WO2012118269A2 - 다중 노드 시스템에서 단말의 제어 정보 검색 방법 및 장치 - Google Patents

다중 노드 시스템에서 단말의 제어 정보 검색 방법 및 장치 Download PDF

Info

Publication number
WO2012118269A2
WO2012118269A2 PCT/KR2011/009811 KR2011009811W WO2012118269A2 WO 2012118269 A2 WO2012118269 A2 WO 2012118269A2 KR 2011009811 W KR2011009811 W KR 2011009811W WO 2012118269 A2 WO2012118269 A2 WO 2012118269A2
Authority
WO
WIPO (PCT)
Prior art keywords
search space
terminal
control information
information
rnti
Prior art date
Application number
PCT/KR2011/009811
Other languages
English (en)
French (fr)
Other versions
WO2012118269A3 (ko
Inventor
강지원
임빈철
김수남
천진영
박성호
김기태
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to JP2013555351A priority Critical patent/JP5698390B2/ja
Priority to CN201180068890.4A priority patent/CN103404046B/zh
Priority to EP11860046.9A priority patent/EP2683098B1/en
Priority to US14/002,566 priority patent/US9923659B2/en
Priority to KR1020137021983A priority patent/KR20130119484A/ko
Publication of WO2012118269A2 publication Critical patent/WO2012118269A2/ko
Publication of WO2012118269A3 publication Critical patent/WO2012118269A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • H04J11/0083Multi-mode cell search, i.e. where several modes or systems can be used, e.g. backwards compatible, dual mode or flexible systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • H04J11/0079Acquisition of downlink reference signals, e.g. detection of cell-ID
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0046Code rate detection or code type detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria

Definitions

  • the present invention relates to wireless communication, and more particularly, to a method and apparatus for retrieving control information of a terminal in a multi-node system.
  • the node may mean an antenna or a group of antennas separated by a predetermined interval from a distributed antenna system (DAS), but may be used in a broader sense without being limited to this meaning. That is, the node may be a macro base station, a picocell base station (PeNB), a home base station (HeNB), a remote radio head (RRH), a remote radio unit (RRU), a repeater, a distributed antenna (group), or the like.
  • DAS distributed antenna system
  • the node may be a macro base station, a picocell base station (PeNB), a home base station (HeNB), a remote radio head (RRH), a remote radio unit (RRU), a repeater, a distributed antenna (group), or the like.
  • Wireless communication systems with high density nodes can exhibit higher system performance by cooperation between nodes.
  • each node operates as an antenna or a group of antennas for one cell by receiving and receiving transmission and reception by one control station, each system can perform much better system performance than when each node operates as an independent base station without cooperating with each other.
  • a wireless communication system including a plurality of nodes and a base station for controlling the plurality of nodes is called a multi-node system.
  • An object and method for retrieving control information of a terminal in a multi-node system is provided.
  • a method for retrieving control information of a terminal in a multi-node system including a plurality of nodes and a base station that can be connected to and control each of the plurality of nodes receives the search space indication information from the base station. Doing; And searching for control information in a radio resource region indicated by the search space indication information, wherein the search space indication information is information indicating one of a first search space and a second search space.
  • the search space is a radio resource region in which a first type terminal operating by a first radio access technology (RAT) searches for control information, and the second search space is control information in a second type terminal operating by a second RAT. It is a radio resource area for searching for, wherein the terminal is characterized in that the second type terminal.
  • RAT radio access technology
  • the first search space includes a plurality of orthogonal frequency division multiplexing (OFDM) symbols in the time domain, and is located in the first N OFDM symbols in a subframe including a plurality of resource blocks in the frequency domain.
  • the subframe may be located in at least one OFDM symbol located after the first search space.
  • N is a natural number of any one of 1 to 4.
  • the first search space includes a first common search space and a first user equipment-specific search space
  • the second search space includes a second terminal specific search space ( cell-specific control information common to both the first type terminal and the second type terminal may be transmitted in the first search space.
