KR20220116399A - 유기 발광 소자, 그 유기 발광 소자의 제조방법 및 이를 포함하는 유기 발광 표시장치 - Google Patents

유기 발광 소자, 그 유기 발광 소자의 제조방법 및 이를 포함하는 유기 발광 표시장치 Download PDF

Info

Publication number
KR20220116399A
KR20220116399A KR1020220099091A KR20220099091A KR20220116399A KR 20220116399 A KR20220116399 A KR 20220116399A KR 1020220099091 A KR1020220099091 A KR 1020220099091A KR 20220099091 A KR20220099091 A KR 20220099091A KR 20220116399 A KR20220116399 A KR 20220116399A
Authority
KR
South Korea
Prior art keywords
layer
sub
light emitting
hole
electron
Prior art date
Application number
KR1020220099091A
Other languages
English (en)
Other versions
KR102619460B1 (ko
Inventor
송하진
윤지환
이상우
표상우
Original Assignee
삼성디스플레이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성디스플레이 주식회사 filed Critical 삼성디스플레이 주식회사
Priority to KR1020220099091A priority Critical patent/KR102619460B1/ko
Publication of KR20220116399A publication Critical patent/KR20220116399A/ko
Application granted granted Critical
Publication of KR102619460B1 publication Critical patent/KR102619460B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H01L51/5036
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H01L51/5004
    • H01L51/5016
    • H01L51/5024
    • H01L51/5056
    • H01L51/5072
    • H01L51/5088
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H01L2251/552
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/20Delayed fluorescence emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/27Combination of fluorescent and phosphorescent emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/30Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/40Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/90Multiple hosts in the emissive layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/852Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/655Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole

Abstract

유기 발광 소자는 서로 마주하는 제1 전극과 제2 전극, 제1 전극과 제2 전극 사이에 배치된 발광층, 제1 전극과 발광층 사이에 배치된 정공 제어층, 발광층과 제2 전극 사이에 배치된 전자 제어층을 포함한다. 발광층은 서로 다른 파장 영역의 광을 방출하는 복수 개의 서브 발광층들을 포함하며, 복수 개의 서브 발광층들의 적어도 일부 영역이 서로 비중첩하며, 제1 색 도펀트를 포함하는 제1 서브 발광층과 제1 색과 다른 제2 색 도펀트를 포함하는 제2 서브 발광층을 포함한다. 제1 서브 발광층과 제2 서브 발광층은 각각 엑시플렉스를 형성하는 정공 수송성 호스트 및 전자 수송성 호스트를 포함하고, 엑시플렉스의 삼중항 에너지는 제1 색 도펀트 및 제2 색 도펀트의 삼중항 에너지 이상의 값을 가짐으로써 구동 전압을 낮추고 발광 소자의 효율을 향상시킬 수 있다.

