KR20220081067A - Recombinant yeast with enhanced ergothioneine productivity and method for producing ergothioneine using the same - Google Patents

Recombinant yeast with enhanced ergothioneine productivity and method for producing ergothioneine using the same Download PDF

Info

Publication number
KR20220081067A
KR20220081067A KR1020200170514A KR20200170514A KR20220081067A KR 20220081067 A KR20220081067 A KR 20220081067A KR 1020200170514 A KR1020200170514 A KR 1020200170514A KR 20200170514 A KR20200170514 A KR 20200170514A KR 20220081067 A KR20220081067 A KR 20220081067A
Authority
KR
South Korea
Prior art keywords
ergothioneine
egt1
recombinant yeast
gene
saccharomyces
Prior art date
Application number
KR1020200170514A
Other languages
Korean (ko)
Inventor
이미영
조희원
Original Assignee
코오롱인더스트리 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코오롱인더스트리 주식회사 filed Critical 코오롱인더스트리 주식회사
Priority to KR1020200170514A priority Critical patent/KR20220081067A/en
Publication of KR20220081067A publication Critical patent/KR20220081067A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/37Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/37Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi
    • C07K14/39Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi from yeasts
    • C07K14/395Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi from yeasts from Saccharomyces
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Abstract

본 발명은 에르고티오네인 생산능이 향상된 재조합 효모 및 이를 이용한 에르고티오네인의 생산 방법에 관한 것으로, 상기 재조합 효모는 EGT1, EGT2 및 MET17 유전자를 과발현함으로써 에르고티오네인의 생산 수율이 향상되므로, 이러한 재조합 효모를 이용하여 보다 효과적으로 고농도의 에르고티오네인을 생산할 수 있다.The present invention relates to a recombinant yeast having improved ergothioneine-producing ability and a method for producing ergothioneine using the same, wherein the recombinant yeast overexpresses EGT1, EGT2 and MET17 genes, thereby improving the production yield of ergothioneine. It is possible to more effectively produce a high concentration of ergothioneine using yeast.

Description

에르고티오네인 생산능이 향상된 재조합 효모 및 이를 이용한 에르고티오네인의 생산 방법{Recombinant yeast with enhanced ergothioneine productivity and method for producing ergothioneine using the same}Recombinant yeast with enhanced ergothioneine productivity and method for producing ergothioneine using the same}

본 발명은 에르고티오네인 생산능이 향상된 재조합 효모 및 이를 이용한 에르고티오네인의 생산 방법에 관한 것이다.The present invention relates to a recombinant yeast having improved ergothioneine-producing ability and a method for producing ergothioneine using the same.

에르고티오네인(ergothioneine)은 주로 맥각(ergot)이나 버섯에서 생산되는 천연 아미노산 유도체로서 히스티딘으로부터 생합성되는데, 동물의 혈액이나 장기에서 일부 발견되지만 체내에서 합성되지 않아 외부로부터 공급되어야만 한다. 이러한 에르고티오네인은 수용성 항산화제로 알려져 있으며, 특히 안전성 및 안정성이 우수하여 건강기능식품, 화장품, 의약품 등 다양한 제품 생산에 적용 가능하다. Ergothioneine is a natural amino acid derivative mainly produced from ergot or mushrooms, and is biosynthesized from histidine. Such ergothioneine is known as a water-soluble antioxidant, and in particular, it has excellent safety and stability, so it can be applied to the production of various products such as health functional foods, cosmetics, and pharmaceuticals.

일반적으로는 에르고티오네인을 버섯에서 추출하거나 화학 합성을 통해 생산하고 있으나, 버섯을 이용한 에르고티오네인 추출은 버섯의 생장 기간이 길고 생산량이 적기 때문에 경제성이 낮고 비효율적이며, 화학 합성을 통한 에르고티오네인 생산은 높은 제조비용이 소요된다는 문제점이 있다. 이러한 문제점을 극복하기 위하여 최근에는 에르고티오네인을 생산하는 재조합 미생물을 개발하기 위한 연구가 진행되고 있으며, 에르고티오네인 생합성에 관여하는 유전자의 발현을 조절하는 방법을 이용하여 대장균, 스트렙토마이세스, 아스퍼질러스 등에서 에르고티오네인을 생산하려는 시도가 있었다. 그러나, 이러한 재조합 미생물로부터 생산된 에르고티오네인의 양은 산업적으로 대량 생산하기에는 부족한 수준으로, 여전히 에르고티오네인을 생산하는 방법을 개발하기 위해 많은 연구가 필요한 실정이다.In general, ergothioneine is extracted from mushrooms or produced through chemical synthesis, but ergothioneine extraction using mushrooms is economical and inefficient because of the long mushroom growth period and low production, and ergothioneine through chemical synthesis. Onein production has a problem that high manufacturing cost is required. In order to overcome this problem, recently, research to develop a recombinant microorganism producing ergothioneine has been conducted, and Escherichia coli, Streptomyces, Attempts have been made to produce ergothioneine in Aspergillus et al. However, the amount of ergothioneine produced from these recombinant microorganisms is insufficient for industrial mass production, and many studies are still needed to develop a method for producing ergothioneine.

한국등록특허 제10-1704381호Korean Patent No. 10-1704381 한국등록특허 제10-1832396호Korean Patent Registration No. 10-1832396 한국등록특허 제10-2116734호Korean Patent Registration No. 10-2116734

본 발명은 에르고티오네인 생산능이 향상된 재조합 효모를 제공하는 것을 목적으로 한다.An object of the present invention is to provide a recombinant yeast having improved ergothioneine production ability.

또한, 본 발명은 상기 재조합 효모를 이용한 에르고티오네인의 생산 방법을 제공하는 것을 목적으로 한다.Another object of the present invention is to provide a method for producing ergothioneine using the recombinant yeast.

본 발명자들은 에르고티오네인의 생산능을 향상시킬 수 있는 새로운 방법을 개발하기 위해 연구한 결과, 효모에 에르고티오네인 생산과 관련된 유전자 EGT1, EGT2 및 MET17을 도입하여 과발현함으로써 에르고티오네인 생산능을 갖는 재조합 효모를 개발하고, 이러한 재조합 효모가 상기 유전자가 도입되지 않은 효모에 비하여 고농도의 에르고티오네인을 생산하는 것을 확인하여 본 발명을 완성하였다.As a result of research to develop a new method for improving the ergothioneine production ability, the present inventors introduced and overexpressed the genes EGT1, EGT2 and MET17 related to ergothioneine production in yeast. The present invention was completed by developing a recombinant yeast having

본 발명의 일 양상은 EGT1, EGT2 및 MET17 유전자를 과발현하여 에르고티오네인 생산능이 향상된 재조합 효모를 제공한다.One aspect of the present invention provides a recombinant yeast having improved ergothioneine production ability by overexpressing EGT1, EGT2 and MET17 genes.

본 발명에서 사용된 “생산능이 향상된”은 모균주에 비해 에르고티오네인의 생산성이 증가된 것을 의미한다. 상기 모균주는 변이의 대상이 되는 야생형 또는 변이 균주를 의미하며, 직접 변이의 대상이 되거나 재조합된 벡터 등으로 형질전환되는 대상을 포함한다. 본 발명에서는 모균주가 효모일 수 있으며, 이때 효모는 특별히 제한되는 것이 아니며 당업계에 공지된 효모를 사용할 수 있으나, 이에 한정되는 것은 아니다.As used in the present invention, “improved productivity” means that the productivity of ergothioneine is increased compared to the parent strain. The parent strain means a wild-type or mutated strain to be mutated, and includes a target to be directly mutated or transformed with a recombinant vector. In the present invention, the parent strain may be yeast, wherein the yeast is not particularly limited and yeast known in the art may be used, but is not limited thereto.

본 발명에서 사용된 “재조합 효모”는 모균주에 비해 에르고티오네인을 고농도로 생산할 수 있도록 변이시킨 효모를 의미한다. "Recombinant yeast" used in the present invention refers to a yeast mutated to produce ergothioneine at a higher concentration than the parent strain.

상기 재조합 효모는 사카로마이세스 세레비지애(S. cerevisiae), 사카로마이세스 바야누스(S. bayanus), 사카로마이세스 보울라디(S. boulardii), 사카로마이세스 불데리(S. bulderi), 사카로마이세스 카리오카누스(S. cariocanus), 사카로마이세스 카리오쿠스(S. cariocus), 사카로마이세스 체발리에리(S. chevalieri), 사카로마이세스 다이레넨시스(S. dairenensis), 사카로마이세스 엘립소이데우스(S. ellipsoideus), 사카로마이세스 유바야뉴스(S. eubayanus), 사카로마이세스 엑시거스(S. exiguus), 사카로마이세스 플로렌티누스(S. florentinus), 사카로마이세스 클루이베리(S. kluyveri), 사카로마이세스 마티니에(S. martiniae), 사카로마이세스 모나센시스(S. monacensis), 사카로마이세스 노르벤시스(S. norbensis), 사카로마이세스 파라독서스(S. paradoxus), 사카로마이세스 파스토리아누스(S. pastorianus), 사카로마이세스 스펜서로룸(S. spencerorum), 사카로마이세스 투리센시스(S. turicensis), 사카로마이세스 우니스포루스(S. unisporus), 사카로마이세스 우바룸(S. uvarum) 및 사카로마이세스 조나투스(S. zonatus)로 이루어진 군으로부터 선택된 1종 이상인 것일 수 있다. The recombinant yeast is Saccharomyces cerevisiae ( S. cerevisiae ), Saccharomyces bayanus ( S. bayanus ), Saccharomyces boulardii ( S. boulardii ), Saccharomyces bulldery ( S. bulderi ), Saccharomyces cariocanus ( S. cariocanus ), Saccharomyces cariocus ( S. cariocus ), Saccharomyces chevalieri ( S. chevalieri ), Saccharomyces dyrenensis ( S. dairenensis ), Saccharomyces ellipsoideus ( S. ellipsoideus ), Saccharomyces eubayanus ( S. eubayanus ), Saccharomyces exigus ( S. exiguus ), Saccharomyces florenti Nous ( S. florentinus ), Saccharomyces kluyveri ( S. kluyveri ), Saccharomyces martiniae ( S. martiniae ), Saccharomyces monacensis ( S. monacensis ), Saccharomyces norben Sis ( S. norbensis ), Saccharomyces paradoxus ( S. paradoxus ), Saccharomyces pastorianus ( S. pastorianus ), Saccharomyces spencerorum ( S. spencerorum ), Saccharomyces selected from the group consisting of S. turicensis, S. unisporus , Saccharomyces ubarum , and S. zonatus. It may be one or more types.

본 발명의 일 구체예에 따르면, 상기 재조합 효모는 사카로미세스 세레비지애인 것일 수 있다.According to one embodiment of the present invention, the recombinant yeast may be Saccharomyces cerevisiae.

본 발명의 일 실시예에 따르면, 사카로미세스 세레비지애 BY4735 균주에 뉴로스포라 크라사(Neurospora crassa)의 EGT1 및 EGT2 유전자가 도입된 벡터와 사카로미세스 세레비지애(Saccharomyces cerevisiae)의 MET17 유전자가 도입된 벡터를 이용하여 형질전환함으로써 EGT1, EGT2 및 MET17 유전자가 과발현된 재조합 효모를 제조하였다.According to an embodiment of the present invention, Saccharomyces cerevisiae BY4735 strain Neurospora crassa EGT1 and EGT2 genes introduced vector and Saccharomyces cerevisiae ) MET17 gene By transforming using a vector introduced with EGT1, EGT2 and MET17 genes overexpressed recombinant yeast was prepared.

상기 EGT1 및 EGT2 유전자는 히스티딘(histidine)으로부터 에르고티오네인을 생합성하는데 직접 작용하는 에르고티오네인 생합성 단백질 Egt-1 및 Egt-2를 각각 암호화하는 유전자들로, 사카로마이세스에는 존재하지 않는다. 도 1을 참조하여 설명하면, Egt-1는 히스티딘의 α-아미노기에서 SAM을 통해 3개의 메틸화를 촉매하여 헤르시닌(hercynine)을 형성한 후 시스테인(cysteine) 및 산소(O2)와 결합하여 에르고티오네인의 전구체인 헤르시닐시스테인 설폭사이드(hercynylcysteine sulfoxide, Cys-HER)를 형성하고, Egt-2는 Cys-HER의 황(S)에서 시스테인 잔기를 제거하는 반응을 촉매하여 최종적으로 에르고티오네인을 형성한다.The EGT1 and EGT2 genes are genes encoding ergothioneine biosynthesis proteins Egt-1 and Egt-2, respectively, which directly act in biosynthesis of ergothioneine from histidine, and are not present in Saccharomyces. Referring to FIG. 1 , Egt-1 catalyzes three methylation through SAM at the α-amino group of histidine to form hercynine, and then combines with cysteine and oxygen (O 2 ) to Forms hercynylcysteine sulfoxide (Cys-HER), a precursor of ergothioneine, and Egt-2 catalyzes the removal of a cysteine residue from the sulfur (S) of Cys-HER, finally ergothio to form four

본 발명의 일 구체예에 따르면, 상기 EGT1 및 EGT2 유전자는 에르고티오네인을 생합성하는 미생물로부터 유래된 것일 수 있다. According to one embodiment of the present invention, the EGT1 and EGT2 genes may be derived from microorganisms that biosynthesize ergothioneine.

이때, 에르고티오네인 생합성 미생물은 악티노박테리아(Actinobacteria), 시아노박테리아(Cyanobacteria), 곰팡이(fungi), 젖산균(lactic acid bacteria), 대장균, 포도상구균(Streptococcus) 등일 수 있으며, 이에 한정되는 것은 아니다.In this case, the ergothioneine biosynthetic microorganism may be Actinobacteria, Cyanobacteria, fungi, lactic acid bacteria, Escherichia coli, Streptococcus, etc., but is limited thereto not.

보다 구체적으로, 상기 에르고티오네인 생합성 미생물은 미코박테리움 스메그마티스(Mycobacterium smegmatis), 뉴로스포라 크라사(Neurospora crassa) 및 스키조사카로미세스 폼베(Schizosaccharomyces pombe)로 이루어진 군에서 선택된 1종 이상의 미생물에서 유래된 것일 수 있다.More specifically, the ergothioneine biosynthetic microorganism is Mycobacterium smegmatis ), Neurospora crassa ) and Schizosaccharomyces pombe ) At least one selected from the group consisting of It may be derived from microorganisms.

본 발명의 일 구체예에 따르면, 상기 EGT1 및 EGT2 유전자는 뉴로스포라 크라사(Neurospora crassa)에서 유래된 것일 수 있다.According to one embodiment of the present invention, the EGT1 and EGT2 genes may be derived from Neurospora crassa .