  • Control information specific to the second type terminal is transmitted in any one of the first search space and the second terminal specific search space, and the one search space may be indicated by the search space indication information. Can be.
  • the search space indication information may be received through a higher layer signal.
  • the search space indication information may be included in downlink control information (DCI) of a physical downlink control channel (PDCCH) transmitted by the base station in the first search space.
  • DCI downlink control information
  • PDCCH physical downlink control channel
  • a method for retrieving control information of a terminal in a multi-node system including a plurality of nodes and a base station capable of being connected to and controlling each of the plurality of nodes may include receiving a terminal list from the base station. ; Determining a radio resource region to search for control information based on the terminal list; And searching for control information in the determined radio resource region, wherein the terminal list indicates 'information about the E-PDCCH region' indicating a radio resource region in which at least one node of the plurality of nodes transmits control information. Or a Radio Network Temporary Identifier (RNTI) for a terminal receiving control information from the at least one node.
  • RNTI Radio Network Temporary Identifier
  • the determined radio resource region is determined as one of a first search space and a second search space
  • the first search space is a radio in which a first type terminal operating by a first radio access technology (RAT) searches for control information.
  • RAT radio access technology
  • a resource area, the second search space is a radio resource area in which a second type terminal operated by a second RAT retrieves control information, and the terminal may be the second type terminal.
  • the first search space includes a plurality of orthogonal frequency division multiplexing (OFDM) symbols in the time domain, and is located in the first N OFDM symbols in a subframe including a plurality of resource blocks in the frequency domain.
  • the subframe may be located in at least one OFDM symbol located after the first search space.
  • N is a natural number of any one of 1 to 4.
  • the first search space includes a first common search space and a first user equipment-specific search space, wherein the second search space is a second common search space. common search space) and a second user equipment-specific search space.
  • the 'information about the E-PDCCH region' may include information indicating the position and size of the second search space.
  • the RNTI is TPC-PUCCH-RNTI, TPC- used for demasking control information for C-RNTI, Temporary C-RNTI, Semi-Persistent Scheduling C-RNTI, and uplink transmission power control. It may include at least one of the PUSCH-RNTI and RA-RNTIs used to transmit the random access response.
  • the RNTI may be used in the second common search space.
  • the terminal specific control information of the terminal may be received in the second terminal specific search space.
  • the terminal list may be broadcast from the base station.
  • Terminal for transmitting and receiving radio signals; And a processor coupled to the RF unit, the processor receiving search space indication information from a base station and searching for control information in a radio resource region indicated by the search space indication information, wherein the search space indication information is determined.
  • Information indicating one of a first search space and a second search space wherein the first search space is a radio resource region for searching for control information by a first type terminal operated by a first radio access technology (RAT),
  • the second search space is a radio resource region in which a second type terminal operated by a second RAT searches for control information.
  • the RF unit for transmitting and receiving radio signals; And a processor coupled to the RF unit, wherein the processor receives a terminal list from a base station, determines a radio resource region to search for control information based on the terminal list, and provides control information in the determined radio resource region.
  • the terminal list may include information about an E-PDCCH region indicating a radio resource region through which at least one node of the plurality of nodes transmits control information, and a terminal that receives control information from the at least one node.
  • RNTI Radio Network Temporary Identifier
  • the present invention it is possible to efficiently transmit and receive control information by allocating additional radio resources to transmission of control information of a node in a multi-node system. It is possible to reduce the number of blind decoding by notifying the UE which radio resource control information is transmitted.
  • FIG. 1 shows an example of a multi-node system.
  • FIG. 2 shows a structure of a radio frame in 3GPP LTE.
  • FIG. 3 shows an example of a resource grid for one slot.
  • 5 shows a structure of a downlink subframe.
  • FIG. 6 is a block diagram illustrating a generation process of a PDCCH.
  • FIG. 8 illustrates an example of a common search space and a terminal specific search space for monitoring a PDCCH.
  • FIG. 10 shows an example of notifying a terminal specific search space to a terminal through a higher layer signal.
  • 11 illustrates an operation of a terminal when the base station broadcasts the terminal list.
  • FIG. 12 is a block diagram illustrating a base station and a terminal.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA), or the like.
  • IEEE 802.16m is an evolution of IEEE 802.16e and provides backward compatibility with systems based on IEEE 802.16e.
  • UTRA is part of the Universal Mobile Telecommunications System (UMTS).
  • 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) is part of Evolved UMTS (E-UMTS) using Evolved-UMTS Terrestrial Radio Access (E-UTRA), which employs OFDMA in downlink and SC in uplink -FDMA is adopted.
  • LTE-A Advanced
  • 3GPP LTE Advanced
  • FIG. 1 shows an example of a multi-node system.
  • the multi-node system includes a base station (BS) and a plurality of nodes.
  • BS base station
  • a base station generally refers to a fixed station communicating with a terminal, and may be referred to as other terms such as an evolved-NodeB (eNB), a base transceiver system (BTS), and an advanced base station (ABS).
  • eNB evolved-NodeB
  • BTS base transceiver system
  • ABS advanced base station
  • a node may be referred to as an antenna node (AN).
  • the node is not limited to a distributed antenna and may be implemented with, for example, a macro base station, a picocell base station (PeNB), a home base station (HeNB), a remote radio head (RRH), a repeater, and the like.
  • Nodes are also called points. These nodes may be wired or wirelessly connected to the base station and controlled / managed by the base station.
  • the node may be identified or indicated through a reference signal (RS) or a pilot signal from the viewpoint of the terminal.
  • the reference signal (or pilot signal, hereinafter identical) refers to a signal used by a transmitter and a receiver to be used for channel measurement and data demodulation.
  • Examples of reference signals include a CSI-RS (channel status indication-reference signal) defined in 3GPP LTE-A, a preamble defined in IEEE 802.16m, a midamble, and the like.
  • CSI-RS channel status indication-reference signal
  • Such a reference signal or configuration of the reference signal may be mapped to each node (or a transmission antenna of each node).
  • the terminal may identify or be instructed on the basis of the CSI-RS configuration, and may obtain channel state information on the node.
  • the reference signal configuration may include information about a configuration index, the number of antenna ports of each node, a resource element used (RE), a transmission period, and an offset of a transmission time point. Therefore, for convenience of description, the description that the terminal measures a signal or generates channel state information for a specific node may mean that the terminal measures a signal for a specific reference signal or generates channel state information.
  • a node is connected to a base station via a wired / wireless network, and each node may be configured of one antenna or a plurality of antennas (ie, an antenna group). Antennas belonging to one node may be located within a few meters geographically and have the same characteristics. In a multi-node system, a node serves as an access point (AP) to which a terminal can access.
  • AP access point
  • a distributed antenna system refers to a system in which antennas (ie, nodes) are distributed in geographically diverse locations and managed by the base station.
  • the distributed antenna system is different from that in the conventional centralized antenna system (CAS), antennas of a base station are concentrated and arranged in a cell center.
  • CAS conventional centralized antenna system
  • the geographically distributed antennas may mean that when one receiver receives the same signal from a plurality of antennas, a channel state difference between each antenna and the receiver is arranged to be different by a specific value or more. have. Meaning that the antennas are concentrated may mean that the antennas are densely arranged such that the channel state difference between each antenna and one receiver is less than a specific value.
  • the specific value may be variously determined according to a frequency, a service type, etc. used for the antennas.
  • downlink means communication from a base station or a node to a terminal
  • uplink means communication from a terminal to a base station or a node
  • FIG. 2 shows a structure of a radio frame in 3GPP LTE.
  • a radio frame consists of 10 subframes, and one subframe consists of two slots. Slots in a radio frame are numbered with slots # 0 through # 19. The time taken for one subframe to be transmitted is called a Transmission Time Interval (TTI). TTI may be referred to as a scheduling unit for data transmission. For example, one radio frame may have a length of 10 ms, one subframe may have a length of 1 ms, and one slot may have a length of 0.5 ms.
  • TTI Transmission Time Interval
  • the structure of the radio frame is merely an example. Therefore, the number of subframes included in the radio frame or the number of slots included in the subframe may be variously changed.