Description

유기 발광 소자, 그 유기 발광 소자의 제조방법 및 이를 포함하는 유기 발광 표시장치{ORGANIC LIGHT EMITTING DEVICE, FABRICATION METHOD OF THE SAME AND ORGANIC LIGHT EMITTING DISPLAY DEVICE INCLUDING THE SAME}
본 발명은 유기 발광 소자 및 유기 발광 소자의 제조 방법과 유기 발광 표시장치에 관한 것이다. 보다 상세하게는 소자의 효율이 개선된 유기 발광 소자 및 이를 포함하는 유기 발광 표시장치와 유기 발광 소자의 제조 생산성을 향상시키는 유기 발광 소자의 제조 방법에 관한 것이다.
유기발광 소자(ORGANIC LIGHT EMITTING DIODE)는 자발광형 소자로서 시야각이 넓고 콘트라스트가 우수하다. 뿐만아니라 유기발광 소자는 응답시간이 빠르며, 휘도가 높고 구동전압이 낮다.
일반적으로 유기발광 소자는 애노드, 애노드 상에 순차적으로 배치된 정공 수송층, 발광층, 전자 수송층 및 캐소드를 포함한다. 여기에서 정공 수송층, 발광층 및 전자 수송층은 유기화합물로 이루어진 유기 박막들이다.
유기 발광 소자의 구동 원리는 다음과 같다. 애노드 및 캐소드에 서로 다른 전압들이 인가하면, 애노드로부터 주입된 정공은 정공 수송층을 경유하여 발광층으로 이동하고, 캐소드로부터 주입된 전자는 전자 수송층을 경유하여 발광층으로 이동한다. 정공 및 전자는 발광층에서 재결합하여 엑시톤(exiton)을 생성한다. 이 엑시톤이 여기 상태에서 기저상태로 변하면서 광이 생성된다.
본 발명의 목적은 생산성을 향상시키면서도 고효율을 갖는 유기 발광 소자 및 이를 포함하는 유기 발광 표시장치를 제공하는 것이다.
본 발명의 목적은 제조 비용이 절감된 유기 발광 소자의 제조 방법을 제공하는 것이다.
일 실시예의 유기 발광 소자는 제1 전극; 상기 제1 전극과 마주하는 제2 전극; 상기 제1 전극과 상기 제2 전극 사이에 배치된 발광층; 상기 제1 전극과 상기 발광층 사이에 배치된 정공 제어층; 상기 발광층과 상기 제2 전극 사이에 배치된 전자 제어층; 을 포함한다. 상기 발광층은 서로 다른 파장 영역의 광을 방출하는 복수 개의 서브 발광층들을 포함하며, 상기 복수 개의 서브 발광층들의 적어도 일부 영역이 서로 비중첩하며, 상기 복수 개의 서브 발광층들은 제1 색 도펀트를 포함하는 제1 서브 발광층 및 상기 제1 색과 다른 제2 색 도펀트를 포함하는 제2 서브 발광층을 포함한다. 상기 제1 서브 발광층과 상기 제2 서브 발광층은 각각 엑시플렉스를 형성하는 정공 수송성 호스트 및 전자 수송성 호스트를 포함하고, 상기 엑시플렉스의 삼중항 에너지는 상기 제1 색 도펀트 및 상기 제2 색 도펀트의 삼중항 에너지 이상일 수 있다.
상기 제1 서브 발광층과 상기 제2 서브 발광층은 동일한 상기 정공 수송성 호스트 및 동일한 상기 전자 수송성 호스트를 포함할 수 있다.
상기 엑시플렉스의 삼중항 에너지는 2.4 eV 이상 3.0 eV 이하일 수 있다.
상기 정공 수송성 호스트의 최저준위 비점유 분자궤도(LUMO) 에너지 레벨과 상기 전자 수송성 호스트의 최저준위 비점유 분자궤도(LUMO) 에너지 레벨의 차이는 0.2 eV 이상일 수 있다.
상기 정공 수송성 호스트의 최고 점유 분자 궤도(HOMO) 에너지 레벨과 상기 전자 수송성 호스트의 최고 점유 분자 궤도(HOMO) 에너지 레벨의 차이는 0.2 eV 이상일 수 있다.
상기 정공 수송성 호스트와 상기 전자 수송성 호스트의 중량비가 80:20 내지 20:80일 수 있다.
상기 복수 개의 서브 발광층들은 상기 제1 색 및 상기 제2 색과 다른 제3 색 발광 도펀트를 포함하는 제3 서브 발광층을 더 포함하고, 상기 제3 서브 발광층은 상기 정공 수송성 호스트 및 상기 전자 수송성 호스트를 포함할 수 있다.
상기 제3 색 발광 도펀트는 청색 발광 도펀트이고, 상기 엑시플렉스의 삼중항 에너지 레벨과 상기 청색 발광 도펀트의 일중항 에너지 레벨의 차이는 -0.1eV 이상 0.1eV 이하일 수 있다.
상기 복수 개의 서브 발광층들은 각각 보조층을 더 포함할 수 있다.
상기 제1 서브 발광층 내지 상기 제3 서브 발광층은 서로 다른 비율로 혼합된 상기 정공 수송성 호스트 및 상기 전자 수송성 호스트를 포함할 수 있다.
다른 실시예는 제1 전극 상에 정공 제어층을 형성하는 단계; 상기 정공 제어층 상에 복수 개의 서브 발광층들을 형성하는 단계; 상기 복수 개의 서브 발광층들 상에 전자 제어층을 형성하는 단계; 및 상기 전자 제어층 상에 제2 전극을 형성하는 단계; 를 포함하며, 상기 복수 개의 서브 발광층들을 형성하는 단계는 정공 수송성 호스트와 전자 수송성 호스트가 혼합된 혼합 호스트 재료와 제1 색 발광 도펀트를 제1 공증착하는 단계; 및 상기 혼합 호스트 재료와 상기 제1 색과 다른 제2 색 발광 도펀트를 제2 공증착하는 단계; 를 포함하는 유기 발광 소자의 제조 방법을 제공한다.
상기 복수 개의 서브 발광층들을 형성하는 단계는 상기 혼합 호스트 재료와 상기 제1 색 및 상기 제2 색과 다른 제3 색 발광 도펀트를 제3 공증착하는 단계를 더 포함할 수 있다.
유기 발광 소자의 제조 방법의 실시예는 상기 정공 수송 영역 상에 보조층을 제공하는 단계를 더 포함할 수 있다.
본 발명의 일 실시예에 따른 유기 발광 표시장치는 타이밍 제어부, 주사 구동부, 소스 구동부 및 유기 발광 표시 패널을 포함하고, 상기 유기 발광 표시 패널은 유기 발광 소자를 포함한다. 상기 유기 발광 소자는 제1 전극; 상기 제1 전극과 마주하는 제2 전극; 상기 제1 전극과 상기 제2 전극 사이에 배치된 발광층; 상기 제1 전극과 상기 발광층 사이에 배치된 정공 제어층; 상기 발광층과 상기 제2 전극 사이에 배치된 전자 제어층; 을 포함하고, 상기 발광층은 서로 다른 파장 영역의 광을 방출하는 복수 개의 서브 발광층들을 포함한다. 상기 복수 개의 서브 발광층들의 적어도 일부 영역이 서로 비중첩하며, 상기 복수 개의 서브 발광층들은 제 1색 발광 도펀트를 포함하는 제1 서브 발광층 및 상기 제1 색과 다른 제2 색 발광 도펀트를 포함하는 제2 서브 발광층을 포함한다. 상기 제1 서브 발광층과 상기 제2 서브 발광층은 각각 엑시플렉스를 형성하는 정공 수송성 호스트 및 전자 수송성 호스트를 포함하고, 상기 엑시플렉스의 삼중항 에너지는 상기 제1 색 발광 도펀트 및 상기 제2 색 발광 도펀트의 삼중항 에너지 이상일 수 있다.
상기 복수 개의 서브 발광층들은 제3 서브 발광층을 더 포함한다. 상기 제3 서브 발광층은 상기 제1 색 및 상기 제2 색과 다른 제3 색 발광 도펀트, 상기 정공 수송성 호스트 및 상기 전자 수송성 호스트를 포함하며, 상기 엑시플렉스의 삼중항 에너지 레벨과 상기 제3 색 발광 도펀트의 일중항 에너지 레벨의 차이는 -0.1eV 이상 0.1eV 이하일 수 있다.
본 발명의 일 실시예에 따른 유기 발광 소자 및 이를 포함하는 유기 발광 표시장치에 의하면, 소자 및 표시장치의 효율을 높이며 수명을 연장할 수 있다.
본 발명의 일 실시예에 따른 유기 발광 소자의 제조 방법에 의하면, 효율을 높일 수 있고, 수명을 연장할 수 있는 유기 발광 소자를 제공할 수 있다.
도 1은 일 실시예에 따른 유기 발광 표시장치의 블럭도이다.
도 2는 일 실시예에 따른 서브 화소의 회로도이다.
도 3은 일 실시예에 따른 유기발광 표시패널의 사시도이다.
도 4는 일 실시예에 따른 유기발광 표시패널의 평면도이다.
도 5는 일 실시예의 유기 발광 소자의 단면도이다.
도 6은 일 실시예의 유기 발광 소자의 에너지 밴드 다이어그램이다.
도 7 내지 도 8은 일 실시예의 유기 발광 소자의 단면도이다.
도 9a 내지 도 9b는 일 실시예의 유기 발광 소자의 제조 방법을 나타낸 플로우차트이다.
도 10은 일 실시예의 유기 발광 소자의 제조 방법에서 복수 개의 발광층을 형성하는 단계를 예시적으로 나타낸 도면이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다. 첨부된 도면에 있어서, 구조물들의 치수는 본 발명의 명확성을 위하여 실제보다 확대하여 도시한 것이다. 제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. 또한, 층, 막, 영역, 판 등의 부분이 다른 부분 "위에" 있다고 할 경우, 이는 다른 부분 "바로 위에" 있는 경우뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 반대로 층, 막, 영역, 판 등의 부분이 다른 부분 "아래에" 있다고 할 경우, 이는 다른 부분 "바로 아래에" 있는 경우뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다.
이하, 도면들을 참조하여 본 발명의 일 실시예에 따른 유기 발광 소자 및 유기 발광 표시장치에 대하여 설명한다.
도 1은 일 실시예의 유기 발광 표시장치의 블록도이다. 도 2는 도 1의 유기 발광 표시장치에서의 서브 화소의 등가 회로도이다. 도 1 내지 도 2를 참조하여 일 실시예의 유기 발광 표시장치를 설명한다.
도 1에 도시된 바와 같이, 유기 발광 표시장치는 타이밍 제어부(100), 주사 구동부(200), 소스 구동부(300) 및 유기 발광 표시 패널(DP)을 포함한다. 유기 발광 표시 패널은 일 실시예의 유기 발광 소자(미도시)를 포함할 수 있다. 일 실시예의 유기 발광 소자에 대하여는 이후에 상세히 설명한다.
타이밍 제어부(100)는 입력 영상신호들(미 도시)을 수신하고, 소스 구동부(300)와의 인터페이스 사양에 맞도록 입력 영상신호들의 데이터 포맷을 변환하여 영상 데이터들(D-RGB)을 생성한다. 타이밍 제어부(100)는 영상 데이터들(D-RGB)과 각종 제어신호들(DCS, SCS)을 출력한다.
주사 구동부(200)는 타이밍 제어부(100)로부터 주사 제어신호(SCS)를 수신한다. 주사 제어신호(SCS)는 주사 구동부(200)의 동작을 개시하는 수직개시신호, 신호들의 출력 시기를 결정하는 클럭신호 등을 포함할 수 있다. 주사 구동부(200)는 주사 제어신호(SCS)에 응답하여 게이트 신호들을 생성하고, 게이트 신호들을 후술하는 주사 라인들(SL1~SLn)에 순차적으로 출력한다. 
도 1은 게이트 신호들이 하나의 주사 구동부(200)로부터 출력되는 것으로 도시하였지만, 본 발명은 이에 한정되는 것은 아니다. 본 발명의 일 실시예에서, 유기 발광 표시장치는 복수 개의 주사 구동부들을 포함할 수 있다. 주사 구동부들은 서로 다른 게이트 신호들을 출력할 수 있다.
소스 구동부(300)는 타이밍 제어부(100)로부터 데이터 제어신호(DCS) 및 영상 데이터들(D-RGB)을 수신한다. 소스 구동부(300)는 영상 데이터들(D-RGB)을 데이터 신호들로 변환하고, 데이터 신호들을 후술하는 소스 라인들(DL1~DLm)에 출력한다. 데이터 신호들은 영상 데이터들(D-RGB)의 계조값들에 각각 대응하는 아날로그 전압들이다.
유기 발광 표시패널(DP)은 주사 라인들(SL1~SLn), 소스 라인들(DL1~DLm), 및 서브 화소들(SPX)을 포함한다. 주사 라인들(SL1~SLn)은 제1 방향축(DR1)을 따라 연장되고, 제1 방향축(DR1)에 교차하는 제2 방향축(DR2)을 따라 나열된다. 소스 라인들(DL1~DLm)은 주사 라인들(SL1~SLn)과 절연되게 교차한다. 본 발명의 일 실시예에 따른 유기 발광 표시패널(DP)은 서브 화소들(SPX)의 회로 구성에 종속하여 게이트 신호들 및 데이터 신호들과 다른 신호를 서브 화소들(SPX)에 제공하는 신호 라인들을 더 포함할 수 있다.
서브 화소들(SPX) 각각은 주사 라인들(SL1~SLn) 중 대응하는 주사 라인, 및 소스 라인들(DL1~DLm) 중 대응하는 소스 라인에 접속된다. 서브 화소들(SPX) 각각은 제1 전압(ELVDD) 및 제1 전압(ELVDD)보다 낮은 레벨의 제2 전압(ELVSS)을 수신한다. 서브 화소들(SPX) 각각은 제1 전압(ELVDD)이 인가되는 전원 라인(PL)에 접속된다.
