KR20220078435A - 블라인드 디코딩을 수행하는 단말, 이를 포함하는 통신 시스템 및 이들의 동작 방법 - Google Patents

블라인드 디코딩을 수행하는 단말, 이를 포함하는 통신 시스템 및 이들의 동작 방법 Download PDF

Info

Publication number
KR20220078435A
KR20220078435A KR1020210014401A KR20210014401A KR20220078435A KR 20220078435 A KR20220078435 A KR 20220078435A KR 1020210014401 A KR1020210014401 A KR 1020210014401A KR 20210014401 A KR20210014401 A KR 20210014401A KR 20220078435 A KR20220078435 A KR 20220078435A
Authority
KR
South Korea
Prior art keywords
terminal
decoding
control channel
candidate
blind decoding
Prior art date
Application number
KR1020210014401A
Other languages
English (en)
Inventor
임주혁
김대선
지호근
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to EP21209503.8A priority Critical patent/EP4009556A3/en
Priority to US17/539,710 priority patent/US20220182177A1/en
Priority to TW110145244A priority patent/TW202231113A/zh
Priority to CN202111466145.7A priority patent/CN114598435A/zh
Publication of KR20220078435A publication Critical patent/KR20220078435A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0036Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver
    • H04L1/0038Blind format detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04W72/042
    • H04W72/1289
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 개시의 예시적 실시예에 따른 단말의 동작 방법에 있어서, 기지국으로부터 하향링크 제어 채널을 수신하는 단계, 참조 정보를 기반으로 집성 레벨들(aggregation levels)에 대한 디코딩 우선 순위를 결정하는 단계, 상기 디코딩 우선 순위에 따라 상기 집성 레벨들 각각에 대응하는 제어 채널 후보들에 대한 후보 필터링 기반 블라인드 디코딩을 수행하는 단계 및 상기 디코딩 결과를 기반으로 하향링크 제어 정보를 수신하는 단계를 포함한다.

