KR20220138542A - Biodegradable bioplastic based foam sheet and use of foam-molding product using the same - Google Patents

Biodegradable bioplastic based foam sheet and use of foam-molding product using the same Download PDF

Info

Publication number
KR20220138542A
KR20220138542A KR1020210044177A KR20210044177A KR20220138542A KR 20220138542 A KR20220138542 A KR 20220138542A KR 1020210044177 A KR1020210044177 A KR 1020210044177A KR 20210044177 A KR20210044177 A KR 20210044177A KR 20220138542 A KR20220138542 A KR 20220138542A
Authority
KR
South Korea
Prior art keywords
poly
hydroxybutyrate
foam sheet
bioplastic
polyhydroxyalkanoate
Prior art date
Application number
KR1020210044177A
Other languages
Korean (ko)
Inventor
이종
박동민
Original Assignee
주식회사 비지에프에코바이오
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 비지에프에코바이오 filed Critical 주식회사 비지에프에코바이오
Priority to KR1020210044177A priority Critical patent/KR20220138542A/en
Publication of KR20220138542A publication Critical patent/KR20220138542A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0023Use of organic additives containing oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0012Combinations of extrusion moulding with other shaping operations combined with shaping by internal pressure generated in the material, e.g. foaming
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0016Plasticisers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2303/00Characterised by the use of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08J2303/02Starch; Degradation products thereof, e.g. dextrin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2403/00Characterised by the use of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08J2403/02Starch; Degradation products thereof, e.g. dextrin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2467/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2467/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones

Abstract

The present invention relates to a bioplastic-based foam sheet and to a biodegradable molded foam product using the same. The present invention provides the bioplastic-based foam sheet containing a polyhydroxyalkanoate-based polymer and optimizing compatibility between components to be suitable for manufacturing an extruded foam sheet to be extruded and foamed to have increased mechanical strength and improved biodegradation rate of polyhydroxyalkanoate-based polymers, and molded and processed and applied to the biodegradable molded foam products applied to fields including food packaging containers, industrial packaging materials, industrial materials, agricultural materials, and fishery materials.

Description

바이오플라스틱 기반의 발포시트 및 그를 이용한 생분해 성형발포 제품{BIODEGRADABLE BIOPLASTIC BASED FOAM SHEET AND USE OF FOAM-MOLDING PRODUCT USING THE SAME}Bioplastic-based foam sheet and biodegradable molded foam product using the same

본 발명은 바이오플라스틱 기반의 발포시트 및 그를 이용한 생분해 성형발포 제품에 관한 것으로서, 더욱 상세하게는 폴리하이드록시알카노에이트계 폴리머를 함유하고 압출발포시트 제조에 적합하도록 성분간 상용성을 최적화한 발포조성물이 압출발포됨으로써, 폴리하이드록시알카노에이트계 폴리머의 기계적 강도 증가 및 생분해 속도를 동시에 향상시킨 바이오플라스틱 기반의 발포시트 및 이를 성형 가공한 생분해 성형발포 제품에 관한 것이다. The present invention relates to a bioplastic-based foam sheet and a biodegradable molded foam product using the same. The present invention relates to a bioplastic-based foam sheet that simultaneously improves the mechanical strength and biodegradation rate of a polyhydroxyalkanoate-based polymer by extruding and foaming the composition, and a biodegradable molded foam product obtained by molding and processing the same.

환경오염이 인류의 미래를 위협하는 심각한 문제로 부상하면서 이를 해결하기 위한 대안으로 바이오플라스틱 산업에 대한 관심이 커지고 있다. As environmental pollution emerges as a serious problem that threatens the future of mankind, interest in the bioplastics industry is growing as an alternative to solve it.

바이오플라스틱 산업이란 식물 등 재생 가능한 생물자원이나 미생물, 효소 등을 활용해 기존 화학 산업의 소재를 바이오 기반으로 대체하는 산업을 말한다. 특히, 셧다운과 비대면 문화의 확산으로 전 세계적으로 일회용 플라스틱 쓰레기가 늘어나면서 특히 포장 분야에서 비생분해성 플라스틱의 대체품으로서의 생분해성 바이오플라스틱에 대한 산업적 관심이 증가하고 있다. The bioplastic industry refers to an industry that uses renewable biological resources such as plants, microorganisms, and enzymes to replace materials in the existing chemical industry with bio-based materials. In particular, as the number of disposable plastic waste increases worldwide due to shutdowns and the spread of non-face-to-face culture, industrial interest in biodegradable bioplastics as a substitute for non-biodegradable plastics is increasing, especially in the packaging field.

플라스틱 폐기물 처리 방안으로는 소각, 재활용 및 생물학적 분해가 있으나 이러한 방법들은 대부분 잠재적인 문제를 야기할 수 있다. 이러한 석유화학 유래 플라스틱을 대체하기 위하여 생분해성이 높은 바이오 플라스틱의 연구가 진행되어 왔으며, 이는 전분, 셀룰로오스, 젖산(Lactic acid), 글리콜산(Glycolic acid)을 중합한 플라스틱, 미생물에 의해 합성되는 폴리하이드록시알카노에이트(Poly hydroxy alkanoate; 이하 PHA)를 대상으로 하고 있다.Plastic waste treatment options include incineration, recycling and biodegradation, but most of these methods pose potential problems. In order to replace these petrochemical-derived plastics, research on highly biodegradable bioplastics has been conducted, which includes plastics made by polymerizing starch, cellulose, lactic acid, and glycolic acid, and polysynthesized by microorganisms. Poly hydroxy alkanoate (hereinafter PHA) is targeted.

그 중에서도 생분해성 고분자인 폴리하이드록시알카노에이트(PHA)는 세포내 저장 물질로서 사용되는 토양미생물에 의해 합성되며, 이는 합성플라스틱과 유사한 물성을 가지고 있으며, 호기적 조건에서 물과 이산화탄소로 완전히 분해되기 때문에 플라스틱의 대체재로서 각광받고 있다. Among them, polyhydroxyalkanoate (PHA), a biodegradable polymer, is synthesized by soil microorganisms used as intracellular storage materials, has properties similar to synthetic plastics, and is completely decomposed into water and carbon dioxide under aerobic conditions. Therefore, it is gaining popularity as an alternative to plastics.

그러나, 현재까지는 폴리(3-하이드록시부티레이트-co-3-하이드록시발레레이트)(PHBV) 공중합체만 상당량 이용할 수 있으므로, PHA의 상업적 가용성에는 제한이 있다. However, to date only significant amounts of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) copolymers are available, limiting the commercial availability of PHAs.

각종 PHA를 통상의 가공 장치로 가공할 수 있으나, 분자량 유지가 어렵고 일부 경우 가공성 부족하여 상업적 적용분야가 제한될 수 있다. Although various PHAs can be processed with conventional processing equipment, it is difficult to maintain molecular weight and in some cases, lack of processability may limit commercial applications.

또한, 상기 고분자의 결정화 동력학에 대한 이해가 부족하며, 이들 고분자의 가공시 흔히 주기 시간이 길어지는데, 이는 고분자의 상업적 허용을 더 제한하게 된다.In addition, there is a lack of understanding of the crystallization kinetics of these polymers, and the processing of these polymers often results in long cycle times, which further limits the commercial acceptance of the polymers.

미생물의 기능에 의해서 물과 이산화탄소로 분해되는 생분해성 폴리에스테르에서도, 폴리하이드록시알카노에이트, 특히 폴리(3-하이드록시 알카노에이트)의 경우, 결정화의 늦은 점이 결점으로 지적되어 왔다.Even in biodegradable polyesters that are decomposed into water and carbon dioxide by the function of microorganisms, in the case of polyhydroxyalkanoates, particularly poly(3-hydroxyalkanoates), the slow crystallization has been pointed out as a drawback.

특허문헌 1은 결정화의 늦은 폴리하이드록시알카노에이트에 결정핵제로서 당 알코올류를 혼합함으로써, 상기 당 알코올류 중에 존재하는 많은 하이드록시기와 PHA의 에스테르기와의 수소 결합에 의한 상호작용 또는 계면의 정합에 의한 에피텍시얼 성장 등의 효과에 의해 결정화가 촉진된다고 보고하고 있다. Patent Document 1 discloses that by mixing sugar alcohols as a nucleating agent with polyhydroxyalkanoate that is crystallized late, interaction or interface matching between many hydroxyl groups present in the sugar alcohols and ester groups of PHA by hydrogen bonding. It is reported that crystallization is promoted by effects such as epitaxial growth.

그러나 높은 수준의 3-하이드록시부티레이트 단량체를 함유하는 PHA 조성물은 용융 가공 온도(예컨대, 사출성형, 시트압출 및 블로운 필름의 변환에 사용되는 온도)에서의 취성 및 열안정성 문제점과 같은 물리적 한계가 여전히 존재하고, 그 결과로 얻어지는 제품들은 많은 적용분야에 수용할 만한 인성도를 갖지 못할 수 있다. However, PHA compositions containing high levels of 3-hydroxybutyrate monomer have physical limitations such as brittleness and thermal stability problems at melt processing temperatures (eg, those used for injection molding, sheet extrusion and blown film conversion). still exist, and the resulting products may not have acceptable toughness for many applications.

특허문헌 2는 생분해성을 가지며 양호한 폴리하이드록시알카노에이트 수지 발포입자에 관한 발명으로서, 폴리(3-하이드록시 알카노에이트)(P3HA) 100 중량부에, 폴리(3-하이드록시부티레이트)(PHB) 및 소시아네이트 화합물 0.1∼10 중량부를 포함해서 이루어지는 P3HA 수지 조성물로 이루어지는 P3HA 수지 발포 입자를 개시하면서 가공성을 개선하고자 제안하고 있다. Patent Document 2 is an invention related to polyhydroxyalkanoate resin foam particles having good biodegradability and poly(3-hydroxybutyrate) ( PHB) and a P3HA resin composition comprising 0.1 to 10 parts by weight of a isocyanate compound are disclosed and proposed to improve processability.

반면에, 더 빠른 속도로 결정화되면, 열가소성 물질이 점착성을 잃게 되는 것은 물론, 가공시 폴리머의 기계적 강도 물성이 저하되는 문제가 있어 최종 열가소성 제품의 기계적 강도 증가를 동시에 충족할 필요가 요구된다. On the other hand, when crystallized at a higher rate, there is a problem that the thermoplastic material loses adhesiveness as well as the mechanical strength properties of the polymer during processing.

이에, 본 발명자는 종래 산업적 요구에 따른 바이오플라스틱의 물성을 개선하고자 안출한 것으로서, 폴리하이드록시알카노에이트계 폴리머를 함유하고 압출발포시트 제조에 적합하도록 성분간 상용성을 최적화한 조성물을 압출발포하여, 상기 폴리하이드록시알카노에이트계 폴리머의 기계적 강도 증가 및 생분해 속도를 동시에 향상시킨 발포시트 제조를 확인함으로써, 본 발명을 완성하였다. Accordingly, the present inventors have devised to improve the physical properties of bioplastics according to the prior industrial needs, and extruded and foamed a composition containing a polyhydroxyalkanoate-based polymer and optimizing compatibility between components to be suitable for manufacturing an extruded foam sheet. Thus, the present invention was completed by confirming the production of foam sheets that simultaneously improved the mechanical strength and biodegradation rate of the polyhydroxyalkanoate-based polymer.

