KR20220084247A - 규조토 에너지 저장 장치 - Google Patents

규조토 에너지 저장 장치 Download PDF

Info

Publication number
KR20220084247A
KR20220084247A KR1020220068848A KR20220068848A KR20220084247A KR 20220084247 A KR20220084247 A KR 20220084247A KR 1020220068848 A KR1020220068848 A KR 1020220068848A KR 20220068848 A KR20220068848 A KR 20220068848A KR 20220084247 A KR20220084247 A KR 20220084247A
Authority
KR
South Korea
Prior art keywords
diatom
shell
silver
crust
diatom shell
Prior art date
Application number
KR1020220068848A
Other languages
English (en)
Other versions
KR102517380B1 (ko
Inventor
베라 엔. 로케트
존 지. 구스타프슨
마크 디. 로웬달
윌리엄 제이. 래이
Original Assignee
프린티드 에너지 피티와이 리미티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/161,658 external-priority patent/US9083010B2/en
Application filed by 프린티드 에너지 피티와이 리미티드 filed Critical 프린티드 에너지 피티와이 리미티드
Publication of KR20220084247A publication Critical patent/KR20220084247A/ko
Priority to KR1020230041377A priority Critical patent/KR20230047071A/ko
Application granted granted Critical
Publication of KR102517380B1 publication Critical patent/KR102517380B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/78Shapes other than plane or cylindrical, e.g. helical
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/40Printed batteries, e.g. thin film batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Separators (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)

Abstract

인쇄 에너지 저장 장치는 제 1 전극, 제 2 전극, 및 상기 제 1 전극과 상기 제 2 전극 사이의 분리기를 포함한다. 적어도 하나의 상기 제 1 전극, 상기 제 2 전극, 및 상기 분리기는 규조류의 피각을 포함한다. 상기 피각은 모양, 크기, 및/또는 기공과 같은 균일한 또는 실질적으로 균일한 특성 또는 속성을 가질 수 있다. 상기 피각의 특성 또는 속성은 상기 피각의 표면에 표면 개질 구조체 및/또는 물질을 적용하거나 또는 형성함으로써 변형될 수도 있다. 상기 피각은 다수의 물질을 포함할 수 있다. 에너지 저장 장치의 막은 피각을 포함한다. 인쇄 필름용 잉크는 피각을 포함한다.