Description

블라인드 디코딩을 수행하는 단말, 이를 포함하는 통신 시스템 및 이들의 동작 방법{A UE performing blind decoding, communication system including same, and operation method thereof}
본 개시의 기술적 사상은 블라인드 디코딩을 수행하는 단말, 이를 포함하는 통신 시스템 및 이들의 동작 방법에 관한 것이다.
통신 시스템에서 하향링크와 상향링크 전송 채널들의 전송을 지원하려면 이와 관련된 하향링크 제어 정보(Downlink Control Information, DCI)가 필요하다. 단말은 기지국으로부터 하향링크 제어 채널을 수신하고, 하향링크 제어 채널에 대한 디코딩을 수행하여 디코딩 결과를 기반으로 하향링크 제어 정보를 수신할 수 있다.
한편, 하향링크 제어 채널은 다양한 포맷을 가질 수 있으며, 기지국으로부터 선택된 포맷은 단말이 미리 알 수 없다. 또한, 하향링크 제어 채널은 탐색 공간(search space)으로 정의된 시간/주파수 자원이 집합 내의 임의의 자원을 통해 전송될 수 있기 때문에, 하향링크 제어 채널이 전송되는 정확한 시간/주파수 자원이 단말에게 미리 알려지지 않는다. 따라서, 단말에서 하향링크 제어 채널에 대한 디코딩은 블라인드 디코딩(blind decoding)에 기반한다. 블라인드 디코딩이란 단말이 가능한 모든 하향링크 제어 채널의 포맷과 주어진 탐색 공간 내의 가능한 모든 시간/주파수 자원 조합에 대하여 하향링크 제어 채널에 대한 디코딩을 수행하는 동작을 일컫는다.
블라인드 디코딩이 수행되는 시간/주파수 자원 조합은 집성 레벨들 각각에 포함된 제어 채널 후보들을 포함할 수 있으며, 단말은 제어 채널 후보들 각각에 대한 디코딩 동작을 수행하게 된다. 차세대 통신에서 집성 레벨의 개수 및 제어 채널 후보들의 개수가 증가함에 따라 단말에서 블라인드 디코딩을 위해 들이는 시간 및 전력이 커지게 되어 단말의 성능 향상에 제약이 되는 문제가 있었다.
본 개시의 기술적 사상이 해결하려는 과제는 블라인드 디코딩에서의 불필요한 동작을 줄임으로써 블라인드 디코딩에서 소모되는 시간 및 전력을 줄이고, 궁극적으로 통신 성능을 개선하기 위한 단말, 이를 포함하는 통신 시스템 및 이들의 동작 방법을 제공하는 데에 있다.
본 개시의 예시적 실시예에 따른 단말의 동작 방법에 있어서, 기지국으로부터 하향링크 제어 채널을 수신하는 단계, 참조 정보를 기반으로 집성 레벨들(aggregation levels)에 대한 디코딩 우선 순위를 결정하는 단계, 상기 디코딩 우선 순위에 따라 상기 집성 레벨들 각각에 대응하는 제어 채널 후보들에 대한 후보 필터링 기반 블라인드 디코딩을 수행하는 단계 및 상기 디코딩 결과를 기반으로 하향링크 제어 정보를 수신하는 단계를 포함한다.
본 개시의 예시적 실시예에 따른 단말은, 기지국으로부터 하향링크 제어 채널을 수신하도록 구성된 집적 회로, 블라인드 디코딩 관련 참조 정보를 저장하도록 구성된 메모리 및 상기 참조 정보를 기반으로 집성 레벨들에 대한 디코딩 우선 순위를 결정하고, 상기 디코딩 우선 순위에 따라 상기 집성 레벨들 각각에 대응하는 제어 채널 후보들에 대한 후보 필터링 기반 블라인드 디코딩을 수행하며, 상기 디코딩 결과를 기반으로 하향링크 제어 정보를 수신하도록 구성된 프로세서를 포함한다.
본 개시의 예시적 실시예에 따른 기지국 및 이와 연결된 제1 단말을 포함하는 통신 시스템에 있어서, 상기 기지국은, 제1 하향링크 제어 채널을 상기 제1 단말에 전송하도록 구성되고, 상기 제1 단말은, 집성 레벨들의 제1 우선 순위를 기반으로 상기 집성 레벨들 각각에 대응하는 제1 제어 채널 후보들에 대한 제1 후보 필터링 기반 블라인드 디코딩을 수행하여 제1 하향링크 제어 정보를 수신하도록 구성된 것을 특징으로 한다.
본 개시의 예시적 실시예에 따른 단말은 PDCCH를 전송하는데에 이용 가능성이 높은 집성 레벨에 대한 블라인드 디코딩을 우선적으로 수행하고, 중첩되는 제어 채널 후보들을 블라인드 디코딩에서 제외함으로써 블라인드 디코딩에 소모되는 시간 및 전력을 최적화할 수 있으며, 결과적으로 단말의 통신 성능을 향상시킬 수 있는 효과가 있다.
본 개시의 예시적 실시예들에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 아니하며, 언급되지 아니한 다른 효과들은 이하의 기재로부터 본 개시의 예시적 실시예들이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 도출되고 이해될 수 있다. 즉, 본 개시의 예시적 실시예들을 실시함에 따른 의도하지 아니한 효과들 역시 본 개시의 예시적 실시예들로부터 당해 기술분야의 통상의 지식을 가진 자에 의해 도출될 수 있다.
도 1은 본 개시의 예시적 실시예에 따른 통신 시스템을 나타내는 블록도이다.
도 2는 도 1의 통신 시스템에서의 시간-주파수 영역의 기본 구조를 나타내는 도면이다.
도 3은 LTE를 지원하는 통신 시스템에서의 PDCCH와 EPDCCH를 도시한 도면이다.
도 4는 NR을 지원하는 통신 시스템에서의 PDCCH가 전송되는 제어 영역에 대한 일 예를 도시한 도면이다.
도 5는 NR을 지원하는 통신 시스템에서의 PDCCH를 구성하는 시간 및 주파수 자원의 기본 단위의 일 예를 보여주는 도면이다.
도 6a 및 도 6b는 본 개시의 예시적 실시예들이 적용되는 PDCCH의 탐색 공간의 일 예를 도시한 도면이다.
도 7은 본 개시의 예시적 실시예에 따른 단말의 동작 방법을 나타내는 순서도이다.
도 8a 및 도 8b는 본 개시의 예시적 실시예에 따른 단말의 참조 정보를 생성 및 저장하는 방법을 나타내는 순서도이다.
도 9는 도 7의 단계 S120을 본 개시의 예시적 실시예에 따라 구체적으로 나타내는 순서도이다.
도 10은 도 9로부터 제2 임계값을 이용한 DCI를 수신하기 위한 방법을 추가적으로 설명하기 위한 순서도이다.
도 11은 본 개시의 예시적 실시예에 따라 중첩되는 후보들을 블라인드 디코딩에서 제외하는 동작을 설명하기 위한 도면이다.
도 12는 본 개시의 예시적 실시예에 따른 단말의 제1 임계값을 이용한 동작 방법을 설명하기 위한 순서도이다.
도 13a 및 도 13b는 도 12의 구체적인 실시예를 설명하기 위한 순서도이다.
도 14는 본 개시의 예시적 실시예에 따른 단말의 블라인드 디코딩 방법을 설명하기 위한 순서도이다.
도 15는 도 14의 구체적인 실시예를 설명하기 위한 순서도이다.
도 16a 및 도 16b는 도 15에서의 실시예를 구체적으로 나타내는 도면이다.
도 17은 본 개시의 예시적 실시예에 따른 단말의 동작 방법을 설명하기 위한 순서도이다.
도 18 및 도 19는 본 개시의 예시적 실시예에 따른 통신 시스템의 동작 방법을 설명하기 위한 도면이다.
도 20은 본 개시의 예시적 실시 예에 따른 전자 장치를 나타내는 블록도이다.
도 21은 본 개시의 예시적 실시 예에 따른 디코딩 동작을 수행하는 통신 기기들을 나타내는 도면이다.
이하, 첨부한 도면을 참조하여 본 개시의 실시예들에 대해 상세히 설명한다.
도 1은 본 개시의 예시적 실시예에 따른 통신 시스템(1)을 나타내는 블록도이다. 통신 시스템(10)은 통신 시스템(1)은, 비제한적인 예시로서 NR(New Radio) 시스템, 5G(5th Generation) 시스템, LTE(Long Term Evolution) 시스템, CDMA(Code Division Multiple Access) 시스템, GSM(Global System for Mobile Communications) 시스템, WLAN(Wireless Local Area Network) 시스템 또는 다른 임의의 무선 통신 시스템일 수 있다. 이하에서, 통신 시스템(1)은 NR 시스템 또는 LTE 시스템 또는 NR와 LTE 기반 통신이 지원 가능한 시스템인 경우를 전제하여 서술하나, 본 개시의 기술적 사상이 이에 제한되지 아니하는 점은 이해될 것이다.
도 1을 참조하면, 통신 시스템(1)은 기지국(10) 및 단말(100)을 포함할 수 있다. 단말(100)은 무선 통신 장치로서, 이동성을 가질 수 있고, 기지국(10)과 하향링크 채널(DL) 및 상향링크 채널(UL)을 통해 통신하여 데이터 및 제어 정보를 송수신할 수 있다. 단말(100)은 일 예로, 이용이자 기기(User Equipment), MS(Mobile Station), MT(Mobile Terminal), 이용이자 단말(User Terminal), SS(Subscribe Station), 무선 장치(wireless device), 휴대 장치(handheld device) 등으로 지칭될 수 있다.
기지국(10)은 단말(100) 및/또는 다른 기지국과 통신하는 고정된 지점(fixed station)을 지칭할 수 있다. 기지국(10)은 일 예로, 실(Cell), Node B, eNB(evolved-Node B), 섹터(Sector), 싸이트(Site), BTS(Base Transceiver System), AP(Access Pint), 릴레이 노드(Relay Node), RRH(Remote Radio Head), RU(Radio Unit) 등으로 지칭될 수 있다.
하향링크 채널(DL)을 통해 전송되는 데이터(또는, 하향링크 데이터) 또는 상향링크 채널(UL)을 통해 전송되는 데이터(또는, 상향링크 데이터)에 대한 스케줄링 정보는 하향링크 제어 정보(Downlink Control Information; 이하, DCI로 지칭)에 포함되어 기지국(10)으로부터 단말(100)에 전달될 수 있다. DCI는 여러가지 포맷들로 정의되어 상향링크 데이터에 대한 스케줄링 정보인지 하향링크 데이터에 대한 스케줄링 정보인지 여부, 제어 정보의 크기가 작은 컴팩트 DCI 인지 여부, 다중 안테나를 이용한 공간 다중화(spatial multiplexing)을 적용하는지 여부, 전력 제어용 DCI 인지 여부 등에 따라 정해진 DCI 포맷을 적용하여 운용할 수 있다.
DCI는 채널 코딩 및 변조 과정을 거쳐 하향링크 제어 채널(Physical Downlink Control Channel, 이하, PDCCH로 지칭) 또는 EPDCCH(Enhanced PDCCH)를 통해 기지국(10)으로부터 단말(100)에 전송될 수 있다. 서술의 편의상 도 1에서는 본 개시의 예시적 실시예들을 PDCCH를 중심으로 서술하나, 이는 EPDCCH에 적용될 수 있음은 충분히 이해될 것이다. DCI(또는, DCI 메시지)의 페이로드(payload)에는 CRC(Cyclic Redundancy Check)가 붙으며, CRC는 단말(100)의 신원에 해당하는 RNTI(Radio Network Temporary Identifier)로 스크램블링(scrambling) 될 수 있다. 단말(100)은 PDCCH 상으로 전송되는 DCI를 수신하면 단말(100)은 할당받은 RNTI를 이용하여 CRC를 확인하고, CRC가 좋음으로 판별되면 해당 DCI는 해당 단말(100)에게 전송된 것임을 알 수 있다.
단말(100)은 복수의 안테나들(AT), RF(Radio Frequency) 집적회로(110), 베이스밴드 집적회로(120), 프로세서(130) 및 메모리(140)를 포함할 수 있다. 한편, 도 1에 도시된 단말(100)의 구현예는 예시적인 것에 불과한 바, 이에 제한되지 않고, 단말(100)은 더 많거나, 더 적은 구성을 포함할 수 있다. 또한, 일부 실시예에서 RF 집적회로(110) 및 베이스밴드 집적회로(120)는 하나의 집적회로에 포함되도록 구현될 수 있다.
