KR20220092825A - 기판 처리 방법, 기판 처리 장치 및 기록 매체 - Google Patents

기판 처리 방법, 기판 처리 장치 및 기록 매체 Download PDF

Info

Publication number
KR20220092825A
KR20220092825A KR1020220074897A KR20220074897A KR20220092825A KR 20220092825 A KR20220092825 A KR 20220092825A KR 1020220074897 A KR1020220074897 A KR 1020220074897A KR 20220074897 A KR20220074897 A KR 20220074897A KR 20220092825 A KR20220092825 A KR 20220092825A
Authority
KR
South Korea
Prior art keywords
processing
pressure
fluid
discharge
vessel
Prior art date
Application number
KR1020220074897A
Other languages
English (en)
Other versions
KR102584851B1 (ko
Inventor
겐타로 고시
히로미 기요세
야스오 기요하라
Original Assignee
도쿄엘렉트론가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 도쿄엘렉트론가부시키가이샤 filed Critical 도쿄엘렉트론가부시키가이샤
Publication of KR20220092825A publication Critical patent/KR20220092825A/ko
Application granted granted Critical
Publication of KR102584851B1 publication Critical patent/KR102584851B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/08Cleaning involving contact with liquid the liquid having chemical or dissolving effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B7/00Cleaning by methods not provided for in a single other subclass or a single group in this subclass
    • B08B7/0021Cleaning by methods not provided for in a single other subclass or a single group in this subclass by liquid gases or supercritical fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B5/00Drying solid materials or objects by processes not involving the application of heat
    • F26B5/005Drying solid materials or objects by processes not involving the application of heat by dipping them into or mixing them with a chemical liquid, e.g. organic; chemical, e.g. organic, dewatering aids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02101Cleaning only involving supercritical fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/67034Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for drying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Drying Of Solid Materials (AREA)

Abstract

본 발명은 초임계 상태의 처리 유체를 이용하여 기판으로부터 액체를 제거하는 건조 처리를, 처리 유체의 소비량을 억제하면서 단시간에 행할 수 있는 기판 처리 장치, 기판 처리 방법 및 기록 매체를 제공하는 것을 과제로 한다.
기판 처리 방법은, 제1 처리 공정(S1) 및 제2 처리 공정(S2)을 포함한다. 제1 처리 공정(S1)은, 처리 용기 내에 존재하는 초임계 상태의 처리 유체의 기화가 일어나지 않는 제1 배출 도달 압력(Pt1)까지 처리 용기 내의 유체를 배출하고, 그 후 처리 용기 내의 처리 유체의 기화가 일어나지 않는 제1 공급 도달 압력(Ps1)까지 처리 용기 내에 처리 유체를 공급한다. 제2 처리 공정(S2)은, 초임계 상태의 처리 유체의 기화가 일어나지 않는 제1 배출 도달 압력(Pt1)과는 상이한 제2 배출 도달 압력(Pt2)까지 처리 용기 내의 유체를 배출하고, 그 후 처리 용기 내의 처리 유체의 기화가 일어나지 않는 제2 공급 도달 압력(Ps2)까지 처리 용기 내에 처리 유체를 공급한다.