  • FIG. 3 shows an example of a resource grid for one slot.
  • the Slots include a downlink slot and an uplink slot.
  • the downlink slot includes a plurality of OFDM symbols in the time domain and includes N RB resource blocks (RBs) in the frequency domain.
  • the OFDM symbol may be referred to as an SC-FDMA symbol according to a transmission scheme.
  • the RB includes one slot in the time domain and a plurality of consecutive subcarriers in the frequency domain in resource allocation units.
  • the number N RB of resource blocks included in the downlink slot depends on a downlink transmission bandwidth set in a cell.
  • N RB may be any one of 6 to 110.
  • the structure of the uplink slot may also be the same as that of the downlink slot.
  • Each element on the resource grid is called a resource element (RE).
  • One resource block includes 7 OFDM symbols in the time domain and 12 subcarriers in the frequency domain to include 7 ⁇ 12 resource elements, but the number of OFDM symbols and the number of subcarriers in the resource block is limited thereto. It is not.
  • the number of OFDM symbols and the number of subcarriers can be variously changed according to the length of the CP, frequency spacing, and the like. For example, the number of OFDM symbols is 7 for a normal CP and the number of OFDM symbols is 6 for an extended CP.
  • the number of subcarriers in one OFDM symbol may be selected and used among 128, 256, 512, 1024, 1536 and 2048.
  • the uplink subframe may be divided into a control region and a data region in the frequency domain.
  • the control region is allocated a physical uplink control channel (PUCCH) for transmitting uplink control information.
  • the data region is allocated a physical uplink shared channel (PUSCH) for transmitting data.
  • the UE may not simultaneously transmit or simultaneously transmit PUCCH and PUSCH according to configuration.
  • PUCCH for one UE is allocated to an RB pair in a subframe.
  • Resource blocks belonging to a resource block pair occupy different subcarriers in each of a first slot and a second slot.
  • the frequency occupied by RBs belonging to the RB pair allocated to the PUCCH is changed based on a slot boundary. This is called that the RB pair allocated to the PUCCH is frequency-hopped at the slot boundary.
  • the UE may obtain frequency diversity gain by transmitting uplink control information through different subcarriers over time.
  • the uplink control information transmitted on the PUCCH includes a hybrid automatic repeat request (HARQ) acknowledgment (ACK) / non-acknowledgement (NACK), channel state information (CSI) indicating a downlink channel state, and an uplink radio resource allocation request.
  • HARQ hybrid automatic repeat request
  • NACK non-acknowledgement
  • CSI channel state information
  • the CSI includes a precoding matrix index (PMI) indicating a precoding matrix, a rank indicator (RI) indicating a rank value preferred by the UE, a channel quality indicator (CQI) indicating a channel state, and the like.
  • PMI precoding matrix index
  • RI rank indicator
  • CQI channel quality indicator
  • the uplink data transmitted on the PUSCH may be a transport block which is a data block for the UL-SCH transmitted during the TTI.
  • the transport block may be user information.
  • the uplink data may be multiplexed data.
  • the multiplexed data may be a multiplexed transport block and control information for the UL-SCH.
  • control information multiplexed with data may include CQI, PMI, HARQ ACK / NACK, RI, and the like.
  • the uplink data may consist of control information only.
  • 5 shows a structure of a downlink subframe.
  • the downlink subframe includes two slots in the time domain, and each slot includes seven OFDM symbols in the normal CP.
  • the leading up to 3 OFDM symbols (up to 4 OFDM symbols for 1.4Mhz bandwidth) of the first slot in the subframe are the control regions to which control channels are assigned, and the remaining OFDM symbols are the Physical Downlink Shared Channel (PDSCH).
  • PDSCH Physical Downlink Shared Channel
  • PDSCH refers to a channel through which a base station or node transmits data to a terminal.
  • Control channels transmitted in the control region include a Physical Control Format Indicator Channel (PCFICH), a Physical Hybrid-ARQ Indicator Channel (PHICH), and a Physical Downlink Control Channel (PDCCH).
  • PCFICH Physical Control Format Indicator Channel
  • PHICH Physical Hybrid-ARQ Indicator Channel
  • PDCCH Physical Downlink Control Channel
  • the PCFICH transmitted in the first OFDM symbol of the subframe carries a control format indicator (CFI), which is information about the number of OFDM symbols (that is, the size of the control region) used for transmission of control channels in the subframe.
  • CFI control format indicator
  • the terminal first receives the CFI on the PCFICH, and then monitors the PDCCH. Unlike the PDCCH, the PCFICH does not use blind decoding and is transmitted on a fixed PCFICH resource of a subframe.
  • the PHICH carries a positive-acknowledgement (ACK) / negative-acknowledgement (ACK) signal for an uplink hybrid automatic repeat request (HARQ).
  • ACK positive-acknowledgement
  • ACK negative-acknowledgement
  • HARQ uplink hybrid automatic repeat request
  • the ACK / NACK signal for UL (uplink) data on the PUSCH transmitted by the UE is transmitted on the PHICH.
  • DCI downlink control information
  • PDSCH also called DL grant
  • PUSCH resource allocation also called UL grant
  • VoIP Voice over Internet Protocol
  • FIG. 6 is a block diagram illustrating a generation process of a PDCCH.
  • the base station determines the PDCCH format according to the DCI to be sent to the terminal, attaches a cyclic redundancy check (CRC) to the DCI, and unique identifier according to the owner or purpose of the PDCCH (this is called a Radio Network Temporary Identifier) Mask the CRC (510).
  • CRC cyclic redundancy check
  • the following table shows the types of RNTI.
  • RNTI Usage Transport Channel Logical Channel P-RNTI Paging and System Information change notification PCH PCCH SI-RNTI Broadcast of System Information DL-SCH BCCH M-RNTI MCCH Information change notification N / A N / A RA-RNTI Random Access Response DL-SCH N / A Temporary C-RNTI Competitive resolution, when no valid C-RNTI is available.
  • Table 2 below shows the range of values of the RNTI.
  • a unique identifier of the terminal for example, a C-RNTI (Cell-RNTI) may be masked to the CRC.
  • a paging indication identifier for example, P-RNTI (P-RNTI)
  • P-RNTI P-RNTI
  • SI-RNTI system information-RNTI
  • RA-RNTI random access-RNTI
  • the PDCCH carries control information for the corresponding specific UE (called UE-specific control information), and if another RNTI is used, the PDCCH is shared by all or a plurality of terminals in the cell. (common) carries control information.
  • the DCC added with the CRC is encoded to generate coded data (520).
  • Encoding includes channel encoding and rate matching.
  • the coded data is modulated to generate modulation symbols (530).
  • the modulation symbols are mapped to a physical resource element (RE) (540). Each modulation symbol is mapped to an RE.
  • RE physical resource element
  • R0 represents a reference signal of the first antenna port
  • R1 represents a reference signal of the second antenna port
  • R2 represents a reference signal of the third antenna port
  • R3 represents a reference signal of the fourth antenna port.
  • the control region in the subframe includes a plurality of control channel elements (CCEs).
  • the CCE is a logical allocation unit used to provide a coding rate according to the state of a radio channel to a PDCCH and corresponds to a plurality of resource element groups (REGs).
  • the format of the PDCCH and the number of bits of the PDCCH are determined according to the correlation between the number of CCEs and the coding rate provided by the CCEs.
  • One REG (denoted as quadruplet in the figure) contains four REs and one CCE contains nine REGs.
  • ⁇ 1, 2, 4, 8 ⁇ CCEs may be used to configure one PDCCH, and each element of ⁇ 1, 2, 4, 8 ⁇ is called a CCE aggregation level.
  • the PDCCH is composed of one or more CCEs and is mapped to a physical resource after performing interleaving of REG units and performing a cyclic shift based on a cell ID.
  • a plurality of PDCCHs may be transmitted in one subframe.
  • the UE monitors the plurality of PDCCHs in every subframe.
  • monitoring refers to the terminal attempting to decode or detect the PDCCH according to the PDCCH format.
  • blind decoding is used to detect the PDCCH.
  • Blind decoding is also referred to as blind detection.
  • Blind decoding is a method of demasking a desired identifier in a CRC of a received PDCCH (which is called a candidatetae PDCCH) and checking a CRC error to determine whether the corresponding PDCCH is its control channel. Since the UE does not know which CCE aggregation level or DCI format is transmitted at which position in the control region, the UE performs such blind decoding.
  • a search space is used to reduce the burden of blind decoding.
  • the search space may be referred to as a monitoring set of the CCE for the PDCCH.
  • the UE monitors the PDCCH in the corresponding search space.
  • FIG. 8 illustrates an example of a common search space and a terminal specific search space for monitoring a PDCCH.
  • the search space is divided into a common search space (CSS) and a UE-specific search space (USS).
  • the common search space is a space for searching for a PDCCH having common control information (sometimes referred to as cell specific control information).
  • the common search space may be configured with 16 CCEs from CCE indexes 0 to 15, and has a CCE aggregation level of ⁇ 4, 8 ⁇ .
  • Support PDCCH with However, PDCCHs (DCI formats 0 and 1A) carrying UE specific information may also be transmitted in the common search space.
  • the UE-specific search space supports a PDCCH having a CCE aggregation level of ⁇ 1, 2, 4, 8 ⁇ .
  • a base station having a high transmit power and a node having a low transmit power may be arranged.
  • a new signal transmission method is required. In particular, it is a question of how to allocate the control region to transmit the control signal to the terminal.
  • the E-control region may be located after the existing control region in the time domain. For example, if an existing control region is transmitted in the first three OFDM symbols of a subframe, an E-control region may be added to OFDM symbols located after the three OFDM symbols. In the frequency domain, the existing control region and the E-control region may coincide or may be set differently. 9 shows an example in which the E-control region is set only in some frequency bands of the existing control region.
  • the E-control region may mean a radio resource region capable of transmitting different control information for each node of the multi-node system.
  • the E-control region may be referred to as an 'RRH control region'.
  • the improved terminal means a terminal capable of transmitting and receiving signals according to the present invention.
  • the existing terminal means a terminal operating by the current communication standard.
  • the existing terminal may be a first type terminal operated by a first radio access technology (RAT), for example, 3GPP LTE Rel-10
  • the improved terminal may be a second RAT, for example, It may be a second type terminal operated by 3GPP LTE Rel-11.
  • the second RAT may be evolution of the first RAT.
  • E-control channels include E-PDCCH, E-PCFICH, E-PHICH and the like.
  • PDCCH, PCFICH, and PHICH mean an existing control channel
  • E-PDCCH, E-PCFICH, and E-PHICH mean an E-control channel according to the present invention.
  • the X region refers to a radio resource region in which an X channel is transmitted from a base station or a node, and a radio resource region receiving an X channel from a terminal.
  • the E-PDCCH region means a radio resource region in which the E-PDCCH is transmitted.
  • a reference signal not used by the existing terminal may be used.
  • the improved terminal may receive a signal using a reference signal not used by the existing terminal in the E-control region.
  • the E-control region may be set to be the same as the R-PDCCH region used by the base station to transmit control information to the relay station in view of the allocated resource region.
  • the R-PDCCH region may be set for each slot as shown in the following table.
  • Table 3 shows the R-PDCCH configuration for the first slot
  • Table 4 shows the R-PDCCH configuration for the second slot.
  • the base station gives the "DL-StartSymbol” parameter of Table 3 through the higher layer signal.
  • configuration 1 of Table 4 is used, otherwise configuration 0 of Table 4 is used. That is, the R-PDCCH is from the OFDM symbol of the first slot indicated by the "DL-StartSymbol" parameter to the OFDM symbol # 6 or # 5 of the second slot.
  • the E-control region may be set equal to this R-PDCCH region. For example, when there is no relay station in the multi-node system, the same resource region as the R-PDCCH region may be set as the E-control region.