도 2에는 i번째 주사 라인(SLi)과 j번째 소스 라인(DLj)에 접속된 하나의 서브 화소(SPXij)의 등가회로를 예시적으로 도시하였다. 별도로 도시하지 않았으나, 도 1에 도시된 다른 서브 화소들도 동일한 등가회로를 가질 수 있다.
도 2에 도시된 것과 같이, 서브 화소(SPXij)는 적어도 하나의 트랜지스터, 적어도 하나의 커패시터, 및 서브 유기발광 소자(OLED)를 포함한다. 본 실시예에서 2개의 트랜지스터들 및 하나의 커패시터를 포함하는 화소 회로를 예시적으로 도시하였으나, 서브 화소(SPXij)의 구성은 이에 제한되지 않는다.
서브 화소(SPXij)는 제1 트랜지스터(TR1), 제2 트랜지스터(TR2), 커패시터(Cap), 및 서브 유기발광 소자(OLED)를 포함한다. 제1 트랜지스터(TR1)는 i번째 주사 라인(SLi)에 인가된 게이트 신호에 응답하여 j번째 소스 라인(DLj)에 인가된 데이터 신호를 출력한다. 커패시터(Cap)는 제1 트랜지스터(TR1)로부터 수신한 데이터 신호에 대응하는 전압을 충전한다. 제2 트랜지스터(TR2)는 커패시터(Cap)에 저장된 전압에 대응하여 서브 유기발광 소자(OLED)에 흐르는 구동전류를 제어한다
이때, 일 실시예의 유기 발광 표시장치에 포함되는 서브 유기 발광 소자(OLED)는 후술하는 일 실시예의 유기 발광 소자 또는 일 실시예에서 구분되는 서브 발광층을 갖는 유기 발광 소자의 일 부분에 해당할 수 있다.
도 3은 유기 발광 표시패널(DP)의 사시도이고, 도 4는 유기 발광 표시패널(DP)의 평면도이다.
도 3에 도시된 바와 같이, 유기 발광 표시패널(DP)은 복수 개의 서브 화소들(SPX-R, SPX-G, SPX-B)을 포함한다. 3종의 서브 화소들(SPX-R, SPX-G, SPX-B)을 예시적으로 도시하였으며, 3종의 서브 화소들(SPX-R, SPX-G, SPX-B)은 서로 다른 컬러의 광들을 생성할 수 있다. 예컨대, 3종의 서브 화소들(SPX-R, SPX-G, SPX-B)은 적색광, 녹색광, 청색광을 각각 방출할 수 있다. 본 발명의 일 실시예에 따른 3종의 서브 화소들(SPX-R, SPX-G, SPX-B)은 마젠타광, 옐로우광, 시안광을 각각 방출할 수도 있다. 3종의 서브 화소들(SPX-R, SPX-G, SPX-B)은 도 3의 제3 방향축(DR3)으로 광을 방출할 수 있다.
서로 다른 컬러의 광들을 생성하는 서브 화소들(SPX-R, SPX-G, SPX-B)의 조합은 화소(PX)로 정의된다. 도 3에 도시된 것과 같이, 화소(PX)는 3종의 서브 화소들(SPX-R, SPX-G, SPX-B)을 포함할 수 있다.
본 발명의 일 실시예에 따른 화소(PX)는 후술하는 일 실시예의 유기 발광 소자에 대응하는 부분일 수 있다. 또한, 화소를 구성하는 각 서브 화소들은 서로 다른 서브 발광층을 가지는 유기 발광 소자의 발광 영역들에 각각 대응될 수 있다.
도 4에 도시된 바와 같이, 유기 발광 표시패널(DP)은 제1 방향축(DR1)과 제2 방향축(DR2)이 정의하는 평면 상에서 복수 개의 발광영역들(PXA-R, PXA-G, PXA-B)과 비발광영역(NPXA)으로 구분된다. 도 4에는 매트릭스 형태로 배치된 3종의 발광영역들(PXA-R, PXA-G, PXA-B)을 예시적으로 도시하였다. 3종의 발광영역들(PXA-R, PXA-G, PXA-B)에는 일 실시예의 유기 발광 소자들의 각각의 서브 발광층들이 대응하여 배치될 수 있다.
비발광영역(NPXA)은 3종의 발광영역들(PXA-R, PXA-G, PXA-B)을 에워쌓는 제1 비발광영역들(NPXA-1) 및 제1 비발광영역들(NPXA-1) 사이에 배치된 제2 비발광영역(NPXA-2)으로 구분될 수 있다 제1 비발광영역(NPXA-1)에 신호 라인들, 예컨대 주사 라인(SLi, 도 2 참조), 소스 라인(DLj, 도 2 참조), 전원 라인(PL, 도 2 참조)이 배치된다. 제2 비발광영역들(NPXA-2) 각각에 대응하는 서브 화소의 회로, 예컨대 트랜지스터들(TR1, TR2, 도 2 참조) 또는 커패시터(Cap, 도 2 참조)가 배치된다.
이하에서는 일 실시예의 상술한 유기 발광 표시장치에 포함되는 일 실시예의 유기 발광 소자를 도면을 참조하여 설명한다.
도 5는 일 실시예의 유기 발광 소자의 단면도이다. 도 5의 유기 발광 소자는 도 4의 I-I'에 대응하는 단면의 일부를 나타낸 것일 수 있다.
일 실시예의 유기 발광 소자는 서로 마주하는 제1 전극(E1)과 제2 전극(E2) 및 제1 전극과 제2 전극 사이에 배치되는 정공 제어층(HCL), 발광층(EML) 및 전자 제어층(ECL)을 포함할 수 있다.
일 실시예에서 제1 전극(E1)과 발광층(EML) 사이에 정공 제어층(HCL)이 배치되며, 발광층(EML)과 제2 전극(E2) 사이에 전자 제어층(ECL)이 배치될 수 있다. 또한, 발광층(EML)은 서로 다른 파장 영역의 광을 방출하는 복수 개의 서브 발광층들(EML-R, EML-G, EML-B)을 포함할 수 있다.
일 실시예에서 제1 전극(E1)은 애노드(Anode)일 수 있다. 제1 전극(E1)인 애노드는 단면상에서 제1 방향(DR1)으로 서로 이격되어 복수의 영역으로 제공될 수 있다. 예를 들어, 도 5를 참조하면, 제1 방향(DR1)으로 서로 이격되어 제공되는 제1 전극(E1)의 복수의 영역들은 각각 복수 개의 서브 발광층들(PXA-R, PXA-G, PXA-B)과 마주보고 배치될 수 있다. 즉, 제1 전극(E1)은 서로 이격되어 배치되되, 두께 방향으로 복수 개의 서브 발광층들(PXA-R, PXA-G, PXA-B)과 중첩되도록 제공될 수 있다.
제1 전극(E1)은 투과형 전극, 반투과형 전극 또는 반사형 전극일 수 있다. 제1 전극(E1)이 투과형 전극인 경우, 제1 전극(E1)은 투명 금속 산화물, 예를 들어, ITO(indium tin oxide), IZO(indium zinc oxide), ZnO(zinc oxide), ITZO(indium tin zinc oxide) 등으로 이루어질 수 있다. 제1 전극(E1)이 반투과형 전극 또는 반사형 전극인 경우, 제1 전극(E1)은 Ag, Mg, Al, Pt, Pd, Au, Ni, Nd, Ir, Cr 또는 금속의 혼합물을 포함할 수 있다. 한편, 제1 전극(E1)은 단일층 또는 복수의 층을 갖는 다층구조일 수도 있다.
제1 전극(E1) 상에는 정공 제어층(HCL)을 배치할 수 있다. 도 1에서는 정공 제어층(HCL)이 평탄면을 제공하는 것으로 도시되었으나, 실시예는 이에 한정하지 않으며, 정공 제어층(HCL)은 단차를 가지고 제공될 수도 있다.
정공 제어층(HCL)은 단일 물질로 이루어진 단일층, 복수 개의 다른 물질들을 포함하는 단일층 또는 복수의 서로 다른 물질로 이루어진 복수의 층을 갖는 다층 구조일 수 있다. 도 5에서 정공 제어층(HCL)은 정공 주입층(HIL)과 정공 수송층(HTL)을 포함하는 것으로 도시되어 있으나, 실시예는 이에 한정하지 않는다.
예를 들어, 정공 주입층(HIL) 및 정공 수송층(HTL)은 하나의 층으로 형성되고, p형 도펀트를 포함할 수 있다. 도면에 도시되지는 않았으나, 정공 제어층(HCL)은 정공 버퍼층 및 전자 저지층 중 적어도 하나를 더 포함할 수 있다.
정공 주입층(HIL)은 구리프탈로시아닌(copper phthalocyanine) 등의 프탈로시아닌(phthalocyanine) 화합물; DNTPD (N,N'-diphenyl-N,N'-bis-[4-(phenyl-m-tolyl-amino)-phenyl]-biphenyl-4,4'-diamine), m-MTDATA(4,4',4"-tris(3-methylphenylphenylamino) triphenylamine), TDATA(4,4'4"-Tris(N,N-diphenylamino)triphenylamine), 2TNATA(4,4',4"-tris{N,-(2-naphthyl)-N-phenylamino}-triphenylamine), PEDOT/PSS(Poly(3,4-ethylenedioxythiophene)/Poly(4-styrenesulfonate), PANI/DBSA(Polyaniline/Dodecylbenzenesulfonic acid), PANI/CSA(Polyaniline/Camphor sulfonicacid), PANI/PSS((Polyaniline)/Poly(4-styrenesulfonate) 등을 포함하여 형성될 수 있으나, 정공 주입층을 형성하는 재료가 제시된 화합물에 한정되는 것은 아니다.
정공 주입층(HIL)은 도전성 향상을 위하여 전하 생성 물질을 더 포함할 수 있다. 전하 생성 물질은 정공 주입층(HIL) 내에 균일하게 또는 불균일하게 분산되어 있을 수 있다. 전하 생성 물질은 예를 들어, p형 도펀트(dopant)일 수 있다. 정공 주입층(HIL)의 적어도 일부는 p형 도펀트를 포함하는 것일 수 있다. p형 도펀트는 퀴논(quinone) 유도체, 금속 산화물 및 시아노(cyano)기 함유 화합물 중 하나일 수 있으나, 이에 한정되는 것은 아니다. 예를 들어, p형 도펀트의 비제한적인 예로는, TCNQ(Tetracyanoquinodimethane) 및 F4-TCNQ(2,3,5,6-tetrafluoro-tetracyanoquinodimethane) 등과 같은 퀴논 유도체, 텅스텐 산화물 및 몰리브덴 산화물 등과 같은 금속 산화물 등을 들 수 있으나, 이에 한정되는 것은 아니다.
정공 수송층(HTL)은 정공 주입층(HIL) 상에 제공된다. 정공 수송층(HTL)은 N-페닐카바졸, 폴리비닐카바졸 등의 카바졸계 유도체, 플루오렌(fluorene)계 유도체, TPD(N,N'-bis(3-methylphenyl)-N,N'-diphenyl-[1,1-biphenyl]-4,4'-diamine), TCTA(4,4',4"-tris(N-carbazolyl)triphenylamine) 등과 같은 트리페닐아민계 유도체, NPB(N,N'-di(1-naphthyl)-N,N'-diphenylbenzidine), TAPC(4,4'-Cyclohexylidene bis[N,N-bis(4-methylphenyl)benzenamine]) 등을 포함할 수 있으나, 이에 한정되는 것은 아니다.
정공 제어층(HCL)을 구성하는 각 기능층들은 진공 증착법, 스핀 코팅법, 캐스트법, LB법(Langmuir-Blodgett), 잉크젯 프린팅법, 레이저 프린팅법, 레이저 열전사법(Laser Induced Thermal Imaging, LITI) 등과 같은 다양한 방법을 이용하여 형성될 수 있다.
정공 제어층(HCL) 상에는 서로 다른 파장 영역의 광을 방출하는 복수 개의 서브 발광층들(EML-R, EML-G, EML-B)을 포함하는 발광층(EML)이 형성된다. 복수 개의 서브 발광층들(EML-R, EML-G, EML-B)은 적어도 일부 영역이 서로 비중첩되도록 배치될 수 있다.
예를 들어, 도 5를 참조하면 서브 발광층들(EML-R, EML-G, EML-B)은 유기 발광 소자의 두께 방향인 제3 방향(DR3)에 수직하는 방향인 제1 방향(DR1)으로 서로 이격되어 배치될 수 있다. 즉, 도 1에 도시된 실시예에서는 복수 개의 서브 발광층들(EML-R, EML-G, EML-B)은 서로 비중첩되도록 제공될 수 있다.
한편, 도 5에서 서브 발광층들(EML-R, EML-G, EML-B)은 단면상에서 제1 방향(DR1)으로 서로 이격되어 독립적으로 배치되는 것으로 도시되고 있으나, 실시예는 이에 한정하지 않는다. 예를 들어, 서브 발광층들(EML-R, EML-G, EML-B)은 서로 이웃하여 배치될 수 있으며 또한, 두께 방향인 제3 방향(DR3)으로 적어도 일부분이 서로 중첩되도록 배치될 수도 있다.
전자 제어층(ECL)은 발광층(EML) 상에 배치될 수 있다. 전자 제어층(ECL)은 발광층(EML)의 각각의 서브 발광층들(EML-R, EML-G, EML-B)을 감싸고 배치될 수 있다. 전자 제어층(ECL)은 발광층(EML) 상에 전면적으로 제공될 수 있다. 전자 제어층(ECL)은 전자 수송층(ETL) 및 전자 수송층(ETL) 상에 제공되는 전자 주입층(EIL)을 더 포함할 수 있다. 이때, 전자 주입층(EIL)은 생략될 수도 있다.
전자 수송층(ETL)은 Alq3(Tris(8-hydroxyquinolinato)aluminum), TPBi(1,3,5-Tri(1-phenyl-1H-benzo[d]imidazol-2-yl)phenyl), BCP(2,9-Dimethyl-4,7-diphenyl-1,10-phenanthroline), Bphen(4,7-Diphenyl-1,10-phenanthroline), TAZ(3-(4-Biphenylyl)-4-phenyl-5-tert-butylphenyl-1,2,4-triazole), NTAZ(4-(Naphthalen-1-yl)-3,5-diphenyl-4H-1,2,4-triazole), tBu-PBD(2-(4-Biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole), BAlq(Bis(2-methyl-8-quinolinolato-N1,O8)-(1,1'-Biphenyl-4-olato)aluminum), Bebq2(berylliumbis(benzoquinolin-10-olate), ADN(9,10-di(naphthalene-2-yl)anthracene) 및 이들의 혼합물을 포함할 수 있으나, 이에 한정되는 것은 아니다. 전자 수송층(ETL)의 두께는 약 100Å 내지 약 1000Å, 예를 들어 약 150Å 내지 약 500Å일 수 있다. 전자 수송층(ETL)의 두께가 전술한 바와 같은 범위를 만족할 경우, 실질적인 구동 전압 상승없이 만족스러운 정도의 전자 수송 특성을 얻을 수 있다.
전자 주입층(EIL)은 LiF, LiQ (Lithium quinolate), Li2O, BaO, NaCl, CsF, Yb와 같은 란타넘족 금속, 또는 RbCl, RbI와 같은 할로겐화 금속 등이 사용될 수 있으나 이에 한정되는 것은 아니다. 전자 주입층(EIL)은 또한 전자 수송 물질과 절연성의 유기 금속염(organo metal salt)이 혼합된 물질로 이루어질 수 있다. 유기 금속염은 에너지 밴드 갭(energy band gap)이 대략 4eV 이상의 물질이 될 수 있다. 구체적으로 예를 들어, 유기 금속염은 금속 아세테이트(metal acetate), 금속 벤조에이트(metal benzoate), 금속 아세토아세테이트(metal acetoacetate), 금속 아세틸아세토네이트(metal acetylacetonate) 또는 금속 스테아레이트(stearate)를 포함할 수 있다. 전자 주입층(EIL)의 두께는 약 1Å 내지 약 100Å, 약 3Å 내지 약 90Å일 수 있다. 전자 주입층(EIL)의 두께가 전술한 바와 같은 범위를 만족할 경우, 실질적인 구동 전압 상승 없이 만족스러운 정도의 전자 주입 특성을 얻을 수 있다.
전자 제어층(ECL) 상에는 제2 전극(E2)이 형성될 수 있다. 제2 전극(E2)은 캐소드(Cathode)일 수 있다. 제2 전극(E2)은 전자 제어층(ECL) 상에 전면적으로 제공된다. 제2 전극(E2)은 투과형 전극, 반투과형 전극 또는 반사형 전극일 수 있다. 제2 전극(E2)이 투과형 전극인 경우, 제2 전극(E2)은 Li, Ca, LiF/Ca, LiF/Al, Al, Mg, BaF, Ba, Ag 또는 이들의 화합물이나 혼합물(예를 들어, Ag와 Mg의 혼합물)을 포함할 수 있다.
제2 전극(E2)은 보조 전극(미도시)을 포함할 수 있다. 보조 전극은 예를 들어, ITO(indium tin oxide), IZO(indium zinc oxide), ZnO(zinc oxide), ITZO(indium tin zinc oxide), Mo, Ti 등을 포함할 수 있다.
제2 전극(E2)이 반투과형 전극 또는 반사형 전극인 경우, 제2 전극(E2)은 Ag, Mg, Cu, Al, Pt, Pd, Au, Ni, Nd, Ir, Cr, Li, Ca, LiF/Ca, LiF/Al, Mo, Ti 또는 이들의 화합물이나 혼합물(예를 들어, Ag와 Mg의 혼합물)을 포함할 수 있다. 또는 상기 물질로 형성된 반사막이나 반투과막 및 ITO(indium tin oxide), IZO(indium zinc oxide), ZnO(zinc oxide), ITZO(indium tin zinc oxide) 등으로 형성된 투명 도전막을 포함하는 복수의 층 구조일 수 있다.
한편, 유기 발광 소자가 전면 발광형일 경우, 제1 전극(E1)은 반사형 전극이고, 제2 전극(E2)은 투과형 전극 또는 반투과형 전극일 수 있다. 또한, 유기 발광 소자가 배면 발광형일 경우, 제1 전극(E1)은 투과형 전극 또는 반투과형 전극이고, 제2 전극(E2)은 반사형 전극일 수 있다.
도시하지는 않았으나, 제2 전극(E2) 상에는 유기 캡핑층(미도시)이 제공될 수 있다. 유기 캡핑층(미도시)은 발광층(EML)에서 방출된 광을 유기 캡핑층(미도시)의 상면에서 다시 발광층 방향으로 반사시킬 수 있다. 반사된 광은 유기층 내부에서 공진 효과에 의해 증폭되어, 유기 발광 소자의 광 효율을 증가시킬 수 있다. 유기 캡핑층(미도시)은 전면 발광형 유기 발광 소자에서, 빛의 전반사를 통해 제2 전극(E2)에서 빛이 손실되는 것을 방지할 수 있다.
유기 캡핑층(미도시)은 통상적으로 사용하는 것이라면 특별히 한정하지 않으나, 예를 들어, TPD15(N4,N4,N4',N4'-tetra (biphenyl-4-yl) biphenyl-4,4'-diamine), TCTA(4,4',4"- Tris (carbazol sol-9-yl) triphenylamine), N, N'-bis (naphthalen-1-yl), α-NPD(N, N'-bis (phenyl) -2,2'-dimethylbenzidine) 중 적어도 하나를 포함할 수 있다.
도 5를 참조하면, 서브 발광층들(EML-R, EML-G, EML-B)이 배치되는 부분은 복수 개의 발광 영역(PXA-R, PXA-G, PXA-B)이고, 또한 서브 발광층들(EML-R, EML-G, EML-B)을 서로 이격시키는 공간은 비발광영역(NPXA)에 해당하는 부분일 수 있다. 다시 도 4를 참조하면, 서브 발광층들에 의하여 정의되는 유기 발광 소자의 발광 영역(PXA-R, PXA-G, PXA-B)은 도 4에 도시된 유기 발광 표시장치의 발광 영역(PXA-R, PXA-G, PXA-B)에 대응하는 부분일 수 있다. 또한, 도 5의 유기 발광 소자에서 비발광영역(NPXA)로 표시된 영역은 도 4의 유기 발광 표시장치에서의 비발광영역(NPXA)에 대응하는 부분에 해당할 수 있다.
일 실시예의 유기 발광 소자에서 발광층의 복수 개의 서브 발광층들(EML-R, EML-G, EML-B)은 각각 서로 다른 파장 영역의 광을 발광할 수 있다. 복수 개의 서브 발광층들(EML-R, EML-G, EML-B)은 호스트와 도펀트를 포함하여 형성될 수 있다. 복수 개의 서브 발광층들(EML-R, EML-G, EML-B) 각각은 서로 다른 색의 발광 도펀트를 포함할 수 있다.
예를 들어, 제1 서브 발광층은 적색 발광 도펀트인 제1 색 발광 도펀트를 포함하고, 제2 서브 발광층은 녹색 발광 도펀트인 제2 색 발광 도펀트를 포함하여 구성될 수 있다. 또한, 제3 서브 발광층은 청색 발광 도펀트인 제3 색 발광 도펀트를 포함하여 제공될 수 있다. 하지만, 실시예는 이에 한정하지 않으며, 제시된 색상의 발광 도펀트 이외에 다른 색상의 발광 도펀트가 포함될 수도 있다.
복수 개의 서브 발광층들(EML-R, EML-G, EML-B)에 포함되는 발광 도펀트는 예를 들어, 적색 발광 도펀트로는 Bt2Ir(acac) 또는 Ir(piq)3 등을 사용할 수 있다. 또한, 녹색 발광 도펀트는 Ir(ppy)3, Ir(ppy)2(acac), Ir(mppy)3 등을 사용할 수 있으며, 청색 발광 도펀트는 FIrpic 또는 DPAVBi 등을 사용할 수 있다. 하지만, 제시된 발광 도펀트의 종류는 예시적인 것으로서 실시예가 이에 한정되는 것은 아니다.
일 실시예에서 각각의 서브 발광층들(EML-R, EML-G, EML-B)은 정공 수송성 호스트와 전자 수송성 호스트를 포함할 수 있다. 일 실시예의 유기 발광 소자에서 제1 서브 발광층(EML-R)과 제2 서브 발광층(EML-G)에는 정공 수송성 호스트와 전자 수송성 호스트를 모두 포함할 수 있다.
예를 들어, 일 실시예의 유기 발광 소자에서 제1 서브 발광층(EML-R)은 정공 수송성 호스트, 전자 수송성 호스트 및 제1 발광 도펀트를 포함하고, 제2 서브 발광층(EML-G)은 정공 수송성 호스트, 전자 수송성 호스트 및 제2 발광 도펀트를 포함할 수 있다. 이때, 제1 서브 발광층(EML-R)과 제2 서브 발광층(EML-G)에는 엑시플렉스(Exciplex)를 형성하는 정공 수송성 호스트 및 전자 수송성 호스트를 포함할 수 있다. 서로 다른 특성을 갖는 2개의 호스트인 정공 수송성 호스트와 전자 수송성 호스트의 혼합된 호스트 물질에 의하여 생성된 엑시플렉스는 발광층 내에서 새로운 삼중항(Triplet) 에너지 레벨을 갖게 된다.
일 실시예의 서브 발광층(EML-R, EML-G, EML-B)에 포함되는 정공 수송성 호스트와 전자 수송성 호스트는 서브 발광층에 포함되는 발광 도펀트의 삼중항 에너지 이상의 삼중항 에너지를 가지는 엑시플렉스를 형성할 수 있는 물질이면 제한 없이 사용될 수 있다.
유기 발광 소자의 서브 발광층들(EML-R, EML-G, EML-B)에 포함되는 정공 수송성 호스트는 통상적으로 사용되는 정공 수송성 호스트라면 특별히 한정하지 않는다. 정공 수송성 호스트는 NPB(N,N'-Di-[(1-naphthalenyl)-N,N'-diphenyl]-1,1'-biphenyl)-4,4'-diamine), TCTA(4,4',4"-tris(N-carbazolyl)triphenylamine), CBP(4,4'-bis(N-carbazolyl)-1,1'-biphenyl), 폴리비닐카바졸, m-비스카바졸릴페닐들의 카바졸계 화합물들이 사용될 수 있다. 하지만, 실시예는 제시된 정공 수송성 호스트 재료에 한정되지 않는다.
예를 들어, 정공 수송성 호스트로는 하기 화학식 1로 표시되는 화합물이 사용될 수 있다.
[화학식 1]
Figure pat00001
일 실시예에 사용되는 정공 수송성 호스트의 최고 점유 분자 궤도(HOMO) 와 최저준위 비점유 분자궤도(LUMO) 의 에너지 갭은 3.0 eV 이상일 수 있다. 예를 들어, 화학식 1에 도시된 정공 수송성 호스트의 HOMO 에너지 레벨은 -5.4eV 이고 LUMO 에너지 레벨은 -2.4 eV 일 수 있다.
또한, 일 실시예의 유기 발광 소자의 서브 발광층들(EML-R, EML-G, EML-B)에 포함되는 전자 수송성 호스트는 안트라센(anthracene)계열 또는 페닐(phenyl) 계열의 화합물 및 그 유도체가 사용될 수 있다. 전자 수송성 호스트는 금속과 유기 리간드를 포함하는 유기 금속 착체, 스피로플루오렌(Spirofluorene)계 화합물, 옥시디아졸(Oxdiazole)계화합물, 펜안트롤린(phenanthroline)계 화합물, 트리아진(triazine)계 화합물, 또는 트리아졸(triazole)계 화합물 등이 사용될 수 있다. 하지만, 일 실시예에 사용되는 전자 수송성 호스트는 이에 한정되지 않으며 통상적으로 사용되는 전자 수송성 호스트라면 특별히 제한되지 않는다. 예를 들어, 전자 수송성 호스트는 하기 화학식 2로 표시되는 화합물이 사용될 수 있다.
[화학식 2]
Figure pat00002
일 실시예에 사용되는 전자 수송성 호스트의 HOMO와 LUMO의 에너지 갭은 3.0 eV 이상일 수 있다. 예를 들어, 화학식 2에 도시된 전자 수송성 호스트의 HOMO 레벨은 -5.8eV 이고 LUMO 레벨은 -2.7 eV 일 수 있다.
도 6은 도 5에 도시된 일 실시예의 유기 발광 소자의 에너지 밴드 다이어그램을 간략히 나타낸 도면이다. 도 6의 경우 일 실시예의 유기 발광 소자에서 정공 제어층으로서 정공 수송층(HTL)을 포함하고, 전자 제어층으로서 전자 수송층(ETL)을 포함하는 경우를 예시적으로 나타내었다. 하지만, 실시예는 이에 한정하지 않으며 정공 제어층은 정공 수송층 이외에 다른 유기층을 더 포함할 수 있으며, 전자 제어층은 전자 수송층 이외에 다른 유기층을 더 포함할 수 있다.