Description

기판 처리 방법, 기판 처리 장치 및 기록 매체{SUBSTRATE PROCESSING METHOD, SUBSTRATE PROCESSING APPARATUS, AND STORAGE MEDIUM}
본 발명은 초임계 상태의 처리 유체를 이용하여 기판의 표면에 부착된 액체를 제거하는 기술에 관한 것이다.
기판인 반도체 웨이퍼(이하, 웨이퍼라고 함) 등의 표면에 집적 회로의 적층 구조를 형성하는 반도체 장치의 제조 공정에서는, 약액 등의 세정액에 의해 웨이퍼 표면의 미소한 먼지나 자연 산화막을 제거하는 등, 액체를 이용하여 웨이퍼 표면을 처리하는 액 처리 공정이 행해지고 있다.
이러한 액 처리 공정에서 웨이퍼의 표면에 부착된 액체 등을 제거할 때에, 초임계 상태의 처리 유체를 이용하는 방법이 알려져 있다.
예컨대 특허문헌 1은, 초임계 상태의 유체를 기판과 접촉시켜, 기판에 부착된 액체를 제거하는 기판 처리 장치를 개시한다. 또한 특허문헌 2는, 초임계 유체를 이용하여 기판의 위에서 유기 용제를 용해하여 기판을 건조시키는 기판 처리 장치를 개시한다.
초임계 상태의 처리 유체를 이용하여 기판으로부터 액체를 제거하는 건조 처리에서는, 기판 상에 형성된 반도체 패턴의 도괴(즉, 패턴 간의 액체의 표면 장력에 의해 초래되는 패턴 붕괴)의 발생을 억제하면서, 처리 시간을 가능한 한 단축하는 것이 바람직하다. 또한, 건조 처리에 사용되는 처리 유체의 소비량을 가능한 한 억제하는 것이 바람직하다.
특허문헌 1: 일본 특허 공개 제2013-12538호 공보 특허문헌 2: 일본 특허 공개 제2013-16798호 공보
본 발명은 이러한 배경의 하에서 이루어진 것으로, 초임계 상태의 처리 유체를 이용하여 기판으로부터 액체를 제거하는 건조 처리를, 처리 유체의 소비량을 억제하면서 단시간에 행할 수 있는 기판 처리 장치, 기판 처리 방법 및 기록 매체를 제공하는 것을 목적으로 한다.
본 발명의 일양태는, 처리 용기 내에서, 기판으로부터 액체를 제거하는 건조 처리를, 초임계 상태의 처리 유체를 사용하여 행하는 기판 처리 방법으로서, 처리 용기 안이, 처리 용기 내에 존재하는 초임계 상태의 처리 유체의 기화가 일어나지 않는 제1 배출 도달 압력으로 될 때까지 처리 용기 내의 유체를 배출하고, 그 후, 처리 용기 안이, 제1 배출 도달 압력보다 높으며 처리 용기 내의 처리 유체의 기화가 일어나지 않는 제1 공급 도달 압력으로 될 때까지 처리 용기 내에 처리 유체를 공급하는 제1 처리 공정과, 제1 처리 공정 후에, 처리 용기 안이, 초임계 상태의 처리 유체의 기화가 일어나지 않는 제2 배출 도달 압력으로서 제1 배출 도달 압력과는 상이한 제2 배출 도달 압력으로 될 때까지 처리 용기 내의 유체를 배출하고, 그 후, 처리 용기 안이, 제2 배출 도달 압력보다 높으며 처리 용기 내의 처리 유체의 기화가 일어나지 않는 제2 공급 도달 압력으로 될 때까지 처리 용기 내에 처리 유체를 공급하는 제2 처리 공정을 포함하는 기판 처리 방법에 관한 것이다.
본 발명의 다른 양태는, 오목부를 갖는 기판으로서, 그 오목부에 액체가 융기된 기판이 반입되는 처리 용기와, 처리 용기 내에 초임계 상태의 처리 유체를 공급하는 유체 공급부와, 처리 용기 내의 유체를 배출하는 유체 배출부와, 유체 공급부 및 유체 배출부를 제어하여, 처리 용기 내에서 기판으로부터 액체를 제거하는 건조 처리를, 초임계 상태의 처리 유체를 사용하여 행하는 제어부를 구비하고, 제어부는, 유체 공급부 및 유체 배출부를 제어하여, 처리 용기 안이, 처리 용기 내에 존재하는 초임계 상태의 처리 유체의 기화가 일어나지 않는 제1 배출 도달 압력으로 될 때까지 처리 용기 내의 유체를 배출하고, 그 후, 처리 용기 안이, 제1 배출 도달 압력보다 높으며 처리 용기 내의 처리 유체의 기화가 일어나지 않는 제1 공급 도달 압력으로 될 때까지 처리 용기 내에 처리 유체를 공급하는 제1 처리 공정과, 제1 처리 공정 후에, 처리 용기 안이, 초임계 상태의 처리 유체의 기화가 일어나지 않는 제2 배출 도달 압력으로서 제1 배출 도달 압력과는 상이한 제2 배출 도달 압력으로 될 때까지 처리 용기 내의 유체를 배출하고, 그 후, 처리 용기 안이, 제2 배출 도달 압력보다 높으며 처리 용기 내의 처리 유체의 기화가 일어나지 않는 제2 공급 도달 압력으로 될 때까지 처리 용기 내에 처리 유체를 공급하는 제2 처리 공정을 행하는 기판 처리 장치에 관한 것이다.
본 발명의 다른 양태는, 처리 용기 내에서 기판으로부터 액체를 제거하는 건조 처리를 초임계 상태의 처리 유체를 사용하여 행하는 기판 처리 방법을 컴퓨터에 실행시키기 위한 프로그램을 기록한 컴퓨터 판독 가능한 기록 매체로서, 기판 처리 방법은, 처리 용기 안이, 처리 용기 내에 존재하는 초임계 상태의 처리 유체의 기화가 일어나지 않는 제1 배출 도달 압력으로 될 때까지 처리 용기 내의 유체를 배출하고, 그 후, 처리 용기 안이, 제1 배출 도달 압력보다 높으며 처리 용기 내의 처리 유체의 기화가 일어나지 않는 제1 공급 도달 압력으로 될 때까지 처리 용기 내에 처리 유체를 공급하는 제1 처리 공정과, 제1 처리 공정 후에, 처리 용기 안이, 초임계 상태의 처리 유체의 기화가 일어나지 않는 제2 배출 도달 압력으로서 제1 배출 도달 압력과는 상이한 제2 배출 도달 압력으로 될 때까지 처리 용기 내의 유체를 배출하고, 그 후, 처리 용기 안이, 제2 배출 도달 압력보다 높으며 처리 용기 내의 처리 유체의 기화가 일어나지 않는 제2 공급 도달 압력으로 될 때까지 처리 용기 내에 처리 유체를 공급하는 제2 처리 공정을 갖는 기록 매체에 관한다.
본 발명에 따르면, 초임계 상태의 처리 유체를 이용하여 기판으로부터 액체를 제거하는 건조 처리를, 처리 유체의 소비량을 억제하면서 단시간에 행할 수 있다.
도 1은 세정 처리 시스템의 전체 구성을 나타내는 횡단 평면도이다.
도 2는 초임계 처리 장치의 처리 용기의 일례를 나타내는 외관 사시도이다.
도 3은 초임계 처리 장치의 시스템 전체의 구성예를 나타내는 도면이다.
도 4는 제어부의 기능 구성을 나타내는 블록도이다.
도 5는 IPA의 건조 메커니즘을 설명하기 위한 도면이며, 웨이퍼가 갖는 오목부로서의 패턴을 간략적으로 나타낸 확대 단면도이다.
도 6은 제1 건조 처리예에서의 시간, 처리 용기 내의 압력 및 처리 유체(CO2)의 소비량의 관계의 일례를 나타내는 도면이다.
도 7은 CO2의 농도, 임계 온도 및 임계 압력의 관계를 나타내는 그래프이다.
도 8은 CO2의 농도, 임계 온도 및 임계 압력의 관계를 나타내는 그래프이다.
도 9는 CO2의 농도, 임계 온도 및 임계 압력의 관계를 나타내는 그래프이다.
도 10은 제2 건조 처리예에서의 시간 및 처리 용기 내의 압력을 나타내는 도면이다.
도 11은 웨이퍼의 패턴 상에 융기된 IPA의 상태를 설명하기 위한 단면도이다.
도 12는 제3 건조 처리예에서의 시간 및 처리 용기 내의 압력을 나타내는 도면이다.
이하, 도면을 참조하여 본 발명의 일실시형태에 대해서 설명한다. 또한, 본건 명세서에 첨부하는 도면에 나타내고 있는 구성에는, 도시와 이해의 용이의 편의상, 사이즈 및 축척 등이 실물의 것들로부터 변경되어 있는 부분이 포함될 수 있다.
[세정 처리 시스템의 구성]
도 1은 세정 처리 시스템(1)의 전체 구성을 나타내는 횡단 평면도이다.
세정 처리 시스템(1)은, 웨이퍼(W)에 세정액을 공급하여 세정 처리를 행하는 복수의 세정 장치(2)[도 1에 나타내는 예로서는 2대의 세정 장치(2)]와, 세정 처리 후의 웨이퍼(W)에 부착하고 있는 건조 방지용의 액체(본 실시형태에서는 IPA: 이소프로필알코올)를, 초임계 상태의 처리 유체(본 실시형태에서는 CO2: 이산화탄소)와 접촉시켜 제거하는 복수의 초임계 처리 장치(3)[도 1에 나타내는 예에서는 6대의 초임계 처리 장치(3)]를 구비한다.
이 세정 처리 시스템(1)에서는, 배치부(11)에 FOUP(100)가 배치되고, 이 FOUP(100)에 저장된 웨이퍼(W)가, 반입출부(12) 및 전달부(13)를 통해 세정 처리부(14) 및 초임계 처리부(15)에 전달된다. 세정 처리부(14) 및 초임계 처리부(15)에서, 웨이퍼(W)는, 먼저 세정 처리부(14)에 마련된 세정 장치(2)에 반입되어 세정 처리를 받고, 그 후, 초임계 처리부(15)에 마련된 초임계 처리 장치(3)에 반입되어 웨이퍼(W) 상으로부터 IPA를 제거하는 건조 처리를 받는다. 도 1 중, 부호 「121」은 FOUP(100)와 전달부(13) 사이에서 웨이퍼(W)를 반송하는 제1 반송 기구를 나타내고, 부호 「131」은 반입출부(12)와 세정 처리부(14) 및 초임계 처리부(15) 사이에서 반송되는 웨이퍼(W)가 일시적으로 배치되는 버퍼로서의 역할을 달성하는 전달 선반을 나타낸다.
전달부(13)의 개구부에는 웨이퍼 반송로(162)가 접속되어 있고, 웨이퍼 반송로(162)를 따라 세정 처리부(14) 및 초임계 처리부(15)가 마련되어 있다. 세정 처리부(14)에는, 상기 웨이퍼 반송로(162)를 사이에 두고 세정 장치(2)가 1대씩 배치되어 있어, 합계 2대의 세정 장치(2)가 설치되어 있다. 한편, 초임계 처리부(15)에는, 웨이퍼(W)로부터 IPA를 제거하는 건조 처리를 행하는 기판 처리 장치로서 기능하는 초임계 처리 장치(3)가, 웨이퍼 반송로(162)를 사이에 두고 3대씩 배치되어 있어, 합계 6대의 초임계 처리 장치(3)가 설치되어 있다. 웨이퍼 반송로(162)에는 제2 반송 기구(161)가 배치되어 있고, 제2 반송 기구(161)는, 웨이퍼 반송로(162) 내를 이동 가능하게 마련되어 있다. 교환 선반(131)에 배치된 웨이퍼(W)는 제2 반송 기구(161)에 의해 수취되고, 제2 반송 기구(161)는, 웨이퍼(W)를 세정 장치(2) 및 초임계 처리 장치(3)에 반입한다. 또한, 세정 장치(2) 및 초임계 처리 장치(3)의 수 및 배치 양태는 특별히 한정되지 않고, 단위 시간당의 웨이퍼(W)의 처리 매수 및 각 세정 장치(2) 및 각 초임계 처리 장치(3)의 처리 시간 등에 따라, 적절한 수의 세정 장치(2) 및 초임계 처리 장치(3)가 적절한 양태로 배치된다.
세정 장치(2)는, 예컨대 스핀 세정에 의해 웨이퍼(W)를 1장씩 세정하는 매엽식의 장치로서 구성된다. 이 경우, 웨이퍼(W)를 수평으로 유지한 상태로 연직 축선을 중심으로 회전시키면서, 세정용의 약액이나 약액을 씻어내기 위한 린스액을 웨이퍼(W)의 처리면에 대하여 적절한 타이밍에 공급함으로써, 웨이퍼(W)의 세정 처리를 행할 수 있다. 세정 장치(2)에서 이용되는 약액 및 린스액은 특별히 한정되지 않는다. 예컨대, 알칼리성의 약액인 SC1액(즉 암모니아와 과산화수소수의 혼합액)을 웨이퍼(W)에 공급하여, 웨이퍼(W)로부터 파티클이나 유기성의 오염 물질을 제거할 수 있다. 그 후, 린스액인 탈이온수(DIW: DeIonized Water)를 웨이퍼(W)에 공급하여, SC1액을 웨이퍼(W)로부터 씻어낼 수 있다. 또한, 산성의 약액인 희불산 수용액(DHF: Diluted HydroFluoric acid)을 웨이퍼(W)에 공급하여 자연 산화막을 제거하고, 그 후, DIW를 웨이퍼(W)에 공급하여 희불산 수용액을 웨이퍼(W)로부터 씻어낼 수도 있다.
그리고 세정 장치(2)는, 약액에 의한 세정 처리를 끝내었다면, 웨이퍼(W)의 회전을 정지하고, 건조 방지용의 액체로서 IPA를 웨이퍼(W)에 공급하여, 웨이퍼(W)의 처리면에 잔존하는 DIW를 IPA로 치환한다. 이때, 웨이퍼(W)에는 충분량의 IPA가 공급되어, 반도체의 패턴이 형성된 웨이퍼(W)의 표면은 IPA가 융기된 상태가 되고, 웨이퍼(W)의 표면에는 IPA의 액막이 형성된다. 웨이퍼(W)는, IPA가 융기된 상태를 유지하면서, 제2 반송 기구(161)에 의해 세정 장치(2)로부터 반출된다.
이와 같이 하여 웨이퍼(W)의 표면에 부여된 IPA는, 웨이퍼(W)의 건조를 막는 역할을 달성한다. 특히, 세정 장치(2)로부터 초임계 처리 장치(3)에의 웨이퍼(W)의 반송 중에서의 IPA의 증발에 의해 웨이퍼(W)에 소위 패턴 붕괴가 생겨 버리는 것을 막기 위해, 세정 장치(2)는, 비교적 큰 두께를 갖는 IPA막이 웨이퍼(W)의 표면에 형성되도록, 충분량의 IPA를 웨이퍼(W)에 부여한다.
세정 장치(2)로부터 반출된 웨이퍼(W)는, 제2 반송 기구(161)에 의해, IPA가 융기된 상태로 초임계 처리 장치(3)의 처리 용기 내에 반입되고, 초임계 처리 장치(3)에서 IPA의 건조 처리가 행해진다.
[초임계 처리 장치]