특허문헌 1: 일본공개 제2013-231189호 (2013.11.14 공개)Patent Document 1: Japanese Laid-Open No. 2013-231189 (published on November 14, 2013) 특허문헌 2: 일본특허 제5408877호 (2013.11.15 등록)Patent Document 2: Japanese Patent No. 5408877 (Registered on November 15, 2013)

본 발명의 목적은 폴리하이드록시알카노에이트계 폴리머를 함유하고 압출발포시트 제조에 적합하도록 성분간 상용성이 최적화된 조성물이 압출발포된 바이오플라스틱 기반의 발포시트를 제공하는 것이다. An object of the present invention is to provide a bioplastic-based foam sheet in which a composition containing a polyhydroxyalkanoate-based polymer and compatibility between components is optimized to be suitable for manufacturing an extruded foam sheet.

본 발명의 다른 목적은 상기 바이오플라스틱 기반의 발포시트가 성형가공된 생분해성 성형발포 제품을 제공하는 것이다. Another object of the present invention is to provide a biodegradable molded foam product in which the bioplastic-based foam sheet is molded.

본 발명은 폴리하이드록시알카노에이트계 폴리머 100중량부에 대하여, 유기과산화물계, 에폭시계 및 그들의 조합에서 선택된 압출반응조제의 혼합형태로 이루어진 가교제 0.01 내지 4 중량부, 가소제 0.001 내지 1 중량부 및 발포핵제 0.01 내지 4 중량부가 혼합된 조성물이 압출발포된 바이오플라스틱 기반의 발포시트를 제공한다. The present invention relates to 100 parts by weight of the polyhydroxyalkanoate-based polymer, 0.01 to 4 parts by weight of a crosslinking agent, 0.001 to 1 part by weight of a plasticizer, and A composition in which 0.01 to 4 parts by weight of a foaming nucleating agent is mixed provides a bioplastic-based foam sheet extruded and foamed.

본 발명에서 폴리하이드록시알카노에이트계 폴리머는 분자량 10만 내지 200만을 가지는 폴리머이며, 구체적으로는 3-하이드록시알카노에이트의 반복구조가 중합에 의해 가교된 폴리머 또는 E-빔(beam)에 의해 가교된 폴리머인 것이다. In the present invention, the polyhydroxyalkanoate-based polymer is a polymer having a molecular weight of 100,000 to 2 million, specifically, a polymer in which the repeating structure of 3-hydroxyalkanoate is crosslinked by polymerization or E-beam. It is a polymer crosslinked by

3-하이드록시알카노에이트가 중합에 의해 가교된 폴리머이다. 3-hydroxyalkanoate is a polymer crosslinked by polymerization.

구체적으로는 폴리하이드록시알카노에이트계 폴리머는 3-하이드록시부틸레이트(3-hydroxybutyrate,), 3-하이드록시발레레이트(3-hydroxyvalerate), 3-하이드록시헥사노에이트(3-hydroxyhexanoate), 3-하이드록시헵타노에이트(3-hydroxyheptanoate,), 하이드록시옥타노에이트(3-hydroxyoctanoate), 하이드록시노나노에이트(3-hydroxynonanoate), 하이드록시데카노에이트(3-hydroxydecanoate), 하이드록시운데카노에이트(3-hydroxyundecanoate), 하이드록시도데카노에이트(3-hydroxydodecanoate), 하이드록시트리데카노에이트(3-hydroxytridecanoate), 하이드록시테트라데카노에이트(3-hydroxytetradecanoate), 하이드록시펜타데카노에이트(3-hydroxypentadecanoate), 하이드록시헥사데카노에이트(3-hydroxyhexadecanoate), 3-하이드록시운덕-10-에노에이트(3-hydroxyundec-10-enoate) 및 3-하이드록시-5-페닐발레레이트(3-hydroxy-5-phenylvalerate)로 이루어진 군에서 선택된 동종의 하이드록시알카노에이트가 중합된 호모폴리머, 이종의 하이드록시알카노에이트가 2종이상 중합된 코폴리머 또는 터폴리머이다. Specifically, the polyhydroxyalkanoate-based polymer is 3-hydroxybutyrate (3-hydroxybutyrate,), 3-hydroxyvalerate, 3-hydroxyhexanoate, 3-hydroxyheptanoate (3-hydroxyheptanoate), hydroxyoctanoate (3-hydroxyoctanoate), hydroxynonanoate (3-hydroxynonanoate), hydroxydecanoate (3-hydroxydecanoate), hydroxyunde Canoate (3-hydroxyundecanoate), hydroxydodecanoate (3-hydroxydodecanoate), hydroxytridecanoate (3-hydroxytridecanoate), hydroxytetradecanoate (3-hydroxytetradecanoate), hydroxypentadecanoate ( 3-hydroxypentadecanoate), hydroxyhexadecanoate (3-hydroxyhexadecanoate), 3-hydroxyundec-10-enoate (3-hydroxyundec-10-enoate) and 3-hydroxy-5-phenylvalerate (3-hydroxyundec-10-enoate) hydroxy-5-phenylvalerate) is a homopolymer in which hydroxyalkanoates of the same type are polymerized, and a copolymer or terpolymer in which two or more types of hydroxyalkanoates of different types are polymerized.

더욱 바람직하게는 폴리하이드록시알카노에이트계 폴리머는 폴리3-하이드록시부틸레이트(poly-3-hydroxybutyrate, P3HB), 폴리3-하이드록시발레레이트(poly-3-hydroxyvalerate, PHV), 폴리3-하이드록시헥사노에이트(poly-3-hydroxyhexanoate, PHH), 폴리3-하이드록시옥타노에이트(poly-3-hydroxyoctanoate, PHO), 폴리3-하이드록시부틸레이트-코-3-하이드록시발레레이트(poly(3-hydroxybutyrate-co-3-hydroxyvalerate, PHBV), 폴리3-하이드록시부틸레이트-코-3-하이드록시헥사노에이트(poly(3-hydroxybutyrate-co-3-hydroxyhexanoate, PHBH), 폴리3-하이드록시부틸레이트-코-4-하이드록시부틸레이트(poly(3-hydroxybutyrate-co-4-hydroxybutyrate), 폴리3-하이드록시부틸레이트-코-3-발레레이트(poly(3-hydroxybutyrate-co-3-valerate, PHBV), 폴리3-하이드록시부틸레이트-코-3-하이드로헥사노에이트(poly(3-hydroxybutyrate-co-3-hydroxyhaxanoate, PHBH), 폴리3-하이드록시부틸레이트-코-3-하이드록시운덕-10-에노에이트(poly(3-hydroxyoctanoate-co-3-hydroxyundec-10-enoate, PHOU)로 이루어진 군에서 선택되는 어느 하나를 사용하는 것이다. More preferably, the polyhydroxyalkanoate-based polymer is poly-3-hydroxybutyrate (P3HB), poly-3-hydroxyvalerate (PHV), poly3- Hydroxyhexanoate (poly-3-hydroxyhexanoate, PHH), poly-3-hydroxyoctanoate (PHO), poly3-hydroxybutylate-co-3-hydroxyvalerate ( poly(3-hydroxybutyrate-co-3-hydroxyvalerate, PHBV), poly3-hydroxybutyrate-co-3-hydroxyhexanoate (PHBH), poly3 -Hydroxybutylate-co-4-hydroxybutyrate (poly(3-hydroxybutyrate-co-4-hydroxybutyrate), poly3-hydroxybutyrate-co-3-valerate (poly(3-hydroxybutyrate-co -3-valerate, PHBV), poly-3-hydroxybutyrate-co-3-hydrohexanoate (poly(3-hydroxybutyrate-co-3-hydroxyhaxanoate, PHBH), Using any one selected from the group consisting of poly 3-hydroxybutyrate-co-3-hydroxyundec-10-enoate (poly(3-hydroxyoctanoate-co-3-hydroxyundec-10-enoate, PHOU) will be.

또한, 본 발명의 폴리하이드록시알카노에이트계 폴리머는 상기 폴리(3-하이드록시알카노에이트(PHA)계 제1폴리머에, 열가소성 전분(TPS), 폴리부틸렌 석시네이트(PBS), 폴리부틸렌 아디페이트(PBA), 폴리부틸렌아디페리트(PBA), 폴리(부틸렌 석시네이트 코- 부틸렌 아디페이트)(PBSA), 폴리(부틸렌 아디페이트 코-테레프탈레이트)(PBAT), 폴리(부틸렌 아디페이트 코-석시네이트 코-테레프탈레이트)(PBAST), 폴리(부틸렌 석시네이트 코-L-락테이트)(PBSL), 폴리카프로락톤(PCL), 폴리글리콜릭산(PGA), 폴리비닐알코올(PVA), 폴리락트산(PLA), 폴리히드록시알카노에이트 및 지방족/방향족 공중합 폴리에스테르로 이루어진 군에서 선택된 1종 이상의 제2폴리머가 블렌딩된 폴리머이고, 상기 제2 폴리머가 0.01 내지 90 중량%로 함유된 것이다.In addition, the polyhydroxyalkanoate-based polymer of the present invention is added to the poly(3-hydroxyalkanoate (PHA)-based first polymer, thermoplastic starch (TPS), polybutylene succinate (PBS), polybutyl Lene adipate (PBA), polybutylene adipate (PBA), poly(butylene succinate co-butylene adipate) (PBSA), poly(butylene adipate co-terephthalate) (PBAT), poly (butylene adipate co-succinate co-terephthalate) (PBAST), poly(butylene succinate co-L-lactate) (PBSL), polycaprolactone (PCL), polyglycolic acid (PGA), poly At least one second polymer selected from the group consisting of vinyl alcohol (PVA), polylactic acid (PLA), polyhydroxyalkanoate and aliphatic/aromatic copolymer polyester is a blended polymer, and the second polymer is 0.01 to 90 It is contained in % by weight.

본 발명의 바이오플라스틱 기반의 발포시트는 폴리하이드록시알카노에이트계 폴리머의 생분해성 속도를 최적화하고 기계적 강도를 증진하고, 압출발포시트 가공에 유리하도록 성분간의 상용성을 고려한 조성물을 제공한다. The bioplastic-based foam sheet of the present invention optimizes the biodegradability rate of the polyhydroxyalkanoate-based polymer, improves mechanical strength, and provides a composition in consideration of compatibility between components so as to be advantageous for processing the extruded foam sheet.

나아가, 본 발명은 상기의 바이오플라스틱 기반의 발포시트를 성형 가공하여, 식품포장용기, 산업용 포장재, 산업용자재, 의료용 자재, 의료용 의류, 농업용자재 및 어업용자재로 이루어진 군에서 선택된 어느 하나에 적용되는 생분해 성형발포 제품을 제공한다. Furthermore, the present invention is biodegradable applied to any one selected from the group consisting of food packaging containers, industrial packaging materials, industrial materials, medical materials, medical clothing, agricultural materials and fishery materials by molding and processing the above bioplastic-based foam sheet. Molded foam products are provided.

본 발명은 폴리하이드록시알카노에이트계 폴리머의 물성을 개선하고, 압출발포시트 제조에 적합하도록 성분간 상용성을 최적화한 조성물을 제공하고, 상기 조성물을 이용하여 기계적 강도 증가 및 생분해 속도를 더욱 가속화시켜 분해 가능하도록 한, 바이오플라스틱 기반의 발포시트를 제공할 수 있다. The present invention improves the physical properties of a polyhydroxyalkanoate-based polymer, provides a composition that optimizes compatibility between components to be suitable for manufacturing an extruded foam sheet, and further accelerates the increase in mechanical strength and biodegradation rate by using the composition It is possible to provide a bioplastic-based foam sheet so that it can be decomposed.