Description

규조토 에너지 저장 장치 {DIATOMACEOUS ENERGY STORAGE DEVICES}
본 발명은 에너지 저장 장치, 특히 규조류의 피각(frustules)을 포함하는 에너지 저장 장치에 관한 것이다.
관련 출원에 대한 상호 참조
이 출원은 2013년 1월 9일에 출원된 미국 가출원 번호 제61/750,757호(명칭: 규조토 에너지 저장 장치), 및 2012년 7월 18일에 출원된 미국 가출원 번호 제61/673,149호(명칭: 규조토 에너지 저장 장치)를 우선권 주장한, 2013년 7월 17일에 출원된 미국 특허 출원 번호 제13/944,211호(명칭: 규조토 에너지 저장 장치)의 일부계속 (continuation-in-part) 이며, 이 출원은 2013년 8월 5일에 출원된 미국 가출원 번호 제61/862,469호(명칭: 높은 표면적 나노다공성 에너지 저장 장치)의 우선권을 주장하고, 이들 각각은 전체 참조로 본 명세서에 포함된다.
규조류는 일반적으로 단세포 조류와 같은 단세포 진핵 생물을 포함한다. 규조류는 자연에서 풍부하며, 담수 및 해양 환경에서 발견될 수 있다. 일반적으로, 규조류는 거들 원소(girdle elements)를 포함하는 연결 구역(connective zone)을 통해 서로 잘 맞는 두 개의 밸브를 갖는 피각으로 둘러싸여 있다. 때로는 규조암 (diatomite)으로 알려진 규조토(Diatomaceous earth)는, 피각의 공급원일 수 있다. 규조토는 화석화된 피각을 포함하며, 여과제, 페인트 또는 플라스틱용 충전제, 흡착제, 고양이용 깔개(cat litter), 또는 연마재로서 사용되는 경우를 포함하여, 다양한 적용에 사용될 수 있다.
피각은 종종 알루미나, 산화철, 산화티타늄, 인산염, 석회, 나트륨, 및/또는 칼륨과 함께 상당한 양의 실리카 (Si02)를 포함한다. 피각은 일반적으로 전기 절연이다. 피각은 매우 다양한 크기, 표면 특징, 모양, 및 기타 속성을 포함할 수 있다. 예를 들어, 피각은 원통형, 구형, 원판형, 또는 각기둥형을 포함하나 이에 한정되지 않는 다양한 모양을 포함할 수 있다. 피각은 대칭 모양 또는 비-대칭 모양을 포함한다. 규조류는 방사 대칭의 존재 또는 부족을 기준으로 규조류를 분류하여, 피각의 모양 및/또는 대칭에 따라 분류될 수 있다. 피각은 약 1 마이크론 미만 내지 약 수백 마이크론의 범위 내의 크기를 포함할 수 있다. 피각은 또한 일정치 않은 공극(pores) 또는 틈(slits)을 가진 다양한 기공(porosity)을 포함할 수 있다. 피각의 공극 또는 틈은 모양, 크기, 및/또는 밀도에서 달라질 수 있다. 예를 들어, 피각은 약 5 nm 내지 약 1000 nm의 크기를 갖는 공극을 포함할 수 있다.
피각은 피각의 크기, 피각 모양, 기공, 및/또는 물질 조성으로 인해, 상당한 기계적 강도 또는 전단 응력(shear stress)에 대한 저항을 포함할 수 있다.
배터리 (예를 들어, 충전용 배터리), 연료전지, 축전기(capacitor), 및/또는 슈퍼축전기(supercapacitor) (예를 들어, 전기 이중층 축전기(electric double-layer capacitor, EDLC))와 같은 에너지 저장 장치는, 에너지 저장 장치의 적어도 하나의 층에 박아 넣은 피각을 이용하여 제조될 수 있다. 피각은 선택된 모양, 크기, 기공, 물질, 표면 특징, 및/또는 다른 적당한 피각 속성을 가지는 것으로 분류될 수 있으며, 균일한 또는 실질적으로 균일할 수 있거나 또는 변할 수 있다. 피각은 피각 표면 개질 구조체 및/또는 물질을 포함할 수 있다. 에너지 저장 장치는 전극, 분리기, 및/또는 집전 장치(current collectors)와 같은 층을 포함할 수 있다. 예를 들어, 분리기는 제 1 전극 및 제 2 전극 사이에 배치될 수 있으며, 제 1 집전 장치는 제 1 전극에 결합될 수 있고, 제 2 집전 장치는 제 2 전극에 결합될 수 있다. 적어도 하나의 분리기, 제 1 전극, 및 제 2 전극은 피각을 포함할 수 있다. 적어도 에너지 저장 장치의 부분에 피각의 내포는 스크린 인쇄, 롤투롤 인쇄(roll-to-roll printing), 잉크-젯 인쇄, 및/또는 다른 적당한 인쇄 공정을 포함하여, 인쇄 기술을 이용한 에너지 저장 장치를 제조하는데 도움이 될 수 있다. 피각은 제조하는 동안 및/또는 사용하는 동안 균일한 또는 실질적으로 균일한 두께를 유지하기 위해 에너지 저장 장치 층에 구조적 지지체를 제공하고 에너지 저장 장치 층을 도울 수 있다. 다공성 피각은 전자 또는 이온성 종의 방해받지 않는 또는 실질적으로 방해받지 않는 흐름을 허여할 수 있다. 표면 구조체 또는 물질을 포함하는 피각은 층의 전도도를 증가시킬 수 있다.
일 실시예에 있어서, 인쇄 에너지 저장 장치는 제 1 전극, 제 2 전극, 및 제 1 전극과 제 2 전극 사이의 분리기를 포함한다. 적어도 하나의 제 1 전극, 제 2 전극, 및 분리기는 피각을 포함한다.
일 실시예에 있어서, 분리기는 피각을 포함한다. 일 실시예에 있어서, 제 1 전극은 피각을 포함한다. 일 실시예에 있어서, 분리기 및 제 1 전극은 피각을 포함한다. 일 실시예에 있어서, 제 2 전극은 피각을 포함한다. 일 실시예에 있어서, 분리기 및 제 2 전극은 피각을 포함한다. 일 실시예에 있어서, 제 1 전극 및 제 2 전극은 피각을 포함한다. 일 실시예에 있어서, 분리기, 제 1 전극, 및 제 2 전극은 피각을 포함한다.
일 실시예에 있어서, 피각은 실질적으로 균일한 특성을 가진다. 일 실시예에 있어서, 특성은 원통형, 구형, 원판형, 또는 각기둥형을 포함하는 모양을 포함한다. 일 실시예에 있어서, 특성은 직경, 길이, 또는 장축(longest axis)을 포함하는 크기를 포함한다. 일 실시예에 있어서, 특성은 기공을 포함한다. 일 실시예에 있어서, 특성은 기계적 강도를 포함한다.
일 실시예에 있어서, 피각은 표면 개질 구조체를 포함한다. 일 실시예에 있어서, 표면 개질 구조체는 전도성 물질을 포함한다. 일 실시예에 있어서, 전도성 물질은 적어도 하나의 은, 알루미늄, 탄탈룸(tantalum), 구리, 리튬, 마그네슘, 및 놋쇠 (brass)를 포함한다. 일 실시예에 있어서, 표면 개질 구조체는 산화 아연 (ZnO)을 포함한다. 일 실시예에 있어서, 표면 개질 구조체는 반도체를 포함한다. 일 실시예에 있어서, 반도체는 적어도 하나의 실리콘, 게르마늄, 실리콘 게르마늄, 및 갈륨 비소 (gallium arsenide)를 포함한다. 일 실시예에 있어서, 표면 개질 구조체는 적어도 하나의 나노와이어, 나노입자, 및 장미 모양(rosette shape)을 갖는 구조체를 포함한다. 일 실시예에 있어서, 표면 개질 구조체는 피각의 외부 표면에 있다. 일 실시예에 있어서, 표면 개질 구조체는 피각의 내부 표면에 있다. 일 실시예에 있어서, 표면 개질 구조체는 피각의 내부 표면 및 외부 표면에 있다.
일 실시예에 있어서, 피각은 표면 개질 물질을 포함한다. 일 실시예에 있어서, 표면 개질 물질은 전도성 물질을 포함한다. 일 실시예에 있어서, 표면 개질 물질은 적어도 하나의 은, 알루미늄, 탄탈룸, 구리, 리튬, 마그네슘, 및 놋쇠를 포함한다. 일 실시예에 있어서, 표면 개질 물질은 ZnO를 포함한다. 일 실시예에 있어서, 표면 개질 물질은 반도체를 포함한다. 일 실시예에 있어서, 반도체는 적어도 하나의 실리콘, 게르마늄, 실리콘 게르마늄, 및 갈륨 비소를 포함한다. 일 실시예에 있어서, 표면 개질 물질은 피각의 외부 표면에 있다. 일 실시예에 있어서, 표면 개질 물질은 피각의 내부 표면에 있다. 일 실시예에 있어서, 표면 개질 물질은 피각의 내부 표면 및 외부 표면에 있다.
일 실시예에 있어서, 제 1 전극은 전도성 충전제를 포함한다. 일 실시예에 있어서, 제 2 전극은 전도성 충전제를 포함한다. 일 실시예에 있어서, 제 1 전극 및 제 2 전극은 전도성 충전제를 포함한다. 일 실시예에 있어서, 전도성 충전제는 흑연 탄소를 포함한다. 일 실시예에 있어서, 전도성 충전제는 그래핀(graphene)을 포함한다. 일 실시예에 있어서, 전도성 충전제는 탄소 나노튜브를 포함한다.
일 실시예에 있어서, 제 1 전극은 접착 물질을 포함한다. 일 실시예에 있어서, 제 2 전극은 접착 물질을 포함한다. 일 실시예에 있어서, 제 1 전극 및 2 전극은 접착 물질을 포함한다. 일 실시예에 있어서, 분리기는 접착 물질을 포함한다. 일 실시예에 있어서, 제 1 전극 및 분리기는 접착 물질을 포함한다. 일 실시예에 있어서, 제 2 전극 및 분리기는 접착 물질을 포함한다. 일 실시예에 있어서, 제 1 전극, 제 2 전극, 및 분리기는 접착 물질을 포함한다. 일 실시예에 있어서, 접착 물질은 고분자를 포함한다.
일 실시예에 있어서, 분리기는 전해질을 포함한다. 일 실시예에 있어서, 전해질은 적어도 하나의 이온성 액체, 산, 염기, 및 염을 포함한다. 일 실시예에 있어서, 전해질은 전해질 겔을 포함한다.
일 실시예에 있어서, 장치는 제 1 전극과 함께 전기통신의 제 1 집전 장치를 포함한다. 일 실시예에 있어서, 장치는 제 2 전극과 함께 전기통신의 제 2 집전 장치를 포함한다. 일 실시예에 있어서, 장치는 제 1 전극과 함께 전기통신의 제 1 집전 장치 및 제 2 전극과 함께 전기통신의 제 2 집전 장치를 포함한다.
일 실시예에 있어서, 인쇄 에너지 저장 장치는 축전기를 포함한다. 일 실시예에 있어서, 인쇄 에너지 저장 장치는 슈퍼축전기를 포함한다. 일 실시예에 있어서, 인쇄 에너지 저장 장치는 배터리를 포함한다.
일 실시예에 있어서, 시스템은 서로의 상부에 적층된 본 명세서에 기재된 바와 같은 다수의 인쇄 에너지 저장 장치를 포함한다. 일 실시예에 있어서, 전기 장치는 본 명세서에 기재된 인쇄 에너지 저장 장치 또는 시스템을 포함한다.
일 실시예에 있어서, 인쇄 에너지 저장 장치의 막(membrane)은 피각을 포함한다.
일 실시예에 있어서, 피각은 실질적으로 균일한 특성을 가진다. 일 실시예에 있어서, 특성은 원통형, 구형, 원판형, 또는 각기둥형을 포함하는 모양을 포함한다. 일 실시예에 있어서, 특성은 직경, 길이, 또는 장축을 포함하는 크기를 포함한다. 일 실시예에 있어서, 특성은 기공을 포함한다. 일 실시예에 있어서, 특성은 기계적 강도를 포함한다.
일 실시예에 있어서, 피각은 표면 개질 구조체를 포함한다. 일 실시예에 있어서, 표면 개질 구조체는 전도성 물질을 포함한다. 일 실시예에 있어서, 전도성 물질은 적어도 하나의 은, 알루미늄, 탄탈룸, 구리, 리튬, 마그네슘, 및 놋쇠를 포함한다. 일 실시예에 있어서, 표면 개질 구조체는 산화 아연 (ZnO)을 포함한다. 일 실시예에 있어서, 표면 개질 구조체는 반도체를 포함한다. 일 실시예에 있어서, 반도체는 적어도 하나의 실리콘, 게르마늄, 실리콘 게르마늄, 및 갈륨 비소를 포함한다. 일 실시예에 있어서, 표면 개질 구조체는 적어도 하나의 나노와이어, 나노입자, 및 장미 모양을 갖는 구조체를 포함한다. 일 실시예에 있어서, 표면 개질 구조체는 피각의 외부 표면에 있다. 일 실시예에 있어서, 표면 개질 구조체는 피각의 내부 표면에 있다. 일 실시예에 있어서, 표면 개질 구조체는 피각의 내부 표면 및 외부 표면에 있다.
일 실시예에 있어서, 피각은 표면 개질 물질을 포함한다. 일 실시예에 있어서, 표면 개질 물질은 전도성 물질을 포함한다. 일 실시예에 있어서, 표면 개질 물질은 적어도 하나의 은, 알루미늄, 탄탈룸, 구리, 리튬, 마그네슘, 및 놋쇠를 포함한다. 일 실시예에 있어서, 표면 개질 물질은 ZnO를 포함한다. 일 실시예에 있어서, 표면 개질 물질은 반도체를 포함한다. 일 실시예에 있어서, 반도체는 적어도 하나의 실리콘, 게르마늄, 실리콘 게르마늄, 및 갈륨 비소를 포함한다. 일 실시예에 있어서, 표면 개질 물질은 피각의 외부 표면에 있다. 일 실시예에 있어서, 표면 개질 물질은 피각의 내부 표면에 있다. 일 실시예에 있어서, 표면 개질 물질은 피각의 내부 표면 및 외부 표면에 있다.
일 실시예에 있어서, 막은 전도성 충전제를 더 포함한다. 일 실시예에 있어서, 전도성 충전제는 흑연 탄소를 포함한다. 일 실시예에 있어서, 전도성 충전제는 그래핀을 포함한다.
일 실시예에 있어서, 막은 접착 물질을 더 포함한다. 일 실시예에 있어서, 접착 물질은 고분자를 포함한다.
일 실시예에 있어서, 막은 전해질을 더 포함한다. 일 실시예에 있어서, 전해질은 적어도 하나의 이온성 액체, 산, 염기, 및 염을 포함한다. 일 실시예에 있어서, 전해질은 전해질 겔을 포함한다.
일 실시예에 있어서, 에너지 저장 장치는 본 명세서에 기재된 바와 같은 막을 포함한다. 일 실시예에 있어서, 인쇄 에너지 저장 장치는 축전기를 포함한다. 일 실시예에 있어서, 인쇄 에너지 저장 장치는 슈퍼축전기를 포함한다. 일 실시예에 있어서, 인쇄 에너지 저장 장치는 배터리를 포함한다. 일 실시예에 있어서, 시스템은 서로의 상부에 적층된 본 명세서에 기재된 바와 같은 다수의 에너지 저장 장치를 포함한다. 일 실시예에 있어서, 전기 장치는 본 명세서에 기재된 인쇄 에너지 저장 장치 또는 시스템을 포함한다.
일 실시예에 있어서, 인쇄 에너지 저장 장치의 제조 방법은 제 1 전극을 형성하는 단계, 제 2 전극을 형성하는 단계, 및 제 1 전극과 제 2 전극 사이의 분리기를 형성하는 단계를 포함한다. 적어도 하나의 제 1 전극, 제 2 전극, 및 분리기는 피각을 포함한다.
일 실시예에 있어서, 분리기는 피각을 포함한다. 일 실시예에 있어서, 분리기를 형성하는 단계는 피각의 분산물을 형성하는 단계를 포함한다. 일 실시예에 있어서, 분리기를 형성하는 단계는 분리기를 스크린 인쇄하는 단계를 포함한다. 일 실시예에 있어서, 분리기를 형성하는 단계는 피각의 막을 형성하는 단계를 포함한다. 일 실시예에 있어서, 분리기를 형성하는 단계는 분리기를 포함하는 막을 롤투롤 인쇄하는 단계를 포함한다.
일 실시예에 있어서, 제 1 전극은 피각을 포함한다. 일 실시예에 있어서, 제 1 전극을 형성하는 단계는 피각의 분산물을 형성하는 단계를 포함한다. 일 실시예에 있어서, 제 1 전극을 형성하는 단계는 제 1 전극을 스크린 인쇄하는 단계를 포함한다. 일 실시예에 있어서, 제 1 전극을 형성하는 단계는 피각의 막을 형성하는 단계를 포함한다. 일 실시예에 있어서, 제 1 전극을 형성하는 단계는 제 1 전극을 포함하는 막을 롤투롤 인쇄하는 단계를 포함한다.
일 실시예에 있어서, 제 2 전극은 피각을 포함한다. 일 실시예에 있어서, 제 2 전극을 형성하는 단계는 피각의 분산물을 형성하는 단계를 포함한다. 일 실시예에 있어서, 제 2 전극을 형성하는 단계는 제 2 전극을 스크린 인쇄하는 단계를 포함한다. 일 실시예에 있어서, 제 2 전극을 형성하는 단계는 피각의 막을 형성하는 단계를 포함한다. 일 실시예에 있어서, 제 2 전극을 형성하는 단계는 제 2 전극을 포함하는 막을 롤투롤 인쇄하는 단계를 포함한다.
일 실시예에 있어서, 방법은 특성에 따라 피각을 분류하는 단계를 더 포함한다. 일 실시예에 있어서, 특성은 적어도 하나의 모양, 크기, 물질, 및 기공을 포함한다.
일 실시예에 있어서, 잉크는 용액 및 용액에 분산된 피각을 포함한다.
일 실시예에 있어서, 피각은 실질적으로 균일한 특성을 가진다. 일 실시예에 있어서, 특성은 원통형, 구형, 원판형, 또는 각기둥형을 포함하는 모양을 포함한다. 일 실시예에 있어서, 특성은 직경, 길이, 또는 장축을 포함하는 크기를 포함한다. 일 실시예에 있어서, 특성은 기공을 포함한다. 일 실시예에 있어서, 특성은 기계적 강도를 포함한다.
일 실시예에 있어서, 피각은 표면 개질 구조체를 포함한다. 일 실시예에 있어서, 표면 개질 구조체는 전도성 물질을 포함한다. 일 실시예에 있어서, 전도성 물질은 적어도 하나의 은, 알루미늄, 탄탈룸, 구리, 리튬, 마그네슘, 및 놋쇠를 포함한다. 일 실시예에 있어서, 표면 개질 구조체는 산화 아연 (ZnO)을 포함한다. 일 실시예에 있어서, 표면 개질 구조체는 반도체를 포함한다. 일 실시예에 있어서, 반도체는 적어도 하나의 실리콘, 게르마늄, 실리콘 게르마늄, 및 갈륨 비소를 포함한다. 일 실시예에 있어서, 표면 개질 구조체는 적어도 하나의 나노와이어, 나노입자, 및 장미 모양을 갖는 구조체를 포함한다. 일 실시예에 있어서, 표면 개질 구조체는 피각의 외부 표면에 있다. 일 실시예에 있어서, 표면 개질 구조체는 피각의 내부 표면에 있다. 일 실시예에 있어서, 표면 개질 구조체는 피각의 내부 표면 및 외부 표면에 있다.
일 실시예에 있어서, 피각은 표면 개질 물질을 포함한다. 일 실시예에 있어서, 표면 개질 물질은 전도성 물질을 포함한다. 일 실시예에 있어서, 표면 개질 물질은 적어도 하나의 은, 알루미늄, 탄탈룸, 구리, 리튬, 마그네슘, 및 놋쇠를 포함한다. 일 실시예에 있어서, 표면 개질 물질은 ZnO를 포함한다. 일 실시예에 있어서, 표면 개질 물질은 반도체를 포함한다. 일 실시예에 있어서, 반도체는 적어도 하나의 실리콘, 게르마늄, 실리콘 게르마늄, 및 갈륨 비소를 포함한다. 일 실시예에 있어서, 표면 개질 물질은 피각의 외부 표면에 있다. 일 실시예에 있어서, 표면 개질 물질은 피각의 내부 표면에 있다. 일 실시예에 있어서, 표면 개질 물질은 피각의 내부 표면 및 외부 표면에 있다.
일 실시예에 있어서, 잉크는 전도성 충전제를 더 포함한다. 일 실시예에 있어서, 전도성 충전제는 흑연 탄소를 포함한다. 일 실시예에 있어서, 전도성 충전제는 그래핀을 포함한다.
일 실시예에 있어서, 잉크는 접착 물질을 더 포함한다. 일 실시예에 있어서, 접착 물질은 고분자를 포함한다.
일 실시예에 있어서, 잉크는 전해질을 더 포함한다. 일 실시예에 있어서, 전해질은 적어도 하나의 이온성 액체, 산, 염기, 및 염을 포함한다. 일 실시예에 있어서, 전해질은 전해질 겔을 포함한다.
일 실시예에 있어서, 장치는 본 명세서에 기재된 적어도 하나의 잉크를 포함한다. 일 실시예에 있어서, 장치는 인쇄 에너지 저장 장치를 포함한다. 일 실시예에 있어서, 인쇄 에너지 저장 장치는 축전기를 포함한다. 일 실시예에 있어서, 인쇄 에너지 저장 장치는 슈퍼축전기를 포함한다. 일 실시예에 있어서, 인쇄 에너지 저장 장치는 배터리를 포함한다.
규조류 피각 부분의 추출 방법은 분산 용매에 다수의 규조류 피각 부분을 분산하는 단계를 포함할 수 있다. 적어도 하나의 유기 오염물질 및 무기 오염물질을 제거할 수 있다. 규조류 피각 부분의 추출 방법은 계면활성제에 다수의 규조류 피각 부분을 분산하는 단계를 포함할 수 있으며, 계면활성제는 다수의 규조류 피각 부분의 응집을 감소시킨다. 방법은 원판형 스택 원심분리기(disc stack centrifuge)를 이용한 적어도 하나의 공통적인 특징을 갖는 다수의 규조류 피각 부분을 추출하는 단계를 포함할 수 있다.
일 실시예에 있어서, 적어도 하나의 공통적인 특징은 적어도 하나의 크기, 모양, 물질, 및 깨짐 정도를 포함할 수 있다. 크기는 적어도 하나의 길이 및 직경을 포함할 수 있다.
일 실시예에 있어서, 고체 혼합물은 다수의 규조류 피각 부분을 포함할 수 있다. 규조류 피각 부분의 추출 방법은 고체 혼합물의 입자 크기를 감소시키는 단계를 포함할 수 있다. 고체 혼합물의 입자 크기를 감소시키는 단계는 분산 용매에 다수의 규조류 피각 부분을 분산하는 단계 이전일 수 있다. 일 실시예에 있어서, 입자 크기를 감소시키는 단계는 고체 혼합물을 분쇄하는 단계를 포함할 수 있다. 고체 혼합물을 분쇄하는 단계는 적어도 하나의 막자사발(mortar) 및 막자(pestle), 쟈밀 (jar mill), 및 암석 분쇄기(rock crusher)로 고체 혼합물에 적용하는 단계를 포함할 수 있다.
일 실시예에 있어서, 다수의 규조류 피각 부분의 가장 긴 피각 부분 크기보다 큰 가장 긴 성분 크기를 갖는 고체 혼합물의 성분이 추출될 수 있다. 고체 혼합물의 성분을 추출하는 단계는 고체 혼합물을 체질(sieving)하는 단계를 포함할 수 있다. 고체 혼합물을 체질하는 단계는 약 15 마이크론 내지 약 25 마이크론의 메쉬 크기를 갖는 체(sieve)로 고체 혼합물을 처리하는 단계를 포함할 수 있다. 고체 혼합물을 체질하는 단계는 약 10 마이크론 내지 약 25 마이크론의 메쉬 크기를 갖는 체로 고체 혼합물을 처리하는 단계를 포함할 수 있다.
일 실시예에 있어서, 규조류 피각 부분의 추출 방법은 제 2 규조류 피각 부분으로부터 제 1 규조류 피각 부분을 분리하기 위하여 다수의 규조류 피각 부분을 분류하는 단계를 포함할 수 있으며, 제 1 규조류 피각 부분은 더 큰 가장 긴 크기를 갖는다. 예를 들어, 제 1 규조류 피각 부분은 다수의 깨지지 않은 규조류 피각 부분을 포함할 수 있다. 제 2 규조류 피각 부분은 다수의 깨진 규조류 피각 부분을 포함할 수 있다.
일 실시예에 있어서, 다수의 규조류 피각 부분을 분류하는 단계는 다수의 규조류 피각 부분을 여과하는 단계를 포함할 수 있다. 여과 단계는 다수의 규조류 피각 부분의 응집을 방해하는 단계를 포함할 수 있다. 일 실시예에 있어서, 다수의 규조류 피각 부분의 응집을 방해하는 단계는 교반하는 단계를 포함할 수 있다. 일 실시예에 있어서, 다수의 규조류 피각 부분의 응집을 방해하는 단계는 흔드는 단계를 포함할 수 있다. 일 실시예에 있어서, 다수의 규조류 피각 부분의 응집을 방해하는 단계는 버블링(bubbling) 단계를 포함할 수 있다.
여과 단계는 다수의 규조류 피각 부분에 체를 적용하는 단계를 포함할 수 있다. 예를 들어, 체는 약 7 마이크론을 포함하여, 약 5 마이크론 내지 약 10 마이크론의 메쉬 크기를 가질 수 있다.
일 실시예에 있어서, 규조류 피각 부분의 추출 방법은 세척된 규조류 피각 부분을 얻는 단계를 포함할 수 있다. 세척된 규조류 피각 부분을 얻는 단계는 적어도 하나의 유기 오염물질 및 무기 오염물질을 제거한 후 세정 용매로 다수의 규조류 피각 부분을 세척하는 단계를 포함할 수 있다. 일 실시예에 있어서, 세척된 규조류 피각 부분을 얻는 단계는 세정 용매로 적어도 하나의 공통적인 특징을 갖는 규조류 피각 부분을 세척하는 단계를 포함할 수 있다.
세정 용매는 제거될 수 있다. 예를 들어, 세정 용매의 제거 단계는 적어도 하나의 유기 오염물질 및 무기 오염물질을 제거한 후 다수의 규조류 피각 부분을 침전시키는 단계를 포함할 수 있다. 예를 들어, 세정 용매의 제거 단계는 적어도 하나의 공통적인 특징을 갖는 다수의 규조류 피각 부분을 침전시키는 단계를 포함할 수 있다. 다수의 규조류 피각 부분을 침전시키는 단계는 원심분리 단계를 포함할 수 있다. 일 실시예에 있어서, 원심분리 단계는 대규모 처리에 적합한 원심분리기를 적용하는 단계를 포함할 수 있다. 일 실시예에 있어서, 원심분리 단계는 적어도 하나의 원판형 스택 원심분리기, 디캔터 원심분리기(decanter centrifuge), 및 원통형 원심분리기(tubular bowl centrifuge)를 적용하는 단계를 포함할 수 있다.
일 실시예에 있어서, 적어도 하나의 분산 용매 및 세정 용매는 물을 포함할 수 있다.
일 실시예에 있어서, 적어도 하나의 분산 용매에 다수의 규조류 피각 부분을 분산하는 단계 및 계면활성제에 다수의 규조류 피각 부분을 분산하는 단계는 다수의 규조류 피각을 초음파 처리하는 단계를 포함할 수 있다.
계면활성제는 양이온성 계면활성제를 포함할 수 있다. 예를 들어, 양이온성 계면활성제는 적어도 하나의 염화 벤잘코늄(benzalkonium chloride), 브롬화 세트리모늄(cetrimonium bromide), 염화 라우릴 메틸 글루세트-10 히드록시프로필 디모늄(lauryl methyl gluceth-10 hydroxypropyl dimonium chloride), 염화 벤제토늄 (benzethonium chloride), 브로니독스(bronidox), 염화 디메틸디옥타데실암모늄 (dimethyldioctadecylammonium chloride), 및 수산화 테트라메틸암모늄 (tetramethylammonium hydroxide)을 포함할 수 있다.
계면활성제는 비-이온성 계면활성제를 포함할 수 있다. 예를 들어, 비-이온성 계면활성제는 적어도 하나의 세틸 알콜, 스테아릴 알콜, 세토스테아릴 알콜, 올레일 알콜, 폴리옥시에틸렌 글리콜 알킬 에테르, 옥타에틸렌 글리콜 모노도데실 에테르, 글루코시드 알킬 에테르, 데실 글루코시드, 폴리옥시에틸렌 글리콜 옥틸페놀 에테르, 옥틸페놀 에톡실레이트 (Triton X-100™), 노녹시놀-9(nonoxynol-9), 글리세릴 라우레이트, 폴리소르베이트, 및 폴록사머를 포함할 수 있다.
일 실시예에 있어서, 규조류 피각 부분의 추출 방법은 첨가 성분에 다수의 규조류 피각을 분산하는 단계를 포함할 수 있다. 첨가 성분에 다수의 규조류 피각을 분산하는 단계는 계면활성제에 다수의 규조류 피각을 분산하는 단계 이전일 수 있다. 첨가 성분에 다수의 규조류 피각을 분산하는 단계는 계면활성제에 다수의 규조류 피각을 분산하는 단계 이후일 수 있다. 첨가 성분에 다수의 규조류 피각을 분산하는 단계는 계면활성제에 다수의 규조류 피각을 분산하는 단계와 적어도 부분적으로 동시일 수 있다. 첨가 성분은 적어도 하나의 염화 칼륨, 염화 암모늄, 수산화 암모늄, 및 수산화 나트륨을 포함할 수 있다.
일 실시예에 있어서, 다수의 규조류 피각 부분을 분산하는 단계는 약 1 중량% 내지 약 5 중량%의 다수의 규조류 피각 부분을 포함하는 분산물을 얻는 단계를 포함할 수 있다.
일 실시예에 있어서, 유기 오염물질의 제거 단계는 표백제의 존재 하에 다수의 규조류 피각 부분을 가열하는 단계를 포함할 수 있다. 표백제는 적어도 하나의 과산화수소 및 질산을 포함할 수 있다. 다수의 규조류 피각 부분을 가열하는 단계는 약 10 부피% 내지 약 20 부피% 범위의 과산화수소의 양을 포함하는 용액에서 다수의 규조류 피각 부분을 가열하는 단계를 포함할 수 있다. 다수의 규조류 피각 부분을 가열하는 단계는 약 5분 내지 약 15분 동안 다수의 규조류 피각 부분을 가열하는 단계를 포함할 수 있다.
일 실시예에 있어서, 유기 오염물질의 제거 단계는 다수의 규조류 피각 부분을 어닐링하는 단계를 포함할 수 있다. 일 실시예에 있어서, 무기 오염물질의 제거 단계는 다수의 규조류 피각 부분과 적어도 하나의 염산 및 황산을 혼합하는 단계를 포함할 수 있다. 다수의 규조류 피각 부분과 적어도 하나의 염산 및 황산을 혼합하는 단계는 약 15 부피% 내지 약 25 부피%의 염산을 포함하는 용액에서 다수의 규조류 피각 부분을 혼합하는 단계를 포함할 수 있다. 예를 들어, 혼합 단계는 약 20분 내지 약 40분 동안일 수 있다.
규조류 피각 부분의 추출 방법은 원판형 스택 원심분리기를 이용한 적어도 하나의 공통적인 특징을 갖는 다수의 규조류 피각 부분을 추출하는 단계를 포함할 수 있다.
일 실시예에 있어서, 규조류 피각 부분의 추출 방법은 분산 용매에 다수의 규조류 피각 부분을 분산하는 단계를 포함할 수 있다. 일 실시예에 있어서, 방법은 적어도 하나의 유기 오염물질 및 무기 오염물질을 제거하는 단계를 포함할 수 있다. 일 실시예에 있어서, 방법은 계면활성제에 다수의 규조류 피각 부분을 분산하는 단계를 포함할 수 있으며, 계면활성제는 다수의 규조류 피각 부분의 응집을 감소시킨다.
적어도 하나의 공통적인 특징은 적어도 하나의 크기, 모양, 물질, 및 깨짐 정도를 포함할 수 있다. 크기는 적어도 하나의 길이 및 직경을 포함할 수 있다.
일 실시예에 있어서, 고체 혼합물은 다수의 규조류 피각 부분을 포함할 수 있다. 규조류 피각 부분의 추출 방법은 고체 혼합물의 입자 크기를 감소시키는 단계를 포함할 수 있다. 고체 혼합물의 입자 크기를 감소시키는 단계는 분산 용매에 다수의 규조류 피각 부분을 분산하는 단계 이전일 수 있다. 일 실시예에 있어서, 입자 크기를 감소시키는 단계는 고체 혼합물을 분쇄하는 단계를 포함할 수 있다. 고체 혼합물을 분쇄하는 단계는 적어도 하나의 막자사발 및 막자, 쟈밀, 및 암석 분쇄기로 고체 혼합물에 적용하는 단계를 포함할 수 있다.
일 실시예에 있어서, 다수의 규조류 피각 부분의 가장 긴 피각 부분 크기보다 큰 가장 긴 성분 크기를 갖는 고체 혼합물의 성분이 추출될 수 있다. 고체 혼합물의 성분을 추출하는 단계는 고체 혼합물을 체질하는 단계를 포함할 수 있다. 고체 혼합물을 체질하는 단계는 약 15 마이크론 내지 약 25 마이크론의 메쉬 크기를 갖는 체로 고체 혼합물을 처리하는 단계를 포함할 수 있다. 고체 혼합물을 체질하는 단계는 약 10 마이크론 내지 약 25 마이크론의 메쉬 크기를 갖는 체로 고체 혼합물을 처리하는 단계를 포함할 수 있다.
일 실시예에 있어서, 규조류 피각 부분의 추출 방법은 제 2 규조류 피각 부분으로부터 제 1 규조류 피각 부분을 분리하기 위하여 다수의 규조류 피각 부분을 분류하는 단계를 포함할 수 있으며, 제 1 규조류 피각 부분은 더 큰 가장 긴 크기를 갖는다. 예를 들어, 제 1 규조류 피각 부분은 다수의 깨지지 않은 규조류 피각 부분을 포함할 수 있다. 제 2 규조류 피각 부분은 다수의 깨진 규조류 피각 부분을 포함할 수 있다.
일 실시예에 있어서, 다수의 규조류 피각 부분을 분류하는 단계는 다수의 규조류 피각 부분을 여과하는 단계를 포함할 수 있다. 여과 단계는 다수의 규조류 피각 부분의 응집을 방해하는 단계를 포함할 수 있다. 일 실시예에 있어서, 다수의 규조류 피각 부분의 응집을 방해하는 단계는 교반하는 단계를 포함할 수 있다. 일 실시예에 있어서, 다수의 규조류 피각 부분의 응집을 방해하는 단계는 흔드는 단계를 포함할 수 있다. 일 실시예에 있어서, 다수의 규조류 피각 부분의 응집을 방해하는 단계는 버블링 단계를 포함할 수 있다.
여과 단계는 다수의 규조류 피각 부분에 체를 적용하는 단계를 포함할 수 있다. 예를 들어, 체는 약 7 마이크론을 포함하여, 약 5 마이크론 내지 약 10 마이크론의 메쉬 크기를 가질 수 있다.
일 실시예에 있어서, 규조류 피각 부분의 추출 방법은 세척된 규조류 피각 부분을 얻는 단계를 포함할 수 있다. 세척된 규조류 피각 부분을 얻는 단계는 적어도 하나의 유기 오염물질 및 무기 오염물질을 제거한 후 세정 용매로 다수의 규조류 피각 부분을 세척하는 단계를 포함할 수 있다. 일 실시예에 있어서, 세척된 규조류 피각 부분을 얻는 단계는 세정 용매로 적어도 하나의 공통적인 특징을 갖는 규조류 피각 부분을 세척하는 단계를 포함할 수 있다.
세정 용매는 제거될 수 있다. 예를 들어, 세정 용매의 제거 단계는 적어도 하나의 유기 오염물질 및 무기 오염물질을 제거한 후 다수의 규조류 피각 부분을 침전시키는 단계를 포함할 수 있다. 예를 들어, 세정 용매의 제거 단계는 적어도 하나의 공통적인 특징을 갖는 다수의 규조류 피각 부분을 침전시키는 단계를 포함할 수 있다. 다수의 규조류 피각 부분을 침전시키는 단계는 원심분리 단계를 포함할 수 있다. 일 실시예에 있어서, 원심분리 단계는 대규모 처리에 적합한 원심분리기를 적용하는 단계를 포함할 수 있다. 일 실시예에 있어서, 원심분리 단계는 적어도 하나의 원판형 스택 원심분리기, 디캔터 원심분리기, 및 원통형 원심분리기를 적용하는 단계를 포함할 수 있다.
일 실시예에 있어서, 적어도 하나의 분산 용매 및 세정 용매는 물을 포함할 수 있다.
일 실시예에 있어서, 적어도 하나의 분산 용매에 다수의 규조류 피각 부분을 분산하는 단계 및 계면활성제에 다수의 규조류 피각 부분을 분산하는 단계는 다수의 규조류 피각을 초음파 처리하는 단계를 포함할 수 있다.
계면활성제는 양이온성 계면활성제를 포함할 수 있다. 예를 들어, 양이온성 계면활성제는 적어도 하나의 염화 벤잘코늄, 브롬화 세트리모늄, 염화 라우릴 메틸 글루세트-10 히드록시프로필 디모늄, 염화 벤제토늄, 브로니독스, 염화 디메틸디옥타데실암모늄, 및 수산화 테트라메틸암모늄을 포함할 수 있다.
계면활성제는 비-이온성 계면활성제를 포함할 수 있다. 예를 들어, 비-이온성 계면활성제는 적어도 하나의 세틸 알콜, 스테아릴 알콜, 세토스테아릴 알콜, 올레일 알콜, 폴리옥시에틸렌 글리콜 알킬 에테르, 옥타에틸렌 글리콜 모노도데실 에테르, 글루코시드 알킬 에테르, 데실 글루코시드, 폴리옥시에틸렌 글리콜 옥틸페놀 에테르, 옥틸페놀 에톡실레이트 (Triton X-100™), 노녹시놀-9, 글리세릴 라우레이트, 폴리소르베이트, 및 폴록사머를 포함할 수 있다.
일 실시예에 있어서, 규조류 피각 부분의 추출 방법은 첨가 성분에 다수의 규조류 피각을 분산하는 단계를 포함할 수 있다. 첨가 성분에 다수의 규조류 피각을 분산하는 단계는 계면활성제에 다수의 규조류 피각을 분산하는 단계 이전일 수 있다. 첨가 성분에 다수의 규조류 피각을 분산하는 단계는 계면활성제에 다수의 규조류 피각을 분산하는 단계 이후일 수 있다. 첨가 성분에 다수의 규조류 피각을 분산하는 단계는 계면활성제에 다수의 규조류 피각을 분산하는 단계와 적어도 부분적으로 동시일 수 있다. 첨가 성분은 적어도 하나의 염화 칼륨, 염화 암모늄, 수산화 암모늄, 및 수산화 나트륨을 포함할 수 있다.
일 실시예에 있어서, 다수의 규조류 피각 부분을 분산하는 단계는 약 1 중량% 내지 약 5 중량%의 다수의 규조류 피각 부분을 포함하는 분산물을 얻는 단계를 포함할 수 있다.
일 실시예에 있어서, 유기 오염물질의 제거 단계는 표백제의 존재 하에 다수의 규조류 피각 부분을 가열하는 단계를 포함할 수 있다. 표백제는 적어도 하나의 과산화수소 및 질산을 포함할 수 있다. 다수의 규조류 피각 부분을 가열하는 단계는 약 10 부피% 내지 약 20 부피% 범위의 과산화수소의 양을 포함하는 용액에서 다수의 규조류 피각 부분을 가열하는 단계를 포함할 수 있다. 다수의 규조류 피각 부분을 가열하는 단계는 약 5분 내지 약 15분 동안 다수의 규조류 피각 부분을 가열하는 단계를 포함할 수 있다.
일 실시예에 있어서, 유기 오염물질의 제거 단계는 다수의 규조류 피각 부분을 어닐링하는 단계를 포함할 수 있다. 일 실시예에 있어서, 무기 오염물질의 제거 단계는 다수의 규조류 피각 부분과 적어도 하나의 염산 및 황산을 혼합하는 단계를 포함할 수 있다. 다수의 규조류 피각 부분과 적어도 하나의 염산 및 황산을 혼합하는 단계는 약 15 부피% 내지 약 25 부피%의 염산을 포함하는 용액에서 다수의 규조류 피각 부분을 혼합하는 단계를 포함할 수 있다. 예를 들어, 혼합 단계는 약 20분 내지 약 40분 동안일 수 있다.
규조류 피각 부분의 추출 방법은 계면활성제와 함께 다수의 규조류 피각 부분을 분산하는 단계를 포함할 수 있으며, 계면활성제는 다수의 규조류 피각 부분의 응집을 감소시킨다.
규조류 피각 부분의 추출 방법은 원판형 스택 원심분리기를 이용한 적어도 하나의 공통적인 특징을 갖는 다수의 규조류 피각 부분을 추출하는 단계를 포함할 수 있다. 일 실시예에 있어서, 규조류 피각 부분의 추출 방법은 분산 용매에 다수의 규조류 피각 부분을 분산하는 단계를 포함할 수 있다. 일 실시예에 있어서, 적어도 하나의 유기 오염물질 및 무기 오염물질은 제거될 수 있다.
일 실시예에 있어서, 적어도 하나의 공통적인 특징은 적어도 하나의 크기, 모양, 물질, 및 깨짐 정도를 포함할 수 있다. 크기는 적어도 하나의 길이 및 직경을 포함할 수 있다.
일 실시예에 있어서, 고체 혼합물은 다수의 규조류 피각 부분을 포함할 수 있다. 규조류 피각 부분의 추출 방법은 고체 혼합물의 입자 크기를 감소시키는 단계를 포함할 수 있다. 고체 혼합물의 입자 크기를 감소시키는 단계는 분산 용매에 다수의 규조류 피각 부분을 분산하는 단계 이전일 수 있다. 일 실시예에 있어서, 입자 크기를 감소시키는 단계는 고체 혼합물을 분쇄하는 단계를 포함할 수 있다. 고체 혼합물을 분쇄하는 단계는 적어도 하나의 막자사발 및 막자, 쟈밀, 및 암석 분쇄기로 고체 혼합물에 적용하는 단계를 포함할 수 있다.
일 실시예에 있어서, 다수의 규조류 피각 부분의 가장 긴 피각 부분 크기보다 큰 가장 긴 성분 크기를 갖는 고체 혼합물의 성분이 추출될 수 있다. 고체 혼합물의 성분을 추출하는 단계는 고체 혼합물을 체질하는 단계를 포함할 수 있다. 고체 혼합물을 체질하는 단계는 약 15 마이크론 내지 약 25 마이크론의 메쉬 크기를 갖는 체로 고체 혼합물을 처리하는 단계를 포함할 수 있다. 고체 혼합물을 체질하는 단계는 약 10 마이크론 내지 약 25 마이크론의 메쉬 크기를 갖는 체로 고체 혼합물을 처리하는 단계를 포함할 수 있다.
일 실시예에 있어서, 규조류 피각 부분의 추출 방법은 제 2 규조류 피각 부분으로부터 제 1 규조류 피각 부분을 분리하기 위하여 다수의 규조류 피각 부분을 분류하는 단계를 포함할 수 있으며, 제 1 규조류 피각 부분은 더 큰 가장 긴 크기를 갖는다. 예를 들어, 제 1 규조류 피각 부분은 다수의 깨지지 않은 규조류 피각 부분을 포함할 수 있다. 제 2 규조류 피각 부분은 다수의 깨진 규조류 피각 부분을 포함할 수 있다.
일 실시예에 있어서, 다수의 규조류 피각 부분을 분류하는 단계는 다수의 규조류 피각 부분을 여과하는 단계를 포함할 수 있다. 여과 단계는 다수의 규조류 피각 부분의 응집을 방해하는 단계를 포함할 수 있다. 일 실시예에 있어서, 다수의 규조류 피각 부분의 응집을 방해하는 단계는 교반하는 단계를 포함할 수 있다. 일 실시예에 있어서, 다수의 규조류 피각 부분의 응집을 방해하는 단계는 흔드는 단계를 포함할 수 있다. 일 실시예에 있어서, 다수의 규조류 피각 부분의 응집을 방해하는 단계는 버블링 단계를 포함할 수 있다.
여과 단계는 다수의 규조류 피각 부분에 체를 적용하는 단계를 포함할 수 있다. 예를 들어, 체는 약 7 마이크론을 포함하여, 약 5 마이크론 내지 약 10 마이크론의 메쉬 크기를 가질 수 있다.
일 실시예에 있어서, 규조류 피각 부분의 추출 방법은 세척된 규조류 피각 부분을 얻는 단계를 포함할 수 있다. 세척된 규조류 피각 부분을 얻는 단계는 적어도 하나의 유기 오염물질 및 무기 오염물질을 제거한 후 세정 용매로 다수의 규조류 피각 부분을 세척하는 단계를 포함할 수 있다. 일 실시예에 있어서, 세척된 규조류 피각 부분을 얻는 단계는 세정 용매로 적어도 하나의 공통적인 특징을 갖는 규조류 피각 부분을 세척하는 단계를 포함할 수 있다.
세정 용매는 제거될 수 있다. 예를 들어, 세정 용매의 제거 단계는 적어도 하나의 유기 오염물질 및 무기 오염물질을 제거한 후 다수의 규조류 피각 부분을 침전시키는 단계를 포함할 수 있다. 예를 들어, 세정 용매의 제거 단계는 적어도 하나의 공통적인 특징을 갖는 다수의 규조류 피각 부분을 침전시키는 단계를 포함할 수 있다. 다수의 규조류 피각 부분을 침전시키는 단계는 원심분리 단계를 포함할 수 있다. 일 실시예에 있어서, 원심분리 단계는 대규모 처리에 적합한 원심분리기를 적용하는 단계를 포함할 수 있다. 일 실시예에 있어서, 원심분리 단계는 적어도 하나의 원판형 스택 원심분리기, 디캔터 원심분리기, 및 원통형 원심분리기를 적용하는 단계를 포함할 수 있다.
일 실시예에 있어서, 적어도 하나의 분산 용매 및 세정 용매는 물을 포함할 수 있다.
일 실시예에 있어서, 적어도 하나의 분산 용매에 다수의 규조류 피각 부분을 분산하는 단계 및 계면활성제에 다수의 규조류 피각 부분을 분산하는 단계는 다수의 규조류 피각을 초음파 처리하는 단계를 포함할 수 있다.
계면활성제는 양이온성 계면활성제를 포함할 수 있다. 예를 들어, 양이온성 계면활성제는 적어도 하나의 염화 벤잘코늄, 브롬화 세트리모늄, 염화 라우릴 메틸 글루세트-10 히드록시프로필 디모늄, 염화 벤제토늄, 브로니독스, 염화 디메틸디옥타데실암모늄, 및 수산화 테트라메틸암모늄을 포함할 수 있다.
계면활성제는 비-이온성 계면활성제를 포함할 수 있다. 예를 들어, 비-이온성 계면활성제는 적어도 하나의 세틸 알콜, 스테아릴 알콜, 세토스테아릴 알콜, 올레일 알콜, 폴리옥시에틸렌 글리콜 알킬 에테르, 옥타에틸렌 글리콜 모노도데실 에테르, 글루코시드 알킬 에테르, 데실 글루코시드, 폴리옥시에틸렌 글리콜 옥틸페놀 에테르, 옥틸페놀 에톡실레이트 (Triton X-100™), 노녹시놀-9, 글리세릴 라우레이트, 폴리소르베이트, 및 폴록사머를 포함할 수 있다.
일 실시예에 있어서, 규조류 피각 부분의 추출 방법은 첨가 성분에 다수의 규조류 피각을 분산하는 단계를 포함할 수 있다. 첨가 성분에 다수의 규조류 피각을 분산하는 단계는 계면활성제에 다수의 규조류 피각을 분산하는 단계 이전일 수 있다. 첨가 성분에 다수의 규조류 피각을 분산하는 단계는 계면활성제에 다수의 규조류 피각을 분산하는 단계 이후일 수 있다. 첨가 성분에 다수의 규조류 피각을 분산하는 단계는 계면활성제에 다수의 규조류 피각을 분산하는 단계와 적어도 부분적으로 동시일 수 있다. 첨가 성분은 적어도 하나의 염화 칼륨, 염화 암모늄, 수산화 암모늄, 및 수산화 나트륨을 포함할 수 있다.
일 실시예에 있어서, 다수의 규조류 피각 부분을 분산하는 단계는 약 1 중량% 내지 약 5 중량%의 다수의 규조류 피각 부분을 포함하는 분산물을 얻는 단계를 포함할 수 있다.
일 실시예에 있어서, 유기 오염물질의 제거 단계는 표백제의 존재 하에 다수의 규조류 피각 부분을 가열하는 단계를 포함할 수 있다. 표백제는 적어도 하나의 과산화수소 및 질산을 포함할 수 있다. 다수의 규조류 피각 부분을 가열하는 단계는 약 10 부피% 내지 약 20 부피% 범위의 과산화수소의 양을 포함하는 용액에서 다수의 규조류 피각 부분을 가열하는 단계를 포함할 수 있다. 다수의 규조류 피각 부분을 가열하는 단계는 약 5분 내지 약 15분 동안 다수의 규조류 피각 부분을 가열하는 단계를 포함할 수 있다.
일 실시예에 있어서, 유기 오염물질의 제거 단계는 다수의 규조류 피각 부분을 어닐링하는 단계를 포함할 수 있다. 일 실시예에 있어서, 무기 오염물질의 제거 단계는 다수의 규조류 피각 부분과 적어도 하나의 염산 및 황산을 혼합하는 단계를 포함할 수 있다. 다수의 규조류 피각 부분과 적어도 하나의 염산 및 황산을 혼합하는 단계는 약 15 부피% 내지 약 25 부피%의 염산을 포함하는 용액에서 다수의 규조류 피각 부분을 혼합하는 단계를 포함할 수 있다. 예를 들어, 혼합 단계는 약 20분 내지 약 40분 동안일 수 있다.
규조류 피각 부분에 은 나노구조체의 형성 방법은 규조류 피각 부분의 표면에 은 종자 층(silver seed layer)을 형성하는 단계를 포함할 수 있다. 방법은 종자 층 위에 나노구조체를 형성하는 단계를 포함할 수 있다.
일 실시예에 있어서, 나노구조체는 적어도 하나의 코팅, 나노와이어, 나노플레이트(nanoplate), 밀집 어레이의 나노입자, 나노벨트, 및 나노디스크(nanodisk)를 포함할 수 있다. 일 실시예에 있어서, 나노구조체는 은을 포함할 수 있다.
은 종자 층을 형성하는 단계는 제 1 은 기여 성분(silver contributing component) 및 규조류 피각 부분에 고리형 가열 방법을 적용하는 단계를 포함할 수 있다. 일 실시예에 있어서, 고리형 가열 방법을 적용하는 단계는 고리형 마이크로파 전력(cyclic microwave power)을 적용하는 단계를 포함할 수 있다. 고리형 마이크로파 전력을 적용하는 단계는 약 100 Watt 및 500 Watt 사이의 마이크로파 전력을 교류하는 단계를 포함할 수 있다. 예를 들어, 교류 단계는 매분 마이크로파 전력을 교류하는 단계를 포함할 수 있다. 일 실시예에 있어서, 교류 단계는 약 30분 동안 마이크로파 전력을 교류하는 단계를 포함할 수 있다. 일 실시예에 있어서, 교류 단계는 약 20분 내지 약 40분 동안 마이크로파 전력을 교류하는 단계를 포함할 수 있다.
일 실시예에 있어서, 은 종자 층을 형성하는 단계는 규조류 피각 부분과 종자 층 용액을 혼합하는 단계를 포함할 수 있다. 종자 층 용액은 제 1 은 기여 성분 및 종자 층 환원제를 포함할 수 있다. 예를 들어, 종자 층 환원제는 종자 층 용매일 수 있다. 일 실시예에 있어서, 종자 층 환원제 및 종자 층 용매는 폴리에틸렌 글리콜을 포함할 수 있다.
일 실시예에 있어서, 종자 층 용액은 제 1 은 기여 성분, 종자 층 환원제 및 종자 층 용매를 포함할 수 있다.
은 종자 층을 형성하는 단계는 규조류 피각 부분과 종자 층 용액을 혼합하는 단계를 포함할 수 있다. 일 실시예에 있어서, 혼합 단계는 초음파 처리 단계를 포함할 수 있다.
일 실시예에 있어서, 종자 층 환원제는 N,N-디메틸포름아미드를 포함할 수 있으며, 제 1 은 기여 성분은 질산은(silver nitrate)을 포함할 수 있고, 종자 층 용매는 적어도 하나의 물 및 폴리비닐피롤리돈을 포함할 수 있다.
나노구조체를 형성하는 단계는 규조류 피각 부분과 나노구조체 형성 환원제를 혼합하는 단계를 포함할 수 있다. 일 실시예에 있어서, 나노구조체를 형성하는 단계는 규조류 피각 부분과 나노구조체 형성 환원제를 혼합한 후 규조류 피각 부분을 가열하는 단계를 더 포함할 수 있다. 예를 들어, 가열 단계는 약 120℃ 내지 약 160℃의 온도로 가열하는 단계를 포함할 수 있다.
일 실시예에 있어서, 나노구조체를 형성하는 단계는 나노구조체 형성 용매 및 제 2 은 기여 성분을 포함하는 적정 용액(titration solution)으로 규조류 피각 부분을 적정하는 단계를 포함할 수 있다. 일 실시예에 있어서, 나노구조체를 형성하는 단계는 적정 용액으로 규조류 피각 부분을 적정한 후 혼합하는 단계를 포함할 수 있다.
일 실시예에 있어서, 적어도 하나의 종자 층 환원제 및 나노구조체 형성 환원제는 적어도 하나의 히드라진, 포름알데히드, 글루코오스, 주석산 나트륨(sodium tartrate), 옥살산, 포름산, 아스코르브산, 및 에틸렌 글리콜을 포함할 수 있다.
일 실시예에 있어서, 적어도 하나의 제 1 은 기여 성분 및 제 2 은 기여 성분은 적어도 하나의 은염(silver salt) 및 산화은(silver oxide)을 포함할 수 있다. 예를 들어, 은염은 적어도 하나의 질산은 및 암모니아성 질산은(ammoniacal silver nitrate), 염화 은 (AgCl), 시안화 은 (AgCN), 은 테트라플루오로보레이트(silver tetrafluoroborate), 은 헥사플루오로포스페이트, 및 은 에틸설페이트를 포함할 수 있다.
나노구조체를 형성하는 단계는 산화물 형성을 감소시키기 위해 주변 (ambient)에 있을 수 있다. 예를 들어, 주변은 아르곤 대기를 포함할 수 있다.
일 실시예에 있어서, 적어도 하나의 종자 층 용매 및 나노구조체 형성 용매는 적어도 하나의 프로필렌 글리콜, 물, 메탄올, 에탄올, 1-프로판올, 2-프로판올, l-메톡시-2-프로판올, 1-부탄올, 2-부탄올, 1-펜탄올, 2-펜탄올, 3-펜탄올, 1-헥산올, 2-헥산올, 3-헥산올, 옥탄올, 1-옥탄올, 2-옥탄올, 3-옥탄올, 테트라히드로퓨르퓨릴 알콜 (THFA), 시클로헥산올, 시클로펜탄올, 테르피네올, 부틸 락톤, 메틸 에틸 에테르, 디에틸 에테르, 에틸 프로필 에테르, 폴리에테르, 디케톤, 시클로헥산온, 시클로펜탄온, 시클로헵탄온, 시클로옥탄온, 아세톤, 벤조페논, 아세틸아세톤, 아세토페논, 시클로프로판온, 이소포론, 메틸 에틸 케톤, 에틸 아세테이트, 디메틸 아디페이트, 프로필렌 글리콜 모노메틸 에테르 아세테이트, 디메틸 글루타레이트, 디메틸 석시네이트, 글리세린 아세테이트, 카복실레이트, 프로필렌 카보네이트, 글리세린, 디올, 트리올, 테트라올, 펜타올, 에틸렌 글리콜, 디에틸렌 글리콜, 폴리에틸렌 글리콜, 프로필렌 글리콜, 디프로필렌 글리콜, 글리콜 에테르, 글리콜 에테르 아세테이트, 1,4-부탄디올, 1,2-부탄디올, 2,3-부탄디올, 1,3-프로판디올, 1,4-부탄디올, 1,5-펜탄디올, 1,8-옥탄디올, 1,2-프로판디올, 1,3-부탄디올, 1,2-펜탄디올, 에토헥사디올, p-메탄-3,8-디올, 2-메틸-2,4-펜탄디올, 테트라메틸 우레아, n-메틸피롤리돈, 아세토니트릴, 테트라히드로퓨란 (THF), 디메틸 포름아미드 (DMF), N-메틸 포름아미드 (NMF), 디메틸 설폭시드 (DMSO), 염화 티오닐 및 염화 설퓨릴을 포함할 수 있다.
규조류 피각 부분은 깨진 규조류 피각 부분을 포함할 수 있다. 규조류 피각 부분은 깨지지 않은 규조류 피각 부분을 포함할 수 있다. 일 실시예에 있어서, 규조류 피각 부분은 규조류 피각 부분 분리 공정을 통해 얻어질 수 있다. 예를 들어, 공정은 다수의 규조류 피각 부분의 응집을 감소시키기 위해 계면활성제를 이용하는 단계 및 원판형 스택 원심분리기를 이용하는 단계 중 적어도 하나를 포함할 수 있다.
규조류 피각 부분에 산화아연 나노구조체의 형성 방법은 규조류 피각 부분의 표면에 산화아연 종자 층을 형성하는 단계를 포함할 수 있다. 방법은 산화아연 종자 층 위에 나노구조체를 형성하는 단계를 포함할 수 있다.
일 실시예에 있어서, 나노구조체는 적어도 하나의 나노와이어, 나노플레이트, 밀집 어레이의 나노입자, 나노벨트, 및 나노디스크를 포함할 수 있다. 일 실시예에 있어서, 나노구조체는 산화아연을 포함할 수 있다.
산화아연 종자 층을 형성하는 단계는 제 1 아연 기여 성분 및 규조류 피각 부분을 가열하는 단계를 포함할 수 있다. 일 실시예에 있어서, 제 1 아연 기여 성분 및 규조류 피각 부분을 가열하는 단계는 약 175℃ 내지 약 225℃ 범위의 온도로 가열하는 단계를 포함할 수 있다.
일 실시예에 있어서, 나노구조체를 형성하는 단계는 제 2 아연 기여 성분을 포함하는 나노구조체 형성 용액의 존재 하에 산화아연 종자 층을 갖는 규조류 피각 부분에 가열 방법을 적용하는 단계를 포함할 수 있다. 가열 방법은 나노구조체 형성 온도로 가열하는 단계를 포함할 수 있다. 예를 들어, 나노구조체 형성 온도는 약 80℃ 내지 약 100℃ 일 수 있다. 일 실시예에 있어서, 가열 단계는 약 1 내지 3시간 동안일 수 있다. 일 실시예에 있어서, 가열 방법은 고리형 가열 방법을 적용하는 단계를 포함할 수 있다. 예를 들어, 고리형 가열 방법은 총 고리형 가열 기간 동안, 가열 기간 동안 산화아연 종자 층을 갖는 규조류 피각 부분에 마이크로파 가열을 적용한 다음 냉각 기간 동안 마이크로파 가열을 끄는 단계를 포함할 수 있다. 일 실시예에 있어서, 가열 기간은 약 1분 내지 약 5분일 수 있다. 일 실시예에 있어서, 냉각 기간은 약 30초 내지 약 5분일 수 있다. 총 고리형 가열 기간은 약 5분 내지 약 20분일 수 있다. 마이크로파 가열을 적용하는 단계는 약 80 Watt 내지 약 120 Watt의 마이크로파 전력을 포함하여, 약 480 Watt 내지 약 520 Watt의 마이크로파 전력을 적용하는 단계를 포함할 수 있다.
일 실시예에 있어서, 적어도 하나의 제 1 아연 기여 성분 및 제 2 아연 기여 성분은 적어도 하나의 아세트산 아연, 아세트산 아연 수화물, 질산 아연, 질산 아연 육수화물, 염화 아연, 황산 아연, 및 아연산 나트륨(sodium zincate)을 포함할 수 있다.
일 실시예에 있어서, 나노구조체 형성 용액은 염기를 포함할 수 있다. 예를 들어, 염기는 적어도 하나의 수산화나트륨, 수산화암모늄, 수산화칼륨, 수산화 테트라메틸암모늄, 수산화리튬, 헥사메틸렌테트라민, 암모니아 용액, 탄산 나트륨, 및 에틸렌디아민을 포함할 수 있다.
일 실시예에 있어서, 나노구조체의 형성 단계는 첨가 성분을 가하는 단계를 포함할 수 있다. 첨가 성분은 적어도 하나의 트리부틸아민, 트리에틸아민, 트리에탄올아민, 디이소프로필아민, 암모늄 포스페이트, 1,6-헥사디안올, 트리에틸디에틸놀, 이소프로필아민, 시클로헥실아민, n-부틸아민, 염화 암모늄, 헥사메틸렌테트라민, 에틸렌 글리콜, 에탄올아민, 폴리비닐알콜, 폴리에틸렌 글리콜, 도데실 황산 나트륨(sodium dodecyl sulphate), 브롬화 세틸트리메틸 암모늄(cetyltrimethyl ammonium bromide), 및 카바마이드를 포함할 수 있다.
일 실시예에 있어서, 적어도 하나의 나노구조체 형성 용액 및 산화아연 종자 층 형성 용액은 용매를 포함할 수 있으며, 용매는 적어도 하나의 프로필렌 글리콜, 물, 메탄올, 에탄올, 1-프로판올, 2-프로판올, l-메톡시-2-프로판올, 1-부탄올, 2-부탄올, 1-펜탄올, 2-펜탄올, 3-펜탄올, 1-헥산올, 2-헥산올, 3-헥산올, 옥탄올, 1-옥탄올, 2-옥탄올, 3-옥탄올, 테트라히드로퓨르퓨릴 알콜 (THFA), 시클로헥산올, 시클로펜탄올, 테르피네올, 부틸 락톤, 메틸 에틸 에테르, 디에틸 에테르, 에틸 프로필 에테르, 폴리에테르, 디케톤, 시클로헥산온, 시클로펜탄온, 시클로헵탄온, 시클로옥탄온, 아세톤, 벤조페논, 아세틸아세톤, 아세토페논, 시클로프로판온, 이소포론, 메틸 에틸 케톤, 에틸 아세테이트, 디메틸 아디페이트, 프로필렌 글리콜 모노메틸 에테르 아세테이트, 디메틸 글루타레이트, 디메틸 석시네이트, 글리세린 아세테이트, 카복실레이트, 프로필렌 카보네이트, 글리세린, 디올, 트리올, 테트라올, 펜타올, 에틸렌 글리콜, 디에틸렌 글리콜, 폴리에틸렌 글리콜, 프로필렌 글리콜, 디프로필렌 글리콜, 글리콜 에테르, 글리콜 에테르 아세테이트, 1,4-부탄디올, 1,2-부탄디올, 2,3-부탄디올, 1,3-프로판디올, 1,4-부탄디올, 1,5-펜탄디올, 1,8-옥탄디올, 1,2-프로판디올, 1,3-부탄디올, 1,2-펜탄디올, 에토헥사디올, p-메탄-3,8-디올, 2-메틸-2,4-펜탄디올, 테트라메틸 우레아, n-메틸피롤리돈, 아세토니트릴, 테트라히드로퓨란 (THF), 디메틸 포름아미드 (DMF), N-메틸 포름아미드 (NMF), 디메틸 설폭시드 (DMSO), 염화 티오닐 및 염화 설퓨릴을 포함할 수 있다.
규조류 피각 부분은 깨진 규조류 피각 부분을 포함할 수 있다. 규조류 피각 부분은 깨지지 않은 규조류 피각 부분을 포함할 수 있다. 일 실시예에 있어서, 규조류 피각 부분은 규조류 피각 부분 분리 공정을 통해 얻어질 수 있다. 예를 들어, 공정은 다수의 규조류 피각 부분의 응집을 감소시키기 위해 계면활성제를 이용하는 단계 및 원판형 스택 원심분리기를 이용하는 단계 중 적어도 하나를 포함할 수 있다.
규조류 피각 부분에 탄소 나노구조체의 형성 방법은 규조류 피각 부분의 표면에 금속 종자 층을 형성하는 단계를 포함할 수 있다. 방법은 종자 층 위에 탄소 나노구조체를 형성하는 단계를 포함할 수 있다.
일 실시예에 있어서, 탄소 나노구조체는 탄소 나노튜브를 포함할 수 있다. 탄소 나노튜브는 적어도 하나의 단일벽 탄소 나노튜브 및 다중벽 탄소 나노튜브를 포함할 수 있다.
일 실시예에 있어서, 금속 종자 층을 형성하는 단계는 규조류 피각 부분의 표면을 스프레이 코팅하는 단계를 포함할 수 있다. 일 실시예에 있어서, 금속 종자 층을 형성하는 단계는 적어도 하나의 금속을 포함하는 액체, 금속을 포함하는 기체 및 금속을 포함하는 고체에 규조류 피각 부분의 표면을 도입하는 단계를 포함할 수 있다.
일 실시예에 있어서, 탄소 나노구조체의 형성 단계는 화학 증기 증착 (CVD)을 이용하는 단계를 포함할 수 있다. 탄소 나노구조체의 형성 단계는 나노구조체 형성 탄소 기체에 규조류 피각 부분을 노출시킨 후에 나노구조체 형성 환원성 기체에 규조류 피각 부분을 노출시키는 단계를 포함할 수 있다. 탄소 나노구조체의 형성 단계는 나노구조체 형성 탄소 기체에 규조류 피각 부분을 노출시키기 전에 나노구조체 형성 환원성 기체에 규조류 피각 부분을 노출시키는 단계를 포함할 수 있다. 일 실시예에 있어서, 탄소 나노구조체의 형성 단계는 나노구조체 형성 환원성 기체 및 나노구조체 형성 탄소 기체를 포함하는 나노구조체 형성 기체 혼합물에 규조류 피각 부분을 노출시키는 단계를 포함할 수 있다. 나노구조체 형성 기체 혼합물은 중성 기체를 포함할 수 있다. 예를 들어, 중성 기체는 아르곤일 수 있다.
일 실시예에 있어서, 금속은 적어도 하나의 니켈, 철, 코발트, 코발트-몰리브데늄 두금속(bimetallic), 구리, 금, 은, 백금, 팔라듐, 망간, 알루미늄, 마그네슘, 크롬, 안티몬, 알루미늄-철-몰리브덴 (Al/Fe/Mo), 철 펜타카보닐 (Fe(CO)5)), 질산철 (III) 육수화물 ((Fe(N03)3·6H20), 염화 코발트 (II) 육수화물 (CoCl2·6H20), 몰리브덴산 암모늄 사수화물 ((NH4)6Mo7024·4H20), 이염화 이산화 몰리브덴 (VI) (Mo02Cl2), 및 알루미나 나노분말을 포함할 수 있다.
일 실시예에 있어서, 나노구조체 형성 환원성 기체는 적어도 하나의 암모니아, 질소, 및 수소를 포함할 수 있다. 나노구조체 형성 탄소 기체는 적어도 하나의 아세틸렌, 에틸렌, 에탄올, 메탄, 산화탄소, 및 벤젠을 포함할 수 있다.
일 실시예에 있어서, 금속 종자 층을 형성하는 단계는 은 종자 층을 형성하는 단계를 포함할 수 있다. 은 종자 층을 형성하는 단계는 규조류 피각 부분의 표면에 은 나노구조체를 형성하는 단계를 포함할 수 있다.
규조류 피각 부분은 깨진 규조류 피각 부분을 포함할 수 있다. 규조류 피각 부분은 깨지지 않은 규조류 피각 부분을 포함할 수 있다. 일 실시예에 있어서, 규조류 피각 부분은 규조류 피각 부분 분리 공정을 통해 얻어질 수 있다. 예를 들어, 공정은 다수의 규조류 피각 부분의 응집을 감소시키기 위해 계면활성제를 이용하는 단계 및 원판형 스택 원심분리기를 이용하는 단계 중 적어도 하나를 포함할 수 있다.
은 잉크의 제조방법은 자외선 민감성 성분과 다수의 구멍을 포함하는 표면인 다수의 규조류 피각 부분의 표면에 은 나노구조체를 갖는 다수의 규조류 피각 부분을 혼합하는 단계를 포함할 수 있다.
일 실시예에 있어서, 은 잉크의 제조방법은 다수의 규조류 피각 부분의 표면에 은 종자 층을 형성하는 단계를 포함할 수 있다. 일 실시예에 있어서, 방법은 종자 층 위에 은 나노구조체를 형성하는 단계를 포함할 수 있다.
다수의 규조류 피각 부분은 다수의 깨진 규조류 피각 부분을 포함할 수 있다. 다수의 규조류 피각 부분은 다수의 규조류 피각 박편을 포함할 수 있다.
일 실시예에 있어서, 은 잉크는 경화 후 약 5 마이크론 내지 약 15 마이크론의 두께를 갖는 층에서 증착할 수 있다. 일 실시예에 있어서, 적어도 하나의 다수의 구멍은 약 250 나노미터 내지 약 350 나노미터의 직경을 가진다. 일 실시예에 있어서, 은 나노구조체는 약 10 나노미터 내지 약 500 나노미터의 두께를 포함할 수 있다. 은 잉크는 약 50 중량% 내지 약 80 중량%의 범위 내의 규조류 피각의 양을 포함할 수 있다.
은 종자 층의 형성 단계는 다수의 은 종자 도금한 구멍을 형성하기 위하여 다수의 구멍 내의 표면에 은 종자 층을 형성하는 단계를 포함할 수 있다. 은 종자 층의 형성 단계는 다수의 규조류 피각 부분의 실질적으로 모든 표면에 은 종자 층을 형성하는 단계를 포함할 수 있다.
일 실시예에 있어서, 은 나노구조체의 형성 단계는 다수의 은 나노구조체 도금한 구멍을 형성하기 위하여 다수의 구멍 내의 표면에 은 나노구조체를 형성하는 단계를 포함할 수 있다. 은 나노구조체의 형성 단계는 다수의 규조류 피각 부분의 실질적으로 모든 표면에 은 나노구조체를 형성하는 단계를 포함할 수 있다.
일 실시예에 있어서, 자외선 민감성 성분은 다수의 구멍의 크기보다 짧은 파장을 갖는 광학 방사선에 민감할 수 있다. 자외선 민감성 성분은 적어도 하나의 다수의 은 종자 도금한 구멍 및 다수의 은 나노구조체 도금한 구멍의 크기보다 짧은 파장을 갖는 광학 방사선에 민감할 수 있다.
일 실시예에 있어서, 다수의 규조류 피각 부분과 자외선 민감성 성분의 혼합 단계는 다수의 규조류 피각 부분과 광개시 상승제의 혼합 단계를 포함할 수 있다. 예를 들어, 광개시 상승제는 적어도 하나의 에톡실화된 헥산디올 아크릴레이트, 프로폭실화된 헥산디올 아크릴레이트, 에톡실화된 트리메틸프로판 트리아크릴레이트, 트리알릴 시아누레이트 및 아크릴화된 아민을 포함할 수 있다.
일 실시예에 있어서, 다수의 규조류 피각 부분과 자외선 민감성 성분의 혼합 단계는 다수의 규조류 피각 부분과 광개시제의 혼합 단계를 포함할 수 있다. 광개시제는 적어도 하나의 2-메틸-l-(4-메틸티오)페닐-2-모폴리닐-l-프로판온 및 이소프로필 티옥소탄온을 포함할 수 있다.
일 실시예에 있어서, 다수의 규조류 피각 부분과 자외선 민감성 성분의 혼합 단계는 다수의 규조류 피각 부분과 극성 비닐 단량체의 혼합 단계를 포함할 수 있다. 예를 들어, 극성 비닐 단량체는 적어도 하나의 n-비닐-피롤리돈 및 n-비닐카프로락탐을 포함할 수 있다.
은 잉크의 제조방법은 다수의 규조류 피각 부분과 유동개질제(rheology modifying agent)를 혼합하는 단계를 포함할 수 있다. 일 실시예에 있어서, 은 잉크의 제조방법은 다수의 규조류 피각 부분과 가교제를 혼합하는 단계를 포함할 수 있다. 일 실시예에 있어서, 방법은 다수의 규조류 피각 부분과 흐름 및 수준제(flow and level agent)를 혼합하는 단계를 포함할 수 있다. 일 실시예에 있어서, 방법은 다수의 규조류 피각 부분과 적어도 하나의 접착 촉진제, 습윤제, 및 점도 감소제를 혼합하는 단계를 포함할 수 있다.
은 나노구조체는 적어도 하나의 코팅, 나노와이어, 나노플레이트, 밀집 어레이의 나노입자, 나노벨트, 및 나노디스크를 포함할 수 있다.
일 실시예에 있어서, 은 종자 층의 형성 단계는 제 1 은 기여 성분 및 다수의 규조류 피각 부분에 고리형 가열 방법을 적용하는 단계를 포함할 수 있다.
은 종자 층의 형성 단계는 규조류 피각 부분과 종자 층 용액을 혼합하는 단계를 포함할 수 있다. 예를 들어, 종자 층 용액은 제 1 은 기여 성분 및 종자 층 환원제를 포함할 수 있다.
은 나노구조체의 형성 단계는 규조류 피각 부분과 나노구조체 형성 환원제를 혼합하는 단계를 포함할 수 있다. 일 실시예에 있어서, 은 나노구조체의 형성 단계는 규조류 피각 부분과 나노구조체 형성 환원제를 혼합한 후 규조류 피각 부분을 가열하는 단계를 포함할 수 있다. 일 실시예에 있어서, 은 나노구조체의 형성 단계는 나노구조체 형성 용매 및 제 2 은 기여 성분을 포함하는 적정 용액으로 규조류 피각 부분을 적정하는 단계를 포함할 수 있다.
일 실시예에 있어서, 다수의 규조류 피각 부분은 규조류 피각 부분 분리 공정을 통해 얻어질 수 있다. 예를 들어, 공정은 다수의 규조류 피각 부분의 응집을 감소시키기 위해 계면활성제를 이용하는 단계 및 원판형 스택 원심분리기를 이용하는 단계 중 적어도 하나를 포함할 수 있다.
전도성 은 잉크는 자외선 민감성 성분을 포함할 수 있다. 전도성 잉크는 다수의 구멍을 포함하는 표면인 다수의 규조류 피각 부분의 표면에 은 나노구조체를 갖는 다수의 규조류 피각 부분을 포함할 수 있다.
다수의 규조류 피각 부분은 다수의 깨진 규조류 피각 부분을 포함할 수 있다. 다수의 규조류 피각 부분은 다수의 규조류 피각 박편을 포함할 수 있다.
일 실시예에 있어서, 은 잉크는 (예를 들어, 경화 후) 약 5 마이크론 내지 약 15 마이크론의 두께를 갖는 층에서 증착할 수 있다. 일 실시예에 있어서, 적어도 하나의 다수의 구멍은 약 250 나노미터 내지 약 350 나노미터의 직경을 가진다. 일 실시예에 있어서, 은 나노구조체는 약 10 나노미터 내지 약 500 나노미터의 두께를 포함할 수 있다. 은 잉크는 약 50 중량% 내지 약 80 중량%의 범위 내의 규조류 피각의 양을 포함할 수 있다.
일 실시예에 있어서, 적어도 하나의 다수의 구멍은 은 나노구조체를 갖는 표면을 포함할 수 있다.
일 실시예에 있어서, 적어도 하나의 다수의 구멍은 은 종자 층을 갖는 표면을 포함한다. 일 실시예에 있어서, 다수의 규조류 피각 부분의 실질적으로 모든 표면은 은 나노구조체를 포함할 수 있다.
일 실시예에 있어서, 자외선 민감성 성분은 다수의 구멍의 크기보다 짧은 파장을 갖는 광학 방사선에 민감할 수 있다.
일 실시예에 있어서, 전도성 은 잉크는 자외선 조사에 의해 경화될 수 있다. 일 실시예에 있어서, 다수의 구멍은 자외선 조사를 통과시키기에 충분한 크기를 가질 수 있다. 전도성 은 잉크는 (예를 들어, 경화 후) 약 5 마이크론 내지 약 15 마이크론의 두께를 갖는 층에서 증착될 수 있다.
일 실시예에 있어서, 전도성 은 잉크는 열경화될 수 있다.
자외선 민감성 성분은 광개시 상승제를 포함할 수 있다. 예를 들어, 광개시 상승제는 적어도 하나의 에톡실화된 헥산디올 아크릴레이트, 프로폭실화된 헥산디올 아크릴레이트, 에톡실화된 트리메틸프로판 트리아크릴레이트, 트리알릴 시아누레이트 및 아크릴화된 아민을 포함할 수 있다.
자외선 민감성 성분은 광개시제를 포함할 수 있다. 광개시제는 적어도 하나의 2-메틸-l-(4-메틸티오)페닐-2-모폴리닐-l-프로판온 및 이소프로필 티옥소탄온을 포함할 수 있다.
일 실시예에 있어서, 자외선 민감성 성분은 극성 비닐 단량체를 포함할 수 있다. 예를 들어, 극성 비닐 단량체는 적어도 하나의 n-비닐-피롤리돈 및 n-비닐카프로락탐을 포함할 수 있다.
전도성 은 잉크는 적어도 하나의 유동개질제, 가교제, 흐름 및 수준제, 접착 촉진제, 습윤제, 및 점도 감소제를 포함할 수 있다. 일 실시예에 있어서, 은 나노구조체는 적어도 하나의 코팅, 나노와이어, 나노플레이트, 밀집 어레이의 나노입자, 나노벨트, 및 나노디스크를 포함할 수 있다.
은 필름(silver film)의 제조방법은 자외선 민감성 성분과 다수의 구멍을 포함하는 표면인 다수의 규조류 피각 부분의 표면에 은 나노구조체를 갖는 다수의 규조류 피각 부분을 포함하는 혼합물을 경화시키는 단계를 포함할 수 있다.
일 실시예에 있어서, 은 필름의 제조방법은 다수의 규조류 피각 부분의 표면에 은 종자 층을 형성하는 단계를 포함할 수 있다. 일 실시예에 있어서, 방법은 은 종자 층 위에 은 나노구조체를 형성하는 단계를 포함할 수 있다. 일 실시예에 있어서, 방법은 은 잉크를 형성하기 위해 다수의 규조류 피각 부분과 자외선 민감성 성분을 혼합하는 단계를 포함할 수 있다.
다수의 규조류 피각 부분은 다수의 깨진 규조류 피각 부분을 포함할 수 있다. 다수의 규조류 피각 부분은 다수의 규조류 피각 박편을 포함할 수 있다.
일 실시예에 있어서, 은 잉크는 (예를 들어, 경화 후) 약 5 마이크론 내지 약 15 마이크론의 두께를 갖는 층에서 증착할 수 있다. 일 실시예에 있어서, 적어도 하나의 다수의 구멍은 약 250 나노미터 내지 약 350 나노미터의 직경을 가진다. 일 실시예에 있어서, 은 나노구조체는 약 10 나노미터 내지 약 500 나노미터의 두께를 포함할 수 있다. 은 잉크는 약 50 중량% 내지 약 80 중량%의 범위 내의 규조류 피각의 양을 포함할 수 있다.
은 종자 층의 형성 단계는 다수의 은 종자 도금한 구멍을 형성하기 위하여 다수의 구멍 내의 표면에 은 종자 층을 형성하는 단계를 포함할 수 있다. 은 종자 층의 형성 단계는 다수의 규조류 피각 부분의 실질적으로 모든 표면에 은 종자 층을 형성하는 단계를 포함할 수 있다.
은 나노구조체의 형성 단계는 다수의 은 나노구조체 도금한 구멍을 형성하기 위하여 다수의 구멍 내의 표면에 은 나노구조체를 형성하는 단계를 포함할 수 있다. 은 나노구조체의 형성 단계는 다수의 규조류 피각 부분의 실질적으로 모든 표면에 은 나노구조체를 형성하는 단계를 포함할 수 있다.
일 실시예에 있어서, 혼합물의 경화 단계는 다수의 구멍의 크기보다 짧은 파장을 갖는 자외선에 혼합물을 노출시키는 단계를 포함할 수 있다. 일 실시예에 있어서, 혼합물의 경화 단계는 적어도 하나의 다수의 은 종자 도금한 구멍 및 다수의 은 나노구조체 도금한 구멍의 크기보다 짧은 파장을 갖는 자외선에 혼합물을 노출시키는 단계를 포함할 수 있다.
일 실시예에 있어서, 혼합물의 경화 단계는 혼합물을 열경화시키는 단계를 포함할 수 있다.
자외선 민감성 성분은 다수의 구멍의 크기보다 짧은 파장을 갖는 광학 방사선에 민감할 수 있다. 일 실시예에 있어서, 자외선 민감성 성분은 적어도 하나의 다수의 은 종자 도금한 구멍 및 다수의 은 나노구조체 도금한 구멍의 크기보다 짧은 파장을 갖는 광학 방사선에 민감할 수 있다.
다수의 규조류 피각 부분과 자외선 민감성 성분의 혼합 단계는 다수의 규조류 피각 부분과 광개시 상승제의 혼합 단계를 포함할 수 있다. 예를 들어, 광개시 상승제는 적어도 하나의 에톡실화된 헥산디올 아크릴레이트, 프로폭실화된 헥산디올 아크릴레이트, 에톡실화된 트리메틸프로판 트리아크릴레이트, 트리알릴 시아누레이트 및 아크릴화된 아민을 포함할 수 있다.
일 실시예에 있어서, 다수의 규조류 피각 부분과 자외선 민감성 성분의 혼합 단계는 다수의 규조류 피각 부분과 광개시제의 혼합 단계를 포함할 수 있다. 광개시제는 적어도 하나의 2-메틸-l-(4-메틸티오)페닐-2-모폴리닐-l-프로판온 및 이소프로필 티옥소탄온을 포함할 수 있다.
일 실시예에 있어서, 다수의 규조류 피각 부분과 자외선 민감성 성분의 혼합 단계는 다수의 규조류 피각 부분과 극성 비닐 단량체의 혼합 단계를 포함할 수 있다. 극성 비닐 단량체는 적어도 하나의 n-비닐-피롤리돈 및 n-비닐카프로락탐을 포함할 수 있다.
전도성 은 잉크의 제조방법은 다수의 규조류 피각 부분과 유동개질제를 혼합하는 단계를 포함할 수 있다. 일 실시예에 있어서, 전도성 은 잉크의 제조방법은 다수의 규조류 피각 부분과 가교제를 혼합하는 단계를 포함할 수 있다. 일 실시예에 있어서, 방법은 다수의 규조류 피각 부분과 흐름 및 수준제를 혼합하는 단계를 포함할 수 있다. 방법은 다수의 규조류 피각 부분과 적어도 하나의 접착 촉진제, 습윤제, 및 점도 감소제를 혼합하는 단계를 포함할 수 있다.
일 실시예에 있어서, 은 나노구조체는 적어도 하나의 코팅, 나노와이어, 나노플레이트, 밀집 어레이의 나노입자, 나노벨트, 및 나노디스크를 포함할 수 있다.
일 실시예에 있어서, 은 종자 층의 형성 단계는 제 1 은 기여 성분 및 다수의 규조류 피각 부분에 고리형 가열 방법을 적용하는 단계를 포함할 수 있다.
은 종자 층의 형성 단계는 규조류 피각 부분과 종자 층 용액을 혼합하는 단계를 포함할 수 있다. 예를 들어, 종자 층 용액은 제 1 은 기여 성분 및 종자 층 환원제를 포함할 수 있다.
은 나노구조체의 형성 단계는 규조류 피각 부분과 나노구조체 형성 환원제를 혼합하는 단계를 포함할 수 있다. 일 실시예에 있어서, 은 나노구조체의 형성 단계는 규조류 피각 부분과 나노구조체 형성 환원제를 혼합한 후 규조류 피각 부분을 가열하는 단계를 포함할 수 있다. 일 실시예에 있어서, 은 나노구조체의 형성 단계는 나노구조체 형성 용매 및 제 2 은 기여 성분을 포함하는 적정 용액으로 규조류 피각 부분을 적정하는 단계를 포함할 수 있다.
일 실시예에 있어서, 다수의 규조류 피각 부분은 규조류 피각 부분 분리 공정을 통해 얻어질 수 있다. 예를 들어, 공정은 다수의 규조류 피각 부분의 응집을 감소시키기 위해 계면활성제를 이용하는 단계 및 원판형 스택 원심분리기를 이용하는 단계 중 적어도 하나를 포함할 수 있다.
전도성 은 필름은 다수의 구멍을 포함하는 표면인 다수의 규조류 피각 부분의 각각의 표면에 은 나노구조체를 갖는 다수의 규조류 피각 부분을 포함할 수 있다.
일 실시예에 있어서, 다수의 규조류 피각 부분은 다수의 깨진 규조류 피각 부분을 포함할 수 있다. 다수의 규조류 피각 부분은 다수의 규조류 피각 박편을 포함할 수 있다.
일 실시예에 있어서, 적어도 하나의 다수의 구멍은 약 250 나노미터 내지 약 350 나노미터의 직경을 가진다. 일 실시예에 있어서, 은 나노구조체는 약 10 나노미터 내지 약 500 나노미터의 두께를 포함할 수 있다.
일 실시예에 있어서, 적어도 하나의 다수의 구멍은 은 나노구조체를 갖는 표면을 포함할 수 있다. 일 실시예에 있어서, 적어도 하나의 다수의 구멍은 은 종자 층을 갖는 표면을 포함할 수 있다. 다수의 규조류 피각 부분의 실질적으로 모든 표면은 은 나노구조체를 포함할 수 있다.
일 실시예에 있어서, 은 나노구조체는 적어도 하나의 코팅, 나노와이어, 나노플레이트, 밀집 어레이의 나노입자, 나노벨트, 및 나노디스크를 포함할 수 있다.
일 실시예에 있어서, 전도성 은 필름은 바인더 수지를 포함할 수 있다.
인쇄 에너지 저장 장치는 제 1 전극, 제 2 전극, 및 제 1 전극과 제 2 전극 사이의 분리기를 포함할 수 있으며, 적어도 하나의 제 1 전극 및 제 2 전극은 망간-함유 나노구조체를 갖는 다수의 피각을 포함할 수 있다.
일 실시예에 있어서, 피각은 실질적으로 균일한 특성을 가지며, 실질적으로 균일한 특성은 적어도 하나의 피각 모양, 피각 크기(dimension), 피각 기공, 피각 기계적 강도, 피각 물질, 및 피각의 깨짐 정도를 포함한다.
일 실시예에 있어서, 망간-함유 나노구조체는 망간의 산화물을 포함할 수 있다. 망간의 산화물은 산화 망간(II,III)을 포함할 수 있다. 망간의 산화물은 망간 옥시하이드록사이드(manganese oxyhydroxide)을 포함할 수 있다.
일 실시예에 있어서, 적어도 하나의 제 1 전극 및 제 2 전극은 산화아연 나노구조체를 갖는 피각을 포함할 수 있다. 산화아연 나노구조체는 적어도 하나의 나노와이어 및 나노플레이트를 포함할 수 있다.
일 실시예에 있어서, 망간-함유 나노구조체는 피각의 실질적으로 모든 표면을 덮는다. 일 실시예에 있어서, 망간-함유 나노구조체는 피각의 일부 표면을 덮으며, 탄소-함유 나노구조체는 피각의 다른 표면을 덮고, 망간-함유 나노구조체는 탄소-함유 나노구조체 사이에 배치된다.
에너지 저장 장치의 막은 망간-함유 나노구조체를 갖는 피각을 포함할 수 있다.
일 실시예에 있어서, 망간-함유 나노구조체는 망간의 산화물을 포함할 수 있다. 망간의 산화물은 산화 망간(II,III)을 포함할 수 있다. 망간의 산화물은 망간 옥시하이드록사이드을 포함할 수 있다. 일 실시예에 있어서, 망간-함유 나노구조체는 피각의 일부 표면을 덮으며, 탄소-함유 나노구조체는 피각의 다른 표면을 덮고, 망간-함유 나노구조체는 탄소-함유 나노구조체 사이에 배치된다.
일 실시예에 있어서, 적어도 일부의 망간-함유 나노구조체는 나노섬유(nano-fiber)일 수 있다. 일 실시예에 있어서, 적어도 일부의 망간-함유 나노구조체는 사면체 모양(tetrahedral shape)을 가진다.
일 실시예에 있어서, 에너지 저장 장치는 아연-망간 배터리를 포함한다.
인쇄 필름용 잉크는 용액, 및 용액에 분산된 망간-함유 나노구조체를 갖는 피각을 포함할 수 있다.
일 실시예에 있어서, 망간-함유 나노구조체는 망간의 산화물을 포함할 수 있다. 일 실시예에 있어서, 망간-함유 나노구조체는 적어도 하나의 MnO2, MnO, Mn2O3, MnOOH, 및 Mn3O4를 포함할 수 있다.
일 실시예에 있어서, 적어도 일부의 망간-함유 나노구조체는 나노섬유를 포함할 수 있다. 일 실시예에 있어서, 적어도 일부의 망간-함유 나노구조체는 사면체 모양을 가진다.
일 실시예에 있어서, 망간-함유 나노구조체는 피각의 일부 표면을 덮으며, 탄소-함유 나노구조체는 피각의 다른 표면을 덮고, 망간-함유 나노구조체는 탄소-함유 나노구조체 사이에 배치된다.
선행 기술과 비교하여 달성된 이점 및 본 발명을 요약하기 위해, 특정 목적 및 이점은 본 명세서에 기재된다. 물론, 모든 이러한 목적 또는 이점이 반드시 임의의 특정 실시예에 따라 달성될 필요가 없다는 것을 이해할 것이다. 따라서, 예를 들어, 당업자는 본 발명이 반드시 다른 목적 또는 이점을 달성하지 않고 하나의 이점 또는 이점들을 이루거나 또는 최적화할 수 있는 방식으로 구현되거나 또는 수행될 수 있다는 것을 인식할 것이다.
모든 실시예는 본 명세서에 개시된 발명의 범위 내에 있는 것으로 생각된다. 이들 및 다른 실시예는 첨부된 도면을 참조하여 하기의 상세한 설명으로부터 당업자에게 쉽게 명백해질 것이며, 본 발명은 특별히 개시된 실시예(들)에 한정되지 않는다.
비록 특정 실시예가 하기에 기재되어 있지만, 당업자는 발명이 특별히 개시된 실시예 및/또는 용도 및 이의 명백한 변형 및 등가물 너머까지 확장하는 것으로 이해할 것이다. 따라서, 본 명세서에 개시된 발명의 범위는 하기에 기재된 임의의 특정 실시예에 의해 한정되지 않아야 한다는 것을 의미한다.
전력전자장치에 사용된 에너지 저장 장치는 일반적으로 배터리 (예를 들어, 충전용 배터리), 축전기, 및 슈퍼축전기 (예를 들어, EDLC)를 포함한다. 에너지 저장 장치는 배터리-축전기 혼성체를 포함하여 비대칭 에너지 저장 장치를 포함할 수 있다. 에너지 저장 장치는 스크린 인쇄, 롤투롤 인쇄, 잉크-젯 인쇄 등과 같은 인쇄 기술을 이용하여 제조될 수 있다. 인쇄 에너지 저장 장치는 감소된 에너지 저장 장치 두께를 용이하게 할 수 있으며, 밀집한 에너지 저장을 가능하게 한다. 인쇄 에너지 저장 장치는 에너지 저장 장치의 적층을 용이하게 함으로써 증가된 에너지 저장 밀도를 가능하게 할 수 있다. 증가된 에너지 저장 밀도는 태양 에너지 저장과 같은 큰 전력 요건을 갖는 적용에 대해 인쇄 에너지 저장 장치의 사용을 용이하게 할 수 있다. 단단한 외부 포장을 갖는 에너지 저장 장치와는 달리, 인쇄 에너지 저장 장치는 유연성 기판상에서 수행될 수 있으며, 유연성 에너지 저장 장치를 가능하게 한다. 유연성 에너지 저장 장치는 유연성 전자 디스플레이 매체와 같은 유연성 전자 장치의 제조를 용이하게 할 수 있다. 감소된 두께 및/또는 유연성 구조로 인해, 인쇄 에너지 저장 장치는 화장품 패치, 의료 진단 제품, 원격 센서 어레이, 스마트 카드, 스마트 패키징, 스마트 의류, 축하카드(greeting cards) 등을 작동시킬 수 있다.
인쇄 에너지 저장 장치의 신뢰도 및 내구성은 인쇄된 배터리의 증가된 채택을 방해하는 인자일 수 있다. 인쇄 에너지 저장 장치는 일반적으로 단단한 외부 포장이 부족하다, 그래서 인쇄 에너지 저장 장치는 사용 또는 생산시 압축 압력 또는 모양 변형 조작에 잘 견딜 수 없다. 압축 압력 또는 모양 변형 조작에 대응하는 에너지 저장 장치 층 두께의 변화는 장치 신뢰도에 악영향을 미칠 수 있다. 예를 들어, 몇몇 인쇄 에너지 저장 장치는 분리기에 의해 배치된 전극을 포함한다. 분리기 두께의 편차는, 분리기를 압축할 수 있고 압축 압력 또는 모양 변형 조작 하에 전극들 사이의 분리를 유지하는데 실패할 경우, 전극 사이에서 합선(short)을 야기할 수 있다.
또한, 인쇄 에너지 저장 장치의 제조와 관련된 비용은 광범위한 적용을 작동시키는데 인쇄 에너지 저장 장치의 사용을 방해하는 인자일 수 있다. 인쇄 기술을 이용한 에너지 저장 장치의 신뢰할 수 있는 제조는 비용 효과적인 에너지 저장 장치 생산을 용이하게 할 수 있다. 에너지 저장 장치의 인쇄는 인쇄 에너지 저장 장치에 의해 작동된 인쇄 전자 장치를 포함하여, 전자 장치의 생산으로 장치 인쇄 공정을 완성하는 것을 가능하게 할 수 있으며, 아마도 비용절감을 더 가능하게 한다. 그러나, 부적당한 장치 구조적 견고성은 몇몇 인쇄 기술의 실행가능성을 감소시키고 인쇄 에너지 저장 장치의 비용 효과적인 생산을 방해하는, 제조 공정을 통하여 장치 완전성(integrity)을 방해할 수 있다. 또한, 인쇄 기술을 효과적으로 인쇄할 수 있는 필름 두께보다 큰 장치 층 두께로 인해, 인쇄 에너지 저장 장치 층의 두께는 제조 공정에서 특정 인쇄 기술의 사용을 방해할 수 있다.
본 명세서에 기재된 바와 같이, 피각은 크기, 모양, 기공, 및/또는 물질로 인해, 상당한 기계적 강도 또는 전단 응력에 대한 저항을 가질 수 있다. 본 명세서에 기재된 몇몇 수행에 따라, 에너지 저장 장치는 하나 이상의 성분들, 예를 들어 피각을 포함하는 인쇄 에너지 저장 장치의 하나 이상의 층들 또는 막들을 포함한다. 피각을 포함하는 에너지 저장 장치는, 에너지 저장 장치가 장치 신뢰도를 증가시킬 수 있도록 실패 없이 제조 또는 사용 동안 발생할 수 있는 압축 압력 및/또는 모양 변형 조작을 견딜 수 있도록 기계적 강도 및/또는 구조적 완전성(structural integrity)을 가질 수 있다. 피각을 포함하는 에너지 저장 장치는 층 두께의 변화를 저항할 수 있으며, 균일한 또는 실질적으로 균일한 장치 층 두께의 유지를 가능하게 한다. 예를 들어, 피각을 포함하는 분리기는 장치에서 합선을 억제 또는 방지하기 위해 전극들 사이에 균일한 또는 실질적으로 균일한 분리 거리를 유지함으로써 향상된 에너지 저장 장치 신뢰도를 용이하게 하여 압축 압력 또는 모양 변형 조작을 견딜 수 있다.
피각을 포함하는 에너지 저장 장치에서 증가된 기계적 강도는 다양한 인쇄 기술을 이용하여 에너지 저장 장치의 신뢰할 수 있는 제조를 용이하게 할 수 있으며, 이렇게 함으로써 장치에 의해 작동된 적용의 생산 공정과 함께 증가된 수율 및/또는 제조 공정의 완성으로 인해 비용-효과적인 장치 제조를 가능하게 한다.
에너지 저장 장치는 피각을 포함하는 잉크를 이용하여 인쇄될 수 있다. 예를 들어, 인쇄 에너지 저장 장치의 하나 이상의 막은 피각을 포함할 수 있다. 피각을 갖는 인쇄 에너지 저장 장치의 하나 이상의 막은 이에 한정되는 것은 아니나 유연성 또는 비유연성 (inflexible) 기판, 직물, 장치, 플라스틱, 금속 또는 반도체 필름과 같은 다양한 필름, 다양한 종이, 이의 조합, 및/또는 그밖에 유사한 것을 포함하는 다양한 기판 위에 확실하게 인쇄될 수 있다. 예를 들어, 적당한 기판은 흑연 종이, 그래핀 종이, 폴리에스터 필름 (예를 들어, Mylar), 폴리카보네이트 필름, 알루미늄 호일, 구리 호일, 스테인레스 스틸 호일, 탄소 폼(foam), 이의 조합, 및/또는 그밖에 유사한 것을 포함할 수 있다. 유연성 기판상에 인쇄 에너지 저장 장치의 제조는 이러한 인쇄 에너지 저장 장치의 증가된 신뢰도로 인해, 예를 들어 피각을 포함하는 하나 이상의 층의 결과로 증가된 견고성으로 인해 광범위한 어레이의 장치 및 수행에서 사용될 수 있는 유연성 인쇄 에너지 저장 장치를 고려할 수 있다.
피각을 포함하는 인쇄 에너지 저장 장치의 향상된 기계적 강도는 감소된 인쇄 장치 층 두께를 가능하게 할 수도 있다. 예를 들어, 피각은 에너지 저장 장치 층에 대해 구조적인 지지체를 제공할 수 있으며, 압축 압력 또는 모양 변형 조작을 견디는데 충분한 구조적인 견고성을 갖는 얇은 층을 가능하게 한 다음 전체 장치 두께를 감소시킬 수 있다. 인쇄 에너지 저장 장치의 감소된 두께는 인쇄 장치의 에너지 저장 밀도를 더 용이하게 할 수 있고 및/또는 인쇄 장치의 광범위한 사용을 더 가능하게 할 수 있다.
피각을 포함하는 인쇄 에너지 저장 장치는 향상된 장치 성능, 예를 들어 향상된 장치 효율성을 가질 수 있다. 에너지 저장 장치 층의 감소된 두께는 향상된 장치 성능을 가능하게 할 수 있다. 에너지 저장 장치의 성능은 에너지 저장 장치의 내부 저항에 적어도 부분적으로 의존할 수 있다. 예를 들어, 에너지 저장 장치의 성능은 제 1 및 제 2 전극 사이의 분리 거리에 적어도 부분적으로 의존할 수 있다. 정해진 측정의 신뢰도에 대해 감소된 분리기 막은 제 1 및 제 2 전극 사이의 거리를 감소시키고, 에너지 저장 장치의 내부 저항을 감소시키고 효율성을 향상시킬 수 있다. 또한, 에너지 저장 장치의 내부 저항은 제 1 및 제 2 전극 사이의 이온성 종의 이동성에 적어도 부분적으로 의존할 수 있다. 피각 표면의 기공은 이온성 종의 이동성을 가능하게 할 수 있다. 예를 들어, 피각을 포함하는 분리기는 전극들 사이의 이온성 종의 이동성을 용이하게 하는 동안 에너지 저장 장치의 전극들 사이에 더 구조적으로 견고한 분리를 가능하게 할 수 있다. 피각 표면 기공은 제 1 전극 및 제 2 전극 사이에서 이동하는 이온성 종에 대한 직통로(direct path)를 용이하게 할 수 있으며, 저항을 감소시키고 및/또는 효율성을 증가시킨다. 피각을 포함하는 전극 층의 감소된 두께 및 전극 피각의 기공은 향상된 저장 장치 성능을 가능하게 할 수도 있다. 감소된 전극 두께는 전극 내의 활성 물질에 이온성 종의 증가된 접근을 제공할 수 있다. 전극 내 피각의 기공 및/또는 전도도는 전극 내의 이온성 종의 이동성을 용이하게 할 수 있다. 전극 내 피각은 활성 물질 및/또는 활성 물질을 포함하는 구조체가 적용되거나 또는 형성될 수 있는 기판으로 작용하여 향상된 장치 성능을 가능하게 할 수도 있고, 활성 물질에 대해 증가된 표면적을 가능하게 함으로써 활성 물질에 이온성 종의 접근을 용이하게 한다.
도 1은 피각(10)을 포함하는 규조토의 SEM 영상이다. 비록 몇몇 피각이 깨지거나 또는 다른 모양이지만, 피각(10)은 일반적으로 원통형 모양을 가진다. 일 실시예에 있어서, 원통형 피각(10)은 약 3 ㎛ 및 약 5 ㎛ 사이의 직경을 가진다. 일 실시예에 있어서, 원통형 피각(10)은 약 10 ㎛ 및 약 20 ㎛ 사이의 길이를 가진다. 다른 직경 및/또는 길이도 가능하다. 피각(10)은 구성 (예를 들어, 크기, 모양), 물질, 이의 조합, 및/또는 그밖에 유사한 것으로 인해 상당한 기계적 강도 또는 전단 응력에 대한 저항을 가질 수 있다. 예를 들어, 피각(10)의 기계적 강도는 피각(10)의 크기에 반비례 관계일 수 있다. 일 실시예에 있어서, 약 30 ㎛ 내지 약 130 ㎛ 범위의 장축을 갖는 피각(10)은 약 90 μN 내지 약 730 μN의 압축력을 견딜 수 있다.
도 2는 다공성 표면(12)을 포함하는 피각(10)의 SEM 영상이다. 다공성 표면 (12)은 원형 또는 실질적으로 원형 개구부(openings)(14)를 포함한다. 다른 모양의 개구부(14)도 가능하다 (예를 들어, 곡선, 다각형(polygonal), 가늘고 긴 (elongate) 등). 일 실시예에 있어서, 피각(10)의 다공성 표면(12)은 (예를 들어, 도 2에 나타난 바와 같이) 균일한 또는 실질적으로 균일한 모양, 크기, 및/또는 간격 (spacing)을 갖는 개구부(14)를 포함하여, 균일한 또는 실질적으로 균일한 기공을 가진다. 일 실시예에 있어서, 피각(10)의 다공성 표면(12)은 예를 들어 다른 모양, 크기, 및/또는 간격을 갖는 개구부(14)를 포함하여, 일정치않은(varying) 기공을 가진다. 다수의 피각(10)의 다공성 표면(12)은 균일한 또는 실질적으로 균일한 기공을 가질 수 있으며, 또는 다른 피각(10)의 다공성 표면(12)의 기공은 변할 수 있다. 다공성 표면(12)은 미세기공(microporosity), 메조기공(mesoporosity), 및/또는 거대기공(macroporosity)을 포함하여, 나노기공(nanoporosity)을 포함할 수 있다.
도 3은 원통형 또는 실질적으로 원통형 모양을 갖는 각각의 피각(10)의 SEM 영상이다. 피각 특징은 다른 종의 규조류 사이에서 다를 수 있으며, 각 규조류 종은 다른 모양, 크기, 기공, 물질, 및/또는 다른 피각 속성을 갖는다. (예를 들어, Mount Sylvia Diatomite Pty Ltd of Canberra, Australia, Continental Chemical USA of Fort Lauderdale, Florida, Lintech International LLC of Macon, Georgia, 등으로부터) 상업적으로 이용할 수 있는 규조토는, 피각의 공급원으로 작용할 수 있다. 일 실시예에 있어서, 규조토는 미리 결정된 피각 특징에 따라 분류된다. 예를 들어, 분류는 모양, 크기, 물질, 기공, 이의 조합, 및/또는 그밖에 유사한 것과 같은 미리-결정된 특징을 포함하는 각각의 피각을 야기할 수 있다. 피각의 분류 단계는 하나 또는 다양한 여과, 스크리닝과 같은 분리 공정 (예를 들어, 피각 모양 또는 크기에 따른 분리용 진동체(vibrating sieves)의 사용), 보락시얼(voraxial) 또는 원심분리 기술을 포함하는 분리 공정 (예를 들어, 피각 밀도에 따른 분리용), 임의의 다른 적당한 고체-고체 분리 공정, 이의 조합, 및/또는 그밖에 유사한 것을 포함할 수 있다. 또한, 피각은 피각이 이미 균일한 또는 실질적으로 균일한 모양, 크기, 물질, 기공, 다른 미리-결정된 피각 속성, 이의 조합, 및/또는 그밖에 유사한 것을 포함하도록, 피각 특징에 따라 이미 분류된 (예를 들어, 상업적 공급원으로부터) 이용할 수 있다. 예를 들어, 지리학적 지역(geographic region) (예를 들어, 미국, 페루, 호주 등과 같은 나라의 지역; 세계의 지역; 등) 및/또는 자연 환경의 유형 (예를 들어, 담수 환경, 염수 환경 등)으로부터 이용할 수 있는 피각은, 균일한 또는 실질적으로 균일한 모양, 크기, 물질, 기공, 다른 미리-결정된 피각 속성, 이의 조합, 및/또는 그밖에 유사한 것을 갖는 피각을 제공하는 지리학적 지역 및/또는 환경에서 일반적으로 발견된 종의 피각을 포함할 수 있다.
일 실시예에 있어서, 분리 공정은 유일한 또는 실질적으로 유일한 깨지지 않은 피각이 유지되도록 피각을 분류하는데 사용될 수 있다. 일 실시예에 있어서, 분리 공정은 깨진 또는 작은 피각을 제거하는데 사용될 수 있으며, (예를 들어, 도 3에 예시된 바와 같이) 특정 길이 및/또는 직경을 갖는 유일한 또는 실질적으로 유일한 원통형-모양의 피각(10)을 야기한다. 깨진 피각을 제거하기 위한 분리 공정은 미리-결정된 크기를 갖는 유일한 또는 실질적으로 유일한 피각을 유지하기 위해 선택된 메쉬 크기를 갖는 체의 사용과 함께 스크리닝을 포함할 수 있다. 예를 들어, 체의 메쉬 크기는 약 40 ㎛ 이하, 약 30 ㎛ 이하, 약 20 ㎛ 이하 또는 약 10 ㎛ 이하, 및 범위 경계 및 앞의 값을 포함하는 크기 (예를 들어, 길이 또는 직경)를 갖는 피각을 제거하기 위해 선택될 수 있다.
일 실시예에 있어서, 깨진 피각을 제거하기 위한 분리 공정은 수조(water bath)에 분산된 피각이 초음파를 받는 동안 초음파 처리를 포함하여, 유체 분산물에 놓인 피각에 초음파의 적용을 포함한다. 전력, 주파수, 기간, 및/또는 그밖에 유사한 것과 같은 초음파 처리 매개변수는 피각의 하나 이상의 속성을 기준으로 적어도 부분적으로 조정될 수 있다. 일 실시예에 있어서, 초음파 처리는 약 20 kHz 및 약 100 kHz 사이, 약 30 kHz 및 약 80 kHz 사이, 및 약 40 kHz 및 약 60 kHz 사이의 주파수를 갖는 음파(sound waves)의 사용을 포함한다. 일 실시예에 있어서, 초음파 처리는 약 20 kHz, 약 25 kHz, 약 30 kHz, 약 35 kHz, 약 40 kHz, 약 45 kHz, 및 범위 경계 및 앞의 값을 포함하는 주파수를 갖는 음파를 사용할 수 있다. 초음파 처리 단계는 약 2분 및 약 20분 사이, 약 2분 및 약 15분 사이, 및 약 5분 및 약 10분 사이의 기간을 가질 수 있다. 일 실시예에 있어서, 초음파 처리 단계는 약 2분, 약 5분, 약 10분, 및 범위 경계 및 앞의 값을 포함하는 기간을 가질 수 있다. 예를 들어, 피각-유체 시료는 약 5분 동안 약 35 kHz의 주파수에서 초음파를 받을 수 있다.
일 실시예에 있어서, 분리 공정은 침전을 포함한다. 예를 들어, 분리 공정은 피각-유체 시료로부터 무거운 입자가 초음파 처리 동안 피각-유체 시료의 현탁된 상으로부터 가라앉을 수 있도록 초음파 처리 및 침전을 포함할 수 있다. 일 실시예에 있어서, 피각-유체 시료로부터 무거운 입자의 침전 공정은 약 15초 및 약 120초 사이, 약 20초 및 약 80초 사이, 및 약 30초 및 약 60초 사이의 기간을 가질 수 있다. 일 실시예에 있어서, 침전은 약 120초 이하, 약 60초 이하, 약 45초 이하, 약 30초 이하의 기간을 가질 수 있다.
깨진 피각을 제거하기 위한 분리 공정은 초원심분리 단계를 포함하여, 밀도를 기준으로 물리적 분리를 위한 고속 원심분리 기술의 사용을 포함할 수 있다. 예를 들어, 분리 공정은 피각-유체 시료의 현탁된 상의 초원심분리를 포함할 수 있다. 각속도(angular velocity), 기간 등과 같은 초원심분리 매개변수는 현탁된 상의 조성 (예를 들어, 피각의 밀도) 및/또는 사용된 장치의 특징에 적어도 부분적으로 의존할 수 있다. 예를 들어, 현탁된 상은 약 10,000 RPM(rotations per minute) 및 약 40,000 RPM 사이, 약 10,000 RPM 및 약 30,000 RPM 사이, 약 10,000 RPM 및 약 20,000 RPM 사이, 및 약 10,000 RPM 및 약 15,000 RPM 사이의 각속도에서 초원심분리될 수 있다. 현탁된 상은 약 1분 및 약 5분 사이, 약 1분 및 약 3분 사이, 및 약 1분 및 약 2분 사이의 기간 동안 초원심분리될 수 있다. 예를 들어, 피각-유체 시료의 현탁된 상은 약 1분 동안 약 13,000 RPM의 각속도에서 초원심분리될 수 있다.
도 4a 및 4b는 피각 분리 공정(20)의 단계의 흐름도이다. 공정(20)은 깨진 및 깨지지 않은 규조류 피각을 포함하는 고체 혼합물로부터 깨진 및/또는 깨지지 않은 규조류 피각의 분리를 가능하게 할 수 있다. 일 실시예에 있어서, 분리 공정(20)은 대규모 피각 분류를 가능하게 한다.
본 명세서에 기재된 바와 같이, 나노구조체 물질 및/또는 나노소자 (nanodevices)에 대해 규조류 피각의 두 가지 공급원이 있을 수 있다: 살아있는 규조류 및 규조토. 규조류는 천연 또는 배양된 것으로부터 직접 얻어질 수 있다. 인공적으로, 다수의 동일한 실리카 피각은 수일 내에 배양될 수 있다. 나노구조체 물질 및/또는 나노소자에 대해 천연 규조류를 사용하기 위해, 분리 공정을 수행하여 다른 유기물질(organic materials) 및/또는 물질(substances)로부터 규조류를 분리할 수 있다. 다른 방법은 규조토를 사용하는 것이다. 침전물은 풍부하고, 물질은 저가이다.
규조토는 (예를 들어, 몇몇 담수 침전물을 포함하여) 다른 규조류 종들의 혼합물로부터 단일의 규조류 종들에 이르는 피각을 가질 수 있다. 규조토는 다른 근원의 오염 물질과 함께 깨진 및/또는 온전한 규조류 피각을 포함할 수 있다. 적용에 따라, 하나는 유일한 온전한 규조류 피각, 유일한 깨진 피각, 또는 둘의 혼합물을 사용할 수 있다. 예를 들어, 온전한 피각을 분리하는 경우, 한 종류의 피각을 갖는 규조토를 사용할 수 있다.
일 실시예에 있어서, 분리 방법은 깨진 조각의 규조류 피각으로부터 온전한 규조류 피각을 분리하는 단계를 포함한다. 일 실시예에 있어서, 분리 공정은 공통적인 피각 특징 (예를 들어, 길이 또는 직경을 포함하는 크기, 모양, 및/또는 물질)에 따라 온전한 규조류 피각을 분류하는 단계 및/또는 공통적인 피각 특징 (예를 들어, 길이 또는 직경을 포함하는 크기, 모양, 깨짐 정도, 및/또는 물질)을 기준으로 규조류 피각 부분을 분류하는 단계를 포함한다. 예를 들어, 분리 공정은 적어도 하나의 공통적인 특징을 갖는 다수의 규조류 피각 또는 규조류 피각 부분을 추출하는 단계를 가능하게 할 수 있다. 일 실시예에 있어서, 분리 공정은 규조류 피각 및/또는 규조류 피각 부분으로부터 다른 화학적 근원을 갖는 오염성 물질을 제거하는 단계를 포함한다.
오랜 기간 동안 변동이 없는 규조류 및 규조류 피각은 때때로 생물학적, 생태학적, 및 관련 지구과학 연구에서 사용된다. 물 또는 침전물로부터 피각의 작은 시료를 추출하기 위해 많은 방법이 개발되었다. 침전물 (규조토)은 카보네이트, 운모(mica), 점토, 유기물 및 다른 침전 입자와 함께 (깨진 및 깨지지 않은) 규조류 피각을 함유한다. 깨지지 않은 규조류 피각의 분리는 세 가지 주요 단계를 포함할 수 있다: 유기 잔류물의 제거, 다른 화학적 근원을 가진 입자의 제거, 및 깨진 조각의 제거. 유기 물질의 제거는 표백제 (예를 들어, 과산화수소 및/또는 질산)에서 시료의 가열, 및/또는 고온에서 어닐링으로 달성될 수 있다. 카보네이트, 점토, 및 다른 가용성 비-실리카 물질은 염산 및/또는 황산으로 제거될 수 있다. 깨진 및 깨지지 않은 피각의 분리의 경우, 여러 기법이 적용될 수 있다: 체질, 침전 및 원심분리, 중액(heavy liquid)으로 원심분리, 및 분류 측면-수송 얇은 분리 전지 (split-flow lateral-transport thin separation cells), 및 이의 조합. 모든 이러한 방법들에 대한 문제점은 종종 분리의 품질을 감소시킬 수 있고, 및/또는 실험실 규모 시료에 대해서만 적합한 분리 공정을 제공할 수 있는 깨진 및 깨지지 않은 피각의 응집일 수 있다.
분리 과정의 규모 확장은 규조류 피각을 산업용 나노물질로서 사용하는 것을 가능하게 할 수 있다.
일 실시예에 있어서, 규조류의 산업용 규모 분리에 이용될 수 있는 분리 과정은 적어도 하나의 공통적인 특징을 갖는 규조류 피각 부분의 분리를 포함한다. 예를 들어, 공통적인 특징은 깨지지 않은 규조류 피각 또는 깨진 규조류 피각일 수 있다. 도 4a 및 4b에 나타난 바와 같이, 분리 공정(20)은 규조류의 산업용 규모 분리를 가능하게 하는 분리 과정이다. 일 실시예에 있어서, 규조류의 대규모 분리를 가능하게 하는 분리 과정은 계면활성제 및/또는 원판형 스택 원심분리기를 이용하여 피각의 응집의 감소를 가능하게 한다. 일 실시예에 있어서, 계면활성제의 사용은 대규모 분리를 가능하게 할 수 있다. 일 실시예에 있어서, 원판형 스택 원심분리기의 이용 (예를 들어, 우유 분리기 유형 원심분리 공정)은 대규모 분리를 가능하게 할 수 있다. 예를 들어, 피각 특징을 기준으로 피각을 분류하기 위한 원판형 스택 원심분리기와 함께 규조류 피각을 분산하기 위한 계면활성제의 사용은 규조류 피각의 감소된 응집을 가능하게 함으로써 규조류의 대규모 분리를 용이하게 할 수 있다. 종래의 비-원판형 스택 원심분리 공정은 피각의 침전을 야기할 것이다. 상청액은 버리고, 원심분리기로 다시 피각의 침전을 야기시킨 후 침전된 피각을 용매에 재분산시킨다. 이 공정은 원하는 분리가 달성될 때까지 반복한다. 원판형 스택 원심분리 공정은 침전된 피각을 계속해서 재분산시키고 분리할 수 있다. 예를 들어, 온전한 규조류로 풍부해진 상은 원판형 스택 원심분리기를 통해 계속해서 순환되어 더욱더 풍부해질 수 있다. 일 실시예에 있어서, 원판형 스택 원심분리기는 깨지지 않은 규조류 피각으로부터 깨진 규조류 피각의 분리를 가능하게 할 수 있다. 일 실시예에 있어서, 원판형 스택 원심분리기는 규조류 피각 특징에 따라 규조류 피각의 분류를 가능하게 할 수 있다. 예를 들어, 원판형 스택 원심분리기는 적어도 하나의 공통적인 특징 (예를 들어, 크기, 모양, 깨짐 정도 및/또는 물질)을 갖는 피각의 추출을 가능하게 할 수 있다.
도 4a 및 4b에 나타낸 분리 공정(20)과 같은 규조류의 산업용 규모 분리를 가능하게 하는 분리 과정은, 하기 단계를 포함할 수 있다:
1. 규조류 피각 및/또는 규조류 피각 부분을 포함하는 고체 혼합물 (예를 들어, 규조토)의 입자는 암석일 수 있으며, 더 작은 입자로 부서질 수 있다. 예를 들어, 고체 혼합물의 입자 크기는 분리 공정(20)을 용이하게 하기 위해 감소될 수 있다. 일 실시예에 있어서, 분말을 얻기 위해, 규조토를 막자사발 및 막자, 쟈밀, 암석 분쇄기, 이의 조합, 및/또는 그밖에 유사한 것을 이용하여 부드럽게 분쇄하거나 또는 빻을 수 있다.
2. 일 실시예에 있어서, 규조류 피각 또는 규조류 피각 부분보다 큰 규조토의 성분은 체질 단계를 통해 제거될 수 있다. 일 실시예에 있어서, 체질 단계는 규조토를 분쇄한 후 수행된다. 예를 들어, 규조토 분말을 체질하여 피각보다 큰 분말의 입자를 제거할 수 있다. 일 실시예에 있어서, 체질은 액체 용매에 고체 혼합물 (예를 들어, 분쇄된 규조토)을 분산시킴으로써 용이하게 할 수 있다. 용매는 물, 및/또는 다른 적당한 액체 용매일 수 있다. 용매에 고체 혼합물의 분산은 고체 혼합물과 용매를 포함하는 혼합물을 초음파 처리함으로써 용이하게 할 수 있다. 분산을 돕는 다른 방법도 적합할 수 있다. 일 실시예에 있어서, 분산물은 약 1 중량% 내지 약 5 중량%, 약 1 중량% 내지 약 10 중량%, 약 1 중량% 내지 약 15 중량%, 또는 약 1 중량% 내지 약 20 중량%의 범위 내의 규조류의 중량%를 포함한다. 분산물 내 고체 혼합물의 농도를 감소시켜 체질 단계를 용이하게 하여 규조류보다 큰 분산물의 입자를 제거할 수 있다. 체 개구부는 시료 내 규조류의 크기에 의존한다. 예를 들어, 적당한 체는 약 20 마이크론의 메쉬 크기, 또는 규조류보다 큰 고체 혼합물의 분산물 입자로부터 제거할 수 있는 임의의 다른 메쉬 크기를 포함할 수 있다 (예를 들어, 약 15 마이크론 내지 약 25 마이크론, 또는 약 10 마이크론 내지 약 25 마이크론의 메쉬 크기를 갖는 체). 세이커 체(shaker sieve)는 체를 통해 흐름을 효과적으로 증가시키기 위해 사용될 수 있다.
3. 일 실시예에 있어서, 분리 공정은 규조류로부터 유기 오염물질 (예를 들어, 규조류 피각 또는 규조류 피각 부분)을 제거하기 위해 정제 단계를 포함한다. 유기 오염물질의 적당한 제거방법은 표백제 (예를 들어, 질산 및/또는 과산화수소)에 규조류를 담그는 단계 및/또는 가열하는 단계, 및/또는 고온에서 규조류를 어닐링하는 단계를 포함할 수 있다. 예를 들어, 규조류의 시료는 약 1분 내지 약 15분 (예를 들어, 10분) 동안 약 10 부피% 내지 약 50 부피% (예를 들어, 30 부피%)의 과산화수소를 포함하는 다량의 용액에서 가열될 수 있다. 다른 조성, 농도 및/또는 기간이 적당할 수 있다. 예를 들어, 사용된 용액의 조성, 용액의 농도, 및/또는 가열 기간은 정제되는 시료의 조성 (예를 들어, 유기 오염물질 및/또는 규조류의 유형)에 의존할 수 있다. 일 실시예에 있어서, 규조류는 용액이 버블링(예를 들어, 유기 오염물질의 제거가 완전한 또는 실질적으로 완전한 것을 나타냄)으로 중단 또는 실질적으로 중단할 때까지 용액에서 가열하여 유기 오염물질의 충분한 제거를 용이하게 할 수 있다. 용액에 규조류를 담그는 단계 및/또는 가열하는 단계는 유기 오염물질이 제거 또는 실질적으로 제거될 때까지 반복될 수 있다.
유기 오염물질로부터 규조류의 정제에 이어 물로 세척할 수 있다. 일 실시예에 있어서, 규조류는 액체 용매 (예를 들어, 물)로 세척될 수 있다. 규조류는 원심분리 단계를 포함하여, 침전 공정을 통해 용매로부터 분리될 수 있다. 적당한 원심분리 기술은 원판형 스택 원심분리기, 디캔터 원심분리기, 원통형 원심분리기 (tubular bowl centrifuge), 이의 조합, 및/또는 그밖에 유사한 것을 포함할 수 있다.
4. 일 실시예에 있어서, 분리 공정은 무기 오염물질을 제거하기 위해 정제 단계를 포함한다. 무기 오염물질은 규조류와 염산 및/또는 황산을 혼합하여 제거될 수 있다. 무기 오염물질은 카보네이트, 점토, 및 다른 가용성 비-실리카 물질을 포함할 수 있다. 예를 들어, 규조류의 시료는 약 20분 내지 약 40분 (예를 들어, 약 30분) 동안 약 15 부피% 내지 약 25 부피%의 염산 (예를 들어, 약 20 부피%의 염산)을 포함하는 다량의 용액과 혼합될 수 있다. 다른 조성, 농도 및/또는 기간이 적당할 수 있다. 예를 들어, 사용된 용액의 조성, 용액의 농도, 및/또는 혼합 기간은 정제되는 시료의 조성 (예를 들어, 무기 오염물질 및/또는 규조류의 유형)에 의존할 수 있다. 일 실시예에 있어서, 규조류는 용액이 버블링(예를 들어, 무기 오염물질의 제거가 완전한 또는 실질적으로 완전한 것을 나타냄)으로 중단 또는 실질적으로 중단할 때까지 용액에서 혼합하여 무기 오염물질의 충분한 제거를 용이하게 할 수 있다. 규조류와 용액을 혼합하는 단계는 무기 오염물질이 제거 또는 실질적으로 제거될 때까지 반복될 수 있다.
가용성 무기 오염물질로부터 규조류의 정제에 이어 물로 세척할 수 있다. 일 실시예에 있어서, 규조류는 액체 용매 (예를 들어, 물)로 세척될 수 있다. 규조류는 원심분리 단계를 포함하여, 침전 공정을 통해 용매로부터 분리될 수 있다. 적당한 원심분리 기술은 원판형 스택 원심분리기, 디캔터 원심분리기, 원통형 원심분리기, 이의 조합, 및/또는 그밖에 유사한 것을 포함할 수 있다.
5. 일 실시예에 있어서, 분리 공정은 계면활성제에 피각을 분산하는 단계를 포함한다. 계면활성제는 서로 피각 및/또는 피각 부분의 분리를 용이하게 할 수 있으며, 피각 및/또는 피각 부분의 응집을 감소시킨다. 일 실시예에 있어서, 첨가제는 규조류의 응집을 감소시키는데 사용된다. 예를 들어, 규조류는 계면활성제 및 첨가제에서 분산될 수 있다. 일 실시예에 있어서, 계면활성제 및/또는 첨가제에서 규조류의 분산 단계는 규조류, 계면활성제 및/또는 첨가제를 포함하는 혼합물을 초음파 처리함으로써 용이하게 될 수 있다.
6. 일 실시예에 있어서, 깨진 피각 조각은 습식 체질 공정에 의해 추출될 수 있다. 예를 들어, 여과 공정이 사용될 수 있다. 일 실시예에 있어서, 여과 공정은 깨진 피각의 더 작은 조각을 제거하기 위해 체를 이용하는 단계를 포함한다. 체는 깨진 피각의 더 작은 조각을 제거하는데 적합한 메쉬 크기 (예를 들어, 7 마이크론 체)를 포함할 수 있다. 습식 체 공정은 침전물의 응집을 방해함으로써, 작은 침전물이 체의 공극에 축적되는 것을 억제 또는 방지할 수 있고 및/또는 작은 입자들이 체의 공극을 통과하게 할 수 있다. 응집의 방해 단계는 체 메쉬(sieve mesh) 위에 침전하는 물질의 교반, 버블링, 흔들기, 이의 조합, 및/또는 그밖에 유사한 것을 포함한다. 일 실시예에 있어서, 여과 공정은 (예를 들어, 점점 더 작은 공극 또는 메쉬 크기를 갖는) 일련의 체들 (예를 들어, 단일 입력 및 출력을 갖는 기계에서 다수의 체들)을 통해 지속될 수 있다.
7. 일 실시예에 있어서, 액체 내 피각의 지속적인 원심분리 (우유 분리기-유형 기계)가 사용될 수 있다. 예를 들어, 원판형 스택 원심분리기가 사용될 수 있다. 이 공정은 깨지지 않은 피각으로부터 깨진 피각 조각을 분리하는 단계를 더 포함하여, 공통적인 특징에 따라 규조류를 분리하는데 사용될 수 있다. 일 실시예에 있어서, 원판형 스택 원심분리 단계는 원하는 분리 (예를 들어, 깨지지 않은 피각으로부터 깨진 피각의 분리의 원하는 수준)를 달성하기 위해 반복될 수 있다.
8. 본 명세서에 기재된 바와 같이, 피각을 용매에서 세척한 다음, 용매로부터 피각을 추출하기 위해 침전 공정 (예를 들어, 원심분리)이 따를 수 있다. 예를 들어, 각 세척 단계 후 및/또는 최종 사용 전에 피각 또는 피각 부분을 침전시키기 위해 원심분리가 사용될 수 있다. 세척 단계 후 피각을 침전시키기 위한 적당한 원심분리 기술은 원판형 스택 원심분리기, 디캔터 원심분리기, 및/또는 원통형 원심분리기를 포함하나 이에 한정되지 않는 지속적인 원심분리기를 포함할 수 있다.
분리 과정은 Mount Silvia Pty, Ltd. Diatomite mining company, Queensland, Australia로부터 담수 규조류로 시험하였다. 시료의 대부분의 피각은 한 종류의 규조류 Aulacoseira sp.를 가진다. 피각은 약 5 마이크론의 직경 및 10 내지 20 마이크론의 길이를 갖는 원통형 모양을 가진다.
도 4a 및 4b에 제시된 분리 공정(20)인, 분리 과정의 흐름도는 단지 예로서 작용한다. 흐름도에서 매개변수의 양은 (예를 들어, 단지 선택된 시료에 적합한) 예제로 제공된다. 예를 들어, 양은 다른 유형의 규조류에 대해 다를 수 있다.
규조류의 표면은 비정질 실리카를 포함할 수 있으며, 음전하의 실란올 기를 포함할 수 있다. 제타 전위 측정으로부터 확인된 등전점(Isoelectric point)은 종종 규조류에 대해 약 pH 2일 수 있다 (예를 들어, 비정질 실리카의 것과 유사).
일 실시예에 있어서, 계면활성제는 양이온성 계면활성제를 포함할 수 있다. 적당한 양이온성 계면활성제는 염화 벤잘코늄, 브롬화 세트리모늄, 염화 라우릴 메틸 글루세트-10 히드록시프로필 디모늄, 염화 벤제토늄, 브로니독스, 염화 디메틸디옥타데실암모늄, 수산화 테트라메틸암모늄, 이의 혼합물 등을 포함할 수 있다. 계면활성제는 비-이온성 계면활성제일 수 있다. 적당한 비-이온성 계면활성제는 세틸 알콜, 스테아릴 알콜, 세토스테아릴 알콜, 올레일 알콜, 폴리옥시에틸렌 글리콜 알킬 에테르, 옥타에틸렌 글리콜 모노도데실 에테르, 글루코시드 알킬 에테르, 데실 글루코시드, 폴리옥시에틸렌 글리콜 옥틸페놀 에테르, 트리톤 X-100, 노녹시놀-9, 글리세릴 라우레이트, 폴리소르베이트, 폴록사머, 이의 혼합물 등을 포함할 수 있다.
일 실시예에 있어서, 하나 이상의 첨가제는 응집을 감소시키기 위해 가해질 수 있다. 적당한 첨가제는 염화 칼륨, 염화 암모늄, 수산화 암모늄, 수산화 나트륨, 이의 혼합물 등을 포함할 수 있다.
피각은 피각의 표면에 적용된 하나 이상의 변형을 가질 수 있다. 일 실시예에 있어서, 피각은 하나 이상의 피각의 표면에 하나 이상의 구조체를 형성하기 위해 기판으로서 사용될 수 있다. 도 5a는 구조체(52)를 포함하는 피각(50)을 나타낸다. 예를 들어, 피각(50)은 비어있는 원통형 또는 실질적으로 원통형 모양을 가질 수 있으며, 원기둥의 외부 및 내부 표면 위에 구조체(52)를 포함할 수 있다. 구조체 (52)는 피각(50)의 전도도를 포함하여, 피각(50)의 특징 또는 속성을 변형 또는 영향을 미칠 수 있다. 예를 들어, 전기 절연 피각(50)은 하나 이상의 피각(50)의 표면에 전기 전도성 구조체(52)를 형성함으로써 전기 전도성을 만들 수 있다. 피각 (50)은 은, 알루미늄, 탄탈룸, 놋쇠, 구리, 리튬, 마그네슘, 이의 조합, 및/또는 그밖에 유사한 것을 포함하는 구조체(52)를 포함할 수 있다. 일 실시예에 있어서, 피각(50)은 ZnO를 포함하는 구조체(52)를 포함한다. 일 실시예에 있어서, 피각(50)은 다른 금속-함유 화합물 또는 산화물을 포함하는 구조체(52)를 포함한다. 일 실시예에 있어서, 피각(50)은 실리콘, 게르마늄, 실리콘 게르마늄, 갈륨 비소, 이의 조합, 및/또는 그밖에 유사한 것을 포함하여, 반도체 물질을 포함하는 구조체 (52)를 포함한다. 일 실시예에 있어서, 피각(50)은 모든 또는 실질적으로 모든 피각 (50)의 표면 위에 표면 개질 구조체(52)를 포함한다.
피각(50)의 표면에 적용된 또는 형성된 구조체(52)는 다양한 모양, 크기, 및/또는 다른 속성을 포함할 수 있다. 피각(50)은 균일한 또는 실질적으로 균일한 모양, 크기, 및/또는 다른 구조체(52) 속성을 갖는 구조체(52)를 포함할 수 있다. 일 실시예에 있어서, 피각(50)은 나노와이어, 나노튜브, 나노시트, 나노박편, 나노구, 나노입자, 장미 모양을 갖는 구조체, 이의 조합, 및/또는 그밖에 유사한 것을 포함하는 구조체(52)를 가질 수 있다. 일 실시예에 있어서, 나노구조체는 약 0.1 나노미터 (nm) 내지 약 1000 nm의 길이를 갖는 크기를 가질 수 있다. 일 실시예에 있어서, 크기는 나노구조체의 직경이다. 일 실시예에 있어서, 크기는 나노구조체의 가장 긴 크기이다. 일 실시예에 있어서, 크기는 나노구조체의 길이 및/또는 너비이다. 피각의 표면 위의 나노구조체는 전기화학적 반응이 발생할 수 있는 증가된 표면적을 갖는 물질을 유리하게 제공하는, 증가된 표면적을 갖는 물질을 용이하게 할 수 있다. 일 실시예에 있어서, 규조류 피각은 제조 공정 및/또는 제조 공정에 의해 제조된 생산물에서 (예를 들어, 규조류 피각을 이용하여 제조된 전극, 이러한 전극을 포함하는 장치에서) 나노구조체의 응집을 감소, 방지, 또는 실질적으로 방지할 수 있다. 나노구조체의 응집의 감소는 전해질의 증가된 활성 표면적을 제공하여 접근을 용이하게 할 수 있다 (예를 들어, 전극의 활성 표면적을 증가시키고, 이러한 전극을 포함하는 장치의 전기 성능을 더 우수하게 함). 일 실시예에 있어서, 규조류 피각의 표면의 기공은 전극의 활성 표면적에 전해질 이온의 확산을 용이하게 하는 것과 같이, 전해질을 활성 표면적에 접근하는 것을 용이하게 할 수 있다 (예를 들어, 규조류 피각은 약 1 나노미터 (nm) 내지 약 500 nm의 공극 크기를 가질 수 있다.).
구조체(52)는 피각(50)과, 피각(50)의 표면 위에 구조체(52)의 코팅 또는 씨딩을 허여하는 원하는 물질을 포함하는 제형을 혼합함으로써 적어도 부분적으로 피각(50)의 표면 위에 형성 또는 증착될 수 있다.
본 명세서에 기재된 바와 같이, 피각(50)의 표면 위의 구조체(52)는 산화아연 나노와이어와 같은 산화아연을 포함할 수 있다. 일 실시예에 있어서, 산화아연 나노와이어는 피각(50)과, 아세트산 아연 이수화물(Zn(CH3C02)2·2H20) 및 에탄올을 포함하는 용액을 혼합함으로써 피각(50)의 표면 위에 형성될 수 있다. 예를 들어, 에탄올 내 0.005 mol/L (M) 아세트산 아연 이수화물의 농도를 갖는 용액은 피각(50)의 표면을 코팅하기 위해 피각(50)과 혼합될 수 있다. 코팅된 피각(50)을 공기 건조시킨 다음 에탄올로 헹굴 수 있다. 일 실시예에 있어서, 건조된 피각(50)을 (예를 들어, 약 350℃의 온도에서) 어닐링시킬 수 있다. 그 다음, 산화아연 나노와이어를 피각(50)의 코팅된 표면 위에서 성장시킬 수 있다. 일 실시예에 있어서, 어닐링된 피각(50)은 산화아연 나노와이어의 형성을 용이하게 하기 위하여 실온 이상의 온도에서 유지시킨다 (예를 들어, 약 95℃의 온도 주위에서 유지시킨다).
또한, 피각(50)은 피각(50)의 특징 또는 속성을 변형시키기 위해 피각(50)의 표면 위에 형성된 또는 증착된 물질을 포함할 수 있다. 예를 들어, 전기 절연 피각 (50)은 하나 이상의 피각(50)의 표면에 전기 전도성 물질을 형성 또는 적용함으로써 전기 전도성을 만들 수 있다. 피각(50)은 은, 알루미늄, 탄탈룸, 놋쇠, 구리, 리튬, 마그네슘, 이의 조합, 및/또는 그밖에 유사한 것을 포함하는 물질을 포함할 수 있다. 일 실시예에 있어서, 피각(50)은 ZnO를 포함하는 물질을 포함한다. 일 실시예에 있어서, 피각(50)은 실리콘, 게르마늄, 실리콘 게르마늄, 갈륨 비소, 이의 조합, 및/또는 그밖에 유사한 것을 포함하여, 반도체 물질을 포함하는 물질을 포함한다. 표면 개질 물질은 피각(50)의 외부 표면 및/또는 내부 표면 위에 있을 수 있다. 일 실시예에 있어서, 피각(50)은 모든 또는 실질적으로 모든 피각(50)의 표면 위에 표면 개질 물질을 포함한다.
물질은 피각(50)과, 피각(50)의 표면 위에 물질의 코팅 또는 씨딩을 허여하는 원하는 물질을 포함하는 제형을 혼합함으로써 부분적으로 피각(50)의 표면 위에 형성 또는 증착될 수 있다.
본 명세서에 기재된 바와 같이, 물질은 피각(50)의 표면 위에 증착될 수 있다. 일 실시예에 있어서, 물질은 은, 알루미늄, 탄탈룸, 구리, 리튬, 마그네슘, 및 놋쇠와 같은 전도성 금속을 포함한다. 일 실시예에 있어서, 은을 포함하는 물질로 피각 (50)의 표면을 코팅하는 단계는, 적어도 부분적으로, 피각(50)과 암모니아 (NH3) 및 질산은 (AgN03)을 포함하는 용액을 혼합하는 단계를 포함한다. 일 실시예에 있어서, 용액은 톨렌스 시약(Tollens' reagent)의 제조에 종종 사용된 공정과 유사한 공정으로 제조될 수 있다. 예를 들어, 용액의 제조는 수성 질산은에 암모니아를 첨가하여 침전물을 형성한 다음, 침전물이 용해될 때까지 암모니아를 더 첨가하는 것을 포함할 수 있다. 그 다음, 용액을 피각(50)과 혼합시킬 수 있다. 예로서, 침전물이 형성되도록 교반하면서 5 밀리리터(mL)의 암모니아를 150 mL의 수성 질산은에 가한 다음, 침전물이 용해될 때까지 다른 5 mL의 암모니아를 가할 수 있다. 그 다음, 용액을 0.5 그램 (g)의 피각(50) 및 글루코오스 수용액 (예를 들어, 10 mL의 증류수에 용해된 4 g의 글루코오스)과 혼합하여 혼합물을 형성할 수 있다. 그 다음, 피각 (50)의 코팅을 용이하게 하기 위해, 혼합물을 (예를 들어, 약 70℃의 온도로 유지된 따뜻한 수조) 온도로 유지된 수조에 담궈진 용기에 놓을 수 있다.
규조류 피각 또는 규조류 피각 부분 위에 나노구조체의 성장
본 명세서에 기재된 바와 같이, 규조토는 규조류라는 화석화된 미생물 (fossilized microscopic organisms)로부터 자연적으로 발생하는 침전물이다. 화석화된 미생물은 종종 약 1 마이크론 및 약 200 마이크론 사이의 크기를 갖는 고도로 구조화된 실리카로부터 제조된 단단한 피각을 포함한다. 다른 종의 규조류는 다른 3D 모양 및 특징을 가지며, 공급원에 따라 변한다.
규조토는 고도의 다공성, 마모성, 및/또는 열 저항 물질을 포함할 수 있다. 이러한 특성으로 인해, 규조토는 세라믹 첨가제, 온화한 연마재, 세정제, 식품 첨가제, 화장품 등으로서, 여과, 액체 흡수, 열 분리를 포함하여 광범위한 적용을 발견하였다.
규조류 피각은 나노과학 및 나노기술에 대해 매력적인 특징을 가진다. - 이들은 자연적으로 발생하는 나노구조체를 가진다: 나노공극, 나노공동 (nanocavities) 및 나노범프(nanobumps) (예를 들어, 도 1 내지 3에 나타난 바와 같음). 규조류 종에 따라 피각 모양의 풍부 (예를 들어, 105 이상)는 다른 매력적인 특성이다. 규조류 피각이 만들어진 것으로부터의 이산화 실리콘은, 규조류 나노구조체를 보존하는 동안 유용한 물질로 코팅 또는 대체될 수 있다. 규조류 나노구조체는 많은 공정 및 장치에 대해 유용한 나노물질로서 역할을 할 수 있다: 염료-감응 태양전지(dye-sensitized solar cells), 약물 전달, 전계발광 디스플레이 (electroluminescent displays), Li-이온 배터리에 대해 아노드(anode), 기체 센서 (gas sensors), 바이오센서(biosensors) 등. MgO, Zr02, Ti02, BaTi03, SiC, SiN, 및 Si의 형성은 Si02의 고온 기체 이동을 이용하여 수행될 수 있다.
일 실시예에 있어서, 규조류 피각은 3D 나노구조체로 코팅될 수 있다. 규조류는 규조류의 내부 나노공극을 포함하여, 내부 및/또는 외부 표면에 코팅될 수 있다. 코팅은 정확히 규조류 나노구조체를 보존할 수 없다. 그러나, 코팅은 자체의 나노공극 및 나노범프를 가질 수 있다. 이러한 실리카 피각/나노구조체 복합체는 피각을 지지체로서 사용한다. 나노구조 물질은 나노와이어, 나노구(nanospheres), 밀집 어레이의 나노입자, 나노디스크, 및/또는 나노벨트와 함께 밀집하게 결합된 작은 나노입자를 가질 수 있다. 종합적으로, 복합체는 매우 높은 표면적을 가질 수 있다.
다양한 물질을 포함하는 나노구조체가 피각의 표면에 형성될 수 있다. 일 실시예에 있어서, 나노구조체는 금속 물질을 포함한다. 예를 들어, 피각의 하나 이상의 표면에 형성된 나노구조체는 아연 (Zn), 마그네슘 (Mg), 알루미늄 (Al), 수은 (Hg), 카드뮴 (Cd), 리튬 (Li), 나트륨 (Na), 칼슘 (Ca), 철 (Fe), 납 (Pb), 니켈 (Ni), 은 (Ag), 이의 조합, 및/또는 그밖에 유사한 것을 포함할 수 있다. 일 실시예에 있어서, 나노구조체는 산화 금속을 포함한다. 예를 들어, 피각 표면에 형성된 나노구조체는 산화아연 (ZnO), 이산화 망간 (MnO2), 산화 망간(II, III) (Mn3O4), 산화 망간(II) (MnO), 산화 망간(III) (Mn2O3), 산화 수은 (HgO), 산화 카드뮴 (CdO), 산화은(I, III) (AgO), 산화은(I) (Ag2O), 산화 니켈 (NiO), 산화 납(II) (PbO), 산화 납(II, IV) (Pb2O3), 이산화 납 (PbO2), 산화 바나듐(V) (V2O5), 산화 구리 (CuO), 삼산화 몰리브덴 (MoO3), 산화철(III) (Fe2O3), 산화철(II) (FeO), 산화철(II, III) (Fe3O4), 산화 루비듐(IV) (RuO2), 이산화 티타늄 (TiO2), 산화 이리듐(IV) (IrO2), 산화 코발트(II, III) (Co3O4), 이산화 주석 (SnO2), 이의 조합, 및/또는 그밖에 유사한 것을 포함할 수 있다. 일 실시예에 있어서, 나노구조체는 망간 (III) 옥시하이드록사이드 (MnOOH), 니켈 옥시하이드록사이드 (NiOOH), 산화 은 니켈 (AgNiO2), 황화 납(II) (PbS), 산화 은 납 (Ag5pb2O6), 산화 비스무스(III) (Bi2O3), 산화 은 비스무스 (AgBiO3), 산화 은 바나듐 (AgV2O5), 황화 구리(I) (CuS), 이황화 철 (FeS2), 황화철 (FeS), 요오드화 납(II) (PbI2), 황화 니켈 (Ni3S2), 염화은 (AgCl), 산화 은 크로뮴 또는 크롬산 은 (Ag2CrO4), 인산 산화 구리(II) (Cu4O(PO4)2), 산화 리튬 코발트 (LiCoO2), 수소화 금속 합금 (예를 들어, LaCePrNdNiCoMnAl), 인산 리튬 철 (LiFePO4 또는 LFP), 과망간산 리튬 (LiMn2O4), 이산화 리튬 망간 (LiMnO2), Li(NiMnCo)O2, Li(NiCoAl)O2, 코발트 옥시하이드록사이드 (CoOOH), 질화 티타늄 (TiN), 이의 조합, 및/또는 그밖에 유사한 것을 포함하여, 다른 금속-함유 화합물을 포함한다.
일 실시예에 있어서, 피각의 표면에 형성된 나노구조체는 비-금속 또는 유기 물질을 포함할 수 있다. 일 실시예에 있어서, 나노구조체는 탄소를 포함할 수 있다. 예를 들어, 나노구조체는 다중벽 및/또는 단일벽 탄소 나노튜브, 그래핀, 흑연, 탄소 나노-이온, 이의 조합, 및/또는 그밖에 유사한 것을 포함할 수 있다. 일 실시예에 있어서, 나노구조체는 탄화불소 (예를 들어, CFx), 황 (S), 전도성 n/p-형 도핑된 고분자 (예를 들어, 전도성 n/p-형 도핑된 폴리(플루오렌), 폴리페닐렌, 폴리피렌, 폴리아줄렌, 폴리나프탈렌, 폴리(피롤), 폴리카바졸, 폴리인돌, 폴리아제핀, 폴리아닐린, 폴리(티오펜), 폴리(3,4-에틸렌디옥시티오펜), 및/또는 폴리(황화 p-페닐렌)), 이의 조합, 및/또는 그밖에 유사한 것을 포함할 수 있다.
규조류 피각의 표면에 형성된 나노구조체는 1) 은 (Ag) 나노구조체; 2) 산화아연 (ZnO) 나노구조체; 3) 탄소 나노튜브 "숲(forest)"; 및/또는 4) 망간-함유 나노구조체를 포함할 수 있다. 본 명세서에 기재된 바와 같이, 하나 이상의 이들의 표면에 형성된 나노구조체를 갖는 규조류 피각은 배터리 및 슈퍼축전기, 태양전지, 및/또는 기체 센서와 같은 에너지 저장 장치에 사용될 수 있다. 나노구조체는 하나 이상의 깨지지 않은 피각 및/또는 깨진 피각의 표면에 형성될 수 있다. 일 실시예에 있어서, 나노구조체 형성 공정에서 사용된 피각 또는 피각 부분은 본 명세서에 기재된 분리 단계 (예를 들어, 도 4a 및 4b에 나타낸 분리 공정(20))를 포함하는 분리 과정을 통해 추출될 수 있다. 일 실시예에 있어서, 나노구조 활성 물질의 성장 전에, 피각은 하나 이상의 기능화된 화학물질 (예를 들어, 실록산, 플루오로실록산, 단백질, 및/또는 계면활성제)로 전처리될 수 있다. 일 실시예에 있어서, 나노구조 활성 물질의 성장 전에, 피각은 전도성 물질 (예를 들어, 금속, 및/또는 전도성 탄소), 및/또는 반도체 물질로 미리-코팅될 수 있다. 예를 들어, 피각은 은 (Ag), 금 (Au), 구리 (Cu), 니켈 (Ni), 백금 (Pt), 그래핀, 흑연, 탄소 나노튜브, 실리콘 (Si), 게르마늄 (Ge)), 반도체-함유 합금 (예를 들어, 알루미늄-실리콘 (AlSi) 합금), 이의 조합, 및/또는 그밖에 유사한 것으로 미리-코팅될 수 있다.
일 실시예에 있어서, 나노구조체는 2 단계 방법을 이용하여 성장된다. 제 1 단계는 일반적으로 규조류 피각의 표면에 종자의 성장을 포함한다. 종자는 규조류 피각의 표면에 직접 결합된 (예를 들어, 화학 결합된) 나노구조체이고, 특정 입도 (grain size) 및/또는 균일성을 가질 수 있다. 에너지는 이러한 결합을 야기하기 위해 제공될 수 있다. 씨딩 공정은 고온 하에서 수행될 수 있고, 및/또는 열 또는 에너지 획득(energy gain)의 몇몇 다른 형태를 야기할 수 있는 다른 기술을 포함할 수 있다.
나노구조체를 형성하는 제 2 단계는 일반적으로 종자로부터 최종 나노구조체의 성장을 포함한다. 종자로 미리-코팅된 피각은 특정 조건 하에 초기 물질의 환경에 담글 수 있다. 나노구조체는 하나 이상의 나노와이어, 나노플레이트, 밀집 나노입자, 나노벨트, 나노디스크, 이의 조합, 및/또는 그밖에 유사한 것을 포함할 수 있다. 형태 인자는 나노구조체의 성장의 조건에 의존할 수 있다 (예를 들어, 나노구조체의 형태학은 성장 온도, 가열의 패턴, 나노구조체 성장 동안 화학 첨가제의 포함, 및/또는 이의 조합을 포함하여, 종자 층 위에 나노구조체의 형성 동안 하나 이상의 성장 조건에 의존할 수 있다.).
규조류 피각의 표면에 Ag 나노구조체의 형성 방법의 예
은 (또는 씨딩)으로 실리카의 초기 코팅은 마이크로파, 초음파 처리, 표면 개질, 및/또는 환원제로 질산은(AgN03)의 환원을 이용하여 Ag+ 염의 환원에 의해 달성될 수 있다.
종자 성장 단계는 용매에 은염 및 환원제의 용해 (예를 들어, 환원제 및 용매는 동일한 물질일 수 있음) 및 혼합물에 정제된 규조류의 분산을 포함할 수 있다. 용해 동안 및/또는 후에, 혼합, 교반, 가열, 초음파 처리, 마이크로파, 이의 조합, 및/또는 그밖에 유사한 것과 같은 물리적인 힘이 적용될 수 있다. 종자 층 성장 공정은 다양한 양의 시간 동안 발생할 수 있다.
규조류 피각의 표면에 Ag 종자의 성장의 예
실시예 1은 하기 단계를 포함한다: 0.234 g의 정제된 규조류, 0.1 g의 AgNO3, 및 50 mL의 60℃에서의 용융 PEG 600 (폴리에틸렌 글리콜)을 비이커에서 혼합한다. 일 실시예에 있어서, 깨끗한 규조류, 은 기여 성분 (예를 들어, 질산은), 및 환원제를 포함하는 혼합물은 고리형 가열 방법에 의해 가열될 수 있다. 일 실시예에 있어서, 환원제 및 용매는 동일한 물질일 수 있다. 예를 들어, 혼합물은 매분 약 100 Watt 내지 500 Watt의 열을 교류하는, 약 20분 내지 약 40분 동안 가열될 수 있다. 예를 들어, 깨끗한 규조류, 질산은, 및 용융 PEG를 포함하는 혼합물은 약 30분 동안 마이크로파에 의해 가열되었다. 마이크로파 전력을 매분 100 Watt 내지 500 Watt로 변경하여 혼합물의 과열을 방지하였다. 몇몇 상업적 마이크로파는 마이크로파가 그 결과를 이루기 위하여 전력을 조절하는 동안, 사용자가 특정 기간 후에 내용물의 온도를 결정하도록 또는 다양한 기간 후에 다수의 온도를 결정하도록 (예를 들어, 온도 램프를 규정짓도록) 허여한다. 예를 들어, 마이크로파는 낮은 전력이 50 mL의 물을 1분 내에 85℃로 가열하는 것보다 50 mL의 물을 2분 내에 85℃로 가열하는데 필요하다는 것을 결정할 수 있고, 이 조정은 온도 센서를 기준으로 가열 공정 동안 만들어질 수 있다. 다른 예의 경우, 마이크로파는 낮은 전력이 100 mL의 물을 2분 내에 85℃로 가열하는 것보다 50 mL의 물을 2분 내에 85℃로 가열하는데 필요하다는 것을 결정할 수 있고, 이 조정은 온도 센서를 기준으로 가열 공정 동안 만들어질 수 있다. 규조류를 원심분리하고, 에탄올로 세척하였다. 종자는 도 5b 및 5c에 예시하였다.
실시예 2는 하기 단계를 포함한다: 45 mL의 N,N-디메틸포름아미드, 0.194 g의 6,000 MW PVP (폴리비닐피롤리돈), 5 mL의 물 내 0.8 mM AgNO3, 및 0.1 g의 여과 및 정제된 규조류를 비이커에서 혼합한다. 초음파 처리기의 끝(tip) (예를 들어, 13 mm 직경, 20 kHz, 500 Watt)을 혼합물에 놓고, 혼합물이 있는 비이커를 얼음 욕조에 놓았다. 끝 진폭(Tip amplitude)을 100%로 설정한다. 초음파 처리를 30분 지속한다. 5분 동안 3,000 RPM에서 초음파 처리 및 원심분리를 이용하여 에탄올에서 2회 과정 후 규조류를 세정한다. 그 다음, 종자가 규조류 위에서 보일 때까지 공정을 2회 이상 반복한다.
도 5b는 규조류 피각(60)의 표면에 형성된 은 종자(62)의 50k× 배율의 SEM 영상을 나타낸다. 도 5c는 규조류 피각(60)의 표면에 형성된 은 종자(62)의 250k× 배율의 SEM 영상을 나타낸다.
은 씨딩된 규조류 피각 표면에 은 나노구조체의 형성의 예
은과 함께 씨딩된 피각의 추가 코팅을 아르곤 (Ar) 대기 하에 수행하여 산화은의 형성을 억제할 수 있다. 일 실시예에 있어서, 규조류 피각 부분은 소결시켜 (예를 들어, 약 400℃ 내지 약 500℃의 온도로 가열시킴), 씨딩된 규조류 피각 부분을 은으로 더 코팅하는 공정 동안 형성된 산화은을 포함하여, 규조류 피각 부분의 하나 이상의 표면에 형성될 수 있는 산화은으로부터 은을 얻을 수 있다. 예를 들어, 규조류 피각 부분의 소결은 전도성 은 잉크 (예를 들어, 본 명세서에 기재된 바와 같은 UV-경화성 전도성 은 잉크)의 제조에 사용된 규조류 피각 부분에서 수행될 수 있다. 일 실시예에 있어서, 소결은 은으로 산화은의 환원을 촉진시키기 위해 대기 하에서 형성될 수 있다 (예를 들어, 수소 기체). 산화은으로부터 은을 얻기 위해 전도성 은 잉크가 포함하는 규조류 피각 부분의 소결은, 은이 산화은보다 더 전도성이기 때문에 및/또는 은-은 접촉 (예를 들어, 은-산화은 접촉 및/또는 산화은-산화은 접촉과는 대조적으로)이 증가할 수 있기 때문에, 전도성 은 잉크의 전도도를 향상시킬 수 있다. 산화은으로부터 은을 얻는 다른 방법은 화학 반응을 포함하는 공정을 포함하여, 소결 대신에 또는 조합에도 적합할 수 있다.
종자 층 위에 나노구조체의 형성은 은염, 환원제, 및 용매를 포함할 수 있다. (예를 들어, 나노구조체 성장 공정의 성분들의 상호작용을 용이하게 하기 위해) 혼합 단계, 가열 단계, 및/또는 적정 단계를 적용하여 종자 층 위에 나노구조체를 형성할 수 있다.
종자 층 위에 나노구조체의 형성 (예를 들어, 두꺼운 은 코팅의 형성) 방법의 예는 하기 공정을 포함한다:
5 mL의 물 내 0.0375 M PVP (6,000 MW) 용액은 하나의 주사기에 놓고, 5 mL의 물 내 0.094 M AgN03 용액은 다른 주사기에 놓는다. 0.02 g의 씨딩된 세척 및 건조된 규조류를 약 140℃로 가열된 5 mL의 에틸렌 글리콜과 함께 혼합하였다. 규조류를 주사기 펌프를 이용하여 약 0.1 mL/min의 속도로 은염 (예를 들어, AgN03) 및 PVP 용액으로 적정한다. 적정을 완료한 후, 혼합물을 약 30분 동안 교반한다. 그 다음, 규조류를 에탄올, 욕조 초음파 처리, 및 원심분리를 이용하여 세척한다 (예를 들어, 2회 세척).
도 5d 및 5e는 은 나노구조체(64)가 규조류 피각(60)의 표면에 형성된 예의 SEM 영상을 나타낸다. 도 5d 및 5e는 높은 표면적과 함께 두꺼운 나노구조 코팅을 갖는 피각(60)을 나타낸다. 도 5d는 20k× 배율에서 피각 표면의 SEM 영상이고, 도 5e는 150k× 배율에서 피각 표면의 SEM 영상을 나타낸다. 도 5l은 표면에 은 나노구조체(64)를 갖는 규조류 피각(60)의 50k× 배율의 다른 SEM 영상이다. 규조류 피각(60)의 두꺼운 나노구조 코팅은 도 5l에서 볼 수 있다.
Ag 성장에 대해 적당한 환원제의 예는 은 무전해 증착(silver electroless deposition)에 사용된 통상의 환원제를 포함한다. 은 무전해 증착에 적합한 몇몇 환원제는 히드라진, 포름알데히드, 글루코오스, 주석산 나트륨, 옥살산, 포름산, 아스코르브산, 에틸렌 글리콜, 이들의 조합 등을 포함한다.
적당한 Ag+ 염 및 산화물의 예는 은염을 포함한다. 가장 통상적으로 사용된 은염은 물에 가용성이다 (예를 들어, AgN03). 적당한 은염은 AgN03의 암모늄 용액 (예를 들어, Ag(NH3)2N03)을 포함할 수 있다. 일 실시예에 있어서, 임의의 은(I) 염 또는 산화물이 사용될 수 있다 (예를 들어, 물에 가용성 및/또는 불용성). 예를 들어, 산화은 (Ag20), 염화 은 (AgCl), 시안화 은 (AgCN), 은 테트라플루오로보레이트, 은 헥사플루오로포스페이트, 은 에틸설페이트, 이의 조합, 및/또는 그밖에 유사한 것도 적당할 수 있다.
적당한 용매는 물, 메탄올, 에탄올, N-프로판올 (1-프로판올, 2-프로판올 (이소프로판올 또는 IPA), l-메톡시-2-프로판올 포함), 부탄올 (1-부탄올, 2-부탄올 (이소부탄올) 포함), 펜탄올 (1-펜탄올, 2-펜탄올, 3-펜탄올 포함), 헥산올 (1-헥산올, 2-헥산올, 3-헥산올 포함), 옥탄올, N-옥탄올 (1-옥탄올, 2-옥탄올, 3-옥탄올 포함), 테트라히드로퓨르퓨릴 알콜 (THFA), 시클로헥산올, 시클로펜탄올, 테르피네올과 같은 알콜류; 부틸 락톤과 같은 락톤류; 메틸 에틸 에테르, 디에틸 에테르, 에틸 프로필 에테르, 및 폴리에테르와 같은 에테르류; 시클로헥산온, 시클로펜탄온, 시클로헵탄온, 시클로옥탄온, 아세톤, 벤조페논, 아세틸아세톤, 아세토페논, 시클로프로판온, 이소포론, 메틸 에틸 케톤과 같은 디케톤류 및 고리형 케톤류를 포함하는 케톤류; 에틸 아세테이트, 디메틸 아디페이트, 프로필렌 글리콜 모노메틸 에테르 아세테이트, 디메틸 글루타레이트, 디메틸 석시네이트, 글리세린 아세테이트, 카복실레이트와 같은 에스터류; 프로필렌 카보네이트와 같은 카보네이트류; 글리세린, 디올, 트리올, 테트라올, 펜타올, 에틸렌 글리콜, 디에틸렌 글리콜, 폴리에틸렌 글리콜, 프로필렌 글리콜, 디프로필렌 글리콜, 글리콜 에테르, 글리콜 에테르 아세테이트, 1,4-부탄디올, 1,2-부탄디올, 2,3-부탄디올, 1,3-프로판디올, 1,4-부탄디올, 1,5-펜탄디올, 1,8-옥탄디올, 1,2-프로판디올, 1,3-부탄디올, 1,2-펜탄디올, 에토헥사디올, p-메탄-3,8-디올, 2-메틸-2,4-펜탄디올과 같은 폴리올 (또는 액체 폴리올), 글리세롤 및 다른 고분자 폴리올 또는 글리콜; 테트라메틸 우레아, n-메틸피롤리돈, 아세토니트릴, 테트라히드로퓨란 (THF), 디메틸 포름아미드 (DMF), N-메틸 포름아미드 (NMF), 디메틸 설폭시드 (DMSO); 염화 티오닐; 염화 설퓨릴, 이의 조합, 및/또는 그밖에 유사한 것을 포함할 수 있다.
일 실시예에 있어서, 용매는 환원제로도 작용할 수 있다.
저비용 UV-경화성 은-규조류 전도성 잉크의 제조 방법의 예
열 경화성 은 박편 및 은 나노입자 전도성 잉크는 Henkel Corp., Spraylat Corp., Conductive Compounds, Inc., DuPont, Inc., Creative Materials Corp., 등과 같은 다양한 제조업체로부터 이용할 수 있다. 훨씬 덜 일반적인 제품은 자외선 (UV)과 함께 경화할 수 있는 은 전도성 잉크이다. 다만 몇 안되는 공급업체 (예를 들어, Henkel Corp.)는 그들의 취급제품으로 이러한 잉크를 가진다. UV-경화성 은 전도성 잉크는 전도도에 비해 높은 은 추가부담금(loading) 및 제곱미터 당 고비용 때문에 종종 매우 비싸다. 전도도는 동일한 습식 필름 두께로 적용된 열 경화된 은 전도성 잉크보다 5 내지 10배 정도 적을 수 있다.
현재 이용할 수 있는 UV-경화성 잉크보다 우수한 또는 적어도 동일한 저비용 UV-경화성 은에 대한 필요성이 명백히 있다. 몇몇 UV-경화성 은은 잉크에 존재하는 은의 용량을 충분히 이용할 수 없으므로, 현재의 UV-경화성 은 잉크보다 우수하거나 또는 유사한 전도도 및/또는 경화도를 가지는 훨씬 적은 은을 이용하여 은 잉크를 개발하는 것이 필요하다.
UV-경화성 은의 개발과 함께 어려움은 은의 UV 흡수 특성에 기인할 수 있다. 열-경화된 은 잉크에서, 높은 종횡비(aspect ratio)를 갖는 은 박편은 박편 사이의 접촉 면적을 극대화시킴으로써 가장 높은 전도도를 야기하는데 사용될 수 있다. 만일 이런 유형의 은 박편이 인쇄 또는 다른 코팅 공정을 이용하여 표면에 적용된 다음 UV 빛에 노출시킨 전도성 잉크에 대해 적당한 UV-경화성 수지 시스템과 함께 혼합된다면, 대부분의 UV 빛은 은 잉크의 습식 층을 통해 UV 빛을 산란시키기 전에 은에 의해 흡수될 수 있다. 은 박편에 의한 UV 흡수는 습식 잉크 필름에서 발생하는 (예를 들어, 특정 깊이를 넘어 습식 잉크의 UV 빛-개시 중합의 방해 또는 방지하는) 것으로부터 UV 빛-개시 중합을 방해 또는 방지할 수 있다. 잉크 필름의 감소된 중합은 경화되지 않고 습식인 은 잉크 층의 최하 부분(bottom-most portions)으로 인해, 기판에 부착할 수 없는 은 잉크의 불완전하게 경화된 층을 야기할 수 있다. 낮은 종횡비의 은 입자는 UV-경화성 은 잉크에 사용되어, 은 잉크의 적용된 층을 통해 가능한 빛 산란 통로의 수를 증가시킴으로써 은 잉크의 적용된 층을 통해 적당히 경화된 것을 얻을 수 있다. 낮은 종횡비 입자는 표면적을 감소시키고, 박편 사이의 접촉 면적을 감소시킬 수 있으며, 교대로 높은 종횡비 박편이 사용되면 가능한 어떤 것에 비해 경화된 필름의 전도도를 감소시킬 수 있다. 만일 이러한 경화 문제가 해결될 수 있다면, 높은 전도도를 갖는 더 큰 종횡비의 은 박편은 은 잉크에 사용될 수 있으며, 결과의 은 필름의 전도도를 향상시킬 수 있고 및/또는 높은 전도도를 달성하는데 사용된 은의 양을 감소시킬 수 있다.
일 실시예에 있어서, 비-전도성 기판 (예를 들어, 규조류 피각 박편과 같은 규조류 피각 부분)은 은으로 도금될 수 있다. UV 빛은 규조류 피각 박편의 몸체의 하나 이상의 표면 위의 구멍을 통과할 수 있다. 은 잉크 내 은 도금한 규조류 박편을 이용하여 은 잉크의 경화를 용이하게 할 수 있으며, 은 잉크 내 높은 종횡비 박편의 사용을 가능하게 한다. 일 실시예에 있어서, 은 도금한 규조류 피각을 포함하는 은 잉크는 경화된 은 잉크의 전도도를 증가시킬 수 있으며, 동시에, 잉크의 비용을 감소시킬 수 있다.
일 실시예에 있어서, 은 잉크에 사용된 규조류 피각 (예를 들어, 깨진 규조류 피각)의 부분은 온전한 규조류 입자로부터 정제 및 분리시킬 수 있으며, 규조류 피각 부분의 하나 이상의 표면은 본 명세서에 기재된 방법에 따라 은으로 무전해 코팅될 수 있다.
규조류 표면은 은으로 코팅되는 경우, 정공 또는 개구부 (예를 들어, 약 300 nm의 직경의 정공 포함)의 규칙적인 패턴에 의해 구멍을 뚫을 수 있다. 개구부는 은 코팅된 규조류 입자를 통해 UV 파장을 산란시킬 정도로 충분히 클 수 있다. 은으로 코팅된 깨진 규조류는 높은 종횡비의 구멍 뚫린 박편 형태의 파편(shards)을 포함할 수 있다. 도 5f는 Ag 나노구조체 (예를 들어, 은 나노구조체(64))로 코팅된 규조류 피각의 깨진 조각 (예를 들어, 규조류 피각 박편(60A))의 SEM 영상을 나타낸다.
일 실시예에 있어서, 비록 전도성 입자가 높은 종횡비 및 큰 표면적을 가질지라도, 은 코팅된 구멍 뚫린 규조류 박편은 적당히 두꺼운 잉크 (예를 들어, 약 5 ㎛ 내지 약 15 ㎛의 두께를 갖는 은 잉크)가 사용될 때, 경화될 수 있는 UV-은 잉크를 제조하는데 사용될 수 있다. 피각 박편의 큰 표면적은 박편 사이의 전기 접촉의 수를 증가시킴으로써 우수한 박편 사이의 전도도를 야기할 수 있으며, 저렴한 규조류 충전제 물질 및 UV 바인더 수지에 의해 흡수된 용량의 나머지와 함께, 원하는 쉬트 전도도를 달성하는데 필요한 만큼만 실질적으로 은을 사용하는 고도의 전도성 잉크를 야기한다.
은 나노구조체는 피각 구멍의 내부 표면을 포함하나 구멍을 차단하지 않은, 피각의 실질적으로 모든 표면을 덮을 수 있다 (예를 들어, 하나 이상의 구멍의 표면 및 피각 표면은 은 나노구조체 및/또는 은 종자 층으로 도금될 수 있다). Ag 코팅된 규조류 박편에서 구멍은 UV 조사가 규조류 박편을 통과하도록 허여할 수 있고, 적용된 은 잉크 필름 내에 깊은 깊이까지 경화를 용이하게 하고, 전류가 구멍을 통해 박편의 한쪽 면에서 다른 쪽으로 직접 수행되는 것을 허여한다. 박편을 통해 전도 경로의 길이의 감소는 은 잉크로부터 제조된 경화된 필름의 전체 저항을 감소시킬 수 있다.
UV 빛-유도된 중합성 잉크 제형의 예는 하기 목록의 성분을 포함할 수 있다. 일 실시예에 있어서, 규조류 피각 박편을 갖는 은 잉크는 하나 이상의 표면에 형성된 은 나노구조체를 갖는 다수의 피각 부분 (예를 들어, 피각 박편)과 하기에 열거된 하나 이상의 다른 은 잉크 성분의 조합을 포함하여, 하기에 열거된 성분들의 조합에 의해 제조될 수 있다. 은 필름은 UV 광원으로 은 잉크를 경화함으로써 제조될 수 있다.
1) 약 10 nm 및 약 500 nm 사이의 두께의 Ag 코팅으로 도금한 (예를 들어, 그 위에 형성된 나노구조체를 갖는), 임의의 다양한 종의 규조류. Ag 코팅의 두께는 규조류 구멍의 공극 크기에 의존할 수 있다. 제형의 비율은 약 50 중량% 및 약 80 중량% 사이일 수 있다. 단편(fragment)이 사용될 수 있는 규조류 종의 예는 Aulacoseira sp. 1 이다.
2) n-비닐-피롤리돈 또는 n-비닐카프로락탐과 같은, 은에 대해 우수한 친화도를 갖는 극성 비닐 단량체.
3) 경화된 필름에서 유연성을 향상시키기 위한 유동개질제(rheology modifier)로서 우수한 연신 특성(elongation properties)을 갖는 아크릴레이트 올리고머.
4) 증가된 가교를 통해 더 강하고, 더 용매 저항적인 경화된 필름을 생산하기 위해 가교제로서 하나 이상의 이작용성 또는 삼작용성 아크릴레이트 단량체 또는 올리고머. 이러한 물질은 광개시 상승제로서 작용하는 것을 선택할 수 있으며, 표면 경화를 향상시킬 수 있다. 예로는 Sartomer CD560®와 같은 에톡실화된 또는 프로폭실화된 헥산디올 아크릴레이트, 제품 코드 SR454® 하의 Sartomer로부터 이용할 수 있는 에톡실화된 트리메틸프로판 트리아크릴레이트, 또는 제품 코드 SR507A® 하의 Sartomer로부터 이용할 수 있는 트리알릴 시아누레이트를 포함할 수 있다. 아크릴화된 아민 상승제는 선택일 수 있으며, 예로는 Sartomer CN371® 및 Sartomer CN373®을 포함할 수 있다.
5) 버블링을 감소시키고 습식 잉크 품질을 향상시키기 위한 아크릴레이트-계 흐름 및 수준제. (예를 들어, 적당한 흐름 및 수준제는 Modaflow 2100®, Modaflow 9200®를 포함할 수 있다). 향상된 습식 잉크 품질은, 차례로, 경화된 은 잉크 막 품질을 향상시킬 수 있다.
6) 안료 적재된 잉크 시스템에 대해 적당한 하나 이상의 광개시제. 일 실시예에 있어서, 적어도 하나의 광개시제는 은 도금한 규조류 박편의 평균 공극 크기보다 작거나 가까운 파장에 민감하므로, UV 광자는 박편 아래에 중합을 개시하기 위하여 또는 거기에 중합을 개시하기 위해 경화되지 않은 필름으로 더 깊게 통과하도록 다른 은 도금한 규조류 박편에 있는 구멍을 통해 산란하기 위하여 공극을 통과할 수 있다. 광개시제의 예는 Ciba Irgacure 907® 및 이소프로필 티옥소탄온 (Speedcure ITX®라는 상품명으로 Lambson, UK로부터 이용할 수 있는 ITX)을 포함할 수 있다.
7) 임의의 접착 촉진 아크릴레이트 (예를 들어, 2-카복시에틸 아크릴레이트).
8) 표면 장력을 낮추고 박편 습윤을 향상시키는 임의의 습윤제 (예를 들어, DuPont Capstone FS-30® 및 DuPont Capstone FS-31®).
9) 은 금속의 존재에 의해 유발된 조기 중합을 억제하기 위한 임의의 UV 안정화제 (예를 들어, 히드로퀴논 및 메틸 에틸 히드로퀴논 (MEHQ)).
10) 플렉소 인쇄(flexographic printing), 그라비어 인쇄(gravure printing), 이의 조합, 및/또는 그밖에 유사한 것과 같은 공정을 포함하여, 고속 코팅 공정에서 사용되는 은 잉크 제형을 용이하게 하기 위해 점도를 낮추는 임의의 낮은 끓는점 용매.
일 실시예에 있어서, 규조류 피각 부분을 포함하는 은 잉크는 열경화될 수 있다. 일 실시예에 있어서, 은 잉크는 열 공급원에 노출될 수 있다. 예를 들어, 은 잉크는 은 잉크의 고분자 성분 사이의 중합 반응을 용이하게 하기 위해 가열될 수 있다. 일 실시예에 있어서, 은 잉크의 열경화는 용매 성분의 제거를 용이하게 할 수 있다. 예를 들어, 은 잉크는 용매 성분의 제거를 용이하게 하기 위해 은 잉크의 온도를 은 잉크 용매 성분의 끓는점 이상으로 올려 열 공급원에 노출시킬 수 있다.
규조류 피각의 표면에 산화아연 (ZnO) 나노구조체의 형성 방법의 예
일반적으로, 기판상에 ZnO 종자는 콜로이드 ZnO의 스프레이 또는 스핀 코팅을 이용하여 또는 아연 염 용액의 열 분해와 함께 증착될 수 있다. 예를 들어, 아세트산 아연 전구체의 열 분해는 수직으로 잘-정렬된 ZnO 나노와이어를 제공할 수 있다.
종자로부터 ZnO 나노구조체의 성장은 염기성 용액에서 Zn 염의 가수분해에 의해 달성될 수 있다. 공정은 실온에서 또는 고온에서 수행될 수 있다. 마이크로파 가열은 나노구조체의 성장을 상당히 촉진시킬 수 있다. 성장 매개변수에 따라, 다른 나노구조체가 관찰되었다 (예를 들어, 나노구조체의 형태학은 성장 온도, 가열의 패턴, 나노구조체 성장 동안 화학 첨가제의 포함, 및/또는 이의 조합을 포함하여, 종자 층 위에 나노구조체의 형성 동안 하나 이상의 성장 조건에 의존할 수 있다.). 예를 들어, 화학 첨가제는 원하는 나노구조체의 형태학을 달성하기 위해 사용될 수 있다. ZnO 나노구조체도 그들의 반도체 특성을 조절하기 위해 도핑될 수 있다.
규조류 피각의 표면에 ZnO 종자의 성장 방법의 예
1. ZnO의 종자의 제조는 0.1 g의 정제된 규조류 및 10 mL의 에탄올 내 0.005 M Zn(CH3COO)2 (예를 들어, 아연 기여 성분)의 혼합물을 건조할 때까지 약 200℃ (예를 들어, 약 175℃ 내지 약 225℃ 포함)로 가열함으로써 달성될 수 있다. ZnO로 씨딩된 피각 표면의 100k× 배율의 각 SEM 영상을 도 5g 및 5h에 나타낸다. 도 5g 및 5h는 피각(70)의 표면에 형성된 ZnO를 포함하는 종자(72)의 SEM 영상을 나타낸다. 도 5g는 산화아연을 포함하는 종자(72)를 갖는 피각 표면의 100k× 배율의 SEM 영상을 나타낸다. 도 5h는 산화아연을 포함하는 종자(72)를 갖는 피각 표면의 100k× 배율의 SEM 영상을 나타낸다.
규조류 피각의 ZnO 씨딩된 표면에 ZnO 나노구조체의 성장 방법의 예
2. ZnO 나노구조체 성장은 0.1 g의 씨딩된 피각과 10 mL의 물 내 0.025 M ZnN03 (예를 들어, 아연 기여 성분) 및 0.025 M 헥사메틸렌테트라민 용액 (예를 들어, 염기성 용액)의 혼합물에서 수행되었다. 시료를 약 2분 (예를 들어, 약 30초 내지 약 5분, 약 1분 내지 약 5분, 약 5분 내지 약 20분 포함) 동안 500 Watt의 전력 (예를 들어, 약 480 Watt 내지 약 520 Watt 포함)으로 가열시킨 다음, 500 Watt에서 가열을 반복하기 전에 약 1분 (예를 들어, 약 30초 내지 약 5분 포함) 동안 가열을 끄는 경우, 혼합물은 교반 플레이트에서 약 2시간 (예를 들어, 약 1시간 내지 약 3시간 포함) 동안, 또는 약 10분 (예를 들어, 약 5분 내지 약 30분 포함) 동안 고리형 가열 방법 (예를 들어, 마이크로파 가열)을 이용하여 약 90℃ (예를 들어, 약 80℃ 내지 약 100℃ 포함)로 가열하였다. 피각(70)의 내부 및 외부 표면에 결과의 나노와이어(74)는 도 5i 및 5j에 나타낸다. 도 5i는 규조류 피각(70)의 내부 표면 및 외부 표면에 형성된 ZnO 나노와이어(74)의 50k× 배율의 SEM 영상을 나타낸다. 일 실시예에 있어서, ZnO 나노와이어(74)는 규조류 피각(70)의 내부 표면의 부분에 형성될 수 있다. 예를 들어, ZnO 나노와이어(74)는 규조류 피각(70)의 내부의 모든 또는 실질적으로 모든 표면에 형성될 수 있다. ZnO 나노와이어(74)는 규조류 피각(70)의 모든 또는 실질적으로 모든 내부 및 외부 표면에 형성될 수 있다. 이 출원의 도면은 규조류 피각의 내부에 나노구조체 (예를 들어, ZnO 나노와이어)의 성장을 포함하여, 규조류 피각에 나노구조체 (예를 들어, ZnO 나노와이어)의 성장이 가능하다는 증거를 제공한다. ZnO 나노구조체로 규조류 피각의 모든 또는 실질적으로 모든 면의 코팅은, 기판의 외부에만 형성된 ZnO 나노구조체를 포함하는 물질 (예를 들어, 그것으로부터 인쇄된 잉크 또는 층)에 비해, ZnO 나노구조체-코팅된 규조류 피각 (예를 들어, 증가된 벌크 전도도 및/또는 쉬트 전도도)을 포함하는 물질 (예를 들어, 그것으로부터 인쇄된 잉크 또는 층)의 증가된 전도도를 제공할 수 있다. 도 5j는 규조류 피각(70)의 표면에 형성된 ZnO 나노와이어(74)의 25k× 배율의 SEM 영상을 나타낸다. 도 5m 및 5n은 하나 이상의 표면에 ZnO 나노와이어(74)를 갖는 규조류 피각(70)의 추가 SEM 영상이다. 도 5m은 10k× 배율의 규조류 피각(70)의 SEM 영상이다. 도 5n은 100k× 배율의 규조류 피각(70)의 SEM 영상이다. ZnO 나노와이어(74)의 다면체, 다각형 횡단면도, 및 막대 같은 구조체 및 피각(70)의 표면에 이들의 부착은 도 5n에 더욱 명백히 나타낼 수 있다. 가열이 100 Watt의 마이크로파에서 수행된 경우 (예를 들어, 약 80 Watt 내지 약 120 Watt 포함; 및 약 2분 켠 다음, 약 1분 끄고, 총 약 10분 동안 반복됨), 나노플레이트(76)는 (예를 들어, 도 5k에 나타난 바와 같이) 피각(70)의 표면에 형성될 수 있다.
ZnO 씨딩 및 나노구조체 성장에 사용될 수 있는 적당한 Zn 염의 예는 아세트산 아연 수화물, 질산 아연 육수화물, 염화 아연, 황산 아연, 아연산 나트륨, 이의 조합, 및/또는 그밖에 유사한 것을 포함한다.
ZnO 나노구조체 성장에 적당한 염기의 예는 수산화나트륨, 수산화암모늄, 수산화칼륨, 수산화 테트라메틸암모늄, 수산화리튬, 헥사메틸렌테트라민, 암모니아 용액, 탄산 나트륨, 에틸렌디아민, 이의 조합, 및/또는 그밖에 유사한 것을 포함할 수 있다.
ZnO 나노구조체의 형성에 적합한 용매의 예는 하나 이상의 알콜류를 포함한다. 본 명세서에 기재된 용매는 Ag 나노구조체 성장에 적합한 것으로 ZnO 나노구조체 형성에도 적합할 수 있다.
나노구조체 형태학 조절에 사용될 수 있는 첨가제의 예는 트리부틸아민, 트리에틸아민, 트리에탄올아민, 디이소프로필아민, 암모늄 포스페이트, 1,6-헥사디안올, 트리에틸디에틸놀, 이소프로필아민, 시클로헥실아민, n-부틸아민, 염화 암모늄, 헥사메틸렌테트라민, 에틸렌 글리콜, 에탄올아민, 폴리비닐알콜, 폴리에틸렌 글리콜, 도데실 황산 나트륨, 브롬화 세틸트리메틸 암모늄, 카바마이드, 이의 조합, 및/또는 그밖에 유사한 것을 포함할 수 있다.
규조류 피각의 표면에 탄소 나노튜브의 형성 방법의 예
탄소 나노튜브 (예를 들어, 다중벽 및/또는 단일벽)는 화학 증기 증착 기법 및 이의 다양성에 의해 규조류 표면 (예를 들어, 내부 및/또는 외부)에 성장될 수 있다. 이 기법에서, 규조류는 먼저 촉매 종자로 코팅된 다음 기체의 혼합물을 도입시킨다. 기체 중 하나는 환원 기체일 수 있고, 다른 기체는 탄소의 공급원일 수 있다. 일 실시예에 있어서, 기체의 혼합물이 사용될 수 있다. 일 실시예에 있어서, 중성 기체는 농도 조절을 위해 포함될 수 있다 (예를 들어, 아르곤). 또한, 아르곤은 액체 탄소질(carbonaceous) 물질 (예를 들어, 에탄올)을 운반하기 위해 사용될 수 있다. 탄소 나노튜브의 형성을 위한 종자는 스프레이 코팅과 같은 기법에 의해 금속으로 증착될 수 있고, 및/또는 액체, 기체, 및/또는 고체로부터 도입될 수 있으며, 열분해에 의해 상승된 온도 아래로 나중에 감소될 수 있다. 탄소질 기체의 감소는 약 600℃ 내지 약 1100℃의 범위의 고온에서 발생할 수 있다.
종자 코팅 공정 및 기체 반응은 나노기공으로 인해 피각 표면에서 달성될 수 있다. 기법은 실리콘, 알루미나, 산화 마그네슘, 석영, 흑연, 실리콘 카바이드, 제올라이트, 금속, 및 실리카를 포함하는 다른 기판에서 탄소 나노튜브 "숲" 성장으로 개발되어 왔다.
촉매 종자의 성장에 적합한 금속 화합물의 예는 니켈, 철, 코발트, 코발트-몰리브데늄 두금속(bimetallic), 구리 (Cu), 금 (Au), Ag, 백금 (Pt), 팔라듐 (Pd), 망간 (Mn), 알루미늄 (Al), 마그네슘 (Mg), 크롬 (Cr), 안티몬 (Sn), 알루미늄-철-몰리브덴 (Al/Fe/Mo), 철 펜타카보닐 (Fe(CO)5)), 질산철 (III) 육수화물 ((Fe(N03)3·6H20), 염화 코발트 (II) 육수화물 (CoCl2·6H20), 몰리브덴산 암모늄 사수화물 ((NH4)6Mo7024·4H20), 이염화 이산화 몰리브덴 (VI) (Mo02Cl2), 알루미나 나노분말, 이의 혼합물 등을 포함할 수 있다.
적당한 환원제의 예는 암모니아, 질소, 수소, 이의 혼합물 등을 포함할 수 있다.
탄소의 공급원 (예를 들어, 탄소질 기체)으로 작용할 수 있는 적당한 기체의 예는 아세틸렌, 에틸렌, 에탄올, 메탄, 산화탄소, 벤젠, 이의 혼합물 등을 포함할 수 있다.
규조류 피각의 표면에 망간-함유 나노구조체의 형성 방법의 예
일 실시예에 있어서, 망간-함유 나노구조체는 피각의 하나 이상의 표면에 형성될 수 있다. 일 실시예에 있어서, 망간의 산화물은 피각의 하나 이상의 표면에 형성될 수 있다. 예를 들어, 이산화 망간 (MnO2), 산화 망간 (II, III) (Mn3O4), 산화 망간 (II) (MnO), 산화 망간 (III) (Mn2O3), 및/또는 망간 옥시하이드록사이드 (MnOOH)을 포함하는 나노구조체는 피각의 하나 이상의 표면에 형성될 수 있다. 일 실시예에 있어서, 에너지 저장 장치의 막은 망간-함유 나노구조체를 갖는 피각을 포함할 수 있다. 일 실시예에 있어서, 인쇄 에너지 저장 장치 (예를 들어, 배터리, 축전기, 슈퍼축전기, 및/또는 연료전지)는 망간-함유 나노구조체를 함유하는 다수의 피각을 갖는 하나 이상의 전극을 포함할 수 있다. 일 실시예에 있어서, 필름을 인쇄하는데 사용된 잉크는 망간-함유 나노구조체를 포함하는 피각이 분산된 용액을 포함할 수 있다.
일 실시예에 있어서, 배터리의 하나 이상의 전극은 하나 이상의 표면에 망간-함유 나노구조체를 포함하는 피각을 포함할 수 있다 (예를 들어, 아연-망간 배터리의 전극). 충전 배터리는 이산화 망간 (MnO2)을 포함하는 나노구조체를 포함하는 피각을 포함하는 제 1 전극 및 아연 (예를 들어, 아연 코팅을 포함하는 피각)을 포함하는 제 2 전극을 포함할 수 있다. 일 실시예에 있어서, 제 2 전극은 다른 물질을 포함할 수 있다. 방전 배터리는 산화 망간 (II, III) (Mn3O4), 산화 망간 (II) (MnO), 산화 망간 (III) (Mn2O3), 및/또는 망간 옥시하이드록사이드 (MnOOH)을 포함하는 나노구조체를 포함하는 피각을 포함하는 제 1 전극 및 산화아연 (ZnO) (예를 들어, 산화아연을 포함하는 나노구조체를 포함하는 피각)을 포함하는 제 2 전극을 포함할 수 있다. 일 실시예에 있어서, 방전 배터리의 제 2 전극은 다른 물질을 포함할 수 있다.
규조류 피각 부분에 망간-함유 나노구조체의 형성 방법은 산소화된 (oxygenated) 아세트산 망간 용액에 피각을 가하는 단계, 및 피각과 산소화된 아세트산 망간 용액을 가열하는 단계를 포함할 수 있다. 피각의 하나 이상의 표면에 Mn3O4를 형성하는 방법의 예가 제공된다. 예를 들어, 깨끗한 물 (예를 들어, Billerica, MA의 EMD Millipore Corporation로부터 시판되는 깨끗한 물)을 약 10분 내지 약 60분 동안 산소 기체 (O2)로 버블링시켜 (예를 들어, O2 퍼징) 산소화된 물을 형성할 수 있다. 그 다음, 아세트산 망간(II) (Mn(CH3COO)2)을 약 0.05 moles/liter (M) 내지 약 1.2 M의 농도에서 산소화된 물에 용해시켜 산소화된 아세트산 망간 용액을 형성할 수 있다.
피각을 산소화된 아세트산 망간 용액에 가할 수 있다. 산소화된 아세트산 망간 용액에 가해진 피각은 피각 표면에 임의의 미리 형성된 나노구조체 및/또는 코팅을 가질 수 없다. 일 실시예에 있어서, 산소화된 아세트산 망간 용액에 가해진 피각은 피각 표면에 하나 이상의 나노구조체 및/또는 코팅을 가질 수 있다. 일 실시예에 있어서, 산소화된 아세트산 망간 용액에 가해진 피각은 피각 표면의 적어도 몇몇 부분에 하나 이상의 나노구조체 및/또는 코팅을 가질 수 있다. 예를 들어, 피각은 본 명세서에 기재된 바와 같은 하나 이상의 공정에 따라 형성된 망간-함유 나노구조체가 탄소-함유 나노구조체 사이에 배치될 수 있도록, 피각 표면의 부분에 탄소-함유 나노구조체를 가질 수 있다. 일 실시예에 있어서, 탄소-함유 나노구조체는 환원된 산화 그래핀, 탄소 나노튜브 (예를 들어, 단일벽 및/또는 다중벽), 및/또는 탄소 나노이온을 포함할 수 있다. 탄소-함유 나노구조체는 본 명세서에 기재된 바와 같은 하나 이상의 공정 또는 다른 공정에 따라 피각 표면에 형성될 수 있다.
일 실시예에 있어서, 피각은 용액이 약 0.01 중량% 내지 약 1 중량%의 피각을 포함하도록 산소화된 아세트산 망간 용액에 가해질 수 있다. 일 실시예에 있어서, 다른 Mn2+ 염이 적당할 수 있다. 일 실시예에 있어서, 다른 산화제 (예를 들어, 과산화수소)가 적당할 수 있다.
일 실시예에 있어서, 망간-함유 나노구조체의 성장은 열 기법 및/또는 마이크로파 기법을 이용하여 수행될 수 있다. 일 실시예에 있어서, 나노구조체의 바람직한 성장은 열 방법을 이용하는 경우 장기간을 수반할 수 있다. 예를 들어, 열 기법은 나노구조체 성장 공정에서 열 가열을 이용하는 단계를 포함할 수 있다. 나노구조체를 성장시키는 열 방법의 예는 약 15시간 내지 약 40시간 (예를 들어, 약 24시간) 동안 산소화된 아세트산 망간 용액에 피각을 (예를 들어, 많은 적당한 기법을 이용하여 교반함으로써) 혼합하는 단계, 및 약 50℃ 내지 약 90℃ (예를 들어, 약 60℃)의 온도에서 혼합물을 유지시키는 단계를 포함할 수 있다. 일 실시예에 있어서, 혼합물의 온도는 혼합물을 열로 가열시킴으로써 유지될 수 있다.
일 실시예에 있어서, 나노구조체를 성장시키는 마이크로파 방법은 짧은 나노구조체 성장 공정을 용이하게 할 수 있고 및/또는 확장가능한 나노구조체 성장 공정을 용이하게 할 수 있다. 예를 들어, 나노구조체 성장의 마이크로파 방법은 나노구조체 성장 공정에서 마이크로파 가열을 이용하는 단계를 포함할 수 있다. 마이크로파 기법을 이용한 나노구조체 성장 공정의 예는 산소화된 아세트산 망간 용액에 피각을 가하는 단계, 및 약 10분 내지 약 120분 동안 약 50℃ 내지 약 150℃의 온도에서 혼합물을 유지시키는 단계를 포함할 수 있다. 혼합물은 온도를 유지시키면서 교반될 수 있다.
일 실시예에 있어서, (예를 들어, 세척 및 건조 후) 적갈색을 갖는 망간-함유 나노구조체는 본 명세서에 기재된 하나 이상의 공정을 이용하여 피각의 하나 이상의 표면에 형성할 수 있다. 일 실시예에 있어서, 산화망간 구조체는 사면체 모양을 가질 수 있다. 적갈색은 산화망간(II, III) (Mn3O4)의 존재를 나타낼 수 있다. 일 실시예에 있어서, 사면체 나노결정의 형성은 산화망간(II, III) (Mn3O4)의 존재를 나타낼 수 있다.
도 5o는 나노구조체(82)가 나노구조체 성장의 마이크로파 방법을 이용하여 형성된 경우, 하나 이상의 이의 표면에 산화망간(II, III) (Mn3O4)를 포함하는 나노구조체(82)를 갖는 피각(80)의 예의 20k× 배율의 SEM 영상을 나타낸다. 도 5p는 도 5o에 나타낸 피각(80)의 50k× 배율의 SEM 영상이다. 도 5o 및 5p에 나타낸 산화망간(II, III) (Mn3O4)를 포함하는 나노구조체(82)는 약 30분 동안 깨끗한 물을 통해 산소 기체 (O2)를 버블링하여 제조된 약 0.15 M 아세트산 망간의 농도를 갖는 산소화된 용액을 이용하여 형성될 수 있다. 예를 들어, 상용등급 산소 기체 (예를 들어, 95% 이상의 순도 수준, 예를 들어 적어도 약 97% 순도, 또는 적어도 약 99% 순도)가 사용될 수 있다. 예를 들어, 적어도 약 97%의 순도를 갖는 산소 기체는 실온 (예를 들어, 약 25℃)에서 약 30분 동안 약 15 mL의 깨끗한 물을 함유하는 바이알 (예를 들어, 20 밀리리터(mL)의 용적을 갖는 바이알)에 유리 프릿 (glass frit)을 통해 버블링시킬 수 있다. 0.55 그램 (g)의 아세트산 망간 사수화물 (예를 들어, Sigma-Aldrich Corp.로부터 시판됨)을 산소화된 깨끗한 물에 용해시킬 수 있다. 0.005 그램 (g)의 규조류를 산소화된 망간-함유 용액에 가할 수 있다. 그 다음, 가해진 피각을 포함하는 혼합물을 함유하는 바이알을 파이크로파에 놓고 (예를 들어, 모노파동(Monowave) 300 마이크로파, Anton Paar® GmbH로부터 시판됨), 원하는 시간 동안 원하는 온도에서 합성을 수행할 수 있다. 용액과 피각을 포함하는 혼합물은 (예를 들어, 약 600 rpm의 회전 속도로 자석 교반 바와 함께) 계속 교반하면서, 약 60℃의 온도에서 약 30분 동안 유지시킬 수 있다. 일 실시예에 있어서, 혼합물을 물로 희석시킨 다음, (예를 들어, 약 5분 동안 5000 rpm에서) 원심분리하여 상청액을 버릴 수 있다. 일 실시예에 있어서, 침전물을 다시 물로 희석시킨 다음, 분산시키고 (예를 들어, 흔들기, 및/또는 볼텍싱(vortexing)), 다시 원심분리하여 상청액을 버릴 수 있다. 그 다음, 침전물을 진공 오븐에서 약 70℃ 내지 약 80℃에서 건조시킬 수 있다.
도 5p를 참조하면, 나노구조체(82)는 사면체 모양을 가질 수 있다. 산화망간 (II, III) (Mn3O4) 구조체는 놀랍게도 피각으로부터 분리된 용액에서 형성되기 보다는 피각의 표면에서 성장함을 관찰하였다.
도 5q는 도 5o 및 5p에 나타낸 피각의 표면에 형성된 나노구조체(82)의 투과 전자 현미경(TEM) 영상이다. 나노구조체(82)의 하나 이상의 개개의 원자를 볼 수 있으며, 규모는 크기 비교로 제공된다. 도 5R은 산화망간(II, III) (Mn3O4) 입자의 전자 회절 영상을 나타낸다.
일 실시예에 있어서, 피각 표면에 형성된 나노구조체의 모양 및/또는 크기는 나노구조체 형성 공정의 매개변수에 의존할 수 있다. 예를 들어, 나노구조체의 형태학은 용액 농도 및/또는 용액의 산소화 수준에 의존할 수 있다. 도 5s는 망간-함유 나노구조체(92)가 도 5o 및 5p에 나타낸 나노구조체(82)의 형성에 사용된 공정에 비해 높은 산소 농도 (예를 들어, 약 40분 동안 물의 산소 퍼징) 및 높은 망간 농도 (예를 들어, 약 1 M의 아세트산 망간 농도)를 갖는 용액을 이용하여 형성되는 경우, 이의 표면에 형성된 망간-함유 나노구조체(92)를 포함하는 피각(90)의 10k× 배율의 SEM 영상이다. 예를 들어, 나노구조체(92)는 하기의 차이를 제외하고는, (예를 들어, 도 5o 및 5p의) 나노구조체(82)의 형성에 관하여 기재된 바와 같은 공정에 따라 피각(90) 위에 형성될 수 있다: 깨끗한 물의 산소 기체 버블링은 산소화된 깨끗한 물에 약 0.9 그램 (g)의 아세트산 망간의 첨가와 함께 약 40분 동안 수행될 수 있고, 약 0.01 그램 (g)의 규조류는 망간-함유 용액에 가해질 수 있으며, 규조류와 망간-함유 용액을 포함하는 혼합물은 약 150℃의 온도에서 마이크로파로 데울 수 있다.
도 5s에 나타난 바와 같이, 나노구조체(92)는 가늘고 긴 섬유 같은 모양을 가질 수 있다. 일 실시예에 있어서, 나노구조체(92)는 얇은 가늘고 긴 모양 (예를 들어, 얇은 수염 같은 구조체)을 가질 수 있다. 일 실시예에 있어서, 섬유 같은 구조체의 형성은 망간 옥시하이드록사이드 (MnOOH)의 존재를 나타낼 수 있다.
코팅의 조합
일 실시예에 있어서, 코팅의 조합도 가능할 수 있다. 예를 들어, 피각의 표면은 니켈 코팅 및 탄소 나노튜브의 코팅을 포함할 수 있다 (예를 들어, 이러한 피각은 슈퍼축전기를 포함하여, 에너지 저장 장치에 사용될 수 있다).
도 6은 에너지 저장 장치(100)의 실시예를 도식적으로 나타낸다. 도 6은 에너지 저장 장치(100)의 횡단면도 또는 정면도일 수 있다. 에너지 저장 장치(100)는 제 1 전극(140) 및 제 2 전극(150), 예를 들어 각각 또는 관계없이 캐소드 및 아노드를 포함한다. 제 1 및 제 2 전극(140, 150)은 분리기(130)에 의해 분리된다. 에너지 저장 장치(100)는 임의로 전극들(140, 150) 중 하나 또는 둘 다에 전기적으로 결합된 하나 이상의 집전 장치들(110, 120)을 포함할 수 있다.
일 실시예에 있어서, 에너지 저장 장치(100)는 제 1 전극(140), 제 2 전극 (150), 및/또는 분리기(130)를 포함하고, 이들 중 어느 것은 증착된 막 또는 층을 포함하여 막 또는 층일 수 있다.
집전 장치(110, 120)는 외부 배선(external wiring)에 전자의 통로를 제공하는 임의의 성분을 포함할 수 있다. 예를 들어, 집전 장치(110, 120)는 제 1 및 제 2 전극(140, 150)의 표면에 인접하게 배치되어 전극들(140, 150) 사이에서 전기 장치로 전달될 에너지 흐름을 허여할 수 있다. 도 6에 나타낸 실시예에서, 제 1 집전 장치 층(110) 및 제 2 집전 장치 층(120)은 각각 제 1 전극(140)의 표면 및 제 2 전극(150)의 표면에 인접해 있다. 집전 장치(110, 120)는 각각 전극(140, 150)의 표면에 반대되는 표면에 인접해 있으며, 분리기 층(130)에 인접해 있다.
일 실시예에 있어서, 집전 장치(110, 120)는 전기 전도성 호일 (예를 들어, 흑연 종이와 같은 흑연, 그래핀 종이와 같은 그래핀, 알루미늄 (Al), 구리 (Cu), 스테인레스 강 (stainless steel, SS), 탄소폼)을 포함한다. 일 실시예에 있어서, 집전 장치(110, 120)는 기판상에 증착된 전기 전도성 물질을 포함한다. 예를 들어, 집전 장치(110, 120)는 기판상에 인쇄된 전기 전도성 물질을 포함할 수 있다. 일 실시예에 있어서, 적당한 기판은 폴리에스터, 폴리이미드, 폴리카보네이트, 셀룰로오스 (예를 들어, 플라스틱 코팅된 종이, 및/또는 섬유 종이와 같은 코팅된 종이를 포함하여, 판지(cardboard), 종이)를 포함할 수 있다. 일 실시예에 있어서, 전도성 물질은 은 (Ag), 구리 (Cu), 탄소 (C) (예를 들어, 탄소 나노튜브, 그래핀, 및/또는 흑연), 알루미늄 (Al), 니켈 (Ni), 이의 조합, 및/또는 그밖에 유사한 것을 포함할 수 있다. 집전 장치에 적합한 니켈을 포함하는 전도성 물질의 예는 2013년 12월 27일에 출원된 PCT 특허 출원 번호 제PCT/US2013/078059호(명칭: 니켈 잉크 및 산화 저항 및 전도성 코팅)에 제공되며, 이들은 전체 참조로 본 명세서에 포함된다.
일 실시예에 있어서, 에너지 저장 장치(100)는 적어도 하나의 피각을 포함하는 층 또는 막을 포함한다. 예를 들어, 에너지 저장 장치(100)는 피각을 포함하는 분산물을 포함하는 층 또는 막을 포함할 수 있다. 피각을 포함하는 층 또는 막은 제 1 전극(140), 제 2 전극(150), 분리기(130), 제 1 집전 장치 층(110), 제 2 집전 장치 층(120), 이의 조합, 및/또는 그밖에 유사한 것을 포함할 수 있다. 일 실시예에 있어서, 에너지 저장 장치(100)는 균일한 또는 실질적으로 균일한 모양, 크기 (예를 들어, 직경, 길이), 물질, 기공, 표면 개질 물질 및/또는 구조체, 임의의 다른 적당한 특징 또는 속성, 이의 조합, 및/또는 그밖에 유사한 것을 포함한다. 에너지 저장 장치(100)의 다수의 층이 피각을 포함하는 실시예에서, 피각은 동일한 또는 실질적으로 동일할 수 있고 (예를 들어, 유사한 크기를 가짐) 또는 다를 수 있다 (예를 들어, 분리기(130)에서 절연 및 전극(140, 150)에서 전도성으로 코팅됨).
에너지 저장 장치(100)는 약 0.5㎛ 내지 약 50㎛, 약 1㎛ 내지 약 50㎛, 약 1㎛ 내지 약 40㎛, 약 1㎛ 내지 약 30㎛, 약 1㎛ 내지 약 20㎛, 약 1㎛ 내지 약 10㎛, 약 5㎛ 내지 약 50㎛, 약 5㎛ 내지 약 40㎛, 약 5㎛ 내지 약 30㎛, 약 5㎛ 내지 약 20㎛, 및 약 5㎛ 내지 약 10㎛ 범위의 길이를 갖는 피각을 포함하는 하나 이상의 층 또는 막을 포함할 수 있다. 일 실시예에 있어서, 원통형 모양의 피각은 약 50㎛ 이하, 약 40㎛ 이하, 약 30㎛ 이하, 약 20㎛ 이하, 약 15㎛ 이하, 약 10㎛ 이하, 또는 약 5㎛ 이하의 길이를 가진다. 다른 피각 길이도 가능하다.
에너지 저장 장치(100)는 약 0.5㎛ 내지 약 50㎛, 약 1㎛ 내지 약 50㎛, 약 1㎛ 내지 약 40㎛, 약 1㎛ 내지 약 30㎛, 약 1㎛ 내지 약 20㎛, 약 1㎛ 내지 약 10㎛, 약 5㎛ 내지 약 50㎛, 약 5㎛ 내지 약 40㎛, 약 5㎛ 내지 약 30㎛, 약 5㎛ 내지 약 20㎛, 및 약 5㎛ 내지 약 10㎛ 범위 내의 직경을 갖는 피각을 포함하는 하나 이상의 층 또는 막을 포함할 수 있다. 일 실시예에 있어서, 원통형 모양의 피각은 약 50㎛ 이하, 약 40㎛ 이하, 약 30㎛ 이하, 약 20㎛ 이하, 약 15㎛ 이하, 약 10㎛ 이하, 약 5㎛ 이하, 약 2㎛ 이하, 또는 약 1㎛ 이하의 직경을 가진다. 다른 피각 직경도 가능하다.
에너지 저장 장치(100)는 균일한 또는 실질적으로 균일한 피각 내의 기공 및/또는 피각-대-피각 기공을 갖는 피각, 및/또는 특정 범위 내의 기공을 갖는 피각을 포함할 수 있다. 일 실시예에 있어서, 에너지 저장 장치(100)는 약 10% 내지 약 50%, 약 15% 내지 약 45%, 및 약 20% 내지 약 40%의 범위의 기공을 갖는 피각을 포함하는 하나 이상의 층 또는 막을 포함한다. 일 실시예에 있어서, 피각 표면 위의 공극은 약 1 나노미터 (nm) 내지 약 500 nm의 크기 (예를 들어, 길이, 너비, 직경, 및/또는 가장 긴 크기)를 가질 수 있다. 예를 들어, 피각 표면 위의 공극은 바람직한 에너지 저장 장치 성능을 용이하게 할 수 있는 크기를 가질 수 있다 (예를 들어, 장치의 바람직한 전기적 성능을 용이하게 하기 위한 에너지 저장 장치의 전해질 이온의 확산). 다른 피각 기공도 가능하다.
본 명세서에 기재된 바와 같이, 에너지 저장 장치(100)는 피각(50)의 표면에 적용된 또는 형성된 없는 또는 실질적으로 없는 표면 개질 물질 및/또는 표면 개질 구조체(52)를 포함하는 피각(50), 및/또는 피각(50)의 특징 또는 속성을 변형시키기 위해 피각(50)의 표면에 적용된 또는 형성된 물질 및/또는 구조체(52)를 포함하는 피각(50)을 포함하는 하나 이상의 층 또는 막을 포함할 수 있다. 예를 들어, 분리기(130)는 피각(50)의 표면에 적용된 또는 형성된 없는 또는 실질적으로 없는 표면 개질 물질 및/또는 표면 개질 구조체(52)를 포함하는 피각(50)을 포함할 수 있고, 적어도 하나의 전극(140, 150)은 피각(50)의 특징 또는 속성을 변형시키기 위해 피각(50)의 표면에 적용된 또는 형성된 물질 및/또는 구조체(52)를 포함하는 피각(50)을 포함할 수 있다. 다른 예의 경우, 분리기(130)는 피각(50)의 표면에 적용된 또는 형성된 없는 또는 실질적으로 없는 표면 개질 물질 및/또는 표면 개질 구조체(52)를 포함하는 몇몇 피각(50), 및 피각(50)의 특징 또는 속성을 변형시키기 위해 피각(50)의 표면에 적용된 또는 형성된 물질 및/또는 구조체(52)를 포함하는 몇몇 피각(50)을 포함할 수 있다.
일 실시예에 있어서, 에너지 저장 장치(100)는 비-균일한 또는 실질적으로 비-균일한 모양, 크기, 기공, 표면 개질 물질 및/또는 구조체, 다른 적당한 속성, 및/또는 이의 조합을 포함한다.
도 7은 에너지 저장 장치(100)의 일부를 형성할 수 있는 분리기 층 또는 막 (300)의 실시예를 나타낸다. 분리기(300)는 피각(320)을 포함한다. 일 실시예에 있어서, 에너지 저장 장치(100) (도 6)는 피각(320)을 포함하는 분리기 층 또는 막 (300)을 포함한다. 예를 들어, 에너지 저장 장치(100)는 피각(320)을 포함하는 분산물을 포함하는 분리기(300)를 포함할 수 있다. 본 명세서에 기재된 바와 같이, 분리기(300)가 균일한 또는 실질적으로 균일한 모양, 크기 (예를 들어, 길이, 직경), 기공, 물질, 이의 조합, 및/또는 그밖에 유사한 것을 갖는 피각(320)을 포함하도록, 피각(320)은 모양, 크기, 물질, 기공, 이의 조합, 및/또는 그밖에 유사한 것에 따라 분류될 수 있다. 예를 들어, 분리기 (300)는 원통형 또는 실질적으로 원통형 모양 (예를 들어, 도 7에 나타난 바와 같음), 구형 또는 실질적으로 구형 모양, 다른 모양, 및/또는 이의 조합을 갖는 피각 (320)을 포함할 수 있다. 일 실시예에 있어서, 분리기(300)는 피각(320)의 표면에 적용된 또는 형성된 물질 및/또는 구조체를 갖는 피각(320)을 포함한다. 분리기(300)는 피각(320)의 표면에 적용된 또는 형성된 없는 또는 실질적으로 없는 표면 개질 물질 및/또는 표면 개질 구조체를 포함하는 피각(320)을 포함할 수 있다 (예를 들어, 도 7에 나타난 바와 같음). 분리기(300)는 피각(320)의 특징 또는 속성을 변형시키기 위해 피각(320)의 표면에 적용된 또는 형성된 물질 및/또는 구조체를 포함하는 피각(320)을 포함할 수 있다. 분리기(300)는 피각(320)의 표면에 적용된 또는 형성된 없는 또는 실질적으로 없는 표면 개질 물질 및/또는 표면 개질 구조체를 포함하는 몇몇 피각(320), 및 피각(320)의 특징 또는 속성을 변형시키기 위해 피각 (320)의 표면에 적용된 또는 형성된 물질 및/또는 구조체를 포함하는 몇몇 피각 (320)을 포함할 수 있다.
분리기(300)는 에너지 저장 장치(100) (도 6)의 제 1 전극(140) 및 제 2 전극(150) 사이에 안정한 또는 실질적으로 안정한 분리를 가능하게 하기에 충분한 기계적 강도를 갖는 피각(320)을 포함할 수 있다. 일 실시예에 있어서, 분리기(300)는 제 1 전극(140) 및 제 2 전극(150) 사이의 감소된 분리 거리를 가능하게 함으로써 및/또는 제 1 전극(140) 및 제 2 전극(150) 사이에 이온성 종의 흐름을 용이하게 함으로써 에너지 저장 장치(100)의 효율성을 증가시키기 위해 배열된 피각(320)을 포함한다. 예를 들어, 피각(320)은 에너지 저장 장치 효율성 및/또는 기계적 강도를 향상시키기 위해 균일한 또는 실질적으로 균일한 모양, 크기, 기공, 표면 개질 물질 및/또는 구조체, 이의 조합, 및/또는 그밖에 유사한 것을 가질 수 있다. 에너지 저장 장치(100)의 분리기(300)는 원하는 기공, 크기, 및/또는 표면 개질 물질 및/또는 구조체를 갖는 벽을 포함하는 원통형 또는 실질적으로 원통형 피각(320)을 포함할 수 있다.
분리기(300)는 피각(320)의 하나 이상의 층을 포함할 수 있다. 피각(320)을 포함하는 분리기(300)는 균일한 또는 실질적으로 균일한 두께를 가질 수 있다. 일 실시예에 있어서, 피각(320)을 포함하는 분리기(300)의 두께는 가능한 얇다. 일 실시예에 있어서, 피각(320)을 포함하는 분리기(300)의 두께는 약 1㎛ 내지 약 80㎛, 약 1㎛ 내지 약 60㎛, 약 1㎛ 내지 약 40㎛, 약 1㎛ 내지 약 20㎛, 약 1㎛ 내지 약 10㎛, 약 5㎛ 내지 약 60㎛, 약 5㎛ 내지 약 40㎛, 약 5㎛ 내지 약 20㎛, 약 5㎛ 내지 약 15㎛, 약 5㎛ 내지 약 10㎛, 약 10㎛ 내지 약 60㎛, 약 10㎛ 내지 약 40㎛, 약 10㎛ 내지 약 20㎛, 약 10㎛ 내지 약 15㎛, 및 약 15㎛ 내지 약 30㎛을 포함하여, 약 1㎛ 내지 약 100㎛ 이다. 일 실시예에 있어서, 분리기는 약 100㎛ 미만, 약 90㎛ 미만, 약 80㎛ 미만, 약 70㎛ 미만, 약 60㎛ 미만, 약 50㎛ 미만, 약 40㎛ 미만, 약 30㎛ 미만, 약 20㎛ 미만, 약 15㎛ 미만, 약 10㎛ 미만, 약 5㎛ 미만, 약 2㎛ 미만, 약 1㎛ 미만, 및 범위 경계 및 앞의 값을 포함하는 두께를 포함한다. 분리기(300)의 다른 두께도 가능하다. 예를 들어, 분리기(300)의 두께가 피각(320)의 크기 (예를 들어, 장축, 길이 또는 직경)에 적어도 부분적으로 의존할 수 있도록, 분리기(300)는 피각(320)의 단일층을 포함할 수 있다.
분리기(300)는 비-균일한 또는 실질적으로 비-균일한 모양, 크기, 기공, 표면 개질 물질 및/또는 구조체, 이의 조합, 및/또는 그밖에 유사한 것을 갖는 피각(320)을 포함할 수 있다.
일 실시예에 있어서, 분리기(300)는 비-전기 전도성 물질로부터 제조된 비어있는 및/또는 속이 꽉 찬 미세구(microspheres)를 포함할 수 있다. 예를 들어, 분리기(300)는 유리, 알루미나, 실리카, 폴리스티렌, 멜라민, 이의 조합, 및/또는 그밖에 유사한 것으로부터 제조된 비어있는 및/또는 속이 꽉 찬 미세구를 포함할 수 있다. 일 실시예에 있어서, 미세구는 분리기(300)의 인쇄를 용이하게 하기 위한 크기를 가질 수 있다. 예를 들어, 분리기(300)는 약 0.1 마이크론 (㎛) 내지 약 50 ㎛의 직경을 갖는 미세구를 포함할 수 있다. 비어있는 및/또는 속이 꽉 찬 미세구를 포함하는 분리기의 예는 2012년 8월 9일에 출원된 미국 특허 출원 번호 제13/223,279호(명칭: 에너지 저장 장치용 인쇄할 수 있는 이온성 겔 분리층)에 제공되며, 이들은 전체 참조로 본 명세서에 포함된다.
일 실시예에 있어서, 분리기(300)는 에너지 저장 장치(100)의 제 1 전극(140) 및 제 2 전극(150) 사이에 전기 저항을 감소시키기 위해 배열된 물질을 포함한다. 예를 들어, 도 7에 대해 다시 언급하면, 일 실시예에 있어서, 분리기(300)는 전해질 (340)을 포함한다. 전해질(340)은 에너지 저장 장치(100)의 제 1 전극(140) 및 제 2 전극(150) 사이에 이동할 수 있는 이동성 이온성 종을 포함하는 물질을 포함하여, 이온성 종의 전도도를 용이하게 하는 임의의 물질을 포함할 수 있다. 전해질 (340)은 황산 나트륨 (Na2SO4), 염화 리튬 (LiCl), 및/또는 황산 칼륨 (K2SO4)을 포함하나 이에 한정되지 않는 이온성 종을 형성할 수 있는 임의의 화합물을 포함할 수 있다. 일 실시예에 있어서, 전해질(340)은 산, 염기, 또는 염을 포함한다. 일 실시예에 있어서, 전해질(340)은 황산 (H2SO4) 및/또는 인산 (H3PO4)을 포함하나 이에 한정되지 않는 강산, 또는 수산화 나트륨 (NaOH) 및/또는 수산화 칼륨 (KOH)을 포함하나 이에 한정되지 않는 강염기를 포함한다. 일 실시예에 있어서, 전해질(340)은 하나 이상의 용해된 이온성 종을 갖는 용매를 포함한다. 예를 들어, 전해질(340)은 유기 용매를 포함할 수 있다. 일 실시예에 있어서, 전해질(340)은 이온성 액체 또는 유기 액체 염을 포함한다. 전해질(340)은 이온성 액체를 갖는 수성 용액을 포함할 수 있다. 전해질(340)은 이온성 액체를 갖는 염 용액을 포함할 수 있다. 일 실시예에 있어서, 이온성 액체를 포함하는 전해질(340)은 프로필렌 글리콜 및/또는 아세토니트릴을 포함한다. 일 실시예에 있어서, 이온성 액체를 포함하는 전해질(340)은 산 또는 염기를 포함한다. 예를 들어, 전해질(340)은 수산화 칼륨과 혼합한 이온성 액체를 포함할 수 있다 (예를 들어, KOH의 0.1 M 용액의 첨가).
일 실시예에 있어서, 분리기(300)는 고분자 겔과 같은 고분자(360)를 포함한다. 고분자(360)는 전해질(340)과 혼합될 수 있다. 적당한 고분자(360)는 전기화학 반응 동안 전해질(340)과 혼합하고, 및/또는 전기 전위 (예를 들어, 에너지 저장 장치(100)의 전극들(140, 150) 사이에 존재하는 전기 전위)를 받을 때 완전성 및/또는 작용성을 유지하는 전기적 및 전기화학적 안정성을 나타낼 수 있다. 일 실시예에 있어서, 고분자(360)는 무기 고분자일 수 있다. 일 실시예에 있어서, 고분자(360)는 합성 고분자일 수 있다. 분리기(300)는 셀룰로오스 (예를 들어, 셀로판), 폴리아미드 (예를 들어, 나일론), 폴리프로필렌, 폴리올레핀, 폴리에틸렌 (예를 들어, 방사선-그래프트된 폴리에틸렌), 폴리(불화 비닐리덴), 폴리(산화 에틸렌), 폴리(아크릴로니트릴), 폴리(비닐 알콜), 폴리(메틸 메타크릴레이트), 폴리(염화 비닐), 폴리[비스(메톡시 에톡시 에톡시포스파젠)], 폴리(비닐 설폰), 폴리(비닐 피롤리돈), 폴리(산화 프로필렌), 이의 공중합체, 이의 조합, 및/또는 그밖에 유사한 것을 포함하는 고분자(360)를 포함할 수 있다. 일 실시예에 있어서, 고분자(360)는 물 내 PTFE의 분산물 (예를 들어, Teflon® 수성 현탁액)을 포함하는 수성 용액을 포함하여, 폴리테트라플루오로에틸렌(polytetrafluoroethylene, PTFE)을 포함한다. 일 실시예에 있어서, 분리기(300)는 석면(asbestos), 티탄산 칼륨 섬유, 섬유질 소시지 포장(fibrous sausage casing), 붕규산 유리(borosilicate glass), 산화 지르코늄(zirconium oxide), 이의 조합, 및/또는 그밖에 유사한 것을 포함할 수 있다. 일 실시예에 있어서, 전해질(340)을 고분자(360) 내에 또는 위에 고정시켜 고체 또는 반-고체 물질을 형성한다. 일 실시예에 있어서, 전해질(340)을 고분자 겔 내에 또는 위에 고정시켜 전해질 겔을 형성한다.
일 실시예에 있어서, 분리기(300)는 임의로 분리기(300) 내에 및/또는 분리기 (300)와 에너지 저장 장치(100)의 제 1 전극(140) 및/또는 제 2 전극(150) 사이에 피각(320)의 접착을 향상시킬 수 있는 접착 물질을 포함한다. 일 실시예에 있어서, 접착 물질은 고분자(360)를 포함한다. 예를 들어, 접착 물질은 전기적 및 전기화학적 안정성을 나타내고, 분리기(300) 내에 및/또는 분리기(300)와 에너지 저장 장치 (100)의 제 1 전극(140) 및/또는 제 2 전극(150) 사이에 충분한 접착을 제공하는 고분자(360)를 포함할 수 있다.
도 8은 에너지 저장 장치(100) (도 6)의 일부를 형성할 수 있는 전극 층 또는 막 (400)의 예를 나타낸다. 전극(400)은 피각(420)을 포함한다. 일 실시예에 있어서, 에너지 저장 장치(100) (도 6)는 피각(420)을 포함하는 하나 이상의 전극 층 또는 막 (400)을 포함한다 (예를 들어, 제 1 전극(140) 및/또는 제 2 전극(150)과 같음). 예를 들어, 에너지 저장 장치(100)는 피각(420)을 포함하는 분산물을 포함하는 전극 층 또는 막 (400)을 포함할 수 있다. 본 명세서에 기재된 바와 같이, 전극(400)이 균일한 또는 실질적으로 균일한 모양, 크기 (예를 들어, 길이, 직경), 기공, 물질, 이의 조합, 및/또는 그밖에 유사한 것을 갖는 피각(420)을 포함하도록, 피각(420)은 모양, 크기, 물질, 기공, 이의 조합, 및/또는 그밖에 유사한 것에 따라 분류될 수 있다. 예를 들어, 전극(400)은 원통형 또는 실질적으로 원통형 모양 (예를 들어, 도 8에 나타난 바와 같음), 구형 또는 실질적으로 구형 모양, 다른 모양, 및/또는 이의 조합을 갖는 피각(420)을 포함할 수 있다. 일 실시예에 있어서, 전극(400)은 피각(420)의 표면에 적용된 또는 형성된 물질 및/또는 구조체를 갖는 피각(420)을 포함한다. 전극(400)은 없는 또는 실질적으로 없는 표면 개질 물질을 포함하는 피각(420)을 포함할 수 있으며, 절연일 수 있고, 및/또는 피각(420)의 표면에 적용된 또는 형성된 표면 개질 구조체를 가질 수 있다. 전극(400)은 피각(420)의 특징 또는 속성을 변형시키기 위해 피각 (420)의 표면에 적용된 또는 형성된 물질 및/또는 구조체를 포함하는 피각(420)을 포함할 수 있다 (예를 들어, 피각(420)의 표면에 닭 발 모양의 특징에 의해 도 8에 도식적으로 나타난 바와 같음). 전극(400)은 피각(420)의 표면에 적용된 또는 형성된 없는 또는 실질적으로 없는 표면 개질 물질 및/또는 표면 개질 구조체를 포함하는 몇몇 피각(420), 및 피각(420)의 특징 또는 속성을 변형시키기 위해 피각(420)의 표면에 적용된 또는 형성된 물질 및/또는 구조체를 포함하는 몇몇 피각(420)을 포함할 수 있다.
전극(400)은, 전극(400)을 포함하는 에너지 저장 장치(100)가 압축력 및/또는 모양 개질 변형(shape modifying deformation)을 견딜 수 있도록, 기계적 강도에 대해 선택된 피각(420)을 포함할 수 있다. 일 실시예에 있어서, 전극(400)은 전극 (400) 내에 및/또는 전극(400)과 에너지 저장 장치(100)의 다른 부분 사이에 이온성 종의 흐름을 용이하게 함으로써, 에너지 저장 장치(100)의 효율성을 증가시키기 위해 배열된 피각(420)을 포함한다. 예를 들어, 피각(420)은 향상된 에너지 저장 장치 효율성 및/또는 기계적 강도를 위해 균일한 또는 실질적으로 균일한 모양, 크기, 기공, 표면 개질 물질 및/또는 구조체, 이의 조합, 및/또는 그밖에 유사한 것을 가질 수 있다. 에너지 저장 장치(100)의 전극(400)은 원하는 기공, 크기, 및/또는 표면 개질 물질 및/또는 구조체를 갖는 벽을 포함하는 원통형 또는 실질적으로 원통형 피각(420)을 포함할 수 있다.
전극(400)은 피각(420)의 하나 이상의 층을 포함할 수 있다. 피각(420)을 포함하는 전극(400)은 균일한 또는 실질적으로 균일한 두께를 가질 수 있다. 일 실시예에 있어서, 피각(420)을 포함하는 전극(400)의 두께는 적어도 부분적으로 저항, 이용가능한 물질의 양, 원하는 에너지 장치 두께 등에 의존한다. 일 실시예에 있어서, 피각(420)을 포함하는 전극(400)의 두께는 약 1㎛ 내지 약 80㎛, 약 1㎛ 내지 약 60㎛, 약 1㎛ 내지 약 40㎛, 약 1㎛ 내지 약 20㎛, 약 1㎛ 내지 약 10㎛, 약 5㎛ 내지 약 100㎛, 약 5㎛ 내지 약 80㎛, 약 5㎛ 내지 약 60㎛, 약 5㎛ 내지 약 40㎛, 약 5㎛ 내지 약 20㎛, 약 5㎛ 내지 약 10㎛, 약 10㎛ 내지 약 60㎛, 약 10㎛ 내지 약 40㎛, 약 10㎛ 내지 약 20㎛, 약 10㎛ 내지 약 15㎛, 및 약 15㎛ 내지 약 30㎛를 포함하여, 약 1㎛ 내지 약 100㎛ 이다. 일 실시예에 있어서, 피각(420)을 포함하는 전극(400)의 두께는 약 100㎛ 미만, 약 90㎛ 미만, 약 80㎛ 미만, 약 70㎛ 미만, 약 60㎛ 미만, 약 50㎛ 미만, 약 40㎛ 미만, 약 30㎛ 미만, 약 20㎛ 미만, 약 10㎛ 미만, 약 5㎛ 미만, 약 2㎛ 미만, 또는 약 1㎛ 미만, 및 범위 경계 및 앞의 값을 포함한다.
전극(400)은 비-균일한 또는 실질적으로 비-균일한 모양, 크기, 기공, 표면 개질 물질 및/또는 구조체, 이의 조합, 및/또는 그밖에 유사한 것을 갖는 피각(420)을 포함할 수 있다.
일 실시예에 있어서, 전극(400)은 임의로 전극(400) 내에 전자의 전도성을 향상시키는 물질을 포함한다. 예를 들어, 도 8에 대해 다시 언급하면, 일 실시예에 있어서, 전극(400)은 전극(400) 내에 전기 전도성을 향상시키기 위해 전기 전도성 충전제(460)를 포함한다. 전기 전도성 충전제(460)는 전도성 탄소 물질을 포함할 수 있다. 예를 들어, 전기 전도성 충전제(460)는 흑연 탄소, 그래핀, 탄소 나노튜브 (예를 들어, 단일벽 및/또는 다중벽), 이의 조합, 및/또는 그밖에 유사한 것을 포함할 수 있다. 일 실시예에 있어서, 전기 전도성 충전제(460)는 금속 물질 (예를 들어, 은 (Ag), 금 (Au), 구리 (Cu), 니켈 (Ni), 및/또는 백금 (Pt))을 포함할 수 있다. 일 실시예에 있어서, 전기 전도성 충전제(460)는 반도체 물질 (예를 들어, 실리콘 (Si), 게르마늄 (Ge)), 및/또는 반도체-함유 합금 (예를 들어, 알루미늄-실리콘 (AlSi) 합금)을 포함할 수 있다. 다수의 전극(400)을 포함하는 에너지 저장 장치(100)에서, 전극(400)은 다른 이온 및/또는 이온-생성 종을 포함하여, 다른 피각 및/또는 다른 첨가제를 포함할 수 있다. 일 실시예에 있어서, 전극(400)은 전해질, 예를 들어 도 7의 분리기(300)에 대하여 본 명세서에 기재된 전해질(340)을 포함할 수 있다. 일 실시예에 있어서, 전극 (400)은 고분자, 예를 들어 도 7의 분리기(300)에 대하여 본 명세서에 기재된 고분자(360)를 포함할 수 있다. 일 실시예에 있어서, 전극(400)은 하나 이상의 활성 물질 (예를 들어, 규조류 피각의 하나 이상의 표면에 나노구조 활성 물질 이외의 활성 물질과 같은 유리 활성 물질)을 포함할 수 있다.
일 실시예에 있어서, 전극(400)은 바인더를 포함할 수 있다. 바인더는 고분자를 포함할 수 있다. 전극 바인더에 적합한 고분자, 고분자 전구체 및/또는 중합성 전구체는, 폴리비닐 피롤리돈 (PVP), 폴리비닐 알콜 (PVA), 불화 폴리비닐리덴, 불화 폴리비닐리덴-트리플루오로에틸렌, 폴리테트라플루오로에틸렌, 폴리디메틸실록산, 폴리에틸렌, 폴리프로필렌, 산화 폴리에틸렌, 산화 폴리프로필렌, 폴리에틸렌 글리코헥사플루오로프로필렌, 폴리에틸렌 테레프탈레이트폴리아크릴로니트릴, 폴리비닐 부티랄(polyvinyl butyral), 폴리비닐카프로락탐, 염화 폴리비닐; 폴리이미드 고분자 및 공중합체 (예를 들어, 지방족, 방향족 및/또는 반-방향족 폴리이미드), 폴리아미드, 폴리아크릴아미드, 폴리메틸메타크릴레이트와 같은 아크릴레이트 및 (메트)아크릴레이트 고분자 및 공중합체, 폴리아크릴로니트릴, 아크릴로니트릴 부타디엔 스티렌, 알릴메타크릴레이트, 폴리스티렌, 폴리부타디엔, 폴리부틸렌 테레프탈레이트, 폴리카보네이트, 폴리클로로프렌, 폴리에테르설폰, 나일론, 스티렌-아크릴로니트릴 수지; 폴리에틸렌 글리콜, 헥토라이트 점토(hectorite clays), 가라마이트 점토(garamite clays), 유기변형 점토(organomodified clays)와 같은 점토; 구아검, 잔탄검, 전분, 부틸 고무, 아가로오스, 펙틴과 같은 당류 및 다당류; 히드록실 메틸셀룰로오스, 메틸셀룰로오스, 에틸 셀룰로오스, 프로필 메틸셀룰로오스, 메톡시 셀룰로오스, 메톡시 메틸셀룰로오스, 메톡시 프로필 메틸셀룰로오스, 히드록시 프로필 메틸셀룰로오스, 카복시 메틸셀룰로오스, 히드록시 에틸셀룰로오스, 에틸 히드록실 에틸셀룰로오스, 셀룰로오스 에테르, 셀룰로오스 에틸 에테르, 키토산과 같은 셀룰로오스 및 변형된 셀룰로오스, 이의 공중합체, 이의 조합, 및/또는 그밖에 유사한 것을 포함할 수 있다.
일 실시예에 있어서, 전극(400)은 부식 억제제(corrosion inhibitor) 및/또는 하나 이상의 다른 기능성 첨가제를 포함할 수 있다. 일 실시예에 있어서, 부식 억제제는 하나 이상의 표면 활성 유기 화합물을 포함할 수 있다. 일 실시예에 있어서, 부식 억제제는 글리콜, 실리케이트, 수은 (Hg), 카드뮴 (Cd), 납 (Pb), 갈륨 (Ga), 인듐 (In), 안티몬 (Sn), 비스무스 (Bi), 이의 조합, 및/또는 그밖에 유사한 것을 포함할 수 있다.
일 실시예에 있어서, 전극(400)은 임의로 전극(400) 내에 및/또는 전극(400)과 분리기(130) 및/또는 집전 장치(110, 120)와 같은 에너지 저장 장치(100)의 다른 성분 사이에 피각(420)의 접착을 향상시킬 수 있는 접착 물질을 포함한다. 일 실시예에 있어서, 전극(400) 내 접착 물질은 고분자, 예를 들어 본 명세서에 기재된 고분자(360)를 포함한다.
본 명세서의 이들 및 다른 특징, 측면, 및 이점은 특정 실시예의 도면을 참조하여 기재되며, 이는 특정 실시예를 설명하며 본 발명에 한정되지 않는 것으로 생각된다.
도 1은 피각을 포함하는 규조토의 주사전자현미경(scanning electron microscope, SEM) 영상이다.
도 2는 다공성 표면을 포함하는 피각의 SEM 영상이다.
도 3은 실질적으로 원통형 모양을 갖는 각각의 피각의 SEM 영상이다.
도 4a 및 4b는 피각 분리 공정의 단계의 흐름도이다.
도 5a는 외부 표면 및 내부 표면 둘 다의 구조체를 포함하는 피각의 실시예를 나타낸다.
도 5b는 은으로 씨딩된 피각 표면의 50k× 배율의 SEM 영상을 나타낸다.
도 5c는 은으로 씨딩된 피각 표면의 250k× 배율의 SEM 영상을 나타낸다.
도 5d는 그 위에 형성된 은 나노구조체를 갖는 피각 표면의 20k× 배율의 SEM 영상을 나타낸다.
도 5e는 그 위에 형성된 은 나노구조체를 갖는 피각 표면의 150k× 배율의 SEM 영상을 나타낸다.
도 5f는 은 나노구조체에 의해 코팅된 표면을 갖는 규조류 피각 박편의 25k× 배율의 SEM 영상을 나타낸다.
도 5g는 산화아연으로 씨딩된 피각 표면의 100k× 배율의 SEM 영상을 나타낸다.
도 5h는 산화아연으로 씨딩된 피각 표면의 100k× 배율의 SEM 영상을 나타낸다.
도 5i는 그 위에 형성된 산화아연 나노와이어를 갖는 피각 표면의 50k× 배율의 SEM 영상을 나타낸다.
도 5j는 그 위에 형성된 산화아연 나노와이어를 갖는 피각 표면의 25k× 배율의 SEM 영상을 나타낸다.
도 5k는 그 위에 형성된 산화아연 나노플레이트를 갖는 피각 표면의 10k× 배율의 SEM 영상을 나타낸다.
도 5l은 그 위에 형성된 은 나노구조체를 갖는 피각 표면의 50k× 배율의 SEM 영상을 나타낸다.
도 5m은 그 위에 형성된 산화아연 나노와이어를 갖는 피각 표면의 10k× 배율의 SEM 영상을 나타낸다.
도 5n은 그 위에 형성된 산화아연 나노와이어를 갖는 피각 표면의 100k× 배율의 SEM 영상을 나타낸다.
도 5o는 그 위에 형성된 산화망간 나노구조체를 갖는 피각 표면의 20k× 배율의 SEM 영상을 나타낸다.
도 5p는 그 위에 형성된 산화망간 나노구조체를 갖는 피각 표면의 50k× 배율의 SEM 영상을 나타낸다.
도 5q는 피각 표면에 형성된 산화망간 나노결정의 TEM 영상을 나타낸다.
도 5r은 산화망간 입자의 전자 회절 영상을 나타낸다.
도 5s는 그 위에 형성된 망간-함유 나노섬유를 갖는 피각 표면의 10k× 배율의 SEM 영상을 나타낸다.
도 6은 에너지 저장 장치의 실시예를 도식적으로 나타낸다.
도 7은 분리기 층에서 피각을 포함하는 에너지 저장 장치의 분리기의 실시예를 나타낸다.
도 8은 전극 층에서 피각을 포함하는 에너지 저장 장치의 전극의 실시예를 나타낸다.
하기 실시예는 본 명세서에 기술된 특징의 조합의 몇몇 가능한 변경을 확인한 것이지만, 특징의 조합의 다른 변경도 가능하다.
1. 제 1 전극;
제 2 전극; 및
제 1 전극과 제 2 전극 사이의 분리기를 포함하는 인쇄 에너지 저장 장치로서, 적어도 하나의 제 1 전극, 제 2 전극, 및 분리기는 피각을 포함하는, 인쇄 에너지 저장 장치.
2. 실시예 1에 있어서, 분리기는 피각을 포함하는, 장치.
3. 실시예 1 또는 2에 있어서, 제 1 전극은 피각을 포함하는, 장치.
4. 실시예 1-3 중 어느 하나에 있어서, 제 2 전극은 피각을 포함하는, 장치.
5. 실시예 1-4 중 어느 하나에 있어서, 피각은 실질적으로 균일한 특성을 가지는 것을 특징으로 하는, 장치.
6. 실시예 5에 있어서, 특성은 모양을 포함하는, 장치.
7. 실시예 6에 있어서, 모양은 원통형, 구형, 원판형, 또는 각기둥형을 포함하는, 장치.
8. 실시예 5-7 중 어느 하나에 있어서, 특성은 크기를 포함하는, 장치.
9. 실시예 8에 있어서, 크기는 직경을 포함하는, 장치.
10. 실시예 9에 있어서, 직경은 약 2㎛ 내지 약 10㎛의 범위인 것을 특징으로 하는, 장치.
11. 실시예 8에 있어서, 크기는 길이를 포함하는, 장치.
12. 실시예 11에 있어서, 길이는 약 5㎛ 내지 약 20㎛의 범위인 것을 특징으로 하는, 장치.
13. 실시예 8에 있어서, 크기는 장축(longest axis)을 포함하는, 장치.
14. 실시예 13에 있어서, 장축은 약 5㎛ 내지 약 20㎛의 범위인 것을 특징으로 하는, 장치.
15. 실시예 5-14 중 어느 하나에 있어서, 특성은 기공을 포함하는, 장치.
16. 실시예 15에 있어서, 기공은 약 20% 내지 약 50%의 범위인 것을 특징으로 하는, 장치.
17. 실시예 5-16 중 어느 하나에 있어서, 특성은 기계적 강도를 포함하는, 장치.
18. 실시예 1-17 중 어느 하나에 있어서, 피각은 표면 개질 구조체를 포함하는, 장치.
19. 실시예 18에 있어서, 표면 개질 구조체는 전도성 물질을 포함하는, 장치.
20. 실시예 19에 있어서, 전도성 물질은 적어도 하나의 은, 알루미늄, 탄탈룸, 구리, 리튬, 마그네슘, 및 놋쇠를 포함하는, 장치.
21. 실시예 18-20 중 어느 하나에 있어서, 표면 개질 구조체는 산화 아연 (ZnO)을 포함하는, 장치.
22. 실시예 18-21 중 어느 하나에 있어서, 표면 개질 구조체는 반도체를 포함하는, 장치.
23. 실시예 22에 있어서, 반도체는 적어도 하나의 실리콘, 게르마늄, 실리콘 게르마늄, 및 갈륨 비소를 포함하는, 장치.
24. 실시예 18-23 중 어느 하나에 있어서, 표면 개질 구조체는 적어도 하나의 나노와이어, 나노입자, 및 장미 모양을 갖는 구조체를 포함하는, 장치.
25. 실시예 18-24 중 어느 하나에 있어서, 표면 개질 구조체는 피각의 외부 표면에 있는 것을 특징으로 하는, 장치.
26. 실시예 18-25 중 어느 하나에 있어서, 표면 개질 구조체는 피각의 내부 표면에 있는 것을 특징으로 하는, 장치.
27. 실시예 1-26 중 어느 하나에 있어서, 피각은 표면 개질 물질을 포함하는, 장치.
28. 실시예 27에 있어서, 표면 개질 물질은 전도성 물질을 포함하는, 장치.
29. 실시예 28에 있어서, 전도성 물질은 적어도 하나의 은, 알루미늄, 탄탈룸, 구리, 리튬, 마그네슘, 및 놋쇠를 포함하는, 장치.
30. 실시예 27-29 중 어느 하나에 있어서, 표면 개질 물질은 산화 아연 (ZnO)을 포함하는, 장치.
31. 실시예 27-30 중 어느 하나에 있어서, 표면 개질 물질은 반도체를 포함하는, 장치.
32. 실시예 31에 있어서, 반도체는 적어도 하나의 실리콘, 게르마늄, 실리콘 게르마늄, 및 갈륨 비소를 포함하는, 장치.
33. 실시예 27-32 중 어느 하나에 있어서, 표면 개질 물질은 피각의 외부 표면에 있는 것을 특징으로 하는, 장치.
34. 실시예 27-33 중 어느 하나에 있어서, 표면 개질 물질은 피각의 내부 표면에 있는 것을 특징으로 하는, 장치.
35. 실시예 1-34 중 어느 하나에 있어서, 제 1 전극은 전도성 충전제를 포함하는, 장치.
36. 실시예 1-35 중 어느 하나에 있어서, 제 2 전극은 전도성 충전제를 포함하는, 장치.
37. 실시예 35 또는 36에 있어서, 전도성 충전제는 흑연 탄소를 포함하는, 장치.
38. 실시예 35-37 중 어느 하나에 있어서, 전도성 충전제는 그래핀을 포함하는, 장치.
39. 실시예 1-38 중 어느 하나에 있어서, 제 1 전극은 접착 물질을 포함하는, 장치.
40. 실시예 1-39 중 어느 하나에 있어서, 제 2 전극은 접착 물질을 포함하는, 장치.
41. 실시예 1-40 중 어느 하나에 있어서, 분리기는 접착 물질을 포함하는, 장치.
42. 실시예 39-41 중 어느 하나에 있어서, 접착 물질은 고분자를 포함하는, 장치.
43. 실시예 1-42 중 어느 하나에 있어서, 분리기는 전해질을 포함하는, 장치.
44. 실시예 43에 있어서, 전해질은 적어도 하나의 이온성 액체, 산, 염기, 및 염을 포함하는, 장치.
45. 실시예 43 또는 44에 있어서, 전해질은 전해질 겔을 포함하는, 장치.
46. 실시예 1-45 중 어느 하나에 있어서, 제 1 전극과 함께 전기통신의 제 1 집전 장치를 더 포함하는, 장치.
47. 실시예 1-46 중 어느 하나에 있어서, 제 2 전극과 함께 전기통신의 제 2 집전 장치를 더 포함하는, 장치.
48. 실시예 1-47 중 어느 하나에 있어서, 인쇄 에너지 저장 장치는 축전기를 포함하는, 장치.
49. 실시예 1-47 중 어느 하나에 있어서, 인쇄 에너지 저장 장치는 슈퍼축전기를 포함하는, 장치.
50. 실시예 1-47 중 어느 하나에 있어서, 인쇄 에너지 저장 장치는 배터리를 포함하는, 장치.
51. 서로의 상부에 적층된 실시예 1-50 중 어느 하나의 다수의 장치를 포함하는 시스템.
52. 실시예 1-50 중 어느 하나의 장치 또는 실시예 51의 시스템을 포함하는 전기 장치.
53. 피각을 포함하는 막인, 인쇄 에너지 저장 장치의 막.
54. 실시예 53에 있어서, 피각은 실질적으로 균일한 특성을 가지는 것을 특징으로 하는, 막.
55. 실시예 54에 있어서, 특성은 모양을 포함하는, 막.
56. 실시예 55에 있어서, 모양은 원통형, 구형, 원판형, 또는 각기둥형을 포함하는, 막.
57. 실시예 54-56 중 어느 하나에 있어서, 특성은 크기를 포함하는, 막.
58. 실시예 57에 있어서, 크기는 직경을 포함하는, 막.
59. 실시예 58에 있어서, 직경은 약 2㎛ 내지 약 10㎛의 범위인 것을 특징으로 하는, 막.
60. 실시예 54-59 중 어느 하나에 있어서, 크기는 길이를 포함하는, 막.
61. 실시예 60에 있어서, 길이는 약 5㎛ 내지 약 20㎛의 범위인 것을 특징으로 하는, 막.
62. 실시예 54-61 중 어느 하나에 있어서, 크기는 장축을 포함하는, 막.
63. 실시예 62에 있어서, 장축은 약 5㎛ 내지 약 20㎛의 범위인 것을 특징으로 하는, 막.
64. 실시예 54-63 중 어느 하나에 있어서, 특성은 기공을 포함하는, 막.
65. 실시예 64에 있어서, 기공은 약 20% 내지 약 50%의 범위인 것을 특징으로 하는, 막.
66. 실시예 54-65 중 어느 하나에 있어서, 특성은 기계적 강도를 포함하는, 막.
67. 실시예 53-66 중 어느 하나에 있어서, 피각은 표면 개질 구조체를 포함하는, 막.
68. 실시예 67에 있어서, 표면 개질 구조체는 전도성 물질을 포함하는, 막.
69. 실시예 68에 있어서, 전도성 물질은 적어도 하나의 은, 알루미늄, 탄탈룸, 구리, 리튬, 마그네슘, 및 놋쇠를 포함하는, 막.
70. 실시예 67-69 중 어느 하나에 있어서, 표면 개질 구조체는 산화 아연 (ZnO)을 포함하는, 막.
71. 실시예 67-70 중 어느 하나에 있어서, 표면 개질 구조체는 반도체를 포함하는, 막.
72. 실시예 71에 있어서, 반도체는 적어도 하나의 실리콘, 게르마늄, 실리콘 게르마늄, 및 갈륨 비소를 포함하는, 막.
73. 실시예 67-72 중 어느 하나에 있어서, 표면 개질 구조체는 적어도 하나의 나노와이어, 나노입자, 및 장미 모양을 갖는 구조체를 포함하는, 막.
74. 실시예 67-73 중 어느 하나에 있어서, 표면 개질 구조체는 피각의 외부 표면에 있는 것을 특징으로 하는, 막.
75. 실시예 67-74 중 어느 하나에 있어서, 표면 개질 구조체는 피각의 내부 표면에 있는 것을 특징으로 하는, 막.
76. 실시예 53-75 중 어느 하나에 있어서, 피각은 표면 개질 물질을 포함하는, 막.
77. 실시예 76에 있어서, 표면 개질 물질은 전도성 물질을 포함하는, 막.
78. 실시예 77에 있어서, 전도성 물질은 적어도 하나의 은, 알루미늄, 탄탈룸, 구리, 리튬, 마그네슘, 및 놋쇠를 포함하는, 막.
79. 실시예 76-78 중 어느 하나에 있어서, 표면 개질 물질은 산화 아연 (ZnO)을 포함하는, 막.
80. 실시예 76-79 중 어느 하나에 있어서, 표면 개질 물질은 반도체를 포함하는, 막.
81. 실시예 80에 있어서, 반도체는 적어도 하나의 실리콘, 게르마늄, 실리콘 게르마늄, 및 갈륨 비소를 포함하는, 막.
82. 실시예 76-81 중 어느 하나에 있어서, 표면 개질 물질은 피각의 외부 표면에 있는 것을 특징으로 하는, 막.
83. 실시예 76-82 중 어느 하나에 있어서, 표면 개질 물질은 피각의 내부 표면에 있는 것을 특징으로 하는, 막.
84. 실시예 53-83 중 어느 하나에 있어서, 전도성 충전제를 더 포함하는, 막.
85. 실시예 84에 있어서, 전도성 충전제는 흑연 탄소를 포함하는, 막.
86. 실시예 84 또는 85에 있어서, 전도성 충전제는 그래핀을 포함하는, 막.
87. 실시예 53-86 중 어느 하나에 있어서, 접착 물질을 더 포함하는, 막.
88. 실시예 87에 있어서, 접착 물질은 고분자를 포함하는, 막.
89. 실시예 53-88 중 어느 하나에 있어서, 전해질을 더 포함하는, 막.
90. 실시예 89에 있어서, 전해질은 적어도 하나의 이온성 액체, 산, 염기, 및 염을 포함하는, 막.
91. 실시예 89 또는 90에 있어서, 전해질은 전해질 겔을 포함하는, 막.
92. 실시예 53-91 중 어느 하나의 막을 포함하는 에너지 저장 장치.
93. 실시예 92에 있어서, 인쇄 에너지 저장 장치는 축전기를 포함하는, 장치.
94. 실시예 92에 있어서, 인쇄 에너지 저장 장치는 슈퍼축전기를 포함하는, 장치.
95. 실시예 92에 있어서, 인쇄 에너지 저장 장치는 배터리를 포함하는, 장치.
96. 서로의 상부에 적층된 실시예 92-95 중 어느 하나의 다수의 장치를 포함하는 시스템.
97. 실시예 92-95 중 어느 하나의 장치 또는 실시예 96의 시스템을 포함하는 전기 장치.
98. 제 1 전극을 형성하는 단계;
제 2 전극을 형성하는 단계; 및
제 1 전극과 제 2 전극 사이의 분리기를 형성하는 단계를 포함하는 인쇄 에너지 저장 장치의 제조 방법으로서,
적어도 하나의 제 1 전극, 제 2 전극, 및 분리기는 피각을 포함하는, 인쇄 에너지 저장 장치의 제조 방법.
99. 실시예 98에 있어서, 분리기는 피각을 포함하는, 방법.
100. 실시예 99에 있어서, 분리기를 형성하는 단계는 피각을 포함하는 분산물을 형성하는 단계를 포함하는, 방법.
101. 실시예 99 또는 100에 있어서, 분리기를 형성하는 단계는 분리기를 스크린 인쇄하는 단계를 포함하는, 방법.
102. 실시예 99에 있어서, 분리기를 형성하는 단계는 피각을 포함하는 막을 형성하는 단계를 포함하는, 방법.
103. 실시예 102에 있어서, 분리기를 형성하는 단계는 분리기를 포함하는 막을 롤투롤 인쇄하는 단계를 포함하는, 방법.
104. 실시예 98-103 중 어느 하나에 있어서, 제 1 전극은 피각을 포함하는, 방법.
105. 실시예 104에 있어서, 제 1 전극을 형성하는 단계는 피각을 포함하는 분산물을 형성하는 단계를 포함하는, 방법.
106. 실시예 104 또는 105에 있어서, 제 1 전극을 형성하는 단계는 제 1 전극을 스크린 인쇄하는 단계를 포함하는, 방법.
107. 실시예 104에 있어서, 제 1 전극을 형성하는 단계는 피각을 포함하는 막을 형성하는 단계를 포함하는, 방법.
108. 실시예 107에 있어서, 제 1 전극을 형성하는 단계는 제 1 전극을 포함하는 막을 롤투롤 인쇄하는 단계를 포함하는, 방법.
109. 실시예 98-108 중 어느 하나에 있어서, 제 2 전극은 피각을 포함하는, 방법.
110. 실시예 109에 있어서, 제 2 전극을 형성하는 단계는 피각을 포함하는 분산물을 형성하는 단계를 포함하는, 방법.
111. 실시예 109 또는 110에 있어서, 제 2 전극을 형성하는 단계는 제 2 전극을 스크린 인쇄하는 단계를 포함하는, 방법.
112. 실시예 109에 있어서, 제 2 전극을 형성하는 단계는 피각을 포함하는 막을 형성하는 단계를 포함하는, 방법.
113. 실시예 112에 있어서, 제 2 전극을 형성하는 단계는 제 2 전극을 포함하는 막을 롤투롤 인쇄하는 단계를 포함하는, 방법.
114. 실시예 98-113 중 어느 하나에 있어서, 특성에 따라 피각을 분류하는 단계를 더 포함하는, 방법.
115. 실시예 114에 있어서, 특성은 적어도 하나의 모양, 크기, 물질, 및 기공을 포함하는, 방법.
116. 용액; 및
용액에 분산된 피각을 포함하는, 잉크.
117. 실시예 116에 있어서, 피각은 실질적으로 균일한 특성을 가지는 것을 특징으로 하는, 잉크.
118. 실시예 117에 있어서, 특성은 모양을 포함하는, 잉크.
119. 실시예 118에 있어서, 모양은 원통형, 구형, 원판형, 또는 각기둥형을 포함하는, 잉크.
120. 실시예 117-119 중 어느 하나에 있어서, 특성은 크기를 포함하는, 잉크.
121. 실시예 120에 있어서, 크기는 직경을 포함하는, 잉크.
122. 실시예 121에 있어서, 직경은 약 2㎛ 내지 약 10㎛의 범위인 것을 특징으로 하는, 잉크.
123. 실시예 117-122 중 어느 하나에 있어서, 크기는 길이를 포함하는, 잉크.
124. 실시예 123에 있어서, 길이는 약 5㎛ 내지 약 20㎛의 범위인 것을 특징으로 하는, 잉크.
125. 실시예 117-124 중 어느 하나에 있어서, 크기는 장축을 포함하는, 잉크.
126. 실시예 125에 있어서, 장축은 약 5㎛ 내지 약 20㎛의 범위인 것을 특징으로 하는, 잉크.
127. 실시예 117-126 중 어느 하나에 있어서, 특성은 기공을 포함하는, 잉크.
128. 실시예 127에 있어서, 기공은 약 20% 내지 약 50%의 범위인 것을 특징으로 하는, 잉크.
129. 실시예 117-128 중 어느 하나에 있어서, 특성은 기계적 강도를 포함하는, 잉크.
130. 실시예 116-129 중 어느 하나에 있어서, 피각은 표면 개질 구조체를 포함하는, 잉크.
131. 실시예 130에 있어서, 표면 개질 구조체는 전도성 물질을 포함하는, 잉크.
132. 실시예 131에 있어서, 전도성 물질은 적어도 하나의 은, 알루미늄, 탄탈룸, 구리, 리튬, 마그네슘, 및 놋쇠를 포함하는, 잉크.
133. 실시예 130-132 중 어느 하나에 있어서, 표면 개질 구조체는 산화 아연 (ZnO)을 포함하는, 잉크.
134. 실시예 130-133 중 어느 하나에 있어서, 표면 개질 구조체는 반도체를 포함하는, 잉크.
135. 실시예 134에 있어서, 반도체는 적어도 하나의 실리콘, 게르마늄, 실리콘 게르마늄, 및 갈륨 비소를 포함하는, 잉크.
136. 실시예 130-135 중 어느 하나에 있어서, 표면 개질 구조체는 적어도 하나의 나노와이어, 나노입자, 및 장미 모양을 갖는 구조체를 포함하는, 잉크.
137. 실시예 130-136 중 어느 하나에 있어서, 표면 개질 구조체는 피각의 외부 표면에 있는 것을 특징으로 하는, 잉크.
138. 실시예 130-137 중 어느 하나에 있어서, 표면 개질 구조체는 피각의 내부 표면에 있는 것을 특징으로 하는, 잉크.
139. 실시예 116-138 중 어느 하나에 있어서, 피각은 표면 개질 물질을 포함하는, 잉크.
140. 실시예 139에 있어서, 표면 개질 물질은 전도성 물질을 포함하는, 잉크.
141. 실시예 140에 있어서, 전도성 물질은 적어도 하나의 은, 알루미늄, 탄탈룸, 구리, 리튬, 마그네슘, 및 놋쇠를 포함하는, 잉크.
142. 실시예 139-141 중 어느 하나에 있어서, 표면 개질 물질은 산화아연 (ZnO)을 포함하는, 잉크.
143. 실시예 139-142 중 어느 하나에 있어서, 표면 개질 물질은 반도체를 포함하는, 잉크.
144. 실시예 143에 있어서, 반도체는 적어도 하나의 실리콘, 게르마늄, 실리콘 게르마늄, 및 갈륨 비소를 포함하는, 잉크.
145. 실시예 139-144 중 어느 하나에 있어서, 표면 개질 물질은 피각의 외부 표면에 있는 것을 특징으로 하는, 잉크.
146 실시예 139-145 중 어느 하나에 있어서, 표면 개질 물질은 피각의 내부 표면에 있는 것을 특징으로 하는, 잉크.
147. 실시예 116-146 중 어느 하나에 있어서, 전도성 충전제를 더 포함하는, 잉크.
148. 실시예 147에 있어서, 전도성 충전제는 흑연 탄소를 포함하는, 잉크.
149. 실시예 147 또는 148에 있어서, 전도성 충전제는 그래핀을 포함하는, 잉크.
150. 실시예 116-149 중 어느 하나에 있어서, 접착 물질을 더 포함하는, 잉크.
151. 실시예 150에 있어서, 접착 물질은 고분자를 포함하는, 잉크.
152. 실시예 116-151 중 어느 하나에 있어서, 전해질을 더 포함하는, 잉크.
153. 실시예 152에 있어서, 전해질은 적어도 하나의 이온성 액체, 산, 염기, 및 염을 포함하는, 잉크.
154. 실시예 152 또는 153에 있어서, 전해질은 전해질 겔을 포함하는, 잉크.
155. 실시예 116-154 중 어느 하나의 잉크를 포함하는, 장치.
156. 실시예 155에 있어서, 장치는 인쇄 에너지 저장 장치를 포함하는, 장치.
157. 실시예 156에 있어서, 인쇄 에너지 저장 장치는 축전기를 포함하는, 장치.
158. 실시예 156에 있어서, 인쇄 에너지 저장 장치는 슈퍼축전기를 포함하는, 장치.
159. 실시예 156에 있어서, 인쇄 에너지 저장 장치는 배터리를 포함하는, 장치.
160. 분산 용매에 다수의 규조류 피각 부분을 분산하는 단계;
적어도 하나의 유기 오염물질 및 무기 오염물질을 제거하는 단계;
다수의 규조류 피각 부분의 응집을 감소시키는 계면활성제에 다수의 규조류 피각 부분을 분산하는 단계; 및
원판형 스택 원심분리기를 이용한 적어도 하나의 공통적인 특징을 갖는 다수의 규조류 피각 부분을 추출하는 단계를 포함하는,
규조류 피각 부분의 추출 방법.
161. 실시예 160에 있어서, 적어도 하나의 공통적인 특징은 적어도 하나의 크기, 모양, 물질, 및 깨짐 정도를 포함하는, 방법.
162. 실시예 161에 있어서, 크기는 적어도 하나의 길이 및 직경을 포함하는, 방법.
163. 실시예 160 내지 162 중 어느 하나에 있어서, 고체 혼합물은 다수의 규조류 피각 부분을 포함하는, 방법.
164. 실시예 163에 있어서, 고체 혼합물의 입자 크기를 감소시키는 단계를 더 포함하는, 방법.
165. 실시예 164에 있어서, 고체 혼합물의 입자 크기를 감소시키는 단계는 분산 용매에 다수의 규조류 피각 부분을 분산하는 단계 이전인 것을 특징으로 하는, 방법.
166. 실시예 164 또는 165에 있어서, 입자 크기를 감소시키는 단계는 고체 혼합물을 분쇄하는 단계를 포함하는, 방법.
167. 실시예 166에 있어서, 고체 혼합물을 분쇄하는 단계는 적어도 하나의 막자사발 및 막자, 쟈밀, 및 암석 분쇄기로 고체 혼합물에 적용하는 단계를 포함하는, 방법.
168. 실시예 163 내지 167 중 어느 하나에 있어서, 다수의 규조류 피각 부분의 가장 긴 피각 부분 크기보다 큰 가장 긴 성분 크기를 갖는 고체 혼합물의 성분을 추출하는 단계를 더 포함하는, 방법.
169. 실시예 168에 있어서, 고체 혼합물의 성분을 추출하는 단계는 고체 혼합물을 체질하는 단계를 포함하는, 방법.
170. 실시예 169에 있어서, 고체 혼합물을 체질하는 단계는 약 15 마이크론 내지 약 25 마이크론의 메쉬 크기를 갖는 체로 고체 혼합물을 처리하는 단계를 포함하는, 방법.
171. 실시예 169에 있어서, 고체 혼합물을 체질하는 단계는 약 10 마이크론 내지 약 25 마이크론의 메쉬 크기를 갖는 체로 고체 혼합물을 처리하는 단계를 포함하는, 방법.
172. 실시예 160 내지 171 중 어느 하나에 있어서, 제 2 규조류 피각 부분으로부터 더 큰 가장 긴 크기를 갖는 제 1 규조류 피각 부분을 분리하기 위하여 다수의 규조류 피각 부분을 분류하는 단계를 더 포함하는, 방법.
173. 실시예 172에 있어서, 제 1 규조류 피각 부분은 다수의 깨지지 않은 규조류 피각 부분을 포함하는, 방법.
174. 실시예 172 또는 173에 있어서, 제 2 규조류 피각 부분은 다수의 깨진 규조류 피각 부분을 포함하는, 방법.
175. 실시예 172 내지 174 중 어느 하나에 있어서, 분류 단계는 다수의 규조류 피각 부분을 여과하는 단계를 포함하는, 방법.
176. 실시예 175에 있어서, 여과 단계는 다수의 규조류 피각 부분의 응집을 방해하는 단계를 포함하는, 방법.
177. 실시예 176에 있어서, 다수의 규조류 피각 부분의 응집을 방해하는 단계는 교반하는 단계를 포함하는, 방법.
178. 실시예 176 또는 177에 있어서, 다수의 규조류 피각 부분의 응집을 방해하는 단계는 흔드는 단계를 포함하는, 방법.
179. 실시예 176 내지 178 중 어느 하나에 있어서, 다수의 규조류 피각 부분의 응집을 방해하는 단계는 버블링 단계를 포함하는, 방법.
180. 실시예 175 내지 179 중 어느 하나에 있어서, 여과 단계는 다수의 규조류 피각 부분에 체를 적용하는 단계를 포함하는, 방법.
181. 실시예 180에 있어서, 체는 약 5 마이크론 내지 약 10 마이크론의 메쉬 크기를 가지는 것을 특징으로 하는, 방법.
182. 실시예 180에 있어서, 체는 약 7 마이크론의 메쉬 크기를 가지는 것을 특징으로 하는, 방법.
183. 실시예 160 내지 182 중 어느 하나에 있어서, 세척된 규조류 피각 부분을 얻는 단계를 더 포함하는, 방법.
184. 실시예 183에 있어서, 세척된 규조류 피각 부분을 얻는 단계는 적어도 하나의 유기 오염물질 및 무기 오염물질을 제거한 후 세정 용매로 다수의 규조류 피각 부분을 세척하는 단계를 포함하는, 방법.
185. 실시예 183 또는 184에 있어서, 세척된 규조류 피각 부분을 얻는 단계는 세정 용매로 적어도 하나의 공통적인 특징을 갖는 규조류 피각 부분을 세척하는 단계를 포함하는, 방법.
186. 실시예 184 또는 185에 있어서, 세정 용매를 제거하는 단계를 더 포함하는, 방법.
187. 실시예 186에 있어서, 세정 용매의 제거 단계는 적어도 하나의 유기 오염물질 및 무기 오염물질을 제거한 후 다수의 규조류 피각 부분을 침전시키는 단계를 포함하는, 방법.
188. 실시예 186 또는 187에 있어서, 세정 용매의 제거 단계는 적어도 하나의 공통적인 특징을 갖는 다수의 규조류 피각 부분을 침전시키는 단계를 포함하는, 방법.
189. 실시예 187 또는 188에 있어서, 침전 단계는 원심분리 단계를 포함하는, 방법.
190. 실시예 189에 있어서, 원심분리 단계는 대규모 처리에 적합한 원심분리기를 적용하는 단계를 포함하는, 방법.
191. 실시예 190에 있어서, 원심분리 단계는 적어도 하나의 원판형 스택 원심분리기, 디캔터 원심분리기, 및 원통형 원심분리기를 적용하는 단계를 포함하는, 방법.
192. 실시예 184 내지 191 중 어느 하나에 있어서, 적어도 하나의 분산 용매 및 세정 용매는 물을 포함하는, 방법.
193. 실시예 160 내지 192 중 어느 하나에 있어서, 적어도 하나의 분산 용매에 다수의 규조류 피각 부분을 분산하는 단계 및 계면활성제에 다수의 규조류 피각 부분을 분산하는 단계는 다수의 규조류 피각을 초음파 처리하는 단계를 포함하는, 방법.
194. 실시예 160 내지 193 중 어느 하나에 있어서, 계면활성제는 양이온성 계면활성제를 포함하는, 방법.
195. 실시예 194에 있어서, 양이온성 계면활성제는 적어도 하나의 염화 벤잘코늄, 브롬화 세트리모늄, 염화 라우릴 메틸 글루세트-10 히드록시프로필 디모늄, 염화 벤제토늄, 브로니독스, 염화 디메틸디옥타데실암모늄, 및 수산화 테트라메틸암모늄을 포함하는, 방법.
196. 실시예 160 내지 195 중 어느 하나에 있어서, 계면활성제는 비-이온성 계면활성제를 포함하는, 방법.
197. 실시예 196에 있어서, 비-이온성 계면활성제는 적어도 하나의 세틸 알콜, 스테아릴 알콜, 세토스테아릴 알콜, 올레일 알콜, 폴리옥시에틸렌 글리콜 알킬 에테르, 옥타에틸렌 글리콜 모노도데실 에테르, 글루코시드 알킬 에테르, 데실 글루코시드, 폴리옥시에틸렌 글리콜 옥틸페놀 에테르, 옥틸페놀 에톡실레이트 (Triton X-100™), 노녹시놀-9, 글리세릴 라우레이트, 폴리소르베이트, 및 폴록사머를 포함하는, 방법.
198. 실시예 160 내지 197 중 어느 하나에 있어서, 첨가 성분에 다수의 규조류 피각을 분산하는 단계를 더 포함하는, 방법.
*199. 실시예 198에 있어서, 첨가 성분에 다수의 규조류 피각을 분산하는 단계는 계면활성제에 다수의 규조류 피각을 분산하는 단계 이전인 것을 특징으로 하는, 방법.
200. 실시예 198에 있어서, 첨가 성분에 다수의 규조류 피각을 분산하는 단계는 계면활성제에 다수의 규조류 피각을 분산하는 단계 이후인 것을 특징으로 하는, 방법.
201. 실시예 198에 있어서, 첨가 성분에 다수의 규조류 피각을 분산하는 단계는 계면활성제에 다수의 규조류 피각을 분산하는 단계와 적어도 부분적으로 동시인 것을 특징으로 하는, 방법.
202. 실시예 198 내지 201 중 어느 하나에 있어서, 첨가 성분은 적어도 하나의 염화 칼륨, 염화 암모늄, 수산화 암모늄, 및 수산화 나트륨을 포함하는, 방법.
203. 실시예 160 내지 202 중 어느 하나에 있어서, 다수의 규조류 피각 부분을 분산하는 단계는 약 1 중량% 내지 약 5 중량%의 다수의 규조류 피각 부분을 포함하는 분산물을 얻는 단계를 포함하는, 방법.
204. 실시예 160 내지 203 중 어느 하나에 있어서, 유기 오염물질의 제거 단계는 표백제의 존재 하에 다수의 규조류 피각 부분을 가열하는 단계를 포함하는, 방법.
205. 실시예 204에 있어서, 표백제는 적어도 하나의 과산화수소 및 질산을 포함하는, 방법.
206. 실시예 205에 있어서, 가열 단계는 약 10 부피% 내지 약 20 부피% 범위의 과산화수소의 양을 포함하는 용액에서 다수의 규조류 피각 부분을 가열하는 단계를 포함하는, 방법.
207. 실시예 204 내지 206 중 어느 하나에 있어서, 가열 단계는 약 5분 내지 약 15분 동안 다수의 규조류 피각 부분을 가열하는 단계를 포함하는, 방법.
208. 실시예 160 내지 207 중 어느 하나에 있어서, 유기 오염물질의 제거 단계는 다수의 규조류 피각 부분을 어닐링하는 단계를 포함하는, 방법.
209. 실시예 160 내지 208 중 어느 하나에 있어서, 무기 오염물질의 제거 단계는 다수의 규조류 피각 부분과 적어도 하나의 염산 및 황산을 혼합하는 단계를 포함하는, 방법.
210. 실시예 209에 있어서, 혼합 단계는 약 15 부피% 내지 약 25 부피%의 염산을 포함하는 용액에서 다수의 규조류 피각 부분을 혼합하는 단계를 포함하는, 방법.
211. 실시예 210에 있어서, 혼합 단계는 약 20분 내지 약 40분 동안인 것을 특징으로 하는, 방법.
212. 원판형 스택 원심분리기를 이용한 적어도 하나의 공통적인 특징을 갖는 다수의 규조류 피각 부분을 추출하는 단계를 포함하는, 규조류 피각 부분의 추출 방법.
213. 실시예 212에 있어서, 분산 용매에 다수의 규조류 피각 부분을 분산하는 단계를 더 포함하는 단계.
214. 실시예 212 또는 213에 있어서, 적어도 하나의 유기 오염물질 및 무기 오염물질을 제거하는 단계를 더 포함하는, 방법.
215. 실시예 212 내지 214 중 어느 하나에 있어서, 다수의 규조류 피각 부분의 응집을 감소시키는 계면활성제에 다수의 규조류 피각 부분을 분산하는 단계를 더 포함하는, 방법.
216. 실시예 212 내지 215 중 어느 하나에 있어서, 적어도 하나의 공통적인 특징은 적어도 하나의 크기, 모양, 물질, 및 깨짐 정도를 포함하는, 방법.
217. 실시예 216에 있어서, 크기는 적어도 하나의 길이 및 직경을 포함하는, 방법.
218. 실시예 212 내지 217 중 어느 하나에 있어서, 고체 혼합물은 다수의 규조류 피각 부분을 포함하는, 방법.
219. 실시예 218에 있어서, 고체 혼합물의 입자 크기를 감소시키는 단계를 더 포함하는, 방법.
220. 실시예 219에 있어서, 고체 혼합물의 입자 크기를 감소시키는 단계는 분산 용매에 다수의 규조류 피각 부분을 분산하는 단계 이전인 것을 특징으로 하는, 방법.
221. 실시예 219 또는 220에 있어서, 입자 크기를 감소시키는 단계는 고체 혼합물을 분쇄하는 단계를 포함하는, 방법.
222. 실시예 221에 있어서, 고체 혼합물을 분쇄하는 단계는 적어도 하나의 막자사발 및 막자, 쟈밀, 및 암석 분쇄기로 고체 혼합물에 적용하는 단계를 포함하는, 방법.
223. 실시예 219 내지 222 중 어느 하나에 있어서, 다수의 규조류 피각 부분의 가장 긴 피각 부분 크기보다 큰 가장 긴 성분 크기를 갖는 고체 혼합물의 성분을 추출하는 단계를 더 포함하는, 방법.
224. 실시예 223에 있어서, 고체 혼합물의 성분을 추출하는 단계는 고체 혼합물을 체질하는 단계를 포함하는, 방법.
225. 실시예 224에 있어서, 고체 혼합물을 체질하는 단계는 약 15 마이크론 내지 약 25 마이크론의 메쉬 크기를 갖는 체로 고체 혼합물을 처리하는 단계를 포함하는, 방법.
226. 실시예 224에 있어서, 고체 혼합물을 체질하는 단계는 약 10 마이크론 내지 약 25 마이크론의 메쉬 크기를 갖는 체로 고체 혼합물을 처리하는 단계를 포함하는, 방법.
227. 실시예 212 내지 226 중 어느 하나에 있어서, 제 2 규조류 피각 부분으로부터 더 큰 가장 긴 크기를 갖는 제 1 규조류 피각 부분을 분리하기 위하여 다수의 규조류 피각 부분을 분류하는 단계를 더 포함하는, 방법.
228. 실시예 227에 있어서, 제 1 규조류 피각 부분은 다수의 깨지지 않은 규조류 피각 부분을 포함하는, 방법.
229. 실시예 227 또는 228에 있어서, 제 2 규조류 피각 부분은 다수의 깨진 규조류 피각 부분을 포함하는, 방법.
230. 실시예 227 내지 229 중 어느 하나에 있어서, 분류 단계는 다수의 규조류 피각 부분을 여과하는 단계를 포함하는, 방법.
231. 실시예 230에 있어서, 여과 단계는 다수의 규조류 피각 부분의 응집을 방해하는 단계를 포함하는, 방법.
232. 실시예 231에 있어서, 다수의 규조류 피각 부분의 응집을 방해하는 단계는 교반하는 단계를 포함하는, 방법.
233. 실시예 231 또는 232에 있어서, 다수의 규조류 피각 부분의 응집을 방해하는 단계는 흔드는 단계를 포함하는, 방법.
234. 실시예 231 내지 233 중 어느 하나에 있어서, 다수의 규조류 피각 부분의 응집을 방해하는 단계는 버블링 단계를 포함하는, 방법.
235. 실시예 230 내지 234 중 어느 하나에 있어서, 여과 단계는 다수의 규조류 피각 부분에 체를 적용하는 단계를 포함하는, 방법.
236. 실시예 235에 있어서, 체는 약 5 마이크론 내지 약 10 마이크론의 메쉬 크기를 갖는 것을 특징으로 하는, 방법.
237. 실시예 235에 있어서, 체는 약 7 마이크론의 메쉬 크기를 갖는 것을 특징으로 하는, 방법.
238. 실시예 212 내지 237 중 어느 하나에 있어서, 세척된 규조류 피각 부분을 얻는 단계를 더 포함하는, 방법.
239. 실시예 238에 있어서, 세척된 규조류 피각 부분을 얻는 단계는 적어도 하나의 유기 오염물질 및 무기 오염물질을 제거한 후 세정 용매로 다수의 규조류 피각 부분을 세척하는 단계를 포함하는, 방법.
240. 실시예 238 또는 239에 있어서, 세척된 규조류 피각 부분을 얻는 단계는 세정 용매로 적어도 하나의 공통적인 특징을 갖는 규조류 피각 부분을 세척하는 단계를 포함하는, 방법.
241. 실시예 239 또는 240에 있어서, 세정 용매를 제거하는 단계를 더 포함하는, 방법.
242. 실시예 241에 있어서, 세정 용매의 제거 단계는 적어도 하나의 유기 오염물질 및 무기 오염물질을 제거한 후 다수의 규조류 피각 부분을 침전시키는 단계를 포함하는, 방법.
243. 실시예 241 또는 242에 있어서, 세정 용매의 제거 단계는 적어도 하나의 공통적인 특징을 갖는 다수의 규조류 피각 부분을 침전시키는 단계를 포함하는, 방법.
244. 실시예 242 또는 243에 있어서, 침전 단계는 원심분리 단계를 포함하는, 방법.
245. 실시예 244에 있어서, 원심분리 단계는 대규모 처리에 적합한 원심분리기를 적용하는 단계를 포함하는, 방법.
246. 실시예 245에 있어서, 원심분리 단계는 적어도 하나의 원판형 스택 원심분리기, 디캔터 원심분리기, 및 원통형 원심분리기를 적용하는 단계를 포함하는, 방법.
247. 실시예 240 내지 246 중 어느 하나에 있어서, 적어도 하나의 분산 용매 및 세정 용매는 물을 포함하는, 방법.
248. 실시예 215 내지 247 중 어느 하나에 있어서, 적어도 하나의 분산 용매에 다수의 규조류 피각 부분을 분산하는 단계 및 계면활성제에 다수의 규조류 피각 부분을 분산하는 단계는 다수의 규조류 피각을 초음파 처리하는 단계를 포함하는, 방법.
249. 실시예 215 내지 248 중 어느 하나에 있어서, 계면활성제는 양이온성 계면활성제를 포함하는, 방법.
250. 실시예 249에 있어서, 양이온성 계면활성제는 적어도 하나의 염화 벤잘코늄, 브롬화 세트리모늄, 염화 라우릴 메틸 글루세트-10 히드록시프로필 디모늄, 염화 벤제토늄, 브로니독스, 염화 디메틸디옥타데실암모늄, 및 수산화 테트라메틸암모늄을 포함하는, 방법.
251. 실시예 212 내지 250 중 어느 하나에 있어서, 계면활성제는 비-이온성 계면활성제를 포함하는, 방법.
252. 실시예 251에 있어서, 비-이온성 계면활성제는 적어도 하나의 세틸 알콜, 스테아릴 알콜, 세토스테아릴 알콜, 올레일 알콜, 폴리옥시에틸렌 글리콜 알킬 에테르, 옥타에틸렌 글리콜 모노도데실 에테르, 글루코시드 알킬 에테르, 데실 글루코시드, 폴리옥시에틸렌 글리콜 옥틸페놀 에테르, 옥틸페놀 에톡실레이트 (Triton X-100™), 노녹시놀-9, 글리세릴 라우레이트, 폴리소르베이트, 및 폴록사머를 포함하는, 방법.
253. 실시예 212 내지 252 중 어느 하나에 있어서, 첨가 성분에 다수의 규조류 피각을 분산하는 단계를 더 포함하는, 방법.
*254. 실시예 253에 있어서, 첨가 성분에 다수의 규조류 피각을 분산하는 단계는 계면활성제에 다수의 규조류 피각을 분산하는 단계 이전인 것을 특징으로 하는, 방법.
255. 실시예 253에 있어서, 첨가 성분에 다수의 규조류 피각을 분산하는 단계는 계면활성제에 다수의 규조류 피각을 분산하는 단계 이후인 것을 특징으로 하는, 방법.
256. 실시예 253에 있어서, 첨가 성분에 다수의 규조류 피각을 분산하는 단계는 계면활성제에 다수의 규조류 피각을 분산하는 단계와 적어도 부분적으로 동시인 것을 특징으로 하는, 방법.
257. 실시예 253 내지 256 중 어느 하나에 있어서, 첨가 성분은 적어도 하나의 염화 칼륨, 염화 암모늄, 수산화 암모늄, 및 수산화 나트륨을 포함하는, 방법.
258. 실시예 213 내지 257 중 어느 하나에 있어서, 분산 용매에 다수의 규조류 피각 부분을 분산하는 단계는 약 1 중량% 내지 약 5 중량%의 다수의 규조류 피각 부분을 포함하는 분산물을 얻는 단계를 포함하는, 방법.
259. 실시예 214 내지 258 중 어느 하나에 있어서, 유기 오염물질의 제거 단계는 표백제의 존재 하에 다수의 규조류 피각 부분을 가열하는 단계를 포함하는, 방법.
260. 실시예 259에 있어서, 표백제는 적어도 하나의 과산화수소 및 질산을 포함하는, 방법.
261. 실시예 260에 있어서, 가열 단계는 약 10 부피% 내지 약 20 부피% 범위의 과산화수소의 양을 포함하는 용액에서 다수의 규조류 피각 부분을 가열하는 단계를 포함하는, 방법.
262. 실시예 259 내지 261 중 어느 하나에 있어서, 가열 단계는 약 5분 내지 약 15분 동안 다수의 규조류 피각 부분을 가열하는 단계를 포함하는, 방법.
263. 실시예 214 내지 262 중 어느 하나에 있어서, 유기 오염물질의 제거 단계는 다수의 규조류 피각 부분을 어닐링하는 단계를 포함하는, 방법.
264. 실시예 214 내지 263 중 어느 하나에 있어서, 무기 오염물질의 제거 단계는 다수의 규조류 피각 부분과 적어도 하나의 염산 및 황산을 혼합하는 단계를 포함하는, 방법.
265. 실시예 264에 있어서, 혼합 단계는 약 15 부피% 내지 약 25 부피%의 염산을 포함하는 용액에서 다수의 규조류 피각 부분을 혼합하는 단계를 포함하는, 방법.
266. 실시예 265에 있어서, 혼합 단계는 약 20분 내지 약 40분 동안인 것을 특징으로 하는, 방법.
267. 다수의 규조류 피각 부분의 응집을 감소시키는 계면활성제와 함께 다수의 규조류 피각 부분을 분산하는 단계를 포함하는, 규조류 피각 부분의 추출 방법.
268. 실시예 267에 있어서, 원판형 스택 원심분리기를 이용한 적어도 하나의 공통적인 특징을 갖는 다수의 규조류 피각 부분을 추출하는 단계를 더 포함하는, 방법.
269. 실시예 267 또는 268에 있어서, 분산 용매에 다수의 규조류 피각 부분을 분산하는 단계를 더 포함하는, 방법.
270. 실시예 267 내지 269 중 어느 하나에 있어서, 적어도 하나의 유기 오염물질 및 무기 오염물질을 제거하는 단계를 더 포함하는, 방법.
271. 실시예 267 내지 270 중 어느 하나에 있어서, 적어도 하나의 공통적인 특징은 적어도 하나의 크기, 모양, 물질, 및 깨짐 정도를 포함하는, 방법.
272. 실시예 271에 있어서, 크기는 적어도 하나의 길이 및 직경을 포함하는, 방법.
273. 실시예 267 내지 272 중 어느 하나에 있어서, 고체 혼합물은 다수의 규조류 피각 부분을 포함하는, 방법.
274. 실시예 273에 있어서, 고체 혼합물의 입자 크기를 감소시키는 단계를 더 포함하는, 방법.
275. 실시예 274에 있어서, 고체 혼합물의 입자 크기를 감소시키는 단계는 분산 용매에 다수의 규조류 피각 부분을 분산하는 단계 이전인 것을 특징으로 하는, 방법.
276. 실시예 274 또는 275에 있어서, 입자 크기를 감소시키는 단계는 고체 혼합물을 분쇄하는 단계를 포함하는, 방법.
277. 실시예 276에 있어서, 고체 혼합물을 분쇄하는 단계는 적어도 하나의 막자사발 및 막자, 쟈밀, 및 암석 분쇄기로 고체 혼합물에 적용하는 단계를 포함하는, 방법.
278. 실시예 273 내지 277 중 어느 하나에 있어서, 다수의 규조류 피각 부분의 가장 긴 피각 부분 크기보다 큰 가장 긴 성분 크기를 갖는 고체 혼합물의 성분을 추출하는 단계를 더 포함하는, 방법.
279. 실시예 278에 있어서, 고체 혼합물의 성분을 추출하는 단계는 고체 혼합물을 체질하는 단계를 포함하는, 방법.
280. 실시예 279에 있어서, 고체 혼합물을 체질하는 단계는 약 15 마이크론 내지 약 25 마이크론의 메쉬 크기를 갖는 체로 고체 혼합물을 처리하는 단계를 포함하는, 방법.
281. 실시예 279에 있어서, 고체 혼합물을 체질하는 단계는 약 10 마이크론 내지 약 25 마이크론의 메쉬 크기를 갖는 체로 고체 혼합물을 처리하는 단계를 포함하는, 방법.
282. 실시예 267 내지 281 중 어느 하나에 있어서, 제 2 규조류 피각 부분으로부터 더 큰 가장 긴 크기를 갖는 제 1 규조류 피각 부분을 분리하기 위하여 다수의 규조류 피각 부분을 분류하는 단계를 더 포함하는, 방법.
283. 실시예 282에 있어서, 제 1 규조류 피각 부분은 다수의 깨지지 않은 규조류 피각 부분을 포함하는, 방법.
284. 실시예 282 또는 283에 있어서, 제 2 규조류 피각 부분은 다수의 깨진 규조류 피각 부분을 포함하는, 방법.
285. 실시예 282 내지 284 중 어느 하나에 있어서, 분류 단계는 다수의 규조류 피각 부분을 여과하는 단계를 포함하는, 방법.
286. 실시예 285에 있어서, 여과 단계는 다수의 규조류 피각 부분의 응집을 방해하는 단계를 포함하는, 방법.
287. 실시예 286에 있어서, 다수의 규조류 피각 부분의 응집을 방해하는 단계는 교반하는 단계를 포함하는, 방법.
288. 실시예 286 또는 287에 있어서, 다수의 규조류 피각 부분의 응집을 방해하는 단계는 흔드는 단계를 포함하는, 방법.
289. 실시예 286 내지 288 중 어느 하나에 있어서, 다수의 규조류 피각 부분의 응집을 방해하는 단계는 버블링 단계를 포함하는, 방법.
290. 실시예 285 내지 289 중 어느 하나에 있어서, 여과 단계는 다수의 규조류 피각 부분에 체를 적용하는 단계를 포함하는, 방법.
291. 실시예 290에 있어서, 체는 약 5 마이크론 내지 약 10 마이크론의 메쉬 크기를 갖는 것을 특징으로 하는, 방법.
292. 실시예 290에 있어서, 체는 약 7 마이크론의 메쉬 크기를 갖는 것을 특징으로 하는, 방법.
293. 실시예 267 내지 292 중 어느 하나에 있어서, 세척된 규조류 피각 부분을 얻는 단계를 더 포함하는, 방법.
294. 실시예 293에 있어서, 세척된 규조류 피각 부분을 얻는 단계는 적어도 하나의 유기 오염물질 및 무기 오염물질을 제거한 후 세정 용매로 다수의 규조류 피각 부분을 세척하는 단계를 포함하는, 방법.
295. 실시예 293 또는 294에 있어서, 세척된 규조류 피각 부분을 얻는 단계는 세정 용매로 적어도 하나의 공통적인 특징을 갖는 규조류 피각 부분을 세척하는 단계를 포함하는, 방법.
296. 실시예 294 또는 295에 있어서, 세정 용매를 제거하는 단계를 더 포함하는, 방법.
297. 실시예 296에 있어서, 세정 용매의 제거 단계는 적어도 하나의 유기 오염물질 및 무기 오염물질을 제거한 후 다수의 규조류 피각 부분을 침전시키는 단계를 포함하는, 방법.
298. 실시예 296 또는 297에 있어서, 세정 용매의 제거 단계는 적어도 하나의 공통적인 특징을 갖는 다수의 규조류 피각 부분을 침전시키는 단계를 포함하는, 방법.
299. 실시예 297 또는 298에 있어서, 침전 단계는 원심분리 단계를 포함하는, 방법.
300. 실시예 299에 있어서, 원심분리 단계는 대규모 처리에 적합한 원심분리기를 적용하는 단계를 포함하는, 방법.
301. 실시예 300에 있어서, 원심분리 단계는 적어도 하나의 원판형 스택 원심분리기, 디캔터 원심분리기, 및 원통형 원심분리기를 적용하는 단계를 포함하는, 방법.
302. 실시예 295 내지 301 중 어느 하나에 있어서, 적어도 하나의 분산 용매 및 세정 용매는 물을 포함하는, 방법.
303. 실시예 269 내지 302 중 어느 하나에 있어서, 적어도 하나의 분산 용매에 다수의 규조류 피각 부분을 분산하는 단계 및 계면활성제에 다수의 규조류 피각 부분을 분산하는 단계는 다수의 규조류 피각을 초음파 처리하는 단계를 포함하는, 방법.
304. 실시예 267 내지 303 중 어느 하나에 있어서, 계면활성제는 양이온성 계면활성제를 포함하는, 방법.
305. 실시예 304에 있어서, 양이온성 계면활성제는 적어도 하나의 염화 벤잘코늄, 브롬화 세트리모늄, 염화 라우릴 메틸 글루세트-10 히드록시프로필 디모늄, 염화 벤제토늄, 브로니독스, 염화 디메틸디옥타데실암모늄, 및 수산화 테트라메틸암모늄을 포함하는, 방법.
306. 실시예 267 내지 305 중 어느 하나에 있어서, 계면활성제는 비-이온성 계면활성제를 포함하는, 방법.
307 실시예 306에 있어서, 비-이온성 계면활성제는 적어도 하나의 세틸 알콜, 스테아릴 알콜, 세토스테아릴 알콜, 올레일 알콜, 폴리옥시에틸렌 글리콜 알킬 에테르, 옥타에틸렌 글리콜 모노도데실 에테르, 글루코시드 알킬 에테르, 데실 글루코시드, 폴리옥시에틸렌 글리콜 옥틸페놀 에테르, 옥틸페놀 에톡실레이트 (Triton X-100™), 노녹시놀-9, 글리세릴 라우레이트, 폴리소르베이트, 및 폴록사머를 포함하는, 방법.
308. 실시예 267 내지 307 중 어느 하나에 있어서, 첨가 성분에 다수의 규조류 피각을 분산하는 단계를 더 포함하는, 방법.
*309. 실시예 308에 있어서, 첨가 성분에 다수의 규조류 피각을 분산하는 단계는 계면활성제에 다수의 규조류 피각을 분산하는 단계 이전인 것을 특징으로 하는, 방법.
310. 실시예 308에 있어서, 첨가 성분에 다수의 규조류 피각을 분산하는 단계는 계면활성제에 다수의 규조류 피각을 분산하는 단계 이후인 것을 특징으로 하는, 방법.
311. 실시예 308에 있어서, 첨가 성분에 다수의 규조류 피각을 분산하는 단계는 계면활성제에 다수의 규조류 피각을 분산하는 단계와 적어도 부분적으로 동시인 것을 특징으로 하는, 방법.
312. 실시예 308 내지 311 중 어느 하나에 있어서, 첨가 성분은 적어도 하나의 염화 칼륨, 염화 암모늄, 수산화 암모늄, 및 수산화 나트륨을 포함하는, 방법.
313. 실시예 269 내지 312 중 어느 하나에 있어서, 분산 용매에 다수의 규조류 피각 부분을 분산하는 단계는 약 1 중량% 내지 약 5 중량%의 다수의 규조류 피각 부분을 포함하는 분산물을 얻는 단계를 포함하는, 방법.
314. 실시예 270 내지 313 중 어느 하나에 있어서, 유기 오염물질의 제거 단계는 표백제의 존재 하에 다수의 규조류 피각 부분을 가열하는 단계를 포함하는, 방법.
315. 실시예 314에 있어서, 표백제는 적어도 하나의 과산화수소 및 질산을 포함하는, 방법.
316. 실시예 315에 있어서, 가열 단계는 약 10 부피% 내지 약 20 부피% 범위의 과산화수소의 양을 포함하는 용액에서 다수의 규조류 피각 부분을 가열하는 단계를 포함하는, 방법.
317. 실시예 314 내지 316 중 어느 하나에 있어서, 가열 단계는 약 5분 내지 약 15분 동안 다수의 규조류 피각 부분을 가열하는 단계를 포함하는, 방법.
318. 실시예 270 내지 317 중 어느 하나에 있어서, 유기 오염물질의 제거 단계는 다수의 규조류 피각 부분을 어닐링하는 단계를 포함하는, 방법.
319. 실시예 270 내지 318 중 어느 하나에 있어서, 무기 오염물질의 제거 단계는 다수의 규조류 피각 부분과 적어도 하나의 염산 및 황산을 혼합하는 단계를 포함하는, 방법.
320. 실시예 319에 있어서, 혼합 단계는 약 15 부피% 내지 약 25 부피%의 염산을 포함하는 용액에서 다수의 규조류 피각 부분을 혼합하는 단계를 포함하는, 방법.
321. 실시예 320에 있어서, 혼합 단계는 약 20분 내지 약 40분 동안인 것을 특징으로 하는, 방법.
322. 규조류 피각 부분의 표면에 은 종자 층을 형성하는 단계; 및
종자 층 위에 나노구조체를 형성하는 단계를 포함하는,
규조류 피각 부분에 은 나노구조체의 형성 방법.
323. 실시예 322에 있어서, 나노구조체는 적어도 하나의 코팅, 나노와이어, 나노플레이트, 밀집 어레이의 나노입자, 나노벨트, 및 나노디스크를 포함하는, 방법.
324. 실시예 322 또는 323에 있어서, 나노구조체는 은을 포함하는, 방법.
325. 실시예 322 내지 324 중 어느 하나에 있어서, 은 종자 층을 형성하는 단계는 제 1 은 기여 성분 및 규조류 피각 부분에 고리형 가열 방법을 적용하는 단계를 포함하는, 방법.
326. 실시예 325에 있어서, 고리형 가열 방법을 적용하는 단계는 고리형 마이크로파 전력을 적용하는 단계를 포함하는, 방법.
327. 실시예 326에 있어서, 고리형 마이크로파 전력을 적용하는 단계는 약 100 Watt 및 500 Watt 사이의 마이크로파 전력을 교류하는 단계를 포함하는, 방법.
328. 실시예 327에 있어서, 교류 단계는 매분 마이크로파 전력을 교류하는 단계를 포함하는, 방법.
329. 실시예 327 또는 328에 있어서, 교류 단계는 약 30분 동안 마이크로파 전력을 교류하는 단계를 포함하는, 방법.
330. 실시예 327 또는 328에 있어서, 교류 단계는 약 20분 내지 약 40분 동안 마이크로파 전력을 교류하는 단계를 포함하는, 방법.
331. 실시예 322 내지 330 중 어느 하나에 있어서, 은 종자 층을 형성하는 단계는 규조류 피각 부분과 종자 층 용액을 혼합하는 단계를 포함하는, 방법.
332. 실시예 331에 있어서, 종자 층 용액은 제 1 은 기여 성분 및 종자 층 환원제를 포함하는, 방법.
333. 실시예 332에 있어서, 종자 층 환원제는 종자 층 용매인 것을 특징으로 하는, 방법.
334. 실시예 333에 있어서, 종자 층 환원제 및 종자 층 용매는 폴리에틸렌 글리콜을 포함하는, 방법.
335. 실시예 331에 있어서, 종자 층 용액은 제 1 은 기여 성분, 종자 층 환원제 및 종자 층 용매를 포함하는, 방법.
336. 실시예 331 내지 335 중 어느 하나에 있어서, 은 종자 층을 형성하는 단계는 규조류 피각 부분과 종자 층 용액을 혼합하는 단계를 더 포함하는, 방법.
337. 실시예 336에 있어서, 혼합 단계는 초음파 처리 단계를 포함하는, 방법.
338. 실시예 337에 있어서, 종자 층 환원제는 N,N-디메틸포름아미드를 포함하고, 제 1 은 기여 성분은 질산은을 포함하며, 종자 층 용매는 적어도 하나의 물 및 폴리비닐피롤리돈을 포함하는, 방법.
339. 실시예 322 내지 338 중 어느 하나에 있어서, 나노구조체를 형성하는 단계는 규조류 피각 부분과 나노구조체 형성 환원제를 혼합하는 단계를 포함하는, 방법.
340. 실시예 339에 있어서, 나노구조체를 형성하는 단계는 규조류 피각 부분과 나노구조체 형성 환원제를 혼합한 후 규조류 피각 부분을 가열하는 단계를 더 포함하는, 방법.
341. 실시예 340에 있어서, 가열 단계는 약 120℃ 내지 약 160℃의 온도로 가열하는 단계를 포함하는, 방법.
342. 실시예 340 또는 341에 있어서, 나노구조체를 형성하는 단계는 나노구조체 형성 용매 및 제 2 은 기여 성분을 포함하는 적정 용액으로 규조류 피각 부분을 적정하는 단계를 더 포함하는, 방법.
343. 실시예 342에 있어서, 나노구조체를 형성하는 단계는 적정 용액으로 규조류 피각 부분을 적정한 후 혼합하는 단계를 더 포함하는, 방법.
344. 실시예 339 내지 343 중 어느 하나에 있어서, 적어도 하나의 종자 층 환원제 및 나노구조체 형성 환원제는 적어도 하나의 히드라진, 포름알데히드, 글루코오스, 주석산 나트륨, 옥살산, 포름산, 아스코르브산, 및 에틸렌 글리콜을 포함하는, 방법.
345. 실시예 342 내지 344 중 어느 하나에 있어서, 적어도 하나의 제 1 은 기여 성분 및 제 2 은 기여 성분은 적어도 하나의 은염 및 산화은을 포함하는, 방법.
346. 실시예 345에 있어서, 은염은 적어도 하나의 질산은 및 암모니아성 질산은, 염화 은 (AgCl), 시안화 은 (AgCN), 은 테트라플루오로보레이트, 은 헥사플루오로포스페이트, 및 은 에틸설페이트를 포함하는, 방법.
347. 실시예 322 내지 346 중 어느 하나에 있어서, 나노구조체를 형성하는 단계는 산화물 형성을 감소시키기 위해 주변(ambient)에 있는 것을 특징으로 하는, 방법.
348. 실시예 347에 있어서, 주변은 아르곤 대기를 포함하는, 방법.
349. 실시예 342 내지 348 중 어느 하나에 있어서, 적어도 하나의 종자 층 용매 및 나노구조체 형성 용매는 적어도 하나의 프로필렌 글리콜, 물, 메탄올, 에탄올, 1-프로판올, 2-프로판올, l-메톡시-2-프로판올, 1-부탄올, 2-부탄올, 1-펜탄올, 2-펜탄올, 3-펜탄올, 1-헥산올, 2-헥산올, 3-헥산올, 옥탄올, 1-옥탄올, 2-옥탄올, 3-옥탄올, 테트라히드로퓨르퓨릴 알콜 (THFA), 시클로헥산올, 시클로펜탄올, 테르피네올, 부틸 락톤, 메틸 에틸 에테르, 디에틸 에테르, 에틸 프로필 에테르, 폴리에테르, 디케톤, 시클로헥산온, 시클로펜탄온, 시클로헵탄온, 시클로옥탄온, 아세톤, 벤조페논, 아세틸아세톤, 아세토페논, 시클로프로판온, 이소포론, 메틸 에틸 케톤, 에틸 아세테이트, 디메틸 아디페이트, 프로필렌 글리콜 모노메틸 에테르 아세테이트, 디메틸 글루타레이트, 디메틸 석시네이트, 글리세린 아세테이트, 카복실레이트, 프로필렌 카보네이트, 글리세린, 디올, 트리올, 테트라올, 펜타올, 에틸렌 글리콜, 디에틸렌 글리콜, 폴리에틸렌 글리콜, 프로필렌 글리콜, 디프로필렌 글리콜, 글리콜 에테르, 글리콜 에테르 아세테이트, 1,4-부탄디올, 1,2-부탄디올, 2,3-부탄디올, 1,3-프로판디올, 1,4-부탄디올, 1,5-펜탄디올, 1,8-옥탄디올, 1,2-프로판디올, 1,3-부탄디올, 1,2-펜탄디올, 에토헥사디올, p-메탄-3,8-디올, 2-메틸-2,4-펜탄디올, 테트라메틸 우레아, n-메틸피롤리돈, 아세토니트릴, 테트라히드로퓨란 (THF), 디메틸 포름아미드 (DMF), N-메틸 포름아미드 (NMF), 디메틸 설폭시드 (DMSO), 염화 티오닐 및 염화 설퓨릴을 포함하는, 방법.
350. 실시예 322 내지 349 중 어느 하나에 있어서, 규조류 피각 부분은 깨진 규조류 피각 부분을 포함하는, 방법.
351. 실시예 322 내지 349 중 어느 하나에 있어서, 규조류 피각 부분은 깨지지 않은 규조류 피각 부분을 포함하는, 방법.
352. 실시예 322 내지 351 중 어느 하나에 있어서, 규조류 피각 부분은 규조류 피각 부분 분리 공정을 통해 얻어지는 것을 특징으로 하는, 방법.
353. 실시예 352에 있어서, 공정은 다수의 규조류 피각 부분의 응집을 감소시키기 위해 계면활성제를 이용하는 단계 및 원판형 스택 원심분리기를 이용하는 단계 중 적어도 하나를 포함하는, 방법.
354. 규조류 피각 부분의 표면에 산화아연 종자 층을 형성하는 단계; 및
산화아연 종자 층 위에 나노구조체를 형성하는 단계를 포함하는,
규조류 피각 부분에 산화아연 나노구조체의 형성 방법.
355. 실시예 354에 있어서, 나노구조체는 적어도 하나의 나노와이어, 나노플레이트, 밀집 어레이의 나노입자, 나노벨트, 및 나노디스크를 포함하는, 방법.
356. 실시예 354 또는 355에 있어서, 나노구조체는 산화아연을 포함하는, 방법.
357. 실시예 354 내지 356 중 어느 하나에 있어서, 산화아연 종자 층을 형성하는 단계는 제 1 아연 기여 성분 및 규조류 피각 부분을 가열하는 단계를 포함하는, 방법.
358. 실시예 357에 있어서, 제 1 아연 기여 성분 및 규조류 피각 부분을 가열하는 단계는 약 175℃ 내지 약 225℃ 범위의 온도로 가열하는 단계를 포함하는, 방법.
359. 실시예 354 내지 358 중 어느 하나에 있어서, 나노구조체를 형성하는 단계는 제 2 아연 기여 성분을 포함하는 나노구조체 형성 용액의 존재 하에 산화아연 종자 층을 갖는 규조류 피각 부분에 가열 방법을 적용하는 단계를 포함하는, 방법.
360. 실시예 359에 있어서, 가열 방법은 나노구조체 형성 온도로 가열하는 단계를 포함하는, 방법.
361. 실시예 360에 있어서, 나노구조체 형성 온도는 약 80℃ 내지 약 100℃인 것을 특징으로 하는, 방법.
362. 실시예 360 또는 361에 있어서, 가열 단계는 약 1 내지 3시간 동안인 것을 특징으로 하는, 방법.
363. 실시예 359 내지 362 중 어느 하나에 있어서, 가열 방법은 고리형 가열 방법을 적용하는 단계를 포함하는, 방법.
*364. 실시예 363에 있어서, 고리형 가열 방법은 총 고리형 가열 기간 동안, 가열 기간 동안 산화아연 종자 층을 갖는 규조류 피각 부분에 마이크로파 가열을 적용한 다음 냉각 기간 동안 마이크로파 가열을 끄는 단계를 포함하는, 방법.
365. 실시예 364에 있어서, 가열 기간은 약 1분 내지 약 5분인 것을 특징으로 하는, 방법.
366. 실시예 364 또는 365에 있어서, 냉각 기간은 약 30초 내지 약 5분인 것을 특징으로 하는, 방법.
367. 실시예 364 내지 366 중 어느 하나에 있어서, 총 고리형 가열 기간은 약 5분 내지 약 20분인 것을 특징으로 하는, 방법.
368. 실시예 364 내지 367 중 어느 하나에 있어서, 마이크로파 가열을 적용하는 단계는 약 480 Watt 내지 약 520 Watt의 마이크로파 전력을 적용하는 단계를 포함하는, 방법.
369. 실시예 364 내지 367 중 어느 하나에 있어서, 마이크로파 가열을 적용하는 단계는 약 80 Watt 내지 약 120 Watt의 마이크로파 전력을 적용하는 단계를 포함하는, 방법.
370. 실시예 359 내지 369 중 어느 하나에 있어서, 적어도 하나의 제 1 아연 기여 성분 및 제 2 아연 기여 성분은 적어도 하나의 아세트산 아연, 아세트산 아연 수화물, 질산 아연, 질산 아연 육수화물, 염화 아연, 황산 아연, 및 아연산 나트륨을 포함하는, 방법.
371. 실시예 359 내지 370 중 어느 하나에 있어서, 나노구조체 형성 용액은 염기를 포함하는, 방법.
372. 실시예 371에 있어서, 염기는 적어도 하나의 수산화나트륨, 수산화암모늄, 수산화칼륨, 수산화 테트라메틸암모늄, 수산화리튬, 헥사메틸렌테트라민, 암모니아 용액, 탄산 나트륨, 및 에틸렌디아민을 포함하는, 방법.
373. 실시예 354 내지 372 중 어느 하나에 있어서, 나노구조체의 형성 단계는 첨가 성분을 가하는 단계를 더 포함하는, 방법.
374. 실시예 373에 있어서, 첨가 성분은 적어도 하나의 트리부틸아민, 트리에틸아민, 트리에탄올아민, 디이소프로필아민, 암모늄 포스페이트, 1,6-헥사디안올, 트리에틸디에틸놀, 이소프로필아민, 시클로헥실아민, n-부틸아민, 염화 암모늄, 헥사메틸렌테트라민, 에틸렌 글리콜, 에탄올아민, 폴리비닐알콜, 폴리에틸렌 글리콜, 도데실 황산 나트륨, 브롬화 세틸트리메틸 암모늄, 및 카바마이드를 포함하는, 방법.
375. 실시예 359 내지 374 중 어느 하나에 있어서, 적어도 하나의 나노구조체 형성 용액 및 산화아연 종자 층 형성 용액은 적어도 하나의 프로필렌 글리콜, 물, 메탄올, 에탄올, 1-프로판올, 2-프로판올, l-메톡시-2-프로판올, 1-부탄올, 2-부탄올, 1-펜탄올, 2-펜탄올, 3-펜탄올, 1-헥산올, 2-헥산올, 3-헥산올, 옥탄올, 1-옥탄올, 2-옥탄올, 3-옥탄올, 테트라히드로퓨르퓨릴 알콜 (THFA), 시클로헥산올, 시클로펜탄올, 테르피네올, 부틸 락톤, 메틸 에틸 에테르, 디에틸 에테르, 에틸 프로필 에테르, 폴리에테르, 디케톤, 시클로헥산온, 시클로펜탄온, 시클로헵탄온, 시클로옥탄온, 아세톤, 벤조페논, 아세틸아세톤, 아세토페논, 시클로프로판온, 이소포론, 메틸 에틸 케톤, 에틸 아세테이트, 디메틸 아디페이트, 프로필렌 글리콜 모노메틸 에테르 아세테이트, 디메틸 글루타레이트, 디메틸 석시네이트, 글리세린 아세테이트, 카복실레이트, 프로필렌 카보네이트, 글리세린, 디올, 트리올, 테트라올, 펜타올, 에틸렌 글리콜, 디에틸렌 글리콜, 폴리에틸렌 글리콜, 프로필렌 글리콜, 디프로필렌 글리콜, 글리콜 에테르, 글리콜 에테르 아세테이트, 1,4-부탄디올, 1,2-부탄디올, 2,3-부탄디올, 1,3-프로판디올, 1,4-부탄디올, 1,5-펜탄디올, 1,8-옥탄디올, 1,2-프로판디올, 1,3-부탄디올, 1,2-펜탄디올, 에토헥사디올, p-메탄-3,8-디올, 2-메틸-2,4-펜탄디올, 테트라메틸 우레아, n-메틸피롤리돈, 아세토니트릴, 테트라히드로퓨란 (THF), 디메틸 포름아미드 (DMF), N-메틸 포름아미드 (NMF), 디메틸 설폭시드 (DMSO), 염화 티오닐 및 염화 설퓨릴을 포함하는 용매를 포함하는, 방법.
376. 실시예 354 내지 375 중 어느 하나에 있어서, 규조류 피각 부분은 깨진 규조류 피각 부분을 포함하는, 방법.
377. 실시예 354 내지 375 중 어느 하나에 있어서, 규조류 피각 부분은 깨지지 않은 규조류 피각 부분을 포함하는, 방법.
378. 실시예 354 내지 375 중 어느 하나에 있어서, 규조류 피각 부분은 규조류 피각 부분 분리 공정을 통해 얻어지는 것을 특징으로 하는, 방법.
379. 실시예 378에 있어서, 공정은 다수의 규조류 피각 부분의 응집을 감소시키기 위해 계면활성제를 이용하는 단계 및 원판형 스택 원심분리기를 이용하는 단계 중 적어도 하나를 포함하는, 방법.
380. 규조류 피각 부분의 표면에 금속 종자 층을 형성하는 단계; 및
종자 층 위에 탄소 나노구조체를 형성하는 단계를 포함하는,
규조류 피각 부분에 탄소 나노구조체의 형성 방법.
381. 실시예 380에 있어서, 탄소 나노구조체는 탄소 나노튜브를 포함하는, 방법.
382. 실시예 381에 있어서, 탄소 나노튜브는 적어도 하나의 단일벽 탄소 나노튜브 및 다중벽 탄소 나노튜브를 포함하는, 방법.
383. 실시예 380 내지 382 중 어느 하나에 있어서, 금속 종자 층을 형성하는 단계는 규조류 피각 부분의 표면을 스프레이 코팅하는 단계를 포함하는, 방법.
384. 실시예 380 내지 383 중 어느 하나에 있어서, 금속 종자 층을 형성하는 단계는 적어도 하나의 금속을 포함하는 액체, 금속을 포함하는 기체 및 금속을 포함하는 고체에 규조류 피각 부분의 표면을 도입하는 단계를 포함하는, 방법.
385. 실시예 380 내지 384 중 어느 하나에 있어서, 탄소 나노구조체의 형성 단계는 화학 증기 증착 (CVD)을 이용하는 단계를 포함하는, 방법.
386. 실시예 380 내지 385 중 어느 하나에 있어서, 탄소 나노구조체의 형성 단계는 나노구조체 형성 탄소 기체에 규조류 피각 부분을 노출시킨 후에 나노구조체 형성 환원성 기체에 규조류 피각 부분을 노출시키는 단계를 포함하는, 방법.
387. 실시예 380 내지 385 중 어느 하나에 있어서, 탄소 나노구조체의 형성 단계는 나노구조체 형성 탄소 기체에 규조류 피각 부분을 노출시키기 전에 나노구조체 형성 환원성 기체에 규조류 피각 부분을 노출시키는 단계를 포함하는, 방법.
388. 실시예 380 내지 385 중 어느 하나에 있어서, 탄소 나노구조체의 형성 단계는 나노구조체 형성 환원성 기체 및 나노구조체 형성 탄소 기체를 포함하는 나노구조체 형성 기체 혼합물에 규조류 피각 부분을 노출시키는 단계를 포함하는, 방법.
389. 실시예 388에 있어서, 나노구조체 형성 기체 혼합물은 중성 기체를 더 포함하는, 방법.
390. 실시예 389에 있어서, 중성 기체는 아르곤을 포함하는, 방법.
391. 실시예 380 내지 390 중 어느 하나에 있어서, 금속은 적어도 하나의 니켈, 철, 코발트, 코발트-몰리브데늄 두금속(bimetallic), 구리, 금, 은, 백금, 팔라듐, 망간, 알루미늄, 마그네슘, 크롬, 안티몬, 알루미늄-철-몰리브덴 (Al/Fe/Mo), 철 펜타카보닐 (Fe(CO)5)), 질산철 (III) 육수화물 ((Fe(N03)3·6H20), 염화 코발트 (II) 육수화물 (CoCl2·6H20), 몰리브덴산 암모늄 사수화물 ((NH4)6Mo7024·4H20), 이염화 이산화 몰리브덴 (VI) (Mo02Cl2), 및 알루미나 나노분말을 포함하는, 방법.
392. 실시예 286 내지 391 중 어느 하나에 있어서, 나노구조체 형성 환원성 기체는 적어도 하나의 암모니아, 질소, 및 수소를 포함하는, 방법.
393. 실시예 286 내지 392 중 어느 하나에 있어서, 나노구조체 형성 탄소 기체는 적어도 하나의 아세틸렌, 에틸렌, 에탄올, 메탄, 산화탄소, 및 벤젠을 포함하는, 방법.
394. 실시예 380 내지 393 중 어느 하나에 있어서, 금속 종자 층을 형성하는 단계는 은 종자 층을 형성하는 단계를 포함하는, 방법.
395. 실시예 394에 있어서, 은 종자 층을 형성하는 단계는 규조류 피각 부분의 표면에 은 나노구조체를 형성하는 단계를 포함하는, 방법.
396. 실시예 380 내지 395 중 어느 하나에 있어서, 규조류 피각 부분은 깨진 규조류 피각 부분을 포함하는, 방법.
397. 실시예 380 내지 395 중 어느 하나에 있어서, 규조류 피각 부분은 깨지지 않은 규조류 피각 부분을 포함하는, 방법.
398. 실시예 380 내지 397 중 어느 하나에 있어서, 규조류 피각 부분은 규조류 피각 부분 분리 공정을 통해 얻어지는 것을 특징으로 하는, 방법.
399. 실시예 398에 있어서, 공정은 다수의 규조류 피각 부분의 응집을 감소시키기 위해 계면활성제를 이용하는 단계 및 원판형 스택 원심분리기를 이용하는 단계 중 적어도 하나를 포함하는, 방법.
400. 자외선 민감성 성분과 다수의 구멍을 포함하는 표면인 다수의 규조류 피각 부분의 표면에 은 나노구조체를 갖는 다수의 규조류 피각 부분을 혼합하는 단계를 포함하는, 은 잉크의 제조방법.
401. 실시예 400에 있어서, 다수의 규조류 피각 부분의 표면에 은 종자 층을 형성하는 단계를 더 포함하는, 방법.
402. 실시예 400 또는 401에 있어서, 종자 층 위에 은 나노구조체를 형성하는 단계를 더 포함하는, 방법.
403. 실시예 400 내지 402 중 어느 하나에 있어서, 다수의 규조류 피각 부분은 다수의 깨진 규조류 피각 부분을 포함하는, 방법.
404. 실시예 400 내지 403 중 어느 하나에 있어서, 다수의 규조류 피각 부분은 다수의 규조류 피각 박편을 포함하는, 방법.
405. 실시예 400 내지 404 중 어느 하나에 있어서, 은 잉크는 경화 후 약 5 마이크론 내지 약 15 마이크론의 두께를 갖는 층에서 증착할 수 있는 것을 특징으로 하는, 방법.
406. 실시예 400 내지 405 중 어느 하나에 있어서, 적어도 하나의 다수의 구멍은 약 250 나노미터 내지 약 350 나노미터의 직경을 포함하는, 방법.
407. 실시예 400 내지 406 중 어느 하나에 있어서, 은 나노구조체는 약 10 나노미터 내지 약 500 나노미터의 두께를 포함하는, 방법.
408. 실시예 400 내지 407 중 어느 하나에 있어서, 은 잉크는 약 50 중량% 내지 약 80 중량%의 범위 내의 규조류 피각의 양을 포함하는, 방법.
409. 실시예 401 내지 408 중 어느 하나에 있어서, 은 종자 층의 형성 단계는 다수의 은 종자 도금한 구멍을 형성하기 위하여 다수의 구멍 내의 표면에 은 종자 층을 형성하는 단계를 포함하는, 방법.
410. 실시예 401 내지 409 중 어느 하나에 있어서, 은 종자 층의 형성 단계는 다수의 규조류 피각 부분의 실질적으로 모든 표면에 은 종자 층을 형성하는 단계를 포함하는, 방법.
411. 실시예 402 내지 410 중 어느 하나에 있어서, 은 나노구조체의 형성 단계는 다수의 은 나노구조체 도금한 구멍을 형성하기 위하여 다수의 구멍 내의 표면에 은 나노구조체를 형성하는 단계를 포함하는, 방법.
412. 실시예 402 내지 411 중 어느 하나에 있어서, 은 나노구조체의 형성 단계는 다수의 규조류 피각 부분의 실질적으로 모든 표면에 은 나노구조체를 형성하는 단계를 포함하는, 방법.
413. 실시예 400 내지 412 중 어느 하나에 있어서, 자외선 민감성 성분은 다수의 구멍의 크기보다 짧은 파장을 갖는 광학 방사선에 민감한 것을 특징으로 하는, 방법.
414. 실시예 411 내지 413 중 어느 하나에 있어서, 자외선 민감성 성분은 적어도 하나의 다수의 은 종자 도금한 구멍 및 다수의 은 나노구조체 도금한 구멍의 크기보다 짧은 파장을 갖는 광학 방사선에 민감한 것을 특징으로 하는, 방법.
415. 실시예 400 내지 414 중 어느 하나에 있어서, 다수의 규조류 피각 부분과 자외선 민감성 성분의 혼합 단계는 다수의 규조류 피각 부분과 광개시 상승제의 혼합 단계를 포함하는, 방법.
416. 실시예 415에 있어서, 광개시 상승제는 적어도 하나의 에톡실화된 헥산디올 아크릴레이트, 프로폭실화된 헥산디올 아크릴레이트, 에톡실화된 트리메틸프로판 트리아크릴레이트, 트리알릴 시아누레이트 및 아크릴화된 아민을 포함하는, 방법.
417. 실시예 400 내지 416 중 어느 하나에 있어서, 다수의 규조류 피각 부분과 자외선 민감성 성분의 혼합 단계는 다수의 규조류 피각 부분과 광개시제의 혼합 단계를 포함하는, 방법.
418. 실시예 417에 있어서, 광개시제는 적어도 하나의 2-메틸-l-(4-메틸티오)페닐-2-모폴리닐-l-프로판온 및 이소프로필 티옥소탄온을 포함하는, 방법.
419. 실시예 400 내지 418 중 어느 하나에 있어서, 다수의 규조류 피각 부분과 자외선 민감성 성분의 혼합 단계는 다수의 규조류 피각 부분과 극성 비닐 단량체의 혼합 단계를 포함하는, 방법.
420. 실시예 419에 있어서, 극성 비닐 단량체는 적어도 하나의 n-비닐-피롤리돈 및 n-비닐카프로락탐을 포함하는, 방법.
421. 실시예 400 내지 420 중 어느 하나에 있어서, 다수의 규조류 피각 부분과 유동개질제를 혼합하는 단계를 더 포함하는, 방법.
422. 실시예 400 내지 421 중 어느 하나에 있어서, 다수의 규조류 피각 부분과 가교제를 혼합하는 단계를 더 포함하는, 방법.
*423. 실시예 400 내지 422 중 어느 하나에 있어서, 다수의 규조류 피각 부분과 흐름 및 수준제를 혼합하는 단계를 더 포함하는, 방법.
424. 실시예 400 내지 423 중 어느 하나에 있어서, 다수의 규조류 피각 부분과 적어도 하나의 접착 촉진제, 습윤제, 및 점도 감소제를 혼합하는 단계를 더 포함하는, 방법.
425. 실시예 400 내지 424 중 어느 하나에 있어서, 은 나노구조체는 적어도 하나의 코팅, 나노와이어, 나노플레이트, 밀집 어레이의 나노입자, 나노벨트, 및 나노디스크를 포함하는, 방법.
426. 실시예 401 내지 425 중 어느 하나에 있어서, 은 종자 층의 형성 단계는 제 1 은 기여 성분 및 다수의 규조류 피각 부분에 고리형 가열 방법을 적용하는 단계를 포함하는, 방법.
427. 실시예 401 내지 426 중 어느 하나에 있어서, 은 종자 층의 형성 단계는 규조류 피각 부분과 종자 층 용액을 혼합하는 단계를 포함하는, 방법.
428. 실시예 427에 있어서, 종자 층 용액은 제 1 은 기여 성분 및 종자 층 환원제를 포함하는, 방법.
429. 실시예 402 내지 428 중 어느 하나에 있어서, 은 나노구조체의 형성 단계는 규조류 피각 부분과 나노구조체 형성 환원제를 혼합하는 단계를 포함하는, 방법.
430. 실시예 429에 있어서, 은 나노구조체의 형성 단계는 규조류 피각 부분과 나노구조체 형성 환원제를 혼합한 후 규조류 피각 부분을 가열하는 단계를 더 포함하는, 방법.
431. 실시예 402 내지 430 중 어느 하나에 있어서, 은 나노구조체의 형성 단계는 나노구조체 형성 용매 및 제 2 은 기여 성분을 포함하는 적정 용액으로 규조류 피각 부분을 적정하는 단계를 더 포함하는, 방법.
432. 실시예 400 내지 431 중 어느 하나에 있어서, 다수의 규조류 피각 부분은 규조류 피각 부분 분리 공정을 통해 얻어지는 것을 특징으로 하는, 방법.
433. 실시예 432에 있어서, 공정은 다수의 규조류 피각 부분의 응집을 감소시키기 위해 계면활성제를 이용하는 단계 및 원판형 스택 원심분리기를 이용하는 단계 중 적어도 하나를 포함하는, 방법.
434. 자외선 민감성 성분; 및
다수의 구멍을 포함하는 표면인 다수의 규조류 피각 부분의 표면에 은 나노구조체를 갖는 다수의 규조류 피각 부분을 포함하는, 전도성 은 잉크.
435. 실시예 434에 있어서, 다수의 규조류 피각 부분은 다수의 깨진 규조류 피각 부분을 포함하는, 전도성 은 잉크.
436. 실시예 434 또는 435에 있어서, 다수의 규조류 피각 부분은 다수의 규조류 피각 박편을 포함하는, 전도성 은 잉크.
437. 실시예 434 내지 436 중 어느 하나에 있어서, 은 잉크는 경화 후 약 5 마이크론 내지 약 15 마이크론의 두께를 갖는 층에서 증착할 수 있는 것을 특징으로 하는, 전도성 은 잉크.
438. 실시예 434 내지 437 중 어느 하나에 있어서, 적어도 하나의 다수의 구멍은 약 250 나노미터 내지 약 350 나노미터의 직경을 포함하는, 전도성 은 잉크.
439. 실시예 434 내지 438 중 어느 하나에 있어서, 은 나노구조체는 약 10 나노미터 내지 약 500 나노미터의 두께를 포함하는, 전도성 은 잉크.
440. 실시예 434 내지 439 중 어느 하나에 있어서, 은 잉크는 약 50 중량% 내지 약 80 중량%의 범위 내의 규조류 피각의 양을 포함하는, 전도성 은 잉크.
441. 실시예 434 내지 440 중 어느 하나에 있어서, 적어도 하나의 다수의 구멍은 은 나노구조체를 갖는 표면을 포함하는, 전도성 은 잉크.
442. 실시예 434 내지 441 중 어느 하나에 있어서, 적어도 하나의 다수의 구멍은 은 종자 층을 갖는 표면을 포함하는, 전도성 은 잉크.
443. 실시예 434 내지 442 중 어느 하나에 있어서, 다수의 규조류 피각 부분의 실질적으로 모든 표면은 은 나노구조체를 포함하는, 전도성 은 잉크.
444. 실시예 434 내지 443 중 어느 하나에 있어서, 자외선 민감성 성분은 다수의 구멍의 크기보다 짧은 파장을 갖는 광학 방사선에 민감한 것을 특징으로 하는, 전도성 은 잉크.
445. 실시예 434 내지 444 중 어느 하나에 있어서, 전도성 은 잉크는 자외선 조사에 의해 경화할 수 있는 것을 특징으로 하는, 전도성 은 잉크.
446. 실시예 445에 있어서, 전도성 은 잉크는 경화 후 약 5 마이크론 내지 약 15 마이크론의 두께를 갖는 층에서 증착될 때 경화할 수 있는 것을 특징으로 하는, 전도성 은 잉크.
447. 실시예 445 또는 446에 있어서, 다수의 구멍은 자외선 조사가 다수의 규조류 피각 부분을 통과하도록 배열된 크기를 갖는 것을 특징으로 하는, 전도성 은 잉크.
448. 실시예 434 내지 447 중 어느 하나에 있어서, 전도성 은 잉크는 열경화할 수 있는 것을 특징으로 하는, 전도성 은 잉크.
449. 실시예 434 내지 448 중 어느 하나에 있어서, 자외선 민감성 성분은 광개시 상승제를 포함하는, 전도성 은 잉크.
450. 실시예 449에 있어서, 광개시 상승제는 적어도 하나의 에톡실화된 헥산디올 아크릴레이트, 프로폭실화된 헥산디올 아크릴레이트, 에톡실화된 트리메틸프로판 트리아크릴레이트, 트리알릴 시아누레이트 및 아크릴화된 아민을 포함하는, 전도성 은 잉크.
451. 실시예 434 내지 450 중 어느 하나에 있어서, 자외선 민감성 성분은 광개시제를 포함하는, 전도성 은 잉크.
452. 실시예 451에 있어서, 광개시제는 적어도 하나의 2-메틸-l-(4-메틸티오)페닐-2-모폴리닐-l-프로판온 및 이소프로필 티옥소탄온을 포함하는, 전도성 은 잉크.
453. 실시예 434 내지 452 중 어느 하나에 있어서, 자외선 민감성 성분은 극성 비닐 단량체를 포함하는, 전도성 은 잉크.
454. 실시예 453에 있어서, 극성 비닐 단량체는 적어도 하나의 n-비닐-피롤리돈 및 n-비닐카프로락탐을 포함하는, 전도성 은 잉크.
455. 실시예 434 내지 454 중 어느 하나에 있어서, 적어도 하나의 유동개질제, 가교제, 흐름 및 수준제, 접착 촉진제, 습윤제, 및 점도 감소제를 더 포함하는, 전도성 은 잉크.
456. 실시예 434 내지 455 중 어느 하나에 있어서, 은 나노구조체는 적어도 하나의 코팅, 나노와이어, 나노플레이트, 밀집 어레이의 나노입자, 나노벨트, 및 나노디스크를 포함하는, 전도성 은 잉크.
457. 자외선 민감성 성분과 다수의 구멍을 포함하는 표면인 다수의 규조류 피각 부분의 표면에 은 나노구조체를 갖는 다수의 규조류 피각 부분을 포함하는 혼합물을 경화시키는 단계를 포함하는, 은 필름의 제조방법.
458. 실시예 457에 있어서, 다수의 규조류 피각 부분의 표면에 은 종자 층을 형성하는 단계를 더 포함하는, 방법.
459. 실시예 457 또는 458에 있어서, 종자 층 위에 은 나노구조체를 형성하는 단계를 더 포함하는, 방법.
460. 실시예 457 내지 459 중 어느 하나에 있어서, 은 잉크를 형성하기 위해 다수의 규조류 피각 부분과 자외선 민감성 성분을 혼합하는 단계를 더 포함하는, 방법.
461. 실시예 457 내지 460 중 어느 하나에 있어서, 다수의 규조류 피각 부분은 다수의 깨진 규조류 피각 부분을 포함하는, 방법.
462. 실시예 457 내지 461 중 어느 하나에 있어서, 다수의 규조류 피각 부분은 다수의 규조류 피각 박편을 포함하는, 방법.
463. 실시예 460 내지 462 중 어느 하나에 있어서, 은 잉크는 경화 후 약 5 마이크론 내지 약 15 마이크론의 두께를 갖는 층에서 증착할 수 있는 것을 특징으로 하는, 방법.
464. 실시예 457 내지 463 중 어느 하나에 있어서, 적어도 하나의 다수의 구멍은 약 250 나노미터 내지 약 350 나노미터의 직경을 포함하는, 방법.
465. 실시예 457 내지 464 중 어느 하나에 있어서, 은 나노구조체는 약 10 나노미터 내지 약 500 나노미터의 두께를 포함하는, 방법.
466. 실시예 460 내지 465 중 어느 하나에 있어서, 은 잉크는 약 50 중량% 내지 약 80 중량%의 범위 내의 규조류 피각의 양을 포함하는, 방법.
467. 실시예 458 내지 466 중 어느 하나에 있어서, 은 종자 층의 형성 방법은 다수의 은 종자 도금한 구멍을 형성하기 위하여 다수의 구멍 내의 표면에 은 종자 층을 형성하는 단계를 포함하는, 방법.
468. 실시예 458 내지 467 중 어느 하나에 있어서, 은 종자 층의 형성 단계는 다수의 규조류 피각 부분의 실질적으로 모든 표면에 은 종자 층을 형성하는 단계를 포함하는, 방법.
469. 실시예 459 내지 468 중 어느 하나에 있어서, 은 나노구조체의 형성 단계는 다수의 은 나노구조체 도금한 구멍을 형성하기 위하여 다수의 구멍 내의 표면에 은 나노구조체를 형성하는 단계를 포함하는, 방법.
470. 실시예 459 내지 469 중 어느 하나에 있어서, 은 나노구조체의 형성 단계는 다수의 규조류 피각 부분의 실질적으로 모든 표면에 은 나노구조체를 형성하는 단계를 포함하는, 방법.
471. 실시예 457 내지 470 중 어느 하나에 있어서, 혼합물의 경화 단계는 다수의 구멍의 크기보다 짧은 파장을 갖는 자외선에 혼합물을 노출시키는 단계를 포함하는, 방법.
472. 실시예 469 내지 471 중 어느 하나에 있어서, 혼합물의 경화 단계는 적어도 하나의 다수의 은 종자 도금한 구멍 및 다수의 은 나노구조체 도금한 구멍의 크기보다 짧은 파장을 갖는 자외선에 혼합물을 노출시키는 단계를 포함하는, 방법.
473. 실시예 457 내지 472 중 어느 하나에 있어서, 혼합물의 경화 단계는 혼합물을 열경화시키는 단계를 포함하는, 방법.
474. 실시예 457 내지 473 중 어느 하나에 있어서, 자외선 민감성 성분은 다수의 구멍의 크기보다 짧은 파장을 갖는 광학 방사선에 민감한 것을 특징으로 하는, 방법.
475. 실시예 469 내지 474 중 어느 하나에 있어서, 자외선 민감성 성분은 적어도 하나의 다수의 은 종자 도금한 구멍 및 다수의 은 나노구조체 도금한 구멍의 크기보다 짧은 파장을 갖는 광학 방사선에 민감한 것을 특징으로 하는, 방법.
476. 실시예 460 내지 475 중 어느 하나에 있어서, 다수의 규조류 피각 부분과 자외선 민감성 성분의 혼합 단계는 다수의 규조류 피각 부분과 광개시 상승제의 혼합 단계를 포함하는, 방법.
477. 실시예 476에 있어서, 광개시 상승제는 적어도 하나의 에톡실화된 헥산디올 아크릴레이트, 프로폭실화된 헥산디올 아크릴레이트, 에톡실화된 트리메틸프로판 트리아크릴레이트, 트리알릴 시아누레이트 및 아크릴화된 아민을 포함하는, 방법.
478. 실시예 460 내지 477 중 어느 하나에 있어서, 다수의 규조류 피각 부분과 자외선 민감성 성분의 혼합 단계는 다수의 규조류 피각 부분과 광개시제의 혼합 단계를 포함하는, 방법.
479. 실시예 478에 있어서, 광개시제는 적어도 하나의 2-메틸-l-(4-메틸티오)페닐-2-모폴리닐-l-프로판온 및 이소프로필 티옥소탄온을 포함하는, 방법.
480. 실시예 460 내지 479 중 어느 하나에 있어서, 다수의 규조류 피각 부분과 자외선 민감성 성분의 혼합 단계는 다수의 규조류 피각 부분과 극성 비닐 단량체의 혼합 단계를 포함하는, 방법.
481. 실시예 480에 있어서, 극성 비닐 단량체는 적어도 하나의 n-비닐-피롤리돈 및 n-비닐카프로락탐을 포함하는, 방법.
482. 실시예 457 내지 481 중 어느 하나에 있어서, 다수의 규조류 피각 부분과 유동개질제를 혼합하는 단계를 더 포함하는, 방법.
483. 실시예 457 내지 482 중 어느 하나에 있어서, 다수의 규조류 피각 부분과 가교제를 혼합하는 단계를 더 포함하는, 방법.
*484. 실시예 457 내지 483 중 어느 하나에 있어서, 다수의 규조류 피각 부분과 흐름 및 수준제를 혼합하는 단계를 더 포함하는, 방법.
485. 실시예 457 내지 484 중 어느 하나에 있어서, 다수의 규조류 피각 부분과 적어도 하나의 접착 촉진제, 습윤제, 및 점도 감소제를 혼합하는 단계를 더 포함하는, 방법.
486. 실시예 457 내지 485 중 어느 하나에 있어서, 은 나노구조체는 적어도 하나의 코팅, 나노와이어, 나노플레이트, 밀집 어레이의 나노입자, 나노벨트, 및 나노디스크를 포함하는, 방법.
487. 실시예 458 내지 486 중 어느 하나에 있어서, 은 종자 층의 형성 단계는 제 1 은 기여 성분 및 다수의 규조류 피각 부분에 고리형 가열 방법을 적용하는 단계를 포함하는, 방법.
488. 실시예 458 내지 487 중 어느 하나에 있어서, 은 종자 층의 형성 단계는 규조류 피각 부분과 종자 층 용액을 혼합하는 단계를 포함하는, 방법.
489. 실시예 488에 있어서, 종자 층 용액은 제 1 은 기여 성분 및 종자 층 환원제를 포함하는, 방법.
490. 실시예 459 내지 489 중 어느 하나에 있어서, 은 나노구조체의 형성 단계는 규조류 피각 부분과 나노구조체 형성 환원제를 혼합하는 단계를 포함하는, 방법.
491. 실시예 490에 있어서, 은 나노구조체의 형성 단계는 규조류 피각 부분과 나노구조체 형성 환원제를 혼합한 후 규조류 피각 부분을 가열하는 단계를 더 포함하는, 방법.
492. 실시예 459 내지 491 중 어느 하나에 있어서, 은 나노구조체의 형성 단계는 나노구조체 형성 용매 및 제 2 은 기여 성분을 포함하는 적정 용액으로 규조류 피각 부분을 적정하는 단계를 더 포함하는, 방법.
493. 실시예 457 내지 492 중 어느 하나에 있어서, 다수의 규조류 피각 부분은 규조류 피각 부분 분리 공정을 통해 얻어지는 것을 특징으로 하는, 방법.
494. 실시예 493에 있어서, 공정은 다수의 규조류 피각 부분의 응집을 감소시키기 위해 계면활성제를 이용하는 단계 및 원판형 스택 원심분리기를 이용하는 단계 중 적어도 하나를 포함하는, 방법.
495. 다수의 구멍을 포함하는 표면인 다수의 규조류 피각 부분의 각각의 표면에 은 나노구조체를 갖는 다수의 규조류 피각 부분을 포함하는, 전도성 은 필름.
496. 실시예 495에 있어서, 다수의 규조류 피각 부분은 다수의 깨진 규조류 피각 부분을 포함하는, 전도성 은 필름.
497. 실시예 495 또는 496에 있어서, 다수의 규조류 피각 부분은 다수의 규조류 피각 박편을 포함하는, 전도성 은 필름.
498. 실시예 495 내지 497 중 어느 하나에 있어서, 적어도 하나의 다수의 구멍은 약 250 나노미터 내지 약 350 나노미터의 직경을 포함하는, 전도성 은 필름.
499. 실시예 495 내지 498 중 어느 하나에 있어서, 은 나노구조체는 약 10 나노미터 내지 약 500 나노미터의 두께를 포함하는, 전도성 은 필름.
500. 실시예 495 내지 499 중 어느 하나에 있어서, 적어도 하나의 다수의 구멍은 은 나노구조체를 갖는 표면을 포함하는, 전도성 은 필름.
501. 실시예 495 내지 500 중 어느 하나에 있어서, 적어도 하나의 다수의 구멍은 은 종자 층을 갖는 표면을 포함하는, 전도성 은 필름.
502. 실시예 495 내지 501 중 어느 하나에 있어서, 다수의 규조류 피각 부분의 실질적으로 모든 표면은 은 나노구조체를 포함하는, 전도성 은 필름.
503. 실시예 495 내지 502 중 어느 하나에 있어서, 은 나노구조체는 적어도 하나의 코팅, 나노와이어, 나노플레이트, 밀집 어레이의 나노입자, 나노벨트, 및 나노디스크를 포함하는, 전도성 은 필름.
504. 실시예 495 내지 503 중 어느 하나에 있어서, 바인더 수지를 더 포함하는, 전도성 은 필름.
505. 제 1 전극;
제 2 전극; 및
제 1 전극과 제 2 전극 사이의 분리기를 포함하는 인쇄 에너지 저장 장치로서, 적어도 하나의 제 1 전극 및 제 2 전극은 망간-함유 나노구조체를 함유하는 다수의 피각을 포함하는, 인쇄 에너지 저장 장치.
506. 실시예 505에 있어서, 피각은 실질적으로 균일한 특성을 가지며, 실질적으로 균일한 특성은 적어도 하나의 피각 모양, 피각 크기, 피각 기공, 피각 기계적 강도, 피각 물질, 및 피각의 깨짐 정도를 포함하는 것을 특징으로 하는, 장치.
507. 실시예 505 또는 506에 있어서, 망간-함유 나노구조체는 망간의 산화물을 포함하는, 장치.
508. 실시예 507에 있어서, 망간의 산화물은 산화 망간(II,III)을 포함하는, 장치.
509. 실시예 507 또는 508에 있어서, 망간의 산화물은 망간 옥시하이드록사이드 (manganese oxyhydroxide)을 포함하는, 장치.
510. 실시예 505-509 중 어느 하나에 있어서, 적어도 하나의 제 1 전극 및 제 2 전극은 산화아연 나노구조체를 포함하는 피각을 포함하는, 장치.
511. 실시예 510에 있어서, 산화아연 나노구조체는 적어도 하나의 나노와이어 및 나노플레이트를 포함하는, 장치.
512. 실시예 505-511 중 어느 하나에 있어서, 망간-함유 나노구조체는 피각의 실질적으로 모든 표면을 덮는 것을 특징으로 하는, 장치.
513. 망간-함유 나노구조체를 함유하는 피각을 포함하는 막인, 에너지 저장 장치의 막.
514. 실시예 513에 있어서, 망간-함유 나노구조체는 망간의 산화물을 포함하는, 막.
515. 실시예 514에 있어서, 망간의 산화물은 산화 망간(II,III)을 포함하는, 막.
516. 실시예 514 또는 515에 있어서, 망간의 산화물은 망간 옥시하이드록사이드을 포함하는, 막.
517. 실시예 513-516 중 어느 하나에 있어서, 적어도 일부의 망간-함유 나노구조체는 나노섬유를 포함하는, 막.
518. 실시예 513-517 중 어느 하나에 있어서, 적어도 일부의 망간-함유 나노구조체는 사면체 모양을 갖는 것을 특징으로 하는, 막.
519. 실시예 513-518 중 어느 하나에 있어서, 에너지 저장 장치는 아연-망간 배터리를 포함하는, 막.
520. 용액; 및
용액에 분산된 망간-함유 나노구조체를 포함하는 피각을 포함하는,
인쇄 필름용 잉크.
521. 실시예 520에 있어서, 망간-함유 나노구조체는 망간의 산화물을 포함하는, 잉크.
522. 실시예 520 또는 521에 있어서, 망간-함유 나노구조체는 적어도 하나의 MnO2, MnO, Mn2O3, MnOOH, 및 Mn3O4를 포함하는, 잉크.
523. 실시예 520-522 중 어느 하나에 있어서, 적어도 일부의 망간-함유 나노구조체는 나노섬유를 포함하는, 잉크.
524. 실시예 520-523 중 어느 하나에 있어서, 적어도 일부의 망간-함유 나노구조체는 사면체 모양을 갖는 것을 특징으로 하는, 잉크.
525. 산소화된 아세트산 망간 용액에 피각을 가하는 단계; 및
피각과 산소화된 아세트산 망간 용액을 가열하는 단계를 포함하는,
규조류 피각 부분에 망간-함유 나노구조체의 형성 방법.
526. 실시예 525에 있어서, 산소화된 아세트산 망간 용액을 형성하는 단계를 더 포함하고, 산소화된 아세트산 망간 용액을 형성하는 단계는 산소화된 물에 아세트산 망간(II)을 용해시키는 단계를 포함하는 것을 특징으로 하는, 방법.
527. 실시예 526에 있어서, 산소화된 아세트산 망간 용액 내 아세트산 망간(II)의 농도는 약 0.05 M 및 약 1.2 M 사이인 것을 특징으로 하는, 방법.
528. 실시예 525-527 중 어느 하나에 있어서, 산소화된 아세트산 망간 용액을 형성하는 단계를 더 포함하고, 산소화된 아세트산 망간 용액을 형성하는 단계는 산소화된 물에 망간 염을 용해시키는 단계를 포함하는 것을 특징으로 하는, 방법.
529. 실시예 528에 있어서, 산소화된 아세트산 망간 용액에 산화제를 가하는 단계를 더 포함하는, 방법.
530. 실시예 529에 있어서, 산화제는 과산화수소를 포함하는, 방법.
531. 실시예 526-530 중 어느 하나에 있어서, 산소화된 물을 형성하는 단계를 더 포함하고, 산소화된 물을 형성하는 단계는 물에 산소 기체를 버블링하는 단계를 포함하는 것을 특징으로 하는, 방법.
532. 실시예 531에 있어서, 물에 산소 기체를 버블링하는 단계는 약 10분 내지 약 60분 동안 수행하는 것을 특징으로 하는, 방법.
533. 실시예 525-532 중 어느 하나에 있어서, 산소화된 아세트산 망간 용액 내 피각의 중량%는 약 0.01 wt% 및 약 1 wt% 사이인 것을 특징으로 하는, 방법.
534. 실시예 525-533 중 어느 하나에 있어서, 피각과 산소화된 아세트산 망간 용액을 열로 처리하는 단계를 더 포함하는, 방법.
535. 실시예 534에 있어서, 피각과 산소화된 아세트산 망간 용액을 열로 처리하는 단계는 열 기법을 이용하는 단계를 포함하는, 방법.
536. 실시예 535에 있어서, 열 기법을 이용하는 단계는 약 15시간 및 약 40시간 사이 동안의 온도에서 피각과 산소화된 아세트산 망간 용액을 유지시키는 단계를 포함하는, 방법.
537. 실시예 536에 있어서, 온도는 약 50℃ 및 약 90℃ 사이인 것을 특징으로 하는, 방법.
538. 실시예 535에 있어서, 열 기법을 이용하는 단계는 약 50℃ 및 약 90℃ 사이의 온도에서 피각과 산소화된 아세트산 망간 용액을 유지시키는 단계를 포함하는, 방법.
539. 실시예 534-538 중 어느 하나에 있어서, 피각과 산소화된 아세트산 망간 용액을 열로 처리하는 단계는 마이크로파 기법을 이용하는 단계를 포함하는, 방법.
540. 실시예 539에 있어서, 열 기법을 이용하는 단계는 약 10분 및 약 120분 사이 동안의 온도에서 피각과 산소화된 아세트산 망간 용액을 유지시키는 단계를 포함하는, 방법.
541. 실시예 540에 있어서, 온도는 약 50℃ 및 약 150℃ 사이인 것을 특징으로 하는, 방법.
542. 실시예 539에 있어서, 열 기법을 이용하는 단계는 약 50℃ 및 약 150℃ 사이의 온도에서 피각과 산소화된 아세트산 망간 용액을 유지시키는 단계를 포함하는, 방법.
543. 실시예 525-542 중 어느 하나에 있어서, 탄소-함유 나노구조체는 피각의 일부 표면을 덮는 것을 특징으로 하는, 방법.
544. 실시예 543에 있어서, 탄소-함유 나노구조체는 탄소 나노튜브를 포함하는, 방법.
545. 실시예 543 또는 544에 있어서, 탄소-함유 나노구조체는 탄소 나노이온을 포함하는, 방법.
546. 실시예 543-545 중 어느 하나에 있어서, 탄소-함유 나노구조체는 환원된 산화 그래핀을 포함하는, 방법.
547. 실시예 505-512 중 어느 하나에 있어서, 망간-함유 나노구조체는 피각의 일부 표면을 덮으며, 탄소-함유 나노구조체는 피각의 다른 표면을 덮고, 망간-함유 나노구조체는 탄소-함유 나노구조체 사이에 배치되는 것을 특징으로 하는, 장치.
548. 실시예 547에 있어서, 탄소-함유 나노구조체는 탄소 나노튜브를 포함하는, 장치.
549. 실시예 547 또는 548에 있어서, 탄소-함유 나노구조체는 탄소 나노이온을 포함하는, 장치.
550. 실시예 547-549 중 어느 하나에 있어서, 탄소-함유 나노구조체는 환원된 산화 그래핀을 포함하는, 장치.
551. 실시예 513-519 중 어느 하나에 있어서, 망간-함유 나노구조체는 피각의 일부 표면을 덮으며, 탄소-함유 나노구조체는 피각의 다른 표면을 덮고, 망간-함유 나노구조체는 탄소-함유 나노구조체 사이에 배치되는 것을 특징으로 하는, 막.
552. 실시예 551에 있어서, 탄소-함유 나노구조체는 탄소 나노튜브를 포함하는, 막.
553. 실시예 551 또는 552에 있어서, 탄소-함유 나노구조체는 탄소 나노이온을 포함하는, 막.
554. 실시예 551-554 중 어느 하나에 있어서, 탄소-함유 나노구조체는 환원된 산화 그래핀을 포함하는, 막.
555. 실시예 520-524 중 어느 하나에 있어서, 망간-함유 나노구조체는 피각의 일부 표면을 덮으며, 탄소-함유 나노구조체는 피각의 다른 표면을 덮고, 망간-함유 나노구조체는 탄소-함유 나노구조체 사이에 배치되는 것을 특징으로 하는, 잉크.
556. 실시예 555에 있어서, 탄소-함유 나노구조체는 탄소 나노튜브를 포함하는, 잉크.
557. 실시예 555 또는 556에 있어서, 탄소-함유 나노구조체는 탄소 나노이온을 포함하는, 잉크.
558. 실시예 555-557 중 어느 하나에 있어서, 탄소-함유 나노구조체는 환원된 산화 그래핀을 포함하는, 잉크.
비록 본 발명이 특정 실시예의 문맥에 개시되어 있을지라도, 본 발명이 다른 대안적인 실시예에 대해 특별히 개시된 실시예 및/또는 발명의 용도 및 이의 명백한 변형 및 등가물 너머까지 확장되는 것으로 당업자에 의해 이해될 수 있다. 또한, 발명의 실시예의 몇몇 변형을 나타내고 상세히 기재되는 경우, 다른 변형은 본 발명의 범위 내에 있으며, 이 명세서를 기준으로 당업자에게 쉽게 명백할 것이다. 또한, 실시예의 특별한 특징 및 측면의 다양한 조합 또는 서브-조합이 만들어질 수 있고, 여전히 본 발명의 범위 내에 있을 수 있다는 것을 고려한다. 개시된 발명의 실시예의 다양한 형태를 형성하기 위하여, 개시된 실시예의 특징 및 측면은 서로 조합되거나 또는 대체될 수 있다는 것을 이해하여야 한다. 본 명세서에 개시된 임의의 방법은 열거된 순으로 수행될 필요가 없다. 따라서, 본 명세서에 개시된 발명의 범위는 상기에 기재된 특정 실시예에 의해 한정되지 않아야 한다는 것을 의미한다.
본 명세서에 개시된 방법은 종사자에 의해 선택된 특정 조치를 포함한다; 그러나, 이들은 명백하게 또는 함축적으로 이러한 조치의 임의의 제 3자의 지시도 포함할 수 있다. 예를 들어, "산소화된 아세트산 망간 용액에 피각을 가하는 단계"와 같은 조치는 "산소화된 아세트산 망간 용액에 피각을 가하는 것을 지시하는 단계"를 포함한다.
또한, 본 명세서에 개시된 범위는 임의의 모든 중첩, 부분 범위, 및 이의 조합을 포함한다. "까지", "적어도", "이상", "미만", "사이" 등과 같은 언어는 열거된 수를 포함한다. "약" 또는 "대략"과 같은 용어에 의해 선행된 수는 열거된 수를 포함한다. 예를 들어, "약 3 mm"는 "3 mm"를 포함한다.
본 명세서에 제공된 명칭은, 만약에 있다면, 단지 편의를 위해서이고, 본 명세서에 개시된 장치 및 방법의 범위 또는 의미에 반드시 영향을 미치지 않는다.