이하, 초임계 처리 장치(3)에서 행해지는 초임계 유체를 이용한 건조 처리의 상세에 대해서 설명한다. 먼저, 초임계 처리 장치(3)에서 웨이퍼(W)가 반입되는 처리 용기의 구성예를 설명하고, 그 후, 초임계 처리 장치(3)의 시스템 전체의 구성예를 설명한다.
도 2는 초임계 처리 장치(3)의 처리 용기(301)의 일례를 나타내는 외관 사시도이다.
처리 용기(301)는, 웨이퍼(W)의 반입출용의 개구부(312)가 형성된 케이스형의 용기 본체(311)와, 처리 대상의 웨이퍼(W)를 횡방향으로 유지하는 유지판(316)과, 이 유지판(316)을 지지하며, 웨이퍼(W)를 용기 본체(311) 내에 반입하였을 때 개구부(312)를 밀폐하는 덮개 부재(315)를 구비한다.
용기 본체(311)는, 예컨대 직경 300 ㎜의 웨이퍼(W)를 수용 가능한 처리 공간이 내부에 형성된 용기이며, 그 벽부에는, 공급 포트(313) 및 배출 포트(314)가 마련되어 있다. 공급 포트(313) 및 배출 포트(314)는, 각각, 처리 용기(301)의 상류측 및 하류측에 마련되는 처리 유체를 유통시키기 위한 공급 라인에 접속되어 있다. 또한, 도 2에는 하나의 공급 포트(313) 및 2개의 배출 포트(314)가 도시되어 있지만, 공급 포트(313) 및 배출 포트(314)의 수는 특별히 한정되지 않는다.
용기 본체(311) 내의 한쪽의 벽부에는 공급 포트(313)에 연통하는 유체 공급 헤더(317)가 마련되고, 용기 본체(311) 내의 다른쪽의 벽부에는 배출 포트(314)에 연통하는 유체 배출 헤더(318)가 마련되어 있다. 유체 공급 헤더(317)에는 다수의 개공이 마련되며, 유체 배출 헤더(318)에도 다수의 개공이 마련되어 있고, 유체 공급 헤더(317) 및 유체 배출 헤더(318)는 서로 대향하도록 마련되어 있다. 유체 공급부로서 기능하는 유체 공급 헤더(317)는, 실질적으로 수평 방향을 향하여 처리 유체를 용기 본체(311) 내에 공급한다. 여기서 말하는 수평 방향이란, 중력이 작용하는 연직 방향과 수직인 방향으로서, 통상은, 유지판(316)에 유지된 웨이퍼(W)의 평탄한 표면이 연장되는 방향과 평행한 방향이다. 처리 용기(301) 내의 유체를 배출하는 유체 배출부로서 기능하는 유체 배출 헤더(318)는, 용기 본체(311) 내의 유체를, 용기 본체(311) 밖으로 유도하여 배출한다. 유체 배출 헤더(318)를 통해 용기 본체(311) 밖으로 배출되는 유체에는, 유체 공급 헤더(317)를 통해 용기 본체(311) 내에 공급된 처리 유체 외에, 웨이퍼(W)의 표면으로부터 처리 유체에 녹아든 IPA가 포함된다. 이와 같이 유체 공급 헤더(317)의 개공으로부터 용기 본체(311) 내에 처리 유체가 공급됨으로써, 또한 유체 배출 헤더(318)의 개공을 통해 유체가 용기 본체(311) 내로부터 배출됨으로써, 용기 본체(311) 내에는, 웨이퍼(W)의 표면과 대략 평행하게 유동하는 처리 유체의 층류가 형성된다.
용기 본체(311) 내에의 처리 유체의 공급 시간 및 용기 본체(311)로부터의 유체의 배출 시에 웨이퍼(W)에 가해질 수 있는 부하를 경감하는 관점에서는, 유체 공급 헤더(317) 및 유체 배출 헤더(318)는 복수 마련되는 것이 바람직하다. 후술하는 도 3에 나타내는 초임계 처리 장치(3)에서는, 처리 유체를 공급하기 위한 2개의 공급 라인이 처리 용기(301)에 접속되어 있지만, 도 2에서는, 이해를 쉽게 하기 위해 하나의 공급 라인에 접속되는 하나의 공급 포트(313) 및 하나의 유체 공급 헤더(317)만을 나타내고 있다.
처리 용기(301)는, 또한, 도시하지 않는 압박 기구를 구비한다. 이 압박 기구는, 처리 공간 내에 공급된 초임계 상태의 처리 유체에 의해 초래되는 내압에 대항하여, 용기 본체(311)를 향하여 덮개 부재(315)를 압박하여, 처리 공간을 밀폐하는 역할을 달성한다. 또한, 처리 공간 내에 공급된 처리 유체가 초임계 상태의 온도를 유지할 수 있도록, 용기 본체(311)의 표면에 단열재나 테이프 히터 등이 마련되어도 좋다.
도 3은 초임계 처리 장치(3)의 시스템 전체의 구성예를 나타내는 도면이다.
처리 용기(301)보다 상류측에는 유체 공급 탱크(51)가 마련되어 있고, 초임계 처리 장치(3)에서 처리 유체를 유통시키기 위한 공급 라인에는, 유체 공급 탱크(51)로부터 처리 유체가 공급된다. 유체 공급 탱크(51)와 처리 용기(301) 사이에는, 상류측으로부터 하류측을 향하여, 유통 온/오프 밸브(52a), 오리피스(55a), 필터(57) 및 유통 온/오프 밸브(52b)가 순차 마련된다. 또한, 여기서 말하는 상류측 및 하류측의 용어는, 공급 라인에서의 처리 유체의 유동 방향을 기준으로 한다.
유통 온/오프 밸브(52a)는, 유체 공급 탱크(51)로부터의 처리 유체의 공급의 온 및 오프를 조정하는 밸브이며, 개방 상태에서는 하류측의 공급 라인에 처리 유체를 흐르게 하고, 폐쇄 상태에서는 하류측의 공급 라인에 처리 유체를 흐르지 않게 한다. 유통 온/오프 밸브(52a)가 개방 상태에 있는 경우, 예컨대 16∼20 ㎫(메가파스칼) 정도의 고압의 처리 유체가, 유체 공급 탱크(51)로부터 유통 온/오프 밸브(52a)를 통해 공급 라인에 공급된다. 오리피스(55a)는, 유체 공급 탱크(51)로부터 공급되는 처리 유체의 압력을 조정하는 역할을 달성하여, 오리피스(55a)보다 하류측의 공급 라인에는, 예컨대 16 ㎫ 정도로 압력이 조정된 처리 유체를 유통시킬 수 있다. 필터(57)는, 오리피스(55a)로부터 보내오는 처리 유체에 포함되는 이물을 제거하여, 깨끗한 처리 유체를 하류측에 흐르게 한다.
유통 온/오프 밸브(52b)는, 처리 용기(301)에의 처리 유체의 공급의 온 및 오프를 조정하는 밸브이다. 유통 온/오프 밸브(52b)로부터 처리 용기(301)에 연장되는 공급 라인은, 전술한 도 2에 나타내는 공급 포트(313)에 접속하고, 유통 온/오프 밸브(52b)로부터의 처리 유체는, 도 2에 나타내는 공급 포트(313) 및 유체 공급 헤더(317)를 통해 처리 용기(301)의 용기 본체(311) 내에 공급된다.
또한 도 3에 나타내는 초임계 처리 장치(3)에서는, 필터(57)와 유통 온/오프 밸브(52b) 사이에서, 공급 라인이 분기하고 있다. 즉 필터(57)와 유통 온/오프 밸브(52b) 사이의 공급 라인으로부터는, 유통 온/오프 밸브(52c) 및 오리피스(55b)를 통해 처리 용기(301)에 접속하는 공급 라인, 유통 온/오프 밸브(52d) 및 체크 밸브(58a)를 통해 퍼지 장치(62)에 접속하는 공급 라인 및 유통 온/오프 밸브(52e) 및 오리피스(55c)를 통해 외부에 접속하는 공급 라인이 분기되어 연장된다.
유통 온/오프 밸브(52c) 및 오리피스(55b)를 통해 처리 용기(301)에 접속하는 공급 라인은, 처리 용기(301)에의 처리 유체의 공급을 위한 보조적인 유로이다. 예컨대 처리 용기(301)에의 처리 유체의 공급 개시 당초 등과 같이, 비교적 다량의 처리 유체를 처리 용기(301)에 공급할 때에 유통 온/오프 밸브(52c)가 개방 상태로 조정되어, 오리피스(55b)에 의해 압력이 조정된 처리 유체를 처리 용기(301)에 공급할 수 있다.
유통 온/오프 밸브(52d) 및 체크 밸브(58a)를 통해 퍼지 장치(62)에 접속하는 공급 라인은, 질소 등의 불활성 가스를 처리 용기(301)에 공급하기 위한 유로이며, 유체 공급 탱크(51)로부터 처리 용기(301)에 대한 처리 유체의 공급이 정지하고 있는 동안에 활용된다. 예컨대 처리 용기(301)를 불활성 가스로 채워 청정한 상태를 유지하는 경우에는, 유통 온/오프 밸브(52d) 및 유통 온/오프 밸브(52b)가 개방 상태로 조정되어, 퍼지 장치(62)로부터 공급 라인에 보내진 불활성 가스는 체크 밸브(58a), 유통 온/오프 밸브(52d) 및 유통 온/오프 밸브(52b)를 통해 처리 용기(301)에 공급된다.
유통 온/오프 밸브(52e) 및 오리피스(55c)를 통해 외부에 접속하는 공급 라인은, 공급 라인으로부터 처리 유체를 배출하기 위한 유로이다. 예컨대 초임계 처리 장치(3)의 전원 오프 시에서, 유통 온/오프 밸브(52a)와 유통 온/오프 밸브(52b) 사이의 공급 라인 내에 잔존하는 처리 유체를 외부에 배출할 때에는, 유통 온/오프 밸브(52e)가 개방 상태로 조정되어, 유통 온/오프 밸브(52a)와 유통 온/오프 밸브(52b) 사이의 공급 라인이 외부에 연통된다.
처리 용기(301)보다 하류측에는, 유통 온/오프 밸브(52f), 배기 조정 밸브(59), 농도 계측 센서(60) 및 유통 온/오프 밸브(52g)가, 상류측으로부터 하류측을 향하여 순차 마련되어 있다.
유통 온/오프 밸브(52f)는, 처리 용기(301)로부터의 처리 유체의 배출의 온 및 오프를 조정하는 밸브이다. 처리 용기(301)로부터 처리 유체를 배출하는 경우에는 유통 온/오프 밸브(52f)는 개방 상태로 조정되고, 처리 용기(301)로부터 처리 유체를 배출하지 않는 경우에는 유통 온/오프 밸브(52f)는 폐쇄 상태로 조정된다. 또한 처리 용기(301)와 유통 온/오프 밸브(52f) 사이에 연장되는 공급 라인은, 도 2에 나타내는 배출 포트(314)에 접속되어 있다. 처리 용기(301)의 용기 본체(311) 내의 유체는, 도 2에 나타내는 유체 배출 헤더(318) 및 배출 포트(314)를 통해, 유통 온/오프 밸브(52f)를 향하여 보내진다.
배기 조정 밸브(59)는, 처리 용기(301)로부터의 유체의 배출량을 조정하는 밸브이며, 예컨대 배압 밸브에 의해 구성하는 것이 가능하다. 배기 조정 밸브(59)의 개방도는, 처리 용기(301)로부터의 유체의 원하는 배출량에 따라, 제어부(4)의 제어 하에서 적응적으로 조정된다. 본 실시형태에서는 후술하는 바와 같이, 처리 용기(301) 내의 유체의 압력이 미리 정해진 압력이 될 때까지, 처리 용기(301)로부터 유체가 배출되는 처리가 행해진다. 그 때문에 배기 조정 밸브(59)는, 처리 용기(301) 내의 유체의 압력이 미리 정해진 압력에 달하였을 때에, 개방 상태로부터 폐쇄 상태로 이행하도록 개방도를 조정하여 처리 용기(301)로부터의 유체의 배출을 멈출 수 있다.
농도 계측 센서(60)는, 배기 조정 밸브(59)로부터 보내오는 유체에 포함되는 IPA 농도를 계측하는 센서이다.
유통 온/오프 밸브(52g)는, 처리 용기(301)로부터의 유체의 외부에의 배출의 온 및 오프를 조정하는 밸브이다. 유체를 외부에 배출하는 경우에는 유통 온/오프 밸브(52g)는 개방 상태로 조정되고, 유체를 배출하지 않는 경우에는 유통 온/오프 밸브(52g)는 폐쇄 상태로 조정된다. 또한 유통 온/오프 밸브(52g)의 하류측에는, 배기 조정 니들 밸브(61a) 및 체크 밸브(58b)가 마련되어 있다. 배기 조정 니들 밸브(61a)는, 유통 온/오프 밸브(52g)를 통해 보내오는 유체의 외부에의 배출량을 조정하는 밸브이며, 배기 조정 니들 밸브(61a)의 개방도는 유체의 원하는 배출량에 따라 조정된다. 체크 밸브(58b)는, 배출되는 유체의 역류를 막는 밸브이며, 유체를 확실하게 외부에 배출하는 역할을 달성한다.
또한 도 3에 나타내는 초임계 처리 장치(3)에서는, 농도 계측 센서(60)와 유통 온/오프 밸브(52g) 사이에서, 공급 라인이 분기하고 있다. 즉 농도 계측 센서(60)와 유통 온/오프 밸브(52g) 사이의 공급 라인으로부터는, 유통 온/오프 밸브(52h)를 통해 외부에 접속하는 공급 라인, 유통 온/오프 밸브(52i)를 통해 외부에 접속하는 공급 라인 및 유통 온/오프 밸브(52j)를 통해 외부에 접속하는 공급 라인이 분기되어 연장된다.
유통 온/오프 밸브(52h) 및 유통 온/오프 밸브(52i)는, 유통 온/오프 밸브(52g)와 마찬가지로, 유체의 외부에의 배출의 온 및 오프를 조정하는 밸브이다. 유통 온/오프 밸브(52h)의 하류측에는, 배기 조정 니들 밸브(61b) 및 체크 밸브(58c)가 마련되어, 유체의 배출량의 조정 및 유체의 역류 방지가 행해진다. 유통 온/오프 밸브(52i)의 하류측에는 체크 밸브(58d)가 마련되어, 유체의 역류가 방지되고 있다. 유통 온/오프 밸브(52j)도 유체의 외부에의 배출의 온 및 오프를 조정하는 밸브이고, 유통 온/오프 밸브(52j)의 하류측에는 오리피스(55d)가 마련되어, 유통 온/오프 밸브(52j)로부터 오리피스(55d)를 통해 외부에 유체를 배출할 수 있다. 단, 도 3에 나타내는 예에서는, 유통 온/오프 밸브(52g), 유통 온/오프 밸브(52h) 및 유통 온/오프 밸브(52i)를 통해 외부에 보내지는 유체의 행선지와, 유통 온/오프 밸브(52j)를 통해 외부에 보내지는 유체의 행선지는 상이하다. 따라서 유체를, 예컨대 유통 온/오프 밸브(52g), 유통 온/오프 밸브(52h) 및 유통 온/오프 밸브(52i)를 통해 도시하지 않는 회수 장치에 보내는 한편으로, 유통 온/오프 밸브(52j)를 통해 대기에 방출하는 것도 가능하다.