또한, 본 발명은 기계적 강도 증가 및 생분해 속도가 향상된 폴리하이드록시알카노에이트계 폴리머를 함유한 발포시트를 성형 가공하여 식품포장용기, 산업용 포장재, 산업용자재, 농업용자재, 어업용자재를 포함한 분야에 유용하게 적용할 수 있다. In addition, the present invention is useful in fields including food packaging containers, industrial packaging materials, industrial materials, agricultural materials, and fishery materials by molding and processing a foam sheet containing a polyhydroxyalkanoate-based polymer with increased mechanical strength and improved biodegradation rate. can be applied

이하, 본 발명을 상세히 설명하고자 한다.Hereinafter, the present invention will be described in detail.

본 발명은 폴리하이드록시알카노에이트계 폴리머 100중량부에 대하여, 유기과산화물계, 에폭시계 및 그들의 조합에서 선택된 압출반응조제의 혼합형태로 이루어진 가교제 0.01 내지 4 중량부, The present invention relates to 100 parts by weight of a polyhydroxyalkanoate-based polymer, 0.01 to 4 parts by weight of a crosslinking agent consisting of a mixture of an extrusion reaction aid selected from organic peroxide-based, epoxy-based, and combinations thereof;

가소제 0.001 내지 1 중량부 및 0.001 to 1 part by weight of a plasticizer and

발포핵제 0.01 내지 4 중량부가 혼합되어 발포된 바이오플라스틱 기반의 발포시트를 제공한다. 0.01 to 4 parts by weight of the foaming nucleating agent is mixed to provide a foamed bioplastic-based foam sheet.

본 발명의 바이오플라스틱 기반의 발포시트는 폴리하이드록시알카노에이트계 폴리머를 주성분으로 함유하되, 물성 개선과 압출발포시트 제적에 적합하도록 성분간의 상용성을 고려한 조성물로부터 수득될 수 있다. The bioplastic-based foam sheet of the present invention contains a polyhydroxyalkanoate-based polymer as a main component, but it can be obtained from a composition in consideration of compatibility between components so as to be suitable for improving physical properties and weaving the extruded foam sheet.

이하, 각 성분별 특징에 대하여 상세히 설명한다. Hereinafter, the characteristics of each component will be described in detail.

1) 폴리하이드록시알카노에이트계 폴리머1) Polyhydroxyalkanoate-based polymer

본 발명에서 사용되는 폴리하이드록시알카노에이트계 폴리머는 분자량 10만 내지 200만을 충족한 폴리머를 사용하는 것이고, 하기 식으로 표시되는 3-하이드록시알카노에이트의 반복구조가 중합에 의해 가교된 폴리머 또는 하기 3-하이드록시알카노에이트의 반복구조가 E-빔(beam)에 의해 가교된 폴리머인 것이다. The polyhydroxyalkanoate-based polymer used in the present invention uses a polymer satisfying a molecular weight of 100,000 to 2,000,000, and a polymer in which the repeating structure of 3-hydroxyalkanoate represented by the following formula is crosslinked by polymerization Alternatively, the repeating structure of 3-hydroxyalkanoate is a polymer crosslinked by E-beam.

Figure pat00001
Figure pat00001

상기에서 R은 C1 내지 C13 알킬기이고, C6 내지 C10 아릴기이다. In the above, R is a C 1 to C 13 alkyl group, and a C 6 to C 10 aryl group.

구체적으로는 폴리하이드록시알카노에이트계 폴리머는 3-하이드록시부틸레이트(3-hydroxybutyrate)(PHB), 3-하이드록시발레레이트(3-hydroxyvalerate)(PHV), 3-하이드록시헥사노에이트(3-hydroxyhexanoate), 3-하이드록시헵타노에이트(3-hydroxyheptanoate), 하이드록시옥타노에이트(3-hydroxyoctanoate), 하이드록시노나노에이트(3-hydroxynonanoate), 하이드록시데카노에이트(3-hydroxydecanoate), 하이드록시운데카노에이트(3-hydroxyundecanoate), 하이드록시도데카노에이트(3-hydroxydodecanoate), 하이드록시트리데카노에이트(3-hydroxytridecanoate), 하이드록시테트라데카노에이트(3-hydroxytetradecanoate), 하이드록시펜타데카노에이트(3-hydroxypentadecanoate), 하이드록시헥사데카노에이트(3-hydroxyhexadecanoate), 3-하이드록시운덕-10-에노에이트(3-hydroxyundec-10-enoate) 및 3-하이드록시-5-페닐발레레이트(3-hydroxy-5-phenylvalerate)로 이루어진 군에서 선택된 동종의 하이드록시알카노에이트가 중합된 호모폴리머, 이종의 하이드록시알카노에이트가 2종이상 중합된 코폴리머 또는 터폴리머를 사용하는 것이다. Specifically, the polyhydroxyalkanoate-based polymer is 3-hydroxybutyrate (PHB), 3-hydroxyvalerate (PHV), 3-hydroxyhexanoate ( 3-hydroxyhexanoate), 3-hydroxyheptanoate (3-hydroxyheptanoate), hydroxyoctanoate (3-hydroxyoctanoate), hydroxynonanoate (3-hydroxynonanoate), hydroxydecanoate (3-hydroxydecanoate) , hydroxyundecanoate (3-hydroxyundecanoate), hydroxydodecanoate (3-hydroxydodecanoate), hydroxytridecanoate (3-hydroxytridecanoate), hydroxytetradecanoate (3-hydroxytetradecanoate), hydroxypenta Decanoate (3-hydroxypentadecanoate), hydroxyhexadecanoate (3-hydroxyhexadecanoate), 3-hydroxyundec-10-enoate (3-hydroxyundec-10-enoate) and 3-hydroxy-5-phenyl valence A homopolymer in which hydroxyalkanoates of the same kind selected from the group consisting of 3-hydroxy-5-phenylvalerate are polymerized, a copolymer or terpolymer in which two or more kinds of hydroxyalkanoates of different kinds are polymerized is used. .

더욱 바람직한 폴리하이드록시알카노에이트계 폴리머는 폴리3-하이드록시부틸레이트(poly-3-hydroxybutyrate, P3HB), 폴리3-하이드록시발레레이트(poly-3-hydroxyvalerate, PHV), 폴리3-하이드록시헥사노에이트(poly-3-hydroxyhexanoate, PHH), 폴리3-하이드록시옥타노에이트(poly-3-hydroxyoctanoate, PHO), 폴리3-하이드록시부틸레이트-코-3-하이드록시발레레이트(poly(3-hydroxybutyrate-co-3-hydroxyvalerate, PHBV), 폴리3-하이드록시부틸레이트-코-3-하이드록시헥사노에이트(poly(3-hydroxybutyrate-co-3-hydroxyhexanoate, PHBH), 폴리3-하이드록시부틸레이트-코-4-하이드록시부틸레이트(poly(3-hydroxybutyrate-co-4-hydroxybutyrate), 폴리3-하이드록시부틸레이트-코-3-발레레이트(poly(3-hydroxybutyrate-co-3-valerate, PHBV), 폴리3-하이드록시부틸레이트-코-3-하이드로헥사노에이트(poly(3-hydroxybutyrate-co-3-hydroxyhaxanoate, PHBH), 폴리3-하이드록시부틸레이트-코-3-하이드록시운덕-10-에노에이트(poly(3-hydroxyoctanoate-co-3-hydroxyundec-10-enoate, PHOU)로 이루어진 군에서 선택되는 어느 하나를 사용하는 것이다. More preferred polyhydroxyalkanoate-based polymers are poly-3-hydroxybutyrate (P3HB), poly-3-hydroxyvalerate (PHV), poly3-hydroxy Hexanoate (poly-3-hydroxyhexanoate, PHH), poly-3-hydroxyoctanoate (PHO), poly3-hydroxybutylate-co-3-hydroxyvalerate (poly(( 3-hydroxybutyrate-co-3-hydroxyvalerate (PHBV), poly3-hydroxybutyrate-co-3-hydroxyhexanoate (poly(3-hydroxybutyrate-co-3-hydroxyhexanoate, PHBH), poly3-hydroxy hydroxybutyrate-co-4-hydroxybutyrate (poly(3-hydroxybutyrate-co-4-hydroxybutyrate), poly3-hydroxybutyrate-co-3-valerate (poly(3-hydroxybutyrate-co-3 -valerate, PHBV), poly 3-hydroxybutyrate-co-3-hydrohexanoate (poly(3-hydroxybutyrate-co-3-hydroxyhaxanoate, PHBH), Using any one selected from the group consisting of poly 3-hydroxybutyrate-co-3-hydroxyundec-10-enoate (poly(3-hydroxyoctanoate-co-3-hydroxyundec-10-enoate, PHOU) will be.

또한, 본 발명의 폴리하이드록시알카노에이트계 폴리머는 상기 폴리(3-하이드록시알카노에이트(PHA)계 제1폴리머에, 열가소성 전분(TPS), 폴리부틸렌 석시네이트(PBS), 폴리부틸렌 아디페이트(PBA), 폴리부틸렌아디페리트(PBA), 폴리(부틸렌 석시네이트 코- 부틸렌 아디페이트)(PBSA), 폴리(부틸렌 아디페이트 코-테레프탈레이트)(PBAT), 폴리(부틸렌 아디페이트 코-석시네이트 코-테레프탈레이트)(PBAST), 폴리(부틸렌 석시네이트 코-L-락테이트)(PBSL), 폴리카프로락톤(PCL), 폴리글리콜릭산(PGA), 폴리비닐알코올(PVA), 폴리락트산(PLA), 폴리히드록시알카노에이트 및 지방족/방향족 공중합 폴리에스테르로 이루어진 군에서 선택된 1종 이상의 제2폴리머가 블렌딩된 블렌드 폴리머도 가능하며, 상기 제2 폴리머가 0.01 내지 90중량%로 함유된 것이 바람직하다. 이때, 제2 폴리머 함량이 0.01중량% 미만이면, 블렌드 폴리머로 기대할 수 있는 기계적 강도 개선의 효과가 미미하고, 90중량%를 초과하면, 성분간의 상용성에 문제가 있다. In addition, the polyhydroxyalkanoate-based polymer of the present invention is added to the poly(3-hydroxyalkanoate (PHA)-based first polymer, thermoplastic starch (TPS), polybutylene succinate (PBS), polybutyl Lene adipate (PBA), polybutylene adipate (PBA), poly(butylene succinate co-butylene adipate) (PBSA), poly(butylene adipate co-terephthalate) (PBAT), poly (butylene adipate co-succinate co-terephthalate) (PBAST), poly(butylene succinate co-L-lactate) (PBSL), polycaprolactone (PCL), polyglycolic acid (PGA), poly A blend polymer in which at least one second polymer selected from the group consisting of vinyl alcohol (PVA), polylactic acid (PLA), polyhydroxyalkanoate and aliphatic/aromatic copolymer polyester is also possible, wherein the second polymer is It is preferably contained in an amount of 0.01 to 90% by weight.In this case, if the content of the second polymer is less than 0.01% by weight, the effect of improving the mechanical strength that can be expected from the blend polymer is insignificant, and when it exceeds 90% by weight, the compatibility between components There is a problem with sex.

2) 가교제2) crosslinking agent

본 발명의 폴리하이드록시알카노에이트계 폴리머의 분자량 증대 목적으로 사슬연장의 기능을 수행하는 가교제를 첨가제로 사용한다. For the purpose of increasing the molecular weight of the polyhydroxyalkanoate-based polymer of the present invention, a crosslinking agent performing a chain extension function is used as an additive.

또한, 시트압출에 적당한 용융지수를 충족하기 위한 목적으로도 사용된다. In addition, it is also used for the purpose of meeting the melt index suitable for sheet extrusion.

본 발명에서 사용되는 가교제는 유기과산화물계 화합물이 바람직하며, 그 일례로는 벤조일퍼옥사이드, 라우릴퍼옥사이드, 디큐밀퍼옥사이드, 디헥실퍼옥사이드, 부틸큐밀퍼옥사이드, 디부틸퍼옥사이드, p-메탄하이드로퍼옥사이드, 디이소프로필벤젠하이드로퍼옥사이드, 테트라메틸부틸퍼옥사이드, 큐멘하이드로퍼옥사이드, 2,5-디메틸-2,5-디부틸퍼옥시헥신-3, 2,3-디메틸-2,3-디페닐부탄, 1,1-디(t-헥실퍼옥시)사이클로헥산, 1,1-디(t-부틸퍼옥시)사이클로헥산, 2,2-디(4,4-디-(t-부틸퍼옥시)사이클로헥실)프로판, 디(2-부틸퍼옥시이소프로필)벤젠, 2,5-디메틸-2,5-디부틸퍼옥시헥산, 헥실퍼옥시이소프로필카보네이트, 부틸퍼옥시 2-에틸헥실카보네이트, 디이소프로필퍼옥시디카보네이트, 부틸퍼옥시이소프로필카보네이트, 부틸퍼옥시말레인산, 부틸퍼옥시-3,5,5-트리메틸헥사노에이트, 부틸퍼옥시라우레이트, 부틸퍼옥시벤조에이트, 헥실퍼옥시벤조에이트, 부틸퍼옥시아세테이트, n-부틸 4,4-디-부틸퍼옥시발레레이트, 2,2-디-부틸퍼옥시부탄 등으로 이루어진 군에서 선택되는 어느 하나를 사용하는 것이다.The crosslinking agent used in the present invention is preferably an organic peroxide compound, and examples thereof include benzoyl peroxide, lauryl peroxide, dicumyl peroxide, dihexyl peroxide, butylcumyl peroxide, dibutyl peroxide, and p-methanehydride. Roperoxide, diisopropylbenzenehydroperoxide, tetramethylbutylperoxide, cumene hydroperoxide, 2,5-dimethyl-2,5-dibutylperoxyhexyne-3,2,3-dimethyl-2,3- Diphenylbutane, 1,1-di(t-hexylperoxy)cyclohexane, 1,1-di(t-butylperoxy)cyclohexane, 2,2-di(4,4-di-(t-butyl) Peroxy)cyclohexyl)propane, di(2-butylperoxyisopropyl)benzene, 2,5-dimethyl-2,5-dibutylperoxyhexane, hexylperoxyisopropylcarbonate, butylperoxy 2-ethylhexyl Carbonate, diisopropyl peroxydicarbonate, butylperoxyisopropyl carbonate, butylperoxymaleic acid, butylperoxy-3,5,5-trimethylhexanoate, butylperoxylaurate, butylperoxybenzoate, hexylpere Any one selected from the group consisting of oxybenzoate, butylperoxyacetate, n-butyl 4,4-di-butylperoxyvalerate, and 2,2-di-butylperoxybutane is used.

본 발명의 가교제가 더욱 바람직하게는 종래 가교제로 사용되는 에폭시계 화합물에 유기과산화물계 화합물을 혼합 사용하는 것이다. The crosslinking agent of the present invention is more preferably a mixture of an organic peroxide compound and an epoxy compound used as a conventional crosslinking agent.

종래 사용되는 에폭시계 화합물은 비스페놀A 디글리시딜에테르, 테레프탈산디글리시딜에테르, 트리메틸롤프로판디글리시딜에테르 및 1,6-헥산디올디글리시딜에테르로 이루어진 군에서 선택되는 어느 하나를 사용하는 것으로, 고가인 단점이 있다. The conventionally used epoxy compound is any one selected from the group consisting of bisphenol A diglycidyl ether, terephthalic acid diglycidyl ether, trimethylolpropane diglycidyl ether, and 1,6-hexanediol diglycidyl ether. There is a disadvantage in that it is expensive to use.

이에, 본 발명의 혼합형태의 가교제는 종래 고가의 에폭시계 가교제의 함량을 줄이면서도 동등한 효과를 제공할 수 있는 것으로, 고분자 사슬을 부분 가교시켜 용융점도를 증가시킬 수 있다. 이때, 혼합비율은 종래 에폭시계 화합물이 1 내지 2%로 사용되었다면, 에폭시계 화합물 0.5 내지 1%에 유기과산화물계 화합물 0.1 내지 1%를 혼합하여 가교반응시킨다. Accordingly, the mixed crosslinking agent of the present invention can provide an equivalent effect while reducing the content of the conventional expensive epoxy-based crosslinking agent, and can increase the melt viscosity by partially crosslinking the polymer chain. At this time, if the mixing ratio is 1 to 2% of the conventional epoxy-based compound, 0.5 to 1% of the epoxy-based compound is mixed with 0.1 to 1% of the organic peroxide-based compound and cross-linked.

본 발명의 가교제는 폴리하이드록시알카노에이트계 폴리머 100 중량부에 대하여, 0.05 내지 4 중량부를 사용하는 것이 바람직하다. 이때, 가교제의 함량이 0.05 중량부 미만이면, 겉보기 분자량 증대효과가 미흡하고, 4 중량부를 초과하면, 가교가 너무 많이 일어나 용융수지의 점도가 급격히 증가하거나, 발포 압출기가 막힐 우려가 있으므로 공정상의 문제를 초래한다.The crosslinking agent of the present invention is preferably used in an amount of 0.05 to 4 parts by weight based on 100 parts by weight of the polyhydroxyalkanoate-based polymer. In this case, if the content of the crosslinking agent is less than 0.05 parts by weight, the effect of increasing the apparent molecular weight is insufficient. causes

에폭시계 화합물로 폴리머를 가교시킬 때, 상기 폴리락트산계 중합체 조성물 100 중량부에 대하여, 안정제 0.01 내지 2 중량부 및 윤활제 0.01 내지 2 중량부를 더 함유할 수 있다.When the polymer is crosslinked with the epoxy compound, it may further contain 0.01 to 2 parts by weight of a stabilizer and 0.01 to 2 parts by weight of a lubricant based on 100 parts by weight of the polylactic acid-based polymer composition.

이때, 안정제는 N,N'-디이소프로필 카보디이미드 또는 N,N'-디-2,6-디이소프로필페닐 카보디디이미드에서 선택되며, 카보디이미드계 안정제를 사용하는 것이 바람직하며, 고분자의 용융점도를 안정화시킬 수 있고, 이외 금속 착체, 다가 카르본산 또는 이들의 혼합물을 사용할 수 있다. In this case, the stabilizer is selected from N,N'-diisopropyl carbodiimide or N,N'-di-2,6-diisopropylphenyl carbodidiimide, and it is preferable to use a carbodiimide-based stabilizer, The melt viscosity of the polymer can be stabilized, and other metal complexes, polyvalent carboxylic acids, or mixtures thereof can be used.

3) 가소제3) plasticizer

폴리하이드록시알카노에이트계 폴리머가 적절한 용융점도를 얻는다 하더라도, 발포시, 발포비율이 낮으면 성형성이 불량하여 성형성을 높이기 위한 특수 성형기 도입 등의 부가비용이 추가되므로, 바람직하지 않다. Even if the polyhydroxyalkanoate-based polymer obtains an appropriate melt viscosity, when the foaming ratio is low, the moldability is poor, and additional costs such as introduction of a special molding machine to increase the moldability are added, which is not preferable.

따라서, 본 발명의 폴리하이드록시알카노에이트계 폴리머를 함유한 바이오플라스틱 기반의 발포시트는 적절한 저분자량의 가소제를 첨가함으로써, 발포배율을 향상시킨다. Accordingly, the bioplastic-based foam sheet containing the polyhydroxyalkanoate-based polymer of the present invention improves the foaming ratio by adding an appropriate low-molecular-weight plasticizer.

본 발명에서 사용되는 바람직한 가소제로는 기본적으로 수지와 상용성이 있어야 하며, 바람직하게는 유기산 또는 알코올계 화합물 금속 화합물 또는 구연산계 화합물을 사용하는 것이다.As a preferred plasticizer used in the present invention, it should be compatible with the resin, and preferably, an organic acid or an alcohol-based metal compound or a citric acid-based compound is used.

하기 화합물이 선택 사용되거나 하기 화합물이 혼합 사용될 수 있다. 화합물의 일례로는 스테아린산알미늄, 스테아린산마그네슘, 스테아린산아연, 스테아린산칼슘, 올레인산알미늄, 올레인산마그네슘, 올레인산아연, 올레인산칼슘, 팔미틴산알미늄, 팔미틴산마그네슘, 팔미틴산아연, 팔미틴산칼슘, 구연산아연, 구연산트리부틸, 아세틸구연산트리에틸, 아세틸구연산트리부틸, 이외, 지방족 다가 카본 에스터, 지방족 다가 알코올 에스테르, 지방족 다가 알코올 에테르 등이 있으며, 예를 들면, 디메틸아디페이트, 2-에틸헥실아디페이트, 디아이소부틸아디페이트, 디부틸아디페이트, 디아이소데실아디페이트, 디부틸세바케이트, 2-에틸헥실세바케이트, 디에틸렌글리콜모노메틸에테르, 디에틸렌글리콜디메틸에테르, 디에틸렌글리콜에틸에테르, 디에틸렌글리콜디에틸에테르, 디에틸렌글리콜부틸에테르, 디에틸렌글리콜디부틸에테르, 디에틸렌글리콜에틸헥실에테르, 폴리옥시에틸렌디메틸에테르, 폴리옥시프로필렌디메틸에테르, 구연산과 소듐디카보네이트 혼합물, 칼슘글루코네이트 등이 있다. The following compounds may be selectively used or a mixture of the following compounds may be used. Examples of the compound include aluminum stearate, magnesium stearate, zinc stearate, calcium stearate, aluminum oleate, magnesium oleate, zinc oleate, calcium oleate, aluminum palmitate, magnesium palmitate, zinc palmitate, calcium palmitate, zinc citrate, tributyl citrate, acetylcitrate In addition to triethyl and tributyl acetyl citrate, there are aliphatic polyhydric carbon esters, aliphatic polyhydric alcohol esters, and aliphatic polyhydric alcohol ethers, for example, dimethyl adipate, 2-ethylhexyl adipate, diisobutyl adipate, diisobutyl adipate, Butyl adipate, diisodecyl adipate, dibutyl sebacate, 2-ethylhexyl sebacate, diethylene glycol monomethyl ether, diethylene glycol dimethyl ether, diethylene glycol ethyl ether, diethylene glycol diethyl ether, diethylene glycol diethyl ether ethylene glycol butyl ether, diethylene glycol dibutyl ether, diethylene glycol ethylhexyl ether, polyoxyethylene dimethyl ether, polyoxypropylene dimethyl ether, citric acid and sodium dicarbonate mixture, calcium gluconate, and the like.

상기 유기산 또는 알코올계 화합물과 구연산계 화합물을 병행하여 압출 발포할 경우, 발포셀의 크기 분포가 균일하고, 압출시트의 두께가 증가하여 발포배율이 증가하는 효과를 얻을 수 있다. When the organic acid or alcohol-based compound and the citric acid-based compound are extruded and foamed in parallel, the size distribution of the foamed cells is uniform, and the thickness of the extruded sheet increases, thereby increasing the foaming ratio.

가소제의 바람직한 사용량은 폴리하이드록시알카노에이트계 폴리머 100 중량부에 대하여, 0.001 내지 1 중량부, 더욱 바람직하게는 0.005 내지 0.5 중량부이다. 이때, 가소제가 0.001 중량부 미만으로 사용되면, 용융수지의 가소성 향상이나 발포성형체의 발포배율 향상 효과가 미흡하다. 반면에, 1 중량부를 초과하면, 발포성형체 및 성형가공물의 너무 유연하게 되어 형태안정성이 불량해지는 단점이 있다. A preferred amount of the plasticizer to be used is 0.001 to 1 part by weight, more preferably 0.005 to 0.5 part by weight, based on 100 parts by weight of the polyhydroxyalkanoate-based polymer. At this time, when the plasticizer is used in an amount of less than 0.001 parts by weight, the effect of improving the plasticity of the molten resin or improving the expansion ratio of the expanded molded article is insufficient. On the other hand, when it exceeds 1 part by weight, there is a disadvantage in that the expanded molded article and the molded article become too flexible and thus the shape stability is poor.

4) 발포핵제4) Foaming nucleating agent

본 발명에서 사용되는 발포핵제는 탈크, 실리카, 탄산칼슘, 스테아린산 칼슘 및 몬모릴로나이트(Montmorillonite)로 이루어진 군에서 선택되는 어느 하나의 발포핵제를 사용할 수 있으며, 특히 상기 발포핵제는 마스터배치 형태로서 첨가될 수 있다. 마스터배치 제조 시에는 분산제 등을 더 첨가하여 발포핵제의 분산성을 조절할 수도 있다. 또한, 마스터배치 제조시에 분산제를 함께 첨가하는 대신에 별도로 분산제를 더 첨가할 수도 있다. 이때 분산제로는 스테아린산 아미드 등을 사용할 수 있다.As the foaming nucleating agent used in the present invention, any one selected from the group consisting of talc, silica, calcium carbonate, calcium stearate and montmorillonite may be used, and in particular, the foaming nucleating agent may be added in the form of a master batch. have. When preparing the masterbatch, the dispersibility of the foaming nucleating agent may be adjusted by further adding a dispersing agent or the like. In addition, instead of adding the dispersant together during the preparation of the masterbatch, a dispersant may be further added separately. In this case, as the dispersant, stearic acid amide or the like may be used.

발포 압출 성형과정에서 발포체의 셀(cell) 벽 두께가 얇거나, 발포 셀의 크기 및 두께가 고르지 않으면, 인장신도가 낮아지므로 그 벽이 쉽게 깨진다. In the foam extrusion molding process, if the cell wall thickness of the foam is thin or the size and thickness of the foam cell are uneven, the tensile elongation is lowered and the wall is easily broken.

본 발명의 발포시트는 더욱 바람직하게는 0.5 내지 7㎛의 입자크기의 탈크를 폴리하이드록시알카노에이트계 폴리머 100 중량부에 대하여, 0.1 내지 5 중량부를 함유함으로써, 셀 두께를 조절하여 쉽게 깨지지 않는 발포체를 얻을 수 있다. The foam sheet of the present invention more preferably contains 0.1 to 5 parts by weight of talc having a particle size of 0.5 to 7 μm with respect to 100 parts by weight of the polyhydroxyalkanoate-based polymer, so that it is not easily broken by controlling the cell thickness. A foam can be obtained.

이때, 탈크가 0.1 중량부 미만으로 사용되면, 원하는 발포비율인 6 내지 10배로 향상시킬 수 있으나, 발포셀 하나의 크기가 0.5mm 정도로 지나치게 크기 때문에 시트제품의 품위가 떨어진다. 반면에, 탈크가 5 중량부를 초과하여 사용되면, 발포 셀의 크기가 지나치게 작아지거나, 또는 발포셀의 벽이 파괴되어 원하는 발포 배수를 얻을 수 없다.At this time, when the talc is used in less than 0.1 parts by weight, the desired foaming ratio can be improved by 6 to 10 times, but since the size of one foam cell is too large, about 0.5 mm, the quality of the sheet product is deteriorated. On the other hand, when the talc is used in excess of 5 parts by weight, the size of the foamed cells becomes too small, or the walls of the foamed cells are broken, so that the desired foaming drainage cannot be obtained.

또한, 본 발명에서 발포성형성 향상 목적으로 사용되는 탈크는 0.5 내지 7㎛의 입자크기를 사용하는 것이 바람직하며, 상기 입자크기보다 큰 입자를 사용할 경우, 발포셀의 막 자체가 파괴되므로, 상용되는 탈크입자 범위 내에서, 미세 입자일수록 바람직하고, 상기 7㎛의 입자크기를 초과해서는 원하는 발포셀의 크기 및 벽 두께를 조절할 수 없다.In addition, it is preferable to use a particle size of 0.5 to 7 μm for the talc used for the purpose of improving foamability in the present invention. Within the particle range, finer particles are preferable, and if the particle size of 7 μm is exceeded, the desired size and wall thickness of the foamed cell cannot be adjusted.

또한, 압출기에 상기한 폴리하이드록시알카노에이트계 폴리머 및 발포핵제와 함께 발포제를 압입하는데, 그 발포제의 함유량은 1 내지 30 중량부, 바람직하게는 3 내지 20 중량부이다. 이때, 발포제로서는 프로판, 이소부탄, n-부탄, 시클로부탄, 이소펜탄, n-펜탄, 시클로펜탄, 이소헥산, n-헥산, 시클로헥산, 트리클로로플루오로메탄, 디클로로디플루오로메탄, 클로로플루오로메탄, 트리플루오로메탄, 1,1,1,2-테트라플루오로에탄, 1-클로로-1,1-디플루오로에탄, 1,1-디플루오로에탄, 1-클로로-1,2,2,2-테트라플루오로에탄 등의 유기계 물리 발포제나, 질소, 이산화탄소, 아르곤, 공기 등의 무기계 물리 발포제를 들 수 있는데, 그 중에서도 오존층의 파괴가 없고 또 저렴한 무기계 물리 발포제가 바람직하고, 구체적으로는, 질소, 공기, 이산화탄소가 바람직하다. 또한, 발포제의 사용량에 대하여, 보다 작은 외관밀도의 발포 입자가 얻어진다는 점에서 이산화탄소가 바람직하다. 또한, 이산화탄소와 이소부탄과 같이, 2 종 이상의 발포제를 조합하여 사용할 수도 있다.In addition, a foaming agent is press-injected into the extruder together with the polyhydroxyalkanoate-based polymer and the foaming nucleating agent, and the content of the foaming agent is 1 to 30 parts by weight, preferably 3 to 20 parts by weight. At this time, as the blowing agent, propane, isobutane, n-butane, cyclobutane, isopentane, n-pentane, cyclopentane, isohexane, n-hexane, cyclohexane, trichlorofluoromethane, dichlorodifluoromethane, chlorofluoro Romethane, trifluoromethane, 1,1,1,2-tetrafluoroethane, 1-chloro-1,1-difluoroethane, 1,1-difluoroethane, 1-chloro-1,2 and organic physical blowing agents such as ,2,2-tetrafluoroethane, and inorganic physical blowing agents such as nitrogen, carbon dioxide, argon, and air. As such, nitrogen, air, and carbon dioxide are preferable. Further, with respect to the amount of the blowing agent used, carbon dioxide is preferable from the viewpoint of obtaining expanded particles having a smaller apparent density. Moreover, like carbon dioxide and isobutane, you may use combining 2 or more types of foaming agents.

본 발명은 폴리하이드록시알카노에이트계 폴리머 100 중량부에, 유기과산화물계, 에폭시계 및 그들의 조합에서 선택된 압출반응조제의 혼합형태로 이루어진 가교제 0.05 내지 4 중량부, 가소제 0.001 내지 1 중량부 및 발포핵제 0.01 내지 4 중량부가 혼합된 발포조성물을 압출기에 공급하고 가열 용융 혼련하여 용융 혼련물을 제조하는 단계;The present invention relates to 100 parts by weight of a polyhydroxyalkanoate-based polymer, 0.05 to 4 parts by weight of a crosslinking agent, 0.001 to 1 parts by weight of a plasticizer, and foaming supplying a foamed composition mixed with 0.01 to 4 parts by weight of a nucleating agent to an extruder and heating and melt-kneading to prepare a melt-kneaded product;

상기 용융 혼련물을 냉각하는 단계; 및cooling the melt-kneaded material; and

상기 냉각된 용융 혼련물을 압출 발포하는 단계;로 수행된 바이오플라스틱 기반의 발포시트의 제조방법을 제공한다. It provides a method of manufacturing a bioplastic-based foam sheet performed as; extruding the cooled melt-kneaded product.

본 발명의 제조단계에서, 폴리하이드록시알카노에이트계 폴리머를 비롯하여 발포시 필요한 첨가제는 상기에서 설명한 바와 동일하다. In the manufacturing step of the present invention, additives necessary for foaming, including the polyhydroxyalkanoate-based polymer, are the same as described above.

본 발명의 제조방법에 있어서, 폴리하이드록시알카노에이트계 폴리머를 함유하는 발포조성물이 높은 융점을 가지므로 결정화온도가 따라서 상승하고, 더욱이 결정화속도가 빨라지면, 용융된 고분자블렌드 조성물이 빠른 시간 내에 결정화되어 고화된다. 즉, 다이에서 토출된 용융 혼련물이 맨드렐에서 연신 확장되기 전에 먼저 고화된다면, 목적하는 발포배율과 두께를 가진 발포시트를 롤(roll) 상태로 권취하기 어렵다. In the production method of the present invention, since the foamed composition containing the polyhydroxyalkanoate-based polymer has a high melting point, the crystallization temperature rises accordingly, and furthermore, if the crystallization rate is increased, the molten polymer blend composition can be produced within a short time. It crystallizes and solidifies. That is, if the melt-kneaded material discharged from the die is first solidified before being stretched and expanded in the mandrel, it is difficult to wind the foam sheet having the desired expansion ratio and thickness in a roll state.

이에, 본 발명의 폴리하이드록시알카노에이트계 폴리머를 함유하는 발포조성물을 이용한 압출발포시트의 제조방법에서는 통상의 조성물에 비하여, 시트를 토출하는 다이 및 다이 부근의 환경, 용융시트를 연신 확장 및 고화시키는 맨드렐의 주입공기 및 주위 환경의 온도를, 결정화온도가 상승하는 정도보다 높게 설정해야 한다. 더욱이 공장설비 및 제조환경에 따라, 대기의 온습도, 공기의 흐름, 단열 방열 조건에 의해 그 상승 폭을 더 크게 설정할 수 있다.Therefore, in the method for manufacturing an extruded foam sheet using the foam composition containing the polyhydroxyalkanoate-based polymer of the present invention, compared to a conventional composition, the die discharging the sheet and the environment near the die, the molten sheet is stretched and expanded, and The temperature of the injection air of the solidifying mandrel and the surrounding environment should be set higher than the degree to which the crystallization temperature rises. Furthermore, depending on the factory equipment and manufacturing environment, the rise width can be set to be larger depending on the temperature and humidity of the atmosphere, the flow of air, and adiabatic heat dissipation conditions.

즉, 압출기에 공급시, 압출기 다이 및 그 주변 온도가 135 내지 210℃로 설정된 것이 바람직하며, 더욱 바람직하게는 융점 155∼165℃인 통상의 폴리하이드록시알카노에이트계 폴리머에 대비하여 5∼45℃ 높게 설정된 온도로 수행되는 것이다. 이때, 상기 온도가 135℃ 미만이면, 용융 혼련이 어렵고, 상기 압출온도 조건 210℃를 초과하면 고분자 조성물의 용융점도가 급격히 저하되며 발포압출시트가 일정의 형상을 유지할 수 없어서 시트 처짐 등이 발생될 수 있다.That is, when supplying to the extruder, it is preferable that the extruder die and its ambient temperature are set to 135 to 210° C., more preferably 5 to 45 compared to conventional polyhydroxyalkanoate-based polymers having a melting point of 155 to 165° C. It is carried out at a temperature set high by °C. At this time, if the temperature is less than 135 ℃, melt kneading is difficult, and if the extrusion temperature condition exceeds 210 ℃, the melt viscosity of the polymer composition is sharply lowered, and the foamed extruded sheet cannot maintain a certain shape, so sheet sagging may occur. can

또한, 본 발명의 제조방법에 있어서, 시트를 냉각하는 분위기의 온도, 예를 들면 맨드렐에서 불어주는 냉각공기의 양을 줄이거나 그 온도를 상승시키는 것이 바람직하다. In addition, in the manufacturing method of the present invention, it is preferable to reduce or increase the temperature of the atmosphere for cooling the sheet, for example, the amount of cooling air blown from the mandrel.

본 발명의 바이오플라스틱 기반의 발포시트는 성분간의 상용성이 우수하고, 폴리하이드록시알카노에이트계 폴리머를 함유하는 발포조성물을 이용하여, 결정화속도 및 결정화도를 증가시켜 제조된 압출발포시트는 내열성이 확보되고, 그로 인한 압출발포시트의 결정화도가 상당히 높아, 내열성이 우수하다.The bioplastic-based foam sheet of the present invention has excellent compatibility between components, and the extruded foam sheet manufactured by increasing the crystallization rate and crystallinity by using a foaming composition containing a polyhydroxyalkanoate-based polymer has excellent heat resistance. The degree of crystallinity of the extruded foam sheet is quite high, and thus the heat resistance is excellent.

또한, 본 발명의 폴리하이드록시알카노에이트계 폴리머를 함유하는 발포조성물이 성분간의 상용성이 양호하여, 기포막이 균일하게 잘 형성되고, 안정된 기포를 확인함으로써, 본 발명의 발포시트를 이용하여 성형품을 성형할 때도 표면이 양호한 발포성형체를 제조할 수 있다. In addition, the foamed composition containing the polyhydroxyalkanoate-based polymer of the present invention has good compatibility between the components, so that the foam film is uniformly well formed and stable cells are confirmed. It is also possible to manufacture an expanded molded article with a good surface when molding.

나아가, 본 발명은 상기 폴리하이드록시알카노에이트계 폴리머를 함유한 발포조성물로부터 수득된 바이오플라스틱 기반의 발포시트를 성형 가공하여, 식품포장용기, 산업용 포장재, 산업용자재, 의료용 자재, 의료용 의류, 농업용자재 및 어업용자재로 이루어진 군에서 선택된 어느 하나에 적용되는 생분해 성형발포 제품을 제공한다. Furthermore, the present invention is a food packaging container, industrial packaging material, industrial material, medical material, medical clothing, agricultural use by molding and processing the bioplastic-based foam sheet obtained from the foaming composition containing the polyhydroxyalkanoate-based polymer. It provides a biodegradable molded foam product that is applied to any one selected from the group consisting of materials and fishery materials.

구체적으로는, 상기 발포시트를 통상의 가공방법을 통해 성형발포 제품으로 얻을 수 있는데, 그 일례로서 발포시트를 가열 연화시키고 웅형과 암형의 사이에 끼우고 용기 등의 형태로 부형한 금형을 사용하여 열성형하는 방법을 들 수 있다. 상기 열성형법에는 진공성형법, 압공 성형법, 플러그 어시스트 성형법 등을 들 수 있다.Specifically, the foam sheet can be obtained as a molded foam product through a conventional processing method. As an example, the foam sheet is heated and softened, sandwiched between the male and female molds, and shaped in the form of a container. The method of thermoforming is mentioned. Examples of the thermoforming method include a vacuum forming method, an air pressure forming method, and a plug assisted forming method.

따라서, 폴리하이드록시알카노에이트계 폴리머를 함유한 발포조성물을 발포 압출과정에서 폴리머의 분자량을 높여 적절한 용융점도를 확보하고, 결정성을 높이고, 발포성형성이 향상되고, 균일한 발포셀이 얻어지므로, 이를 성형가공한 발포성형체가 트레이, 컵, 컵라면 용기, 도시락 그릇 등의 식품포장용기 및 산업용 포장재로 바람직하게 적용될 수 있다. Therefore, the foamed composition containing the polyhydroxyalkanoate-based polymer is foamed and extruded to increase the molecular weight of the polymer to secure an appropriate melt viscosity, increase crystallinity, improve foam moldability, and obtain uniform foamed cells. , the molded foam molded product can be preferably applied to food packaging containers such as trays, cups, cup noodle containers, lunch boxes, and industrial packaging materials.

본 발명의 폴리하이드록시알카노에이트계 폴리머를 함유한 발포 조성물로부터 수득된 발포시트는 우수한 발포성형성과 균일한 발포셀로 얻어지므로, 이를 이용한 식품포장용기 및 산업용 포장재는 종래의 문제점을 해소할 수 있다.Since the foam sheet obtained from the foam composition containing the polyhydroxyalkanoate polymer of the present invention has excellent foam moldability and uniform foam cells, food packaging containers and industrial packaging materials using the same can solve the problems of the prior art. have.

또한, 본 발명의 생분해 성형발포 제품은 어망, 낚시줄, 부표 등의 어업용자재로 바람직하게 적용될 수 있다. In addition, the biodegradable molded foam product of the present invention can be preferably applied to fishing materials such as fishing nets, fishing lines, and buoys.

이하, 실시예를 통하여 본 발명을 보다 상세히 설명하고자 한다. Hereinafter, the present invention will be described in more detail through examples.

본 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것이며, 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다. These examples are for explaining the present invention in more detail, and the scope of the present invention is not limited to these examples.

<실시예 1> 폴리하이드록시알카노에이트계 폴리머 함유 조성물 제조<Example 1> Preparation of polyhydroxyalkanoate-based polymer-containing composition

폴리하이드록시알카노에이트계 폴리머100 중량부에 대하여, 가교제로서 디큐밀퍼옥사이드 2 중량부, 가소제로서 디이소데실아디페이트 0.05 중량부 및 5㎛ 입자크기의 탈크 2 중량부를 텀블링 믹서와 같은 일반 혼합기를 이용하여 잘 혼합한 다음, 내경 90mm의 제 1 압출기와 내경 120mm의 제 2 압출기가 접속된 탠덤 형식의 압출기를 이용하여 다음과 같이 발포시트를 제조하였다. 가열 용융 온도는 수지 온도를 기준으로 170 내지 230℃로 유지한 후, 제 1 압출기와 접속된 제 2 압출기 내에서 상기 용융 혼합 반응물의 온도를 약간 감소시켜 수지 온도를 약 150℃가 되도록 하였다. 이후, 직경 110mm, 슬릿 간격 0.5mm의 원통상 세극을 갖는 환상 다이에서 압출하여 원통상으로 발포시키고, 원통상 발포체를 냉각하면서 인수, 압출 방향으로 토출하여 발포시트를 제조하였다.Based on 100 parts by weight of the polyhydroxyalkanoate-based polymer, 2 parts by weight of dicumyl peroxide as a crosslinking agent, 0.05 parts by weight of diisodecyl adipate as a plasticizer and 5 μm After mixing 2 parts by weight of talc of particle size using a general mixer such as a tumbling mixer, the foam sheet is formed as follows using a tandem extruder in which the first extruder having an inner diameter of 90 mm and a second extruder having an inner diameter of 120 mm are connected. prepared. After the heating and melting temperature was maintained at 170 to 230°C based on the resin temperature, the temperature of the melt-mixed reactant was slightly decreased in the second extruder connected to the first extruder to bring the resin temperature to about 150°C. Then, it was extruded in a circular die having a cylindrical slit having a diameter of 110 mm and a slit interval of 0.5 mm to foam in a cylindrical shape, and while cooling the cylindrical foam, it was discharged in the direction of taking and extrusion to prepare a foam seat.

<실시예 2∼15><Examples 2 to 15>

가교제로서 비스페놀A 디글리시딜에테르 1 중량부 및 유기과산화물계 0.5 중량부의 혼합형태를 사용하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 수행하여, 발포시트를 제조하였다.A foam sheet was prepared in the same manner as in Example 1, except that a mixture of 1 part by weight of bisphenol A diglycidyl ether and 0.5 parts by weight of an organic peroxide was used as a crosslinking agent.

<비교예 1><Comparative Example 1>

가교제를 사용하지 않는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 수행하여, 발포시트를 제조하였다. 분자량은 GPC를 이용하여 폴리스타이렌 중합물을 기준으로 한 무게평균분자량을 택하였으며, 압출 발포된 시트의 비중을 측정하여 발포배율을 계산하였다. A foam sheet was prepared in the same manner as in Example 1, except that no crosslinking agent was used. For molecular weight, a weight average molecular weight based on the polystyrene polymer was selected using GPC, and the foaming ratio was calculated by measuring the specific gravity of the extruded foamed sheet.

Figure pat00002
Figure pat00002

<실시예 16∼23><Examples 16-23>

팔미틴산마그네슘, 올레인산칼슘, 스테아린산아연, 스테아린산칼슘, 스테아린산마그네슘, 디부틸아디페이트, 디에틸렌글리콜에틸헥실에테르 중에서 0.05 중량부 및 구연산계 화합물 0.5 중량부를 사용하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 수행하여, 발포시트를 제조하였다.Except for using 0.05 parts by weight of magnesium palmitate, calcium oleate, zinc stearate, calcium stearate, magnesium stearate, dibutyl adipate and diethylene glycol ethylhexyl ether and 0.5 parts by weight of the citric acid-based compound, the same as in Example 1 By this method, a foam sheet was prepared.

<비교예 2><Comparative Example 2>

가소제를 사용하지 않는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 수행하여, 발포시트를 제조하였다.A foam sheet was prepared in the same manner as in Example 1, except that a plasticizer was not used.

<비교예 3><Comparative Example 3>

가소제로서 스테아린산칼슘 0.05 중량부를 사용하되, 탈크를 사용하지 않는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 수행하여, 발포시트를 제조하였다.A foam sheet was prepared in the same manner as in Example 1, except that 0.05 parts by weight of calcium stearate was used as a plasticizer, but talc was not used.

<비교예 4> <Comparative Example 4>

가소제로서 디에틸렌글리콜에틸헥실에테르 0.05 중량부 및 구연산계 화합물 0.5 중량부를 사용하되, 탈크를 사용하지 않는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 수행하여, 발포시트를 제조하였다.A foam sheet was prepared in the same manner as in Example 1, except that 0.05 parts by weight of diethylene glycol ethylhexyl ether and 0.5 parts by weight of a citric acid-based compound were used as a plasticizer, but talc was not used.

Figure pat00003
Figure pat00003

실시예 16 내지 23에서 보는 바와 같이, 유기산 또는 알코올계 화합물과 구연산계 화합물을 병행하여 압출 발포할 경우, 발포셀의 크기 분포가 균일해짐을 알 수 있으며, 압출시트의 두께가 증가하는 것으로 보아 발포배율이 증가하는 효과를 확인하였다. As shown in Examples 16 to 23, when the organic acid or alcohol-based compound and the citric acid-based compound are extruded and foamed in parallel, it can be seen that the size distribution of the foam cells becomes uniform, and it can be seen that the thickness of the extruded sheet increases. The effect of increasing the magnification was confirmed.

반면에, 비교예 2에서 보는 바와 같이, 탈크만 첨가하면 발포셀의 크기 분포는 어느 정도 균일하나 발포배율이 증가하지 않는다. 또한, 비교예 3 및 4에서 보는 바와 같이, 탈크를 첨가하지 않고 가소제를 첨가하면, 발포배율은 증가하나 발포셀의 크기가 커지고 발포셀의 크기 분포가 넓어짐을 알 수 있다.On the other hand, as shown in Comparative Example 2, when only talc is added, the size distribution of the foamed cells is uniform to some extent, but the expansion ratio does not increase. In addition, as shown in Comparative Examples 3 and 4, when a plasticizer is added without adding talc, it can be seen that the expansion ratio is increased, but the size of the foamed cells is increased and the size distribution of the foamed cells is widened.

<실험예 1> 물성평가 <Experimental Example 1> Physical property evaluation

1. 기계적 강도측정1. Mechanical strength measurement

상기 실시예에서 제조된 폴리하이드록시알카노에이트계 폴리머를 함유한 조성물로 압출발포된 생분해성 바이오플라스틱 기반의 발포시트에 대하여 기계적 강도를 측정하였다. prepared in the above example The mechanical strength of the biodegradable bioplastic-based foam sheet extruded and foamed with a composition containing a polyhydroxyalkanoate-based polymer was measured.

2. 생분해 속도 측정 2. Measurement of biodegradation rate

상기 실시예 1내지 실시예 1에서 제조된 폴리하이드록시알카노에이트계 폴리머를 함유한 조성물로 압출발포된 생분해성 바이오플라스틱 기반의 발포시트에 대하여 결정화속도를 20주동안 분해정도를 육안으로 평가하였다. prepared in Examples 1 to 1 For the biodegradable bioplastic-based foam sheet extruded and foamed with a composition containing polyhydroxyalkanoate-based polymer, the crystallization rate and the degree of decomposition were visually evaluated for 20 weeks.

이때, 평가기준은 00주 평가기간완료시점에서 결정성이 관찰여부에 따라, "○"(생분해속도 빠름), "×"(생분해속도 느림) 및 "△"(상대적으로 생분해속도 중간)으로 표기하였다. At this time, the evaluation criteria are marked with "○" (fast biodegradation rate), "×" (slow biodegradation rate) and "△" (relatively medium biodegradation rate) depending on whether crystallinity is observed at the completion of the 00-week evaluation period. did.

상기 결과로부터, 실시예에서 제조된 바이오플라스틱 기반의 발포시트는 압출발포시트 공정을 통해 얻어진 최종품에서 폴리하이드록시알카노에이트계 폴리머의 결정화 속도를 증가시켜 생분해 속도 향상과 더불어 기계적 강도가 개선되었음을 확인하였다. From the above results, the bioplastic-based foam sheet prepared in Examples increased the crystallization rate of the polyhydroxyalkanoate-based polymer in the final product obtained through the extrusion foam sheet process, thereby improving the biodegradation rate and improving the mechanical strength. Confirmed.

이상에서 본 발명은 기재된 구체예에 대해서만 상세히 설명되었지만 본 발명의 기술사상 범위 내에서 다양한 변형 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속함은 당연한 것이다. In the above, the present invention has been described in detail only with respect to the described embodiments, but it is obvious to those skilled in the art that various changes and modifications are possible within the scope of the technical spirit of the present invention, and it is natural that such variations and modifications belong to the appended claims.

Claims (13)

폴리하이드록시알카노에이트계 폴리머 100중량부에 대하여,
유기과산화물계, 에폭시계 및 그들의 조합에서 선택된 압출반응조제의 혼합형태로 이루어진 가교제 0.01 내지 4 중량부,
가소제 0.001 내지 1 중량부 및
발포핵제 0.01 내지 4 중량부가 혼합된 조성물이 압출발포된 바이오플라스틱 기반의 발포시트.
Based on 100 parts by weight of the polyhydroxyalkanoate-based polymer,
0.01 to 4 parts by weight of a crosslinking agent consisting of a mixed form of an extrusion reaction aid selected from organic peroxide-based, epoxy-based, and combinations thereof;
0.001 to 1 part by weight of a plasticizer and
A bioplastic-based foam sheet in which a composition in which 0.01 to 4 parts by weight of a foaming nucleating agent is mixed is extruded and foamed.
제1항에 있어서, 상기 폴리하이드록시알카노에이트계 폴리머가 분자량 10만 내지 200만을 가지는 것을 특징으로 하는 바이오플라스틱 기반의 발포시트.The bioplastic-based foam sheet according to claim 1, wherein the polyhydroxyalkanoate-based polymer has a molecular weight of 100,000 to 2,000,000. 제2항에 있어서, 상기 폴리하이드록시알카노에이트계 폴리머가 하기 식으로 표시되는 3-하이드록시알카노에이트의 반복구조가 중합에 의해 가교된 폴리머인 것을 특징으로 하는 바이오플라스틱 기반의 발포시트:
Figure pat00004

상기에서 R은 C1 내지 C13알킬기이고, C6 내지 C10 아릴기이다.
The bioplastic-based foam sheet according to claim 2, wherein the polyhydroxyalkanoate-based polymer is a polymer in which the repeating structure of 3-hydroxyalkanoate represented by the following formula is crosslinked by polymerization:
Figure pat00004

In the above, R is a C 1 to C 13 alkyl group, and a C 6 to C 10 aryl group.
제1항에 있어서, 상기 폴리하이드록시알카노에이트계 폴리머가 3-하이드록시부틸레이트(3-hydroxybutyrate)(PHB), 3-하이드록시발레레이트(3-hydroxyvalerate)(PHV),
3-하이드록시헥사노에이트(3-hydroxyhexanoate), 3-하이드록시헵타노에이트(3-hydroxyheptanoate), 하이드록시옥타노에이트(3-hydroxyoctanoate), 하이드록시노나노에이트(3-hydroxynonanoate), 하이드록시데카노에이트(3-hydroxydecanoate), 하이드록시운데카노에이트(3-hydroxyundecanoate), 하이드록시도데카노에이트(3-hydroxydodecanoate), 하이드록시트리데카노에이트(3-hydroxytridecanoate), 하이드록시테트라데카노에이트(3-hydroxytetradecanoate), 하이드록시펜타데카노에이트(3-hydroxypentadecanoate), 하이드록시헥사데카노에이트(3-hydroxyhexadecanoate), 3-하이드록시운덕-10-에노에이트(3-hydroxyundec-10-enoate) 및 3-하이드록시-5-페닐발레레이트(3-hydroxy-5-phenylvalerate)로 이루어진 군에서 선택된 동종의 하이드록시알카노에이트가 중합된 호모폴리머, 이종의 하이드록시알카노에이트가 2종이상 중합된 코폴리머 또는 터폴리머인 것을 특징으로 하는 바이오플라스틱 기반의 발포시트.
The method of claim 1, wherein the polyhydroxyalkanoate-based polymer is 3-hydroxybutyrate (PHB), 3-hydroxyvalerate (PHV),
3-hydroxyhexanoate, 3-hydroxyheptanoate, hydroxyoctanoate, 3-hydroxynonanoate, hydroxy Decanoate (3-hydroxydecanoate), hydroxyundecanoate (3-hydroxyundecanoate), hydroxydodecanoate (3-hydroxydodecanoate), hydroxytridecanoate (3-hydroxytridecanoate), hydroxytetradecanoate ( 3-hydroxytetradecanoate, 3-hydroxypentadecanoate, 3-hydroxyhexadecanoate, 3-hydroxyundec-10-enoate and 3 - A homopolymer in which hydroxyalkanoates of the same type selected from the group consisting of 3-hydroxy-5-phenylvalerate are polymerized, A bioplastic-based foam sheet, characterized in that it is a polymer or terpolymer.
제4항에 있어서, 상기 폴리하이드록시알카노에이트계 폴리머가 폴리3-하이드록시부틸레이트(poly-3-hydroxybutyrate, P3HB), 폴리3-하이드록시발레레이트(poly-3-hydroxyvalerate, PHV), 폴리3-하이드록시헥사노에이트(poly-3-hydroxyhexanoate, PHH), 폴리3-하이드록시옥타노에이트(poly-3-hydroxyoctanoate, PHO), 폴리3-하이드록시부틸레이트-코-3-하이드록시발레레이트(poly(3-hydroxybutyrate-co-3-hydroxyvalerate, PHBV), 폴리3-하이드록시부틸레이트-코-3-하이드록시헥사노에이트(poly(3-hydroxybutyrate-co-3-hydroxyhexanoate, PHBH), 폴리3-하이드록시부틸레이트-코-4-하이드록시부틸레이트(poly(3-hydroxybutyrate-co-4-hydroxybutyrate), 폴리3-하이드록시부틸레이트-코-3-발레레이트(poly(3-hydroxybutyrate-co-3-valerate, PHBV), 폴리3-하이드록시부틸레이트-코-3-하이드로헥사노에이트(poly(3-hydroxybutyrate-co-3-hydroxyhaxanoate, PHBH), 폴리3-하이드록시부틸레이트-코-3-하이드록시운덕-10-에노에이트(poly(3-hydroxyoctanoate-co-3-hydroxyundec-10-enoate, PHOU)로 이루어진 군에서 선택되는 어느 하나인 것을 특징으로 하는 바이오플라스틱 기반의 발포시트.5. The method of claim 4, wherein the polyhydroxyalkanoate-based polymer is poly-3-hydroxybutyrate (P3HB), poly-3-hydroxyvalerate (PHV), Poly-3-hydroxyhexanoate (PHH), poly-3-hydroxyoctanoate (PHO), poly3-hydroxybutylate-co-3-hydroxy poly(3-hydroxybutyrate-co-3-hydroxyvalerate, PHBV), poly(3-hydroxybutyrate-co-3-hydroxyhexanoate, PHBH) , poly3-hydroxybutyrate-co-4-hydroxybutyrate (poly(3-hydroxybutyrate-co-4-hydroxybutyrate), poly3-hydroxybutyrate-co-3-valerate (poly(3-hydroxybutyrate-co-4-hydroxybutyrate) hydroxybutyrate-co-3-valerate (PHBV), poly-3-hydroxybutyrate-co-3-hydrohexanoate (poly(3-hydroxybutyrate-co-3-hydroxyhaxanoate, PHBH); Poly 3-hydroxybutyrate-co-3-hydroxyunduk-10-enoate (poly(3-hydroxyoctanoate-co-3-hydroxyundec-10-enoate, PHOU) characterized in that any one selected from the group consisting of Bioplastic-based foam sheet. 제1항에 있어서, 상기 폴리하이드록시알카노에이트계 폴리머가 폴리(3-하이드록시알카노에이트(PHA)계 제1폴리머에, 열가소성 전분(TPS), 폴리부틸렌 석시네이트(PBS), 폴리부틸렌 아디페이트(PBA), 폴리부틸렌아디페리트(PBA), 폴리(부틸렌 석시네이트 코- 부틸렌 아디페이트)(PBSA), 폴리(부틸렌 아디페이트 코-테레프탈레이트)(PBAT), 폴리(부틸렌 아디페이트 코-석시네이트 코-테레프탈레이트)(PBAST), 폴리(부틸렌 석시네이트 코-L-락테이트)(PBSL), 폴리카프로락톤(PCL), 폴리글리콜릭산(PGA), 폴리비닐알코올(PVA), 폴리락트산(PLA), 폴리히드록시알카노에이트 및 지방족/방향족 공중합 폴리에스테르로 이루어진 군에서 선택된 1종 이상의 제2폴리머가 블렌딩된 것을 특징으로 하는 바이오플라스틱 기반의 발포시트.According to claim 1, wherein the polyhydroxyalkanoate-based polymer is poly(3-hydroxyalkanoate (PHA)-based first polymer, thermoplastic starch (TPS), polybutylene succinate (PBS), poly butylene adipate (PBA), polybutylene adipate (PBA), poly(butylene succinate co-butylene adipate) (PBSA), poly(butylene adipate co-terephthalate) (PBAT), poly(butylene adipate co-succinate co-terephthalate) (PBAST), poly(butylene succinate co-L-lactate) (PBSL), polycaprolactone (PCL), polyglycolic acid (PGA), Bioplastic-based foam sheet, characterized in that at least one second polymer selected from the group consisting of polyvinyl alcohol (PVA), polylactic acid (PLA), polyhydroxyalkanoate and aliphatic/aromatic copolymer polyester is blended . 제6항에 있어서, 상기 제2 폴리머가 0.01 내지 90 중량%로 함유된 것을 특징으로 하는 바이오플라스틱 기반의 발포시트.[Claim 7] The bioplastic-based foam sheet according to claim 6, wherein the second polymer is contained in an amount of 0.01 to 90 wt%. 제1항에 있어서, 상기 폴리하이드록시알카노에이트계 폴리머 100중량부에 대하여, 안정제 0.01 내지 2 중량부 및 윤활제 0.01 내지 2 중량부를 더 함유하는 것을 특징으로 하는 바이오플라스틱 기반의 발포시트.The method according to claim 1, wherein, based on 100 parts by weight of the polyhydroxyalkanoate-based polymer, 0.01 to 2 parts by weight of a stabilizer and 0.01 to 2 parts by weight of a lubricant Bioplastic-based foam sheet, characterized in that it further contains 2 parts by weight. 제1항에 있어서, 상기 유기과산화물계 가교제가 벤조일퍼옥사이드, 라우릴퍼옥사이드, 디큐밀퍼옥사이드, 디헥실퍼옥사이드, 부틸큐밀퍼옥사이드, 디부틸퍼옥사이드, p-메탄하이드로퍼옥사이드, 디이소프로필벤젠하이드로퍼옥사이드, 테트라메틸부틸퍼옥사이드, 큐멘하이드로퍼옥사이드, 2,5-디메틸-2,5-디부틸퍼옥시헥신-3, 2,3-디메틸-2,3-디페닐부탄, 1,1-디(t-헥실퍼옥시)사이클로헥산, 1,1-디(t-부틸퍼옥시)사이클로헥산, 2,2-디(4,4-디-(t-부틸퍼옥시)사이클로헥실)프로판, 디(2-부틸퍼옥시이소프로필)벤젠, 2,5-디메틸-2,5-디부틸퍼옥시헥산, 헥실퍼옥시이소프로필카보네이트, 부틸퍼옥시 2-에틸헥실카보네이트, 디이소프로필퍼옥시디카보네이트, 부틸퍼옥시이소프로필카보네이트, 부틸퍼옥시말레인산, 부틸퍼옥시-3,5,5-트리메틸헥사노에이트, 부틸퍼옥시라우레이트, 부틸퍼옥시벤조에이트, 헥실퍼옥시벤조에이트, 부틸퍼옥시아세테이트, n-부틸 4,4-디-부틸퍼옥시발레레이트 및 2,2-디-부틸퍼옥시부탄으로 이루어진 군에서 선택되는 어느 하나인 것을 특징으로 하는 바이오플라스틱 기반의 발포시트.According to claim 1, wherein the organic peroxide-based crosslinking agent benzoyl peroxide, lauryl peroxide, dicumyl peroxide, dihexyl peroxide, butylcumyl peroxide, dibutyl peroxide, p-methane hydroperoxide, diisopropylbenzene Hydroperoxide, tetramethylbutyl peroxide, cumene hydroperoxide, 2,5-dimethyl-2,5-dibutylperoxyhexyne-3, 2,3-dimethyl-2,3-diphenylbutane, 1,1 -di(t-hexylperoxy)cyclohexane, 1,1-di(t-butylperoxy)cyclohexane, 2,2-di(4,4-di-(t-butylperoxy)cyclohexyl)propane , di(2-butylperoxyisopropyl)benzene, 2,5-dimethyl-2,5-dibutylperoxyhexane, hexyl peroxyisopropyl carbonate, butyl peroxy 2-ethylhexyl carbonate, diisopropyl peroxydi Carbonate, butylperoxyisopropyl carbonate, butylperoxymaleic acid, butylperoxy-3,5,5-trimethylhexanoate, butylperoxylaurate, butylperoxybenzoate, hexylperoxybenzoate, butylperoxy Acetate, n-butyl 4,4-di-butylperoxyvalerate and 2,2-di-butylperoxybutane, characterized in that any one selected from the group consisting of a bioplastic-based foam sheet. 제1항에 있어서, 상기 가소제가 유기산 또는 알코올계 화합물 금속 화합물 또는 구연산계 화합물에서 선택되는 단독 또는 혼합형태인 것을 특징으로 하는 바이오플라스틱 기반의 발포시트.The bioplastic-based foam sheet according to claim 1, wherein the plasticizer is selected from an organic acid, an alcohol-based compound, a metal compound, or a citric acid-based compound alone or in a mixed form. 제1항에 있어서, 상기 발포핵제가 탈크, 실리카, 탄산칼슘, 스테아린산 칼슘 및 몬모릴로나이트(Montmorillonite)로 이루어진 군에서 선택되는 어느 하나인 것을 특징으로 하는 바이오플라스틱 기반의 발포시트.According to claim 1, wherein the foaming nucleating agent talc, silica, calcium carbonate, calcium stearate, and montmorillonite (Montmorillonite), characterized in that any one selected from the group consisting of a bioplastic-based foam sheet. 제2항에 있어서, 상기 폴리하이드록시알카노에이트계 폴리머가 하기 식으로 표시되는 3-하이드록시알카노에이트의 반복구조가 E-빔(beam)에 의해 가교된 폴리머인 것을 특징으로 하는 바이오플라스틱 기반의 발포시트:
Figure pat00005

상기에서 R은 C1 내지 C13 알킬기이고, C6 내지 C10 아릴기이다.
The bioplastic according to claim 2, wherein the polyhydroxyalkanoate-based polymer is a polymer in which the repeating structure of 3-hydroxyalkanoate represented by the following formula is crosslinked by an E-beam. Foam sheet based:
Figure pat00005

In the above, R is a C 1 to C 13 alkyl group, and a C 6 to C 10 aryl group.
제1항 내지 제12항 중 어느 한 항의 바이오플라스틱 기반의 발포시트를 성형 가공하여, 식품포장용기, 산업용 포장재, 의료용 자재, 의료용 의류, 농업용자재 및 어업용자재로 이루어진 군에서 선택된 어느 하나에 적용되는 생분해 성형발포 제품.The bioplastic-based foam sheet of any one of claims 1 to 12 is molded and processed to be applied to any one selected from the group consisting of food packaging containers, industrial packaging materials, medical materials, medical clothing, agricultural materials and fishing materials. Biodegradable molded foam products.
KR1020210044177A 2021-04-05 2021-04-05 Biodegradable bioplastic based foam sheet and use of foam-molding product using the same KR20220138542A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210044177A KR20220138542A (en) 2021-04-05 2021-04-05 Biodegradable bioplastic based foam sheet and use of foam-molding product using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210044177A KR20220138542A (en) 2021-04-05 2021-04-05 Biodegradable bioplastic based foam sheet and use of foam-molding product using the same

Publications (1)

Publication Number Publication Date
KR20220138542A true KR20220138542A (en) 2022-10-13

Family

ID=83599328

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210044177A KR20220138542A (en) 2021-04-05 2021-04-05 Biodegradable bioplastic based foam sheet and use of foam-molding product using the same

Country Status (1)

Country Link
KR (1) KR20220138542A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS548877B2 (en) 1975-07-19 1979-04-19
JP2013231189A (en) 2007-02-15 2013-11-14 Tokyo Institute Of Technology Biodegradable resin composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS548877B2 (en) 1975-07-19 1979-04-19
JP2013231189A (en) 2007-02-15 2013-11-14 Tokyo Institute Of Technology Biodegradable resin composition

Similar Documents

Publication Publication Date Title
EP2285901B1 (en) Biodegradable polyester blends
KR100900251B1 (en) Polymer composition of polylactic acid, foam sheet using the same, manufacturing method thereof and use of foam-molding product thereby
KR100939729B1 (en) Polylactide foam and use of foam-molding product thereby
JP5383489B2 (en) Biodegradable aliphatic polyester-based expanded particles and molded articles thereof
KR20120107917A (en) Pha compositions comprising pbs and pbsa and methods for their production
KR20120104168A (en) Toughened polyhydroxyalkanoate compositions
WO2013125359A1 (en) Molded product composed of polyester resin composition
JP2004161802A (en) Biodegradable polyester resin composition and method for producing the same
WO2022014408A1 (en) Aliphatic-polyester-based resin composition and utilization thereof
KR20210111185A (en) Biodegradable resin composition, biodegradable molded articles using same, and preperation method thereof
JP2021102669A (en) Aliphatic polyester resin composition and its usage
JP2004359910A (en) Polylactic acid resin foamed sheet for thermal forming and polylactic acid resin formed foam
JP5045035B2 (en) Aliphatic polyester resin composition and method for producing the same
KR101690082B1 (en) Biodegradable resin composition and biodegradable film prepared therefrom
KR20220063046A (en) Water based biodegadable composition, products including the same and manufacturing method of water based biodegadable products
JP5302476B1 (en) Thermoformed product comprising a polyester resin composition
KR20220138542A (en) Biodegradable bioplastic based foam sheet and use of foam-molding product using the same
JP5517280B2 (en) Polylactic acid resin foam molding
JP3944281B2 (en) Polyglycolic acid foam
JP2010142985A (en) Method of molding resin composition, and molding thereof
US20220162377A1 (en) Foam sheet, product, and method for producing foam sheet
JP4326832B2 (en) Method for producing biodegradable polyester resin composition
JP2002012674A (en) Aliphatic polyester composition for master batch and method for producing aliphatic polyester film using the composition
JP4570033B2 (en) Method for producing polylactic acid resin foamed molded article and polylactic acid resin foamed sheet for thermoforming
JP3674594B2 (en) Packaging material made of lactic acid copolymer polyester

Legal Events

Date Code Title Description
E902 Notification of reason for refusal