도 6에서 발광층의 에너지 밴드는 정공 수송성 호스트와 전자 수송성 호스트를 모두 포함한 경우를 나타낸 것으로서 발광층의 에너지 밴드는 EML-HT, EML-C, EML-ET를 모두 포함하는 부분에 해당할 수 있다. 이때, 정공 수송성 호스트에 의한 에너지 밴드 갭은 도 6에서 EML-C와 EML-HT를 포함한 영역일 수 있다. 또한, 전자 수송성 호스트에 의한 에너지 밴드 갭은 도 6에서 EML-C와 EML-ET를 포함하는 영역일 수 있다. 따라서, 발광층은 에너지 밴드 갭은 정공 수송성 호스트의 LUMO 에너지 레벨과 전자 수송성 호스트의 HOMO 에너지 레벨까지를 포함하는 범위로 넓어질 수 있다.
도 6을 참조하면, 제1 전극(E1)으로부터 정공 수송층(HTL) 및 발광층으로 갈수록 HOMO 에너지 레벨은 순차적으로 감소한다. 따라서, 제1 전극(E1)에서 주입된 정공은 정공 수송층(HTL)을 거쳐 단계적으로 발광층으로 제공될 수 있다.
또한, 제2 전극(E2)으로부터 전자 수송층(ETL) 및 발광층으로 갈수록 LUMO 에너지 레벨은 순차적으로 증가한다. 따라서, 제2 전극(E2)에서 주입된 전자는 전자 수송층(ETL)을 거쳐 단계적으로 발광층으로 제공된다.
발광층에서는 정공 수송성 호스트와 전자 수송성 호스트에 의하여 엑시플렉스를 형성한다. 이때, 정공 수송성 호스트와 전자 수송성 호스트에 의하여 형성된 엑시플렉스의 삼중항 에너지는 전자 수송성 호스트의 LUMO 에너지 레벨과 정공 수송성 호스트의 HOMO 에너지 레벨의 간격인 T1에 해당할 수 있다.
일 실시예의 유기 발광 소자에서 정공 수송성 호스트와 전자 수송성 호스트에 의하여 형성된 엑시플렉스의 삼중항 에너지(T1)는 2.4 eV 이상 3.0 eV 이하일 수 있다. 예를 들어, 도 5의 실시예에서 제1 서브 발광층(EML-R)이 적색 발광 도펀트를 포함하는 층이고, 제2 서브 발광층(EML-G)이 녹색 발광 도펀트를 포함하는 층인 경우로 설명한다.
일반적으로 서브 발광층에 포함된 적색 발광 도펀트의 삼중항 에너지는 2.0 eV 내외이고, 녹색 발광 도펀트의 삼중항 에너지는 2.4 eV 내외 이므로, 혼합된 호스트에 의하여 생성된 엑시플렉스의 삼중항 에너지가 2.4 eV 이상 이상인 경우 두 개의 적색광을 방출하는 서브 발광층과 녹색 광을 방출하는 서브 발광층은 이 경우 모두 발광할 수 있다. 하지만, 엑시플렉스의 삼중항 에너지가 2.4 eV 보다 작을 경우는 녹색 발광 도펀트를 포함하는 제2 서브 발광층에서는 발광이 이루어지지 않을 수 있다.
또한, 엑시플렉스의 삼중항 에너지는 각 호스트 물질의 에너지 갭보다 작은 값일 수 있다. 따라서, 엑시플렉스는 정공 수송성 호스트와 전자 수송성 호스트의 에너지 갭인 3.0 eV 이하의 삼중항 에너지를 가질 수 있다.
즉, 혼합된 정공 수송성 호스트와 전자 수송성 호스트에 의하여 형성된 엑시플렉스의 삼중항 에너지가 2.4 eV 이상 3.0 eV 이하인 경우 적색 발광 도펀트를 갖는 제1 서브 발광층과 녹색 발광 도펀트를 갖는 제2 서브 발광층에서 발광이 이루어질 수 있다. 따라서, 혼합된 호스트 재료를 제1 서브 발광층과 제2 서브 발광층에 동시에 포함함으로써 제1 서브 발광층과 제2 서브 발광층에 각각 포함된 발광 도펀트에 에너지를 전달하여 효과적으로 발광이 이루어질 수 있다. 보다 구체적으로 발광층이 적색광을 방출하는 서브 발광층과 녹색광을 방출하는 서브 발광층을 포함하는 경우에 있어서 정공 수송성 호스트와 전자 수송성 호스트가 형성하는 엑시플렉스의 삼중항 에너지는 2.7 eV 이상 3.0 eV 이하일 수 있다. 하지만, 실시예의 엑시플레스의 삼중항 에너지 레벨이 이에 한정되는 것은 아니며, 엑시플렉스가 적색 발광 도펀트의 삼중항 에너지 레벨 및 녹색 발광 도펀트의 삼중항 에너지 레벨보다 큰 삼중항 에너지를 갖는 경우이면 가능하다.
한편, 도 5에 도시된 일 실시예의 유기 발광 소자는 제3 색 발광 도펀트를 갖는 제3 서브 발광층(EML-B)을 더 포함할 수 있다. 제3 색 발광 도펀트는 청색 발광 도펀트일 수 있다. 한편 일반적으로 사용되는 청색 발광 도펀트의 일중항(singlet) 에너지는 2.6 eV 내지 2.7 eV 내외일 수 있다.
따라서, 정공 수송성 호스트와 전자 수송성 호스트의 혼합 호스트가 제1 내지 제3 서브 발광층에 모두 포함되는 일 실시예의 유기 발광 소자가 제공될 수 있다. 이때, 제1 서브 발광층은 적색 발광 도펀트를 포함하고, 제2 서브 발광층은 녹색 발광 도펀트를 포함하며, 제3 서브 발광층은 청색 발광 도펀트를 포함할 수 있다. 이러한 경우, 제1 내지 제3 서브 발광층에 포함되는 정공 수송성 호스트와 전자 수송성 호스트가 형성하는 엑시플렉스의 삼중항 에너지 레벨과 제3 색 발광 도펀트인 청색 발광 도펀트의 일중항 에너지 레벨의 차이는 -0.1 eV 이상 0.1 eV 이하일 수 있다.
예를 들어, 엑시플렉스의 삼중항 에너지가 2.5 eV 이상 2.8 eV 이하인 경우, 적색 발광 도펀트와 녹색 발광 도펀트의 삼중항 에너지보다 엑시플렉스의 삼중항 에너지가 높아 적색 발광 도펀트와 녹색 발광 도펀트는 인광 발광을 하게 된다. 한편, 청색 발광 도펀트의 경우에는 일중항 에너지가 엑시플렉스의 삼중항 에너지 레벨과 유사하여 형광 발광이 이루어지게 된다.
한편, 청색 발광 도펀트를 포함하는 제3 서브 발광층에서는 엑시플렉스의 삼중항 에너지는 청색 발광 도펀트에서 TADF(Thermally Activated Delayed Fluorescence)가 가능하도록 하여 제3 서브 발광층에서 형광 발광 및 인광 발광이 모두 이루어지도록 할 수 있다.
따라서, 엑시플렉스를 형성하는 정공 수송성 호스트와 전자 수송성 호스트를 모두 서브 발광층에 포함하고, 형성된 엑시플렉스의 삼중항 에너지가 2.5 eV 이상 2.8 eV 이하인 경우 제1 서브 발광층 내지 제3 서브 발광층에서 모두 발광이 이루어질 수 있다. 특히 하나의 서브 발광층에서 청색 발광 도펀트를 포함하는 경우에는 인광 발광 및 형광 발광이 모두 이루어질 수 있어 일 실시예의 유기 발광 소자의 효율을 향상시킬 수 있다.
하지만, 일 실시예에서 정공 수송성 호스트 및 전자 수송성 호스트에 의하여 형성되는 엑시플렉스의 삼중항 에너지 레벨은 상술한 수치범위에 한정되지 않는다. 엑시플렉스의 삼중항 에너지 레벨이 적색 발광 도펀트 및 녹색 발광 도펀트의 삼중항 에너지 레벨 이상이고 동시에 청색 발광 도펀트의 일중항 에너지 레벨과 유사한 경우이면 제1 내지 제3 서브 발광층에서 모두 발광이 이루어질 수 있다.
발광 도펀트의 삼중항 에너지보다 큰 삼중항 에너지를 갖는 엑시플렉스를 형성하는 정공 수송성 호스트와 전자 수송성 호스트는 제1 서브 발광층과 제2 서브 발광층에 동시에 포함될 수 있다. 예를 들어, 도 5의 유기 발광 소자에서 제1 서브 발광층(EML-R)과 제2 서브 발광층(EML-G)에 포함되는 정공 수송성 호스트와 전자 수송성 호스트는 동일한 물질이 사용될 수 있다.
한편, 전자 수송성 호스트와 정공 수송성 호스트는 발광층에 제공되기 전에 미리 혼합된 상태로 제공될 수 있다.
또한, 제3 서브 발광층(EML-B)에까지 혼합 호스트 물질이 사용될 경우 제3 서브 발광층(EML-B)은 제1 및 제2 서브 발광층에 포함되는 것과 동일한 정공 수송성 호스트와 전자 수송성 호스트를 포함할 수 있다. 따라서, 동일한 호스트 재료를 복수 개의 서브 발광층(EML-R, EML-G, EML-B)에 사용할 경우, 복수 개의 서브 발광층(EML-R, EML-G, EML-B)에 대하여 동일한 장비 내에서 호스트 물질의 증착이 이루어질 수 있어 유기 발광 소자의 제조에 있어서 생산성이 향상되고 제조 원가가 낮아질 수 있다.
한편, 서브 발광층(EML-R, EML-G, EML-B)은 정공 수송성 호스트를 포함함으로써, 정공 제어층(HCL)에서 공급되는 정공이 효과적으로 발광층으로 전달되도록 할 수 있다. 또한, 서브 발광층(EML-R, EML-G, EML-B)은 전자 수송성 호스트를 포함함으로써 전자 제어층(ECL)에서 공급되는 전자가 발광층으로 효과적으로 전달되도록 할 수 있다.
예를 들어, 도 6을 다시 참조하면, 제1 전극(E1)으로부터 공급되는 정공은 정공 수송층(HTL)으로부터 발광층에 포함되는 정공 수송성 호스트의 HOMO 에너지 레벨을 따라 전달될 수 있어 정공이 발광층으로 용이하게 공급될 수 있다. 또한, 제2 전극(E2)으로부터 공급되는 전자는 전자 수송층(ETL)으로부터 발광층에 포함되는 전자 수송성 호스트의 HOMO 에너지 레벨을 따라 발광층으로 용이하게 공급될 수 있다.
따라서, 정공 수송성 호스트와 전자 수송성 호스트를 모두 발광층에 포함함으로써 발광층으로의 전자와 정공의 공급이 효과적으로 이루어져 일 실시예의 유기 발광 소자의 효율이 증가될 수 있으며, 유기 발광 소자의 구동 전압도 낮출 수 있다.
한편, 도 6에 도시된 에너지 밴드 다이어그램에서 발광층에 포함된 정공 수송성 호스트의 LUMO 에너지 레벨과 전자 수송성 호스트의 LUMO 에너지 레벨의 차이(G1)는 0.2 eV 이상일 수 있다. 또한, 전자 수송성 호스트의 HOMO 에너지 레벨과 전자 수송층의 HOMO 에너지 레벨의 차이(G2)는 0.2 eV 이상일 수 있다. 이러한 정공 수송성 호스트와 전자 수송성 호스트의 에너지 레벨의 차이에 의하여 정공 수송성 호스트와 전자 수송성 호스트가 각각 전자와 정공의 이동에 대하여 블로킹(Blocking) 역할을 할 수 있다. 따라서, 발광층에 머무르게 되는 전자와 정공의 밀도가 높아지게 되며, 이에 따라 발광층에서의 발광 효율을 더욱 향상시킬 수 있다.
일 실시예의 유기 발광 소자에서 각 서브 발광층에 공급되는 정공 수송성 호스트와 전자 수송성 호스트는 미리 혼합한 후 호스트 재료로서 서브 발광층에 제공될 수 있다. 서로 다른 기능을 갖는 호스트 재료를 미리 혼합하여 공급함으로써, 서브 발광층 내에서의 호스트 재료의 불균일 현상을 최소화할 수 있다. 이에 따라 하나의 서브 발광층 내에서 균일한 발광 특성을 가질 수 있다.
표 1 내지 표 2는 서브 발광층에서 하나의 호스트 물질을 포함하는 경우와 두 개의 호스트 물질을 혼합하여 사용한 경우의 유기 발광 소자의 특성을 비교하여 나타낸 것이다. 표 1은 적색 발광 도펀트를 포함하는 서브 발광층에 대한 구동전압, 발광효율 및 색좌표를 나타낸 것이다.
구분 구동전압(V) 발광효율(cd/A) CIE x CIE y
비교예 1 4.5 55.7 0.669 0.330
실시예 1 3.6 56.6 0.666 0.333
비교예 1은 적색 발광 도펀트와 하나의 호스트 만을 포함한 서브 발광층이고, 실시예 1은 적색 발광 도펀트와 정공 수송성 호스트 및 전자 수송성 호스트의 혼합 호스트를 사용한 경우이다. 구체적으로 비교예 1은 안트라센계열의 전자 수송성 호스트에 적색 발광 도펀트를 3wt%로 도핑한 것이고, 실시예 1은 안트라센 계열의 전자 수송성 호스트와 카바졸계열의 정공 수송성 호스트를 30:70로 혼합한 프리믹스(premix) 호스트 재료에 적색 발광 도펀트를 5wt%로 도핑한 것이다.비교예 1과 실시예 1을 비교하면, 동일한 색좌표(CIEx, CIEy)를 나타내면서도 실시예 1에서는 비교예 1에 비하여 구동 전압이 감소한 것을 알 수 있다. 또한, 발광 효율 면에서도 실시예 1의 경우 비교예 1에 비하여 증가된 것을 확인할 수 있다.
표 2는 녹색 발광 도펀트를 포함하는 서브 발광층에 대한 구동전압, 발광효율 및 색좌표를 나타낸 것이다.
구분 구동전압(V) 발광효율(cd/A) CIE x CIE y
비교예 2 4.3 127.2 0.259 0.705
실시예 2 3.6 137.7 0.225 0.731
비교예 2는 녹색 발광 도펀트와 하나의 호스트 만을 포함한 서브 발광층의 경우이고, 실시예 2는 녹색 발광 도펀트와 정공 수송성 호스트 및 전자 수송성 호스트의 혼합 호스트를 사용한 경우이다. 구체적으로 비교예 2는 안트라센계열의 전자 수송성 호스트에 녹색 발광 도펀트를 5wt%로 도핑한 것이고, 실시예 2는 안트라센계열의 전자 수송성 호스트와 카바졸 계열의 정공 수송성 호스트를 50:50의 비율로 혼합한 프리믹스(premix) 호스트 재료에 녹색 발광 도펀트를 5wt%로 도핑한 것이다.비교예 2와 실시예 2를 비교하면, 동일한 색좌표(CIEx, CIEy)를 나타내면서도 실시예 2에서는 비교예 2에 비하여 구동 전압이 감소한 것을 알 수 있다. 또한, 발광 효율 면에서도 실시예 2의 경우가 비교예 2에 비하여 증가된 것을 확인할 수 있다.
따라서, 표 1 내지 표 2의 결과로부터 발광층에 정공 수송성 호스트와 전자 수송성 호스트를 혼합하여 사용한 경우의 유기 발광 소자의 효율이 개선되는 것을 알 수 있다. 또한, 구동 전압도 감소되는 것을 알 수 있다.
한편, 서브 발광층에 제공되는 혼합 호스트에서 정공 수송성 호스트와 전자 수송성 호스트의 혼합 비율은 80 :20 내지 20 : 80 의 비율일 수 있다. 혼합 호스트는 제1 내지 제3 서브 발광층에서 정공 수송성 호스트와 전자 수송성 호스트가 동일한 비율로 공급될 수 있다. 즉, 제1 내지 제3 서브 발광층에서 동일한 비율로 혼합된 정공 수송성 호스트와 전자 수송성 호스트가 제공될 수 있다.
한편, 일 실시예에서 제1 서브 발광층 내지 제3 서브 발광층에서 정공 수송성 호스트와 전자 수송성 호스트의 혼합 비율은 서로 다를 수 있다. 예를 들어, 제1 서브 발광층이 적색 발광 도펀트를 포함하는 경우 정공 수송성 호스트와 전자 수송성 호스트의 혼합 비율은 30 : 70 일 수 있다.
한편, 녹색 발광 도펀트를 포함하는 제2 서브 발광층에서는 정공 수송성 호스트와 전자 수송성 호스트의 혼합 비율은 70 : 30 일 수 있다. 청색 발광 도펀트를 포함하는 제3 서브 발광층에서는 정공 수송성 호스트와 전자 수송성 호스트의 혼합 비율은 50 : 50 일 수 있다.
하지만, 실시예는 이에 한정하지 않으며 정공 수송성 호스트와 전자 수송성 호스트의 혼합 비율은 80 :20 내지 20 : 80 의 비율 내에서 요구되는 엑시플렉스의 삼중항 에너지 레벨에 따라 조절될 수 있다.
또한, 제1 내지 제3 서브 발광층에서는 동일한 정공 수송성 호스트와 전자 수송성 호스트가 서로 다른 비율로 혼합되어 사용될 수 있다. 이와 달리, 서로 다른 정공 수송성 호스트와 전자 수송성 호스트가 사용될 수도 있다. 즉, 각 발광층의 발광 도펀트로 효과적으로 에너지가 전달될 수 있도록 정공 수송성 호스트와 전자 수송성 호스트가 선택될 수 있다.
도 7 내지 도 8은 유기 발광 소자의 다른 실시예들을 나타낸 단면도이다. 이하에서는 앞서 설명한 본 발명의 일 실시예에 따른 도 5에 도시된 유기 발광 소자와의 차이점을 위주로 구체적으로 설명하고, 설명되지 않은 부분은 앞서 설명한 본 발명의 일 실시예에 따른 유기 발광 소자에 따른다.
도 7 내지 도 8의 유기 발광 소자의 실시예에서는 발광층(EML)에 보조층(SL-R, SL-G, SL-B)을 추가로 더 포함할 수 있다.
보조층(SL-R, SL-G, SL-B)은 정공 수송층(HTL)과 서브 발광층(EML-R, EML-G, EML-B) 사이에 배치될 수 있다. 보조층(SL-R, SL-G, SL-B)은 발광층의 공진 제어층일 수 있다. 즉, 보조층(SL-R, SL-G, SL-B)은 각 서브 발광층(EML-R, EML-G, EML-B)과 정공 수송층(HTL) 사이에 배치되어 서브 발광층(EML-R, EML-G, EML-B)의 공진 거리를 조절하는 기능을 할 수 있다. 예를 들어, 보조층(SL-R, SL-G, SL-B)의 두께는 발광층에서 발광하는 광의 파장에 비례하며, 보조층(SL-R, SL-G, SL-B)의 두께에 의해 제1 전극(E1) 및 제2 전극(E2) 사이의 공진거리가 조절될 수 있다.
예를 들어, 도 7을 참조하면, 제1 서브 발광층(EML-R)이 적색 발광층이고 제2 서브 발광층(EML-G) 및 제3 서브 발광층(EML-B)이 각각 녹색 및 청색 발광층일 경우 보조층의 두께는 제1 서브 발광층 아래의 보조층(SL-R)이 가장 두껍고 제2 빛 제3 서브 발광층으로 갈수록 그 두께가 작아질 수 있다. 즉, 장파장으로 갈수록 보조층의 두께가 더 두껍게 형성될 수 있다.
도 8은 보조층(SL-R, SL-G, SL-B)이 두께 방향인 제3 방향(DR3)으로 순차적으로 적층되어 형성된 경우의 실시예를 나타낸 것이다. 이때, 제3 서브 발광층(EML-B)에 대한 공진 제어층 기능을 하는 보조층(SL-B)은 정공 수송층(HTL) 상에 형성된 하나의 보조층만 해당되며, 제2 서브 발광층(EML-G)에 대한 공진 제어층 기능을 하는 보조층(SL-B, SL-G)은 두 개의 보조층이 된다. 또한, 제1 서브 발광층(EML-R)에 대해서는 순차적으로 적층된 세 개의 보조층(SL-R, SL-G, SL-B)이 공진 제어층의 기능을 하게 된다.
도 7 내지 도 8에서 일 실시예의 유기 발광 소자에 포함되는 보조층(SL-R, SL-G, SL-B)은 서로 동일한 물질로 형성되거나 또는 서로 상이한 물질로 형성될 수 있다.
한편, 도 8의 실시예에서는 정공 제어층(HCL)에는 정공 주입층(HIL)과 정공 수송층(HTL) 사이에 중간층(IL)을 더 포함할 수 있다. 중간층(IL)은 정공 주입을 보다 용이하게 할 수 있다.
도 5, 도 7 내지 도 8에서 설명한 일 실시예의 유기 발광 소자는 상술한 일 실시예의 유기 발광 표시장치에 포함될 수 있다. 예를 들어, 도 5 및 도 7에 도시된 일 실시예의 유기 발광 소자는 휴대용 단말기 등의 중소형 표시장치에 사용될 수 있으며, 도 8에 도시된 일 실시예의 유기 발광 소자는 모니터나 TV등의 중대형 표시장치에 사용될 수 있다.
일 실시예의 유기 발광 소자를 포함하는 유기 발광 표시장치는 발광층에서 엑시플렉스를 형성하는 정공 수송성 호스트와 전자 수송성 호스트를 포함함으로써 개선된 효율을 가질 수 있다. 또한, 발광층에 포함되는 각각의 서브 발광층에서 동일한 혼합 호스트 물질을 사용할 경우 생산성이 향상될 수 있다.
도 9a 내지 9b는 일 실시예의 유기 발광 소자의 제조 방법을 나타낸 플로우차트이다. 이하의 유기 발광 소자의 제조 방법에 대한 설명에서는 상술한 일 실시예의 유기 발광 소자의 각 유기층에 대해서는 상세히 설명하지 않으며, 제조 단계에 대해서만 설명한다.
일 실시예의 유기 발광 소자의 제조 방법은, 제1 전극 상에 정공 제어층을 형성하는 단계(S130), 복수 개의 서브 발광층들을 형성하는 단계(S150), 전자 제어층을 형성하는 단계(S170) 및 제2 전극(S190)을 형성하는 단계를 포함할 수 있다.
제1 전극을 형성하는 단계(S110)에 의하여 형성된 제1 전극 상에 정공 제어층이 형성될 수 있다. 예를 들어, 제1 전극은 베이스 기판 상에 형성될 수 있다. 제1 전극은 일 실시예의 유기 발광 소자에서와 같이 베이스 기판 상에서 서로 이격되어 형성될 수 있다.
제1 전극 상에는 정공 제어층이 형성될 수 있다. 이때, 정공 제어층은 단일의 층으로 제공되거나 또는 복수의 층으로 제공될 수 있다. 예를 들어, 정공 제어층은 제1 전극 상에 형성된 정공 주입층, 정공 주입층 상에 형성된 정공 수송층을 포함하도록 형성될 수 있다.
정공 수송층 상에는 복수 개의 서브 발광층이 형성될 수 있다. 복수 개의 서브 발광층은 순차적으로 형성될 수 있다. 예를 들어, 도 5에 도시된 일 실시예의 유기 발광 소자를 제조 하는 경우 제3 서브 발광층(EML-B)을 형성시키고, 다음으로 제2 서브 발광층(EML-G) 및 제1 서브 발광층(EML-R)의 순서로 형성할 수 있다.
복수 개의 서브 발광층들을 형성하는 단계(S150)에서는 혼합 호스트 재료를 제공하는 단계(S151), 혼합 호스트 재료와 제1 색 발광 도펀트를 제1 공증착하는 단계(S153)를 포함할 수 있다. 또한, 제1 공증착 이후에 혼합 호스트 재료와 제2 색 발광 도펀트를 제2 공증착하는 단계(S155)를 포함할 수 있다.
서브 발광층을 순차적으로 형성한 이후에 전자 제어층을 형성하는 단계(S170)가 진행될 수 있다. 전자 제어층은 전자 수송층과 전자 주입층이 순차적으로 적층되어 형성될 수 있으나, 실시예는 이에 한정하지 않으며, 전자 제어층은 단일층으로 형성될 수도 있다.
다음으로 전자 제어층 상에는 제2 전극이 형성될 수 있다.
또한, 일 실시예의 유기 발광 소자의 제조 방법은 보조층을 형성하는 단계를 더 포함할 수 있다. 도면에 도시되지는 않았으나 보조층을 형성하는 단계는 정공 제어층을 형성하는 단계(S130) 이후에 진행될 수 있다. 예를 들어, 복수 새의 서브 발광층들을 형성하는 단계(S150) 이전에 보조층이 형성될 수 있으며, 복수 개의 서브 발광층 중 일부의 서브 발광층을 형성한 이후에 보조층을 형성하는 단계가 진행될 수도 있다.
예를 들어, 도 7에 도시된 일 실시예의 유기 발광 소자의 제조 방법에 있어서, 정공 수송층(HTL)의 형성 단계 이후에 제3 서브 발광층의 공진 제어층에 해당하는 보조층(SL-B)을 형성하는 단계가 먼저 진행되고 이후에 제3 서브 발광층(EML-B)이 형성될 수 있다. 이후 제2 서브 발광층의 공진 제어층에 해당하는 보조층(SL-G)을 형성하고 제2 서브 발광층(EML-G)이 형성되고, 순차적으로 제1 서브 발광층의 공진 제어층에 해당하는 보조층(SL-R)이 형성되고 제3 서브 발광층(EML-R)이 형성될 수 있다.
따라서, 보조층을 형성하는 단계는 서브 발광층을 형성하는 단계 이전 또는 일부의 서브 발광층을 형성하는 단계 이전에 제공될 수 있다.
도 10은 발광층에서 혼합 호스트 재료와 발광 도펀트를 증착하는 공정을 예시적으로 나타낸 것이다. 도 10에서는 서로 다른 발광 도펀트 두 개에 대하여 증착하는 단계, 즉 두 개의 서브 발광층의 형성 단계가 하나의 챔버 안에서 이루어지는 경우를 예시적으로 나타낸 것이다. 하지만, 실시예는 이에 한정하지 않으며 복수 개의 서브 발광층의 형성은 서로 다른 챔버에서 단계적으로 이루어질 수 있으며, 또는 세 개 이상의 서브 발광층의 형성이 하나의 챔버 내에서 이루어질 수도 있다.
도 10을 참조하면, 정공 제어층까지 형성된 기판(BS)은 챔버 내에서 일 방향으로 이동되며, 이동된 위치에서 혼합된 호스트 물질과 하나의 도펀트 물질이 동시에 증착될 수 있다. 예를 들어, 도 10의 (a)에서 S2의 소스에서는 혼합 호스트 물질이 제공되고 S3 소스에서는 하나의 발광 도펀트 물질이 제공되어 기판에서 서브 발광층이 형성될 수 있다. 이때, 나머지 하나의 발광 도펀트 물질의 소스인 S3은 소스 셔터(SC-ST)에 의하여 닫혀져 있게 된다.
(a)단계의 증착 이후 (b) 단계에서는 S2의 소스에서는 혼합 호스트 물질이 제공되고 S1 소스에서는 다른 하나의 발광 도펀트 물질이 제공되어 기판에서 서브 발광층이 형성될 수 있다. 이때, 이미 증착된 발광 도펀트의 소스인 S1은 소스 셔터(SC-ST)에 의하여 닫혀져 있게 된다.
한편, 혼합 호스트 물질은 서브 발광층의 형성 단계에서 증착 공정 전에 미리 혼합된 상태로 공급되게 된다. 미리 혼합된 호스트 물질을 하나의 소스에서 공급하고 하나의 소스에서 공급된 동일한 혼합 호스트 물질을 서로 다른 발광 파장을 갖는 복수 개의 서브 발광층에 제공함으로써 별도의 호스트 소스를 추가하지 않아도 되며, 경우에 따라서 하나의 챔버 안에서 복수 개의 서브 발광층을 형성할 수 있어 공정의 생산성이 향상될 수 있다.
또한, 미리 혼합된 호스트 물질을 제공함으로써 하나의 서브 발광층 내에서는 균일한 발광 특성을 가질 수 있다.
상술한 일 실시예의 유기 발광 소자의 제조 방법은 미리 혼합하여 준비한 정공 호스트 재료와 전자 호스트 재료를 이용하여 서브 발광층을 형성함으로써 서브 발광층 내에서 균일한 발광 특성을 구현할 수 있다. 또한, 동일한 혼합 호스트 재료를 복수 개의 서브 발광층에 적용할 경우 하나의 챔버 안에서 증착 공정이 이루어질 수 있어 제조 공정이 단순화되어 생산성이 향상될 수 있다.
이상, 첨부된 도면을 참조하여 본 발명의 실시예를 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징으로 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예는 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.
E1 : 제1 전극 E2 : 제2 전극
HTC : 정공 제어층 EML : 발광층
EML-R, EML-G, EML-B : 서브 발광층
ETC : 전자 제어층