Claims (19)

  1. 인쇄 장치(printed device)용 막(membrane)으로서,
    망간-함유 나노구조체를 갖는 다수의 피각(frustule)을 포함하는, 막.
  2. 제 1 항에 있어서,
    상기 망간-함유 나노구조체는 망간의 산화물을 포함하는, 막.
  3. 제 2 항에 있어서,
    상기 망간의 산화물은 산화 망간(II,III) 및 망간 옥시하이드록사이드를 포함하는, 막.
  4. 제 1 항에 있어서,
    상기 망간-함유 나노구조체의 적어도 일부는 나노-섬유(nano-fiber)를 포함하는, 막.
  5. 제 1 항에 있어서,
    상기 망간-함유 나노구조체의 적어도 일부는 사면체 모양(tetrahedral shape)을 가지는, 막.
  6. 제 1 항에 있어서,
    상기 망간-함유 나노구조체는 상기 다수의 피각의 외부 표면 및 내부 표면 둘 다 위에 있는, 막.
  7. 제 1 항 내지 제 6 항 중의 어느 한 항에 있어서,
    상기 망간-함유 나노구조체는 상기 피각의 일부 표면을 덮으며 탄소-함유 나노구조체가 상기 피각의 다른 표면을 덮고, 상기 망간-함유 나노구조체는 상기 탄소-함유 나노구조체 사이에 배치되어 있는, 막.
  8. 제 7 항에 있어서,
    상기 탄소-함유 나노구조체는 탄소 나노튜브를 포함하는, 막.
  9. 제 7 항에 있어서,
    상기 탄소-함유 나노구조체는 단일벽 탄소 나노튜브(single-walled carbon nanotube)를 포함하는, 막.
  10. 제 7 항에 있어서,
    상기 탄소-함유 나노구조체는 탄소 나노-이온(carbon nano-ion)을 포함하는, 막.
  11. 제 7 항에 있어서,
    상기 탄소-함유 나노구조체는 환원된 산화 그래핀(reduced graphene oxide)을 포함하는, 막.
  12. 제 1 항에 있어서,
    상기 망간-함유 나노구조체는 상기 다수의 피각의 모든 표면을 덮는, 막.
  13. 제 1 항에 있어서,
    상기 망간-함유 나노구조체는 비-전도성인, 막.
  14. 제 1 항에 있어서,
    상기 인쇄 장치는 에너지 저장 장치를 포함하는, 막.
  15. 제 14 항에 있어서,
    상기 인쇄 장치는 제 1 전극, 제 2 전극 및 분리기(separator)를 포함하고, 상기 제 1 전극, 제 2 전극 및 분리기 중의 하나 이상은 막을 포함하는, 막.
  16. 제 15 항에 있어서,
    상기 인쇄 장치는 아연-망간 배터리(zinc-manganese battery)를 포함하는, 막.
  17. 제 15 항에 있어서,
    상기 분리기는 막을 포함하는, 막.
  18. 제 15 항에 있어서,
    상기 제 1 전극 및 제 2 전극 중의 하나 또는 둘 다가 막을 포함하는, 막.
  19. 제 1 항에 있어서,
    상기 피각은 실질적으로 균일한 특성을 가지되, 상기 실질적으로 균일한 특성은 피각 모양(frustule shape), 피각 크기(frustule dimension), 피각 기공(frustule porosity), 피각 기계적 강도(frustule mechanical strength), 피각 물질, 및 피각의 깨짐(brokenness) 정도 중의 하나 이상을 포함하는, 막.
KR1020220068848A 2014-01-22 2022-06-07 규조토 에너지 저장 장치 KR102517380B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020230041377A KR20230047071A (ko) 2014-01-22 2023-03-29 규조토 에너지 저장 장치

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US14/161,658 2014-01-22
US14/161,658 US9083010B2 (en) 2012-07-18 2014-01-22 Diatomaceous energy storage devices
KR1020150010830A KR102407838B1 (ko) 2014-01-22 2015-01-22 규조토 에너지 저장 장치

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020150010830A Division KR102407838B1 (ko) 2014-01-22 2015-01-22 규조토 에너지 저장 장치

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020230041377A Division KR20230047071A (ko) 2014-01-22 2023-03-29 규조토 에너지 저장 장치

Publications (2)

Publication Number Publication Date
KR20220084247A true KR20220084247A (ko) 2022-06-21
KR102517380B1 KR102517380B1 (ko) 2023-03-31

Family

ID=52358663

Family Applications (3)

Application Number Title Priority Date Filing Date
KR1020150010830A KR102407838B1 (ko) 2014-01-22 2015-01-22 규조토 에너지 저장 장치
KR1020220068848A KR102517380B1 (ko) 2014-01-22 2022-06-07 규조토 에너지 저장 장치
KR1020230041377A KR20230047071A (ko) 2014-01-22 2023-03-29 규조토 에너지 저장 장치

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020150010830A KR102407838B1 (ko) 2014-01-22 2015-01-22 규조토 에너지 저장 장치

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020230041377A KR20230047071A (ko) 2014-01-22 2023-03-29 규조토 에너지 저장 장치

Country Status (4)

Country Link
EP (2) EP2899784B1 (ko)
KR (3) KR102407838B1 (ko)
CN (2) CN104795250B (ko)
TW (1) TWI681017B (ko)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2544978A (en) * 2015-12-01 2017-06-07 Univ Antwerpen Frustule Foams
CN107195917A (zh) * 2017-06-02 2017-09-22 浙江大学台州研究院 一种在FTO玻璃上垂直生长的AuPdNWs超细纳米森林电催化剂及其制备方法
CN110415984A (zh) * 2018-04-26 2019-11-05 天津大学 一种3d打印墨水材料及其制备方法和应用
CN109888382B (zh) * 2019-04-15 2022-05-03 哈尔滨理工大学 一种黏土增强聚合物固态电解质薄膜的制备方法
CN112885611A (zh) 2019-11-29 2021-06-01 清华大学 超级电容器
CN111508716B (zh) * 2020-04-03 2021-06-18 三峡大学 Ni3Bi2S2/N-C电催化材料的制备方法
CN113234351A (zh) * 2021-05-10 2021-08-10 深圳市凌普鑫科技有限公司 一种应用于有机薄膜器件的水基有机纳米墨水及制备方法
US11807989B2 (en) * 2021-06-22 2023-11-07 Kosko Paper Co., Ltd. Method for manufacturing eco-friendly antibacterial coated paper

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140017557A1 (en) * 2012-07-16 2014-01-16 Nthdegree Technologies Worldwide Inc. Printable Composition for an Ionic Gel Separation Layer for Energy Storage Devices

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3121137B2 (ja) * 1992-09-07 2000-12-25 日本パイオニクス株式会社 不飽和炭化水素の精製方法
US6514639B2 (en) * 1998-03-20 2003-02-04 Ensci Inc Negative plate element for a lead acid battery containing efficiency improving additives
US6641908B1 (en) * 2001-05-18 2003-11-04 Ensci Inc Metal oxide coated diatomite substrates
US20070128707A1 (en) * 2005-11-10 2007-06-07 Oregon State University Method for making metal oxides
CN101185888B (zh) * 2007-12-04 2011-08-31 南京工业大学 用于诱导催化氧化工艺的催化剂及其制备方法
CN101310899B (zh) * 2008-03-18 2010-12-08 江苏工业学院 大批量制备银纳米线的方法
CN102049527A (zh) * 2009-11-10 2011-05-11 国家纳米科学中心 一种具有核壳结构的纳米晶体及其制备方法
CN102290245B (zh) * 2011-04-29 2012-11-21 深圳市惠程电气股份有限公司 一种聚酰亚胺电容电池及其制作方法
CN103178283B (zh) * 2011-12-22 2015-07-22 中国科学院大连化学物理研究所 一种氢溴储能电池结构
CN102784926B (zh) * 2012-07-16 2015-04-01 太原理工大学 一种球形纳米银颗粒的制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140017557A1 (en) * 2012-07-16 2014-01-16 Nthdegree Technologies Worldwide Inc. Printable Composition for an Ionic Gel Separation Layer for Energy Storage Devices

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Journal of Power Sources(이태릭). ELSEVIER. 2013.8.6., vol.246(제449면 내지 제456면) 1부.* *

Also Published As

Publication number Publication date
EP2899784A1 (en) 2015-07-29
KR20230047071A (ko) 2023-04-06
TW201536879A (zh) 2015-10-01
TWI681017B (zh) 2020-01-01
CN104795250A (zh) 2015-07-22
CN110085449A (zh) 2019-08-02
CN104795250B (zh) 2019-01-18
KR102517380B1 (ko) 2023-03-31
KR20150087819A (ko) 2015-07-30
KR102407838B1 (ko) 2022-06-10
EP3496192A1 (en) 2019-06-12
EP2899784B1 (en) 2018-10-31

Similar Documents

Publication Publication Date Title
US10770733B2 (en) Diatomaceous energy storage devices
KR102517380B1 (ko) 규조토 에너지 저장 장치
US9083010B2 (en) Diatomaceous energy storage devices
US11673811B2 (en) Diatomaceous energy storage devices
KR102490045B1 (ko) 규조토 에너지 저장장치
KR20200124307A (ko) 규조토 에너지 저장장치

Legal Events

Date Code Title Description
A107 Divisional application of patent
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
A107 Divisional application of patent
GRNT Written decision to grant