처리 용기(301)로부터 유체를 배출하는 경우, 유통 온/오프 밸브(52g), 유통 온/오프 밸브(52h), 유통 온/오프 밸브(52i) 및 유통 온/오프 밸브(52j) 중 1개 이상의 밸브가 개방 상태로 조정된다. 특히 초임계 처리 장치(3)의 전원 오프 시에는, 유통 온/오프 밸브(52j)를 개방 상태로 조정하여, 농도 계측 센서(60)와 유통 온/오프 밸브(52g) 사이의 공급 라인에 잔존하는 유체를 외부에 배출하도록 하여도 좋다.
또한, 전술한 공급 라인의 다양한 부분에 유체의 압력을 검출하는 압력 센서 및 유체의 온도를 검출하는 온도 센서가 설치된다. 도 3에 나타내는 예에서는, 유통 온/오프 밸브(52a)와 오리피스(55a) 사이에 압력 센서(53a) 및 온도 센서(54a)가 마련되고, 오리피스(55a)와 필터(57) 사이에 압력 센서(53b) 및 온도 센서(54b)가 마련되고, 필터(57)와 유통 온/오프 밸브(52b) 사이에 압력 센서(53c)가 마련되고, 유통 온/오프 밸브(52b)와 처리 용기(301) 사이에 온도 센서(54c)가 마련되고, 오리피스(55b)와 처리 용기(301) 사이에 온도 센서(54d)가 마련되어 있다. 또한 처리 용기(301)와 유통 온/오프 밸브(52f) 사이에 압력 센서(53d) 및 온도 센서(54f)가 마련되고, 농도 계측 센서(60)와 유통 온/오프 밸브(52g) 사이에 압력 센서(53e) 및 온도 센서(54g)가 마련되어 있다. 또한, 처리 용기(301)의 내부인 용기 본체(311) 내의 유체의 온도를 검출하기 위한 온도 센서(54e)가 마련되어 있다.
또한, 초임계 처리 장치(3)에서 처리 유체가 흐르는 임의의 부분에 히터(H)가 마련된다. 도 3에는 처리 용기(301)보다 상류측의 공급 라인[즉 유통 온/오프 밸브(52a)와 오리피스(55a) 사이, 오리피스(55a)와 필터(57) 사이, 필터(57)와 유통 온/오프 밸브(52b) 사이 및 유통 온/오프 밸브(52b)와 처리 용기(301) 사이]에서 히터(H)가 도시되어 있지만, 처리 용기(301) 및 처리 용기(301)보다 하류측의 공급 라인을 포함하는 다른 부분에 히터(H)가 마련되어 있어도 좋다. 따라서, 유체 공급 탱크(51)로부터 공급되는 처리 유체가 외부에 배출되기까지의 전체 유로에서 히터(H)가 마련되어 있어도 좋다. 또한 특히, 처리 용기(301)에 공급하는 처리 유체의 온도를 조정하는 관점에서는, 처리 용기(301)보다 상류측을 흐르는 처리 유체의 온도를 조정할 수 있는 위치에 히터(H)가 마련되어 있는 것이 바람직하다.
또한, 오리피스(55a)와 필터(57) 사이에는 안전 밸브(56a)가 마련되고, 처리 용기(301)와 유통 온/오프 밸브(52f) 사이에는 안전 밸브(56b)가 마련되고, 농도 계측 센서(60)와 유통 온/오프 밸브(52g) 사이에는 안전 밸브(56c)가 마련되어 있다. 이들 안전 밸브(56a∼56c)는, 공급 라인 내의 압력이 과대해진 경우 등의 이상 시에서 공급 라인을 외부에 연통하여, 공급 라인 내의 유체를 긴급적으로 외부에 배출하는 역할을 달성한다.
도 4는 제어부(4)의 기능 구성을 나타내는 블록도이다. 제어부(4)는, 도 3에 나타내는 각종 요소로부터 계측 신호를 수신하고, 또한 도 3에 나타내는 각종 요소에 제어 지시 신호를 송신한다. 예컨대, 제어부(4)는, 압력 센서(53a∼53e), 온도 센서(54a∼54g) 및 농도 계측 센서(60)의 계측 결과를 수신한다. 또한 제어부(4)는, 유통 온/오프 밸브(52a∼52j), 배기 조정 밸브(59) 및 배기 조정 니들 밸브(61a∼61b)에 제어 지시 신호를 송신한다. 또한 제어부(4)가 송수신 가능한 신호는 특별히 한정되지 않는다. 예컨대, 안전 밸브(56a∼56c)가 제어부(4)로부터의 제어 지시 신호에 기초하여 개폐 가능한 경우에는, 제어부(4)는, 필요에 따라 안전 밸브(56a∼56c)에 제어 지시 신호를 송신한다. 단 안전 밸브(56a∼56c)의 개폐 구동 방식이 신호 제어에 의한 것이 아닌 경우에는, 제어부(4)는 안전 밸브(56a∼56c)에 제어 지시 신호를 송신하지 않는다.
[초임계 건조 처리]
다음에, 초임계 상태의 처리 유체를 이용한 IPA의 건조 메커니즘에 대해서 설명한다.
도 5는 IPA의 건조 메커니즘을 설명하기 위한 도면이며, 웨이퍼(W)가 갖는 오목부로서의 패턴(P)을 간략적으로 나타낸 확대 단면도이다.
초임계 처리 장치(3)에서 초임계 상태의 처리 유체(R)가 처리 용기(301)의 용기 본체(311) 내에 도입된 당초는, 도 5의 (a)에 나타내는 바와 같이, 패턴(P) 사이에는 IPA만이 충전되어 있다.
패턴(P) 사이의 IPA는, 초임계 상태의 처리 유체(R)와 접촉함으로써, 서서히 처리 유체(R)에 용해되어, 도 5의 (b)에 나타내는 바와 같이 서서히 처리 유체(R)로 치환된다. 이때, 패턴(P) 사이에는, IPA 및 처리 유체(R) 외에, IPA와 처리 유체(R)가 혼합한 상태의 혼합 유체(M)가 존재한다.
그리고, 패턴(P) 사이에서 IPA로부터 처리 유체(R)로의 치환이 진행됨에 따라, 패턴(P) 사이에서는 IPA가 제거되어, 최종적으로는 도 5의 (c)에 나타내는 바와 같이, 초임계 상태의 처리 유체(R)에 의해서만 패턴(P) 사이가 채워진다.
패턴(P) 사이에서 IPA가 제거된 후에, 용기 본체(311) 내의 압력을 대기압까지 내림으로써, 도 5의 (d)에 나타내는 바와 같이, 처리 유체(R)는 초임계 상태로부터 기체 상태로 변화하여, 패턴(P) 사이는 기체에 의해서만 점유된다. 이와 같이 하여 패턴(P) 사이의 IPA는 제거되고, 웨이퍼(W)의 건조 처리는 완료한다.
전술한 도 5의 (a)∼(d)에 나타내는 메커니즘을 배경으로, 본 실시형태의 초임계 처리 장치(3)는, 이하와 같이 하여 IPA의 건조 처리를 행한다.
즉 초임계 처리 장치(3)에 의해 행해지는 기판 처리 방법은, 패턴(P)에 건조 방지용의 IPA가 융기된 웨이퍼(W)를 처리 용기(301)의 용기 본체(311) 내에 반입하는 공정과, 유체 공급부[즉 유체 공급 탱크(51), 유통 온/오프 밸브(52a), 유통 온/오프 밸브(52b) 및 유체 공급 헤더(317)]를 통해 용기 본체(311) 내에 초임계 상태의 처리 유체를 공급하는 공정과, 용기 본체(311) 내에서, 웨이퍼(W)로부터 IPA를 제거하는 건조 처리를, 초임계 상태의 처리 유체를 사용하여 행하는 공정을 포함한다.
특히, 초임계 상태의 처리 유체를 사용한 IPA의 건조 처리(즉 초임계 건조 처리)에서는, 패턴(P) 사이에서 기액 분리를 생기게 하지 않는 높은 압력이 유지되도록, 처리 용기(301)의 용기 본체(311)에 대하여 처리 유체의 공급 및 배출이 행해진다. 보다 구체적으로는, 용기 본체(311) 내로부터 처리 유체를 배출함으로써 용기 본체(311) 내의 압력을 강하시키는 강압 공정과, 용기 본체(311) 내에 처리 유체를 공급함으로써 용기 본체(311) 내의 압력을 상승시키는 승압 공정을, 교대로 복수회 반복함으로써, 웨이퍼(W)의 패턴(P) 사이의 IPA를 서서히 제거한다. 승압 공정에서는, 패턴(P) 사이가, 처리 유체 및 IPA의 2성분계의 임계 압력의 최대값보다 높은 압력이 되도록, 용기 본체(311) 내에 처리 유체가 공급된다. 한편, 강압 공정에서는, 강압 공정 및 승압 공정이 반복해서 행해져 패턴(P) 사이의 혼합 유체에서의 IPA 농도의 저감 및 처리 유체 농도의 증대가 진행됨에 따라, 패턴(P) 사이가 서서히 낮은 압력이 되도록, 용기 본체(311)로부터 유체가 배출된다. 단, 이 강압 공정에서도, 패턴(P) 사이의 압력은, 패턴(P) 사이의 유체가 비기체 상태를 유지하는 압력으로 유지된다.
이하에, 대표적인 건조 처리예를 나타낸다. 이하의 각 건조 처리예로서는, 처리 유체로서 CO2가 사용되고 있다.
[제1 건조 처리예]
도 6은 제1 건조 처리예에서의 시간, 처리 용기(301) 내[즉 용기 본체(311) 내]의 압력 및 처리 유체(CO2)의 소비량의 관계의 일례를 나타내는 도면이다. 도 6에 나타내는 곡선(A)은, 제1 건조 처리예에서의 시간[횡축; sec(초)] 및 처리 용기(301) 내의 압력(종축; ㎫)의 관계를 나타낸다. 도 6에 나타내는 곡선(B)은, 제1 건조 처리예에서의 시간[횡축; sec(초)] 및 처리 유체(CO2)의 소비량[종축; ㎏(킬로그램)]의 관계를 나타낸다.
본 건조 처리예에서는, 먼저 유체 도입 공정(T1)이 행해져, 유체 공급 탱크(51)로부터 처리 용기(301) 내[즉 용기 본체(311) 내]에 CO2가 공급된다.
이 유체 도입 공정(T1)에서, 제어부(4)는, 도 3에 나타내는 유통 온/오프 밸브(52a), 유통 온/오프 밸브(52b), 유통 온/오프 밸브(52c) 및 유통 온/오프 밸브(52f)를 개방 상태로 하고, 유통 온/오프 밸브(52d) 및 유통 온/오프 밸브(52e)는 폐쇄 상태로 하도록 제어를 행한다. 또한 제어부(4)는, 유통 온/오프 밸브(52g∼52i)를 개방 상태로 하고, 유통 온/오프 밸브(52j)는 폐쇄 상태로 하도록 제어를 행한다. 또한 제어부(4)는, 배기 조정 니들 밸브(61a∼61b)를 개방 상태로 하도록 제어를 행한다. 또한 제어부(4)는 배기 조정 밸브(59)의 개방도를 조정하여, 처리 용기(301) 내의 CO2가 초임계 상태를 유지할 수 있도록, 처리 용기(301) 내의 압력이 원하는 압력(도 6에 나타내는 예에서는 15 ㎫)으로 조정되도록 한다.
도 6에 나타내는 유체 도입 공정(T1)에서, 처리 용기(301) 내에서는, 웨이퍼(W) 상의 IPA가 초임계 상태의 CO2에 녹아들기 시작한다. 초임계 상태의 CO2와 웨이퍼(W) 상의 IPA가 섞이기 시작하면, CO2 및 IPA의 혼합 유체에서는 IPA 및 CO2가 국소적으로 다양한 비율이 되어, CO2의 임계 압력도 국소적으로 다양한 값이 될 수 있다. 한편, 유체 도입 공정(T1)에서는, 처리 용기(301) 내에의 CO2의 공급 압력이 CO2의 모든 임계 압력보다 높은 압력(즉 임계 압력의 최대값보다 높은 압력)으로 조정된다. 그 때문에, 혼합 유체의 IPA 및 CO2의 비율에 상관없이, 처리 용기(301) 내의 CO2는 초임계 상태 또는 액체 상태가 되며, 기체 상태는 되지 않는다.
그리고, 유체 도입 공정(T1) 후에는 유체 유지 공정(T2)이 행해지고, 웨이퍼(W)의 패턴(P) 사이의 혼합 유체의 IPA 농도 및 CO2 농도가 소망 농도(예컨대 IPA 농도가 30% 이하, CO2 농도가 70% 이상)가 될 때까지, 처리 용기(301) 내의 압력이 일정하게 유지된다.
이 유체 유지 공정(T2)에서는, 처리 용기(301) 내의 CO2가 초임계 상태를 유지할 수 있을 정도로 처리 용기(301) 내의 압력은 조정되어 있으며, 도 6에 나타내는 예에서는 처리 용기(301) 내의 압력이 15 ㎫로 유지되고 있다. 이 유체 유지 공정(T2)에서, 제어부(4)는, 도 3에 나타내는 유통 온/오프 밸브(52b) 및 유통 온/오프 밸브(52f)를 폐쇄 상태로 하도록 제어를 행하여, 처리 용기(301) 내에 대한 CO2의 공급 및 배출이 정지된다. 다른 각종 밸브의 개폐 상태는, 전술한 유체 도입 공정(T1)에서의 개폐 상태와 동일하다.
그리고, 유체 유지 공정(T2) 후에는 유체 공급 배출 공정(T3)이 행해지고, 처리 용기(301) 내로부터 유체를 배출하여 처리 용기(301) 내를 강압하는 강압 공정과, 처리 용기(301) 내에 CO2를 공급하여 처리 용기(301) 내를 승압하는 승압 공정이 반복된다.
강압 공정에서는, CO2 및 IPA가 혼합한 상태의 유체가 처리 용기(301)로부터 배출된다. 한편, 승압 공정에서는, IPA를 포함하지 않는 후레쉬한 CO2가 유체 공급 탱크(51)로부터 처리 용기(301)에 공급된다. 이와 같이, 강압 공정에서 IPA를 적극적으로 처리 용기(301)로부터 배출하면서, 승압 공정에서 IPA를 포함하지 않는 CO2를 처리 용기(301) 내에 공급함으로써, 웨이퍼(W) 상으로부터의 IPA의 제거가 촉진된다.
유체 공급 배출 공정(T3)에서의 강압 공정 및 승압 공정의 반복 횟수는 특별히 한정되지 않지만, 본 예의 건조 처리는, 유체 공급 배출 공정(T3)의 개시 당초에서, 적어도 이하의 제1 처리 공정(S1) 및 제2 처리 공정(S2)을 갖는다. 제어부(4)는, 유체 공급부[즉 도 3에 나타내는 유통 온/오프 밸브(52a∼52b)] 및 유체 배출부[즉 도 3에 나타내는 유통 온/오프 밸브(52f∼52j) 및 배기 조정 밸브(59)]를 제어하여, 이하의 제1 처리 공정(S1) 및 제2 처리 공정(S2)을 포함하는 건조 처리를, 초임계 상태의 CO2를 사용하여 행한다.
즉, 전술한 유체 유지 공정(T2)의 직후에 행해지는 제1 처리 공정(S1)에서는, 처리 용기(301) 안이, 초임계 상태의 CO2의 기화가 일어나지 않는 제1 배출 도달 압력(Pt1)(예컨대 14 ㎫)으로 될 때까지 처리 용기(301) 내의 유체가 배출되고, 그 후, 처리 용기(301) 안이, 제1 배출 도달 압력(Pt1)보다 높으며 처리 용기(301) 내의 CO2의 기화가 일어나지 않는 제1 공급 도달 압력(Ps1)(예컨대 15 ㎫)으로 될 때까지 처리 용기(301) 내에 CO2가 공급된다.
한편, 전술한 제1 처리 공정(S1)의 직후에 행해지는 제2 처리 공정(S2)에서는, 제1 처리 공정(S1) 후에, 처리 용기(301) 안이, 초임계 상태의 CO2의 기화가 일어나지 않는 제2 배출 도달 압력(Pt2)으로서 제1 배출 도달 압력(Pt1)과는 상이한 제2 배출 도달 압력(Pt2)(예컨대 13 ㎫)으로 될 때까지 처리 용기(301) 내의 유체가 배출되고, 그 후, 처리 용기(301) 안이, 제2 배출 도달 압력(Pt2)보다 높으며 처리 용기(301) 내의 CO2의 기화가 일어나지 않는 제2 공급 도달 압력(Ps2)(예컨대 15 ㎫)으로 될 때까지 처리 용기(301) 내에 CO2가 공급된다.
특히 본 건조 처리예에서는, 전술한 제1 처리 공정(S1)의 강압 공정에서의 제1 배출 도달 압력(Pt1)이, 전술한 제2 처리 공정(S2)의 강압 공정에서의 제2 배출 도달 압력(Pt2)보다 높게 설정되어 있다(즉 「Pt1>Pt2」가 만족된다).
도 7은 CO2의 농도, 임계 온도 및 임계 압력의 관계를 나타내는 그래프이다. 도 7의 횡축은, CO2의 임계 온도(K: 켈빈) 및 CO2 농도(%)를 나타내고, 도 7의 종축은, CO2의 임계 압력(㎫)을 나타낸다. 또한 도 7의 CO2 농도는, CO2의 혼합비를 나타내고, IPA와 CO2의 혼합 기체에서의 CO2의 비율에 따라 CO2 농도가 나타난다.
도 7의 곡선(C)은, CO2 농도, 임계 온도 및 임계 압력의 관계를 나타내고, CO2의 상태가 곡선(C)보다 위에 있는 경우에는 CO2는 임계 압력보다 높은 압력을 가지고, CO2의 상태가 곡선(C)보다 아래에 있는 경우에는 CO2는 임계 압력보다 낮은 압력을 갖는 것을 나타낸다.
전술한 바와 같이 본 건조 처리예에서는, 처리 용기(301)로부터 CO2를 배출하여 처리 용기(301) 내의 압력을 내리는 강압 공정과, 유체 공급 탱크(51)로부터의 CO2를 처리 용기(301)[즉 용기 본체(311)] 내에 도입하여 처리 용기(301) 내의 압력을 올리는 승압 공정이 반복해서 행해짐으로써, 웨이퍼(W) 상의 IPA가 서서히 제거된다. 이 건조 처리에서, 각 승압 공정에서는, 처리 용기(301)에 대한 CO2의 공급 압력이, CO2의 임계 압력의 최대값보다 높은 압력으로 설정된다. 따라서 전술한 제1 공급 도달 압력(Ps1) 및 제2 공급 도달 압력(Ps2)은, 예컨대 도 7의 곡선(C)에 의해 나타내는 모든 임계 압력보다 높은 압력[즉 CO2의 임계 압력의 최대값보다 높은 압력(예컨대 15 ㎫)]으로 조정된다. 이에 의해, 처리 용기(301) 내에서의 CO2의 기화를 막을 수 있다.
전술한 바와 같이 CO2 및 IPA의 혼합 유체에서는 CO2 및 IPA가 국소적으로 다양한 비율로 존재하고, CO2의 임계 압력도 국소적으로 다양한 값이 될 수 있다. 단 본 실시형태에서는, 처리 용기(301) 내에의 CO2의 공급 압력이 CO2의 임계 압력의 최대값보다 높은 압력으로 조정되기 때문에, 혼합 유체의 IPA 및 CO2의 비율에 상관없이, 패턴(P) 사이의 CO2는 초임계 상태 또는 액체 상태가 되며, 기체 상태는 되지 않는다.
한편, 강압 공정에서는, 패턴(P) 사이의 CO2가 임계 압력보다 높은 압력을 갖도록, 처리 용기(301) 내로부터 CO2의 배출이 행해진다. 즉 각 강압 공정에서의 처리 용기(301) 내의 압력(배출 도달 압력)은, CO2의 임계 압력보다 높은 압력으로 조정된다. 일반적으로, 패턴(P) 사이의 IPA의 제거가 진행됨에 따라, 패턴(P) 사이의 혼합 유체에서의 IPA 농도는 서서히 낮아지고 CO2 농도는 서서히 높아지는 경향이 있다. 한편, 도 7의 곡선(C)으로부터도 알 수 있듯이, CO2의 임계 압력은 CO2의 농도에 따라 변동하고, 특히 CO2의 농도가 대략 60%보다 큰 경우에는, CO2의 농도가 증대함에 따라 임계 압력은 서서히 저감한다.
또한, 승압 공정에서의 처리 용기(301) 내의 압력(즉 공급 도달 압력)과 강압 공정에서의 처리 용기(301) 내의 압력(즉 배출 도달 압력)의 차가 클수록, 처리 용기(301)로부터의 유체의 배출량이 증대한다. 처리 용기(301)로부터의 유체의 배출량이 증대함에 따라, 처리 용기(301)로부터의 IPA의 배출량은 증대하여, 그 후에 행해지는 승압 공정에서 처리 용기(301) 내에 공급되는 CO2의 양을 늘릴 수 있다. 그 때문에, 연속적으로 행해지는 강압 공정과 승압 공정 사이에서 처리 용기(301) 내의 압력차를 크게 할수록, IPA로부터 CO2로의 치환을 효과적으로 재촉할 수 있어, IPA의 건조 처리를 단시간에 행할 수 있게 된다.
도 6에 나타내는 유체 공급 배출 공정(T3)에서 반복해지 행해지는 복수회의 강압 공정에서는, 전술한 CO2 농도 및 임계 압력의 관계에 기초하여, 패턴(P) 사이의 CO2가 비기체 상태를 유지하는 범위에서, 패턴(P) 사이의 CO2의 압력을 서서히 내리고, 처리 용기(301)로부터의 CO2의 배출량을 서서히 증대시킨다.
예컨대, 도 6에 나타내는 제1 처리 공정(S1)에서, 패턴(P) 사이의 혼합 유체의 CO2 농도가 70%라고 하면, 패턴(P) 사이의 CO2의 임계 압력은, 도 8의 포인트(C70)에 의해 나타내는 바와 같이, 대략 14 ㎫보다 낮은 압력이 된다. 그 때문에, 제1 처리 공정(S1)의 강압 공정에서의 제1 배출 도달 압력(Pt1)이, 도 8의 포인트(C70)에 의해 나타나는 임계 압력보다 높은 압력(예컨대 14 ㎫)으로 설정된다. 이에 의해, 제1 처리 공정(S1)의 강압 공정에서 패턴(P) 사이의 CO2가 기화하는 것을 막은 상태로, 처리 용기(301) 내로부터 유체를 배출할 수 있다.
한편, 그 후에 행해지는 제2 처리 공정(S2)에서, 패턴(P) 사이의 혼합 유체의 CO2 농도가 80%라고 하면, 패턴(P) 사이의 CO2의 임계 압력은, 도 9의 포인트(C80)에 의해 나타나는 바와 같이, 대략 12 ㎫ 정도가 된다. 그 때문에, 제2 처리 공정(S2)의 강압 공정에서의 제2 배출 도달 압력(Pt2)이, 도 9의 포인트(C80)에 의해 나타내는 임계 압력보다 높은 압력(예컨대 13 ㎫)으로 설정된다. 이에 의해, 제2 처리 공정(S2)의 강압 공정에서 패턴(P) 사이의 CO2가 기화하는 것을 막은 상태로, 처리 용기(301) 내로부터 유체를 배출할 수 있다. 특히, 제2 처리 공정(S2)의 강압 공정에서의 유체의 배출량은, 제1 처리 공정(S1)의 강압 공정에서의 유체의 배출량보다 많기 때문에, 제2 처리 공정(S2)에서는 한층 더 효과적으로 IPA를 제거하는 것이 가능하다.
또한 도 6에 나타내는 예에서는, 각 승압 공정에서의 처리 용기(301) 내의 압력은 동일한 압력(즉 15 ㎫)까지 상승되지만, 처리 용기(301) 내의 압력은 승압 공정 사이에서 반드시 동일할 필요는 없다. 단, 각 승압 공정에서의 처리 용기(301) 내의 압력은, CO2의 임계 압력의 최대값보다 높은 압력까지 상승되고, 처리 용기(301) 내의 CO2는 비기체 상태를 유지한다.
또한 도 6에 나타내는 예에서는, 강압 공정에서의 처리 용기(301) 내의 압력은 서서히 낮은 압력이 되도록 서서히 강하되지만, 강압 공정에서의 처리 용기(301) 내의 압력을 반드시 서서히 낮게 할 필요는 없다. 단, IPA를 단시간에 제거하는 관점에서는, 강압 공정에서의 처리 용기(301) 내로부터의 유체의 배출량이 큰 것이 바람직하고, 강압 공정에서 처리 용기(301) 내의 압력을 내릴수록, 처리 용기(301) 내부터의 유체의 배출량은 커진다. 따라서, 유체 공급 배출 공정(T3)의 진행과 함께 패턴(P) 사이의 혼합 유체의 CO2 농도가 서서히 커지는 것 및 도 7에 나타내는 CO2의 임계 온도-임계 압력의 특성을 고려하면, 강압 공정에서의 처리 용기(301) 내의 압력은 서서히 낮은 압력이 되도록 서서히 강하되는 것이 바람직하다.
또한 도 6에 나타내는 예에서는, 제1 처리 공정(S1)의 승압 공정에서 제1 공급 도달 압력(Ps1)(15 ㎫)까지 CO2가 처리 용기(301) 내에 공급되면, 패턴(P) 사이의 IPA 농도는 희석되어, 곧바로 20% 이하가 된다. 그 때문에, 제1 처리 공정(S1)의 승압 공정이 행해진 직후에 제2 처리 공정(S2)의 강압 공정이 행해지고, 처리 용기(301)로부터 유체가 배출된다. 또한 제1 처리 공정(S1) 이후의 처리 공정에서도 동일하게 하여 강압 공정 및 승압 공정이 행해지고, 각 강압 공정은 직전의 승압 공정이 완료한 직후에 개시되고, 각 승압 공정은 직전의 강압 공정이 완료한 직후에 개시된다.
또한 전술한 강압 공정 및 승압 공정은, 제어부(4)가, 도 3에 나타내는 유통 온/오프 밸브(52b), 유통 온/오프 밸브(52f) 및 배기 조정 밸브(59)의 개폐를 제어함으로써 행해진다. 예컨대 처리 용기(301) 내에 CO2를 공급하여 승압 공정을 행하는 경우에는, 제어부(4)의 제어 하에서, 유통 온/오프 밸브(52b)가 개방되고, 유통 온/오프 밸브(52f)가 폐쇄된다. 한편, 처리 용기(301) 내로부터 CO2를 배출하여 강압 공정을 행하는 경우에는, 제어부(4)의 제어 하에서, 유통 온/오프 밸브(52b)가 폐쇄되고, 유통 온/오프 밸브(52f)가 개방된다. 이 강압 공정에서, 엄밀하게 원하는 배출 도달 압력까지 처리 용기(301) 내의 유체를 배출하기 위해, 배기 조정 밸브(59)가 제어부(4)에 의해 제어된다.
특히, 제어부(4)는, 강압 공정에서 엄밀한 제어를 행하기 위해, 처리 용기(301)와 유통 온/오프 밸브(52f) 사이에 마련된 압력 센서(53d)의 계측 결과에 기초하여, 배기 조정 밸브(59)의 개방도를 조정한다. 즉, 처리 용기(301) 내와 연통하는 공급 라인 내의 압력이 압력 센서(53d)에 의해 계측된다. 제어부(4)는, 압력 센서(53d)의 계측값으로부터, 처리 용기(301) 내를 원하는 압력으로 조정하는 데 필요한 배기 조정 밸브(59)의 개방도를 구하고, 그 구한 개방도를 실현하기 위한 제어 지시 신호를 배기 조정 밸브(59)에 보낸다. 배기 조정 밸브(59)는 제어부(4)로부터의 제어 지시 신호에 기초하여 개방도를 조정하여, 처리 용기(301) 안은 원하는 압력으로 조정된다. 이에 의해, 처리 용기(301) 내의 압력은, 정밀도 좋게 원하는 압력으로 조정된다.
이와 같이 제어부(4)는, 전술한 강압 공정 및 승압 공정이 반복해서 행해지는 과정에서, 처리 용기(301)에 대한 CO2의 공급량 및 배출량을 제어하여, 패턴(P) 사이의 CO2가 항상 임계 압력보다 높은 압력을 갖도록 한다. 이에 의해, 패턴(P) 사이의 CO2가 기화하는 것을 막을 수 있어, 패턴(P) 사이의 CO2는 유체 공급 배출 공정(T3) 동안은 항상 비기체 상태가 된다. 웨이퍼(W)에서 생길 수 있는 패턴 붕괴는, 패턴(P) 사이에 존재할 수 있는 기액 계면에 기인하고 있고, 일반적으로는, 패턴(P) 사이에서 기체의 처리 유체(본 예에서는 CO2)가 액체의 IPA에 접촉함으로써 야기된다. 본 건조 처리예에 의하면, 유체 공급 배출 공정(T3)이 행해지고 있는 동안은, 전술한 바와 같이 패턴(P) 사이의 CO2가 항상 비기체 상태이기 때문에, 패턴 붕괴가 원리적으로 생기지 않는다.
또한 유체 공급 배출 공정(T3)이 행해지고 있는 동안에, 패턴(P) 사이의 CO2의 농도를 직접 계측하는 것은 어렵다. 그 때문에, 미리 행해진 실험의 결과에 기초하여, 강압 공정 및 승압 공정을 행하는 타이밍을 결정해 두고, 그 결정된 타이밍에 기초하여 강압 공정 및 승압 공정이 행해져도 좋다. 예컨대, 제1 처리 공정(S1)의 강압 공정에서 처리 용기(301) 안이 제1 배출 도달 압력(Pt1)으로 될 때까지 처리 용기(301) 내의 유체를 배출하는 타이밍 및 제2 처리 공정(S2)의 강압 공정에서 처리 용기(301) 안이 제2 배출 도달 압력(Pt2)으로 될 때까지 처리 용기(301) 내의 유체를 배출하는 타이밍 중 적어도 어느 한쪽은, 미리 행해진 실험의 결과에 기초하여 정할 수 있다.
또한, 처리 용기(301) 내에서의 CO2의 온도는 처리 용기(301)에 마련된 도시하지 않는 히터에 의해, CO2가 초임계 상태를 유지할 수 있는 온도로 조정되는 것이 바람직하다. 이 경우, 그와 같은 히터는, 처리 용기(301) 내의 유체의 온도를 계측하는 온도 센서(54e)의 계측 결과에 기초하여 제어부(4)에 의해 제어되어, 히터의 가열 온도가 조정되는 것이 바람직하다. 단, 처리 용기(301) 내의 유체의 온도는 반드시 제어부(4)의 제어 하에서 조정될 필요는 없다. 가령 처리 용기(301) 내의 CO2의 온도가 임계 온도 이하가 되었다고 해도, 처리 용기(301) 내의 CO2는 액체 등의 비기체 상태를 취한다. 그 때문에, 패턴(P) 사이의 기액 계면에 기인하는 패턴 붕괴는, 가령 처리 용기(301) 내의 CO2의 온도가 임계 온도 이하가 되었다고 해도 생기지 않는다. 단, 처리 용기(301) 내의 CO2의 온도는, CO2 밀도에 영향을 부여하는 인자의 하나이기 때문에, IPA로부터 CO2로의 치환 효율을 향상시키는 관점에서는, 처리 용기(301) 내의 CO2의 온도를 히터 등의 디바이스에 의해 적극적으로 조정하는 것이 바람직하다.
그리고, 전술한 유체 공급 배출 공정(T3)에 의해 패턴(P) 사이의 IPA가 CO2로 치환되어, 처리 용기(301) 내에 잔류하는 IPA가 충분히 저감한 단계[예컨대 처리 용기(301) 내의 IPA 농도가 0%∼수 %에 달한 단계]에서 유체 배출 공정(T4)이 행해져, 처리 용기(301) 안은 대기압으로 복귀된다. 이에 의해, 처리 용기(301) 내에 잔류하는 IPA가 웨이퍼(W) 상에 재부착하는 것을 막으면서, CO2를 기화시킬 수 있어, 도 5의 (d)에 나타내는 바와 같이 패턴(P) 사이에는 기체만이 존재한다.
유체 배출 공정(T4)에서, 제어부(4)는, 도 3에 나타내는 유통 온/오프 밸브(52a∼52e)를 폐쇄 상태로 하고, 배기 조정 밸브(59)를 개방 상태로 하고, 유통 온/오프 밸브(52f∼52i)를 개방 상태로 하고, 유통 온/오프 밸브(52j)를 폐쇄 상태로 하고, 배기 조정 니들 밸브(61a∼61b)를 개방 상태로 하도록 제어를 행한다.
전술한 바와 같이 하여 유체 도입 공정(T1), 유체 유지 공정(T2), 유체 공급 배출 공정(T3) 및 유체 배출 공정(T4)이 행해짐으로써, 웨이퍼(W) 상으로부터 IPA를 제거하는 건조 처리가 완료한다.
또한, 유체 도입 공정(T1), 유체 유지 공정(T2), 유체 공급 배출 공정(T3) 및 유체 배출 공정(T4)의 각 공정이 행해지는 타이밍, 각 공정의 지속 시간 및 유체 공급 배출 공정(T3)에서의 강압 공정 및 승압 공정의 반복 횟수 등은, 임의의 방법에 따라 정해져도 좋다. 제어부(4)는, 예컨대 농도 계측 센서(60)에 의해 계측되는 「처리 용기(301) 내로부터 배출되는 유체에 포함되는 IPA 농도」에 따라, 각 공정이 행해지는 타이밍, 각 공정의 지속 시간 및 유체 공급 배출 공정(T3)에서의 강압 공정 및 승압 공정의 반복 횟수 등을 결정하여도 좋다. 또한 제어부(4)는, 미리 행해진 실험의 결과에 기초하여, 각 공정이 행해지는 타이밍, 각 공정의 지속 시간 및 유체 공급 배출 공정(T3)에서의 강압 공정 및 승압 공정의 반복 횟수 등을 결정하여도 좋다.
전술한 초임계 처리 장치(3)(즉 기판 처리 장치) 및 기판 처리 방법에 따르면, 초임계 상태의 처리 유체를 이용하여 기판으로부터 액체를 제거하는 건조 처리를, 처리 유체의 소비량을 억제하면서 단시간에 행할 수 있어, 패턴 붕괴의 발생도 효과적으로 막을 수 있다.
본건 발명자의 실험에 따르면, 종래 기술에 기초하여, 10 ㎫의 초임계 상태의 CO2를 처리 용기(301)에 대하여 매분 0.5 ㎏으로 연속적으로 공급 및 배출함으로써 웨이퍼(W) 상의 IPA를 건조하는 경우에는, 30분간 정도의 시간을 요하며, 수십 ㎏의 CO2를 소비할 필요가 있었다. 한편, 도 6에 나타내는 바와 같은 본 건조 처리예에 기초하여 웨이퍼(W) 상의 IPA를 제거하는 경우에는, 유체 공급 배출 공정(T3)에서 「1회의 강압 공정 및 1회의 승압 공정을 포함하는 처리 공정」을 7회 반복함으로써 웨이퍼(W)를 적절하게 건조시킬 수 있고, 전체의 처리 시간은 약 7분간이고, CO2의 소비량은 약 1.7 ㎏이었다. 이와 같이, 본 실시형태의 기판 처리 장치 및 기판 처리 방법은, 처리 시간의 단축화 및 CO2(처리 유체)의 저소비량화를 비약적으로 촉진시킬 수 있다.
[제2 건조 처리예]
도 10은 제2 건조 처리예에서의 시간 및 처리 용기(301) 내의 압력을 나타내는 도면이다. 도 10에 나타내는 곡선(A)은, 제2 건조 처리예에서의 시간(횡축; sec) 및 처리 용기(301) 내의 압력(종축; ㎫)의 관계를 나타낸다.
본 건조 처리예에서, 전술한 제1 건조 처리예와 동일 또는 유사한 내용에 대해서, 그 상세한 설명은 생략한다.
본 건조 처리예에서도, 전술한 제1 건조 처리예와 마찬가지로, 유체 도입 공정(T1), 유체 유지 공정(T2), 유체 공급 배출 공정(T3) 및 유체 배출 공정(T4)이 순차 행해진다. 단 본 건조 처리예의 유체 공급 배출 공정(T3)에서는, 유체 유지 공정(T2)의 직후에 행해지는 제1 처리 공정(S1)의 강압 공정에서의 제1 배출 도달 압력(Pt1)은, 그 후의 제2 처리 공정(S2)의 강압 공정에서의 제2 배출 도달 압력(Pt2)보다 낮다.
또한, 본 건조 처리의 유체 공급 배출 공정(T3)에서, 제2 처리 공정(S2)의 직후에 행해지는 제3 처리 공정(S3)의 강압 공정 및 승압 공정은 이하와 같이 하여 행해진다. 즉, 제2 처리 공정(S2) 후에, 처리 용기(301) 안이, 초임계 상태의 CO2의 기화가 일어나지 않는 제3 배출 도달 압력(Pt3)으로서 제2 배출 도달 압력(Pt2)보다 낮은 제3 배출 도달 압력(Pt3)으로 될 때까지 처리 용기(301) 내의 유체가 배출된다. 그 후, 처리 용기(301) 안이, 제3 배출 도달 압력(Pt3)보다 높으며 처리 용기(301) 내의 CO2의 기화가 일어나지 않는 제3 공급 도달 압력(Ps3)으로 될 때까지 처리 용기(301) 내에 CO2가 공급된다.
또 제3 공급 도달 압력(Ps3)은, 제1 공급 도달 압력(Ps1) 및 제2 공급 도달 압력(Ps2)과 동일한 압력으로 설정되어 있고, 예컨대 전술한 제1 건조 처리예와 동일하게 15 ㎫로 설정 가능하다.
본 건조 처리예에서는, 램프업 방식의 건조 처리가 행해지고, 유체 공급 배출 공정(T3)의 강압 공정 중, 최초에 행해지는 제1 처리 공정(S1)의 강압 공정에서의 배출 도달 압력[즉 제1 배출 도달 압력(Pt1)]이 가장 낮은 압력을 나타낸다. 즉 유체 공급 배출 공정(T3)의 강압 공정 중, 제1 처리 공정(S1)의 강압 공정에서 가장 다량의 유체가 처리 용기(301)로부터 배출된다. 이에 의해, 웨이퍼(W)의 패턴(P)의 상방에 형성된 막 상의 IPA를 효율적으로 제거하는 것이 가능하다.
도 11은 웨이퍼(W)의 패턴(P) 상에 융기된 IPA의 상태를 설명하기 위한 단면도이다.
초임계 처리 장치(3)에 반입된 웨이퍼(W)의 패턴(P) 상에는, 두께(D1)의 IPA막이 형성되어 있다. 이 IPA막의 두께(D1)는, 패턴(P)의 두께(D2)에 비해서 매우 크고, 두께(D1)는 두께(D2)의 수십배 정도로 되는 것이 일반적이다. 이 패턴(P)의 상방의 IPA막의 부분도, 초임계 처리 장치(3)에 의해 제거될 필요가 있지만, 패턴(P) 사이의 IPA의 제거량에 비해서, 패턴(P)의 상방의 IPA막의 제거량은 매우 커진다. 또한 패턴(P)의 상방의 IPA막의 부분이 제거된 후에만, 패턴(P) 사이의 IPA를 제거할 수 있다.
따라서 유체 공급 배출 공정(T3)에서는, 먼저 제1 처리 공정(S1)에 의해, 패턴(P)의 상방의 IPA막을 가능한 한 제거하고, 제2 처리 공정(S2) 및 그 이후의 처리 공정에 의해, 패턴(P) 사이의 IPA를 제거하는 것이 바람직하다. 그 때문에 본 건조 처리예에서는, 먼저 제1 처리 공정(S1)에서, 강압 공정에서 다량의 유체가 처리 용기(301)로부터 배출되며 승압 공정에서 다량의 CO2가 처리 용기(301)에 공급되어, 패턴(P)의 상방의 IPA막이 대폭 제거된다.
또한, 패턴(P)의 상방의 IPA막을 제거할 때에는, 패턴(P) 사이에는 IPA가 충전되어 있기 때문에, 패턴 붕괴의 걱정은 없다. 단, 제1 처리 공정(S1)에서 패턴(P)의 상방의 IPA막뿐만 아니라, 패턴(P) 사이의 IPA의 일부도 제거될 가능성을 고려하여, 제1 처리 공정(S1)의 강압 공정에서의 제1 배출 도달 압력(Pt1)은, 처리 용기(301) 내의 CO2의 임계 압력보다 높은 압력으로 설정된다.
제1 처리 공정(S1) 이외의 처리 공정에서의 강압 공정 및 승압 공정은, 전술한 제1 건조 처리예와 동일하게 하여 행해진다. 즉, 유체 공급 배출 공정(T3)의 각 승압 공정에서의 처리 용기(301) 내의 압력은, CO2의 임계 압력의 최대값보다 높은 압력으로서 서로 동일한 압력(즉 15 ㎫)까지 상승된다. 또한 유체 공급 배출 공정(T3)의 제2 처리 공정(S2) 및 그 이후의 처리 공정에서의 강압 공정에서는, 처리 용기(301) 내의 압력은 서서히 낮은 압력이 되도록 강하된다. 단, 각 강압 공정에서의 패턴(P) 사이의 압력은, 패턴(P) 사이의 CO2가 비기체 상태를 유지하는 압력으로 유지된다.
이상 설명한 바와 같이 본 건조 처리예에 따르면, 웨이퍼(W)의 패턴(P)의 상방에 형성된 IPA막을 효율적으로 제거할 수 있어, IPA의 건조 처리의 처리 시간을 단축화할 수 있다.
[제3 건조 처리예]
도 12는 제3 건조 처리예에서의 시간 및 처리 용기(301) 내의 압력을 나타내는 도면이다. 도 12에 나타내는 곡선(A)은, 제3 건조 처리예에서의 시간(횡축; sec) 및 처리 용기(301) 내의 압력(종축; ㎫)의 관계를 나타낸다.
본 건조 처리예에서, 전술한 제1 건조 처리예와 동일 또는 유사한 내용에 대해서, 그 상세한 설명은 생략한다.
본 건조 처리예에서도, 전술한 제1 건조 처리예와 마찬가지로, 유체 도입 공정(T1), 유체 유지 공정(T2), 유체 공급 배출 공정(T3) 및 유체 배출 공정(T4)이 순차 행해진다. 단 본 건조 처리예의 유체 공급 배출 공정(T3)으로서는, 강압 공정과 승압 공정 사이에, 처리 용기(301) 내의 압력을 거의 일정하게 유지하는 압력 유지 공정이 행해진다.
각 압력 유지 공정에서는, 처리 용기(301) 안이, 직전에 행해진 강압 공정의 배출 도달 압력과 동일한 압력으로 유지된다.
이러한 압력 유지 공정을 행함으로써, 웨이퍼(W) 상으로부터의 IPA의 제거를 효율적으로 행할 수 있다.
본 발명은 전술한 실시형태 및 변형예에 한정되는 것이 아니며, 당업자가 상도할 수 있는 여러 가지의 변형이 가해진 각종 양태도 포함할 수 있는 것이고, 본 발명에 따라 발휘되는 효과도 전술한 사항에 한정되지 않는다. 따라서, 본 발명의 기술적 사상 및 취지를 일탈하지 않는 범위에서, 특허청구의 범위 및 명세서에 기재되는 각 요소에 대하여 여러 가지의 추가, 변경 및 부분적 삭제가 가능하다.
예컨대, 건조 처리에 이용되는 처리 유체는 CO2 이외의 유체여도 좋고, 기판의 오목부에 융기된 건조 방지용의 액체를 초임계 상태에서 제거 가능한 임의의 유체를 처리 유체로서 이용할 수 있다. 또한 건조 방지용의 액체도 IPA에는 한정되지 않고, 건조 방지용 액체로서 사용 가능한 임의의 액체를 사용할 수 있다.
또한 전술한 실시형태 및 변형예에서는, 기판 처리 장치 및 기판 처리 방법에 본 발명이 적용되어 있지만, 본 발명의 적용 대상은 특별히 한정되지 않는다. 예컨대, 전술한 기판 처리 방법을 컴퓨터에 실행시키기 위한 프로그램이나, 그와 같은 프로그램을 기록한 컴퓨터 판독 가능한 비일시적인 기록 매체에 대해서도 본 발명은 적용 가능하다.
3 초임계 처리 장치
4 제어부
51 유체 공급 탱크
52a∼52j 유통 온/오프 밸브
59 배기 조정 밸브
301 처리 용기
P 패턴
Ps1 제1 공급 도달 압력
Ps2 제2 공급 도달 압력
Pt1 제1 배출 도달 압력
Pt2 제2 배출 도달 압력
S1 제1 처리 공정
S2 제2 처리 공정
W 웨이퍼