Claims (15)

  1. 제1 전극;
    상기 제1 전극과 마주하는 제2 전극;
    상기 제1 전극과 상기 제2 전극 사이에 배치된 발광층;
    상기 제1 전극과 상기 발광층 사이에 배치된 정공 제어층;
    상기 발광층과 상기 제2 전극 사이에 배치된 전자 제어층; 을 포함하고,
    상기 발광층은 서로 비중첩하는 복수 개의 서브 발광층들을 포함하고,
    상기 복수 개의 서브 발광층들은
    적색 광을 방출하는 제1 서브 발광층;
    녹색 광을 방출하는 제2 서브 발광층; 및
    청색 광을 방출하는 제3 서브 발광층; 을 포함하고,
    상기 제1 서브 발광층은 제1 정공 수송성 호스트, 제1 전자 수송성 호스트 및 적색 발광 도펀트를 포함하고,
    상기 제2 서브 발광층은 제2 정공 수송성 호스트, 제2 전자 수송성 호스트 및 녹색 발광 도펀트를 포함하고,
    상기 제3 서브 발광층은 제3 정공 수송성 호스트, 제3 전자 수송성 호스트 및 청색 발광 도펀트; 를 포함하고,
    상기 제3 서브 발광층은 인광 발광 또는 열활성 지연 형광 발광하는
    유기 발광 소자.
  2. 제 1항에 있어서,
    상기 제1 서브 발광층의 상기 제1 정공 수송성 호스트 및 상기 제1 전자 수송성 호스트는 제1 엑시플렉스를 형성하고,
    상기 제2 서브 발광층의 상기 제2 정공 수송성 호스트 및 상기 제2 전자 수송성 호스트는 제2 엑시플렉스를 형성하는 유기 발광 소자.
  3. 제 2항에 있어서,
    상기 제1 엑시플렉스의 삼중항 에너지는 상기 적색 발광 도펀트 및 상기 녹색 발광 도펀트의 삼중항 에너지 이상인 유기 발광 소자.
  4. 제 2항에 있어서,
    상기 제2 엑시플렉스의 삼중항 에너지는 상기 적색 발광 도펀트 및 상기 녹색 발광 도펀트의 삼중항 에너지 이상인 유기 발광 소자.
  5. 제 2항에 있어서,
    상기 제1 엑시플렉스의 삼중항 에너지 및 상기 제2 엑시플렉스의 삼중항 에너지는 2.4 eV 이상 3.0 eV 이하인 유기 발광 소자.
  6. 제 1항에 있어서,
    상기 제1 내지 제3 전자 수송성 호스트는 유기 금속 착체, 스피로플루오렌(spirofluorene)계 화합물, 옥시다아졸(oxidiazole)계 화합물, 페난트롤린(phenethroline)계 화합물, 트리아진(triazine)계 화합물, 또는 트리아졸(triazole)계 화합물을 포함하는 유기 발광 소자.
  7. 제 1항에 있어서,
    상기 전자 제어층은 상기 발광층 상에 배치된 전자 수송층; 및 상기 전자 수송층 상에 배치된 전자 주입층; 을 포함하고,
    상기 전자 주입층은 LiF, LiQ, Li2O, BaO, NaCl, Yb, CsF, RbCl, 또는 RbI를 포함하는 유기 발광 소자.
  8. 제 1항에 있어서,
    상기 정공 제어층은 정공 주입층; 및 상기 정공 주입층 상에 배치된 정공 수송층; 을 포함하고,
    상기 정공 주입층은 p형 도펀트를 포함하고,
    상기 p형 도펀트는 퀴논(quinone) 유도체, 금속 산화물, 및 시아노기 함유 화합물 중 적어도 하나를 포함하는 유기 발광 소자.
  9. 제1 전극;
    상기 제1 전극과 마주하는 제2 전극;
    상기 제1 전극과 상기 제2 전극 사이에 배치된 발광층;
    상기 제1 전극과 상기 발광층 사이에 배치된 정공 제어층;
    상기 발광층과 상기 제2 전극 사이에 배치된 전자 제어층; 을 포함하고,
    상기 발광층은 서로 비중첩하는 복수 개의 서브 발광층들을 포함하고,
    상기 복수 개의 서브 발광층들은
    적색 광을 방출하는 제1 서브 발광층; 및
    녹색 광을 방출하는 제2 서브 발광층; 을 포함하고,
    상기 제1 서브 발광층은 제1 정공 수송성 호스트, 제1 전자 수송성 호스트 및 적색 발광 도펀트를 포함하고,
    상기 제2 서브 발광층은 제2 정공 수송성 호스트, 제2 전자 수송성 호스트 및 녹색 발광 도펀트를 포함하고,
    상기 제1 서브 발광층의 상기 제1 정공 수송성 호스트 및 상기 제1 전자 수송성 호스트는 제1 엑시플렉스를 형성하고,
    상기 제2 서브 발광층의 상기 제2 정공 수송성 호스트 및 상기 제2 전자 수송성 호스트는 제2 엑시플렉스를 형성하고,
    상기 제1 엑시플렉스의 삼중항 에너지 및 제2 엑시플렉스의 삼중항 에너지 각각은 상기 적색 발광 도펀트 및 상기 녹색 발광 도펀트의 삼중항 에너지 이상인 유기 발광 소자.
  10. 제 9항에 있어서,
    상기 복수 개의 서브 발광층들은 청색 광을 방출하는 제3 서브 발광층;을 더 포함하고,
    상기 제3 서브 발광층은 제3 정공 수송성 호스트, 제3 전자 수송성 호스트 및 청색 발광 도펀트; 를 포함하는 유기 발광 소자.
  11. 제 10항에 있어서,
    상기 제3 정공 수송성 호스트 및 상기 제3 전자 수송성 호스트는 제3 엑시플렉스를 형성하고,
    상기 제3 엑시플렉스의 삼중항 에너지와 상기 청색 발광 도펀트의 일중항 에너지 레벨 차이는 -0.1eV 이상 0.1eV 이하인 유기 발광 소자.
  12. 제 10항에 있어서,
    상기 제1 내지 제3 전자 수송성 호스트는 유기 금속 착체, 스피로플루오렌(spirofluorene)계 화합물, 옥시다아졸(oxidiazole)계 화합물, 페난트롤린(phenethroline)계 화합물, 트리아진(triazine)계 화합물, 또는 트리아졸(triazole)계 화합물을 포함하는 유기 발광 소자.
  13. 제 9항에 있어서,
    상기 전자 제어층은 상기 발광층 상에 배치된 전자 수송층; 및 상기 전자 수송층 상에 배치된 전자 주입층; 을 포함하고,
    상기 전자 주입층은 LiF, LiQ, Li2O, BaO, NaCl, Yb, CsF, RbCl, 또는 RbI를 포함하는 유기 발광 소자.
  14. 제 9항에 있어서,
    상기 정공 제어층은 정공 주입층; 및 상기 정공 주입층 상에 배치된 정공 수송층; 을 포함하고,
    상기 정공 주입층은 p형 도펀트를 포함하고,
    상기 p형 도펀트는 퀴논(quinone) 유도체, 금속 산화물, 및 시아노기 함유 화합물 중 적어도 하나를 포함하는 유기 발광 소자.
  15. 제 9항에 있어서,
    상기 제1 엑시플렉스의 삼중항 에너지 및 상기 제2 엑시플렉스의 삼중항 에너지는 2.4 eV 이상 3.0 eV 이하인 유기 발광 소자.
KR1020220099091A 2015-10-28 2022-08-09 유기 발광 소자, 그 유기 발광 소자의 제조방법 및 이를 포함하는 유기 발광 표시장치 KR102619460B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220099091A KR102619460B1 (ko) 2015-10-28 2022-08-09 유기 발광 소자, 그 유기 발광 소자의 제조방법 및 이를 포함하는 유기 발광 표시장치

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020150150453A KR102362839B1 (ko) 2015-10-28 2015-10-28 유기 발광 소자, 그 유기 발광 소자의 제조방법 및 이를 포함하는 유기 발광 표시장치
KR1020220017042A KR102432110B1 (ko) 2015-10-28 2022-02-09 유기 발광 소자, 그 유기 발광 소자의 제조방법 및 이를 포함하는 유기 발광 표시장치
KR1020220099091A KR102619460B1 (ko) 2015-10-28 2022-08-09 유기 발광 소자, 그 유기 발광 소자의 제조방법 및 이를 포함하는 유기 발광 표시장치

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020220017042A Division KR102432110B1 (ko) 2015-10-28 2022-02-09 유기 발광 소자, 그 유기 발광 소자의 제조방법 및 이를 포함하는 유기 발광 표시장치

Publications (2)

Publication Number Publication Date
KR20220116399A true KR20220116399A (ko) 2022-08-23
KR102619460B1 KR102619460B1 (ko) 2024-01-02

Family

ID=58637446

Family Applications (3)

Application Number Title Priority Date Filing Date
KR1020150150453A KR102362839B1 (ko) 2015-10-28 2015-10-28 유기 발광 소자, 그 유기 발광 소자의 제조방법 및 이를 포함하는 유기 발광 표시장치
KR1020220017042A KR102432110B1 (ko) 2015-10-28 2022-02-09 유기 발광 소자, 그 유기 발광 소자의 제조방법 및 이를 포함하는 유기 발광 표시장치
KR1020220099091A KR102619460B1 (ko) 2015-10-28 2022-08-09 유기 발광 소자, 그 유기 발광 소자의 제조방법 및 이를 포함하는 유기 발광 표시장치

Family Applications Before (2)

Application Number Title Priority Date Filing Date
KR1020150150453A KR102362839B1 (ko) 2015-10-28 2015-10-28 유기 발광 소자, 그 유기 발광 소자의 제조방법 및 이를 포함하는 유기 발광 표시장치
KR1020220017042A KR102432110B1 (ko) 2015-10-28 2022-02-09 유기 발광 소자, 그 유기 발광 소자의 제조방법 및 이를 포함하는 유기 발광 표시장치

Country Status (2)

Country Link
US (6) US9905616B2 (ko)
KR (3) KR102362839B1 (ko)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102362839B1 (ko) 2015-10-28 2022-02-15 삼성디스플레이 주식회사 유기 발광 소자, 그 유기 발광 소자의 제조방법 및 이를 포함하는 유기 발광 표시장치
CN106856225B (zh) * 2016-12-15 2019-10-15 上海天马有机发光显示技术有限公司 一种有机发光显示面板及装置
KR102408903B1 (ko) * 2017-08-31 2022-06-15 엘지디스플레이 주식회사 화소 및 이를 포함한 유기 발광 표시 장치
KR102134383B1 (ko) * 2017-12-12 2020-07-15 주식회사 엘지화학 유기 발광 소자
KR102575481B1 (ko) * 2018-04-24 2023-09-07 삼성디스플레이 주식회사 유기발광 디스플레이 장치 및 그 제조방법
JP2022140859A (ja) * 2019-06-18 2022-09-29 出光興産株式会社 有機el表示装置及び電子機器
US20210036065A1 (en) * 2019-07-29 2021-02-04 Universal Display Corporation Color stable multicolor OLED device structures
CN112652644B (zh) * 2019-10-10 2023-04-18 固安翌光科技有限公司 一种oled屏体及其制备方法
KR20210071572A (ko) * 2019-12-06 2021-06-16 엘지디스플레이 주식회사 백색 유기 발광 소자 및 이를 이용한 표시 장치
KR20210075282A (ko) * 2019-12-12 2021-06-23 삼성디스플레이 주식회사 발광 소자
CN113471376B (zh) * 2021-06-28 2024-03-19 广东聚华印刷显示技术有限公司 发光结构、有机发光二极管和电子设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140115688A (ko) * 2013-03-21 2014-10-01 삼성디스플레이 주식회사 유기 발광 소자
KR20140140410A (ko) * 2013-05-29 2014-12-09 삼성디스플레이 주식회사 유기 발광 소자
KR20150079035A (ko) * 2013-12-31 2015-07-08 엘지디스플레이 주식회사 유기전계발광표시장치

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2353400B (en) * 1999-08-20 2004-01-14 Cambridge Display Tech Ltd Mutiple-wavelength light emitting device and electronic apparatus
KR100961264B1 (ko) * 2002-12-20 2010-06-03 엘지디스플레이 주식회사 콜레스테릭 액정 컬러필터를 포함하는 액정표시장치의제조방법
JP2005100921A (ja) * 2003-08-22 2005-04-14 Sony Corp 有機el素子および表示装置
JP4967952B2 (ja) * 2007-09-21 2012-07-04 セイコーエプソン株式会社 発光素子、表示装置および電子機器
KR101458905B1 (ko) * 2008-02-12 2014-11-07 삼성디스플레이 주식회사 유기 발광 표시 장치 및 그 제조 방법
KR101427799B1 (ko) 2008-02-21 2014-08-07 엘지디스플레이 주식회사 유기전계발광소자 및 그 제조방법
JP2010040735A (ja) * 2008-08-05 2010-02-18 Sony Corp 有機電界発光素子および表示装置
US20100051973A1 (en) * 2008-08-28 2010-03-04 Seiko Epson Corporation Light-emitting device, electronic equipment, and process of producing light-emitting device
KR101584990B1 (ko) * 2008-12-01 2016-01-13 엘지디스플레이 주식회사 백색 유기 발광 소자 및 이의 제조 방법
KR101201723B1 (ko) * 2009-11-16 2012-11-15 삼성디스플레이 주식회사 유기 발광 표시 장치
US20130303776A1 (en) * 2010-10-06 2013-11-14 Sharp Kabushiki Kaisha Luminescent material, and organic light-emitting element, wavelength-converting light-emitting element, light-converting light-emitting element, organic laser diode light-emitting element, dye laser, display device, and illumination device using same
KR102112967B1 (ko) 2011-03-23 2020-05-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자
KR101419810B1 (ko) 2012-04-10 2014-07-15 서울대학교산학협력단 엑시플렉스를 형성하는 공동 호스트를 포함하는 유기 발광 소자
DE102013214661B4 (de) 2012-08-03 2023-01-05 Semiconductor Energy Laboratory Co., Ltd. Licht emittierendes Element, Licht emittierende Vorrichtung und Beleuchtungsvorrichtung
TWI638472B (zh) 2012-08-03 2018-10-11 日商半導體能源研究所股份有限公司 發光元件
KR101980759B1 (ko) * 2012-12-18 2019-05-21 엘지디스플레이 주식회사 유기 발광 표시 장치
KR102035251B1 (ko) * 2013-03-12 2019-10-23 삼성디스플레이 주식회사 유기 발광 표시 장치
KR101506793B1 (ko) 2013-07-16 2015-03-27 주식회사 두산 유기 전계 발광 소자
JP6535977B2 (ja) * 2014-03-27 2019-07-03 セイコーエプソン株式会社 発光素子の製造方法
KR20160087433A (ko) * 2015-01-13 2016-07-22 삼성디스플레이 주식회사 유기발광소자 및 이를 갖는 표시장치
KR102362839B1 (ko) * 2015-10-28 2022-02-15 삼성디스플레이 주식회사 유기 발광 소자, 그 유기 발광 소자의 제조방법 및 이를 포함하는 유기 발광 표시장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140115688A (ko) * 2013-03-21 2014-10-01 삼성디스플레이 주식회사 유기 발광 소자
KR20140140410A (ko) * 2013-05-29 2014-12-09 삼성디스플레이 주식회사 유기 발광 소자
KR20150079035A (ko) * 2013-12-31 2015-07-08 엘지디스플레이 주식회사 유기전계발광표시장치

Also Published As

Publication number Publication date
US20230157114A1 (en) 2023-05-18
US11581371B2 (en) 2023-02-14
US20170125487A1 (en) 2017-05-04
KR102432110B1 (ko) 2022-08-16
US10325960B2 (en) 2019-06-18
US20210202597A1 (en) 2021-07-01
US20200251533A1 (en) 2020-08-06
KR102619460B1 (ko) 2024-01-02
US20180138249A1 (en) 2018-05-17
US10658432B2 (en) 2020-05-19
KR20220026548A (ko) 2022-03-04
US9905616B2 (en) 2018-02-27
US10971554B2 (en) 2021-04-06
US11903288B2 (en) 2024-02-13
KR102362839B1 (ko) 2022-02-15
US20190288042A1 (en) 2019-09-19
KR20170049782A (ko) 2017-05-11

Similar Documents

Publication Publication Date Title
KR102432110B1 (ko) 유기 발광 소자, 그 유기 발광 소자의 제조방법 및 이를 포함하는 유기 발광 표시장치
KR102521251B1 (ko) 유기발광 화소 및 이를 포함하는 유기발광 표시장치
KR102470303B1 (ko) 유기 전계 발광 소자 및 이를 포함하는 표시 장치
KR100924145B1 (ko) 유기전계발광소자 및 이의 제조방법
US9923031B2 (en) Organic light-emitting diode array substrate and display apparatus
KR102503845B1 (ko) 유기발광소자 및 이를 포함하는 유기발광 표시패널
KR102642330B1 (ko) 유기발광소자 및 이를 포함하는 표시장치
US9755171B2 (en) Organic light-emitting diode including an interlayer to maintain a hole-electron balance in the emitting layer and display panel including the same
KR102455727B1 (ko) 유기 발광 소자 및 이를 포함하는 유기 발광 표시장치
KR102353804B1 (ko) 유기 발광 소자
KR102339125B1 (ko) 유기 발광 소자
KR20220162108A (ko) 유기 발광 소자
US20230125001A1 (en) Organic Light Emitting Device and Display Device
US20240138221A1 (en) Organic light-emitting device
KR20170071339A (ko) 유기 발광 장치
KR20160057045A (ko) 유기발광소자 및 이를 구비한 유기발광 표시장치
KR20180062222A (ko) 유기 발광 소자 및 그를 이용한 유기 발광 표시 장치

Legal Events

Date Code Title Description
A107 Divisional application of patent
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant