from callus or protoplast cultures are well known in the art for a number of different species (Handbook of Plant Cell Culture, Vols. 1-5, 1983-1989 Momillan, N.Y.).

본 발명은 또한, 상기 방법에 의해 제조된 추대가 지연된 유전체 교정 상추 식물체 및 이의 유전체가 교정된 종자를 제공한다.The present invention also provides a genome-corrected lettuce plant with delayed growth prepared by the above method and a genome-corrected seed thereof.

본 발명에 따른 추대가 지연된 유전체 교정 상추 식물체는 상추 유래 SOC1(suppressor of overexpression of constans 1) 유전자를 CRISPR/Cas9 시스템을 이용하여 교정한 것으로, SOC1 유전자가 녹-아웃되어 유전체를 교정하지 않은 상추 식물체에 비해 추대가 지연된 형질을 가지는 유전체 교정 상추 식물체이다.The genome-corrected lettuce plant with delayed planting according to the present invention is a lettuce-derived SOC1 (suppressor of overexpression of constans 1) gene corrected using the CRISPR/Cas9 system, and a lettuce plant in which the SOC1 gene is knocked out and the genome is not corrected. It is a genome-edited lettuce plant with a trait with delayed growth compared to .

이하, 본 발명을 실시예에 의해 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail by examples. However, the following examples are only to illustrate the present invention, and the content of the present invention is not limited to the following examples.

재료 및 방법Materials and Methods

1. 식물재료1. Plant material

상추(Lactuca sativa L.) 청치마 품종의 종자를 농우바이오에서 구입하여 사용하였다. 종자를 70%(v/v) 에탄올, 0.4%(v/v) 하이포클로라이트(hypochlorite) 용액에서 15분 동안 멸균한 뒤, 증류수로 3회 세척한 후, MS(Murashige and Skoog) 배지에 치상하여 16시간 명/8시간 암의 광주기, 20~25℃에서 배양하였다. Seeds of lettuce ( Lactuca sativa L.) cultivar Cheongchima were purchased from Nongwoo Bio and used. The seeds were sterilized in 70% (v/v) ethanol, 0.4% (v/v) hypochlorite solution for 15 minutes, washed three times with distilled water, and then plated on MS (Murashige and Skoog) medium. 16 hours light / 8 hours dark photoperiod, 20 ~ 25 ℃ was cultured.

2. 가이드 RNA 설계2. Guide RNA design

상추 유래 SOC1(suppressor of overexpression of constans 1) 유전자를 표적으로 하는 유전자 교정을 실시하기 위해서 Lettuce Genome Resource (https://lgr.genomecenter.ucdavis.edu/)로부터 상추 유래 SOC1 유전자의 서열을 확보하였다. 상기 SOC1 유전자에서 두 가지 표적 부위(Target 1 또는 Target 2)를 선택하였고(도 1, 표 1), CRISPR RGEN Tool(http://www.rgenome.net/cas-designer/)을 이용하여 각 표적 부위에 특이적인 가이드 RNA(sgRNA1 또는 sgRNA2)를 디자인하였다.In order to perform gene correction targeting the lettuce-derived SOC1 (suppressor of overexpression of constans 1) gene, the sequence of the lettuce-derived SOC1 gene was obtained from the Lettuce Genome Resource (https://lgr.genomecenter.ucdavis.edu/). Two target sites (Target 1 or Target 2) were selected from the SOC1 gene (Fig. 1, Table 1), and each target was selected using the CRISPR RGEN Tool (http://www.rgenome.net/cas-designer/). A site-specific guide RNA (sgRNA1 or sgRNA2) was designed.

상추 유래 SOC1 유전자 교정을 위한 표적 염기서열Lettuce-derived SOC1 gene Target sequence for proofreading 표적 염기서열target sequence 서열 (방향)sequence (direction) 서열번호sequence number 1One GAGGGAAGACTCAAATGCGG(5'-3')GAGGGAAGACTCAAATGCGG(5'-3') 22 22 GAAGCATGAAACAGCTACTA(5'-3') GAAGCATGAAACAGCTACTA (5'-3') 33

3. 원형질체 분리 및 유전자 교정3. Protoplast Isolation and Gene Editing

배양 7일 째 상추의 자엽(cotyledon)을 어두운 상태로 25℃에서 4~6시간 동안 효소 용액(1% Viscozyme, 0.5% Celluclast, 0.5% Pectinex, 9% mannitol, 3 mM MES, CPW solution, pH 5.7)과 함께 40~50 rpm으로 교반하면서 인큐베이션하여 분해한 다음, 동량의 W5 용액(2 mM MES, 154 mM NaCl, 125 mM CaCl2, 5 mM KCl)으로 희석시켰다. 상기 혼합물을 여과시키고, 원형바닥 튜브에서 114 g로 5분 동안 원심분리하여 원형질체를 회수한 후, W5 용액에 재현탁하고 헤마사이토미터(hemacytometer)를 이용하여 현미경으로 수를 세었다. 1×106 개의 원형질체 세포를 MMG(0.4 M mannitol, 15 mM MgCl2, 4 mM MES) 용액으로 희석하여 준비하였다. On the 7th day of cultivation, the cotyledons of lettuce were incubated in the dark at 25 ° C for 4 to 6 hours in an enzyme solution (1% Viscozyme, 0.5% Celluclast, 0.5% Pectinex, 9% mannitol, 3 mM MES, CPW solution, pH 5.7). ) was incubated with stirring at 40-50 rpm and then diluted with the same amount of W5 solution (2 mM MES, 154 mM NaCl, 125 mM CaCl 2 , 5 mM KCl). The mixture was filtered, and protoplasts were recovered by centrifugation at 114 g for 5 minutes in a round bottom tube, resuspended in W5 solution, and counted under a microscope using a hemacytometer. 1×10 6 protoplast cells were prepared by diluting with MMG (0.4 M mannitol, 15 mM MgCl 2 , 4 mM MES) solution.

재조합 Cas9 단백질(3 ㎍)과 sgRNA(1 ㎍)를 섞어서 상온에서 10분 동안 반응시켜 리보뉴클레아제 단백질(ribonuclease protein, RNP) 혼합물을 제조하였다. 이후, 1×106 개의 원형질체 세포에 RNP 혼합물과 PEG 용액(40%(w/v) PEG 4000, 0.2 M mannitol, 0.1 M CaCl2)을 넣고 상온에서 10분 동안 반응시켰다. 그 다음 W5 용액으로 세척하고 55 g로 5분 동안 원심분리하여 수득한 펠렛을 원형질체 배양 배지(MS salts, 0.4 mg/ℓthiamine, 100 mg/ℓ myo-inositol, 30 g/ℓ sucrose, 0.2 mg/ℓ 2,4-D, 0.3 mg/ℓ BA)로 재현탁하고 암조건, 25℃에서 48시간 동안 배양하여 유전자 교정을 유도하였다. Recombinant Cas9 protein (3 μg) and sgRNA (1 μg) were mixed and reacted at room temperature for 10 minutes to prepare a ribonuclease protein (RNP) mixture. Thereafter, the RNP mixture and the PEG solution (40% (w/v) PEG 4000, 0.2 M mannitol, 0.1 M CaCl 2 ) were added to 1×10 6 protoplast cells and reacted at room temperature for 10 minutes. Then, the pellet obtained by washing with W5 solution and centrifuging at 55 g for 5 minutes was added to the protoplast culture medium (MS salts, 0.4 mg/ℓ thiamine, 100 mg/ℓ myo-inositol, 30 g/ℓ sucrose, 0.2 mg/ 2,4-D, 0.3 mg/ℓ BA), and cultured at 25° C. for 48 hours in the dark to induce gene correction.

4. 서열분석(Deep sequencing)4. Deep sequencing

유전자 교정된 원형질체에서 AccuPrep® Genomic DNA Extraction Kit (BIONEER, K-3032)를 이용하여 게노믹 DNA를 추출하였다. 하기 표 2의 프라이머를 이용하여 PCR을 수행한 후, Illumina MiSeq(v2, 300 cycle)를 이용하여 염기서열을 분석하였고, Cas-Analyzer를 이용하여 Indel 효율을 분석하였다.Genomic DNA was extracted from the gene-corrected protoplasts using AccuPrep® Genomic DNA Extraction Kit (BIONEER, K-3032). After PCR was performed using the primers in Table 2 below, nucleotide sequences were analyzed using Illumina MiSeq (v2, 300 cycles), and Indel efficiency was analyzed using Cas-Analyzer.

PCR 분석에 사용된 프라이머 정보 Primer information used for PCR analysis 프라이머 명칭Primer name 염기서열 (5'→3') Base sequence (5'→3') 서열번호sequence number 1ST PCR F1 ST PCR F TGTAACTTGAACATGCGACCATACTGTAACTTGAACATGCGACCATAC 44 1ST PCR R1 ST PCR R CATTATAAGGAAAAGAACCCACAAAC CATTATAAGGAAAAAGAACCCACAAAC 55 Adapt PCR FAdapt PCR F TGCGACCATACCACTTTCAATGCGACCATACCACTTTCAA 66 Adapt PCR RAdapt PCR R AAGCAACCTCAGCATCACAAAAGCAACTCAGCATCACAA 77

실시예 1. 표적부위에 따른 가이드 RNA의 Indel 효율 분석Example 1. Indel efficiency analysis of guide RNA according to target site

Target 1 또는 Target 2 부위에 특이적인 가이드 RNA(sgRNA1 또는 sgRNA2)와 Cas9 단백질을 포함하는 RNP를 상추 원형질체에 도입한 후 Indel 효율을 분석하였다. Guide RNA (sgRNA1 or sgRNA2) specific to Target 1 or Target 2 and RNP containing Cas9 protein were introduced into lettuce protoplasts, and then Indel efficiency was analyzed.

그 결과, Cas9 단백질만 주입한 대조군의 Indel 효율은 0%인 반면, sgRNA1과 Cas9 단백질을 포함하는 RNP를 주입한 실험군의 Indel 효율은 약 7.5%이고(도 2), sgRNA2와 Cas9 단백질을 포함하는 RNP를 주입한 실험군의 Indel 효율은 약 1.5%인 것을 확인하였다(도 3). As a result, the Indel efficiency of the control group injected only with Cas9 protein was 0%, whereas the indel efficiency of the experimental group injected with RNP containing sgRNA1 and Cas9 protein was about 7.5% (Fig. 2), and the indel efficiency of the control group containing sgRNA2 and Cas9 protein was It was confirmed that the Indel efficiency of the experimental group injected with RNP was about 1.5% (FIG. 3).

상기 결과를 바탕으로, 2개의 sgRNA 중 Indel 효율이 높은 sgRNA1을 최종 선발하였다.Based on the above results, sgRNA1 with high Indel efficiency among the two sgRNAs was finally selected.

실시예 2. Example 2. SOC1 SOC1 유전자 교정 상추 식물체의 특성 분석Characterization of genetically modified lettuce plants

SOC1 유전자 교정이 이루어진 상추 원형질체로부터 상추 식물체를 재분화시켰다(도 4). SOC1 Lettuce plants were regenerated from the gene-edited lettuce protoplasts (FIG. 4).

(1) 유전자 발현양 분석(1) Gene expression level analysis

SOC1 유전자와 관련된 개화 조절 하위 유전자에는 LFY(LEAFY), APL1(APETALA-like 1), APL2(APETALA-like 2) 및 FUL(FRUITIFUL) 유전자가 있다. Flowering regulatory subgenes related to the SOC1 gene include LFY (LEAFY), APL1 (APETALA-like 1), APL2 (APETALA-like 2), and FUL (FRUITIFUL) genes.

gRNA1을 통해 SOC1 유전자가 교정된 상추 식물체의 잎으로부터 RNA를 추출하고 cDNA를 합성하여 하기 표 3의 프라이머를 이용하여 개화 조절 하위 유전자에 대한 qPCR 분석을 수행하였다. RNA was extracted from the leaves of lettuce plants in which the SOC1 gene was corrected through gRNA1, cDNA was synthesized, and qPCR analysis was performed on flowering control subgenes using the primers shown in Table 3 below.

qPCR 분석에 사용된 프라이머 정보 Primer information used for qPCR analysis 유전자gene 염기서열 (5'→3') Base sequence (5'→3') 서열번호sequence number LFYLFY F:TCTGTCATGCTGAACGCAGCF:TCTGTCATGCTGAACGCAGC 88 R:CTAAAACTGGAGATGACCACCACCR:CTAAAACTGGAGATGACCACCACC 99 APL1APL1 F:GAGAAGCTGGACCCTGGAGTF:GAGAAGCTGGACCCTGGAGT 1010 R:TGCTCTTGTATGGCCTTTCCCR:TGCTTCTTGTATGGCCTTTCCC 1111 APL2APL2 F:GGGAAGACCTTGAGCCTTTGAF:GGGAAGACCTTGAGCCTTTGA 1212 R:TGGTGGTGGCTGATGAGTCTR:TGGTGGTGGCTGATGAGTCT 1313 FULFUL F:ATGCCGATGTCGCACTCATCF:ATGCCGATGTCGCACTCATC 1414 R:TGTTCCAGAGACCAGCTTCCTR:TGTTCCAGAGACCAGCTTTCCT 1515 PP2AA3PP2AA3 F:CATGCAATGGTTACAAGACAAGGTATF:CATGCAATGGTTACAAGACAAGGTAT 1616 R:CAAACTCCTCCGCAAGTCTCTTCR:CAAACTCCTCCGAAGTCTCTTC 1717

그 결과, SOC1 유전자 교정 상추 식물체의 개화 조절 하위 유전자의 발현은 대조군(WT) 대비 감소하는 것을 확인하였다(도 5). As a result, it was confirmed that the expression of flowering control subgenes in SOC1 gene-corrected lettuce plants was decreased compared to the control group (WT) (FIG. 5).

(2) 표현형 분석(2) Phenotypic analysis

gRNA1을 통해 SOC1 유전자가 교정된 상추 식물체의 표현형을 분석하기 위하여, 원형질체로부터 재분화된 상추 식물체와 야생형(대조군) 상추 식물체를 야외에서 120일 동안 재배하였다. In order to analyze the phenotype of lettuce plants whose SOC1 gene was corrected through gRNA1, lettuce plants regenerated from protoplasts and wild-type (control) lettuce plants were grown outdoors for 120 days.

그 결과, SOC1 유전자 교정 상추 식물체는 대조군 대비 축대가 짧게 형성되고 추대가 지연되는 것을 확인하였다(도 6). As a result, it was confirmed that the SOC1 gene-corrected lettuce plants formed shorter shafts and delayed growth compared to the control group (FIG. 6).

<110> Korea Research Institute of Bioscience and Biotechnology <120> Method for producing lettuce plant having late flowering trait by SOC1 gene editing and lettuce plant produced by the same method <130> PN21320 <160> 17 <170> KoPatentIn 3.0 <210> 1 <211> 3223 <212> DNA <213> Lactuca sativa <400> 1 atggtgagag ggaagactca aatgcggagg attgaaaatg ctacaagtag acaagtgacc 60 ttctccaaaa gaagaaatgg tttgttgaag aaagcgtttg aactttctgt gctttgtgat 120 gctgaggttg ctttgatcat cttctctcca agaggcaaac tttatgaatt tgcaagctca 180 aggttccatt tttctcactt aatcatcaaa atttgtaaat tctaatttcg ggattcttat 240 tcgtataatc ttgattttaa ttctgggttt caaatttatt tcccttttat ctactcaatg 300 catatattca tacgcgtatg cacaaacgga tctgaaaata gataacatca aagagaacca 360 tgatcatttt gatcttttct tgattctggt ttgtgggttc ttttccttat aatgatttct 420 attctgggtt taaaatattc tttctttatt atactgttat ttagtttcca aactcaaggt 480 tccatttttc tcacttaaat ttcatgtttt cttgattcta aagtgtttta aaacactatt 540 aatccaacca attccagtgt atactttctt ttccatagta atgggcttca atcttctttc 600 tgatgttatc tacacaaggc acatacacag agatctatta agatacttgt gtcggacata 660 aaatgttatt tgctcgaata tggttaaccg gatctttata tgaataaaaa gggatacaat 720 attatggaat tgaaatttta attagtttca aatgcttatt gaacgctttc atgattagtt 780 tcgtacaaaa tacttactct atacatataa agatagaacc ttttttgaat ctcgagtttc 840 taccgaaatt tagagaattt taaatatata taaatgaaga gcatataact ataggaagtg 900 aggtcaatct gtgtttcctc ttagtccagt caaataataa taaagaaatg atattagtat 960 attaatataa atttttgata aaaataataa aaaatgatat gatctgattg actcttgtct 1020 ggcatgtttt gatcagttaa cttgaaatgg tgtatttcat attcatcata cgaatacgaa 1080 gaatgtcaca gcttttactt ttctgatttt actataaaaa gcatctgttt acaattagtt 1140 ttatataaat ttagtacaat attcattgtg tttaatatat ttaaataaca gtaacaaaaa 1200 tagtatctct tcttttacat atattgccct atataaactt aacattatta tattcaagtt 1260 atatatagaa aagccgactc gggtgcttga aattaagata tcatgagtgg ttttctcatg 1320 ttttgataag tataataata gtttttcgaa aggtcaaaac aaacacaatt gctataatca 1380 gtcttaagta ttagatgacc aattgttaca atttacaaaa atgtcctcaa acaagtgttc 1440 ggattcagaa tgtttacata taacttctat tttattaagt tttaaagatc actgtacata 1500 gaattgaaca tttgttttcc ttattgaatc aatgtcaact caaagccctg atgaacacgg 1560 ccttgcgaaa tatgtatgtg tctttctttt tctgtttgaa aaaactcgta tacagcatat 1620 atgtatatcc atgaattcat atgatagatg natacatgag ttttgtttta tatattttcc 1680 atggcttttt ttgggcaatg attgcatctt ttttttgggt tttgaaatca ttcagcatgc 1740 aggagacaat tgaacgatat agaagtcacg taaaagatgt tcaaacagaa aattcttcga 1800 gtatagaaga tgttcaggtt cacagacata tataattcgg ttgtttgttt ttgaatttgt 1860 ttttgatata tataattcgg ttgtttgttt ttgaatttgt ttttgatata tatgtacaaa 1920 caatattcaa aagatgaacg ttgtttgttt ttaatttgaa tttgtttttg atatatataa 1980 ttcggttgtt tgtttttgaa tttgtttttg atatatataa ttcggttgca gcatttgaag 2040 catgaaacag ctactatggc aaagaaggta gaactcctag aagttgcaaa aaggtacaat 2100 tttatggttt aatcattgaa aatatacttt atatgcttct gaagatcaaa tgctgatgga 2160 aaaaccacaa aaataggatg aaaaatggct actgatcatt ttaaaatcat taatgcagca 2220 ggcaaaaggg tgaaattttt gtctatctga tgcatgcttc tgaggtttcg aatctcacta 2280 aattaaaatt aaaagaaatt aaacaagaga aaaagaatgt ttcctgatct tacaattgtt 2340 gatgttgcca aaaattgcta tttattaatc aatacgagta tatttggatt gtattttaaa 2400 taaacaaaca agcacacaca cacacacaca gattcatata tacaattaaa gaaaaaaaga 2460 tggctactga tcttagttgc aatgcaggaa acttttggga gaagggttag gatcaagcac 2520 cattgaagag atagttcaga ttgagcaaca gctggagagg agcgtacgca ttgttcgagc 2580 aagaaaggtt taaaaaatag ttacttatta tcaaagaatt attcttcctt cttcaattcc 2640 atatcaattt tagggtttat ggttgaatct