Claims (13)

  1. 처리 용기 내에서, 기판으로부터 액체를 제거하는 건조 처리를 초임계 상태의 처리 유체를 사용하여 행하는 기판 처리 방법으로서,
    상기 처리 용기 내에 초임계 상태의 상기 처리 유체를 도입하는 유체 도입 공정과,
    상기 유체 도입 공정의 후, 상기 처리 유체를 초임계 상태로 유지할 수 있는 압력으로 상기 처리 용기 내를 유지하는 유체 유지 공정과,
    상기 처리 용기 안이, 상기 처리 용기 내에 존재하는 초임계 상태의 상기 처리 유체의 기화가 일어나지 않는 배출 도달 압력으로 될 때까지 압력을 강하시키는 강압 공정; 및
    상기 처리 용기 안이, 상기 배출 도달 압력보다 높으며 상기 처리 용기 내의 상기 처리 유체의 기화가 일어나지 않는 공급 도달 압력으로 될 때까지 압력을 상승시키는 승압 공정;
    을 교대로 반복하는 유체 공급 배출 공정을 가지며,
    상기 강압 공정은, 상기 처리 용기로부터의 유체의 배출량을 조정하는 배기 조정 밸브의 개방도를 제어함으로써 상기 배출 도달 압력으로 될 때까지 상기 처리 용기 내의 유체를 배출하는 것인 기판 처리 방법.
  2. 제1항에 있어서, 상기 배기 조정 밸브는 배압 밸브인 것인 기판 처리 방법.
  3. 제1항 또는 제2항에 있어서, 상기 강압 공정은, 상기 처리 용기 내와 연통하는 배관 내의 압력을 측정하는 압력 센서의 계측 결과에 기초하여 상기 배기 조정 밸브의 개방도를 조정하는 것인 기판 처리 방법.
  4. 제1항 또는 제2항에 있어서, 상기 강압 공정에서, 상기 처리 용기 안이 상기 배출 도달 압력으로 될 때까지 상기 처리 용기 내의 유체를 배출하는 타이밍은, 미리 행해진 실험의 결과에 기초하여 정해져 있는 것인 기판 처리 방법.
  5. 제1항 또는 제2항에 있어서, 상기 공급 도달 압력은, 상기 처리 용기 내의 상기 처리 유체의 임계 압력의 최대값보다 높은 압력인 것인 기판 처리 방법.
  6. 제1항 또는 제2항에 있어서, 상기 처리 유체는 수평 방향을 향하여 상기 처리 용기 내에 공급되는 기판 처리 방법.
  7. 오목부를 갖는 기판으로서, 그 오목부에 액체가 융기된 기판이 반입되는 처리 용기와,
    상기 처리 용기 내에 초임계 상태의 처리 유체를 공급하는 유체 공급부와,
    상기 처리 용기로부터의 유체의 배출량을 조정하는 배기 조정 밸브와,
    상기 유체 공급부 및 상기 배기 조정 밸브를 제어하여, 상기 처리 용기 내에서 상기 기판으로부터 상기 액체를 제거하는 건조 처리를 초임계 상태의 상기 처리 유체를 사용하여 행하는 제어부를 구비하고,
    상기 제어부는,
    상기 처리 용기 내에 초임계 상태의 상기 처리 유체를 도입하는 유체 도입 공정과,
    상기 유체 도입 공정의 후, 상기 처리 유체를 초임계 상태로 유지할 수 있는 압력으로 상기 처리 용기 내를 유지하는 유체 유지 공정과,
    상기 처리 용기 안이, 상기 처리 용기 내에 존재하는 초임계 상태의 상기 처리 유체의 기화가 일어나지 않는 배출 도달 압력으로 될 때까지 압력을 강하시키는 강압 공정; 및
    상기 처리 용기 안이, 상기 배출 도달 압력보다 높으며 상기 처리 용기 내의 상기 처리 유체의 기화가 일어나지 않는 공급 도달 압력으로 될 때까지 압력을 상승시키는 승압 공정;
    을 교대로 반복하는 유체 공급 배출 공정을 행하고,
    상기 제어부는, 상기 강압 공정에서 상기 배기 조정 밸브의 개방도를 제어함으로써 상기 배출 도달 압력으로 될 때까지 상기 처리 용기 내의 유체를 배출하는 것인 기판 처리 장치.
  8. 제7항에 있어서, 상기 배기 조정 밸브는 배압 밸브인 것인 기판 처리 장치.
  9. 제7항 또는 제8항에 있어서, 상기 제어부는, 상기 강압 공정에서 상기 처리 용기 내와 연통하는 배관 내의 압력을 측정하는 압력 센서의 계측 결과에 기초하여 상기 배기 조정 밸브의 개방도를 조정하는 것인 기판 처리 장치.
  10. 제7항 또는 제8항에 있어서, 상기 강압 공정에서, 상기 처리 용기 안이 상기 배출 도달 압력으로 될 때까지 상기 처리 용기 내의 유체를 배출하는 타이밍은, 미리 행해진 실험의 결과에 기초하여 정해져 있는 것인 기판 처리 장치.
  11. 제7항 또는 제8항에 있어서, 상기 공급 도달 압력은, 상기 처리 용기 내의 상기 처리 유체의 임계 압력의 최대값보다 높은 압력인 것인 기판 처리 장치.
  12. 제7항 또는 제8항에 있어서, 상기 처리 유체는 수평 방향을 향하여 상기 처리 용기 내에 공급되는 기판 처리 장치.
  13. 처리 용기 내에서 기판으로부터 액체를 제거하는 건조 처리를, 초임계 상태의 처리 유체를 사용하여 행하는 기판 처리 방법을 컴퓨터에 실행시키기 위한 프로그램을 기록한 컴퓨터 판독 가능한 기록 매체로서,
    상기 기판 처리 방법은,
    상기 처리 용기 내에 초임계 상태의 상기 처리 유체를 도입하는 유체 도입 공정과,
    상기 유체 도입 공정의 후, 상기 처리 유체를 초임계 상태로 유지할 수 있는 압력으로 상기 처리 용기 내를 유지하는 유체 유지 공정과,
    상기 처리 용기 안이, 상기 처리 용기 내에 존재하는 초임계 상태의 상기 처리 유체의 기화가 일어나지 않는 배출 도달 압력으로 될 때까지 압력을 강하시키는 강압 공정; 및
    상기 처리 용기 안이, 상기 배출 도달 압력보다 높으며 상기 처리 용기 내의 상기 처리 유체의 기화가 일어나지 않는 공급 도달 압력으로 될 때까지 압력을 상승시키는 승압 공정;
    을 교대로 반복하는 유체 공급 배출 공정을 가지며,
    상기 강압 공정은, 상기 처리 용기로부터의 유체의 배출량을 조정하는 배기 조정 밸브의 개방도를 제어함으로써 상기 배출 도달 압력으로 될 때까지 상기 처리 용기 내의 유체를 배출하는 것인 컴퓨터 판독 가능한 기록 매체.
KR1020220074897A 2016-10-04 2022-06-20 기판 처리 방법, 기판 처리 장치 및 기록 매체 KR102584851B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016196630A JP6759042B2 (ja) 2016-10-04 2016-10-04 基板処理方法、基板処理装置及び記録媒体
JPJP-P-2016-196630 2016-10-04
KR1020170125878A KR102420740B1 (ko) 2016-10-04 2017-09-28 기판 처리 방법, 기판 처리 장치 및 기록 매체

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020170125878A Division KR102420740B1 (ko) 2016-10-04 2017-09-28 기판 처리 방법, 기판 처리 장치 및 기록 매체

Publications (2)

Publication Number Publication Date
KR20220092825A true KR20220092825A (ko) 2022-07-04
KR102584851B1 KR102584851B1 (ko) 2023-10-04

Family

ID=61758959

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020170125878A KR102420740B1 (ko) 2016-10-04 2017-09-28 기판 처리 방법, 기판 처리 장치 및 기록 매체
KR1020220074897A KR102584851B1 (ko) 2016-10-04 2022-06-20 기판 처리 방법, 기판 처리 장치 및 기록 매체

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020170125878A KR102420740B1 (ko) 2016-10-04 2017-09-28 기판 처리 방법, 기판 처리 장치 및 기록 매체

Country Status (5)

Country Link
US (1) US20180096863A1 (ko)
JP (1) JP6759042B2 (ko)
KR (2) KR102420740B1 (ko)
CN (2) CN107895686B (ko)
TW (1) TWI721214B (ko)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110491770B (zh) * 2018-05-15 2024-04-09 东京毅力科创株式会社 基板处理方法、存储介质以及基板处理装置
JP7163199B2 (ja) * 2019-01-08 2022-10-31 東京エレクトロン株式会社 基板処理装置
JP7197396B2 (ja) * 2019-02-06 2022-12-27 東京エレクトロン株式会社 基板処理装置及び基板処理方法
JP7394563B2 (ja) * 2019-09-12 2023-12-08 東京エレクトロン株式会社 基板処理装置の洗浄方法及び基板処理システム
KR102262250B1 (ko) 2019-10-02 2021-06-09 세메스 주식회사 기판 처리 설비 및 기판 처리 방법
JP7493325B2 (ja) * 2019-11-25 2024-05-31 東京エレクトロン株式会社 基板処理装置
JP7353227B2 (ja) 2020-03-30 2023-09-29 株式会社Screenホールディングス 基板処理方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013012538A (ja) 2011-06-28 2013-01-17 Tokyo Electron Ltd 基板処理装置、基板処理方法および記憶媒体
JP2013016798A (ja) 2011-06-30 2013-01-24 Semes Co Ltd 基板処理装置及び基板処理方法
KR20140030218A (ko) * 2011-05-30 2014-03-11 도쿄엘렉트론가부시키가이샤 기판 처리 방법, 기판 처리 장치 및 기억 매체
KR20160026302A (ko) * 2014-08-29 2016-03-09 삼성전자주식회사 기판 처리 장치 및 집적회로 소자 제조 장치와 기판 처리 방법 및 집적회로 소자 제조 방법

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004335988A (ja) * 2003-03-12 2004-11-25 Nippon Telegr & Teleph Corp <Ntt> 超臨界処理方法及び装置
US20060102204A1 (en) * 2004-11-12 2006-05-18 Tokyo Electron Limited Method for removing a residue from a substrate using supercritical carbon dioxide processing
US7442636B2 (en) * 2005-03-30 2008-10-28 Tokyo Electron Limited Method of inhibiting copper corrosion during supercritical CO2 cleaning
US20060225769A1 (en) * 2005-03-30 2006-10-12 Gentaro Goshi Isothermal control of a process chamber
US9587880B2 (en) * 2012-05-31 2017-03-07 Semes Co., Ltd. Apparatus and method for drying substrate
JP6068029B2 (ja) * 2012-07-18 2017-01-25 株式会社東芝 基板処理方法、基板処理装置および記憶媒体
KR102411946B1 (ko) * 2015-07-08 2022-06-22 삼성전자주식회사 초임계 유체를 이용한 기판 처리장치와 이를 포함하는 기판 처리 시스템 및 이를 이용한 기판처리 방법
JP6755776B2 (ja) * 2016-11-04 2020-09-16 東京エレクトロン株式会社 基板処理装置、基板処理方法及び記録媒体
JP2018081966A (ja) * 2016-11-14 2018-05-24 東京エレクトロン株式会社 基板処理装置、基板処理方法及び記憶媒体
JP6740098B2 (ja) * 2016-11-17 2020-08-12 東京エレクトロン株式会社 基板処理装置、基板処理方法及び記憶媒体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140030218A (ko) * 2011-05-30 2014-03-11 도쿄엘렉트론가부시키가이샤 기판 처리 방법, 기판 처리 장치 및 기억 매체
JP2013012538A (ja) 2011-06-28 2013-01-17 Tokyo Electron Ltd 基板処理装置、基板処理方法および記憶媒体
JP2013016798A (ja) 2011-06-30 2013-01-24 Semes Co Ltd 基板処理装置及び基板処理方法
KR20160026302A (ko) * 2014-08-29 2016-03-09 삼성전자주식회사 기판 처리 장치 및 집적회로 소자 제조 장치와 기판 처리 방법 및 집적회로 소자 제조 방법

Also Published As

Publication number Publication date
CN107895686A (zh) 2018-04-10
CN116936341A (zh) 2023-10-24
JP2018060895A (ja) 2018-04-12
TWI721214B (zh) 2021-03-11
CN107895686B (zh) 2023-07-28
KR102420740B1 (ko) 2022-07-14
KR102584851B1 (ko) 2023-10-04
JP6759042B2 (ja) 2020-09-23
US20180096863A1 (en) 2018-04-05
TW201825198A (zh) 2018-07-16
KR20180037588A (ko) 2018-04-12

Similar Documents

Publication Publication Date Title
KR102420740B1 (ko) 기판 처리 방법, 기판 처리 장치 및 기록 매체
KR102416923B1 (ko) 기판 처리 장치, 기판 처리 방법 및 기억 매체
KR102433528B1 (ko) 기판 처리 장치, 기판 처리 방법 및 기록 매체
KR102480691B1 (ko) 기판 처리 장치, 기판 처리 방법 및 기억 매체
US11557492B2 (en) Substrate processing apparatus and control method thereof
CN110828332B (zh) 基片处理装置的颗粒除去方法和基片处理装置
JP2021086857A (ja) 基板処理装置及び基板処理方法
JP6836939B2 (ja) 基板処理装置および基板処理方法
KR102482206B1 (ko) 기판 처리 장치 및 기판 처리 방법
JP6922048B2 (ja) 基板処理装置、基板処理方法及び記録媒体
JP6926303B2 (ja) 基板処理方法、基板処理装置及び記録媒体
JP6840001B2 (ja) 基板処理装置および基板処理方法
KR102678991B1 (ko) 기판 처리 장치, 기판 처리 방법 및 기억 매체
JP7104190B2 (ja) 基板処理装置

Legal Events

Date Code Title Description
A107 Divisional application of patent
E902 Notification of reason for refusal
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant