KR20220092421A - 전해액 및 이를 포함하는 이차전지 - Google Patents

전해액 및 이를 포함하는 이차전지 Download PDF

Info

Publication number
KR20220092421A
KR20220092421A KR1020210185801A KR20210185801A KR20220092421A KR 20220092421 A KR20220092421 A KR 20220092421A KR 1020210185801 A KR1020210185801 A KR 1020210185801A KR 20210185801 A KR20210185801 A KR 20210185801A KR 20220092421 A KR20220092421 A KR 20220092421A
Authority
KR
South Korea
Prior art keywords
group
formula
bond
independently
carbon
Prior art date
Application number
KR1020210185801A
Other languages
English (en)
Inventor
최지영
김민구
이상호
강완철
윤종철
한지성
장민정
Original Assignee
솔브레인 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 솔브레인 주식회사 filed Critical 솔브레인 주식회사
Priority to US18/269,521 priority Critical patent/US20240128510A1/en
Priority to EP21911599.5A priority patent/EP4270582A1/en
Priority to PCT/KR2021/019785 priority patent/WO2022139534A1/ko
Publication of KR20220092421A publication Critical patent/KR20220092421A/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

본 발명은 신규한 전해액 및 이를 포함하는 이차전지에 관한 것으로, 충전 저항이 낮아 충전 효율 및 출력이 향상될 수 있고, 장기 수명 및 고온 용량 유지율이 우수한 이차전지를 제공하는 효과가 있다.

Description

전해액 및 이를 포함하는 이차전지 {Electrolyte Solution And Secondary Battery Comprising The Same}
본 발명은 전지용 전해액 및 이를 포함하는 이차전지에 관한 것으로, 보다 상세하게는 전지의 충전 효율 및 출력을 향상시킬 수 있고, 장기 보관이 가능하며, 고온에서의 용량 유지율을 증가시킬 수 있는 전해액 및 이를 포함하는 이차전지에 관한 것이다.
리튬 이차 전지는 양극 및 음극 사이에 전해액을 넣어 리튬이온의 원활한 이동을 가능하게 하며, 양극 및 음극에서 삽입 및 탈리에 따른 산화 환원반응에 의해 전기가 생성 또는 소비되는 방식에 의하여 전기 에너지의 이용을 용이하게 한다.
한편, 최근 전 세계적으로 환경 규제가 강화되는 등 환경에 대한 관심이 커지면서 대기 오염의 주 원인 중 하나인 화석 연료 차량을 대체할 수 있는 친환경 자동차에 대한 관심 역시 증가되고 있다. 이에 따라 국내/외 전지 업계에서는 자동차용 전지 개발이 활발히 진행되고 있다.
전지를 자동차에 사용하기 위해서는, 전지의 출력 및 용량이 대폭 증가되어야 할 뿐만 아니라 날씨 변화 등의 사용 환경에 맞춰 고온 및 저온에서의 출력 개선 및 저항 증가 문제를 해결해야 하며, 자동차가 계절을 가리지 않고 야외에서 사용되는 것을 감안하여, 다양한 환경에서 장기간 충전 및 용량 유지율이 개선된 전지를 개발할 필요가 있다.
일본 공개특허 2008-300126 A 한국 등록특허 10-1586199 B1
상기와 같은 종래기술의 문제점을 해결하고자, 본 발명은 신규한 전해액 첨가제를 포함하는 전해액을 제공하는 것을 목적으로 한다.
또한 본 발명은 충전 저항이 감소되어 전지의 출력이 향상되고, 고온에서의 회복 용량이 향상되어 장기 보관이 가능하며, 고온에서의 수명 유지율이 우수한 이차전지를 제공하는 것을 목적으로 한다.
본 발명의 상기 목적 및 기타 목적들은 하기 설명된 본 발명에 의하여 모두 달성될 수 있다.
상기의 목적을 달성하기 위하여, 본 발명은 하기 화학식 1 내지 화학식 6으로 표시되는 화합물 중에서 선택된 1종 이상의 화합물을 포함하는 것을 특징으로 하는 전해액을 제공한다.
[화학식 1]
Figure pat00001
(상기 화학식 1에서, 상기 G는 -O-, -ORa-, -N(Rb)- 또는 -Rc-N(Rd)-Re-, -Rf(NRgRh)- 또는 -Ri-이고; 상기 Ra, Rc, Re, Rf 및 Ri는 독립적으로 탄소수 1 내지 10의 선형 또는 분지형 알킬렌기이며; Rb, Rd, Rg 및 Rh는 독립적으로 수소, 또는 탄소수 1 내지 10의 선형 또는 분지형 알킬기이고; 상기 Q1 및 Q2는 독립적으로 인(P), 황(S) 또는 비소(As)이며; 상기 D1, D2, D3, D4, D5 및 D6은 독립적으로 산소(=O) 또는, 하나 또는 두개의 비공유 전자쌍이고; 상기 E1, E2, E3 또는 E4는 산소 또는 탄소이며, 상기 D2, D3, D5 또는 D6이 산소인 경우 이에 결합된 E1, E2, E3 또는 E4는 탄소이고; R1, R2, R3, R4, R5, R6, R7 및 R8은 독립적으로 수소, 탄소수 1 내지 10의 선형 또는 분지형의 알킬기, 알케닐기, 알카이닐기, 알콕시기, 알콕시카르보닐기 또는 알콕시알킬기이며; 선택적으로 상기 R3과 R4 또는 R7과 R8은 결합되어 고리를 만들 수 있고;
상기 n 및 k는 독립적으로 0 내지 5의 정수이며; 상기 m 및 l은 독립적으로 0 또는 1이고; 상기 n과 m 중에서 그리고 상기 k와 l 중에서 최소한 하나는 0이 아니다.)
[화학식 2]
Figure pat00002
(상기 화학식 2에서, 상기 A1 및 A2는 독립적으로 인(P) 또는 황(S)이며, 상기 D7 및 D8는 독립적으로 산소(=O) 또는 비공유 전자쌍이고, 상기 G1 및 G2는 독립적으로 -O- 또는 -CH2-이고, 상기 R9 및 R10은 독립적으로 탄소수 1 내지 20의 선형 또는 분지형 알킬기이고, 상기 R11, R12, R13 및 R14는 독립적으로 결합(bond) 또는 탄소수 1 내지 3의 알킬렌기이다.)
[화학식 3]
Figure pat00003
(상기 화학식 3에서, 상기 X1 및 X2는 독립적으로 F, Cl, Br 또는 I이고, 상기 E5 및 E6은 독립적으로 탄소수 1 내지 3의 치환 또는 비치환 탄화수소기로 상기 치환은 =O, -CX'3 및 -CH2CX"3로 이루어진 군에서 선택된 1종 이상으로 치환된 것이고 상기 X' 및 X"는 독립적으로 F, Cl, Br 또는 I이며, 상기 E5 및 E6에 포함되는 탄소 사이의 결합은 단일결합 또는 이중결합이다.)
[화학식 4]
Figure pat00004
(상기 화학식 4에서, 상기 A는 인(P), 황(S), 또는 질소(N)이며, 상기 R15, R16 및 R17은 독립적으로 치환기를 포함하는 탄소수 1 내지 5의 선형 또는 분지형 알킬기이고, 상기 치환기는 F, Cl, Br 및 I를 포함하는 할로겐 원소 및 산소(=O)로 이루어진 군에서 선택된 1종 이상이다.)
[화학식 5]
Figure pat00005
(상기 화학식 5에서, 상기 R18 및 R19는 독립적으로 탄소수 1 내지 5의 알킬렌기이고, 상기 E7은 결합(bond), 탄소수 1 내지 3의 알킬렌기 또는, 탄소수 2 내지 5의 환형 카르보닐기, 에터기 또는 에스터기이고, 상기 R20은 치환 또는 비치환된 탄소수 2 내지 5의 선형 또는 환형 카보네이트기, 카르보닐기, 에터기, 포스페이트기, 설포네이트 또는 설페이트기이고, 상기 치환은 F, Cl, Br 및 I로 이루어진 군에서 선택된 1종 이상 또는 탄소수 1 내지 3의 알케닐기로 치환된 것을 가리키며, 상기 E8은 결합(bond) 또는, 탄소수 1 내지 3의 포화 또는 불포화 알킬렌기, 또는 에터기이며, 상기 n은 0 또는 1이다.)
[화학식 6]
Figure pat00006
(상기 화학식 6에서, P와 O는 각각 인과 산소이고; A는 결합 또는 산소이며; 상기 Q는 산소 또는 비공유전자쌍이고; R21, R22, R23 및 R24는 독립적으로 수소, 탄소수 1 내지 10의 선형 또는 분지형의 알킬기, 알케닐기, 알카이닐기, 알콕시기, 알콕시카르보닐기, 알콕시알킬기, 플루오로알킬 또는
Figure pat00007
이며; 선택적으로 상기 R21 또는 R22는, 독립적으로 R23 또는 R24와 연결되어 이중결합 또는 고리를 만들 수 있고; 상기 n은 0 내지 3의 정수이며; 상기 *은 결합위치이다.)
상기 전해액은, 전해액 총 중량에 대하여 바람직하게는 화학식 1 내지 6으로 표시되는 화합물 중에서 선택된 1종 이상의 화합물을 0.1 내지 10 중량%로 포함할 수 있다.
상기 화학식 1 내지 6으로 표시되는 화합물 중에서 선택된 1종 이상의 화합물은 바람직하게는 하기 화학식 5-52로 표시되는 화합물일 수 있다.
[화학식 5-52]
Figure pat00008
상기 화학식 1로 표시되는 화합물은 하기 화학식 1-1 내지 1-24로 표시되는 화합물로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
[화학식 1-1 내지 1-24]
Figure pat00009
Figure pat00010
(상기 화학식 1-1에서, A 및 A는 각각 독립적으로 인 또는 황이고, R1', R2', R3' 및 R4'는 각각 독립적으로 수소, 또는 치환 또는 비치환된 탄소수 1 내지 10의 알킬기이고, m 및 n은 각각 독립적으로 1 내지 5의 정수이고,
상기 화학식 1-2 내지 1-24에서 선은 결합이고, 별도의 원소를 기재하지 않은 결합과 결합이 만나는 지점은 탄소이며, 상기 탄소의 원자가를 만족하는 수의 수소는 생략되었다.)
상기 화학식 2로 표시되는 화합물은 하기 화학식 2-1 내지 2-4로 표시되는 화합물로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
[화학식 2-1 내지 2-4]
Figure pat00011
(상기 화학식 2-1 내지 2-4에서 선은 결합이고, 별도의 원소를 기재하지 않은 경우 결합과 결합이 만나는 지점은 탄소이며, 상기 탄소의 원자가를 만족하는 수의 수소가 생략되었다.)
상기 화학식 3으로 표시되는 화합물은 하기 화학식 3-1 내지 3-2로 표시되는 화합물로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
[화학식 3-1 내지 3-2]
Figure pat00012
Figure pat00013
(상기 화학식 3-1 내지 3-2에서 선은 결합이고, 별도의 원소를 기재하지 않은 경우 결합과 결합이 만나는 지점은 탄소이며, 상기 탄소의 원자가를 만족하는 수의 수소가 생략되었다.)
상기 화학식 4로 표시되는 화합물은 하기 화학식 4a로 표시되는 화합물일 수 있다.
[화학식 4a]
Figure pat00014
(상기 화학식 4a에서 선은 결합이고, 별도의 원소를 기재하지 않은 경우 결합과 결합이 만나는 지점은 탄소이며, 상기 탄소의 원자가를 만족하는 수의 수소가 생략되었다.)
상기 화학식 5로 표시되는 화합물은 하기 화학식 5-1 내지 5-52로 표시되는 화합물로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
[화학식 5-1 내지 5-52]
Figure pat00015
Figure pat00016
Figure pat00017
(상기 화학식 5-1 내지 5-52에서 선은 결합이고, 별도의 원소를 기재하지 않은 경우 결합과 결합이 만나는 지점은 탄소이며, 상기 탄소의 원자가를 만족하는 수의 수소가 생략되었다.)
상기 화학식 6으로 표시되는 화합물은 하기 화학식 6-1 내지 6-31로 표시되는 화합물로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
[화학식 6-1 내지 6-31]
Figure pat00018
Figure pat00019
(상기 화학식 6-1 내지 6-31에서 선은 결합이고, 별도의 원소를 기재하지 않은 경우 결합과 결합이 만나는 지점은 탄소이며, 상기 탄소의 원자가를 만족하는 수의 수소가 생략되었다.)
상기 전해액은, 바람직하게는 상기 전해액 총 100 중량%를 기준으로 인산염 화합물 0.1 내지 10 중량%를 더 포함할 수 있다.
상기 인산염 화합물은 바람직하게는 하기 화학식 7-1 내지 7-7로 표시되는 화합물로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
[화학식 7-1 내지 7-7]
Figure pat00020
(상기 화학식 7-1 내지 7-7에서 선은 결합이고, 별도의 원소를 기재하지 않은 결합과 결합이 만나는 지점은 탄소이며, 상기 탄소의 원자가를 만족하는 수의 수소는 생략되었다.)
상기 전해액은 바람직하게는 상기 화학식 1 내지 6으로 표시되는 화합물 중에서 선택된 1종 이상의 화합물이 상기 인산염 화합물에 용해된 용액을 포함할 수 있다.
상기 전해액은 바람직하게는 유기 용매를 포함할 수 있다.
상기 유기용매는 바람직하게는 에틸렌 카보네이트(EC), 디에틸 카보네이트(DEC), 에틸메틸 카보네이트(EMC), 디메틸 카보네이트(DMC), 프로필렌 카보네이트(PC), 디프로필 카보네이트(DPC), 부틸렌 카보네이트, 메틸프로필 카보네이트, 에틸프로필 카보네이트, 메틸 프로피오네이트(MP), 에틸 프로피오네이트(EP) 및 프로필 프로피오네이트(PP)로 이루어진 군에서 선택된 1종 이상을 포함할 수 있다.
상기 전해액은 바람직하게는 리튬염을 포함할 수 있다.
상기 리튬염은 바람직하게는 LiPF6, LiBF4, LiCl, LiBr, LiI, LiClO4, LiB10Cl10, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)(C2F5SO2)NLi, (SO2F)2NLi 및 (CF3SO2)2NLi로 이루어진 군에서 선택된 1종 이상을 포함할 수 있다.
상기 전해액은 바람직하게는 이의 총 100 몰%에 대하여 상기 리튬염을 0.6 내지 2 mol%로 포함할 수 있다.
또한, 본 발명은 음극, 양극 및 전해액을 포함하는 이차전지로서, 상기 전해액은 전술한 전해액인 이차전지를 제공한다.
상기 이차전지는 자동차용 전지일 수 있다.
본 발명에 따른 전해액은 이차전지의 전해액로 적용하는 경우, 충전 저항이 낮아 충전 효율 및 출력이 향상될 수 있고, 장기 수명 및 고온 용량 유지율이 우수한 이차전지를 제공하는 효과가 있다.
이하 본 발명에 대하여 상세하게 설명하지만, 본 발명은 이에 한정되는 것은 아니다.
본 발명자들은 자동차 전지로 사용 가능한 전지를 제조하기 위하여, 출력이 향상되고, 고온 회복 용량 및 수명 특성이 우수한 이차전지에 대해 연구하던 중, 이차전지의 전해액에 특정 구조의 첨가제를 첨가하는 경우, 상기의 목적을 모두 달성할 수 있는 것을 확인하고, 이를 토대로 본 발명을 완성하게 되었다.
전해액
본 발명은 하기 화학식 1 내지 화학식 6으로 표시되는 화합물 중에서 선택된 1종 이상의 화합물을 포함하는 전해액을 제공하며 이 경우 충전 저항이 감소되어 전지의 출력이 향상되고, 고온에서의 회복 용량이 향상되어 장기 보관이 가능하며, 또한 고온에서의 수명 유지율이 우수한 효과가 있다.
[화학식 1]
Figure pat00021
(상기 화학식 1에서, 상기 G는 -O-, -ORa-, -N(Rb)- 또는 -Rc-N(Rd)-Re-, -Rf(NRgRh)- 또는 -Ri-이고; 상기 Ra, Rc, Re, Rf 및 Ri는 독립적으로 탄소수 1 내지 10의 선형 또는 분지형 알킬렌기이며; Rb, Rd, Rg 및 Rh는 독립적으로 수소, 또는 탄소수 1 내지 10의 선형 또는 분지형 알킬기이고; 상기 Q1 및 Q2는 독립적으로 인(P), 황(S) 또는 비소(As)이며; 상기 D1, D2, D3, D4, D5 및 D6은 독립적으로 산소(=O) 또는, 하나 또는 두개의 비공유 전자쌍이고; 상기 E1, E2, E3 또는 E4는 산소 또는 탄소이며, 상기 D2, D3, D5 또는 D6이 산소인 경우 이에 결합된 E1, E2, E3 또는 E4는 탄소이고; R1, R2, R3, R4, R5, R6, R7 및 R8은 독립적으로 수소, 탄소수 1 내지 10의 선형 또는 분지형의 알킬기, 알케닐기, 알카이닐기, 알콕시기, 알콕시카르보닐기 또는 알콕시알킬기이며; 선택적으로 상기 R3과 R4 또는 R7과 R8은 결합되어 고리를 만들 수 있고;
상기 n 및 k는 독립적으로 0 내지 5의 정수이며; 상기 m 및 l은 독립적으로 0 또는 1이고; 상기 n과 m 중에서 그리고 상기 k와 l 중에서 최소한 하나는 0이 아니다.)
[화학식 2]
Figure pat00022
(상기 화학식 2에서, 상기 A1 및 A2는 독립적으로 인(P) 또는 황(S)이며, 상기 D7 및 D8는 독립적으로 산소(=O) 또는 비공유 전자쌍이고, 상기 G1 및 G2는 독립적으로 -O- 또는 -CH2-이고, 상기 R9 및 R10은 독립적으로 탄소수 1 내지 20의 선형 또는 분지형 알킬기이고, 상기 R11, R12, R13 및 R14는 독립적으로 결합(bond) 또는 탄소수 1 내지 3의 알킬렌기이다.)
[화학식 3]
Figure pat00023