RF 집적회로(110)는 신호의 대역 변환, 증폭 등 무선 채널을 통해 신호를 복수의 안테나들(AT)을 이용하여 송수신하기 위한 기능을 수행할 수 있다. 구체적으로, RF 집적회로(110)는 베이스밴드 집적회로(120)로부터 제공되는 베이스밴드 신호를 RF 대역 신호로 상향 변환한 후 안테나들(AT)을 통해 송신하고, 안테나들(AT)을 통해 수신되는 RF 대역 신호를 베이스밴드 신호로 하향 변환할 수 있다. 예를 들어, RF 집적회로(110)는 송신 필터, 수신 필터, 증폭기, 믹서(mixer), 오실레이터(oscillator), DAC(Digital to Analog Converter), ADC(Analog to Digital Converter) 등을 포함할 수 있다. 또한, RF 집적회로(110)는 복수의 RF 체인들(미도시)을 더 포함할 수 있으며, 안테나들(AT)을 이용한 빔포밍(beamforming)을 수행할 수 있다. RF 집적회로(110)는 빔포밍을 위해 안테나들(AT)을 통해 송수신되는 신호들 각각의 위상 및 크기를 조절할 수 있다 더 나아가, RF 집적회로(110)는 MIMO(Multi Input Multi Output)를 수행할 수 있으며, MIMO 동작 수행 시 여러 개의 레이어들을 수신할 수 있다.
베이스밴드 집적회로(120)는 시스템의 물리 계층 규격에 따라 베이스밴드 신호 및 비트열 간 변환 동작을 수행할 수 있다. 예를 들어, 베이스밴드 집적회로(120)는 데이터 송신 시에 송신 비트열을 부호화 및 변조함으로써 복소 심벌들을 생성할 수 있다. 또한, 베이스밴드 집적회로(120)는 데이터 수신 시에 RF 집적회로(110)로부터 제공되는 베이스밴드 신호를 복조 및 복호화하여 수신 비트열을 복원할 수 있다.
RF 집적회로(110) 및 베이스밴드 집적회로(120)는 상술한 바와 같이 신호를 송수신할 수 있다. RF 집적회로(110) 및 베이스밴드 집적회로(120)는 송신부, 수신부, 송수신부 또는 통신부로 지칭될 수 있다. 더 나아가, RF 집적회로(110) 및 베이스밴드 집적회로(120) 중 적어도 하나는 서로 다른 복수의 무선 접속 기술들을 지원하기 위한 복수의 통신 모듈들을 포함할 수 있다. 또한, RF 집적회로(110) 및 베이스밴드 집적회로(120) 중 적어도 하나는 서로 다른 주파수 대역의 신호들을 처리하기 위해 서로 다른 통신 모듈들을 포함할 수 있다. 예를 들어, 서로 다른 무선 접속 기술들은 NR(New Radio) 기술, LTE 기술 등을 포함할 수 있다. 또한, 서로 다른 주파수 대역들은 극고단파(super high frequency) 대역, 밀리미터파 대역 등을 포함할 수 있다. 단말(100)은 RF 집적회로(110) 및 베이스밴드 집적회로(120)를 이용하여 기지국(10)과 통신할 수 있다.
메모리(140)는 단말(100)의 동작을 위한 기본 프로그램, 응용 프로그램, 설정 정보 등의 데이터를 저장할 수 있다. 또한, 메모리(140)는 프로세서(130)가 본 개시의 예시적 실시예에 따른 후보 필터링 기반 블라인드 디코딩을 수행하는 때에 실행되는 프로그램을 코드 형태로 저장할 수 있다. 예시적 실시예로, 메모리(140)는 후보 필터링 기반 블라인드 디코딩을 위해 참조되는 참조 정보(142)를 저장할 수 있다.
프로세서(130)는 단말(100)의 전반적인 동작들을 제어할 수 있다. 예시적 실시예로, 프로세서(130)는 기지국(10)으로부터 전송되는 PDCCH에 대한 정보를 모르는 상태에서 PDCCH를 검출하기 위해 후보 필터링 기반 블라인드 디코딩을 수행하는 디코딩 회로(132)를 포함할 수 있다. 일반적으로 블라인드 디코딩을 위해 CCE(Cotrol-Channel Element)들의 집합을 나타내는 탐색 공간(search space)이 정의될 수 있다. 탐색 공간은 집성 레벨(aggregation level)에 따른 복수의 CCE들의 집합들로 구성되어 있으며, 집성 레벨은 명시적으로 시그널링되지 않고 단말의 신원에 의한 함수 및 서브프레임 번호를 통해 암묵적으로 정의될 수 있다. 각 서브프레임 내에서 설정된 탐색 공간 내의 CCE들로부터 만들어질 수 있는 가능한 모든 제어 채널 후보들(또는, 자원 후보들)에 대하여 블라인드 디코딩이 수행되고, CRC 확인을 통해 PDCCH를 통해 전송된 DCI를 수신할 수 있다. 이하에서 서술의 편의상, 제어 채널 후보들은 후보들로도 지칭될 수 있다.
예시적 실시예로, 디코딩 회로(132)는 메모리(140)로부터 리드된 참조 정보(142)를 기반으로 집성 레벨들에 대한 디코딩 우선 순위를 결정할 수 있다. 디코딩 회로(132)는 PDCCH를 전송하는 데에 이용 가능성이 높은 집성 레벨을 우선하여 후보 필터링 기반 블라인드 디코딩할 수 있도록 디코딩 우선 순위를 결정할 수 있다. 한편, 디코딩 회로(132)는 TTI(Transmission Time Interval)마다 PDCCH에 대한 후보 필터링 기반 블라인드 디코딩을 수행할 수 있다. 집성 레벨들은 각각 정의된 개수의 CCE들로 구성된 제어 채널 후보들을 포함할 수 있다. 디코딩 회로(132)는 디코딩 우선 순위에 따라 집성 레벨들에 대하여 소정의 순서로 후보 필터링 기반 블라인드 디코딩을 수행할 수 있다. 예시적 실시예로, 디코딩 회로(132)는 소프트웨어 로직 또는 하드웨어 로직 또는 소프트웨어/하드웨어 혼합 로직으로 구현될 수 있다. 이하 서술될 디코딩 회로(132)의 동작은 프로세서(130) 또는 단말(100)의 동작으로도 정의될 수 있다.
예시적 실시예로, 참조 정보(142)는 이전에 수행되었던 블라인드 디코딩 결과를 나타내는 히스토리 정보를 포함할 수 있다. 일 예로, 히스토리 정보는 적어도 하나의 이전 TTI에서의 블라인드 디코딩 히스토리에서 집성 레벨 별 CRC가 좋음으로 판별된 제어 채널 후보들의 개수를 나타낼 수 있다. 디코딩 회로(132)는 CRC가 좋음으로 판별된 제어 채널 후보들의 개수가 많은 순으로 집성 레벨들에 대한 디코딩 우선 순위를 결정할 수 있다.
예시적 실시예로, 참조 정보(142)는 기지국(10)이 PDCCH를 전송하기 위해 이용하는 포맷의 경향을 나타내는 히스토리 정보를 포함할 수 있다. 일 예로, 히스토리 정보는 기지국(10)이 소정의 기간동안 단말(100)에 PDCCH를 전송할 때에 이용하는 집성 레벨 별 빈도를 나타낼 수 있다. 디코딩 회로(132)는 빈도가 높은 순으로 집성 레벨들에 대한 디코딩 우선 순위를 결정할 수 있다.
예시적 실시예로, 참조 정보(142)는 하향링크 채널(DL)의 상태를 나타내는 상태 정보를 포함할 수 있다. 일 예로, 상태 정보는 하향링크 채널(DL)의 상태를 나타내는 적어도 하나의 지표의 측정 결과를 포함할 수 있다. 예를 들어, 상태 정보는 RSRP(Reference Signals Received Power), RSRQ(Reference Signal Received Quality), SINR(Signal to Interference plus noise Ration), RSCP(Received Signal Code Power) 및 EcN0(received energy from pilot signal to noise density) 중 적어도 하나의 지표의 측정 결과를 포함할 수 있다. 기지국(10)은 하향링크 채널(DL)의 상태를 단말(100)로부터 전달받을 수 있으며, 기지국(10)은 하향링크 채널(DL)의 상태를 고려하여 PDCCH 전송을 위한 집성 레벨을 선택할 수 있다. 한편, 기지국(10)은 하향링크 채널(DL)의 상태가 좋은 때에는, 비교적 낮은 집성 레벨을 선택하여 PDCCH를 전송할 수 있으며, 하향링크 채널(DL)의 상태가 나쁜 때에는, 비교적 높은 집성 레벨을 선택하여 PDCCH를 전송할 수 있다. 디코딩 회로(132)는 위와 같은 기지국(10)의 PDCCH 전송 방식을 고려하여 하향링크 채널 상태를 기반으로 집성 레벨들에 대한 디코딩 우선 순위를 결정할 수 있다.
일부 실시예에서 참조 정보(142)는 전술된 히스토리 정보들 및 상태 정보로부터 가공된 정보를 포함할 수 있다. 더 나아가, 참조 정보(142)는 디코딩 회로(132)가 집성 레벨들에 대한 디코딩 우선 순위를 결정하는 데에 참조될 수 있는 다양한 정보들을 포함할 수 있다.
예시적 실시예로, 디코딩 회로(132)는 디코딩 우선 순위에 따라 집성 레벨들 각각에 대응하는 제어 채널 후보들에 대한 후보 필터링 기반 블라인드 디코딩을 수행할 수 있다. 일 예로서, 디코딩 회로(132)는 제어 채널 후보들 중 CRC가 좋음으로 판별되고, 신뢰도가 제1 임계값을 초과하는 제어 채널 후보와 중첩되는 적어도 하나의 제어 채널 후보를 후보 필터링 기반 블라인드 디코딩에서 제외할 수 있다. 즉, 디코딩 회로(132)는 블라인드 디코딩 수행 중에 소정의 조건을 만족하는 제어 채널 후보와 중첩되는 적어도 하나의 CCE를 포함하는 적어도 하나의 제어 채널 후보를 제거함으로써 필요한 제어 채널 후보들을 필터링하고, 필터링된 제어 채널 후보들에 대한 블라인드 디코딩을 수행할 수 있다. 이하, 서술되는 단말(100)의 블라인드 디코딩 동작은 후보 필터링 기반 블라인드 디코딩 동작을 의미할 수 있다.
예시적 실시예로, 디코딩 회로(132)는 중첩되는 제어 채널 후보들 중 일부 집성 레벨에 대응하는 제어 채널 후보들만을 블라인드 디코딩에서 제외할 수 있다. 일 예로, 디코딩 회로(132)는 단말(100)의 네트워크 상태를 기반으로 후보 제외 집성 레벨 방향을 선택하고, 선택된 방향을 기반으로 중첩된 전체 제어 채널 후보들 중 일부 집성 레벨에 대응하는 제어 채널 후보들을 블라인드 디코딩에서 제외할 수 있다.
예시적 실시예로, 디코딩 회로(132)는 첫번째 블라인드 디코딩을 수행하여 CRC 좋음으로 판별되고, 신뢰도가 제2 임계값을 초과하는 제어 채널 후보의 디코딩 결과를 이용하여 PDCCH를 수신할 수 있다. 다만, 디코딩 회로(132)는 기지국(10)과 단말(100) 간의 네트워크 상태에 따라 제어 채널 후보를 통해 PDCCH의 수신에 실패한 경우, 또는, CRC 좋음으로 판별되고 이와 동시에 신뢰도가 제2 임계값을 초과하는 제어 채널 후보가 없는 경우 등에서 첫번째 블라인드 디코딩에서 제외되었던 적어도 하나의 제어 채널 후보에 대한 두번째 블라인드 디코딩을 수행할 수 있다.
예시적 실시예로, 디코딩 회로(132)는 디코딩 우선 순위를 결정하기 위해 이용되는 제1 임계값과 PDCCH의 수신에 이용되는 제어 채널 후보를 판별하기 위해 이용되는 제2 임계값이 동일 또는 상이하게 관리할 수 있다. 예를 들어, 제1 임계값은 제2 임계값보다 크게 설정되어 다른 제어 채널 후보를 블라인드 디코딩에서 제외하는 기준이 엄격해질 수 있으며, 제1 임계값은 제2 임계값보다 작게 설정되어 블라인드 디코딩이 수행되는 제어 채널 후보의 개수를 간소화할 수 있다. 일부 실시예에서, 제1 임계값은 단말(100)의 네트워크 상태에 따라 가변적으로 설정될 수 있으며, 이에 따라, 제1 임계값은 동적으로 제2 임계값보다 커지거나, 작아질 수 있다.
예시적 실시예로, 디코딩 회로(132)는 디코딩 히스토리 정보를 주기적 또는 비주기적으로 수집하여 참조 정보(142)를 생성하고, 메모리(140)에 저장 또는 업데이트할 수 있다. 또한, 예시적 실시예로, 디코딩 회로(132)는 하향링크 채널(DL)의 상태를 주기적 또는 비주기적으로 측정하여 참조 정보(142)를 생성하고, 메모리(140)에 저장 또는 업데이트할 수 있다.
본 개시의 예시적 실시예에 따른 단말(100)은 PDCCH를 전송하는데에 이용 가능성이 높은 집성 레벨에 대한 블라인드 디코딩을 우선적으로 수행하고, 중첩되는 제어 채널 후보들을 블라인드 디코딩에서 제외함으로써 블라인드 디코딩에 소모되는 시간 및 전력을 최적화할 수 있으며, 결과적으로 단말(100)의 통신 성능을 향상시킬 수 있는 효과가 있다.
도 2는 도 1의 통신 시스템(10)에서의 시간-주파수 영역의 기본 구조를 나타내는 도면이다.