또한, 본 발명의 일 구체예에 따르면, 상기 EGT1 유전자는 서열번호 1의 염기서열로 표시되는 것일 수 있고, 상기 EGT2 유전자는 서열번호 2의 염기서열로 표시되는 것일 수 있다.Also, according to one embodiment of the present invention, the EGT1 gene may be represented by the nucleotide sequence of SEQ ID NO: 1, and the EGT2 gene may be represented by the nucleotide sequence of SEQ ID NO: 2.

상기 MET17 유전자는 호모시스테인/시스테인 생합성 경로에 관여하는 시스테인 합성효소(cysteine synthase) MET17을 암호화하는 유전자이다. 도 2를 참조하여 설명하면, MET17는 아세틸 호모세린(O-acetyl-L-homoserine)으로부터 호모시스테인(homocusteine)의 변환과 아세틸세린(O-acetylserine)으로부터 시스테인의 변환을 촉매하며, 이때 생성된 호모시스테인은 CYS4 및 CYS3에 의해 각각 시스타티오닌(cystathionine)과 시스테인으로 변환된다. 이와 같이 MET17에 의해 생산된 시스테인은 에르고티오네인의 전구체인 헤르시닐시스테인 설폭사이드를 생산하는데 공급될 수 있다.The MET17 gene is a gene encoding cysteine synthase MET17 involved in the homocysteine/cysteine biosynthetic pathway. 2, MET17 catalyzes the conversion of homocysteine from acetyl homoserine (O-acetyl-L-homoserine) and cysteine from acetylserine (O-acetylserine), and the homocysteine produced at this time is It is converted to cystathionine and cysteine by CYS4 and CYS3, respectively. As described above, the cysteine produced by MET17 can be supplied to produce hercynylcysteine sulfoxide, a precursor of ergothioneine.

본 발명의 일 구체예에 따르면, 상기 MET17 유전자는 시스테인을 생합성하는 효모로부터 유래된 것일 수 있다. According to one embodiment of the present invention, the MET17 gene may be derived from yeast that biosynthesizes cysteine.

상기 효모는 사카로마이세스 세레비지애(S. cerevisiae), 사카로마이세스 바야누스(S. bayanus), 사카로마이세스 보울라디(S. boulardii), 사카로마이세스 불데리(S. bulderi), 사카로마이세스 카리오카누스(S. cariocanus), 사카로마이세스 카리오쿠스(S. cariocus), 사카로마이세스 체발리에리(S. chevalieri), 사카로마이세스 다이레넨시스(S. dairenensis), 사카로마이세스 엘립소이데우스(S. ellipsoideus), 사카로마이세스 유바야뉴스(S. eubayanus), 사카로마이세스 엑시거스(S. exiguus), 사카로마이세스 플로렌티누스(S. florentinus), 사카로마이세스 클루이베리(S. kluyveri), 사카로마이세스 마티니에(S. martiniae), 사카로마이세스 모나센시스(S. monacensis), 사카로마이세스 노르벤시스(S. norbensis), 사카로마이세스 파라독서스(S. paradoxus), 사카로마이세스 파스토리아누스(S. pastorianus), 사카로마이세스 스펜서로룸(S. spencerorum), 사카로마이세스 투리센시스(S. turicensis), 사카로마이세스 우니스포루스(S. unisporus), 사카로마이세스 우바룸(S. uvarum) 및 사카로마이세스 조나투스(S. zonatus)로 이루어진 군으로부터 선택된 1 종 이상인 것일 수 있다.The yeast is Saccharomyces cerevisiae ( S. cerevisiae ), Saccharomyces bayanus ( S. bayanus ), Saccharomyces boulardii ( S. boulardii ), Saccharomyces bulderi ( S. bulderi ) ), Saccharomyces cariocanus ( S. cariocanus ), Saccharomyces cariocus ( S. cariocus ), Saccharomyces chevalieri ( S. chevalieri ), Saccharomyces dyrenensis ( S dairenensis ), Saccharomyces ellipsoideus ( S. ellipsoideus ), Saccharomyces eubayanus ( S. eubayanus ), Saccharomyces exigus ( S. exiguus ), Saccharomyces florentinus ( S. florentinus ), Saccharomyces kluyveri ( S. kluyveri ), Saccharomyces martiniae ( S. martiniae ), Saccharomyces monacensis ( S. monacensis ), Saccharomyces norbensis ( S. norbensis ), Saccharomyces paradoxus ( S. paradoxus ), Saccharomyces pastorianus ( S. pastorianus ), Saccharomyces spencerorum ( S. spencerorum ), Saccharomyces turi Sensis ( S. turicensis ), Saccharomyces Unisporus ( S. unisporus ), Saccharomyces Uvarum ( S. uvarum ) and Saccharomyces zonatus ( S. zonatus ) 1 selected from the group consisting of It may be more than a species.

본 발명의 일 구체예에 따르면, 상기 MET17 유전자는 사카로마이세스 세레비지애에서 유래된 것일 수 있다.According to one embodiment of the present invention, the MET17 gene may be derived from Saccharomyces cerevisiae.

또한, 본 발명의 일 구체예에 따르면, 상기 MET17 유전자는 서열번호 10의 염기서열로 표시되는 것일 수 있다.In addition, according to one embodiment of the present invention, the MET17 gene may be one represented by the nucleotide sequence of SEQ ID NO: 10.

본 발명의 일 실시예에 따르면, EGT1, EGT2 및 MET17 유전자가 과발현된 재조합 효모 (RY-3)는 상기 유전자들이 도입되지 않은 효모 (RY-1)에 비해 에르고티오네인을 생산한 것을 확인하였고, EGT1 및 EGT2 유전자만이 과발현된 재조합 효모 (RY-2)에 비해 에르고티오네인 생산량이 2배 이상, 구체적으로는 2 내지 15배, 또는 3 내지 10배 증가되어 배양액 1ℓ 당 200 내지 400mg의 에르고티오네인을 생산하였다.According to an embodiment of the present invention, it was confirmed that the recombinant yeast (RY-3) overexpressing the EGT1, EGT2 and MET17 genes produced ergothioneine compared to the yeast (RY-1) to which the genes were not introduced, Compared to recombinant yeast (RY-2) in which only EGT1 and EGT2 genes are overexpressed, ergothioneine production is increased by more than 2 times, specifically 2 to 15 times, or 3 to 10 times, so that 200 to 400 mg of ergo per 1 liter of culture medium is increased. Thionein was produced.

또한, 본 발명의 일 실시예에 따르면, 시스테인 생합성에 관여하는 CYS3 및 CYS4의 에르고티오네인 생산에 미치는 영향을 살펴본 결과, EGT1, EGT2 및 MET17 유전자와 함께 CYS3 또는 CYS4 유전자를 과발현하거나 CYS3 및 CYS4 유전자를 모두 과발현하는 경우 (RY-4, RY-5, RY-6)에는 EGT1, EGT2 및 MET17 유전자만을 과발현하는 경우 (RY-3)에 비해 오히려 에르고티오네인 생산량이 감소하였다.In addition, according to an embodiment of the present invention, as a result of examining the effect of CYS3 and CYS4 involved in cysteine biosynthesis on ergothioneine production, overexpression of CYS3 or CYS4 genes together with EGT1, EGT2 and MET17 genes or CYS3 and CYS4 When all genes were overexpressed (RY-4, RY-5, RY-6), ergothioneine production was rather decreased compared to the case where only EGT1, EGT2 and MET17 genes were overexpressed (RY-3).

본 발명의 일 구체예에 따른 재조합 효모는 모균주에 EGT1, EGT2 및 MET17 유전자를 포함하는 재조합 벡터를 통해 구현될 수 있다.Recombinant yeast according to an embodiment of the present invention can be implemented through a recombinant vector containing the EGT1, EGT2 and MET17 genes in the parent strain.

본 발명에서 사용된 “재조합 벡터”는 숙주세포에서 목적 단백질을 발현할 수 있는 발현 벡터로서 유전자 삽입물이 발현되도록 작동가능하게 연결된 필수적인 조절 요소를 포함하는 유전자 작제물을 의미한다. 여기서, '작동가능하게 연결된(operably linked)'은 일반적 기능을 수행하도록 핵산 발현조절 서열과 목적하는 단백질을 코딩하는 핵산 서열이 기능적으로 연결되어 있는 것을 말한다. 재조합 벡터와의 작동적 연결은 당해 기술분야에서 잘 알려진 유전자 재조합 기술을 이용하여 제조할 수 있으며, 부위-특이적 DNA 절단 및 연결은 당해 기술분야에서 일반적으로 알려진 효소 등을 사용하여 용이하게 할 수 있다.As used herein, "recombinant vector" is an expression vector capable of expressing a target protein in a host cell, and refers to a genetic construct including essential regulatory elements operably linked to express a gene insert. Here, 'operably linked' refers to a nucleic acid expression control sequence and a nucleic acid sequence encoding a target protein are functionally linked to perform a general function. The operable linkage with the recombinant vector can be prepared using genetic recombination techniques well known in the art, and site-specific DNA cleavage and ligation can be easily performed using enzymes generally known in the art. have.

본 발명의 일 구체예에 따르면, 상기 발현 벡터는 프로모터, 개시코돈, 종결코돈, 폴리아데닐화 시그널 및 인핸서(enhancer)와 같은 발현 조절 요소(element) 외에도 막 표적화 또는 분비를 위한 신호(signal) 서열을 포함할 수 있다. 일반 프로모터는 구성적 또는 유도성일 수 있다. 원핵 세포에는 lac, tac, T3 및 T7 프로모터가 있으나 이에 제한되지 않는다. 진핵세포에는 원숭이 바이러스 40(SV40), 마우스 유방 종양 바이러스(MMTV) 프로모터, 사람 면역 결핍 바이러스(HIV), 예를 들면 HIV의 긴 말단 반복부(LTR) 프로모터, 몰로니 바이러스(Mo-MSV), 시토메갈로 바이러스(CMV), 엡스타인바 바이러스(EBV), 로우스 사코마 바이러스(RSV) 프로모터뿐만 아니라, β-액틴 프로모터, 사람 헤로글로빈, 사람 근육 크레아틴, 사람 메탈로티오네인 유래의 프로모터가 있으나 이에 제한되지 않는다.According to one embodiment of the present invention, the expression vector includes a promoter, an initiation codon, a stop codon, a polyadenylation signal, and a signal sequence for membrane targeting or secretion in addition to expression control elements such as an enhancer. may include Generic promoters may be constitutive or inducible. Prokaryotic cells include, but are not limited to, lac, tac, T3 and T7 promoters. Eukaryotic cells include simian virus 40 (SV40), mouse mammary tumor virus (MMTV) promoter, human immunodeficiency virus (HIV), such as the long terminal repeat (LTR) promoter of HIV, Moloney virus (Mo-MSV); There are promoters derived from cytomegalovirus (CMV), Epstein Barr virus (EBV), and Loose Sacoma virus (RSV), as well as promoters derived from the β-actin promoter, human hemoglobin, human muscle creatine, and human metallothionein. not limited

본 발명에서 사용된 "형질전환"은 유전자를 숙주세포 내에 도입하여 숙주세포 내에서 발현시킬 수 있도록 하는 것이며, 형질전환된 유전자는 숙주세포 내에서 발현될 수 있으면 숙주세포의 염색체 내 삽입 또는 염색체 외에 위치하고 있는 것이든 제한하지 않고 포함될 수 있다. 본 발명의 일 구체예에 따르면, 형질전환시키는 방법은 핵산을 세포 내로 도입하는 어떤 방법도 포함되며, 숙주세포에 따라 당 분야에서 공지된 바와 같이 적합한 표준 기술을 선택하여 수행할 수 있다. 예를 들어, 전기천공법(electroporation), 인산칼슘(CaPO4) 침전, 염화칼슘(CaCl2) 침전, 미세주입법(microinjection), 아세트산리튬(lithium acetate)법, 폴리에틸렌글리콜(PEG)법, DEAE-덱스트란법, 양이온 리포좀법, 초산 리튬-DMSO법 등이 사용될 수 있으나, 이에 제한되지 않는다. 본 발명의 일 실시예에 따르면, 아세트산리튬법을 사용할 수 있다.As used in the present invention, "transformation" refers to introducing a gene into a host cell so that it can be expressed in the host cell, and if the transformed gene can be expressed in the host cell, it is inserted into the chromosome of the host cell or added to the chromosome other than the chromosome. It may be included without limitation whatever is located. According to one embodiment of the present invention, the transformation method includes any method of introducing a nucleic acid into a cell, and can be performed by selecting a suitable standard technique as known in the art depending on the host cell. For example, electroporation, calcium phosphate (CaPO4) precipitation, calcium chloride (CaCl2) precipitation, microinjection, lithium acetate method, polyethylene glycol (PEG) method, DEAE-dextran method , cationic liposome method, lithium acetate-DMSO method, etc. may be used, but is not limited thereto. According to an embodiment of the present invention, a lithium acetate method may be used.

상기 숙주세포는 생체내 또는 시험관내에서 본 발명의 재조합 벡터 또는 폴리뉴클레오티드로 형질감염, 형질전환, 또는 감염된 세포를 포함한다. 본 발명의 재조합 벡터를 포함하는 숙주 세포는 재조합 숙주 세포, 재조합 세포 또는 재조합 미생물이다.The host cells include cells transfected, transformed, or infected with the recombinant vector or polynucleotide of the present invention in vivo or in vitro. A host cell comprising the recombinant vector of the present invention is a recombinant host cell, a recombinant cell or a recombinant microorganism.

또한, 본 발명에 의한 재조합 벡터는 선택 마커(selection marker)를 포함할 수 있는데, 상기 선택 마커는 벡터로 형질전환된 형질전환체 (숙주세포)를 선별하기 위한 것으로서 상기 선택 마커가 처리되거나 또는 생장에 필요한 특정 성분이 제거된 배지에서 선택 마커를 발현하는 세포만 생존할 수 있기 때문에, 형질전환된 세포의 선별이 가능하다. 상기 선택 마커는 대표적인 예로 항생제인 카나마이신, 스트렙토마이신, 클로람페니콜 또는 생장에 필수인 아미노산이나 핵산인 히스티딘, 류신, 트립토판, 우라실 등이 있으나, 이에 한정되는 것은 아니다.In addition, the recombinant vector according to the present invention may include a selection marker, the selection marker is for selecting a transformant (host cell) transformed with the vector, and the selection marker is processed or grown Since only the cells expressing the selection marker can survive in the medium from which the specific components required for the transformation have been removed, the selection of transformed cells is possible. Representative examples of the selection marker include, but are not limited to, antibiotics kanamycin, streptomycin, chloramphenicol, or amino acids or nucleic acids essential for growth, such as histidine, leucine, tryptophan, and uracil.

본 발명의 형질전환용 재조합 벡터 내에 삽입된 유전자들은 상동성 재조합 교차로 인하여 효모 등의 미생물과 같은 숙주세포 내로 치환될 수 있다.Genes inserted into the recombinant vector for transformation of the present invention can be substituted into host cells such as yeast and the like due to homologous recombination crossover.

또한, 본 발명의 다른 일 양상은 i) 상기 재조합 효모를 배지에서 배양하는 단계; 및 ii) 상기 재조합 효모 또는 재조합 효모가 배양된 배양액으로부터 에르고티오네인을 회수하는 단계를 포함하는 에르고티오네인의 생산 방법을 제공한다.In addition, another aspect of the present invention comprises the steps of i) culturing the recombinant yeast in a medium; and ii) recovering ergothioneine from the recombinant yeast or the culture medium in which the recombinant yeast is cultured.

상기 배양은 당업계에 알려진 적절한 배지와 배양조건에 따라 이루어질 수 있으며, 통상의 기술자라면 배지 및 배양 조건을 용이하게 조정하여 사용할 수 있다. 구체적으로, 상기 배지는 액체 배지일 수 있으나, 이에 한정되는 것은 아니다. 배양 방법은 예를 들면, 회분식 배양(batch culture), 연속식 배양(continuous culture), 유가식 배양(fed-batch culture) 또는 이들의 조합 배양을 포함할 수 있으나, 이에 한정되는 것은 아니다.The culture may be made according to an appropriate medium and culture conditions known in the art, and those skilled in the art can easily adjust the medium and culture conditions for use. Specifically, the medium may be a liquid medium, but is not limited thereto. The culture method may include, for example, batch culture, continuous culture, fed-batch culture, or a combination culture thereof, but is not limited thereto.

본 발명의 일 구체예에 따르면, 상기 배지는 적절한 방식으로 특정 균주의 요건을 충족해야 하며, 통상의 기술자에 의해 적절하게 변형될 수 있다. 본 발명의 일 실시예에 따르면, 상기 배지는 효모에 대한 배양 배지로서 YPD(Yeast extract-Peptone-Dextrose) 배지를 이용할 수 있다.According to one embodiment of the present invention, the medium should meet the requirements of a specific strain in an appropriate manner, and may be appropriately modified by a person skilled in the art. According to an embodiment of the present invention, as the culture medium for yeast, YPD (Yeast extract-Peptone-Dextrose) medium may be used.

본 발명의 일 구체예에 따르면, 배지에 다양한 탄소원, 질소원 및 미량원소 성분을 포함할 수 있다. 사용될 수 있는 탄소원으로는 글루코스, 수크로스, 락토스, 프락토스, 말토스, 전분, 셀룰로스와 같은 당 및 탄수화물, 대두유, 해바라기유, 피마자유, 코코넛유 등과 같은 오일 및 지방, 팔미트산, 스테아린산, 리놀레산과 같은 지방산, 글리세롤, 에탄올과 같은 알코올, 아세트산과 같은 유기산이 포함된다. 이들 물질은 개별적으로 또는 혼합물로서 사용될 수 있으나, 이에 한정되는 것은 아니다. 사용될 수 있는 질소원으로는 펩톤, 효모 추출물, 육즙, 맥아 추출물, 옥수수 침지액, 대두밀 및 요소 또는 무기 화합물, 예를 들면 황산 암모늄, 염화암모늄, 인산암모늄, 탄산암모늄 및 질산암모늄이 포함될 수 있다. 질소원 또한 개별적으로 또는 혼합물로서 사용할 수 있으나, 이에 한정되는 것은 아니다. 사용될 수 있는 인의 공급원으로는 인산이수소칼륨 또는 인산수소이칼륨 또는 상응하는 나트륨-함유 염이 포함될 수 있으며, 이에 한정되는 것은 아니다. 또한, 배양 배지는 성장에 필요한 황산마그네슘 또는 황산철과 같은 금속염을 함유할 수 있으며, 이에 한정되는 것은 아니다. 그 외에, 아미노산 및 비타민과 같은 필수 성장 물질이 포함될 수 있다. 또한 배양 배지에 적절한 전구체들이 사용될 수 있다. 상기 배지 또는 개별 성분은 배양과정에서 배양액에 적절한 방식에 의해 회분식으로 또는 연속식으로 첨가될 수 있으나, 이에 한정되는 것은 아니다.According to one embodiment of the present invention, the medium may include various carbon sources, nitrogen sources and trace element components. Carbon sources that can be used include sugars and carbohydrates such as glucose, sucrose, lactose, fructose, maltose, starch, cellulose, oils and fats such as soybean oil, sunflower oil, castor oil, coconut oil, palmitic acid, stearic acid, fatty acids such as linoleic acid, alcohols such as glycerol and ethanol, and organic acids such as acetic acid. These materials may be used individually or as a mixture, but are not limited thereto. Nitrogen sources that can be used include peptone, yeast extract, broth, malt extract, corn steep liquor, soybean wheat and urea or inorganic compounds such as ammonium sulfate, ammonium chloride, ammonium phosphate, ammonium carbonate and ammonium nitrate. The nitrogen source may also be used individually or as a mixture, but is not limited thereto. Sources of phosphorus that may be used include, but are not limited to, potassium dihydrogen phosphate or dipotassium hydrogen phosphate or the corresponding sodium-containing salt. In addition, the culture medium may contain a metal salt such as magnesium sulfate or iron sulfate necessary for growth, but is not limited thereto. In addition, essential growth substances such as amino acids and vitamins may be included. In addition, precursors suitable for the culture medium may be used. The medium or individual components may be added batchwise or continuously by an appropriate method to the culture medium during the culturing process, but is not limited thereto.

본 발명의 일 구체예에 따르면, 배양 중에 수산화암모늄, 수산화칼륨, 암모니아, 인산 및 황산과 같은 화합물을 미생물 배양액에 적절한 방식으로 첨가하여 배양액의 pH를 조정할 수 있다. 또한, 배양 중에 지방산 폴리글리콜 에스테르와 같은 소포제를 사용하여 기포 생성을 억제할 수 있다. 추가적으로, 배양액의 호기 상태를 유지하기 위하여, 배양액 내로 산소 또는 산소-함유 기체 (예를 들면, 공기)를 주입할 수 있다. 배양액의 온도는 통상 20℃ 내지 45℃, 예를 들면 25℃ 내지 40℃일 수 있다. 배양 기간은 유용물질이 원하는 생산량으로 수득될 때까지 계속될 수 있으며, 예를 들면 10 내지 160 시간일 수 있다.According to one embodiment of the present invention, it is possible to adjust the pH of the culture medium by adding compounds such as ammonium hydroxide, potassium hydroxide, ammonia, phosphoric acid and sulfuric acid to the microorganism culture medium in an appropriate manner during culture. In addition, it is possible to suppress the formation of bubbles by using an antifoaming agent such as fatty acid polyglycol ester during culture. Additionally, in order to maintain the aerobic state of the culture, oxygen or oxygen-containing gas (eg, air) may be injected into the culture. The temperature of the culture medium may be usually 20 °C to 45 °C, for example, 25 °C to 40 °C. The incubation period may be continued until a useful substance is obtained in a desired production amount, and may be, for example, 10 to 160 hours.

본 발명의 일 구체예에 따르면, 상기 배양된 재조합 효모 또는 배양 배지 (배양액)에서 에르고티오네인을 회수하는 단계는 배양 방법에 따라 당해 분야에 공지된 적합한 방법을 이용하여 배지로부터 생산된 에르고티오네인을 수집 또는 회수할 수 있다. 예를 들면 원심분리, 여과, 추출, 분무, 건조, 증방, 침전, 결정화, 전기영동, 분별용해 (예를 들면, 암모늄 설페이트 침전), 크로마토그래피 (예를 들면, 이온 교환, 친화성, 소수성 및 크기배제) 등의 방법을 사용할 수 있으나, 이에 제한되지 않는다.According to one embodiment of the present invention, the step of recovering ergothioneine from the cultured recombinant yeast or culture medium (culture medium) is ergothioneine produced from the medium using a suitable method known in the art according to the culture method. can be collected or retrieved. e.g. centrifugation, filtration, extraction, spraying, drying, evaporation, precipitation, crystallization, electrophoresis, fractional dissolution (e.g. ammonium sulfate precipitation), chromatography (e.g. ion exchange, affinity, hydrophobicity and size exclusion) may be used, but is not limited thereto.

본 발명의 일 구체예에 따르면, 에르고티오네인을 회수하는 단계는 배양물을 고속 원심분리하여 바이오매스를 제거하고 얻어진 상등액을 여과한 후 액체 크로마토그래피를 통하여 분리할 수 있다.According to one embodiment of the present invention, in the step of recovering ergothioneine, biomass is removed by high-speed centrifugation of the culture, and the obtained supernatant is filtered and then separated through liquid chromatography.

본 발명의 일 구체예에 따르면, 상기 에르고티오네인을 회수하는 단계는 에르고티오네인을 정제하는 공정을 포함할 수 있다.According to one embodiment of the present invention, the step of recovering ergothioneine may include a step of purifying ergothioneine.

본 발명에 따른 재조합 효모는 EGT1, EGT2 및 MET17 유전자를 과발현함으로써 에르고티오네인의 생산 수율이 향상되므로, 이러한 재조합 효모를 이용하여 보다 효과적으로 고농도의 에르고티오네인을 생산할 수 있다.Since the recombinant yeast according to the present invention overexpresses the EGT1, EGT2 and MET17 genes, the yield of ergothioneine production is improved, and thus, it is possible to more effectively produce ergothioneine at a high concentration using the recombinant yeast.

도 1은 에르고티오네인 생합성 단백질 Egt-1 및 Egt-2에 의한 에르고티오네인의 생산 경로이다.
도 2는 사카로미세스 세레비지애(Saccharomyces cerevisiae)에서 MET17, CYS3 및 CYS4에 의한 시스테인의 생산 경로이다.
1 is a production pathway of ergothioneine by ergothioneine biosynthetic proteins Egt-1 and Egt-2.
2 is a production pathway of cysteine by MET17, CYS3 and CYS4 in Saccharomyces cerevisiae .

이하, 본 발명을 보다 상세하게 설명한다. 그러나, 이러한 설명은 본 발명의 이해를 돕기 위하여 예시적으로 제시된 것일 뿐, 본 발명의 범위가 이러한 예시적인 설명에 의하여 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail. However, these descriptions are provided for illustrative purposes only to help the understanding of the present invention, and the scope of the present invention is not limited by these illustrative descriptions.

실시예 1. 재조합 효모의 제조Example 1. Preparation of Recombinant Yeast

1-1. EGT1 및 EGT2 유전자 도입용 벡터의 제조1-1. Preparation of vector for EGT1 and EGT2 gene introduction

뉴로스포라 크라사(Neurospora crassa)의 EGT1 및 EGT2 유전자에 대하여 코돈 최적화(codon optimization)를 수행하였고, 서열번호 1의 염기서열로 표시되는 EGT1 유전자 및 서열번호 2의 염기서열로 표시되는 EGT2 유전자를 수득하였다. EGT1과 EGT2의 유전자를 p424 벡터에 나란히 삽입하기 위한 CYC 터미네이터(terminator)와 GPD 프로모터(promoter)를 연결한 염기서열 (서열번호 3, CYC 터미네이터-GPD 프로모터)도 유전자 합성을 통해 수득하였다.Neurospora crassa ( Neurospora crassa ) Codon optimization (codon optimization) was performed with respect to the EGT1 and EGT2 genes, the EGT1 gene represented by the nucleotide sequence of SEQ ID NO: 1 and the EGT2 gene represented by the nucleotide sequence of SEQ ID NO: 2 obtained. The nucleotide sequence (SEQ ID NO: 3, CYC terminator-GPD promoter) linking the CYC terminator and GPD promoter for inserting the genes of EGT1 and EGT2 side by side into the p424 vector was also obtained through gene synthesis.

수득된 유전자 중 EGT1은 프라이머 1 및 2를 이용하여 PCR (94℃ 3분 후 94℃ 30초, 54℃ 30초 및 72℃ 3분을 28회 반복, 72℃ 5분)로 증폭하여 PCR 산물을 정제한 후 제한효소 BamHI과 SalI을 이용하여 p424 벡터에 삽입하였다. EGT1 유전자 뒤에 CYC 터미네이터-GPD 프로모터 서열의 삽입을 위해 프라이머 3 및 4를 이용하여 PCR (94℃ 3분 후 94℃ 30초, 54℃ 30초 및 72℃ 1분 30초를 28회 반복, 72℃ 5분)을 수행하고 증폭된 염기서열을 분리 정제 후 PstI으로 p424 벡터에 삽입하고 유전자의 방향성이 맞는 클론을 선별하였다. EGT2 유전자를 CYC 터미네이터-GPD 프로모터 뒤에 삽입하기 위해 프라이머 5 및 6을 이용하여 PCR (94℃ 3분 후 94℃ 30초, 54℃ 30초 및 72℃ 1분 30초를 28회 반복, 72℃ 5분)로 EGT2를 증폭하였다. 이후 PCR 증폭 산물을 정제한 후 제한효소 NotI과 SalI을 이용하여 EGT1과 CYC 터미네이터-GPD 프로모터가 삽입된 p424 벡터에 클로닝하고 유전자 서열이 오류 없음을 확인하여 EGT1-EGT2 유전자 도입용 p424 벡터 (이하 'EGT1-EGT2 p424 벡터'라 함)를 제조하였다. 여기서 사용된 프라이머는 하기 표 1과 같다.Among the obtained genes, EGT1 was amplified by PCR (repeat 28 times at 94°C for 3 minutes at 94°C, 30 seconds at 94°C, for 30 seconds at 54°C and 3 minutes at 72°C, for 5 minutes at 72°C) using primers 1 and 2 to obtain the PCR product. After purification, it was inserted into the p424 vector using restriction enzymes BamHI and SalI. PCR using primers 3 and 4 for insertion of the CYC terminator-GPD promoter sequence after the EGT1 gene (repeat 28 times at 94°C for 3 minutes, at 94°C for 30 seconds, at 54°C for 30 seconds and at 72°C for 1 minute and 30 seconds, 72°C 5 min), the amplified nucleotide sequence was separated and purified, and then inserted into the p424 vector with PstI, and clones with the correct gene orientation were selected. PCR using primers 5 and 6 to insert the EGT2 gene after the CYC terminator-GPD promoter (repeat 28 times at 94°C 3 minutes, then 94°C 30 seconds, 54°C 30 seconds, and 72°C 1 minute 30 seconds, 72°C 5 min) to amplify EGT2. After purifying the PCR amplification product, it was cloned into the p424 vector into which the EGT1 and CYC terminator-GPD promoters were inserted using restriction enzymes NotI and SalI, and the p424 vector for EGT1-EGT2 gene introduction (hereinafter '' EGT1-EGT2 p424 vector ') was prepared. The primers used here are shown in Table 1 below.

번호number 프라이머 명칭Primer name 프라이머 서열 (5'>3')Primer sequence (5'>3') 서열번호SEQ ID NO: 1One EGT1-Bam-FEGT1-Bam-F AAGGATCCATGCCATCTGCTGAATCTAAGGATCCATGCCATCTGCTGAATCT 44 22 EGT1-PstSalI-REGT1-PstSalI-R AAGTCGACCTGCAGTCACAAATCTCTAACAACAAGTCGACCTGCAGTCACAAATCTCTAACAAC 55 33 CYC-GPD-PstI-FCYC-GPD-PstI-F AACTGCAGTCATGTAATTAGTTATGTCACGAACTGCAGTCATGTAATTAGTTATGTCACG 66 44 CYC-GPD-NotPstI-RCYC-GPD-NotPstI-R TTCTGCAGGCGGCCGCTTCTAGAATCCGTCGAAACTAAGTTCTGCAGGCGGCCGCTTCTAGAATCCGTCGAAACTAAG 77 55 EGT2-NotI-FEGT2-NotI-F AAGCGGCCGCATGGTTGCTACTACTGTTGAATTGAAGCGGCCGCATGGTTGCTACTACTGTTGAATTG 88 66 EGT2-Sal-REGT2-Sal-R TTGTCGACTTAAGCAGATTCTTTGTACTTGTCGACTTAAGCAGATTCTTTGTAC 99

1-2. MET17 및/또는 CYS4 유전자 도입용 벡터의 제조1-2. Preparation of vector for MET17 and/or CYS4 gene introduction

사카로미세스 세레비지애(Saccharomyces cerevisiae)의 MET17 및 CYS4 유전자에 대하여 코돈 최적화(codon optimization)를 수행하였고, 서열번호 10의 염기서열로 표시되는 MET17 유전자를 수득하였다. 서열번호 11의 염기서열로 표시되는 CYS4 유전자는 p425 벡터에 MET17 유전자와 나란히 삽입하기 위하여 CYC 터미네이터-GPD 프로모터 서열을 CYS4 유전자 앞에 위치하게 하여 유전자 합성을 통해 CYC 터미네이터-GPD 프로모터-CYS4 염기서열 (서열번호 12)로 수득하였다.Saccharomyces cerevisiae ( Saccharomyces cerevisiae ) Codon optimization was performed for MET17 and CYS4 genes, and the MET17 gene represented by the nucleotide sequence of SEQ ID NO: 10 was obtained. The CYS4 gene represented by the nucleotide sequence of SEQ ID NO: 11 is placed in front of the CYS4 gene by placing the CYC terminator-GPD promoter sequence in front of the CYS4 gene to insert the MET17 gene into the p425 vector in parallel with the CYC terminator-GPD promoter-CYS4 nucleotide sequence (sequence No. 12).

수득된 유전자 중 MET17은 프라이머 1 및 2를 이용하여 PCR (94℃ 3분 후 94℃ 30초, 54℃ 30초 및 72℃ 1분 30초를 28회 반복, 72℃ 5분)로 증폭하여 PCR 산물을 정제한 후 제한효소 SpeI과 BamHI를 이용하여 p425 벡터에 삽입하고 유전자 서열에 오류가 없는 클론을 선별하였다 (이하 'MET17 p425 벡터'라 함). MET17 유전자 뒤에 CYC 터미네이터-GPD 프로모터-CYS4 유전자 서열의 삽입을 위해 프라이머 3 및 4로 PCR (94℃ 3분 후 94℃ 30초, 54℃ 30초 및 72℃ 3분을 28회 반복, 72℃ 5분)을 수행하고 증폭된 염기서열을 분리 정제 후 BamHI과 PstI으로 삽입하고 유전자 서열에 오류가 없는 클론을 선별하여 MET1-CYS4 유전자 도입용 p425 벡터 (이하 'MET17-CYS4 p425 벡터'라 함)를 제조하였다. 여기서 사용된 프라이머는 하기 표 2와 같다.Among the obtained genes, MET17 was amplified by PCR (repeat 28 times at 94°C for 3 minutes at 94°C, 30 seconds at 94°C, 30 seconds at 54°C, and 1 minute and 30 seconds at 72°C, 72°C for 5 minutes) using primers 1 and 2 among the obtained genes. After the product was purified, it was inserted into the p425 vector using restriction enzymes SpeI and BamHI, and clones without error in the gene sequence were selected (hereinafter referred to as 'MET17 p425 vector'). PCR with primers 3 and 4 for insertion of the CYC terminator-GPD promoter-CYS4 gene sequence after the MET17 gene (repeat 28 times, 94°C 30 seconds, 54°C 30 seconds and 72°C 3 minutes after 94°C 3 minutes, 72°C 5 min), the amplified nucleotide sequence is separated and purified, inserted with BamHI and PstI, and clones without error in the gene sequence are selected to obtain the p425 vector for MET1-CYS4 gene introduction (hereinafter referred to as the 'MET17-CYS4 p425 vector'). prepared. The primers used here are shown in Table 2 below.

번호number 프라이머 명칭Primer name 프라이머 서열 (5'>3')Primer sequence (5'>3') 서열번호SEQ ID NO: 1One Met17-Spe-FMet17-Spe-F AAAATAGTATGCCATCTCACTTTGATACCAAAATAGTATGCCATCTCACTTTGATACC 1313 22 Met17-BamH-RMet17-BamH-R TTGGATCCTTATGGCTTTTGACCAGCAATTGGATCCTTATGGCTTTTGACCAGCAA 1414 33 GPD400-BamNhe-FGPD400-BamNhe-F TTGGATCCTCATGTAATTAGTTATGTCACGCTTTGGATCCTCATGTAATTAGTTATGTCACGCT 1515 44 Cys4-Pst-RCys4-Pst-R TTCTGCAGTTAAGCCAAGTAAGACAACAATTCTGCAGTTAAGCCAAGTAAGACAACAA 1616

1-3. EGT1 및/또는 CYS3 유전자 도입용 벡터의 제조1-3. Preparation of vector for EGT1 and/or CYS3 gene introduction

사카로미세스 세레비지애(Saccharomyces cerevisiae)의 CYS3 유전자에 대하여 코돈 최적화(codon optimization)를 수행하였고, 서열번호 17의 염기서열로 표시되는 CYS3 유전자를 수득하였다.Codon optimization was performed on the CYS3 gene of Saccharomyces cerevisiae , and the CYS3 gene represented by the nucleotide sequence of SEQ ID NO: 17 was obtained.

EGT1 유전자 및 CYC 터미네이터와 GPD 프로모터를 연결한 염기서열 (CYC 터미네이터-GPD 프로모터)은 각각 서열번호 1 및 3의 염기서열을 이용하였다. The nucleotide sequences linking the EGT1 gene and the CYC terminator and the GPD promoter (CYC terminator-GPD promoter) were respectively the nucleotide sequences of SEQ ID NOs: 1 and 3.

EGT1 유전자는 상기 표 1의 프라이머 1 및 2를 사용한 p426 벡터 클로닝과 동일한 방법으로 p426 벡터에 클로닝하였다 (이하 'EGT1 p426 벡터'라 함). EGT1 유전자 뒤에 CYC 터미네이터-GPD 프로모터 서열의 삽입을 위해 하기 표 3의 프라이머 1 및 2를 이용하여 PCR (94℃ 3분 후 94℃ 30초, 54℃ 30초 및 72℃ 1분을 28회 반복, 72℃ 5분)을 수행하였고 제한효소 SalI을 이용하여 p426 벡터에 삽입하고 유전자의 방향성이 맞는 클론을 선별하였다. CYS3 유전자를 CYC 터미네이터-GPD 프로모터 서열 뒤에 삽입하기 위해 하기 표 3의 프라이머 3 및 4를 이용하여 PCR (94℃ 3분 후 94℃ 30초, 54℃ 30초 및 72℃ 1분 30초를 28회 반복, 72℃ 5분)을 수행하였다. PCR 증폭 산물을 정제한 후 제한효소 NotI을 이용하여 EGT1과 CYC 터미네이터-GPD 프로모터 서열이 삽입된 p426 벡터에 클로닝 후 유전자 서열이 없는 클론을 선별하는 과정을 통해 EGT1-CYS3 유전자 도입용 p426 벡터 (이하 'EGT1-CYS3 p426 벡터'라 함)를 제조하였다.The EGT1 gene was cloned into the p426 vector in the same way as the p426 vector cloning using primers 1 and 2 in Table 1 (hereinafter referred to as 'EGT1 p426 vector'). PCR using primers 1 and 2 of Table 3 below for insertion of the CYC terminator-GPD promoter sequence after the EGT1 gene (repeated 28 times after 94°C 3 minutes, 94°C 30 seconds, 54°C 30 seconds, and 72°C 1 minute, 28 times; 72° C. for 5 minutes) and inserted into the p426 vector using restriction enzyme SalI, and clones with the correct gene orientation were selected. To insert the CYS3 gene after the CYC terminator-GPD promoter sequence, PCR (28 times at 94°C 3 minutes, 94°C 30 seconds, 54°C 30 seconds, and 72°C 1 minute 30 seconds) using primers 3 and 4 in Table 3 below Repeat, 72° C. 5 min). After purifying the PCR amplification product, use the restriction enzyme NotI to clone the p426 vector into which the EGT1 and CYC terminator-GPD promoter sequences are inserted, and then select the clones without the gene sequence to select the p426 vector for EGT1-CYS3 gene introduction (hereinafter 'EGT1-CYS3 p426 vector') was prepared.

번호number 프라이머 명칭Primer name 프라이머 서열 (5'>3')Primer sequence (5'>3') 서열번호SEQ ID NO: 1One CYC-GPD-SalI-FCYC-GPD-SalI-F AAGTCGACTCATGTAATTAGTTATGTCACGAAGTCGACTCATGTAATTAGTTATGTCACG 1818 22 CYC-GPD-NotISalI-RCYC-GPD-NotISalI-R TTGTCGACGCGGCCGCTTCTAGAATCCGTCGAAACTAAGTTGTCGACGCGGCCGCTTCTAGAATCCGTCGAAACTAAG 1919 33 CYS3-NotI-FCYS3-NotI-F AAGCGGCCGCATGACTTTGCAAGAATCTGATAAAGCGGCCGCATGACTTTGCAAGAATCTGATA 2020 44 CYS3-NotI-RCYS3-NotI-R TTGCGGCCGCTTAGTTAGTAGCTTGCTTCAAGTTGCGGCCGCTTAGTTAGTAGCTTGCTTCAAG 2121

1-4. 사카로미세스 세레비지애를 이용한 재조합 효모의 제조1-4. Preparation of Recombinant Yeast Using Saccharomyces cerevisiae

재조합 효모를 제조하기 위하여, 형질전환의 대상이 되는 모균주로 사카로미세스 세레비지애(Saccharomyces cerevisiae) BY4735 (ATCC 200897)를 사용하였고, 형질전환 방법으로 아세트산리튬(lithium acetate)법을 사용하였다.To prepare a recombinant yeast, Saccharomyces cerevisiae BY4735 (ATCC 200897) was used as the parent strain to be transformed, and a lithium acetate method was used as the transformation method.

먼저, YPD(Yeast extract-Peptone-Dextrose) 액체배지에서 사카로미세스 세레비지애 BY4735 균주를 접종한 후 30℃, 200rpm으로 12 ~ 16시간 배양하여 OD600 값이 0.8 ~ 1.0이 되도록 하였다. 이후, 10mL의 배양액을 500g에서 4분간 원심분리한 후 상등액을 버리고 침전된 사카로미세스 세레비지애 BY4735 균주를 TE 완충액(buffer)으로 1회 세척하고, 최종적으로 0.1M Lithium acetate 용액 1mL에 재현탁하여 컴피턴트 셀(competent cell)을 준비하였다. First, the Saccharomyces cerevisiae BY4735 strain was inoculated in YPD (Yeast extract-Peptone-Dextrose) liquid medium, and then cultured at 30° C. and 200 rpm for 12 to 16 hours to achieve an OD 600 value of 0.8 to 1.0. Thereafter, 10 mL of the culture solution was centrifuged at 500 g for 4 minutes, the supernatant was discarded, and the precipitated Saccharomyces cerevisiae BY4735 strain was washed once with TE buffer, and finally reproduced in 1 mL of 0.1M lithium acetate solution. It was cloudy to prepare a competent cell (competent cell).

하기 표 4와 같은 조합의 벡터가 도입된 재조합 효모를 제조하기 위하여, 컴피턴트 셀과 각각의 공벡터(empty vector, EV), EGT1-EGT2 p424 벡터, MET17 p425 벡터, MET17-CYS4 p425 벡터, EGT1 p426 벡터, EGT1-CYS3 p426 벡터를 혼합한 후 형질전환용 혼합용액 (Polyethyleneglycol, Lithium acetate 및 Salmon sperm DNA 함유)을 넣고 섞어준 후 42℃에서 40분간 열 충격(heat shock)을 가하였다. 열 충격이 끝난 후 500g에서 3분간 원심 분리 후 상층액을 제거하고 침전물을 획득하였다. 침전물을 고체 선별배지 (Glucose, Yeast nitrogen base, CSM-His-Leu-Trp-Ura, Histidine 및 Bactoagar 함유)에 도말하여 30℃에서 3 ~ 4일간 배양하였다. In order to prepare a recombinant yeast introduced with the vector of the combination shown in Table 4 below, competent cells and each empty vector (EV), EGT1-EGT2 p424 vector, MET17 p425 vector, MET17-CYS4 p425 vector, EGT1 After mixing the p426 vector and the EGT1-CYS3 p426 vector, a transformation solution (containing polyethyleneglycol, lithium acetate and Salmon sperm DNA) was added and mixed, followed by heat shock at 42°C for 40 minutes. After the thermal shock was finished, centrifugation was performed at 500 g for 3 minutes, and the supernatant was removed and a precipitate was obtained. The precipitate was smeared on a solid selective medium (containing Glucose, Yeast nitrogen base, CSM-His-Leu-Trp-Ura, Histidine and Bactoagar) and cultured at 30°C for 3 to 4 days.

재조합 효모recombinant yeast p424 벡터p424 vector p425 벡터p425 vector p426 벡터p426 vector RY-1RY-1 EVEV EVEV EVEV RY-2RY-2 EGT1-EGT2EGT1-EGT2 EVEV EGT1EGT1 RY-3RY-3 EGT1-EGT2EGT1-EGT2 MET17MET17 EGT1EGT1 RY-4RY-4 EGT1-EGT2EGT1-EGT2 MET17MET17 EGT1-CYS3EGT1-CYS3 RY-5RY-5 EGT1-EGT2EGT1-EGT2 MET17-CYS4MET17-CYS4 EGT1EGT1 RY-6RY-6 EGT1-EGT2EGT1-EGT2 MET17-CYS4MET17-CYS4 EGT1-CYS3EGT1-CYS3

실시예 2. 재조합 효모의 에르고티오네인 생산성 비교Example 2. Comparison of Ergothioneine Productivity of Recombinant Yeast

실시예 1에서 제조된 재조합 효모 RY-1 ~ RY-6에 대하여 에르고티오네인 생산성을 비교하였다.The ergothioneine productivity was compared with respect to the recombinant yeast RY-1 to RY-6 prepared in Example 1.

실시예 1-4의 고체 선별배지에서 배양된 재조합 효모의 콜로니를 각 1 루프(loop)씩 액체 선별배지 (Glucose, Yeast nitrogen base 및 CSM-Leu-Trp-Ura 함유)에 접종하여 30℃에서 72시간 배양한 후 5mL의 효모 배양액을 취하여 3,000rpm에서 10분간 원심분리하여 세포만 수득하였다. 수득한 세포에 2mL의 증류수를 넣고 95℃의 항온기에서 1시간 배양하면서 에르고티오네인(EGT)을 추출하였다. 이후, vortex하고 3,000rpm에서 10분간 원심분리하여 상등액을 분리한 후 0.45um의 나이트로셀룰로스(nitrocellulose) 필터로 여과하여 여과액을 수득하였다. One loop each of the recombinant yeast colonies cultured in the solid selective medium of Example 1-4 were inoculated into a liquid selective medium (containing Glucose, Yeast nitrogen base and CSM-Leu-Trp-Ura), and 72 at 30 ° C. After time incubation, 5 mL of yeast culture was taken and centrifuged at 3,000 rpm for 10 minutes to obtain only cells. Into the obtained cells, 2 mL of distilled water was added, and ergothioneine (EGT) was extracted while incubating for 1 hour in a thermostat at 95°C. Thereafter, the supernatant was separated by vortexing and centrifugation at 3,000 rpm for 10 minutes, followed by filtration through a 0.45 μm nitrocellulose filter to obtain a filtrate.

에르고티오네인 표준물질 (L-(+)-Ergothioneine, Sigma aldrich) 및 HPLC (Agilent 1200 series)를 이용하여 여과액으로부터 에르고티오네인의 양을 측정하였고, 그 결과는 하기 표 5와 같다.The amount of ergothioneine was measured from the filtrate using an ergothioneine standard (L-(+)-Ergothioneine, Sigma aldrich) and HPLC (Agilent 1200 series), and the results are shown in Table 5 below.

재조합 효모recombinant yeast 에르고티오네인 (mg/L)Ergothioneine (mg/L) RY-1RY-1 -- RY-2RY-2 59.4759.47 RY-3RY-3 308.07308.07 RY-4RY-4 20.1520.15 RY-5RY-5 39.3939.39 RY-6RY-6 --

상기 표 5에 나타낸 바와 같이, 유전자가 도입되지 않은 대조군 (RY-1)에서는 에르고티오네인의 생산이 확인되지 않았으나, EGT1, EGT2 및 MET17 유전자를 과발현하는 재조합 효모 RY-3는 MET17 유전자를 과발현하지 않는 재조합 효모 RY-2에 비하여 에르고티오네인의 생산성이 약 5.2배 증가하였으며, 추가로 CYS3 유전자를 과발현하는 재조합 효모 RY-4에 비하여 에르고티오네인의 생산성이 약 15.3배, 추가로 CYS4 유전자를 과발현하는 재조합 효모 RY-5에 비하여 에르고티오네인의 생산성이 약 7.8배 증가한 것으로 확인되었다.As shown in Table 5, ergothioneine production was not confirmed in the control group (RY-1) into which the gene was not introduced, but recombinant yeast RY-3 overexpressing the EGT1, EGT2 and MET17 genes did not overexpress the MET17 gene. The productivity of ergothioneine was increased by about 5.2 times compared to the recombinant yeast RY-2 without the CYS3 gene, and the productivity of ergothioneine was about 15.3 times higher than that of the recombinant yeast RY-4 overexpressing the CYS3 gene, and the CYS4 gene was further overexpressed. It was confirmed that the productivity of ergothioneine was increased by about 7.8 times compared to that of the recombinant yeast RY-5.

한편, EGT1, EGT2, MET17, CYS3 및 CYS4 유전자를 동시에 과발현하는 재조합 효모 RY-6에서는 에르고티오네인의 생산이 확인되지 않았다.On the other hand, the production of ergothioneine was not confirmed in the recombinant yeast RY-6, which simultaneously overexpresses EGT1, EGT2, MET17, CYS3 and CYS4 genes.

결과적으로, 본 발명에서는 EGT1, EGT2 및 MET17 유전자의 과발현을 유도함으로써 모균주에 비해 에르고티오네인 생산능이 향상된 재조합 효모를 얻었고, 이러한 재조합 효모를 이용하여 고농도의 에르고티오네인을 고수율로 생산할 수 있음을 확인하였다.As a result, in the present invention, by inducing overexpression of EGT1, EGT2 and MET17 genes, a recombinant yeast having improved ergothioneine production ability compared to the parent strain was obtained, and using this recombinant yeast, a high concentration of ergothioneine could be produced in high yield. confirmed that there is.

이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.So far, with respect to the present invention, the preferred embodiments have been looked at. Those of ordinary skill in the art to which the present invention pertains will understand that the present invention can be implemented in a modified form without departing from the essential characteristics of the present invention. Therefore, the disclosed embodiments are to be considered in an illustrative rather than a restrictive sense. The scope of the present invention is indicated in the claims rather than the foregoing description, and all differences within the scope equivalent thereto should be construed as being included in the present invention.

<110> Kolon Industries, Inc. <120> Recombinant yeast with enhanced ergothioneine productivity and method for producing ergothioneine using the same <130> PN200346 <160> 21 <170> KoPatentIn 3.0 <210> 1 <211> 2631 <212> DNA <213> Artificial Sequence <220> <223> EGT1 <400> 1 atgccatctg ctgaatctat gactccatct tctgctttgg gtcaattgaa agctactggt 60 caacatgtct tgtccaagtt gcaacaacaa acttccaacg ccgatatcat cgatattaga 120 agagttgccg ttgagatcaa cttgaaaacc gaaattacct ccatgttcag accaaaagat 180 ggtccaagac aattgccaac cttgttgttg tataacgaaa gaggcttgca gttgttcgaa 240 agaattactt acttggaaga gtactacttg accaacgacg agattaagat tttgactaag 300 cacgctactg aaatggcctc ttttattcca tctggtgcca tgattatcga actaggttct 360 ggtaatttga ggaaggtcaa cttgttgtta gaagctttgg ataatgctgg taaggccatt 420 gattattacg ccttggattt gtccagagaa gaattggaaa gaaccttggc tcaagtccca 480 tcttacaaac atgttaagtg tcatggtttg ttgggtactt acgatgatgg tagagattgg 540 ttgaaagctc cagaaaacat caacaagcaa aagtgcatac tgcatctggg ttcttctatt 600 ggtaacttca atagatctga tgctgccact tttttgaagg gtttcactga tgttttgggt 660 ccaaacgata agatgttgat tggtgttgat gcttgtaacg atccagctag agtttaccat 720 gcttacaatg ataaggttgg tatcacccac gaattcatct tgaatggttt gagaaacgcc 780 aacgaaatta ttggtgaaac cgctttcatt gaaggtgatt ggagagttat cggtgaatac 840 gtttatgatg aagaaggtgg tagacatcaa gctttttatg ctccaactag agataccatg 900 gttatgggtg aattgatcag atcccatgac agaatccaaa tcgaacagtc tctgaagtac 960 tccaaagagg aatctgaaag attgtggtct actgctggtt tggaacaagt ttctgaatgg 1020 acttacggta atgaatacgg tttacatttg ttggccaagt ccagaatgtc cttctcattg 1080 attccatcag tttacgctag atctgctttg ccaactttgg atgattggga agctttgtgg 1140 gctacttggg atgttgttac tagacaaatg ttgccacaag aggaattatt ggagaagcca 1200 atcaagttga gaaatgcctg cattttctac ttgggtcata tcccaacttt cttggatatt 1260 cagttgacta agactaccaa gcaagctcca tctgaaccag ctcatttctg taagattttc 1320 gaaaggggta tcgatccaga tgttgacaat ccagaattgt gtcatgccca ttctgaaatt 1380 ccagatgaat ggccaccagt tgaagaaatt ttgacttacc aagaaaccgt cagatctaga 1440 ttgagaggtc tatatgctca tggtattgcc aacattccaa gaaatgtcgg tagagctatt 1500 tgggttggtt tcgaacatga attgatgcac atcgagactc tgttgtacat gatgttgcaa 1560 tctgacaaga ccttgattcc aactcatatt ccaagaccag atttcgataa gttggctaga 1620 aaagccgaat cagaaagggt tccaaatcaa tggtttaaga tcccagctca agaaatcact 1680 attggtttgg atgaccctga agatggttcc gatattaaca aacattacgg ttgggataac 1740 gagaagccac caagaagagt tcaagttgct gcttttcaag ctcaaggtag accaattaca 1800 aacgaagaat acgcccaata cttgttggaa aagaacattg ataagttgcc agcttcttgg 1860 gctagattgg ataacgaaaa catttctaac ggcaccacca attctgtttc tggtcatcat 1920 tctaacagaa cctccaaaca acaactgcca tcttcattct tggaaaaaac tgctgttaga 1980 accgtttacg gtttggttcc attgaaacat gctttggatt ggccagtttt tgcttcctat 2040 gatgaattgg ctggttgtgc tgcttatatg ggtggtagaa ttccaacttt cgaagaaacc 2100 agatctatct acgcttatgc tgatgctctg aagaagaaga aagaagctga aagacaactg 2160 ggtagaactg ttccagctgt taatgctcat ttgactaaca acggtgttga aattactcct 2220 ccatcatcac catcatctga aactccagca gaatcttctt caccatctga ttctaacact 2280 accttgatta ccaccgagga tttgttctct gatttggatg gtgctaatgt tggtttccat 2340 aattggcatc caatgcctat tacttctaag ggtaatacct tggtcggtca aggtgaatta 2400 ggtggtgttt gggaatggac atcttccgtt ttgagaaaat gggaaggttt tgagccaatg 2460 gaattatacc caggttacac tgctgatttc tttgacgaaa agcacaacat cgttttaggt 2520 ggttcatggg ctactcatcc aagaattgct ggtagaaagt cttttgtcaa ctggtatcaa 2580 agaaactacc catatgcatg ggttggtgct agagttgtta gagatttgtg a 2631 <210> 2 <211> 1422 <212> DNA <213> Artificial Sequence <220> <223> EGT2 <400> 2 atggttgcta ctactgttga attgccattg caacaaaaag ctgatgctgc tcaaactgtt 60 actggtccat tgccatttgg taacagcttg ttgaaagaat tcgttttgga tccagcctac 120 agaaacttga atcatggttc ttttggtact atcccatccg ctattcaaca gaagttgaga 180 tcttatcaaa ctgctgctga agctagacca tgtccatttt tgagatatca aaccccagtt 240 ttgttggacg aatctagagc tgctgttgct aatttgttga aggttccagt tgaaaccgtt 300 gttttcgttg ctaatgctac tatgggtgtc aacactgttt tgagaaatat cgtttggtct 360 gctgatggta aggacgaaat cttgtacttt gatacaatct acggtgcttg cggtaagacc 420 attgattatg ttatcgaaga taagaggggc atcgtttcct ctagatgtat tccattgata 480 tacccagccg aagatgatga tgttgttgca gcttttagag atgccatcaa gaagtctaga 540 gaagaaggta aaagaccaag attggccgtt atcgatgttg tttcttctat gccaggtgtt 600 agattcccat tcgaagatat cgttaagatc tgcaaagagg aagagatcat ttcttgcgtt 660 gatggtgctc aaggtattgg tatggttgat ttgaagatta ccgaaaccga tccagacttc 720 ctgatttcta attgtcataa gtggttgttc accccaagag gttgtgctgt tttttatgtt 780 ccagtcagaa accagcactt gatcagatct actttgccaa cttctcatgg tttcgttcca 840 caagttggta atagattcaa tccattggtt ccagctggta acaagtctgc ttttgtttct 900 aacttcgaat tcgttggtac tgtcgataac tctccattct tctgtgttaa ggatgctatt 960 aagtggcgtg aagaggtttt aggtggtgaa gaaagaatta tggagtacat gactaagttg 1020 gctagagaag gtggtcaaaa ggttgctgaa attttgggta ctagagtctt ggaaaactct 1080 accggtacat tgattagatg cgccatggtt aatattgcct tgccttttgt tgttggtgaa 1140 gatccaaaag ctccagttaa gttgaccgaa aaagaagaaa aagacgtcga aggcttgtac 1200 gaaattccac atgaagaggc taatatggct ttcaagtgga tgtacaacgt attgcaagat 1260 gagttcaata ccttcgttcc aatgaccttt catagacgta gattttgggc tagattgtcc 1320 gctcaagttt acttggaaat gtctgatttt gaatgggctg gcaagacctt aaaagaattg 1380 tgtgaaaggg ttgctaaggg cgagtacaaa gaatctgctt aa 1422 <210> 3 <211> 913 <212> DNA <213> Artificial Sequence <220> <223> CYC terminator-GPD promoter <400> 3 tcatgtaatt agttatgtca cgcttacatt cacgccctcc ccccacatcc gctctaaccg 60 aaaaggaagg agttagacaa cctgaagtct aggtccctat ttattttttt atagttatgt 120 tagtattaag aacgttattt atatttcaaa tttttctttt ttttctgtac agacgcgtgt 180 acgcatgtaa cattatactg aaaaccttgc ttgagaaggt tttgggacgc tcgaaggctt 240 taatttgcgg ccggtactca ttatcaatac tcgccatttc aaagaatacg taaataatta 300 atagtagtga ttttcctaac tttatttagt caaaaaatta gccttttaat tctgctgtaa 360 cccgtacatg cccaaaatag ggggcgggtt acacagaata tataacatcg taggtgtctg 420 ggtgaacagt ttattcctgg catccactaa atataatgga gcccgctttt taagctggca 480 tccagaaaaa aaaagaatcc cagcaccaaa atattgtttt cttcaccaac catcagttca 540 taggtccatt ctcttagcgc aactacagag aacaggggca caaacaggca aaaaacgggc 600 acaacctcaa tggagtgatg caacctgcct ggagtaaatg atgacacaag gcaattgacc 660 cacgcatgta tctatctcat tttcttacac cttctattac cttctgctct ctctgatttg 720 gaaaaagctg aaaaaaaagg ttgaaaccag ttccctgaaa ttattcccct acttgactaa 780 taagtatata aagacggtag gtattgattg taattctgta aatctatttc ttaaacttct 840 taaattctac ttttatagtt agtctttttt ttagttttaa aacaccagaa cttagtttcg 900 acggattcta gaa 913 <210> 4 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> EGT1-Bam-F <400> 4 aaggatccat gccatctgct gaatct 26 <210> 5 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> EGT1-PstSalI-R <400> 5 aagtcgacct gcagtcacaa atctctaaca ac 32 <210> 6 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> CYC-GPD-PstI-F <400> 6 aactgcagtc atgtaattag ttatgtcacg 30 <210> 7 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> CYC-GPD-NotPstI-R <400> 7 ttctgcaggc ggccgcttct agaatccgtc gaaactaag 39 <210> 8 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> EGT2-NotI-F <400> 8 aagcggccgc atggttgcta ctactgttga attg 34 <210> 9 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> EGT2-Sal-R <400> 9 ttgtcgactt aagcagattc tttgtac 27 <210> 10 <211> 1335 <212> DNA <213> Artificial Sequence <220> <223> MET17 <400> 10 atgccatctc actttgatac cgttcaatta catgctggtc aagaaaaccc aggcgataac 60 gctcatagat ctagagctgt tccaatctac gctacaactt cttatgtttt cgaaaattca 120 aagcatggtt ctcaattgtt cggtttagaa gttccaggtt atgtttattc taggttccaa 180 aacccaactt ctaacgtctt ggaagaaaga atcgctgctt tggaaggtgg tgctgctgcc 240 ttggctgttt cttccggtca agctgctcaa acattggcta ttcaaggttt agctcacact 300 ggtgacaaca ttgtttctac ttcttacttg tacggtggta cttacaacca attcaaaatt 360 tcattcaaaa gatttggtat tgaagctaga ttcgttgaag gcgataatcc agaagaattt 420 gaaaaggttt ttgatgaaag aactaaagct gtttatttgg aaactattgg taacccaaag 480 tacaatgttc ctgatttcga aaagattgtt gctattgctc ataagcatgg tattccagtt 540 gtcgttgata atactttcgg tgctggtggt tatttctgtc aaccaattaa gtacggtgct 600 gatattgtta cccattctgc tactaagtgg attggtggtc atggcactac tatcggtggt 660 attatcgttg attccggtaa attcccttgg aaggattacc cagaaaagtt cccacaattc 720 tctcaaccag ctgaaggtta ccatggcact atctacaacg aagcctacgg taacttggct 780 tacatcgttc atgttagaac tgaattattg agagatttgg gtccattgat gaatccattc 840 gcttcattcc tacttttaca aggtgttgaa accttgtctt taagagccga aagacatggt 900 gaaaacgcct taaagttggc taaatggttg gaacaatccc catatgtctc ttgggtctct 960 tatccaggtt tggcttcaca ttcccatcat gaaaacgcta agaagtactt gtccaatggt 1020 ttcggtggtg ttttgtcttt tggtgttaaa gatttgccaa atgctgataa agaaactgat 1080 ccattcaagt tatctggtgc tcaagttgtt gataacttaa agttagcttc taatttggct 1140 aacgttggtg acgccaagac tttggtcatt gctccatact tcactactca taagcaattg 1200 aatgacaagg agaagttggc ttctggtgtt actaaggatt tgattagagt ttctgttggt 1260 attgagttta ttgatgatat tattgctgat ttccaacaat cttttgaaac tgtttttgct 1320 ggtcaaaagc cataa 1335 <210> 11 <211> 1524 <212> DNA <213> Artificial Sequence <220> <223> CYS4 <400> 11 atgactaagt ctgaacaaca agctgattct agacataatg ttattgatct agtcggtaac 60 actccattga ttgctttaaa gaaattgcca aaggctttgg gtattaagcc acaaatctac 120 gctaagttgg aattgtataa cccaggtggt agtattaagg atagaattgc taagtcaatg 180 gttgaagaag ctgaggcttc cggtcgtatt catccatcta gaagtacttt gattgaacct 240 acttcaggta atactggtat tggtttagcc ttgattggtg ctattaaggg ttacagaact 300 atcattacct tgcctgaaaa gatgagtaat gaaaaagttt ctgttttgaa ggctttaggt 360 gctgaaatta tcagaactcc aacagctgct gcttgggatt ccccagaatc tcacattggt 420 gtcgctaaaa aattagaaaa ggaaattcca ggtgctgtta ttttagatca atacaacaat 480 atgatgaatc cagaagctca ttacttcggt actggtcgtg aaattcaaag gcaattggaa 540 gatttgaact tgttcgataa tttgagagct gtcgttgccg gtgctggtac tggtggtacc 600 atctccggta tttcaaagta cttgaaggaa caaaacgata aaattcaaat cgttggtgcc 660 gatccttttg gttctatctt ggctcaacct gaaaacttaa ataagactga tattactgac 720 tacaaggttg aaggtattgg ttatgatttt gttccacaag ttttagatag aaagttgatt 780 gatgtttggt ataagactga cgataagcca tctttcaaat acgctagaca attaatttct 840 aacgaaggtg ttttggtcgg tggttcctcc ggttctgcct ttactgctgt cgttaaatat 900 tgtgaagatc accctgaact aaccgaagat gatgttattg ttgctatttt tccagattcc 960 atcagatcat acttgactaa gttcgttgat gatgaatggt tgaagaagaa caatttgtgg 1020 gatgatgacg ttttagccag attcgactct tctaaattag aagccagcac aactaagtac 1080 gctgatgttt ttggtaatgc cactgttaag gatttgcatt tgaagccagt tgtctccgta 1140 aaggaaactg ctaaagttac tgatgtcatt aagatcttga aagataacgg ttttgatcaa 1200 ttgccagttt tgactgaaga tggtaaattg tctggtttgg ttaccttgtc tgagttgtta 1260 agaaagttgt ccattaacaa ctctaacaat gataatacta ttaagggcaa gtatttggac 1320 ttcaagaagt tgaacaactt caacgatgtt tcttcttaca acgaaaacaa gtctggcaag 1380 aagaaattca tcaagttcga tgaaaattct aagttgtctg atttgaatag attcttcgag 1440 aaaaattcat ctgctgttat tactgatggt ttgaagccaa ttcatattgt tactaagatg 1500 gatttgttgt cttacttggc ttaa 1524 <210> 12 <211> 2437 <212> DNA <213> Artificial Sequence <220> <223> CYC terminator-GPD promoter-CYS4 <400> 12 tcatgtaatt agttatgtca cgcttacatt cacgccctcc ccccacatcc gctctaaccg 60 aaaaggaagg agttagacaa cctgaagtct aggtccctat ttattttttt atagttatgt 120 tagtattaag aacgttattt atatttcaaa tttttctttt ttttctgtac agacgcgtgt 180 acgcatgtaa cattatactg aaaaccttgc ttgagaaggt tttgggacgc tcgaaggctt 240 taatttgcgg ccggtactca ttatcaatac tcgccatttc aaagaatacg taaataatta 300 atagtagtga ttttcctaac tttatttagt caaaaaatta gccttttaat tctgctgtaa 360 cccgtacatg cccaaaatag ggggcgggtt acacagaata tataacatcg taggtgtctg 420 ggtgaacagt ttattcctgg catccactaa atataatgga gcccgctttt taagctggca 480 tccagaaaaa aaaagaatcc cagcaccaaa atattgtttt cttcaccaac catcagttca 540 taggtccatt ctcttagcgc aactacagag aacaggggca caaacaggca aaaaacgggc 600 acaacctcaa tggagtgatg caacctgcct ggagtaaatg atgacacaag gcaattgacc 660 cacgcatgta tctatctcat tttcttacac cttctattac cttctgctct ctctgatttg 720 gaaaaagctg aaaaaaaagg ttgaaaccag ttccctgaaa ttattcccct acttgactaa 780 taagtatata aagacggtag gtattgattg taattctgta aatctatttc ttaaacttct 840 taaattctac ttttatagtt agtctttttt ttagttttaa aacaccagaa cttagtttcg 900 acggattcta gaaatgacta agtctgaaca acaagctgat tctagacata atgttattga 960 tctagtcggt aacactccat tgattgcttt aaagaaattg ccaaaggctt tgggtattaa 1020 gccacaaatc tacgctaagt tggaattgta taacccaggt ggtagtatta aggatagaat 1080 tgctaagtca atggttgaag aagctgaggc ttccggtcgt attcatccat ctagaagtac 1140 tttgattgaa cctacttcag gtaatactgg tattggttta gccttgattg gtgctattaa 1200 gggttacaga actatcatta ccttgcctga aaagatgagt aatgaaaaag tttctgtttt 1260 gaaggcttta ggtgctgaaa ttatcagaac tccaacagct gctgcttggg attccccaga 1320 atctcacatt ggtgtcgcta aaaaattaga aaaggaaatt ccaggtgctg ttattttaga 1380 tcaatacaac aatatgatga atccagaagc tcattacttc ggtactggtc gtgaaattca 1440 aaggcaattg gaagatttga acttgttcga taatttgaga gctgtcgttg ccggtgctgg 1500 tactggtggt accatctccg gtatttcaaa gtacttgaag gaacaaaacg ataaaattca 1560 aatcgttggt gccgatcctt ttggttctat cttggctcaa cctgaaaact taaataagac 1620 tgatattact gactacaagg ttgaaggtat tggttatgat tttgttccac aagttttaga 1680 tagaaagttg attgatgttt ggtataagac tgacgataag ccatctttca aatacgctag 1740 acaattaatt tctaacgaag gtgttttggt cggtggttcc tccggttctg cctttactgc 1800 tgtcgttaaa tattgtgaag atcaccctga actaaccgaa gatgatgtta ttgttgctat 1860 ttttccagat tccatcagat catacttgac taagttcgtt gatgatgaat ggttgaagaa 1920 gaacaatttg tgggatgatg acgttttagc cagattcgac tcttctaaat tagaagccag 1980 cacaactaag tacgctgatg tttttggtaa tgccactgtt aaggatttgc atttgaagcc 2040 agttgtctcc gtaaaggaaa ctgctaaagt tactgatgtc attaagatct tgaaagataa 2100 cggttttgat caattgccag ttttgactga agatggtaaa ttgtctggtt tggttacctt 2160 gtctgagttg ttaagaaagt tgtccattaa caactctaac aatgataata ctattaaggg 2220 caagtatttg gacttcaaga agttgaacaa cttcaacgat gtttcttctt acaacgaaaa 2280 caagtctggc aagaagaaat tcatcaagtt cgatgaaaat tctaagttgt ctgatttgaa 2340 tagattcttc gagaaaaatt catctgctgt tattactgat ggtttgaagc caattcatat 2400 tgttactaag atggatttgt tgtcttactt ggcttaa 2437 <210> 13 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Met17-Spe-F <400> 13 aaaatagtat gccatctcac tttgatacc 29 <210> 14 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> Met17-BamH-R <400> 14 ttggatcctt atggcttttg accagcaa 28 <210> 15 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> GPD400-BamNhe-F <400> 15 ttggatcctc atgtaattag ttatgtcacg ct 32 <210> 16 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Cys4-Pst-R <400> 16 ttctgcagtt aagccaagta agacaacaa 29 <210> 17 <211> 1185 <212> DNA <213> Artificial Sequence <220> <223> CYS3 <400> 17 atgactttgc aagaatctga taaattcgct actaaggcta ttcatgctgg tgaacatgtt 60 gatgttcatg gttctgttat tgaaccaatt tctttatcta ctactttcaa gcaatcttcc 120 ccagctaatc caattggtac ttacgaatat tctagatccc aaaatccaaa cagagaaaac 180 ttagaaagag ctgttgctgc tttagaaaac gctcaatacg gtttggcctt ctcttccggt 240 tctgctacta ccgctactat tttgcaatct ttgccacaag gttctcatgc tgtttctatc 300 ggagatgttt acggtggtac tcatagatat tttactaaag ttgctaacgc tcacggtgtt 360 gaaacctcct tcactaacga tttgttgaac gacttaccac aattgattaa ggaaaataca 420 aaattggttt ggattgaaac accaactaac ccaactttaa aggttaccga cattcaaaaa 480 gtcgctgatt tgattaagaa acatgctgct ggtcaagatg ttattttagt tgttgataat 540 actttcttgt ctccatatat ctctaaccca ttgaacttcg gtgctgatat cgttgtgcat 600 tctgctacca agtacattaa cggtcactct gatgttgttt taggtgtttt agctactaac 660 aataagccat tatacgaaag attgcaattc ttacaaaatg ctatcggtgc tattccatct 720 ccattcgatg cttggttgac tcacagaggt ttgaaaactt tgcacttgag agttagacaa 780 gctgctttgt ctgctaacaa gatcgctgaa tttttggctg ctgataagga aaacgtcgtt 840 gctgttaact accctggttt aaagactcat ccaaactacg atgttgtctt gaagcaacac 900 agagatgctt taggtggtgg tatgatttct ttcagaatta agggtggtgc tgaagctgct 960 tctaaattcg cttcttctac tagattgttt acattggctg aatctttggg tggtattgaa 1020 tctttgttgg aagttccagc tgttatgacc cacggtggta ttccaaagga agctagagaa 1080 gcctctggtg ttttcgatga tttggttaga atttccgttg gtattgaaga tactgatgat 1140 ttgttggaag atattaagca agccttgaag caagctacta actaa 1185 <210> 18 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> CYC-GPD-SalI-F <400> 18 aagtcgactc atgtaattag ttatgtcacg 30 <210> 19 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> CYC-GPD-NotISalI-R <400> 19 ttgtcgacgc ggccgcttct agaatccgtc gaaactaag 39 <210> 20 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> CYS3-NotI-F <400> 20 aagcggccgc atgactttgc aagaatctga ta 32 <210> 21 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> CYS3-NotI-R <400> 21 ttgcggccgc ttagttagta gcttgcttca ag 32 <110> Kolon Industries, Inc. <120> Recombinant yeast with enhanced ergothioneine productivity and method for producing ergothioneine using the same <130> PN200346 <160> 21 <170> KoPatentIn 3.0 <210> 1 <211> 2631 <212> DNA <213> Artificial Sequence <220> <223> EGT1 <400> 1 atgccatctg ctgaatctat gactccatct tctgctttgg gtcaattgaa agctactggt 60 caacatgtct tgtccaagtt gcaacaacaa acttccaacg ccgatatcat cgatattaga 120 agagttgccg ttgagatcaa cttgaaaacc gaaattacct ccatgttcag accaaaagat 180 ggtccaagac aattgccaac cttgttgttg tataacgaaa gaggcttgca gttgttcgaa 240 agaattactt acttggaaga gtactacttg accaacgacg agattaagat tttgactaag 300 cacgctactg aaatggcctc ttttattcca tctggtgcca tgattatcga actaggttct 360 ggtaatttga ggaaggtcaa cttgttgtta gaagctttgg ataatgctgg taaggccatt 420 gattattacg ccttggattt gtccagagaa gaattggaaa gaaccttggc tcaagtccca 480 tcttacaaac atgttaagtg tcatggtttg ttgggtactt acgatgatgg tagagattgg 540 ttgaaagctc cagaaaacat caacaagcaa aagtgcatac tgcatctggg ttcttctatt 600 ggtaacttca atagatctga tgctgccact tttttgaagg gtttcactga tg ttttgggt 660 ccaaacgata agatgttgat tggtgttgat gcttgtaacg atccagctag agtttaccat 720 gcttacaatg ataaggttgg tatcacccac gaattcatct tgaatggttt gagaaacgcc 780 aacgaaatta ttggtgaaac cgctttcatt gaaggtgatt ggagagttat cggtgaatac 840 gtttatgatg aagaaggtgg tagacatcaa gctttttatg ctccaactag agataccatg 900 gttatgggtg aattgatcag atcccatgac agaatccaaa tcgaacagtc tctgaagtac 960 tccaaagagg aatctgaaag attgtggtct actgctggtt tggaacaagt ttctgaatgg 1020 acttacggta atgaatacgg tttacatttg ttggccaagt ccagaatgtc cttctcattg 1080 attccatcag tttacgctag atctgctttg ccaactttgg atgattggga agctttgtgg 1140 gctacttggg atgttgttac tagacaaatg ttgccacaag aggaattatt ggagaagcca 1200 atcaagttga gaaatgcctg cattttctac ttgggtcata tcccaacttt cttggatatt 1260 cagttgacta agactaccaa gcaagctcca tctgaaccag ctcatttctg taagattttc 1320 gaaaggggta tcgatccaga tgttgacaat ccagaattgt gtcatgccca ttctgaaatt 1380 ccagatgaat ggccaccagt tgaagaaatt ttgacttacc aagaaaccgt cagatctaga 1440 ttgagaggtc tatatgctca tggtattgcc aacattccaa gaaatgtcgg tagagctatt 150 0 tgggttggtt tcgaacatga attgatgcac atcgagactc tgttgtacat gatgttgcaa 1560 tctgacaaga ccttgattcc aactcatatt ccaagaccag atttcgataa gttggctaga 1620 aaagccgaat cagaaagggt tccaaatcaa tggtttaaga tcccagctca agaaatcact 1680 attggtttgg atgaccctga agatggttcc gatattaaca aacattacgg ttgggataac 1740 gagaagccac caagaagagt tcaagttgct gcttttcaag ctcaaggtag accaattaca 1800 aacgaagaat acgcccaata cttgttggaa aagaacattg ataagttgcc agcttcttgg 1860 gctagattgg ataacgaaaa catttctaac ggcaccacca attctgtttc tggtcatcat 1920 tctaacagaa cctccaaaca acaactgcca tcttcattct tggaaaaaac tgctgttaga 1980 accgtttacg gtttggttcc attgaaacat gctttggatt ggccagtttt tgcttcctat 2040 gatgaattgg ctggttgtgc tgcttatatg ggtggtagaa ttccaacttt cgaagaaacc 2100 agatctatct acgcttatgc tgatgctctg aagaagaaga aagaagctga aagacaactg 2160 ggtagaactg ttccagctgt taatgctcat ttgactaaca acggtgttga aattactcct 2220 ccatcatcac catcatctga aactccagca gaatcttctt caccatctga ttctaacact 2280 accttgatta ccaccgagga tttgttctct gatttggatg gtgctaatgt tggtttccat 2340 aatt ggcatc caatgcctat tacttctaag ggtaatacct tggtcggtca aggtgaatta 2400 ggtggtgttt gggaatggac atcttccgtt ttgagaaaat gggaaggttt tgagccaatg 2460 gaattatacc caggttacac tgctgatttc tttgacgaaa agcacaacat cgttttaggt 2520 ggttcatggg ctactcatcc aagaattgct ggtagaaagt cttttgtcaa ctggtatcaa 2580 agaaactacc catatgcatg ggttggtgct agagttgtta gagatttgtg a 2631 <210> 2 <211> 1422 <212> DNA <213> Artificial Sequence <220> <223> EGT2 <400> 2 atggttgcta ctactgttga attgccattg caacaaaaag ctgatgctgc tcaaactgtt 60 actggtccat tgccatttgg taacagcttg ttgaaagaat tcgttttgga tccagcctac 120 agaaacttga atcatggttc ttttggtact atcccatccg ctattcaaca gaagttgaga 180 tcttatcaaa ctgctgctga agctagacca tgtccatttt tgagatatca aaccccagtt 240 ttgttggacg aatctagagc tgctgttgct aatttgttga aggttccagt tgaaaccgtt 300 gttttcgttg ctaatgctac tatgggtgtc aacactgttt tgagaaatat cgtttggtct 360 gctgatggta aggacgaaat cttgtacttt gatacaatct acggtgcttg cggtaagacc 420 attgattatg ttatcgaaga taagaggggc atcgtttcag ccg agattt accttcct ctagatgt ga tgttgttgca gcttttagag atgccatcaa gaagtctaga 540 gaagaaggta aaagaccaag attggccgtt atcgatgttg tttcttctat gccaggtgtt 600 agattcccat tcgaagatat cgttaagatc tgcaaagagg aagagatcat ttcttgcgtt 660 gatggtgctc aaggtattgg tatggttgat ttgaagatta ccgaaaccga tccagacttc 720 ctgatttcta attgtcataa gtggttgttc accccaagag gttgtgctgt tttttatgtt 780 ccagtcagaa accagcactt gatcagatct actttgccaa cttctcatgg tttcgttcca 840 caagttggta atagattcaa tccattggtt ccagctggta acaagtctgc ttttgtttct 900 aacttcgaat tcgttggtac tgtcgataac tctccattct tctgtgttaa ggatgctatt 960 aagtggcgtg aagaggtttt aggtggtgaa gaaagaatta tggagtacat gactaagttg 1020 gctagagaag gtggtcaaaa ggttgctgaa attttgggta ctagagtctt ggaaaactct 1080 accggtacat tgattagatg cgccatggtt aatattgcct tgccttttgt tgttggtgaa 1140 gatccaaaag ctccagttaa gttgaccgaa aaagaagaaa aagacgtcga aggcttgtac 1200 gaaattccac atgaagaggc taatatggct ttcaagtgga tgtacaacgt attgcaagat 1260 gagttcaata ccttcgttcc aatgaccttt catagacgta gattttgggc tagattgtcc 1320 gctcaagttt acttggaaat gtctgatttt gaatgggctg gcaagacctt aaaagaattg 1380 tgtgaaaggg ttgctaaggg cgagtacaaa gaatctgctt aa 1422 <210> 3 <211> 913 <212> DNA <213> Artificial Sequence <220> <223> CYC terminator-GPD promoter <400> ccagttatacgtcacctagttac agttagacaa cctgaagtct aggtccctat ttattttttt atagttatgt 120 tagtattaag aacgttattt atatttcaaa tttttctttt ttttctgtac agacgcgtgt 180 acgcatgtaa cattatactg aaaaccttgc ttgagaaggt tttgggacgc tcgaaggctt 240 taatttgcgg ccggtactca ttatcaatac tcgccatttc aaagaatacg taaataatta 300 atagtagtga ttttcctaac tttatttagt caaaaaatta gccttttaat tctgctgtaa 360 cccgtacatg cccaaaatag ggggcgggtt acacagaata tataacatcg taggtgtctg 420 ggtgaacagt ttattcctgg catccactaa atataatgga gcccgctttt taagctggca 480 tccagaaaaa aaaagaatcc cagcaccaaa atattgtttt cttcaccaac catcagttca 540 taggtccatt ctcttagcgc aactacagag aacaggggca caaacaggca aaaaacgggc 600 acaacctcaa tggagtgatg caacctgcct ggagtaaaatg tgactcactag g ttac cttctgctct ctctgatttg 720 gaaaaagctg aaaaaaaagg ttgaaaccag ttccctgaaa ttattcccct acttgactaa 780 taagtatata aagacggtag gtattgattg taattctgta aatctatttc ttaaacttct 840 taaattctac ttttatagtt agtctttttt ttagttttaa aacaccagaa cttagtttcg 900 acggattcta gaa 913 <210> 4 <211> 26 <212> DNA <213> Artificial Sequence <220> <223 > EGT1-Bam-F <400> 4 aaggatccat gccatctgct gaatct 26 <210> 5 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> EGT1-PstSalI-R <400> 5 aagtcgacct gcagtcacaa atctctaaca ac 32 <210> 6 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> CYC-GPD-PstI-F <400> 6 aactgcagtc atgtaattag ttatgtcacg 30 <210> 7 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> CYC-GPD-NotPstI-R <400> 7 ttctgcaggc ggccgcttct agaatccgtc gaaactaag 39 <210> 8 <211> 34 <212> DNA <213> Artificial Sequence <220> <223 > EGT2-NotI-F <400> 8 aagcggccgc atggttgcta ctactgttga attg 34 <210> 9 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> EGT2-Sal-R <400> 9 ttgtcgactt aagcagattc tttg tac 27 <210> 10 <211> 1335 <212> DNA <213> Artificial Sequence <220> <223> MET17 <400> 10 atgccatctc actttgatac cgttcaatta catgctggtc aagaaaaccc aggcgataac 60 gctcatagat ctagatta taggctgt tccaatcta gt tattattattt cggtaatta gttattattattt cggtaatta 180 aacccaactt ctaacgtctt ggaagaaaga atcgctgctt tggaaggtgg tgctgctgcc 240 ttggctgttt cttccggtca agctgctcaa acattggcta ttcaaggttt agctcacact 300 ggtgacaaca ttgtttctac ttcttacttg tacggtggta cttacaacca attcaaaatt 360 tcattcaaaa gatttggtat tgaagctaga ttcgttgaag gcgataatcc agaagaattt 420 gaaaaggttt ttgatgaaag aactaaagct gtttatttgg aaactattgg taacccaaag 480 tacaatgttc ctgatttcga aaagattgtt gctattgctc ataagcatgg tattccagtt 540 gtcgttgata atactttcgg tgctggtggt tatttctgtc aaccaattaa gtacggtgct 600 gatattgtta cccattctgc tactaagtgg attggtggtc atggcactac tatcggtggt 660 attatcgttg attccggtaa attcccttgg aaggattacc cagaaaagtt cccacaattc 720 acctcaaccag ctgaaggtta ccatggcact 780 ctacaaccagg ctgaaggtta ccatggcact acatcgttc atgttagaac tgaattattg agagatttgg gtccattgat gaatccattc 840 gcttcattcc tacttttaca aggtgttgaa accttgtctt taagagccga aagacatggt 900 gaaaacgcct taaagttggc taaatggttg gaacaatccc catatgtctc ttgggtctct 960 tatccaggtt tggcttcaca ttcccatcat gaaaacgcta agaagtactt gtccaatggt 1020 ttcggtggtg ttttgtcttt tggtgttaaa gatttgccaa atgctgataa agaaactgat 1080 ccattcaagt tatctggtgc tcaagttgtt gataacttaa agttagcttc taatttggct 1140 aacgttggtg acgccaagac tttggtcatt gctccatact tcactactca taagcaattg 1200 aatgacaagg agaagttggc ttctggtgtt actaaggatt tgattagagt ttctgttggt 1260 attgagttta ttgatgatat tattgctgat ttccaacaat cttttgaaac tgtttttgct 1320 ggtcaaaagc cataa 1335 <210> 11 <211> 1524 <212> DNA <213> Artificial Sequence <220> <223> CYS4 <400> 11 atgactaagt ctgaacaaca agctgattct agacataatg ttattgatct agtcggtaac 60 actccattga ttgctttaaa gaaattgcca aaggctttgg gtattaagcc acaaatctac 120 gctaagttgg aattgtataa cccaggtggt agtattaagg atagaattgc taagtcaatg 180 gtacttgaagaag ctgaggcttc cggtcgtatt tt gattgaacct 240 acttcaggta atactggtat tggtttagcc ttgattggtg ctattaaggg ttacagaact 300 atcattacct tgcctgaaaa gatgagtaat gaaaaagttt ctgttttgaa ggctttaggt 360 gctgaaatta tcagaactcc aacagctgct gcttgggatt ccccagaatc tcacattggt 420 gtcgctaaaa aattagaaaa ggaaattcca ggtgctgtta ttttagatca atacaacaat 480 atgatgaatc cagaagctca ttacttcggt actggtcgtg aaattcaaag gcaattggaa 540 gatttgaact tgttcgataa tttgagagct gtcgttgccg gtgctggtac tggtggtacc 600 atctccggta tttcaaagta cttgaaggaa caaaacgata aaattcaaat cgttggtgcc 660 gatccttttg gttctatctt ggctcaacct gaaaacttaa ataagactga tattactgac 720 tacaaggttg aaggtattgg ttatgatttt gttccacaag ttttagatag aaagttgatt 780 gatgtttggt ataagactga cgataagcca tctttcaaat acgctagaca attaatttct 840 aacgaaggtg ttttggtcgg tggttcctcc ggttctgcct ttactgctgt cgttaaatat 900 tgtgaagatc accctgaact aaccgaagat gatgttattg ttgctatttt tccagattcc 960 atcagatcat acttgactaa gttcgttgat gatgaatggt tgaagaagaa caatttgtgg 1020 gatgatgacg ttttagccag attcgactct tctaaattag aagccagcac aactaagtac 1080 gctgatgttt ttggtaatgc cactgttaag gatttgcatt tgaagccagt tgtctccgta 1140 aaggaaactg ctaaagttac tgatgtcatt aagatcttga aagataacgg ttttgatcaa 1200 ttgccagttt tgactgaaga tggtaaattg tctggtttgg ttaccttgtc tgagttgtta 1260 agaaagttgt ccattaacaa ctctaacaat gataatacta ttaagggcaa gtatttggac 1320 ttcaagaagt tgaacaactt caacgatgtt tcttcttaca acgaaaacaa gtctggcaag 1380 aagaaattca tcaagttcga tgaaaattct aagttgtctg atttgaatag attcttcgag 1440 aaaaattcat ctgctgttat tactgatggt ttgaagccaa ttcatattgt tactaagatg 1500 gatttgttgt cttacttggc ttaa 1524 <210> 12 <211> 2437 <212> DNA <213> Artificial Sequence <220> <223> CYC terminator-GPD promoter-CYS4 <400> 12 tcatgtaatt agttatgtca cgcttacatt cacgccctcc cgacattagtct gctctaacct ttagtagtacta cct attatagatagtt atagt 120 tagtattaag aacgttattt atatttcaaa tttttctttt ttttctgtac agacgcgtgt 180 acgcatgtaa cattatactg aaaaccttgc ttgagaaggt tttgggac tacaatac tcgaaggcttt 240 c taggtatagac ttacaatac tcgaaggctta tttcctaac tttatttagt caaaaaatta gccttttaat tctgctgtaa 360 cccgtacatg cccaaaatag ggggcgggtt acacagaata tataacatcg taggtgtctg 420 ggtgaacagt ttattcctgg catccactaa atataatgga gcccgctttt taagctggca 480 tccagaaaaa aaaagaatcc cagcaccaaa atattgtttt cttcaccaac catcagttca 540 taggtccatt ctcttagcgc aactacagag aacaggggca caaacaggca aaaaacgggc 600 acaacctcaa tggagtgatg caacctgcct ggagtaaatg atgacacaag gcaattgacc 660 cacgcatgta tctatctcat tttcttacac cttctattac cttctgctct ctctgatttg 720 gaaaaagctg aaaaaaaagg ttgaaaccag ttccctgaaa ttattcccct acttgactaa 780 taagtatata aagacggtag gtattgattg taattctgta aatctatttc ttaaacttct 840 taaattctac ttttatagtt agtctttttt ttagttttaa aacaccagaa cttagtttcg 900 acggattcta gaaatgacta agtctgaaca acaagctgat tctagacata atgttattga 960 tctagtcggt aacactccat tgattgcttt aaagaaattg ccaaaggctt tgggtattaa 1020 gccacaaatc tacgctaagt tggaattgta taacccaggt ggtagtatta aggatagaat 1080 tgctaagtca atggttgaag aagctgaggc ttccggtcgt attcatccat ctagaagtac 1140 tttgattgaa cctacttcag gtaatac tgg tattggttta gccttgattg gtgctattaa 1200 gggttacaga actatcatta ccttgcctga aaagatgagt aatgaaaaag tttctgtttt 1260 gaaggcttta ggtgctgaaa ttatcagaac tccaacagct gctgcttggg attccccaga 1320 atctcacatt ggtgtcgcta aaaaattaga aaaggaaatt ccaggtgctg ttattttaga 1380 tcaatacaac aatatgatga atccagaagc tcattacttc ggtactggtc gtgaaattca 1440 aaggcaattg gaagatttga acttgttcga taatttgaga gctgtcgttg ccggtgctgg 1500 tactggtggt accatctccg gtatttcaaa gtacttgaag gaacaaaacg ataaaattca 1560 aatcgttggt gccgatcctt ttggttctat cttggctcaa cctgaaaact taaataagac 1620 tgatattact gactacaagg ttgaaggtat tggttatgat tttgttccac aagttttaga 1680 tagaaagttg attgatgttt ggtataagac tgacgataag ccatctttca aatacgctag 1740 acaattaatt tctaacgaag gtgttttggt cggtggttcc tccggttctg cctttactgc 1800 tgtcgttaaa tattgtgaag atcaccctga actaaccgaa gatgatgtta ttgttgctat 1860 ttttccagat tccatcagat catacttgac taagttcgtt gatgatgaat ggttgaagaa 1920 gaacaatttg tgggatgatg acgttttagc cagattcgac tcttctaaat tagaagccag 1980 cacaactaag tacgctgatg tttttggtaa tg ccactgtt aaggatttgc atttgaagcc 2040 agttgtctcc gtaaaggaaa ctgctaaagt tactgatgtc attaagatct tgaaagataa 2100 cggttttgat caattgccag ttttgactga agatggtaaa ttgtctggtt tggttacctt 2160 gtctgagttg ttaagaaagt tgtccattaa caactctaac aatgataata ctattaaggg 2220 caagtatttg gacttcaaga agttgaacaa cttcaacgat gtttcttctt acaacgaaaa 2280 caagtctggc aagaagaaat tcatcaagtt cgatgaaaat tctaagttgt ctgatttgaa 2340 tagattcttc gagaaaaatt catctgctgt tattactgat ggtttgaagc caattcatat 2400 tgttactaag atggatttgt tgtcttactt ggcttaa 2437 <210> 13 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Met17-Spe-F <400> 13 aaaatagtat gccatctcac tttgatacc 29 <210> 14 <211> 28 <212> DNA < 213> Artificial Sequence <220> <223> Met17-BamH-R <400> 14 ttggatcctt atggcttttg accagcaa 28 <210> 15 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> GPD400-BamNhe- F <400> 15 ttggatcctc atgtaattag ttatgtcacg ct 32 <210> 16 <211> 29 <212> DNA <213> Artificial Sequence <220> <223> Cys4-Pst-R <400> 16 ttctgcagtt aagccaagta agacaacaa 29 <210> 17 <211> 1185 <212> DNA <213> Artificial Sequence <220> <223> CYS3 <400> 17 atgactttgc aagaatctga taaattcgct actaaggcta ttcatgctgg tgaacatgtt 60 gatgttcatg gttctgttat tgaaccaatt tctttatcta ctactttcaa gcaatcttcc 120 ccagctaatc caattggtac ttacgaatat tctagatccc aaaatccaaa cagagaaaac 180 ttagaaagag ctgttgctgc tttagaaaac gctcaatacg gtttggcctt ctcttccggt 240 tctgctacta ccgctactat tttgcaatct ttgccacaag gttctcatgc tgtttctatc 300 ggagatgttt acggtggtac tcatagatat tttactaaag ttgctaacgc tcacggtgtt 360 gaaacctcct tcactaacga tttgttgaac gacttaccac aattgattaa ggaaaataca 420 aaattggttt ggattgaaac accaactaac ccaactttaa aggttaccga cattcaaaaa 480 gtcgctgatt tgattaagaa acatgctgct ggtcaagatg ttattttagt tgttgataat 540 actttcttgt ctccatatat ctctaaccca ttgaacttcg gtgctgatat cgttgtgcat 600 tctgctacca agtacattaa cggtcactct gatgttgttt taggtgtttt agctactaac 660 aataagccat tatacgaaag attgcaattc ttacaaaatg ctatcggtgc tattccatct 720 ccacattcgatg cttggttgac t tcacagatgttag acaa t gaacagtgt t ttgt ctgctaacaa gatcgctgaa tttttggctg ctgataagga aaacgtcgtt 840 gctgttaact accctggttt aaagactcat ccaaactacg atgttgtctt gaagcaacac 900 agagatgctt taggtggtgg tatgatttct ttcagaatta agggtggtgc tgaagctgct 960 tctaaattcg cttcttctac tagattgttt acattggctg aatctttggg tggtattgaa 1020 tctttgttgg aagttccagc tgttatgacc cacggtggta ttccaaagga agctagagaa 1080 gcctctggtg ttttcgatga tttggttaga atttccgttg gtattgaaga tactgatgat 1140 ttgttggaag atattaagca agccttgaag caagctacta actaa 1185 <210 > 18 <211> 30 <212> DNA <213> Artificial Sequence <220> <223> CYC-GPD-SalI-F <400> 18 aagtcgactc atgtaattag ttatgtcacg 30 <210> 19 <211> 39 <212> DNA <213 > Artificial Sequence <220> <223> CYC-GPD-NotISalI-R <400> 19 ttgtcgacgc ggccgcttct agaatccgtc gaaactaag 39 <210> 20 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> CYS3- NotI-F <400> 20 aagcggccgc atgactttgc aagaatctga ta 32 <210> 21 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> CYS3-NotI-R<400> 21 ttgcggccgc ttagttagta gcttgcttca ag 32

Claims (4)

EGT1, EGT2 및 MET17 유전자를 과발현하여 에르고티오네인 생산능이 향상된 재조합 효모.
Recombinant yeast with improved ergothioneine production ability by overexpressing EGT1, EGT2 and MET17 genes.
청구항 1에 있어서,
상기 EGT1 유전자는 서열번호 1의 염기서열로 표시되는 것이고,
상기 EGT2 유전자는 서열번호 2의 염기서열로 표시되는 것이고,
상기 MET17 유전자는 서열번호 10의 염기서열로 표시되는 것인 재조합 효모.
The method according to claim 1,
The EGT1 gene is represented by the nucleotide sequence of SEQ ID NO: 1,
The EGT2 gene is represented by the nucleotide sequence of SEQ ID NO: 2,
The MET17 gene is a recombinant yeast represented by the nucleotide sequence of SEQ ID NO: 10.
청구항 1에 있어서,
상기 재조합 효모는 사카로미세스 세레비지애(Saccharomyces cerevisiae)인 것인 재조합 효모,
The method according to claim 1,
The recombinant yeast is Saccharomyces cerevisiae ( Saccharomyces cerevisiae ) The recombinant yeast,
i) 청구항 1의 재조합 효모를 배지에서 배양하는 단계; 및
ii) 상기 재조합 효모 또는 재조합 효모가 배양된 배양액으로부터 에르고티오네인을 회수하는 단계
를 포함하는 에르고티오네인의 생산 방법.
i) culturing the recombinant yeast of claim 1 in a medium; and
ii) recovering ergothioneine from the recombinant yeast or the culture medium in which the recombinant yeast is cultured
A method for producing ergothioneine comprising a.
KR1020200170514A 2020-12-08 2020-12-08 Recombinant yeast with enhanced ergothioneine productivity and method for producing ergothioneine using the same KR20220081067A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200170514A KR20220081067A (en) 2020-12-08 2020-12-08 Recombinant yeast with enhanced ergothioneine productivity and method for producing ergothioneine using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200170514A KR20220081067A (en) 2020-12-08 2020-12-08 Recombinant yeast with enhanced ergothioneine productivity and method for producing ergothioneine using the same

Publications (1)

Publication Number Publication Date
KR20220081067A true KR20220081067A (en) 2022-06-15

Family

ID=81987503

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200170514A KR20220081067A (en) 2020-12-08 2020-12-08 Recombinant yeast with enhanced ergothioneine productivity and method for producing ergothioneine using the same

Country Status (1)

Country Link
KR (1) KR20220081067A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101704381B1 (en) 2014-12-15 2017-02-08 전북대학교산학협력단 Method for producing Pleurotus ostreatus extract with enhanced ergothioneine content and Pleurotus ostreatus extract produced by the same method
KR101832396B1 (en) 2009-10-06 2018-02-26 테트라에드롱 Method for the synthesis of ergothioneine and the like
KR102116734B1 (en) 2012-12-21 2020-05-29 핑후아 리오우 Ergothioneine production through metabolic engineering

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101832396B1 (en) 2009-10-06 2018-02-26 테트라에드롱 Method for the synthesis of ergothioneine and the like
KR102116734B1 (en) 2012-12-21 2020-05-29 핑후아 리오우 Ergothioneine production through metabolic engineering
KR101704381B1 (en) 2014-12-15 2017-02-08 전북대학교산학협력단 Method for producing Pleurotus ostreatus extract with enhanced ergothioneine content and Pleurotus ostreatus extract produced by the same method

Similar Documents

Publication Publication Date Title
CN111363759B (en) Construction method of recombinant yarrowia lipolytica for synthesizing erythritol and bacterial strain thereof
US9315784B2 (en) Modified transketolase and use thereof
CN114350727B (en) Method for synthesizing D-psicose by combining phosphorylation and ATP regeneration system
US10648005B2 (en) Transformed synechococcus elongatus strains having improved productivity of farnesene and use thereof
US20220380822A1 (en) Application of branched-chain a-ketoacid dehydrogenase complex in preparation of malonyl coenzyme a
CN110938649A (en) Protein synthesis system for improving expression quantity of foreign protein and application method thereof
KR101533350B1 (en) Recombinant microorganism with kauronic acid production ability and method for preparing kauronic acid using the same
KR20220081067A (en) Recombinant yeast with enhanced ergothioneine productivity and method for producing ergothioneine using the same
CN114426983B (en) Method for producing 5-aminolevulinic acid by knocking out transcription regulatory factor Ncgl0580 in corynebacterium glutamicum
CN112280797B (en) Can improve coenzyme Q in tomato 10 Content combined vector and construction method and application thereof
KR102433234B1 (en) Mutant of Corynebacterium glutamicum with enhanced L-citrulline productivity and method for preparing L-citrulline using the same
KR101677368B1 (en) A novel promoter and use thereof
KR101669044B1 (en) Recombinant microoganisms for producing steviolbioside and method for steviolbioside using the same
WO2020180736A9 (en) Production of cannabinoids using genetically engineered photosynthetic microorganisms
US7198932B1 (en) Gdp-4-keto-6-deoxy-d-mannose-3,5-epimerase-4-reductase gene derived from arabidopsis thaliana
KR102306725B1 (en) Genetically engineered yeast having acetoin producing ability and method for producing acetoin using the same
EA011257B1 (en) Improved enzymes
KR102424603B1 (en) A Mutants of Alcohol Dehydrogenase, and A Method for Preparing Aldehyde Compounds Using The Same
KR102614734B1 (en) Novel variant of 5-dehydro-2-deooxygluconokinase and method for producing 5&#39;-inosinic acid using the same
KR102614733B1 (en) Novel variant of phosphoenolpyruvate caboxylase and method for producing 5&#39;-inosinic acid using the same
KR102255175B1 (en) Recombinant yeasts of simultaneously producing ethanol and C4-organic acids
KR102613937B1 (en) Yeast strain in which all genes involved in galactose utilization are deleted and method for producing recombinant protein using the same
KR20240032256A (en) A mutated Wickerhammyces ciferrii strain over-producing tetraacetylphytosphingosine and process for preparing tetraacetylphytosphingosine using the same
EP1291417B1 (en) Novel (r)-2-hydroxy-3-phenylpropionate (d-phenyllactate) dehydrogenase and gene encoding the same
KR20230108790A (en) Mutant in Escherichia with enhanced L-histidine productivity and method for preparing L-histidine using the same