(상기 화학식 3에서, 상기 X1 및 X2는 독립적으로 F, Cl, Br 또는 I이고, 상기 E5 및 E6은 독립적으로 탄소수 1 내지 3의 치환 또는 비치환 탄화수소기로 상기 치환은 =O, -CX'3 및 -CH2CX"3로 이루어진 군에서 선택된 1종 이상으로 치환된 것이고 상기 X' 및 X"는 독립적으로 F, Cl, Br 또는 I이며, 상기 E5 및 E6에 포함되는 탄소 사이의 결합은 단일결합 또는 이중결합이다.)
[화학식 4]
Figure pat00024
(상기 화학식 4에서, 상기 A는 인(P), 황(S), 또는 질소(N)이며, 상기 R15, R16 및 R17은 독립적으로 치환기를 포함하는 탄소수 1 내지 5의 선형 또는 분지형 알킬기이고, 상기 치환기는 F, Cl, Br 및 I를 포함하는 할로겐 원소 및 산소(=O)로 이루어진 군에서 선택된 1종 이상이다.)
[화학식 5]
Figure pat00025
(상기 화학식 5에서, 상기 R18 및 R19는 독립적으로 탄소수 1 내지 5의 알킬렌기이고, 상기 E7은 결합(bond), 탄소수 1 내지 3의 알킬렌기 또는, 탄소수 2 내지 5의 환형 카르보닐기, 에터기 또는 에스터기이고, 상기 R20은 치환 또는 비치환된 탄소수 2 내지 5의 선형 또는 환형 카보네이트기, 카르보닐기, 에터기, 포스페이트기, 설포네이트 또는 설페이트기이고, 상기 치환은 F, Cl, Br 및 I로 이루어진 군에서 선택된 1종 이상 또는 탄소수 1 내지 3의 알케닐기로 치환된 것을 가리키며, 상기 E8은 결합(bond) 또는, 탄소수 1 내지 3의 포화 또는 불포화 알킬렌기, 또는 에터기이며, 상기 n은 0 또는 1이다.)
[화학식 6]
Figure pat00026
(상기 화학식 6에서, P와 O는 각각 인과 산소이고; A는 결합 또는 산소이며; 상기 Q는 산소 또는 비공유전자쌍이고; R21, R22, R23 및 R24는 독립적으로 수소, 탄소수 1 내지 10의 선형 또는 분지형의 알킬기, 알케닐기, 알카이닐기, 알콕시기, 알콕시카르보닐기, 알콕시알킬기, 플루오로알킬 또는
Figure pat00027
이며; 선택적으로 상기 R21 또는 R22는, 독립적으로 R23 또는 R24와 연결되어 이중결합 또는 고리를 만들 수 있고; 상기 n은 0 내지 3의 정수이며; 상기 *은 결합위치이다.)
본 기재의 전해액은 전지에 적용 가능한 전해액 형태인 경우 특별히 상(狀)에 제한되지 않고, 일례로 액체 전해액, 반고체 전해액 또는 고체 전해액일 수 있다.
상기 전해액은, 전해액 총 중량에 대하여 바람직하게는 화학식 1 내지 6으로 표시되는 화합물 중에서 선택된 1종 이상의 화합물을 0.1 내지 10 중량%, 바람직하게는 0.2 내지 5 중량%, 보다 바람직하게는 0.4 내지 2.0 중량%, 가장 바람직하게는 0.5 내지 1.5 중량%를 포함할 수 있고, 이 경우 전해액에 대한 상용성이 우수하여 제조 효율이 보다 향상될 수 있고, 전지 출력 향상 효과가 보다 우수한 이점이 있다.
상기 화학식 1 내지 6으로 표시되는 화합물 중에서 선택된 1종 이상의 화합물은 바람직하게는 하기 화학식 5-52로 표시되는 화합물이나, 이에 한정되는 것은 아니다.
[화학식 5-52]
Figure pat00028
상기 화학식 1로 표시되는 화합물은 바람직하게는 하기 화학식 1-1 내지 1-24로 표시되는 화합물로 이루어진 군으로부터 선택된 1종 이상이나, 이에 한정되는 것은 아니다.
[화학식 1-1 내지 1-24]
Figure pat00029
Figure pat00030
(상기 화학식 1-1에서, A 및 A는 각각 독립적으로 인 또는 황이고, R1', R2', R3' 및 R4'는 각각 독립적으로 수소, 또는 치환 또는 비치환된 탄소수 1 내지 10의 알킬기이고, m 및 n은 각각 독립적으로 1 내지 5의 정수이고,
상기 화학식 1-2 내지 1-24에서 선은 결합이고, 별도의 원소를 기재하지 않은 결합과 결합이 만나는 지점은 탄소이며, 상기 탄소의 원자가를 만족하는 수의 수소는 생략되었다.)
상기 화학식 2로 표시되는 화합물은 바람직하게는 하기 화학식 2-1 내지 2-4로 표시되는 화합물로 이루어진 군으로부터 선택된 1종 이상이나, 이에 한정되는 것은 아니다.
[화학식 2-1 내지 2-4]
Figure pat00031
(상기 화학식 2-1 내지 2-4에서 선은 결합이고, 별도의 원소를 기재하지 않은 경우 결합과 결합이 만나는 지점은 탄소이며, 상기 탄소의 원자가를 만족하는 수의 수소가 생략되었다.)
상기 화학식 3으로 표시되는 화합물은 바람직하게는 하기 화학식 3-1 내지 3-2로 표시되는 화합물로 이루어진 군으로부터 선택된 1종 이상이나, 이에 한정되는 것은 아니다.
[화학식 3-1 내지 3-2]
Figure pat00032
,
Figure pat00033
(상기 화학식 3-1 및 3-2에서 선은 결합이고, 별도의 원소를 기재하지 않은 경우 결합과 결합이 만나는 지점은 탄소이며, 상기 탄소의 원자가를 만족하는 수의 수소가 생략되었다.)
상기 화학식 4로 표시되는 화합물은 바람직하게는 하기 화학식 4a로 표시되는 화합물이나, 이에 한정되는 것은 아니다.
[화학식 4a]
Figure pat00034
(상기 화학식 4a에서 선은 결합이고, 별도의 원소를 기재하지 않은 경우 결합과 결합이 만나는 지점은 탄소이며, 상기 탄소의 원자가를 만족하는 수의 수소가 생략되었다.)
상기 화학식 5로 표시되는 화합물은 바람직하게는 하기 화학식 5-1 내지 5-52로 표시되는 화합물로 이루어진 군으로부터 선택된 1종 이상이나, 이에 한정되는 것은 아니다.
[화학식 5-1 내지 5-52]
Figure pat00035
Figure pat00036
Figure pat00037
(상기 화학식 5-1 내지 5-52에서 선은 결합이고, 별도의 원소를 기재하지 않은 경우 결합과 결합이 만나는 지점은 탄소이며, 상기 탄소의 원자가를 만족하는 수의 수소가 생략되었다.)
상기 화학식 6으로 표시되는 화합물은 바람직하게는 하기 화학식 6-1 내지 6-31로 표시되는 화합물로 이루어진 군으로부터 선택된 1종 이상이나, 이에 한정되는 것은 아니다.
[화학식 6-1 내지 6-31]
Figure pat00038
Figure pat00039
(상기 화학식 6-1 내지 6-31에서 선은 결합이고, 별도의 원소를 기재하지 않은 경우 결합과 결합이 만나는 지점은 탄소이며, 상기 탄소의 원자가를 만족하는 수의 수소가 생략되었다.)
상기 화학식 1에서, 상기 n, k, m 또는 l이 0일 때는 해당 단위, 즉 괄호 안의 그룹은 없어지고 결합을 의미하게 된다. 예로 해당 단위의 개수인 n이 0이고 해당 단위의 개수인 m이 1인 경우 E1은 R3가 치환되어 있는 이중결합 탄소에 직접 결합된 화합물이 된다.
본 기재에서 알킬렌기는 2가의 탄화수소기를 의미하고, 구체적인 예로 프로필렌기는 -CH2CH2CH2- 또는 -CH2CH(CH3)-를 지칭한다.
본 기재에서 알케닐기는 탄소-탄소 이중결합을 포함하는 1가의 탄화수소기를 의미하고, 구체적인 예로 n-부테닐기는 CH2=CHCH2CH2-를 지칭한다.
본 기재에서 알카이닐기는 탄소-탄소 삼중결합을 포함하는 1가의 탄화수소기를 의미하고, 구체적인 예로 1-부타이닐기는 CHCCH2CH2-를 지칭한다.
상기 Ra, Rc, Re, Rf 및 Ri는 바람직하게는 독립적으로 탄소수 1 내지 3의 선형 또는 분지형 알킬렌기이고, 이러한 경우 이차전지의 충전 저항이 낮아 충전 효율 및 출력이 향상될 수 있고, 장기 수명 및 고온 용량 유지율이 우수한 효과가 있다.
상기 Rb, Rd, Rg 및 Rh는 바람직하게는 독립적으로 수소, 또는 탄소수 1 내지 3의 선형 알킬기이고, 이러한 경우 이차전지의 충전 저항이 낮아 충전 효율 및 출력이 향상될 수 있고, 장기 수명 및 고온 용량 유지율이 우수한 효과가 있다.
상기 Q1 및 Q2는 바람직하게는 독립적으로 인(P)이고, 이러한 경우 이차전지의 충전 저항이 낮아 충전 효율 및 출력이 향상될 수 있고, 장기 수명 및 고온 용량 유지율이 우수한 효과가 있다.
상기 R1, R2, R3, R4, R5, R6, R7 및 R8은 바람직하게는 독립적으로 수소, 탄소수 1 내지 5의 선형 또는 분지형의 알킬기, 알케닐기, 알카이닐기, 알콕시기, 알콕시카르보닐기 또는 알콕시알킬기이고, 보다 바람직하게는 독립적으로 수소, 탄소수 1 내지 3의 선형 또는 분지형의 알킬기, 알케닐기, 알카이닐기, 알콕시기, 알콕시카르보닐기 또는 알콕시알킬기이고, 이러한 경우 이차전지의 충전 저항이 낮아 충전 효율 및 출력이 향상될 수 있고, 장기 수명 및 고온 용량 유지율이 우수한 효과가 있다.
상기 R3과 R4 또는 R7과 R8은 바람직하게는 결합되어 방향족 고리를 만들 수 있고, 보다 바람직하게는 벤젠 고리를 만들 수 있으며, 이러한 경우 이차전지의 충전 저항이 낮아 충전 효율 및 출력이 향상될 수 있고, 장기 수명 및 고온 용량 유지율이 우수한 효과가 있다. 여기에서 벤젠 고리는 하기 화학식 5와 같이 형성되는 것을 의미한다.
상기 n 및 k는 바람직하게는 독립적으로 0 내지 3의 정수이고, 보다 바람직하게는 독립적으로 1 내지 3의 정수이고, 더욱 바람직하게는 2 또는 3이고, 이러한 경우 이차전지의 충전 저항이 낮아 충전 효율 및 출력이 향상될 수 있고, 장기 수명 및 고온 용량 유지율이 우수한 효과가 있다.
상기 m 및 l은 바람직하게는 독립적으로 1이고, 이러한 경우 이차전지의 충전 저항이 낮아 충전 효율 및 출력이 향상될 수 있고, 장기 수명 및 고온 용량 유지율이 우수한 효과가 있다.
상기 화학식 1로 표시되는 화합물은 바람직하게는 상기 G를 중심으로 대칭이고, 이 경우 대칭의 고리형 구조로서 분자 내의 전자 흐름이 안정을 이루게 되며, 이를 통해 분자 강직도(rigidity)가 높아져 전지 성능 향상 이 큰 이점이 있다.
상기 화학식 1로 표시되는 화합물은 바람직하게는 하기 화학식 1-1 내지 1-24으로 표시되는 화합물로 이루어진 군으로부터 선택된 1종 이상이고, 보다 바람직하게는 하기 화학식 1-15 내지 화학식 1-24로 표시되는 화합물로 이루어진 군으로부터 선택된 1종 이상이며, 이 경우 이차전지의 충전 저항이 낮아 충전 효율 및 출력이 향상될 수 있고, 장기 수명 및 고온 용량 유지율이 우수한 이점이 있다.
[화학식 1-1 내지 1-24]
Figure pat00040
Figure pat00041
(상기 화학식 1-1에서, A 및 A는 각각 독립적으로 인 또는 황이고, R1', R2', R3' 및 R4'는 각각 독립적으로 수소, 또는 치환 또는 비치환된 탄소수 1 내지 10의 알킬기이고, m 및 n은 각각 독립적으로 1 내지 5의 정수이고,
상기 화학식 1-2 내지 1-24에서 선은 결합이고, 별도의 원소를 기재하지 않은 경우 결합과 결합이 만나는 지점은 탄소이며, 상기 탄소의 원자가를 만족하는 수의 수소가 생략되었다.)
상기 화학식 1-1에서, A및 A는 각각 독립적으로 인 또는 황이고, R1’, R2’, R3’ 및 R4’는 각각 독립적으로 수소, 또는 치환 또는 비치환된 탄소수 1 내지 10의 알킬기이고, m 및 n은 각각 독립적으로 1 내지 5의 정수이다.
상기 화학식 1-1로 표시되는 화합물이 이차전지의 전해액에 첨가되는 경우, P 또는 S 원소와 직접 연결된 O 원소 사이의 전기 음성도 차로 인해 전자가 O 원소 쪽으로 편재된다. 이에 따라 P 또는 S 원소는 전자 부족(e- poor, δ+) 상태가 되어 리튬 이온을 포함하는 전해액 중에서 산화 반응이 유도되어, 전극, 구체적으로는 양극(Cathode)에 안정한 피막을 형성한다. 이때, 상기 피막의 안정성으로 인해 전해액의 분해를 방지할 수 있으며, 이로 인하여 사이클 특성이 개선될 수 있고, 특히 고온에서 분해되지 않아 종래 전극 피막이 고온에서 분해됨에 따라 고온 저장성이 떨어지는 것에 비하여 고온 저장성이 크게 개선되는 우수한 효과가 있다. 또한, 저항 증가가 방지되어 충전 효율 및 출력이 개선되는 효과가 있고, 전지 내부의 화학 반응으로 인한 가스 발생 역시 억제되므로 전지의 안전성이 향상될 수 있다. 또한, 고온에서 양극 및 음극의 전극 활물질 구조 붕괴를 방지하여 용량 유지율이 개선되고, 이를 통해 수명이 연장되는 효과가 있다.
상기 화학식 1-1에서, A 및 A는 각각 독립적으로 인 또는 황이고, 상술한 효과 측면에서 O 원소와의 전기 음성도 차이가 더 큰 인이 더욱 바람직하다.
상기 R1’, R2’, R3’ 및 R4’는 각각 독립적으로 수소, 또는 치환 또는 비치환된 탄소수 1 내지 10의 알킬기이고, 바람직하게는 수소 또는 메틸기, 더욱 바람직하게는 수소일 수 있다.
상기 m 및 n은 각각 독립적으로 1 내지 5의 정수이고, 바람직하게는 1 내지 3일 수 있으며, 더욱 바람직하게는 1 또는 2일 수 있다. 상기 R1’, R2’, R3’ 및 R4’가 각각 수소이고, m 및 n이 1 또는 2인 경우, 분자구조 간소화에 따른 안정성 향상 효과 측면에서 가장 바람직하다.
상기 화학식 1-1에서, A 및 A, m 및 n은 각각 독립적으로 서로 같거나 다를 수 있으며, A 및 A가 서로 동일한 원소이고, m=n을 만족하여 상기 화합물의 화학 구조가 대칭을 이룰 경우, 대칭의 고리형 구조로서 분자 내의 전자 흐름이 안정을 이루게 되며, 이를 통해 분자 강직도(rigidity)가 높아져 전지 성능 향상 효과가 더욱 우수해지는 이점이 있으나, 이에 제한되는 것은 아니며, 비대칭 구조에서도 상술한 본원발명의 효과를 나타낼 수 있다.
상기 화학식 1-1로 표시되는 화합물은 바람직하게는 하기 화학식 1a로 표시되는 화합물일 수 있다.
[화학식 1a]
Figure pat00042
본 발명에서 전해액이 상기 화학식 1a로 표시되는 화합물과 같이 대칭의 고리형 구조를 갖는 피로인산염일 경우, 대칭의 고리형 구조로 인한 전자 흐름 안정성 및 분자 구조 간소화에 따른 안정화 효과가 극대화되어 바람직하다. 따라서, 이를 이차전지 전해액으로 첨가하는 경우, 전지의 충전 저항이 낮아져 전지 출력이 향상되고, 고온에서 충전 회복 용량이 상승되며, 수명 효율은 높아지는 효과가 우수하여 전지용 전해액로서 바람직하다.
[화학식 2]
Figure pat00043
(상기 화학식 2에서, 상기 A1 및 A2는 독립적으로 인(P) 또는 황(S)이며, 상기 D7 및 D8는 독립적으로 산소(=O) 또는 비공유 전자쌍이고, 상기 G1 및 G2는 독립적으로 -O- 또는 -CH2-이고, 상기 R9 및 R10은 독립적으로 탄소수 1 내지 20의 선형 또는 분지형 알킬기이고, 상기 R11, R12, R13 및 R14는 독립적으로 결합(bond) 또는 탄소수 1 내지 3의 알킬렌기이다.)
상기 화학식 2에서, 알킬렌기는 2가의 탄화수소기를 의미하고, 구체적인 예로 프로필렌기는 -CH2CH2CH2- 또는 -CH2CH(CH3)-를 지칭한다.
상기 A1 및 A2는 바람직하게는 독립적으로 인(P)이고, 이러한 경우 이차전지의 충전 저항이 낮아 충전 효율 및 출력이 향상될 수 있고, 장기 수명 및 고온 용량 유지율이 우수한 효과가 있다.
상기 D7 및 D8이 산소(=O)인 경우 상기 G1 및 G2는 바람직하게는 -CH2- 이고, 상기 D7 및 D8이 비공유 전자쌍인 경우 상기 G1 및 G2는 바람직하게는 -O- 이며, 이러한 경우 이차전지의 충전 저항이 낮아 충전 효율 및 출력이 향상될 수 있고, 장기 수명 및 고온 용량 유지율이 우수한 효과가 있다.
상기 R9 및 R10은 바람직하게는 독립적으로 탄소수 1 내지 18의 선형 또는 분지형 알킬기이고, 보다 바람직하게는 독립적으로 탄소수 1 내지 18의 선형 알킬기이며, 이러한 경우 이차전지의 충전 저항이 낮아 충전 효율 및 출력이 향상될 수 있고, 장기 수명 및 고온 용량 유지율이 우수한 효과가 있다.
상기 R11, R12, R13 및 R14는 바람직하게는 독립적으로 결합(bond) 또는 -CH2-이고, 이러한 경우 이차전지의 충전 저항이 낮아 충전 효율 및 출력이 향상될 수 있고, 장기 수명 및 고온 용량 유지율이 우수한 효과가 있다.
상기 화학식 2로 표시되는 화합물은 바람직하게는 대칭 구조이고, 이 경우 대칭의 고리를 포함하는 구조로서 분자 내의 전자 흐름이 안정을 이루게 되며, 이를 통해 분자 강직도(rigidity)가 높아져 전지 성능 향상 효과가 보다 큰 이점이 있다.
상기 화학식 2로 표시되는 화합물은 바람직하게는 하기 화학식 2-1 내지 2-4로 표시되는 화합물로 이루어진 군으로부터 선택된 1종 이상이고, 이 경우 이차전지의 충전 저항이 낮아 충전 효율 및 출력이 향상될 수 있고, 장기 수명 및 고온 용량 유지율이 우수한 이점이 있다.
[화학식 2-1 내지 2-4]
Figure pat00044
(상기 화학식 2-1 내지 2-4에서 선은 결합이고, 별도의 원소를 기재하지 않은 경우 결합과 결합이 만나는 지점은 탄소이며, 상기 탄소의 원자가를 만족하는 수의 수소가 생략되었다.)
상기 화학식 2로 표시되는 전해액 첨가제는, 전지의 전해액에 첨가되는 경우, P 또는 S 원소와 직접 연결된 O 원소 사이의 전기 음성도 차로 인해 전자가 O 원소 쪽으로 편재된다. 이에 따라 P 또는 S 원소는 전자 부족(e- poor, δ+) 상태가 되어 리튬 이온을 포함하는 전해액 중에서 산화 반응이 유도되어, 전극, 구체적인 일례로 양극(Cathode)에 안정한 피막을 형성한다. 이때, 상기 피막의 안정성으로 인해 전해액의 분해를 방지할 수 있으며, 이로 인하여 사이클 특성이 개선될 수 있고, 특히 고온에서 분해되지 않아 종래 전극 피막이 고온에서 분해됨에 따라 고온 저장성이 떨어지는 것에 비하여 고온 저장성이 크게 개선되는 우수한 효과가 있다. 또한, 저항 증가가 방지되어 충전 효율 및 출력이 개선되는 효과가 있고, 전지 내부의 화학 반응으로 인한 가스 발생 역시 억제되므로 전지의 안전성이 향상될 수 있다. 또한, 고온에서 양극 및 음극의 전극 활물질 구조 붕괴를 방지하여 용량 유지율이 개선되고, 이를 통해 수명이 연장되는 효과가 있다.
상기 화학식 2에서, A 및 A는 각각 독립적으로 인 또는 황이고, 상술한 효과 측면에서 O 원소와의 전기 음성도 차이가 더 큰 인이 더욱 바람직하다.
상기 화학식 2로 표시되는 화합물의 화학 구조가 대칭을 이룰 경우, 대칭의 고리형 구조로서 분자 내의 전자 흐름이 안정을 이루게 되며, 이를 통해 분자 강직도(rigidity)가 높아져 전지 성능 향상 효과가 더욱 우수해지는 이점이 있으나, 이에 제한되는 것은 아니며, 비대칭 구조에서도 상술한 본 발명의 효과를 나타낼 수 있다.
[화학식 3]
Figure pat00045
(상기 화학식 3에서, 상기 X1 및 X2는 독립적으로 F, Cl, Br 또는 I이고, 상기 E5 및 E6은 독립적으로 탄소수 1 내지 3의 치환 또는 비치환 탄화수소기로 상기 치환은 =O, -CX'3 및 -CH2CX"3로 이루어진 군에서 선택된 1종 이상으로 치환된 것이고 상기 X' 및 X"는 독립적으로 F, Cl, Br 또는 I이며, 상기 E5 및 E6에 포함되는 탄소 사이의 결합은 단일결합 또는 이중결합이다.)
상기 X1, X2, X' 및 X"는 바람직하게는 독립적으로 F 또는 Cl이고, 보다 바람직하게는 F이며, 이러한 경우 이차전지의 충전 저항이 낮아 충전 효율 및 출력이 향상될 수 있고, 장기 수명 및 고온 용량 유지율이 우수한 효과가 있다.
상기 E5 및 E6은 바람직하게는 독립적으로 치환 또는 비치환된 탄소수 2 또는 3의 탄화수소기로, 상기 치환은 바람직하게는 1개의 =O 및 1 내지 3개의 -CX'3로 이루어진 군에서 선택된 1종 이상으로 치환된 것이고, 이러한 경우 이차전지의 충전 저항이 낮아 충전 효율 및 출력이 향상될 수 있고, 장기 수명 및 고온 용량 유지율이 우수한 효과가 있다.
또한, 상기 E5 및 E6이 =O(산소) 치환기를 포함하지 않는 경우, 상기 E5 및 E6의 탄소 사이의 결합은 이중결합을 포함할 수 있으며, 이 경우 상기 화합물의 결합 안정성이 향상되어 전지 수명이 보다 개선되는 효과가 있다.
상기 화학식 3으로 표시되는 화합물은 바람직하게는 상기 중심 P 원소를 기준으로 대칭 구조일 수 있고, 이 경우 분자 내의 전자 흐름이 안정을 이루게 되며, 이를 통해 분자 강직도(rigidity)가 높아져 전지 성능 향상이 큰 이점이 있다.
상기 화학식 3으로 표시되는 화합물은 음이온으로 바람직하게는 하기 화학식 3-1 내지 3-2로 표시되는 화합물로 이루어진 군으로부터 선택된 1종을 포함하고, 이 경우 이차전지의 충전 저항이 낮아 충전 효율 및 출력이 향상될 수 있고, 장기 수명 및 고온 용량 유지율이 우수한 이점이 있다.
[화학식 3-1 내지 3-2]
Figure pat00046
Figure pat00047
(상기 화학식 3-1 내지 3-2에서 선은 결합이고, 별도의 원소를 기재하지 않은 경우 결합과 결합이 만나는 지점은 탄소이며, 상기 탄소의 원자가를 만족하는 수의 수소가 생략되었다.)
상기 화학식 3으로 표시되는 화합물이 전지의 전해액에 첨가되는 경우, P 원소와 직접 연결된 O 원소 사이의 전기 음성도 차로 인해 전자가 O 원소 쪽으로 편재된다. 이에 따라 P 원소는 전자 부족(e- poor, δ+) 상태가 되어 리튬 이온을 포함하는 전해액 중에서 산화 반응이 유도되어, 전극, 구체적인 일례로 양극(Cathode)에 안정한 피막을 형성한다.
이때, 상기 피막의 안정성으로 인해 전해액의 분해를 방지할 수 있으며, 이로 인하여 사이클 특성이 개선될 수 있고, 특히 고온에서 분해되지 않아 종래 전극 피막이 고온에서 분해됨에 따라 고온 저장성이 떨어지는 것에 비하여 고온 저장성이 크게 개선되는 우수한 효과가 있다.
또한, 저항 증가가 방지되어 충전 효율 및 출력이 개선되는 효과가 있고, 전지 내부의 화학 반응으로 인한 가스 발생 역시 억제되므로 전지의 안전성이 향상될 수 있다. 또한, 고온에서 양극 및 음극의 전극 활물질 구조 붕괴를 방지하여 용량 유지율이 개선되고, 이를 통해 수명이 연장되는 효과가 있다.
상기 화학식 3으로 표시되는 화합물의 화학 구조가 대칭을 이룰 경우, 대칭의 고리형 구조로서 분자 내의 전자 흐름이 안정을 이루게 되며, 이를 통해 분자 강직도(rigidity)가 높아져 전지 성능 향상 효과가 더욱 우수해지는 이점이 있으나, 이에 제한되는 것은 아니며, 비대칭 구조에서도 상술한 본 발명의 효과를 나타낼 수 있다.
[화학식 4]
Figure pat00048
(상기 화학식 4에서, 상기 A는 인(P), 황(S), 또는 질소(N)이며, 상기 R15, R16 및 R17은 독립적으로 치환기를 포함하는 탄소수 1 내지 5의 선형 또는 분지형 알킬기이고, 상기 치환기는 F, Cl, Br 및 I를 포함하는 할로겐 원소 및 산소(=O)로 이루어진 군에서 선택된 1종 이상이다.)
상기 화학식 4에서, 상기 A는 바람직하게는 인(P)이고, 이러한 경우 이차전지의 충전 저항이 낮아 충전 효율 및 출력이 향상될 수 있고, 장기 수명 및 고온 용량 유지율이 우수한 효과가 있다.
상기 R15, R16 및 R17은 바람직하게는 독립적으로 치환기를 포함하는 탄소수 1 내지 3의 선형 알킬기이고, 이러한 경우 이차전지의 충전 저항이 낮아 충전 효율 및 출력이 향상될 수 있고, 장기 수명 및 고온 용량 유지율이 우수한 효과가 있다. 또한, 상기 치환기는 바람직하게는 F 및 산소(=O)로 이루어진 군에서 선택된 1종 이상이며, 이러한 경우 이차전지의 충전 효율 및 출력 향상 효과, 장기 수명 및 고온 용량 유지율 개선 효과가 보다 우수한 이점이 있다.
상기 화학식 4로 표시되는 화합물은 바람직하게는 R15, R16 및 R17이 서로 동일한 것으로, 이 경우 분자 내의 전자 흐름이 안정을 이루게 되며, 이를 통해 분자 강직도(rigidity)가 높아져 전지 성능 향상 효과가 보다 큰 이점이 있다.
상기 화학식 4로 표시되는 화합물은 바람직하게는 하기 화학식 4a로 표시되는 화합물을 포함할 수 있고, 이 경우 이차전지의 충전 저항이 낮아 충전 효율 및 출력이 향상될 수 있고, 장기 수명 및 고온 용량 유지율이 우수한 이점이 있다.
[화학식 4a]
Figure pat00049
(상기 화학식 4a에서 선은 결합이고, 별도의 원소를 기재하지 않은 경우 결합과 결합이 만나는 지점은 탄소이며, 상기 탄소의 원자가를 만족하는 수의 수소가 생략되었다.)
상기 화학식 4로 표시되는 전해액 첨가제는, 전지의 전해액에 첨가되는 경우, P, S, 또는 N 원소와 직접 연결된 O 원소 사이의 전기 음성도 차로 인해 전자가 O 원소 쪽으로 편재된다. 이에 따라 P, S, 또는 N 원소는 전자 부족(e- poor, δ+) 상태가 되어 리튬 이온을 포함하는 전해액 중에서 산화 반응이 유도되어, 전극, 구체적인 일례로 양극(Cathode)에 안정한 피막을 형성한다. 이때, 상기 피막의 안정성으로 인해 전해액의 분해를 방지할 수 있으며, 이로 인하여 사이클 특성이 개선될 수 있고, 특히 고온에서 분해되지 않아 종래 전극 피막이 고온에서 분해됨에 따라 고온 저장성이 떨어지는 것에 비하여 고온 저장성이 크게 개선되는 우수한 효과가 있다. 또한, 저항 증가가 방지되어 충전 효율 및 출력이 개선되는 효과가 있고, 전지 내부의 화학 반응으로 인한 가스 발생 역시 억제되므로 전지의 안전성이 향상될 수 있다. 또한, 고온에서 양극 및 음극의 전극 활물질 구조 붕괴를 방지하여 용량 유지율이 개선되고, 이를 통해 수명이 연장되는 효과가 있다.
[화학식 5]
Figure pat00050
(상기 화학식 5에서, 상기 R18 및 R19는 독립적으로 탄소수 1 내지 5의 알킬렌기이고, 상기 E7은 결합(bond), 탄소수 1 내지 3의 알킬렌기 또는, 탄소수 2 내지 5의 환형 카르보닐기, 에터기 또는 에스터기이고, 상기 R20은 치환 또는 비치환된 탄소수 2 내지 5의 선형 또는 환형 카보네이트기, 카르보닐기, 에터기, 포스페이트기, 설포네이트 또는 설페이트기이고, 상기 치환은 F, Cl, Br 및 I로 이루어진 군에서 선택된 1종 이상 또는 탄소수 1 내지 3의 알케닐기로 치환된 것을 가리키며, 상기 E8은 결합(bond) 또는, 탄소수 1 내지 3의 포화 또는 불포화 알킬렌기, 또는 에터기이며, 상기 n은 0 또는 1이다.)
상기 화학식 5에서, 알킬렌기는 2가의 탄화수소기를 의미하고, 구체적인 예로 프로필렌기는 -CH2CH2CH2- 또는 -CH2CH(CH3)-를 지칭한다.
본 기재에서 알케닐기는 탄소-탄소 이중결합을 포함하는 1가의 탄화수소기를 의미하고, 구체적인 예로 n-부테닐기는 CH2=CHCH2CH2-를 지칭한다.
상기 R18 및 R19는 바람직하게는 독립적으로 탄소수 1 또는 2의 알킬렌기이고, 이러한 경우 이차전지의 충전 저항이 낮아 충전 효율 및 출력이 향상될 수 있고, 장기 수명 및 고온 용량 유지율이 우수한 효과가 있다.
상기 E7은 바람직하게는 결합(bond)이거나, 또는 탄소수 2 내지 3의 환형 카르보닐기, 에터기 또는 에스터기이고, 이러한 경우 이차전지의 충전 저항이 낮아 충전 효율 및 출력이 향상될 수 있고, 장기 수명 및 고온 용량 유지율이 우수한 효과가 있다.
상기 R20은 바람직하게는 치환 또는 비치환된 탄소수 2 내지 3의 선형 또는 환형 카보네이트기, 카르보닐기, 에터기, 포스페이트기 또는 설페이트기이고, 상기 치환은 바람직하게는 F 또는 바이닐기(vinyl)일 수 있으며, 이러한 경우 이차전지의 충전 저항이 낮아 충전 효율 및 출력이 향상될 수 있고, 장기 수명 및 고온 용량 유지율이 우수한 효과가 있다.
상기 E8은 바람직하게는 결합(bond) 또는, 탄소수 1 내지 2의 포화 또는 불포화(불포화인 경우, 탄소수는 2임) 알킬렌기, 또는 에터기이고, 이러한 경우 이차전지의 충전 저항이 낮아 충전 효율 및 출력이 향상될 수 있고, 장기 수명 및 고온 용량 유지율이 우수한 효과가 있다.
상기 n이 0인 경우 인(P) 원자는 산소 대신 비공유 전자쌍을 가진다.
상기 화학식 5로 표시되는 화합물은 바람직하게는 하기 화학식 5-1 내지 5-52로 표시되는 화합물로 이루어진 군으로부터 선택된 1종 이상이고, 이 경우 이차전지의 충전 저항이 낮아 충전 효율 및 출력이 향상될 수 있고, 장기 수명 및 고온 용량 유지율이 우수한 이점이 있다.
[화학식 5-1 내지 5-52]
Figure pat00051
Figure pat00052
Figure pat00053
(상기 화학식 5-1 내지 5-52에서 선은 결합이고, 별도의 원소를 기재하지 않은 경우 결합과 결합이 만나는 지점은 탄소이며, 상기 탄소의 원자가를 만족하는 수의 수소가 생략되었다.)
상기 화학식 5로 표시되는 화합물 중 n이 1인 화합물은 바람직하게는 상기 화학식 5-1 내지 5-51로 표시되는 화합물로 이루어진 군으로부터 선택된 1종 이상이고, 이 경우 이차전지의 충전 저항이 낮아 충전 효율 및 출력이 향상될 수 있고, 장기 수명 및 고온 용량 유지율이 우수한 이점이 있다.
상기 화학식 5로 표시되는 전해액 첨가제는, 전지의 전해액에 첨가되는 경우, P 원소와 직접 연결된 O 원소 사이의 전기 음성도 차로 인해 전자가 O 원소 쪽으로 편재된다. 이에 따라 P 원소는 전자 부족(e- poor, δ+) 상태가 되어 리튬 이온을 포함하는 전해액 중에서 산화 반응이 유도되어, 전극, 구체적인 일례로 양극(Cathode)에 안정한 피막을 형성한다. 이때, 상기 피막의 안정성으로 인해 전해액의 분해를 방지할 수 있으며, 이로 인하여 사이클 특성이 개선될 수 있고, 특히 고온에서 분해되지 않아 종래 전극 피막이 고온에서 분해됨에 따라 고온 저장성이 떨어지는 것에 비하여 고온 저장성이 크게 개선되는 우수한 효과가 있다. 또한, 저항 증가가 방지되어 충전 효율 및 출력이 개선되는 효과가 있고, 전지 내부의 화학 반응으로 인한 가스 발생 역시 억제되므로 전지의 안전성이 향상될 수 있다. 또한, 고온에서 양극 및 음극의 전극 활물질 구조 붕괴를 방지하여 용량 유지율이 개선되고, 이를 통해 수명이 연장되는 효과가 있다.
[화학식 6]
Figure pat00054
(상기 화학식 6에서 P와 O는 각각 인과 산소이고; A는 결합 또는 산소이며; 상기 Q는 산소 또는 비공유전자쌍이고; R21, R22, R23 및 R24는 독립적으로 수소, 탄소수 1 내지 10의 선형 또는 분지형의 알킬기, 알케닐기, 알카이닐기, 알콕시기, 알콕시카르보닐기, 알콕시알킬기, 플루오로알킬 또는
Figure pat00055
이며; 선택적으로 상기 R21 또는 R22는, 독립적으로 R23 또는 R24와 연결되어 이중결합 또는 고리를 만들 수 있고; 상기 n은 0 내지 3의 정수이며; 상기 *은 결합위치이다.)
상기 화학식 6에서, 상기 고리는 바람직하게는 방향족(aromatic) 또는 지방족(aliphatic) 고리일 수 있고, 상기 n은 바람직하게는 1 또는 2일 수 있으며, 상기 플루오로알킬은 바람직하게는 플루오로기가 2개 내지 8개 치환된 알킬일 수 있다.
상기 화학식 6으로 표시되는 그룹이 치환된 화합물은 상기 화학식 1로 표시되는 그룹의 * 위치에 다양한 그룹이 필요에 따라 결합될 수 있고, 일례로 탄소수 1 내지 10의 선형 또는 분지형의 알킬기, 알케닐기, 알카이닐기, 알콕시기, 하이드록시기, 알콕시카르보닐기, 알콕시알킬기, 플루오로알킬, 시아노기, 알킬시아노기, 알킬실릴, 아마이드, 이미다졸, 싸이오펜, 에터, 싸이오에터, 알킬설포닐, 설포닐알킬, 사이클로알킬설포닐, 사이클로설포닐알킬, 알킬술폭시드 또는 플루오로화 인 등일 수 있다. 여기에서 완성된 화합물로 명명된 그룹은 해당 그룹의 수소 또는 일부 원자단이 상기 화학식 6으로 표시되는 그룹으로 * 위치에서 치환되는 것을 의미한다.
상기 화학식 6으로 표시되는 그룹이 치환된 화합물은 바람직하게는 하기 화학식 6-1 내지 6-31로 표시되는 화합물로 이루어진 군으로부터 선택된 1종 이상이고, 보다 바람직하게는 하기 화학식 6-15 또는 화학식 6-31로 표시되는 화합물이며, 이 경우 이차전지의 충전 저항이 낮아 충전 효율 및 출력이 향상될 수 있고, 장기 수명 및 고온 용량 유지율이 우수한 이점이 있다.
[화학식 6-1 내지 6-31]
Figure pat00056
Figure pat00057
(상기 화학식 6-1 내지 6-31에서 선은 결합이고, 별도의 원소를 기재하지 않은 경우 결합과 결합이 만나는 지점은 탄소이며, 상기 탄소의 원자가를 만족하는 수의 수소가 생략되었다.)
상기 화학식 6-1 내지 6-31로 표시되는 전해액 첨가제는, 이차전지의 전해액에 첨가되는 경우, P 또는 S 원소와 직접 연결된 O 원소 사이의 전기 음성도 차로 인해 전자가 O 원소 쪽으로 편재된다. 이에 따라 P 또는 S 원소는 전자 부족(e- poor, δ+) 상태가 되어 리튬 이온을 포함하는 전해액 중에서 산화 반응이 유도되어, 전극, 구체적으로는 양극(Cathode)에 안정한 피막을 형성한다. 이때, 상기 피막의 안정성으로 인해 전해액의 분해를 방지할 수 있으며, 이로 인하여 사이클 특성이 개선될 수 있고, 특히 고온에서 분해되지 않아 종래 전극 피막이 고온에서 분해됨에 따라 고온 저장성이 떨어지는 것에 비하여 고온 저장성이 크게 개선되는 우수한 효과가 있다. 또한, 저항 증가가 방지되어 충전 효율 및 출력이 개선되는 효과가 있고, 전지 내부의 화학 반응으로 인한 가스 발생 역시 억제되므로 전지의 안전성이 향상될 수 있다. 또한, 고온에서 양극 및 음극의 전극 활물질 구조 붕괴를 방지하여 용량 유지율이 개선되고, 이를 통해 수명이 연장되는 효과가 있다.
상기 전해액은, 바람직하게는 상기 전해액 총 100 중량%를 기준으로 인산염 화합물 0.1 내지 10 중량%, 바람직하게는 0.2 내지 10 중량%, 보다 바람직하게는 0.2 내지 5 중량%, 더욱 바람직하게는 0.4 내지 2.0 중량%, 가장 바람직하게는 0.5 내지 1.5 중량%를 더 포함할 수 있고, 이 경우 전해액에 대한 상용성이 우수하여 제조 효율이 보다 향상될 수 있고, 전지 출력 향상 효과가 보다 우수한 이점이 있다.
상기 인산염 화합물은 바람직하게는 하기 화학식 7-1 내지 7-7로 표시되는 화합물로 이루어진 군으로부터 선택된 1종 이상일 수 있으나, 이에 한정하는 것은 아니다.
[화학식 7-1 내지 7-7]
Figure pat00058
상기 전해액은 바람직하게는 상기 화학식 1 내지 6으로 표시되는 화합물 중에서 선택된 1종 이상의 화합물이 상기 인산염 화합물에 용해된 용액을 포함할 수 있다.
상기 전해액은 이차전지의 전해액에 첨가되어 전극에 안정한 피막을 형성할 수 있다. 이때, 상기 피막의 안정성으로 인해 전해액의 분해를 방지할 수 있으며, 이로 인하여 사이클 특성이 개선될 수 있고, 특히 종래 전극 피막이 고온에서 분해됨에 따라 고온 저장성이 떨어지는 것에 비하여 고온에서의 분해가 억제되어 고온 저장성이 크게 개선되는 우수한 효과가 있다. 또한, 저항 증가가 방지되어 충전 효율 및 출력이 개선되는 효과가 있고, 전지 내부의 화학 반응으로 인한 가스 발생 역시 억제되므로 전지의 안전성이 향상될 수 있다. 또한, 고온에서 양극 및 음극의 전극 활물질 구조 붕괴를 방지하여 용량 유지율이 개선되고, 이를 통해 수명이 연장되는 효과가 있다.
또한, 본 발명은 상기 화학식 1 내지 6으로 표시되는 화합물 중에서 선택된 1종 이상 0.1 내지 10 중량% 및 상기 화학식 7로 표시되는 화합물 0.1 내지 10 중량%에 유기용매 및/또는 리튬염을 포함하는 전해액을 제공한다.
상기 유기용매는 바람직하게는 에틸렌 카보네이트(EC), 디에틸 카보네이트(DEC), 에틸메틸 카보네이트(EMC), 디메틸 카보네이트(DMC), 프로필렌 카보네이트(PC), 디프로필 카보네이트(DPC), 부틸렌 카보네이트, 메틸프로필 카보네이트, 에틸프로필 카보네이트, 메틸 프로피오네이트(MP), 에틸 프로피오네이트(EP) 및 프로필 프로피오네이트(PP)로 이루어진 군에서 선택된 1종 이상을 포함할 수 있고, 바람직하게는 2종 이상을 포함할 수 있으며, 이 경우 전해액의 이온전도도, 점도 등을 제어하기 용이하여 전지 성능을 개선하는 효과가 보다 우수한 이점이 있다.
상기 유기용매는 구체적인 일례로 전지의 충방전 성능을 높일 수 있도록 높은 이온전도도를 갖는 고유전율의 유기용매 및 용매의 점도가 전지에 적용하기에 적절한 점도를 갖도록 조절할 수 있는 저점도 유기용매를 혼합하여 혼합 용매로 사용할 수 있으며, 보다 구체적으로는 상기 고유전율의 유기용매로는 일례로 EC 및/또는 PC 등을 사용할 수 있고, 상기 저점도 유기용매로는 일례로 EMC, DMC 및 DEC로 이루어진 군에서 선택된 1종 이상을 사용할 수 있다.
상기 고유전율 및 저점도 유기용매는 2:8 내지 8:2의 부피비로 혼합하여 사용하는 것이 바람직하다. 보다 구체적으로는, EC 및/또는 PC와, EMC 및 DEC의 3원 혼합 용매일 수 있으며, EC 및/또는 PC : EMC : DEC의 비율은 1 : 3 내지 5 : 2 내지 4일 수 있다.
상기 유기용매는 수분을 포함하는 경우, 전해액 중 리튬 이온이 가수분해될 수 있으므로, 유기용매 중 수분은 150 ppm 이하, 바람직하게는 100 ppm 이하로 통제되는 것이 바람직하다.
상기 전해액은 리튬염으로 일례로 LiPF6 및 LiFSI로 이루어진 군에서 선택된 1종 이상을 포함할 수 있고, 바람직하게는 LiPF6를 포함할 수 있으며, 이 경우 전지의 리튬 이온 공급이 원활이 이루어져 전지 성능이 우수한 이점이 있다.
상기 전해액은 일례로 리튬염으로 LiF4, LiCl, LiBr, LiI, LiClO4, LiB10Cl10, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (SO2F)2NLi 및 (CF3SO2)2NLi로 이루어진 군에서 선택된 1종 이상을 더 포함할 수 있으며, 이 경우 리튬 이온의 공급이 보다 원활할 수 있다.
상기 리튬염을 전해액에 용해시키면, 상기 리튬염은 리튬 이차 전지 내에서 리튬 이온의 공급원으로 기능하고, 양극과 음극 간의 리튬 이온의 이동을 촉진할 수 있다. 이에 따라, 상기 리튬염은 상기 전해액 중 대략 0.6 mol% 내지 2 mol%의 농도로 포함되는 것이 바람직하다. 상기 리튬염의 농도가 0.6 mol% 미만인 경우 전해액의 전도도가 낮아져 전해액 성능이 떨어질 수 있고, 2 mol%를 초과하는 경우 전해액의 점도가 증가하여 리튬 이온의 이동성이 낮아질 수 있다. 이와 같은 전해액의 전도도 및 리튬 이온의 이동성을 고려하면, 상기 리튬염은 상기 전해액 내에서 바람직하게는 0.7 mol% 내지 1.6 mol%, 더욱 바람직하게는 0.8 mol% 내지 1.5 mol%로 포함될 수 있다.
본 발명의 전해액은 일례로 전술한 화학식으로 표시되는 화합물을 포함하는 전해액 이외에 전지의 수명특성 향상, 전지 용량 감소 억제, 전지의 방전 용량 향상 등을 목적으로 일반적으로 전해액에 사용될 수 있는 상용 첨가제를 더 포함할 수 있다.
상기 상용 첨가제는 바람직하게는 비닐렌카보네이트(Vinylene Carbonate, VC), 플루오로에틸렌카보네이트(fluoroethylene carbonate, FEC), 비닐에틸렌카보네이트(vinylethylene carbonate, VEC), 프로피온산 에틸(Ethyl propionate), 프로필 프로피오네이트 (Propyl propionate), 비스디플루오로포스파닐옥시에탄(1,2-bis((difluorophosphaneyl)oxy)ethane), 플로오로메틸디옥사포스포란(2-fluoro-4methyl-[1,3,2]-dioxaphospholane), 디플로오로펜틸옥시포스판(Difluoro(pentyloxy)phosphane), 헥산트리카보나이트릴(1,3,6-hexanetricarbonitrile, HTCN), 숙시노나이트릴(succinonitrile, SN), 아디포나이트릴(adiponitrile, AN), 4-톨루나이트릴(4-tolunitrile), 리튬비스(옥살레이토)보레이트(Lithium bis(oxalato)borate, LiBOB), 리튬 디플루오로(옥살레이토) 보레이트(Lithium difluoro (oxalate) borate, LiDFOB), 리튬 테트라플루오로보레이트 (Lithium tetrafluoroborate, LiBF4), 트리스(트리메틸실릴)보레이트(tris(trimethylsilyl)borate), 트리이소프로필보레이트(Triisopropyl borate), 트리메톡시보록신(Trimethoxyboroxine), 리튬테트라플로오로옥살라토포스페이트(Lithium tetrafluro(oxalato) Phosphate), 리튬디플루오로비스옥살라토포스페이트(Lithium DiFluro(bisoxalato) Phosphate), 리튬디플루오로프스페이트(lithium difluorophosphate), 트리스트리메틸실리포스파이트(Tris(trimethylsilyl) Phosphite), 트리프로파질포스페이트(Tripropagyl phosphate), 트리페닐포스페이트(Triphenyl phosphate), 테트라옥사디티아스피로5,5-운데칸3,3,9,9-테트라옥사이드(2,4,8,10-Tetraoxa-3,9-dithiaspiro[5.5]undecane, 3,3,9,9-tetraoxide), 황산다이메틸(Dimethyl sulfate), 에틸렌디메탄설포네이트(Ethylene dimethanesulfonate), 리튬비스(플루오로설포닐)이미드(Lithium bis(fluorosulfonyl)imide, LiFSI), 에틸황산(ethylene sulfate), 1,3-프로펜설톤 (1-propene-1,3-sultone, 1,3-프로판설톤(1,3-propane sultone), 프로필렌설페이트(1,3-propylene sulfate), 부탄설톤(1,4-Butane sultone), 술폴렌(Sulfolene), 바이페닐(biphenayl), 시클로헥실벤젠(cyclohexyl benzene), 4-플루오로톨루엔(4-fluorotoluene), 플루오로벤젠(Fluoro benzene), 2-플루오로비페닐(2-fluoro-biphenyl) 및 3-플루오로비페닐(3-fluoro-biphenyl)로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
상기 상용 첨가제는 이들 중 1종 단독으로 또는 2종 이상을 혼합하여 사용할 수 있다. 이에 일례로, 상기 상용 첨가제는 플루오로에틸렌카보네이트, 1,3-프로판설톤, 1,3-프로펜설톤 또는 에틸황산을 단독으로 사용할 수 있고, 또는 플루오로에틸렌카보네이트와 1,3-프로판설톤의 조합을 사용하는 것이 바람직할 수 있으나, 이에 한정되는 것은 아니다.
상기 상용 첨가제는 전해액 총 중량에 대하여 0.01 내지 20 중량%로 포함될 수 있고, 바람직하게는 0.1 내지 10 중량%로 포함될 수 있다.
이차전지
본 발명의 음극, 양극, 상기 음극과 양극 사이에 개재된 분리막, 및 상기 전해액을 포함하는 이차전지를 제공한다.
상기 양극은 일례로 양극 활물질, 바인더 및 선택적으로 도전재를 혼합하여 양극 활물질층 형성용 조성물을 제조한 후, 이를 알루미늄 호일 등의 양극 전류 집전체에 도포하여 제조할 수 있다.
상기 양극 활물질은 일례로 리튬 이차전지에 사용되는 통상의 하이니켈 양극 활물질, NCM(리튬 니켈 망간 코발트 산화물) 양극 활물질 또는 LFP(리튬 철 인 산화물) 양극 활물질을 사용할 수 있고, 바람직하게는 화학식 Li[NixCo1-x-yMny]O2(여기서 0<x<0.5, 0<y<0.5) 형태의 리튬 복합금속 산화물일 수 있으며, 구체적인 예로 LiNiMnCoO2일 수 있으나 이에 제한되는 것은 아니다.
상기 리튬 복합금속 산화물의 화학식 Li[NixCo1-x-yMny]O2의 변수 x, y는 일례로 0.0001<x<0.5, 0.0001<y<0.5, 또는 0.001<x<0.3, 0.001<y<0.3일 수 있다.
상기 양극 활물질은 다른 예로 리튬의 가역적인 인터칼레이션(intercalation) 및 디인터칼레이션(de intercalation)이 가능한 화합물(리티에이티드 인터칼레이션 화합물)을 사용할 수 있다.
상기 화합물 중에서도 전지의 용량 특성 및 안정성을 높일 수 있다는 점에서 LiCoO2, LiMnO2, LiMn2O4, LiNiO2, LiNixMn(1-x)O2(단, 0<x<1), 및 LiM1xM2yO2(단, 0≤x≤1, 0≤y≤1, 0≤x+y≤1, M1 및 M2는 각각 독립적으로 Al, Sr, Mg 및 La로 이루어진 군에서 선택된 어느 하나이다)로 이루어진 군에서 선택되는 1종 이상이 바람직하다.
상기 음극은 일례로 음극 활물질, 바인더 및 선택적으로 도전제를 혼합하여 음극 활물질층 형성용 조성물을 제조한 후, 이를 구리 포일 등의 음극 전류 집전체에 도포하여 제조할 수 있다.
상기 음극 활물질로는 일례로 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물을 사용할 수 있다.
상기 음극 활물질의 구체적인 예로는 Si계 음극 활물질, 인조흑연, 천연흑연, 흑연화 탄소섬유, 비정질탄소 등의 탄소질 재료일 수 있다.
또한, 상기 탄소질 재료 이외에, 리튬과 합금화가 가능한 금속질 화합물, 또는 금속질 화합물과 탄소질 재료를 포함하는 복합물도 음극 활물질로 사용할 수 있고, 일례로 그라파이트(graphite)일 수 있다.
상기 리튬과 합금화가 가능한 금속으로는, 일례로 Si, Al, Sn, Pb, Zn, Bi, In, Mg, Ga, Cd, Si합금, Sn합금 또는 Al합금 중 적어도 어느 하나가 사용될 수 있다.
또한, 상기 음극 활물질로서 금속 리튬 박막을 사용할 수도 있다.
상기 음극 활물질로는 안정성이 높다는 면에서 결정질 탄소, 비결정질 탄소, 탄소 복합체, 리튬 금속 및 리튬을 포함하는 합금으로 이루어진 군에서 선택된 어느 하나 이상을 사용할 수 있다.
본 발명의 이차전지는, 상기 화학식으로 표시되는 화합물을 포함하는 전해액을 첨가함으로써, 종래에 비하여 HPPC(Hybrid Pulse Power Characterization)법에 의해 측정되는 전지 충전 저항, 출력 특성, 60℃ 이상의 고온에서 용량 회복 특성 및 수명 특성 등 전지 특성 개선 효과가 더욱 향상되는 효과가 있다.
구체적인 일례로, 본 발명의 이차전지는, 60℃에서 측정된 HPPC 충전 저항 값이 500mΩ 이하일 수 있고, 바람직하게는 200mΩ 이하, 더욱 바람직하게는 60mΩ, 가장 바람직하게는 65mΩ 이하일 수 있다.
또한, 상기 이차전지는 60℃에서 회복 용량이 560mAh 이상, 바람직하게는 600 mAh 이상, 더욱 바람직하게는 630 mAh 이상, 가장 바람직하게는 700 mAh 이상일 수 있다.
상기 이차전지의 45℃에서 수명 유지 효율은 80% 이상일 수 있고, 바람직하게는 82% 이상, 더욱 바람직하게는 83% 이상일 수 있다.
본 기재에서, HPPC 충전 저항 값은, “Battery test manual for plug-in hybrid electric vehicles,” (2010, Idaho National Laboratory for the U.S. Department of Energy.) 문헌에서 규정된 방식에 의해 측정될 수 있는 것으로, 전지의 출력 특성을 나타내는 중요한 지표이다. 또한 충전 저항이란, 전지의 충전 시 측정되는 저항 값으로, 충전 저항이 낮을수록 에너지 손실이 적어, 충전 속도가 빨라질 수 있고, 전지의 출력이 향상될 수 있다. 본 발명의 이차전지는 HPPC 충전 저항 값이 상기와 같이 낮게 나타나 충전 속도 및 출력이 우수하여, 예를 들어 자동차용 전지로 사용하기에 적합하다.
본 기재에서 회복 용량은 장시간 방치된 전지의 용량 보존 특성을 나타내는 것으로, 장시간 방치된 전지를 방전종지전압까지 방전시켰을 때의 방전된 전기 용량과, 상기 방전된 전지를 재충전시키고 다시 방전종지전압까지 방전시켰을 때의 방전된 전기 용량을 각각 측정하여, 상기 두 용량 값을 비교한 것이다. 회복 용량이 높을수록 전지 보존(저장)에 의한 자연 방전량이 적어, 전지의 장기간 보존이 가능함을 의미하며, 특히 전지의 보존 온도가 높을수록 자연 방전 속도가 빨라지므로, 고온에서의 회복 용량이 자동차용 전지에서 매우 중요한 특성이다. 본 발명의 화합물을 전지용 전해액에 첨가하는 경우, 종래의 첨가제만을 사용했을 때 보다 회복 용량이 향상되어, 한 번의 충전으로 더욱 장기간 보관이 가능한 효과가 있다.
따라서, 본 발명의 전지가 전기 자동차용 전지로 사용되는 경우, 자동차의 크기에 따라 중요해지는 출력 개선과, 기후 변화, 운전 중 또는 주차 시에 대부분 일광에 그대로 노출되는 자동차의 특성 상 문제되는 저온 및 고온에서의 성능 개선이 이루어져, 자동차 전지로서 우수한 성능을 나타낼 수 있다.
따라서, 본 발명의 실시예들에 따른 전해액을 이차전지에 적용하는 경우, 충전 저항, 출력, 회복 용량 및 수명 효율이 개선되어, 자동차용 이차전지로 사용하기에 적합한 것을 알 수 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.
[합성예]
합성예 1 : 1,3,2-Dioxaphospholan-2-yl diethyl phosphite의 제조
건조 준비된 3구 플라스크 50ml에 다이에틸 포스파이트 2.38g(17.2mmol)을 넣고, 벤젠 5ml를 적가하였다. 교반하면서 트리에틸아민 1.75g(17.2mmol)을 천천히 적가하였다. 반응온도는 0℃를 유지하면서 에틸렌 클로로포스파이트 2.18g(17.2mmol)을 30분간 천천히 적가하였다. 적가를 완료한 후, 0℃에서 30분간 교반하고, 생성된 트리에틸아민 염은 여과하였다. 여액은 진공 증류를 통해 원하는 생성물인 1,3,2-다이옥사포스포란-2-일 다이에틸 포스파이트를 2,1g, 수율 55%로 수득하였다. 수득한 생성물은 하기와 같이 1H NMR로 화학식 1-24의 구조에 해당하는 것을 확인하였다.
1H NMR (CDCl3, 400MHz) δ = 4.18 (m, 2H), 4.05 (m, 2H), 3.85 (m, 4H), 1.24 (m. 6H)
합성예 2 : 2-((Trimethylsilyl)oxy)-1,3,2-dioxaphospholane의 제조
건조 준비된 3구 플라스크 100ml에 트리메틸실란올 5g(55.4mmol)을 넣고 용매로 다이에틸 에테르 50ml와 트리에틸아민 6.1g(60.0mmol)을 적가하였다. 반응온도는 -10℃를 유지하면서 2-클로로-1,3,2-다이옥사포스포란 5.8g(46.1mmol)을 천천히 적가하였다. 반응 시간은 10시간 교반 진행하고, 실온에서 트리에틸아민염은 여과를 통해 제거하였다. 여액은 진공 증류를 통해 원하는 생성물인 2-((트리메틸실릴)옥시)-1,3,2-다이옥사포스포란를 4.9g, 수율 60%로 수득하였다. 수득한 생성물은 하기와 같이 1H NMR로 화학식 6-31의 구조에 해당하는 것을 확인하였다.
1H NMR (CDCl3, 400MHz) δ = 4.12 (m, 2H), 3.92 (m, 2H), 0.18 (s. 9H)
[실시예: 전지용 전해액의 제조]
실시예 1
유기용매로는 EC:EMC:DEC = 3:4:3의 부피비를 갖는 카보네이트계 혼합용매를 사용하고, 리튬염으로 LiPF6을 포함하는 1.15M의 농도로 포함하는 용액에 하기 화학식 1a로 표시되는 화합물(Bisethylene pyrophosphate) 0.5 중량%를 첨가하여 전지용 전해액을 제조하였다.
[화학식 1a]
Figure pat00059
실시예 2
유기용매로는 EC:EMC:/CEC = 3:4:3의 부피비를 갖는 카보네이트계 혼합용매를 사용하고, 리튬염으로 LiPF6을 포함하는 1.15M의 농도로 포함하는 용액에 전해액 첨가제로 상기 화학식 1a로 표시되는 화합물 0.5 중량% 및 하기 화학식 7-5로 표시되는 화합물 1 중량%를 첨가하여 전지용 전해액을 제조하였다.
[화학식 7-5]
Figure pat00060
실시예 3
실시예 2에서 상기 화학식 1a로 표시되는 전해액 첨가제를 하기 화학식 2-2로 표시되는 전해액 첨가제 0.3 중량%로 변경하고 추가 첨가제 종류를 상기 화학식 7-5로 표시되는 화합물에서 하기 화학식 7-1로 표시되는 화합물로 변경한 것을 제외하고는 실시예 2와 동일하게 실시하였다.
[화학식 2-2]
Figure pat00061
[화학식 7-1]
Figure pat00062
실시예 4
실시예 2에서 상기 화학식 1a로 표시되는 전해액 첨가제를 하기 화학식 3-1로 표시되는 전해액 첨가제 0.8 중량%로 변경하고 추가 첨가제 종류를 상기 화학식 7-5로 표시되는 화합물에서 하기 화학식 7-4로 표시되는 화합물로 변경한 것을 제외하고는 실시예 2와 동일하게 실시하였다.
[화학식 3-1]
Figure pat00063
[화학식 7-4]
Figure pat00064
실시예 5
실시예 2에서 상기 화학식 1a로 표시되는 전해액 첨가제를 하기 화학식 4a로 표시되는 전해액 첨가제 1.0 중량%로 변경한 것을 제외하고는 실시예 2와 동일하게 실시하였다.
[화학식 4a]
Figure pat00065
실시예 6 내지 8
실시예 2에서 상기 화학식 1a로 표시되는 화합물을 대신하여 하기 화학식 5-52로 표시되는 화합물을 투입하되, 이의 함량을 각각 0.5 중량%, 1.0 중량% 2.0 중량% 사용한 것을 제외하고는 실시예 2와 동일하게 실시하였다.
[화학식 5-52]
Figure pat00066
실시예 9 내지 10
실시예 1에서 전해액 첨가제를 하기 합성예 1에서 제조한 화학식 1-24로 표시되는 전해액 첨가제로 대체하고, 이의 함량을 각각 0.5 중량%, 1 중량% 사용한 것을 제외하고는 실시예 1과 동일하게 실시하였다.
실시예 11 내지 12
실시예 1에서 투입한 화합물을 대신하여 상기 합성예 2에서 제조한 화학식 6-31로 표시되는 화합물을 투입하되, 이의 함량을 각각 0.5 중량%, 1 중량% 사용한 것을 제외하고는 실시예 1과 동일하게 실시하였다.
비교예 1
실시예 2에서 화학식 1a로 표시되는 전해액 첨가제를 사용하지 않을 것을 제외하고는 실시예 2와 동일하게 실시하였다.
비교예 2
실시예 1에서 투입한 화학식 1a로 표시되는 화합물을 대신하여 비대칭 구조의 시클릭 에틸렌 포스페이트(Cyclic ethylene phosphate)을 0.5 중량% 투입한 것을 제외하고는 실시예 1과 동일하게 실시하였다.
참고로, 상기 실시예 1 내지 12 및 비교예 1 내지 2에서 사용한 전해액의 성분 및 함량은 이해를 돕기 위해 하기 표 1에 간단히 정리하여 기재하였다.
전지의 제조
양극 활물질로서 Li(Ni0.5Co0.2Mn0.3)O2 92 중량%, 도전제로 카본 블랙(carbon black) 4 중량%, 바인더로 폴리비닐리덴 플루오라이드(PVdF) 4 중량%를 용매인 N-메틸-2-피롤리돈(NMP)에 첨가하여 양극 혼합물 슬러리를 제조하였다. 상기 양극 혼합물 슬러리를 두께가 20㎛ 정도의 양극 집전체인 알루미늄(Al) 박막에 도포하고, 건조하여 양극을 제조한 후, 롤 프레스(roll press)를 실시하여 양극을 제조하였다.
음극 활물질로는 탄소 분말, 바인더로 PVdF, 도전제로 카본 블랙(carbon black)을 각각 96 중량%, 3 중량% 및 1 중량%로 하여 용매인 NMP에 첨가하여 음극 혼합물 슬러리를 제조하였다. 상기 음극 혼합물 슬러리를 두께가 10㎛의 음극 집전체인 구리(Cu) 박막에 도포하고, 건조하여 음극을 제조한 후, 롤 프레스(roll press)를 실시하여 음극을 제조하였다.
상기와 같이 제조된 양극과 음극을 폴리프로필렌/폴리에틸렌/폴리프로필렌 (PP/PE/PP) 3층으로 이루어진 분리막과 함께 통상적인 방법으로 파우치형 전지를 제작 후, 상기 실시예 1 내지 12 및 비교예 1 내지 2에서 제조된 전해액을 주액하여 리튬 이차 전지의 제조를 완성하였다.
시험예
상기에서 제조된 각 이차전지의 성능을 평가하기 위해 하기의 방법으로 성능을 측정하였으며, 그 결과를 하기 표 1로 나타내었다.
[HPPC 충전 저항 평가]
“Battery test manual for plug-in hybrid electric vehicles," (2010, Idaho National Laboratory for the U.S. Department of Energy.) 문헌에서 규정된 방식에 의해 측정하였다.
고온(60℃)에서, 측정 전압값, C-rate에 해당하는 충방전 전류값, 전류 변화량(△I), 방전 전압 변화량(△V), 충전 전압 변화량(△V), 방전 저항, 충전 저항을 측정하여, C-rate별로 충방전 전류를 일정 시간동안 짧게 흘려주어 전류 및 전압 변화량으로 얻은 기울기값으로 저항값을 계산하였다.
[고온 회복 용량 평가]
충전 조건은 정전류 1.0C 및 전압 4.2V에서 충전전류가 1/10C 될 때까지 충전하였다. 방전 조건은 1.0C의 정전류로 3.0V까지 방전에 의해 충방전을 시행한 후, 방전용량을 측정하였다.
동일한 충방전 조건으로 충전 후 60℃의 항온조에서 4주간 보관 후, 60℃의 고온 조건에서 방전 전압 3V까지 방전시킨 후 잔존 용량을 측정하였다. 이후 동일한 충방전 조건으로 3회 실시 후 회복 용량을 측정하여 이의 평균 값을 계산하였다.
[고온 수명 평가]
상기 이차전지를 45℃에서 1C rate의 전류로 전압이 4.20V(vs. Li)에 이를 때까지 정전류 충전하고, 이어서 정전압 모드에서 4.20V를 유지하면서 0.05C rate의 전류에서 컷오프 (cut-off)하였다. 이어서, 방전시에 전압이 3.0V(vs. Li)에 이를 때까지 1C rate의 정전류로 방전하였다(1st 사이클). 상기와 같은 사이클을 300회 반복하여 이의 평균 값을 계산하였다.
구분 주 전해액의 화학식 주 전해액 함량
(중량%)
인산염
화합물의
화학식
인산염
함량
(중량%)
HPPC
충전저항
(mΩ)
고온
저장후
회복용량
(mAh)
고온
수명효율
(%)
실시예 1 1a 0.5 - - 35.8 729.6 83.9
실시예 2 1a 0.5 7-5 1.0 36.5 727.2 84.1
실시예 3 2-2 0.3 7-1 1.0 36.3 732.9 83.7
실시예 4 3-1 0.8 7-4 1.0 34.0 725.6 84.4
실시예 5 4a 1.0 7-5 1.0 37.0 722.2 83.5
실시예 6 5-52 0.5 7-4 1.0 33.0 732.5 84.5
실시예 7 5-52 1.0 7-4 1.0 34.2 735.5 85.5
실시예 8 5-52 2.0 7-4 1.0 36.5 735.0 85.0
실시예 9 1-24 0.5 - - 35.0 754.1 84.6
실시예 10 1-24 1.0 - - 33.6 751.4 85.5
실시예 11 6-31 0.5 - - 33.7 762.5 85.5
실시예 12 6-31 1.0 - - 32.2 766.2 86.5
비교예 1 - - 7-5 1.0 79.6 657.9 67.6
비교예 2 시클릭에틸렌포스페이트 0.5 - - 68.8 661.2 71.6
상기 표 1에 나타낸 바와 같이, 본 발명에 따른 실시예 1 내지 12의 전해액을 포함하는 이차전지의 경우, 충전 저항값이 32.2 내지 37.0mΩ으로 전지 성능이 뛰어난 반면, 본 발명에 따른 전해액을 포함하지 않고 VC를 단독 사용한 비교예 1은 충전 저항값이 79.6mΩ으로 높게 나타나 전지 성능이 열악한 것을 알 수 있고, 본 발명에 따른 전해액을 포함하지 않고 비대칭 시클릭 에틸렌 포스페이트를 단독 사용한 비교예 2는 충전 저항값이 68.8mΩ으로 높게 나타나 역시 전지 성능이 열악한 것을 알 수 있고, 본 발명에 따른 화합물을 사용함으로써 60℃ 고온에서의 충전 저항값이 최대 60%까지 낮아진 것을 확인할 수 있었다. 이는 본 발명에 따른 전해액에 의해 전지의 출력이 개선되는 효과가 있음을 나타낸다.
상기 표 1에 나타낸 바와 같이, 본 발명에 따른 실시예 1 내지 12의 전해액을 포함하는 이차전지의 경우, 고온 회복 용량이 722.2 내지 766.2 mAh인 반면, 본 발명에 따른 전해액의 범위를 벗어나는 비교예 1 및 2의 경우 각각 657.9mAh 및 661.2 mAh로서 본 발명의 실시예에 비하여 최대 108.3 mAh 차이나는 것으로 나타났다. 이는 본 발명에 따른 전해액에 의해 60℃ 고온에서의 회복 용량이 향상되는 효과가 있음을 뜻하며, 이로써 본 발명에 따른 전해액에 의해 고온 환경에서 장기간 보관 시 전지의 회복 용량 효율이 개선되는 효과가 있음을 확인할 수 있다.
또한, 고온 수명 효율 평가 결과, 본 발명에 따른 실시예 1 내지 12의 전해액을 사용한 이차전지의 경우 83.5% 내지 86.5%인 반면, 본 발명에 따른 전해액의 범위를 벗어나는 비교예 1 및 2의 경우 67.6% 및 71.6%로 본 발명의 실시예에 비하여 최대 28%p(%포인트) 낮은 것을 알 수 있다. 이는 본 발명에 따른 전해액을 사용함으로써 종래 전해액만 사용했을 때 비하여 45℃의 고온에서 300 사이클을 반복하는 동안 전지의 용량 유지율이 향상되었음을 뜻하며, 이로써 본 발명의 전해액을 사용하여 고온 환경에서 전지의 사이클 특성 및 수명 효율이 향상되는 것을 알 수 있다.
또한, 인산염을 추가로 포함하는 본 발명에 따른 실시예 2 내지 8의 전해액을 사용한 이차전지의 경우 적정량 범위 내에서 개선된 사이클 특성 및 수명 효율 향상 특성을 보이는 동시에 인산염과 배합 시, 저항 특성 및 고온 수명 성능에서 개선되는 효과가 있음을 확인할 수 있다.
따라서, 본 발명의 전해액은 이차전지의 충전 효율 및 출력, 회복 용량 및 고온 수명 효율을 개선시켜 자동차용 이차전지로 사용하기에 적합한 것을 알 수 있다.

Claims (19)

  1. 하기 화학식 1 내지 화학식 6으로 표시되는 화합물 중에서 선택된 1종 이상의 화합물을 포함하는 것을 특징으로 하는 전해액:
    [화학식 1]
    Figure pat00067

    (상기 화학식 1에서, 상기 G는 -O-, -ORa-, -N(Rb)- 또는 -Rc-N(Rd)-Re-, -Rf(NRgRh)- 또는 -Ri-이고; 상기 Ra, Rc, Re, Rf 및 Ri는 독립적으로 탄소수 1 내지 10의 선형 또는 분지형 알킬렌기이며; Rb, Rd, Rg 및 Rh는 독립적으로 수소, 또는 탄소수 1 내지 10의 선형 또는 분지형 알킬기이고; 상기 Q1 및 Q2는 독립적으로 인(P), 황(S) 또는 비소(As)이며; 상기 D1, D2, D3, D4, D5 및 D6은 독립적으로 산소(=O) 또는, 하나 또는 두개의 비공유 전자쌍이고; 상기 E1, E2, E3 또는 E4는 산소 또는 탄소이며, 상기 D2, D3, D5 또는 D6이 산소인 경우 이에 결합된 E1, E2, E3 또는 E4는 탄소이고; R1, R2, R3, R4, R5, R6, R7 및 R8은 독립적으로 수소, 탄소수 1 내지 10의 선형 또는 분지형의 알킬기, 알케닐기, 알카이닐기, 알콕시기, 알콕시카르보닐기 또는 알콕시알킬기이며; 선택적으로 상기 R3과 R4 또는 R7과 R8은 결합되어 고리를 만들 수 있고;
    상기 n 및 k는 독립적으로 0 내지 5의 정수이며; 상기 m 및 l은 독립적으로 0 또는 1이고; 상기 n과 m 중에서 그리고 상기 k와 l 중에서 최소한 하나는 0이 아니다.)
    [화학식 2]
    Figure pat00068

    (상기 화학식 2에서, 상기 A1 및 A2는 독립적으로 인(P) 또는 황(S)이며, 상기 D7 및 D8는 독립적으로 산소(=O) 또는 비공유 전자쌍이고, 상기 G1 및 G2는 독립적으로 -O- 또는 -CH2-이고, 상기 R9 및 R10은 독립적으로 탄소수 1 내지 20의 선형 또는 분지형 알킬기이고, 상기 R11, R12, R13 및 R14는 독립적으로 결합(bond) 또는 탄소수 1 내지 3의 알킬렌기이다.)
    [화학식 3]
    Figure pat00069

    (상기 화학식 3에서, 상기 X1 및 X2는 독립적으로 F, Cl, Br 또는 I이고, 상기 E5 및 E6은 독립적으로 탄소수 1 내지 3의 치환 또는 비치환 탄화수소기로 상기 치환은 =O, -CX'3 및 -CH2CX"3로 이루어진 군에서 선택된 1종 이상으로 치환된 것이고 상기 X' 및 X"는 독립적으로 F, Cl, Br 또는 I이며, 상기 E5 및 E6에 포함되는 탄소 사이의 결합은 단일결합 또는 이중결합이다.)
    [화학식 4]
    Figure pat00070

    (상기 화학식 4에서, 상기 A는 인(P), 황(S), 또는 질소(N)이며, 상기 R15, R16 및 R17은 독립적으로 치환기를 포함하는 탄소수 1 내지 5의 선형 또는 분지형 알킬기이고, 상기 치환기는 F, Cl, Br 및 I를 포함하는 할로겐 원소 및 산소(=O)로 이루어진 군에서 선택된 1종 이상이다.)
    [화학식 5]
    Figure pat00071

    (상기 화학식 5에서, 상기 R18 및 R19는 독립적으로 탄소수 1 내지 5의 알킬렌기이고, 상기 E7은 결합(bond), 탄소수 1 내지 3의 알킬렌기 또는, 탄소수 2 내지 5의 환형 카르보닐기, 에터기 또는 에스터기이고, 상기 R20은 치환 또는 비치환된 탄소수 2 내지 5의 선형 또는 환형 카보네이트기, 카르보닐기, 에터기, 포스페이트기, 설포네이트 또는 설페이트기이고, 상기 치환은 F, Cl, Br 및 I로 이루어진 군에서 선택된 1종 이상 또는 탄소수 1 내지 3의 알케닐기로 치환된 것을 가리키며, 상기 E8은 결합(bond) 또는, 탄소수 1 내지 3의 포화 또는 불포화 알킬렌기, 또는 에터기이며, 상기 n은 0 또는 1이다.)
    [화학식 6]
    Figure pat00072

    (상기 화학식 6에서 P와 O는 각각 인과 산소이고; A는 결합 또는 산소이며; 상기 Q는 산소 또는 비공유전자쌍이고; R21, R22, R23 및 R24는 독립적으로 수소, 탄소수 1 내지 10의 선형 또는 분지형의 알킬기, 알케닐기, 알카이닐기, 알콕시기, 알콕시카르보닐기, 알콕시알킬기, 플루오로알킬 또는
    Figure pat00073
    이며; 선택적으로 상기 R21 또는 R22는, R23 또는 R24와 연결되어 이중결합 또는 고리를 만들 수 있고; 상기 n은 0 내지 3의 정수이며; 상기 *은 결합위치이다.)
  2. 제1항에 있어서,
    상기 전해액은, 전해액 총 중량에 대하여 상기 화학식 1 내지 6으로 표시되는 화합물 중에서 선택된 1종 이상의 화합물을 0.1 내지 10 중량%로 포함하는 것을 특징으로 하는 전해액.
  3. 제1항에 있어서,
    상기 전해액은 액체 전해액, 반고체 전해액 또는 고체 전해액인 것을 특징으로 하는 전해액.
  4. 제1항에 있어서,
    상기 화학식 1 내지 6으로 표시되는 화합물 중에서 선택된 1종 이상의 화합물은 하기 화학식 5-52로 표시되는 화합물인 것을 특징으로 하는 전해액.
    [화학식 5-52]
    Figure pat00074
  5. 제1항에 있어서,
    상기 화학식 1로 표시되는 화합물은 하기 화학식 1-1 내지 1-24로 표시되는 화합물로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는 전해액.
    [화학식 1-1 내지 1-24]
    Figure pat00075

    Figure pat00076

    (상기 화학식 1-1에서, A 및 A는 각각 독립적으로 인 또는 황이고, R1', R2', R3' 및 R4'는 각각 독립적으로 수소, 또는 치환 또는 비치환된 탄소수 1 내지 10의 알킬기이고, m 및 n은 각각 독립적으로 1 내지 5의 정수이고,
    상기 화학식 1-2 내지 1-24에서 선은 결합이고, 별도의 원소를 기재하지 않은 결합과 결합이 만나는 지점은 탄소이며, 상기 탄소의 원자가를 만족하는 수의 수소는 생략되었다.)
  6. 제1항에 있어서,
    상기 화학식 2로 표시되는 화합물은 하기 화학식 2-1 내지 2-4로 표시되는 화합물로 이루어진 군으로부터 선택된 1종 이상인 것인 전해액.
    [화학식 2-1 내지 2-4]
    Figure pat00077

    (상기 화학식 2-1 내지 2-4에서 선은 결합이고, 별도의 원소를 기재하지 않은 경우 결합과 결합이 만나는 지점은 탄소이며, 상기 탄소의 원자가를 만족하는 수의 수소가 생략되었다.)
  7. 제1항에 있어서,
    상기 화학식 3으로 표시되는 화합물은 하기 화학식 3-1 내지 3-2로 표시되는 화합물로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는 전해액.
    [화학식 3-1 내지 3-2]
    Figure pat00078
    ,
    Figure pat00079

    (상기 화학식 3-1 내지 3-2에서 선은 결합이고, 별도의 원소를 기재하지 않은 경우 결합과 결합이 만나는 지점은 탄소이며, 상기 탄소의 원자가를 만족하는 수의 수소가 생략되었다.)
  8. 제1항에 있어서,
    상기 화학식 4로 표시되는 화합물은 하기 화학식 4a로 표시되는 화합물인 것을 특징으로 하는 전해액.
    [화학식 4a]
    Figure pat00080

    (상기 화학식 4a에서 선은 결합이고, 별도의 원소를 기재하지 않은 경우 결합과 결합이 만나는 지점은 탄소이며, 상기 탄소의 원자가를 만족하는 수의 수소가 생략되었다.)
  9. 제1항에 있어서,
    상기 화학식 5로 표시되는 화합물은 하기 화학식 5-1 내지 5-52로 표시되는 화합물로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는 전해액.
    [화학식 5-1 내지 5-52]
    Figure pat00081

    Figure pat00082

    Figure pat00083

    (상기 화학식 5-1 내지 5-52에서 선은 결합이고, 별도의 원소를 기재하지 않은 경우 결합과 결합이 만나는 지점은 탄소이며, 상기 탄소의 원자가를 만족하는 수의 수소가 생략되었다.)
  10. 제1항에 있어서,
    상기 화학식 6으로 표시되는 화합물은 하기 화학식 6-1 내지 6-31로 표시되는 화합물로 이루어진 군으로부터 선택된 1종 이상인 것을 특징으로 하는 전해액.
    [화학식 6-1 내지 6-31]
    Figure pat00084

    Figure pat00085

    (상기 화학식 6-1 내지 6-31에서 선은 결합이고, 별도의 원소를 기재하지 않은 경우 결합과 결합이 만나는 지점은 탄소이며, 상기 탄소의 원자가를 만족하는 수의 수소가 생략되었다.)
  11. 제1항에 있어서,
    상기 전해액은, 상기 전해액 총 100 중량%를 기준으로 인산염 화합물 0.1 내지 10 중량%를 더 포함하는 것을 특징으로 하는 전해액.
  12. 제11항에 있어서,
    상기 인산염 화합물은 하기 화학식 7-1 내지 7-7로 표시되는 화합물로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것을 특징으로 하는 전해액.
    [화학식 7-1 내지 7-7]
    Figure pat00086

    (상기 화학식 7-1 내지 7-7에서 선은 결합이고, 별도의 원소를 기재하지 않은 결합과 결합이 만나는 지점은 탄소이며, 상기 탄소의 원자가를 만족하는 수의 수소는 생략되었다.)
  13. 제1항에 있어서,
    상기 전해액은 유기용매를 포함하는 것을 특징으로 하는 전해액.
  14. 제13항에 있어서,
    상기 유기용매는 에틸렌 카보네이트(EC), 디에틸 카보네이트(DEC), 에틸메틸 카보네이트(EMC), 디메틸 카보네이트(DMC), 프로필렌 카보네이트(PC), 디프로필 카보네이트(DPC), 부틸렌 카보네이트, 메틸프로필 카보네이트, 에틸프로필 카보네이트, 메틸 프로피오네이트(MP), 에틸 프로피오네이트(EP) 및 프로필 프로피오네이트(PP)로 이루어진 군에서 선택된 1종 이상을 포함하는 것을 특징으로 하는 전해액.
  15. 제1항에 있어서,
    상기 전해액은 리튬염을 포함하는 것을 특징으로 하는 전해액.
  16. 제15항에 있어서,
    상기 리튬염은 LiPF6, LiBF4, LiCl, LiBr, LiI, LiClO4, LiB10Cl10, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)(C2F5SO2)NLi, (SO2F)2NLi 및 (CF3SO2)2NLi(LiFSi)로 이루어진 군에서 선택된 1종 이상을 포함하는 것을 특징으로 하는 전해액.
  17. 제16항에 있어서,
    상기 전해액은 이의 총 100 몰%에 대하여 상기 리튬염을 0.6 내지 2 mol%로 포함하는 것을 특징으로 하는 전해액.
  18. 음극, 양극 및 전해액을 포함하는 이차전지로서, 상기 전해액은 제1항 내지 제17항 중 어느 한 항의 전해액인 것을 특징으로 하는 이차전지.
  19. 제18항에 있어서,
    상기 이차전지는 자동차용 전지인 것을 특징으로 하는 리튬 이차전지.
KR1020210185801A 2020-12-24 2021-12-23 전해액 및 이를 포함하는 이차전지 KR20220092421A (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/269,521 US20240128510A1 (en) 2020-12-24 2021-12-24 Electrolyte and secondary battery including the same
EP21911599.5A EP4270582A1 (en) 2020-12-24 2021-12-24 Electrolyte and secondary battery comprising same
PCT/KR2021/019785 WO2022139534A1 (ko) 2020-12-24 2021-12-24 전해액 및 이를 포함하는 이차전지

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20200183533 2020-12-24
KR1020200183533 2020-12-24

Publications (1)

Publication Number Publication Date
KR20220092421A true KR20220092421A (ko) 2022-07-01

Family

ID=82396947

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210185801A KR20220092421A (ko) 2020-12-24 2021-12-23 전해액 및 이를 포함하는 이차전지

Country Status (1)

Country Link
KR (1) KR20220092421A (ko)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008300126A (ja) 2007-05-30 2008-12-11 Bridgestone Corp 電池用非水電解液及びそれを備えた非水電解液2次電池
KR101586199B1 (ko) 2012-07-10 2016-01-19 주식회사 엘지화학 전해액 첨가제를 포함하는 이차전지

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008300126A (ja) 2007-05-30 2008-12-11 Bridgestone Corp 電池用非水電解液及びそれを備えた非水電解液2次電池
KR101586199B1 (ko) 2012-07-10 2016-01-19 주식회사 엘지화학 전해액 첨가제를 포함하는 이차전지

Similar Documents

Publication Publication Date Title
JP7187125B2 (ja) 非水系電解液及びそれを用いたエネルギーデバイス
KR20220000859A (ko) 전해액 첨가제, 이를 포함하는 전지용 전해액 및 이를 포함하는 이차전지
EP4270582A1 (en) Electrolyte and secondary battery comprising same
US20230178806A1 (en) Electrolyte additive, electrolyte for batteries including electrolyte additive, and secondary battery including electrolyte
KR20220000858A (ko) 전해액 첨가제, 이를 포함하는 전지용 전해액 및 이를 포함하는 이차전지
KR20210001837A (ko) 전해액 첨가제, 이를 포함하는 전지용 전해액 및 이를 포함하는 이차전지
EP4270581A1 (en) Electrolyte and secondary battery comprising same
EP3993125A2 (en) Electrolyte solution additive, electrolyte solution for battery comprising same, and secondary battery comprising same
US20220376299A1 (en) Electrolyte additive, battery electrolyte including electrolyte additive, and secondary battery including battery electrolyte
KR20220000784A (ko) 전해액 첨가제, 이를 포함하는 전지용 전해액 및 이를 포함하는 이차전지
JP2020527284A (ja) リチウム電池用の電解質組成物のための複素環式スルホニルフルオリド添加剤
EP4290638A1 (en) Nonaqueous electrolyte solution, nonaqueous electrolyte battery, and compound
KR20220092421A (ko) 전해액 및 이를 포함하는 이차전지
KR20220092420A (ko) 전해액 및 이를 포함하는 이차전지
KR20220092422A (ko) 전해액 및 이를 포함하는 이차전지
KR20220092423A (ko) 전해액 및 이를 포함하는 이차전지
KR102537722B1 (ko) 전해액 및 이를 포함하는 이차전지
KR20220000860A (ko) 전해액 첨가제, 이를 포함하는 전지용 전해액 및 이를 포함하는 이차전지
KR20220000862A (ko) 전해액 첨가제, 이를 포함하는 전지용 전해액 및 이를 포함하는 이차전지
KR20220000861A (ko) 전해액 첨가제, 이를 포함하는 전지용 전해액 및 이를 포함하는 이차전지
KR20230065859A (ko) 전해질 및 이를 포함하는 이차전지
JP7113995B1 (ja) リチウムイオン電池用電極及びリチウムイオン電池
KR20230069774A (ko) 전해질 및 이를 포함하는 이차전지
KR20230069771A (ko) 전해질 및 이를 포함하는 이차전지
KR20230114145A (ko) 전해질 및 이를 포함하는 이차전지