도 2를 참조하면, 가로축은 시간 영역을 나타내고, 세로축은 주파수 영역을 나타낼 수 있다. 시간 영역에서의 최소 전송단위는 OFDM(Orthogonal Frequency Division Multiplexing) 심벌로서, Nsymb(202)개의 OFDM 심벌이 모여 하나의 슬롯(206)을 구성할 수 있으며, 2개의 슬롯이 모여 하나의 서브프레임(205)을 구성할 수 있다. 일 예로, 슬롯(206)의 길이는 0.5ms 이고, 서브프레임의 길이는 1.0ms일 수 있다. 또한, 라디오 프레임(214)은 10개의 서브프레임(205)들로 구성되는 시간영역 단위일 수 있다. 서브프레임(205)은 하나의 TTI에 대응될 수 있다.
주파수 영역에서의 최소 전송단위는 서브캐리어로서, 전체 시스템 전송 대역(Transmission bandwidth)의 대역폭은 총 NBW(204)개의 서브캐리어로 구성될 수 있다. 시간-주파수 영역에서 자원의 기본 단위는 자원 엘리먼트(212, Resource Element, RE)로서 OFDM 심벌 인덱스 및 서브캐리어 인덱스로 나타낼 수 있다. 자원 블록(208, Resource Block, RB)은 시간 영역에서 Nsymb(202)개의 연속된 OFDM 심벌과 주파수 영역에서 NRB(210)개의 연속된 서브캐리어로 정의될 수 있다. 따라서, 하나의 RB(208)는 (Nsymb * NRB)개의 RE(212)로 구성될 수 있다. RB 쌍(pair)이란 시간 축으로 두 개의 RB를 연접한 단위로 (Nsymb * 2NRB)개의 RE(212)로 구성될 수 있다. 한편, 도 2와 같은 시간-주파수 영역의 자원을 통해 PDCCH가 통신 시스템 내의 기지국에서 단말로 송신될 수 있으며, PDCCH를 통해 DCI(Downlink Control Information)가 전송될 수 있다. DCI는 PDSCH(Physical Downlink Shared Channel) 자원 지정, 전송포맷, HARQ 정보 및 공간다중화 관련 제어정보를 포함하는 하향링크 스케줄링 할당(assignment)에 관한 정보를 포함할 수 있다.
도 3은 LTE를 지원하는 통신 시스템에서의 PDCCH(301)와 EPDCCH(302)를 도시한 도면이다.
도 3을 참조하면, PDCCH(301)는 데이터 전송 채널인 PDSCH(303)와 시간 다중화되고, 전 시스템 대역폭에 걸쳐 전송될 수 있다. PDCCH(301) 영역은 OFDM 심볼 개수로 표현이 되며 이는 PCFICH(Physical Control Format Indicator Channel)을 통해 전송되는 CFI(Control Format Indicator)로 단말에게 지시될 수 있다. PDCCH(201)를 서브프레임의 앞부분에 오는 OFDM 심볼에 할당함으로써, 단말은 최대한 빨리 하향링크 스케쥴링 할당을 디코딩할 수 있다. 하나의 PDCCH는 하나의 DCI를 운반하고, 하향링크와 상향링크에 복수의 단말들이 동시에 스케쥴링될 수 있으므로, 각 단말 내에서는 복수의 PDCCH의 전송이 동시에 이루어질 수 있다.
PDCCH(301)의 디코딩을 위한 레퍼런스 신호로는 CRS(304)가 사용된다. CRS(304)는 전대역에 걸쳐 매 서브프레임마다 전송되고 기지국(또는, 셀) ID(Identity)에 따라 스크램블링 및 자원 매핑이 달라질 수 있다. CRS(304)는 모든 단말들이 공통으로 사용하는 레퍼런스 신호이기 때문에 단말-특정 빔포밍이 사용될 수 없다. 따라서 LTE의 PDCCH에 대한 다중 안테나 송신기법은 개루프 송신 다이버시티로 한정된다. CRS(304)의 포트 수는 PBCH(Physical Broadcast Channel)의 디코딩으로부터 암묵적으로 단말에게 알려질 수 있다.
PDCCH(301)의 자원 할당은 CCE(Control-Channel Element)를 기반으로 하며, 하나의 CCE는 9개의 REG(Resource Element Group), 즉 총 36개의 RE(Resource Element)들로 구성되어 있다. 특정 PDCCH(301)를 위해 필요한 CCE의 개수는 1, 2, 4, 8개가 될 수 있으며, 이는 DCI의 페이로드(payload)의 채널 코딩율에 따라 달라진다. 이와 같이 서로 다른 CCE 개수는 PDCCH(301)의 링크 적응(link adaptation)을 구현하기 위해 사용될 수 있다.
단말은 PDCCH(301)에 대한 정보를 모르는 상태에서 신호를 검출해야 하는데, 블라인드 디코딩을 위해 CCE들의 집합을 나타내는 탐색 공간(search space)이 정의되었다. 탐색 공간은 단말-특정 탐색공간과 공통(Common) 탐색 공간으로 분류된다. 일정 그룹의 단말들 혹은 모든 단말들이 시스템 정보에 대한 동적인 스케줄링이나 페이징 메시지와 같은 기지국 공통의 제어정보를 수신하기 위해 PDCCH(301)의 공통 탐색 공간을 조사할 수 있다. 예를 들어 기지국의 사업자 정보 등을 포함하는 SIB(System Information Block)-1의 전송을 위한 DL-SCH의 스케줄링 할당 정보는 PDCCH(301)의 공통 탐색 공간을 조사하여 수신할 수 있다. 그 외 상향링크 데이터에 대한 스케줄링 정보, 하향링크 데이터에 대한 스케줄링 정보와 같은 단말-특정의 DCI는 모드 단말-특정 탐색공간을 통해 전송된다
한편, EPDCCH(302)는 PDSCH(303)와 주파수 다중화되어 전송될 수 있다. 기지국에서는 스케줄링을 통해 EPDCCH(302)와 PDSCH(303)의 자원을 적절히 할당할 수 있고 이로 인해 단말을 위한 데이터 전송과의 공존을 효과적으로 지원할 수 있다.
복수의 EPDCCH(302)는 하나의 EPDCCH set(306)을 구성하게 되고 EPDCCH(302) set의 할당은 PRB(Physical Resource Block) pair 단위로 이루어 진다. EPDCCH set(306)에 대한 위치 정보는 단말-특정적으로 설정되며 이는 RRC(Remote Radio Control)를 통해 시그널링될 수 있다. 각 단말에게는 최대 두 개의 EPDCCH set(306)이 설정될 수 있고, 하나의 EPDCCH set(306)은 서로 다른 단말에게 동시에 다중화되어 설정될 수 있다.
EPDCCH(302)에서는 디코딩을 위한 RS로 DMRS(Demodulation Reference Signal, 305)가 사용된다. EPDCCH(302)의 DMRS(305)는 PDSCH(303)와 동일한 패턴을 사용한다. 하지만 PDSCH(303)와는 다르게 EPDCCH(302)에서의 DMRS(305)는 최대 4개의 안테나 포트들을 지원할 수 있다. EPDCCH(302)의 DMRS(305)는 EPDCCH(302)가 전송되는 해당 PRB에서만 전송될 수 있다.
본 개시의 예시적 실시예에 따른 블라인드 디코딩 동작은 도 3에서 서술된 PDCCH 및 EPDCCH에 모두 적용될 수 있다. 또한, 더 나아가, LTE를 지원하는 통신 시스템에서 본 개시의 예시적 실시예에 따른 블라인드 디코딩 동작은 MPDCCH(Machine Type Communication PDCCH), SPDCCH(Short TTI PDCCH), NPDCCH(NB-IOT PDCCH)에 모두 적용될 수 있다.
도 4는 NR을 지원하는 통신 시스템에서의 PDCCH가 전송되는 제어 영역(Control Resouce Set, CORESET)에 대한 일 예를 도시한 도면이다.
도 4는 주파수 축으로 단말의 대역폭 부분(UE bandwidth part)(410), 시간축으로 1 슬롯(420) 내에 2개의 제어 영역들(제어 영역#1(401), 제어 영역#2(402))이 설정되어 있는 일 예를 도시한다. 제어 영역(401, 402)은 주파수 축으로 전체 단말 대역폭 부분(410) 내에서 특정 주파수 자원(403)에 설정될 수 있다. 시간 축으로는 하나 또는 복수 개의 OFDM 심볼들로 설정될 수 있고 이를 제어 영역 길이(Control Resource Set Duration, 404)로 정의할 수 있다. 도 4의 도시된 예를 참조하면, 제어 영역#1(401)은 2개의 심볼들에 대응하는 제어 영역 길이로 설정되어 있고, 제어 영역#2(402)는 1개의 심볼에 대응하는 제어 영역 길이로 설정되어 있다.
NR에서의 제어 영역은 기지국이 단말에게 상위 계층 시그널링(예컨대 시스템 정보(System Information), MIB(Master Information Block), RRC(Radio Resource Control) 시그널링)을 통해 설정될 수 있다. 단말에게 제어 영역을 설정한다는 것은 제어 영역 식별자(Identity), 제어 영역의 주파수 위치, 제어 영역의 심볼 길이 등의 정보를 제공하는 것을 의미할 수 있다.
도 5는 NR을 지원하는 통신 시스템에서의 PDCCH를 구성하는 시간 및 주파수 자원의 기본 단위의 일 예를 보여주는 도면이다.
도 5를 참조하면, PDCCH를 구성하는 시간 및 주파수 자원의 기본 단위를 REG(Resource Element Group, 503)라 할 수 있으며, REG(503)는 시간 축으로 1 OFDM 심볼(501), 주파수 축으로 1 PRB(Physical Resource Block, 502), 즉, 12개 서브캐리어(Subcarrier)로 정의될 수 있다. 기지국은 REG(503)를 연접하여 PDCCH 할당 단위를 구성할 수 있다.
도 5에 도시된 바와 같이 NR에서 PDCCH가 할당되는 기본 단위를 CCE(Control Channel Element, 504)라고 할 경우, 1 CCE(504)는 복수의 REG(503)들로 구성될 수 있다. 도 5에 도시된 REG(503)를 예를 들어, REG(503)는 12개의 RE(Resouce Element)들로 구성될 수 있고 1 CCE(504)가 6개의 REG(503)들로 구성된다면 1 CCE(504)는 72개의 RE들로 구성될 수 있다. 하향링크 제어 영역이 설정되면 해당 영역은 복수의 CCE(504)로 구성될 수 있으며, 특정 PDCCH는 제어 영역 내의 집성 레벨에 따라 하나 또는 복수의 CCE(504)들로 매핑 되어 전송될 수 있다. 제어영역내의 CCE(504)들은 번호로 구분되며 이 때 CCE(504)들의 번호는 논리적인 매핑 방식에 따라 부여될 수 있다.
도 5에 도시된 PDCCH의 기본 단위, 즉 REG(503)에는 DCI가 매핑되는 RE들과 이를 디코딩하기 위한 레퍼런스 신호인 DMRS(505)가 매핑되는 영역이 모두 포함될 수 있다. 도 5에서와 같이 1 REG(503) 내에 3개의 DMRS(505)가 전송될 수 있다. PDCCH를 전송하는데 필요한 CCE의 개수는 집성 레벨에 따라 1, 2, 4, 8, 16개가 될 수 있으며, 서로 다른 CCE 개수는 PDCCH의 링크 적응(link adaptation)을 구현하기 위해 사용될 수 있다. 예컨대 집성 레벨이 'L'일 경우, 하나의 PDCCH가 'L' 개의 CCE를 통해 전송될 수 있다.
PDCCH에 대한 탐색공간에 대한 파라미터는 상위 계층 시그널링(예컨대, SIB, MIB, RRC 시그널링)으로 기지국으로부터 단말로 설정될 수 있다. 예를 들면, 기지국은 각 집성 레벨에서의 제어 채널 후보의 개수, 탐색 공간에 대한 모니터링 주기, 탐색 공간에 대한 슬롯 내 심볼 단위의 모니터링 occasion, 탐색공간 타입(공통 탐색 공간 또는 단말-특정 탐색공간), 해당 탐색공간에서 모니터링 하고자 하는 DCI 포맷과 RNTI의 조합, 탐색 공간을 모니터링 하고자 하는 제어 영역 인덱스 등을 단말에게 설정할 수 있다.
본 개시의 예시적 실시예에 따른 블라인드 디코딩 동작은 도 4 및 도 5에서 서술된 PDCCH에 모두 적용될 수 있다.
도 6a 및 도 6b는 본 개시의 예시적 실시예들이 적용되는 PDCCH의 탐색 공간의 일 예를 도시한 도면이다. 다만, 도 6a 및 도 6b에서 도시된 실시예는 이해를 돕기 위한 예시적 실시예에 불과한 바, 본 개시의 기술적 사상은 이에 국한되지 않음은 분명하다.
도 6a를 참조하면, PDCCH 영역(801)은 CCE들을 포함할 수 있으며, CCE들의 구성은 논리적인 매핑에 기반할 수 있다. PDCCH 영역(801)에 대한 실제적인 물리 매핑은 PDCCH로 설정된 시간 및 주파수 자원에 의해 결정될 수 있다. 탐색 공간(802)은 공통 탐색 공간이거나, 단말-특정 탐색 공간일 수 있다.
예시적 실시예로, 탐색 영역(802)에서의 집성 레벨 '1'은 한 개의 CCE로 구성된 제1 내지 제4 후보(#11~#41)를 포함하고, 집성 레벨 '2'는 두 개의 CCE들로 구성된 제5 후보 내지 제8 후보(#12~#42)를 포함하고, 집성 레벨 '4'는 4개의 CCE들로 구성된 제9 후보(#13)를 포함하며, 집성 레벨 '8'은 8개의 CCE들로 구성된 제10 후보(#14)를 포함할 수 있다.
기지국은 제1 내지 제10 후보(#11~#41, #12~#42, #13, #14) 중 어느 하나를 통해 PDCCH를 단말에 전송할 수 있다. 도 6a에서와 같이, 일 예로, 기지국은 단말과의 하향링크 채널의 상태가 좋은 때에, 낮은 집성 레벨 '1', '2'에 높은 집성 레벨 '4', '8'보다 더 많은 개수의 후보를 할당할 수 있다.
도 6b를 더 참조하면, 탐색 영역(802)에서의 집성 레벨 '1'은 한 개의 CCE로 구성된 제1 및 제2 후보(#11, #21)를 포함하고, 집성 레벨 '2'는 두 개의 CCE들로 구성된 제3 및 제4 후보(#12, #22)를 포함하고, 집성 레벨 '4'는 4개의 CCE들로 구성된 제5 내지 제7 후보(#13~#33)를 포함하며, 집성 레벨 '8'은 8개의 CCE들로 구성된 제8 및 제9 후보(#14, #15)를 포함할 수 있다. 기지국은 제1 내지 제9 후보(#11, #12, #12, #22, #13~#33, #14, #15) 중 어느 하나를 통해 PDCCH를 단말에 전송할 수 있다. 도 6b에서와 같이, 일 예로, 기지국은 단말과의 하향링크 채널의 상태가 좋은 않은 때에, 높은 집성 레벨 '3', '4'에 낮은 집성 레벨 '1', '2'보다 더 많은 개수의 후보를 할당할 수 있다.
본 개시의 예시적 실시예에 따른 단말은 탐색 영역(802)에서의 집성 레벨들에 대한 디코딩 우선 순위를 결정하고, 디코딩 우선 순위를 기반으로 후보 필터링 기반 블라인드 디코딩을 수행할 수 있다. 이에 대한 구체적인 실시예는 후술한다.
도 7은 본 개시의 예시적 실시예에 따른 단말의 동작 방법을 나타내는 순서도이다.
도 7을 참조하면, 단계 S100에서 단말은 기지국으로부터 PDCCH를 수신할 수 있다. 단계 S110에서 단말은 참조 정보를 기반으로 집성 레벨들에 대한 디코딩 우선 순위를 결정할 수 있다. 단계 S120에서 단말은 결정된 디코딩 우선 순위를 기반으로 집성 레벨들 각각에 포함된 제어 채널 후보들에 대하여 후보 필터링 기반 블라인드 디코딩을 수행할 수 있다. 단계 S130에서 단말은 디코딩 결과를 이용하여 DCI를 수신할 수 있다.
도 8a 및 도 8b는 본 개시의 예시적 실시예에 따른 단말의 참조 정보를 생성 및 저장하는 방법을 나타내는 순서도이다.
도 8a를 참조하면, 단계 S200a에서 단말은 과거 수행된 디코딩 결과들에 관한 정보를 수집할 수 있다. 과거 수행된 디코딩 결과들은 소정의 기간(예를 들면, 복수의 TTI들)동안 집성 레벨 별 CRC가 좋음으로 판별된 제어 채널 후보들의 개수를 나타낼 수 있다. 또한, 과거 수행된 디코딩 결과들은 기지국이 PDCCH를 전송할 때에 이용하는 집성 레벨 별 빈도를 나타낼 수 있다. 이 외에도 단말은 집성 레벨들에 대한 디코딩 우선 순위를 결정하기 적합한 디코딩 결과들을 추가적으로 수집할 수 있다.
단계 S210a에서 단말은 수집 결과를 기반으로 히스토리 정보를 생성할 수 있다. 단계 S220a에서 단말은 히스토리 정보를 참조 정보로서 저장할 수 있다. 일부 실시예에서 단말은 주기적 또는 비주기적으로 단계 S200a 및 단계 S210a를 반복하여 참조 정보를 업데이트할 수 있다.
도 8b를 참조하면, 단계 S200b에서 단말은 하향링크 채널의 상태를 측정할 수 있다. 일 예로, 단말은 RSRP(Reference Signals Received Power), RSRQ(Reference Signal Received Quality), SINR(Signal to Interference plus noise Ration), RSCP(Received Signal Code Power) 및 EcN0(received energy from pilot signal to noise density) 중 적어도 하나를 측정함으로써 하향링크 채널의 상태를 확인할 수 있다. 단계 S210b에서 단말은 측정 결과를 기반으로 측정 정보를 생성할 수 있다. 단계 S220b에서 단말은 측정 정보를 참조 정보로서 저장할 수 있다. 일부 실시예에서 단말은 주기적 또는 비주기적으로 단계 S200b 및 단계 S210b를 반복하여 참조 정보를 업데이트할 수 있다.
도 9는 도 7의 단계 S120을 본 개시의 예시적 실시예에 따라 구체적으로 나타내는 순서도이다.
도 9를 참조하면, 단계 S110(도 9)에 후속하여 단계 S121에서 단말은 디코딩 우선 순위를 기반으로 집성 레벨을 선택할 수 있다. 단계 S122에서 단말은 선택된 집성 레벨의 k(단, k는 1 이상의 정수이며, 1부터 시작)번째 후보에 대한 디코딩을 수행할 수 있다. 단계 S123에서 단말은 k번째 후보의 디코딩 결과 CRC가 좋음인지 여부를 판별할 수 있다. 단계 S123가 'YES'인 때에, 단계 S124_1를 후속하여 단말은 k번째 후보에 대한 신뢰도를 측정할 수 있다. 후보의 신뢰도를 측정한다는 것은 후보의 디코딩 결과에 대한 신뢰도를 측정한다는 것으로 해석될 수 있다. 일 예로, 단말은 유효 디코딩 신뢰도 매트릭을 기반으로 인코딩되기 전의 데이터와 후보의 디코딩 결과에 포함된 데이터를 비교하여 에러 개수를 카운트함으로써 SER(Symbol Error Rate)를 신뢰도로서 측정할 수 있다. 다른 예로, 단말은 소프트 상관 매트릭(soft-correlation metric)을 기반으로 후보에 대한 디코딩을 수행하는 단말 내의 폴라 디코더의 입력과 단말에 수신된 인코딩된 코드워드 간의 상관(correlation) 값을 신뢰도로서 측정할 수 있다. 이 외에도, 단말은 후보의 신뢰도를 나타내는 다양한 지표들을 측정할 수 있다.
단계 S124_2에서 단말은 k번째 후보의 신뢰도가 제1 임계값을 초과하는지 여부를 판별할 수 있다. 단계 S124_2가 'YES'인 때에, 단계 S124_3를 후속하여 단말은 선택된 집성 레벨과 다른 적어도 하나의 집성 레벨에서 k번째 후보와 중첩되는 후보를 디코딩에서 제외할 수 있다. 단계 S124_2가 'NO'이거나, 단계 S124_3 이후에 단계 S127을 후속하여 단말은 k번째 후보가 선택된 집성 레벨의 마지막 후보인지 여부를 판별할 수 있다. 단계 S127이 'NO'인 때에, 단계 S128을 후속하여 단말은 k를 카운트 업하고, 단계 S122를 수행할 수 있다. 단계 S127이 'YES'인 때에, 단계 S129를 후속하여 단말은 선택된 집성 레벨이 마지막 집성 레벨인지 여부를 판별할 수 있다. 단계 S129가 'NO'인 때에, 단계 S121를 후속하여 단말은 디코딩 우선 순위를 기반으로 다음 집성 레벨을 선택할 수 있다. 단계 S129가 'YES'인 때에 단계 S130(도 9)가 후속될 수 있다.
도 10은 도 9로부터 제2 임계값을 이용한 DCI를 수신하기 위한 방법을 추가적으로 설명하기 위한 순서도이다. 이하에서는, 도 9와 중복되는 내용은 생략한다.
도 10을 참조하면, 단계 S124_1 이후에 단계 S124_4에서 단말은 k번째 후보의 신뢰도가 제2 임계값을 초과하는지 여부를 판별할 수 있다. 예시적 실시예로, 제2 임계값은 제1 임계값과 동일하거나, 상이할 수 있다. 일 예로, 제1 임계값은 제2 임계값보다 크게 설정되어 단계 S124_3가 단계 S124_5보다 더 엄격한 조건으로 수행될 수 있다. 다른 예로, 제1 임계값은 제2 임계값보다 작게 설정되어 단계 S124_3가 단계 S124_5보다 더 러프한(rough) 조건으로 수행될 수 있다. 단계 S124_4가 'YES'인 때에, 단계 S124_5를 후속하여 단말은 k번째 후보를 DCI를 수신하는 데에 이용되는 후보로 결정할 수 있다. 단계 S124_4가 'NO'이거나, 단계 S124_5 이후에 단계 S127을 후속하여 단말은 k번째 후보가 선택된 집성 레벨의 마지막 후보인지 여부를 판별할 수 있다.
도 11은 본 개시의 예시적 실시예에 따라 중첩되는 후보들을 블라인드 디코딩에서 제외하는 동작을 설명하기 위한 도면이다.
도 11을 참조하면, 단말은 디코딩 우선 순위를 기반으로 집성 레벨 '4'의 제9 후보(#13)에 대한 디코딩을 우선적으로 수행할 수 있다. 제9 후보(#13)에 대한 디코딩 결과 CRC가 좋음으로 판별되고, 신뢰도가 제1 임계값을 초과하는 때에 단말은 제9 후보(#13)와 중첩되는 적어도 하나의 CCE가 포함된 제1, 제5 및 제10 후보(#11, #12, #14)를 블라인드 디코딩에서 제외할 수 있다. 위와 같은 제외 동작은 다른 집성 레벨들에 대한 디코딩에서도 수행될 수 있다.
도 12는 본 개시의 예시적 실시예에 따른 단말의 제1 임계값을 이용한 동작 방법을 설명하기 위한 순서도이다.
도 12를 참조하면, 단계 S200에서 단말은 기지국과의 네트워크 상태를 기반으로 제1 임계값을 설정할 수 있다. 제1 임계값 설정에 고려되는 네트워크 상태는 단말과 기지국 간의 하향링크 채널의 상태 및 단말의 배터리 상태 등을 포함할 수 있다. 단계 S210에서 단말은 설정된 제1 임계값을 이용하여 PDCCH의 검출을 위한 블라인드 디코딩을 수행할 수 있다.
한편, 단말은 주기적 또는 비주기적으로 단계 S200를 반복하여 네트워크 상태에 적응적인 제1 임계값을 설정할 수 있다.
도 13a 및 도 13b는 도 12의 구체적인 실시예를 설명하기 위한 순서도이다.
도 13a를 참조하면, 단계 S201a에서 단말은 기지국으로부터의 수신 신호 품질을 측정할 수 있다. 수신 신호 품질은 하향링크 채널의 상태를 확인할 수 있는 지표일 수 있다. 단계 S202a에서 단말은 측정된 품질이 제3 임계값을 초과하는지 여부를 판별할 수 있다. 단계 S202a가 'YES'인 때에, 단계 S203a에서 단말은 비교적 작은 제1 임계값을 설정할 수 있다. 즉, 단말은 하향링크 채널의 상태가 좋은 때에는 PDCCH를 비교적 용이하게 검출할 수 있는 바, 제1 임계값을 작게하여 중첩되는 후보들이 가급적 많이 블라인드 디코딩에 제외되도록 함으로써 블라인드 디코딩 동작을 간소화시킬 수 있다. 단계 S202a가 'NO'인 때에, 단계 S204a에서 단말은 비교적 큰 제1 임계값을 설정할 수 있다. 즉, 단말은 하향링크 채널의 상태가 좋지 않은 때에는 PDCCH의 검출이 비교적 어려운 바, 제1 임계값을 크게하여 가급적 많은 후보들에 대하여 블라인드 디코딩을 수행함으로써 DCI 수신의 성공 확률을 높일 수 있다.
도 13b를 참조하면, 단계 S201b에서 단말은 배터리 상태를 측정할 수 있다. 단계 S202b에서 단말은 잔여 배터링량이 제4 임계값을 초과하는지 여부를 판별할 수 있다. 단계 S202b가 'YES'인 때에, 단계 S203b에서 단말은 비교적 큰 제1 임계값을 설정할 수 있다. 즉, 단말은 잔여 배터리량이 충분하기 때문에 많은 후보들에 대한 블라인드 디코딩이 가능한 바, 제1 임계값을 크게함으로써 DCI 수신 확률을 최대한 확보할 수 있다. 단계 S202b가 'NO'인 때에, 단계 S204b에서 단말은 비교적 작은 제1 임계값을 설정할 수 있다. 즉, 단말은 잔여 배터리량이 충분하지 않기 때문에 블라인드 디코딩에 대상이되는 후보들을 간소화하여 블라인드 디코딩에 소모되는 전력을 줄일 수 있다.
다만, 도 13a 및 도 13b의 실시예들은 예시에 불과한 바, 이에 국한되지 않고, 더 많은 요소, 통신 환경들을 고려하여 제1 임계값을 다양하게 설정할 수 있다.
도 14는 본 개시의 예시적 실시예에 따른 단말의 블라인드 디코딩 방법을 설명하기 위한 순서도이다.
도 14를 참조하면, 단계 S300에서 단말은 현재 디코딩이 수행된 후보와 중첩되는 후보들 중 일부를 선택하여 블라인드 디코딩에서 제외할 수 있다. 예를 들어, 집성 레벨들은 제1 내지 제3 집성 레벨을 포함하고, 제1 집성 레벨에 대한 디코딩을 우선 수행한 결과, 제1 집성 레벨의 제1 후보가 CRC가 좋음으로 판별되고, 신뢰도가 제1 임계값을 초과하는 때에, 제2 및 제3 집성 레벨 중에서 어느 하나를 선택하여 선택된 집성 레벨의 후보들 중 제1 후보와 중첩되는 후보를 블라인드 디코딩에서 제외할 수 있다. 즉, 단말은 현재 디코딩이 수행된 후보와 중첩되는 모든 후보들을 블라인드 디코딩에서 제외하지 않고, 중첩되는 모든 후보들 중 일부만을 선별하여 제외할 수 있다. 단계 S310에서 단말은 제외되지 않은 나머지 후보들에 대한 디코딩을 수행할 수 있다.
도 15는 도 14의 구체적인 실시예를 설명하기 위한 순서도이다.
도 15를 참조하면, 단계 S302에서 단말은 네트워크 상태를 기반으로 후보 제외 집성 레벨을 선택할 수 있다. 예시적 실시예로, 네트워크 상태는 단말과 기지국 간의 하향링크 채널의 상태를 포함할 수 있다. 일 예로, 단말은 하향링크 채널의 상태가 좋지 않은 때에는, 현재 디코딩 대상이 되는 집성 레벨보다 낮은 집성 레벨의 중첩된 후보가 제외되도록 후보 제외 집성 레벨 방향을 선택할 수 있다. 다른 예로, 단말은 하향링크 채널의 상태가 좋은 때에는, 현재 디코딩 대상이 되는 집성 레벨보다 높은 집성 레벨의 중첩된 후보가 제외되도록 후보 제외 집성 레벨 방향을 선택할 수 있다.
도 16a 및 도 16b는 도 15에서의 실시예를 구체적으로 나타내는 도면이다. 이하에서는, 도 6a 및 도 11과 중복되는 내용은 생략한다.
도 16a를 참조하면, 단말은 현재 디코딩이 수행된 집성 레벨 '4'의 제9 후보(#13)와 중첩되는 후보들(#11, #12, #14) 중 집성 레벨 '4' 보다 낮은 레벨 방향(D1)에 대응되는 집성 레벨 '1' 및 '2'의 후보들(#11, #12)만을 블라인드 디코딩에서 제외할 수 있다.
도 16b를 참조하면, 단말은 현재 디코딩이 수행된 집성 레벨 '4'의 제9 후보(#13)와 중첩되는 후보들(#11, #12, #14) 중 집성 레벨 '4' 보다 높은 레벨 방향(D2)에 대응되는 집성 레벨 '8'의 후보(#14)만을 블라인드 디코딩에서 제외할 수 있다.
도 17은 본 개시의 예시적 실시예에 따른 단말의 동작 방법을 설명하기 위한 순서도이다.
도 17을 참조하면, 단계 S400에서 단말은 디코딩 우선 순위를 기반으로 집성 레벨들의 전체 후보들에 대한 1차 블라인드 디코딩을 수행할 수 있다. 단계 S410에서 단말은 DCI의 수신을 성공하였는지 여부를 판별할 수 있다. 단계 S410가 'YES'인 때에, 해당 TTI에서의 블라인드 디코딩을 종료할 수 있다. 단계 S410가 'NO'인 때에 단말은 1차 블라인드 디코딩에서 제외된 후보들에 대한 2차 블라인드 디코딩을 수행할 수 있다. 예시적 실시예로, 단말은 2차 블라인드 디코딩은 1차 블라인드 디코딩과 동일하게 후보 필터링 기반 블라인드 디코딩일 수 있다. 일부 실시예에서, 단말은 2차 블라인드 디코딩은 1차 블라인드 디코딩과 상이하게 1차 블라인드 디코딩에서 제외된 모든 후보들에 대하여 디코딩을 수행할 수 있다.
도 18 및 도 19는 본 개시의 예시적 실시예에 따른 통신 시스템의 동작 방법을 설명하기 위한 도면이다.
도 18을 참조하면, 통신 시스템은 기지국(BS) 및 제1 단말(TE1)을 포함할 수 있다. 제1 단말(TE1)은 기지국(BS)로부터 제1 PDCCH를 수신할 수 있다. 제1 단말(TE1)은 제1 PDCCH를 검출하기 위하여 블라인드 디코딩을 수행할 수 있다. 전술한 바와 같이, 제1 단말(TE1)은 참조 정보를 기반으로 집성 레벨들에 대한 디코딩 우선 순위를 결정하고, 디코딩 우선 순위에 따라 집성 레벨들의 각각의 후보들에 대한 후보 필터링 기반 블라인드 디코딩을 수행할 수 있다.
예시적 실시예로, 제1 단말(TE1)은 기지국(BS)으로부터 할당된 모든 후보들 중 필요한 후보들을 필터링하여 제1 필터링된 후보들로 선별하고, 제1 필터링된 후보들에 대한 블라인드 디코딩을 수행할 수 있다. 한편, 제1 단말(TE1)은 기지국(BS)과의 네트워크 상태에 따라 블라인드 디코딩에 제외되는 후보들의 개수(NO1)를 TTI마다 조절할 수 있다. 일 예로, 제1 단말(TE1)은 도 12 등에서 서술된 제1 임계값을 적응적으로 설정하는 방법을 이용하여 상기 개수(NO1)를 가변적으로 조절할 수 있다.
도 19를 참조하면, 통신 시스템은 제2 단말(TE2)을 더 포함할 수 있다. 제1 단말(TE2)은 기지국(BS)로부터 제2 PDCCH를 수신할 수 있다. 제2 단말(TE2)은 제2 PDCCH를 검출하기 위하여 블라인드 디코딩을 수행할 수 있다. 전술한 바와 같이, 제2 단말(TE2)은 참조 정보를 기반으로 집성 레벨들에 대한 디코딩 우선 순위를 결정하고, 디코딩 우선 순위에 따라 집성 레벨들의 각각의 후보들에 대한 후보 필터링 기반 블라인드 디코딩을 수행할 수 있다.
예시적 실시예로, 제2 단말(TE2)은 기지국(BS)으로부터 할당된 모든 후보들 중 필요한 후보들을 필터링하여 제2 필터링된 후보들로 선별하고, 제2 필터링된 후보들에 대한 블라인드 디코딩을 수행할 수 있다. 한편, 제2 단말(TE2)은 기지국(BS)과의 네트워크 상태에 따라 블라인드 디코딩에 제외되는 후보들의 개수(NO2)를 TTI 마다 조절할 수 있다.
예시적 실시예로, 제1 및 제2 단말(TE1, TE2) 각각의 디코딩 히스토리, 하향링크 채널의 상태가 포함된 네트워크 상태 등이 다른 점이 고려되어 제1 단말(TE1)에서 제외되는 후보들의 개수(NO1)는 제2 단말(TE2)에서 제외되는 후보들의 개수(NO2)와 상이할 수 있다.
도 20은 본 개시의 예시적 실시 예에 따른 전자 장치(1000)를 나타내는 블록도이다.
도 20을 참조하면, 전자 장치(1000)는 메모리(1010), 프로세서 유닛(Processor Unit)(1020), 입출력 제어부(1040), 표시부(1050), 입력 장치(1060) 및 통신 처리부(1090)를 포함할 수 있다. 여기서, 메모리(1010)는 복수 개 존재할 수도 있다. 각 구성요소에 대해 살펴보면 다음과 같다.
메모리(1010)는 전자 장치의 동작을 제어하기 위한 프로그램을 저장하는 프로그램 저장부(1011) 및 프로그램 수행 중에 발생되는 데이터를 저장하는 데이터 저장부(1012)를 포함할 수 있다. 데이터 저장부(1012)는 애플리케이션 프로그램(1013), 디코딩 프로그램(1014)의 동작에 필요한 데이터를 저장할 수 있다. 예시적 실시예로, 데이터 저장부(1012)는 본 개시의 예시적 실시예들에 따른 블라인드 디코딩을 위한 전자 장치(1000)의 참조 정보(RI)를 저장할 수 있다. 또한, 참조 정보(RI)는 주기적 또는 비주기적으로 업데이트될 수 있다.
프로그램 저장부(1011)는 애플리케이션 프로그램(1013) 및 디코딩 프로그램(1014)을 포함할 수 있다. 여기서, 프로그램 저장부(1011)에 포함되는 프로그램은 명령어들의 집합으로 명령어 세트(instruction set)로 표현할 수도 있다. 애플리케이션 프로그램(1013)은 전자 장치(1000)에서 동작하는 다양한 애플리케이션들의 수행을 위한 프로그램 코드들을 포함할 수 있다. 즉, 애플리케이션 프로그램(1013)은 프로세서(1022)에 의해 구동되는 다양한 애플리케이션들에 관한 코드들(또는, 커맨드들)을 포함할 수 있다. 디코딩 프로그램(1014)은 본 개시의 예시적 실시예들에 따른 블라인드 디코딩을 수행하기 위한 제어 코드들을 포함할 수 있다.
예시적 실시예로, 프로세서(1022)는 디코딩 프로그램(1014)을 실행함으로써, 집성 레벨들의 디코딩 우선 순위를 결정하고, 디코딩 우선 순위를 기반으로 후보 필터링 기반 블라인드 디코딩을 수행할 수 있다.
한편, 전자 장치(1000)는 음성 통신 및 데이터 통신을 위한 통신 기능을 수행하는 통신 처리부(1090)를 포함할 수 있다. 프로세서(1022)는 통신 처리부(1090)를 통해 기지국으로부터 DCI가 포함된 PDCCH를 수신할 수 있다.
주변 장치 인터페이스(1023)는 입출력 제어부(1040), 통신 처리부(1090), 프로세서(1022) 및 메모리 인터페이스(1021) 간의 연결을 제어할 수 있다. 프로세서(1022)는 적어도 하나의 소프트웨어 프로그램을 이용하여 복수의 기지국들이 해당 서비스를 제공하도록 제어한다. 이때, 프로세서(1022)는 메모리(1010)에 저장되어 있는 적어도 하나의 프로그램을 실행하여 해당 프로그램에 대응하는 서비스를 제공할 수 있다.
입출력 제어부(1040)는 표시부(1050) 및 입력 장치(1060) 등의 입출력 장치와 주변 장치 인터페이스(1023) 사이에 인터페이스를 제공할 수 있다. 표시부(1050)는 상태 정보, 입력되는 문자, 동영상(moving picture) 및 정지 영상(still picture) 등을 표시한다. 예를 들어, 표시부(1050)는 프로세서(1022)에 의해 구동되는 응용프로그램 정보를 표시할 수 있다.
입력 장치(1060)는 전자 장치의 선택에 의해 발생하는 입력 데이터를 입출력 제어부(1040)를 통해 프로세서 유닛(1020)으로 제공할 수 있다. 이때, 입력 장치(1060)는 적어도 하나의 하드웨어 버튼을 포함하는 키패드 및 터치 정보를 감지하는 터치 패드 등을 포함할 수 있다. 예를 들어, 입력 장치(1060)는 터치 패드를 통해 감지한 터치, 터치 움직임, 터치 해제 등의 터치 정보를 입출력 제어부(1040)를 통해 프로세서(1022)로 제공할 수 있다.
도 21은 본 개시의 예시적 실시 예에 따른 디코딩 동작을 수행하는 통신 기기들을 나타내는 도면이다.
도 21을 참조하면, 가정용 기기(2100), 가전(2120), 엔터테인먼트 기기(2140) 및 AP(Access Point)(2200)는 본 개시의 실시예들에 따른 디코딩 동작을 각각 수행할 수 있다. 일부 실시예들에서, 가정용 기기(2100), 가전(2120), 엔터테인먼트 기기(2140) 및 AP(2200)는 IoT(Internet of Things) 네트워크 시스템을 구성할 수 있다. 도 21에 도시된 통신 기기들은 예시일 뿐이며, 도 21에 도시되지 아니한 다른 통신 기기들에도 본 개시의 예시적 실시예에 따른 무선 통신 장치가 포함될 수 있는 점은 이해될 것이다.
이상에서와 같이 도면과 명세서에서 예시적인 실시예들이 개시되었다. 본 명세서에서 특정한 용어를 이용하여 실시예들을 설명되었으나, 이는 단지 본 개시의 기술적 사상을 설명하기 위한 목적에서 이용된 것이지 의미 한정이나 특허청구범위에 기재된 본 개시의 범위를 제한하기 위하여 이용된 것은 아니다. 그러므로 본 기술분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 개시의 진정한 기술적 보호범위는 첨부된 특허청구범위의 기술적 사상에 의해 정해져야 할 것이다.

Claims (20)

  1. 단말의 동작 방법에 있어서,
    기지국으로부터 하향링크 제어 채널을 수신하는 단계;
    참조 정보를 기반으로 집성 레벨들(aggregation levels)에 대한 디코딩 우선 순위를 결정하는 단계;
    상기 디코딩 우선 순위에 따라 상기 집성 레벨들 각각에 대응하는 제어 채널 후보들에 대한 후보 필터링 기반 블라인드 디코딩을 수행하는 단계; 및
    상기 디코딩 결과를 기반으로 하향링크 제어 정보를 수신하는 단계를 포함하는 단말의 동작 방법.
  2. 제1항에 있어서,
    상기 참조 정보는,
    적어도 하나의 이전 TTI(Transmission Time Interval)에서의 블라인드 디코딩 히스토리를 나타내는 히스토리 정보를 포함하고,
    상기 디코딩 우선 순위를 결정하는 단계는,
    상기 블라인드 디코딩 히스토리에서, 상기 집성 레벨 별 CRC(Cyclic Redundancy Check)가 좋음으로 판별된 제어 채널 후보들의 개수를 기반으로 상기 디코딩 우선 순위를 결정하는 것을 특징으로 하는 단말의 동작 방법.
  3. 제1항에 있어서,
    상기 참조 정보는,
    상기 기지국이 상기 하향링크 제어 채널을 전송하기 위해 이용하는 포맷(formats)의 경향을 나타내는 히스토리 정보를 포함하고,
    상기 디코딩 우선 순위를 결정하는 단계는,
    상기 기지국으로부터의 상기 포맷의 이용 빈도를 기반으로 상기 디코딩 우선 순위를 결정하는 것을 특징으로 하는 단말의 동작 방법.
  4. 제1항에 있어서,
    상기 참조 정보는,
    상기 기지국과의 하향링크 채널의 상태를 나타내는 상태 정보를 포함하고,
    상기 디코딩 우선 순위를 결정하는 단계는,
    상기 하향링크 채널의 상태를 기반으로 상기 디코딩 우선 순위를 결정하는 것을 특징으로 하는 단말의 동작 방법.
  5. 제1항에 있어서,
    상기 집성 레벨들은, 제1 및 제2 집성 레벨을 포함하고,
    상기 후보 필터링 기반 블라인드 디코딩을 수행하는 단계는,
    상기 제1 집성 레벨의 제1 제어 채널 후보에 대한 디코딩을 수행하는 단계; 및
    상기 제1 제어 채널 후보에 대한 디코딩 결과를 기반으로 상기 제2 집성 레벨에 포함된 제2 제어 채널 후보들 중 상기 제1 제어 채널 후보와 중첩되는 적어도 하나의 제3 제어 채널 후보를 상기 블라인드 디코딩에서 제외하는 단계를 포함하는 것을 특징으로 하는 단말의 동작 방법.
  6. 제5항에 있어서,
    상기 적어도 하나의 제3 제어 채널 후보를 상기 블라인드 디코딩에서 제외하는 단계는,
    상기 제1 제어 채널 후보에 대한 디코딩 결과에서의 CRC가 좋음으로 판별되고, 신뢰도가 제1 임계값을 초과하는 때에, 상기 적어도 하나의 제3 제어 채널 후보를 상기 블라인드 디코딩에서 제외하는 것을 특징으로 하는 단말의 동작 방법.
  7. 제6항에 있어서,
    상기 디코딩 결과를 기반으로 하향링크 제어 정보를 수신하는 단계는,
    상기 제어 채널 후보들 중 상기 디코딩 결과에서의 CRC가 좋음으로 판별되고, 신뢰도가 제2 임계값을 초과하는 제어 채널 후보를 이용하여 상기 하향링크 제어 정보를 수신하는 것을 특징으로 하는 단말의 동작 방법.
  8. 제7항에 있어서,
    상기 제1 임계값은, 상기 제2 임계값과 상이한 것을 특징으로 하는 단말의 동작 방법.
  9. 제5항에 있어서,
    상기 후보 필터링 기반 블라인드 디코딩을 수행하는 단계는,
    상기 제2 제어 채널 후보들 중 상기 적어도 하나의 제3 제어 채널 후보 이외의 나머지에 대한 디코딩을 수행하는 단계를 더 포함하는 것을 특징으로 하는 단말의 동작 방법.
  10. 제1항에 있어서,
    상기 하향링크 제어 정보를 수신하는 단계에서, 상기 하향링크 제어 정보의 수신을 실패한 때에,
    상기 후보 필터링 기반 블라인드 디코딩에서 제외된 적어도 하나의 제어 채널 후보에 대한 후보 필터링 기반 블라인드 디코딩을 재수행하는 단계를 더 포함하는 것을 특징으로 하는 단말의 동작 방법.
  11. 기지국으로부터 하향링크 제어 채널을 수신하도록 구성된 집적 회로;
    블라인드 디코딩 관련 참조 정보를 저장하도록 구성된 메모리; 및
    상기 참조 정보를 기반으로 집성 레벨들에 대한 디코딩 우선 순위를 결정하고, 상기 디코딩 우선 순위에 따라 상기 집성 레벨들 각각에 대응하는 제어 채널 후보들에 대한 후보 필터링 기반 블라인드 디코딩을 수행하며, 상기 디코딩 결과를 기반으로 하향링크 제어 정보를 수신하도록 구성된 프로세서를 포함하는 단말.
  12. 제11항에 있어서,
    상기 참조 정보는,
    적어도 하나의 이전 TTI(Transmission Time Interval)에서의 블라인드 디코딩 결과를 나타내거나, 상기 기지국이 상기 하향링크 제어 채널을 전송하기 위해 이용하는 포맷의 경향을 나타내는 히스토리 정보를 포함하는 것을 특징으로 하는 단말.
  13. 제11항에 있어서,
    상기 참조 정보는,
    상기 기지국과의 하향링크 채널의 상태를 나타내는 상태 정보를 포함하는 것을 특징으로 하는 단말.
  14. 제11항에 있어서,
    상기 프로세서는,
    상기 후보 필터링 기반 블라인드 디코딩에서, 상기 제어 채널 후보들 중 CRC가 좋음으로 판별되고, 신뢰도가 임계값을 초과하는 제어 채널 후보와 중첩되는 적어도 하나의 제어 채널 후보를 제외하도록 구성된 것을 특징으로 하는 단말.
  15. 제14항에 있어서,
    상기 프로세서는,
    상기 단말의 네트워크 상태를 기반으로 상기 임계값을 가변적으로 설정하도록 구성된 것을 특징으로 하는 단말.
  16. 제14항에 있어서,
    상기 프로세서는,
    상기 단말의 네트워크 상태를 기반으로 후보 제외 집성 레벨 방향을 선택하고, 상기 방향을 기반으로 상기 중첩되는 제어 채널 후보들을 제외하도록 구성된 것을 특징으로 하는 단말.
  17. 제14항에 있어서,
    상기 프로세서는,
    상기 후보 필터링 기반 블라인드 디코딩 결과를 기반으로 하향링크 제어 정보의 수신을 실패한 때에, 상기 제외된 제어 채널 후보들에 대한 상기 후보 필터링 기반 블라인드 디코딩을 재수행하도록 구성된 것을 특징으로 하는 단말.
  18. 기지국 및 이와 연결된 제1 단말을 포함하는 통신 시스템에 있어서,
    상기 기지국은, 제1 하향링크 제어 채널을 상기 제1 단말에 전송하도록 구성되고,
    상기 제1 단말은, 집성 레벨들의 제1 우선 순위를 기반으로 상기 집성 레벨들 각각에 대응하는 제1 제어 채널 후보들에 대한 제1 후보 필터링 기반 블라인드 디코딩을 수행하여 제1 하향링크 제어 정보를 수신하도록 구성된 것을 특징으로 하는 통신 시스템.
  19. 제18항에 있어서,
    상기 제1 단말은,
    상기 기지국의 상기 제1 하향링크 제어 채널의 전송에 이용되는 포맷의 경향, 상기 기지국으로부터의 제1 하향링크 채널 상태 및 적어도 하나의 이전 TTI에서 상기 집성 레벨 별 CRC가 좋음으로 판별된 제어 채널 후보들의 개수 중 적어도 하나를 기반으로 상기 집성 레벨들의 제1 우선 순위를 결정하도록 구성된 것을 특징으로 하는 통신 시스템.
  20. 제18항에 있어서,
    상기 통신 시스템은, 상기 기지국과 연결된 제2 단말을 더 포함하고,
    상기 기지국은, 제2 하향링크 제어 채널을 상기 제2 단말에 전송하도록 구성되고,
    상기 제2 단말은, 상기 집성 레벨들의 제2 우선 순위를 기반으로 상기 집성 레벨들 각각에 대응하는 제2 제어 채널 후보들에 대한 제2 후보 필터링 기반 블라인드 디코딩을 수행하여 제2 하향링크 제어 정보를 수신하도록 구성된 것을 특징으로 하는 통신 시스템.
KR1020210014401A 2020-12-03 2021-02-01 블라인드 디코딩을 수행하는 단말, 이를 포함하는 통신 시스템 및 이들의 동작 방법 KR20220078435A (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21209503.8A EP4009556A3 (en) 2020-12-03 2021-11-22 Ue performing blind decoding according to decoding priorities for aggretaton levels and filtering of decoding candidates
US17/539,710 US20220182177A1 (en) 2020-12-03 2021-12-01 Ue performing blind decoding, communication system including the same, and operation method of the ue and the communication system
TW110145244A TW202231113A (zh) 2020-12-03 2021-12-03 終端的操作方法、執行盲解碼的終端及通訊系統
CN202111466145.7A CN114598435A (zh) 2020-12-03 2021-12-03 执行盲解码的ue、包括其的通信系统及其操作方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200167662 2020-12-03
KR20200167662 2020-12-03

Publications (1)

Publication Number Publication Date
KR20220078435A true KR20220078435A (ko) 2022-06-10

Family

ID=81986719

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210014401A KR20220078435A (ko) 2020-12-03 2021-02-01 블라인드 디코딩을 수행하는 단말, 이를 포함하는 통신 시스템 및 이들의 동작 방법

Country Status (1)

Country Link
KR (1) KR20220078435A (ko)

Similar Documents

Publication Publication Date Title
KR102264620B1 (ko) 유연한 그랜트 프리 자원 구성 시그널링
US11239970B2 (en) Reference signal sending method, reference signal receiving method, and communications apparatus
US11070951B2 (en) Systems and methods for multicast resource allocation
CN107980211B (zh) 用于在共享射频频带的多个载波上进行发送的技术
KR102522568B1 (ko) 무선 통신 시스템에서 채널 점유 시간 지시 방법 및 장치
WO2020200267A1 (en) Two-stage sidelink control information for sidelink communications
JP4893747B2 (ja) 無線通信システム
CN109565862B (zh) 无线蜂窝通信系统中的信道发送方法和设备
EP3591867B1 (en) Information transmission method and apparatus
WO2012118269A2 (ko) 다중 노드 시스템에서 단말의 제어 정보 검색 방법 및 장치
JP2019526189A (ja) 下りリンク信号受信方法及び使用者器機と、下りリンク信号送信方法及び基地局
WO2014017869A1 (ko) 셀 스위칭 방법 및 장치
WO2018127374A1 (en) User device signal processing based on triggered reference signals for wireless networks
CN111901787A (zh) 为增强覆盖模式ue处理上行链路传输冲突的系统和方法
US20090245211A1 (en) Method and apparatus for providing system information in ofdma cellular system
US10869304B2 (en) Downlink control information sending method, downlink control information detection method, and device
KR20140056899A (ko) 무선 통신 시스템에서 간섭 인지 검출 방법 및 장치
EP3681084A1 (en) Short physical downlink control channel (spdcch) mapping design
CN108352916A (zh) 用于监视免许可频带中的控制信道的方法和设备
KR20190112283A (ko) 통신 방법, 네트워크 기기 및 단말기
JP2012531067A (ja) 移動通信システムと方法、基地局、およびユーザ端末
CN114629613A (zh) 调度uci传输方案
US20240031054A1 (en) Communication method, communication device, electronic device, and computer readable storage medium
US10361812B2 (en) Transmission data signaling in a wireless communication network
EP4009556A2 (en) Ue performing blind decoding according to decoding priorities for aggretaton levels and filtering of decoding candidates

Legal Events

Date Code Title Description
A201 Request for examination