ttaacattct tttgttgaat acttgacgtt 2700 ttagatgcaa gtctacaatg aacagattga gcaactacaa gcaaaggtac acagcttaat 2760 gattccaaac ctacccattt atgctatata taactcaaaa cgctcatatt tagctagagt 2820 ggatgtacaa gttttatgga atgatttaca tgttgtccaa tgcgagaact tcattaatat 2880 gggaggaagg gtttttttcg agaaactaat aaactatagt atttcttttt tatgtggatc 2940 ttcaggagaa actgctagca gctgaaaatg catcacttac tgagaaggtt agtatagttt 3000 ttcttccgta tctcctggaa gcatgttgtt caacctgcat aatgatctaa gagttaaatc 3060 tgtgtttttt ggcattcagt gcttaatcca aacagaccaa ggaacagaag aaatgagacc 3120 ggatttacgt gttgttgata acgaggagaa ctcagatgtg gaaacggaat tgttcatcgg 3180 accaccagag gtcaggagaa cgaagcaaag atggtcaaag tag 3223 <210> 2 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> target sequence <400> 2 gagggaagac tcaaatgcgg 20 <210> 3 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> target sequence <400> 3 gaagcatgaa acagctacta 20 <210> 4 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 4 tgtaacttga acatgcgacc atac 24 <210> 5 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 5 cattataagg aaaagaaccc acaaac 26 <210> 6 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 6 tgcgaccata ccactttcaa 20 <210> 7 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 7 aagcaacctc agcatcacaa 20 <210> 8 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 8 tctgtcatgc tgaacgcagc 20 <210> 9 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 9 ctaaaactgg agatgaccac cacc 24 <210> 10 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 10 gagaagctgg accctggagt 20 <210> 11 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 11 tgctcttgta tggcctttcc c 21 <210> 12 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 12 gggaagacct tgagcctttg a 21 <210> 13 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 13 tggtggtggc tgatgagtct 20 <210> 14 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 14 atgccgatgt cgcactcatc 20 <210> 15 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 15 tgttccagag accagcttcc t 21 <210> 16 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 16 catgcaatgg ttacaagaca aggtat 26 <210> 17 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 17 caaactcctc cgcaagtctc ttc 23 <110> Korea Research Institute of Bioscience and Biotechnology <120> Method for producing lettuce plant having late flowering trait by SOC1 gene editing and lettuce plant produced by the same method <130> PN21320 <160> 17 <170> KoPatentIn 3.0 <210> 1 <211> 3223 <212> DNA <213> Lactuca sativa <400> 1 atggtgagag ggaagactca aatgcggagg attgaaaatg ctacaagtag acaagtgacc 60 ttctccaaaa gaagaaatgg tttgttgaag aaagcgtttg aactttctgt gctttgtgat 120 gctgaggttg ctttgatcat cttctctcca agaggcaaac tttatgaatt tgcaagctca 180 aggttccatt tttctcactt aatcatcaaa atttgtaaat tctaatttcg ggattcttat 240 tcgtataatc ttgattttaa ttctgggttt caaatttatt tcccttttat ctactcaatg 300 catatattca tacgcgtatg cacaaacgga tctgaaaata gataacatca aagagaacca 360 tgatcatttt gatcttttct tgattctggt ttgtgggttc ttttccttat aatgatttct 420 attctgggtt taaaatattc tttctttat atactgttat ttagtttcca aactcaaggt 480 tccatttttc tcacttaaat ttcatgtttt cttgattcta aagtgtttta aaacactatt 540 aatccaacca attccagtgt atactttctt ttccatagta atgggcttca atcttctttc 600 tgatgttatc tacacaaggc acatacacag agatctatta agatacttgt gtcggacata 660 aaatgttatt tgctcgaata tggttaaccg gatctttata tgaataaaaa gggatacaat 720 attatggaat tgaaatttta attagtttca aatgcttatt gaacgctttc atgattagtt 780 tcgtacaaaa tacttactct atacatataa agatagaacc ttttttgaat ctcgagtttc 840 taccgaaatt tagagaattt taaatatata taaatgaaga gcatataact ataggaagtg 900 aggtcaatct gtgtttcctc ttagtccagt caaataataa taaagaaatg atattagtat 960 attaatataa atttttgata aaaataataa aaaatgatat gatctgattg actcttgtct 1020 ggcatgtttt gatcagttaa cttgaaatgg tgtatttcat attcatcata cgaatacgaa 1080 gaatgtcaca gcttttactt ttctgatttt actataaaaa gcatctgttt acaattagtt 1140 ttatataaat ttagtacaat attcattgtg tttaatatat ttaaataaca gtaacaaaaa 1200 tagtatctct tcttttacat atattgccct atataaactt aacattatta tattcaagtt 1260 atatatagaa aagccgactc gggtgcttga aattaagata tcatgagtgg ttttctcatg 1320 ttttgataag tataataata gtttttcgaa aggtcaaaac aaacacaatt gctataatca 1380 gtcttaagta ttagatgacc aattgttaca atttacaaaa atgtcctcaa acaagtgttc 1440 ggattcagaa tgtttacata taacttctat tttattaagt tttaaagatc actgtacata 1500 gaattgaaca tttgttttcc ttattgaatc aatgtcaact caaagccctg atgaacacgg 1560 ccttgcgaaa tatgtatgtg tctttctttt tctgtttgaa aaaactcgta tacagcatat 1620 atgtatatcc atgaattcat atgatagatg natacatgag ttttgtttta tatattttcc 1680 atggcttttt ttgggcaatg attgcatctt ttttttgggt tttgaaatca ttcagcatgc 1740 aggagacaat tgaacgatat agaagtcacg taaaagatgt tcaaacagaa aattcttcga 1800 gtatagaaga tgttcaggtt cacagacata tataattcgg ttgtttgttt ttgaatttgt 1860 ttttgatata tataattcgg ttgtttgttt ttgaatttgt ttttgatata tatgtacaaa 1920 caatattcaa aagatgaacg ttgtttgttt ttaatttgaa tttgtttttg atatatataa 1980 ttcggttgtt tgtttttgaa tttgtttttg atatatataa ttcggttgca gcatttgaag 2040 catgaaacag ctactatggc aaagaaggta gaactcctag aagttgcaaa aaggtacaat 2100 tttatggttt aatcattgaa aatatacttt atatgcttct gaagatcaaa tgctgatgga 2160 aaaaccacaa aaataggatg aaaaatggct actgatcatt ttaaaatcat taatgcagca 2220 ggcaaaaggg tgaaattttt gtctatctga tgcatgcttc tgaggtttcg aatctcacta 2280 aattaaaatt aaaagaaatt aaacaagaga aaaagaatgt ttcctgatct tacaattgtt 2340 gatgttgcca aaaattgcta tttattaatc aatacgagta tatttggatt gtattttaaa 2400 taaacaaaca agcacacaca cacacacaca gattcatata tacaattaaa gaaaaaaaga 2460 tggctactga tcttagttgc aatgcaggaa acttttggga gaagggttag gatcaagcac 2520 cattgaagag atagttcaga ttgagcaaca gctggagagg agcgtacgca ttgttcgagc 2580 aagaaaggtt taaaaaatag ttacttatta tcaaagaatt attcttcctt cttcaattcc 2640 atatcaattt tagggtttat ggttgaatct ttaacattct tttgttgaat acttgacgtt 2700 ttagatgcaa gtctacaatg aacagattga gcaactacaa gcaaaggtac acagcttaat 2760 gattccaaac ctacccattt atgctatata taactcaaaa cgctcatatt tagctagagt 2820 ggatgtacaa gttttatgga atgatttaca tgttgtccaa tgcgagaact tcattaatat 2880 gggaggaagg gtttttttcg agaaactaat aaactatagt atttcttttt tatgtggatc 2940 ttcaggagaa actgctagca gctgaaaatg catcacttac tgagaaggtt agtatagttt 3000 ttcttccgta tctcctggaa gcatgttgtt caacctgcat aatgatctaa gagttaaatc 3060 tgtgtttttt ggcattcagt gcttaatcca aacagaccaa ggaacagaag aaatgagacc 3120 ggatttacgt gttgttgata acgaggagaa ctcagatgtg gaaacggaat tgttcatcgg 3180 accaccagag gtcaggagaa cgaagcaaag atggtcaaag tag 3223 <210> 2 <211> 20 <212> DNA <213> artificial sequence <220> <223> target sequence <400> 2 gagggaagac tcaaatgcgg 20 <210> 3 <211> 20 <212> DNA <213> artificial sequence <220> <223> target sequence <400> 3 gaagcatgaa acagctacta 20 <210> 4 <211> 24 <212> DNA <213> artificial sequence <220> <223> primer <400> 4 tgtaacttga acatgcgacc atac 24 <210> 5 <211> 26 <212> DNA <213> artificial sequence <220> <223> primer <400> 5 cattataagg aaaagaaccc acaaac 26 <210> 6 <211> 20 <212> DNA <213> artificial sequence <220> <223> primer <400> 6 tgcgaccata ccactttcaa 20 <210> 7 <211> 20 <212> DNA <213> artificial sequence <220> <223> primer <400> 7 aagcaacctc agcatcacaa 20 <210> 8 <211> 20 <212> DNA <213> artificial sequence <220> <223> primer <400> 8 tctgtcatgc tgaacgcagc 20 <210> 9 <211> 24 <212> DNA <213> artificial sequence <220> <223> primer <400> 9 ctaaaactgg agatgaccac cacc 24 <210> 10 <211> 20 <212> DNA <213> artificial sequence <220> <223> primer <400> 10 gagaagctgg accctggagt 20 <210> 11 <211> 21 <212> DNA <213> artificial sequence <220> <223> primer <400> 11 tgctcttgta tggcctttcc c 21 <210> 12 <211> 21 <212> DNA <213> artificial sequence <220> <223> primer <400> 12 gggaagacct tgagcctttg a 21 <210> 13 <211> 20 <212> DNA <213> artificial sequence <220> <223> primer <400> 13 tggtggtggc tgatgagtct 20 <210> 14 <211> 20 <212> DNA <213> artificial sequence <220> <223> primer <400> 14 atgccgatgt cgcactcatc 20 <210> 15 <211> 21 <212> DNA <213> artificial sequence <220> <223> primer <400> 15 tgttccagag accagcttcc t 21 <210> 16 <211> 26 <212> DNA <213> artificial sequence <220> <223> primer <400> 16 catgcaatgg ttacaagaca aggtat 26 <210> 17 <211> 23 <212> DNA <213> artificial sequence <220> <223> primer <400> 17 caaactcctc cgcaagtctc ttc 23

Claims (8)

상추 유래 SOC1(suppressor of overexpression of constans 1) 유전자의 표적 염기서열에 특이적인 가이드 RNA와 엔도뉴클레아제(endonuclease) 단백질의 복합체(ribonucleoprotein); 또는 상추 유래 SOC1 유전자의 표적 염기서열에 특이적인 가이드 RNA(guide RNA)를 암호화하는 DNA 및 엔도뉴클레아제 단백질을 암호화하는 핵산 서열을 포함하는 재조합 벡터;를 유효성분으로 함유하는, 상추 식물체의 추대를 지연시키기 위한 유전체 교정용 조성물.a complex (ribonucleoprotein) of a guide RNA specific to a target sequence of a lettuce-derived SOC1 (suppressor of overexpression of constans 1) gene and an endonuclease protein; Or a recombinant vector comprising DNA encoding a guide RNA specific to the target sequence of the lettuce-derived SOC1 gene and a nucleic acid sequence encoding an endonuclease protein; A composition for dielectric correction for delaying. 제1항에 있어서, 상기 SOC1(suppressor of overexpression of constans 1) 유전자의 표적 염기서열은 서열번호 2의 염기서열로 이루어진 것을 특징으로 하는 조성물.The composition according to claim 1, wherein the target nucleotide sequence of the suppressor of overexpression of constans 1 ( SOC1 ) gene is composed of the nucleotide sequence of SEQ ID NO: 2. (a) 상추 유래 SOC1 유전자의 표적 염기서열에 특이적인 가이드 RNA(guide RNA) 및 엔도뉴클레아제(endonuclease) 단백질을 상추 식물세포에 도입하여 유전체를 교정하는 단계; 및
(b) 상기 유전체가 교정된 상추 식물세포로부터 상추 식물체를 재분화하는 단계;를 포함하는, 추대가 지연된 유전체 교정 상추 식물체의 제조방법.
(a) introducing a guide RNA and an endonuclease protein specific for the target sequence of the lettuce-derived SOC1 gene into lettuce plant cells to correct the genome; and
(b) regenerating lettuce plants from the genome-corrected lettuce plant cells; a method for producing a genome-corrected lettuce plant with delayed growth.
제3항에 있어서, 상기 (a) 단계의 가이드 RNA 및 엔도뉴클레아제 단백질을 상추 식물세포에 도입하는 것은, SOC1 유전자의 표적 염기서열에 특이적인 가이드 RNA와 엔도뉴클레아제 단백질의 복합체(ribonucleoprotein); 또는 상추 유래 SOC1 유전자의 표적 염기서열에 특이적인 가이드 RNA를 암호화하는 DNA 및 엔도뉴클레아제 단백질을 암호화하는 핵산 서열을 포함하는 재조합 벡터;를 이용하는 것을 특징으로 하는 제조방법.The method of claim 3, wherein introducing the guide RNA and endonuclease protein of step (a) into the lettuce plant cells is a complex of guide RNA and endonuclease protein specific for the target sequence of the SOC1 gene (ribonucleoprotein ); or a recombinant vector comprising DNA encoding a guide RNA specific to the target sequence of the lettuce-derived SOC1 gene and a nucleic acid sequence encoding an endonuclease protein. 제3항에 있어서, 상기 SOC1 유전자의 표적 염기서열은 서열번호 2의 염기서열로 이루어진 것을 특징으로 하는 제조방법.The preparation method according to claim 3, wherein the target nucleotide sequence of the SOC1 gene consists of the nucleotide sequence of SEQ ID NO: 2. 제3항에 있어서, 상기 식물세포는 원형질체인 것을 특징으로 하는 제조방법.The method according to claim 3, wherein the plant cell is a protoplast. 제3항 내지 제6항 중 어느 한 항의 방법에 의해 제조된 추대가 지연된 유전체 교정 상추 식물체.A genome corrected lettuce plant with delayed growth prepared by the method of any one of claims 3 to 6. 제7항에 따른 상추 식물체의 유전체가 교정된 종자.A seed whose genome is corrected in a lettuce plant according to claim 7.
KR1020210152979A 2021-11-09 2021-11-09 Method for producing lettuce plant having late flowering trait by SOC1 gene editing and lettuce plant produced by the same method KR20230067161A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210152979A KR20230067161A (en) 2021-11-09 2021-11-09 Method for producing lettuce plant having late flowering trait by SOC1 gene editing and lettuce plant produced by the same method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210152979A KR20230067161A (en) 2021-11-09 2021-11-09 Method for producing lettuce plant having late flowering trait by SOC1 gene editing and lettuce plant produced by the same method

Publications (1)

Publication Number Publication Date
KR20230067161A true KR20230067161A (en) 2023-05-16

Family

ID=86545872

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210152979A KR20230067161A (en) 2021-11-09 2021-11-09 Method for producing lettuce plant having late flowering trait by SOC1 gene editing and lettuce plant produced by the same method

Country Status (1)

Country Link
KR (1) KR20230067161A (en)

Similar Documents

Publication Publication Date Title
CN110494039B (en) Method for modifying resistance spectrum of spinach to downy mildew
CN106164272B (en) Modified plants
US9756871B2 (en) TAL-mediated transfer DNA insertion
AU2016309392A1 (en) Method for obtaining glyphosate-resistant rice by site-directed nucleotide substitution
CN106399323B (en) A kind of Rice Leaf color controlling gene YL1 and its application
US11104910B2 (en) Compositions and methods for regulating gene expression for targeted mutagenesis
CN110684796B (en) Method for specifically knocking out soybean lipoxygenase gene by CRISPR-Cas9 and application thereof
JP2021510069A (en) Regeneration of genetically modified plants
US20210269817A1 (en) Inhibition of bolting and flowering of a beta vulgaris plant
CN115942867A (en) Powdery mildew resistant cannabis plant
CN110066824B (en) Artificial base editing system for rice
CN115315516A (en) Method for improving genetic transformation and gene editing efficiency of plants
US20110312094A1 (en) Use of double stranded rna to increase the efficiency of targeted gene alteration in plant protoplasts
US20230323384A1 (en) Plants having a modified lazy protein
CN111511916A (en) Flowering phase regulation gene CMP1 and related vector and application thereof
KR102547766B1 (en) Method for producing genome-edited Petunia plant with enhanced flower longevity by PhACO1 gene editing and genome-edited Petunia plant with enhanced flower longevity produced by the same method
JP2022505440A (en) Dual guide RNA for CRISPR / Cas genome editing in plant cells
KR20200066967A (en) Method for producing genome-edited Brassica rapa plant having late flowering trait by FT gene editing and the plant thereof
CN116064568A (en) Alfalfa MsASG166 gene and application thereof in improving drought tolerance of plants
KR20230067161A (en) Method for producing lettuce plant having late flowering trait by SOC1 gene editing and lettuce plant produced by the same method
IL305071A (en) Domestication of a legume plant
KR20230001450A (en) Method for producing cabbage plant having late-flowering trait using CRISPR/Cas complex
CN115942868A (en) Cannabis plant with increased yield
KR20210011394A (en) Composition for editing flavonoid biosynthetic genome using CRISPR/CAS9 system and use thereof
KR102629157B1 (en) Recombinant vector for gene editing of Solanum lycopersicum using Potato Virus X vector and uses thereof