  • the E-control region and the R-PDCCH region differ in terms of their purpose and transmitted control channel. That is, the R-PDCCH region is used for the base station for transmitting control information to the relay station, and the E-control region is used for the base station or node for the purpose of transmitting control information to the terminal.
  • the control information transmitted in the E-control region is ultimately information to be received by the terminal and may include cell specific control information (eg, system information), terminal specific control information, and node specific control information.
  • E-PDCCH In terms of the control channel, only the R-PDCCH is transmitted in the R-PDCCH region, whereas E-PDCCH, E-PCFICH, and E-PHICH may be transmitted in the E-control region.
  • the base station may inform the terminal of the existence and the allocated location of the E-control area. For example, the base station may inform the presence and / or allocation location of the E-control area through the CFI value transmitted through the existing PCFICH.
  • CFI index 4 is a reserved index.
  • the reserved CFI index may be used to indicate whether an E-control region exists or a setting of the E-control region in a corresponding subframe.
  • the setting of the E-control area means the size and position of the E-control area.
  • the number of OFDM symbols in the PDCCH region may be 3, indicating that an E-control region exists.
  • the terminal receives the CFI index 4 through the PCFICH, it can be seen that the E-control region exists.
  • the PDCCH exists in three OFDM symbols of a subframe, and the E-control region is located from the last OFDM symbol or the last to the second OFDM symbol of the subframe after the three OFDM symbols.
  • the number of OFDM symbols of the PDCCH is only three examples.
  • the resource area that is not used by the existing terminal can be limited to use only in a carrier that is not accessible to the existing terminal.
  • the E-PDCCH region is a radio resource region in which the E-PDCCH is transmitted in the E-control region.
  • the existing PDCCH region is divided into a common search space and a terminal specific search space, but the E-PDCCH region may be configured only with a terminal specific search space for an improved terminal.
  • cell specific control information for example, system information or setting information of the E-control region
  • terminal identification for the improved terminal. It is a question of how to transmit the control information. This is explained.
  • the following table shows an example of transmitting control information to the improved terminal.
  • the base station or the node does not transmit cell specific control information commonly applied to the existing terminal and the improved terminal in the E-PDCCH region.
  • Cell specific control information for the improved UE is transmitted in the common search space of the existing PDCCH region. Accordingly, the UE can search for cell-specific control information that should be received using SI-RNTI, P-RNTI, M-RNTI, RA-RNTI, TPC-PUCCH-RNTI, and TPC-PUSCH-RNTI. Perform only in space
  • the UE specific control information for the improved UE may be transmitted in both the existing PDCCH region and the E-PDCCH region.
  • resource allocation information for receiving the E-PDCCH should be transmitted as the cell-specific control information.
  • the information on the reference signal to know for receiving the E-PDCCH may vary according to the node to which the terminal belongs. Accordingly, the UE must first receive node information indicating a node to which the UE belongs before receiving the E-PDCCH. It is preferable that such node information uses an existing PDCCH.
  • a high power node eg, a base station
  • a plurality of low power nodes eg, RRHs
  • only the high power node may transmit the PDCCH for the CRS and the existing terminal.
  • the low power nodes may transmit the E-PDCCH, but there may be an area where the E-PDCCH is not received depending on the location of the UE. Therefore, it is preferable to transmit the UE specific control information for the improved UE not only through the E-PDCCH region but also through the existing PDCCH region.
  • the UE-specific search space of the improved UE may include an existing PDCCH region and an E-PDCCH region. Therefore, if the total number of CCEs in the existing PDCCH region is called N CCE, 1 and the total number of CCEs in the E-PDCCH region is called N CCE, 2 , the total number of CCEs defining the total search space N CCE is the existing terminal. In the case of N CCE, 1 , and N CCE, 1 + N CCE, 2 for the improved terminal.
  • the terminal specific search space increases in the search space, there is a problem that the complexity for finding the terminal specific control information increases. Accordingly, it is efficient to transmit UE-specific search space indication information indicating whether the UE-specific control information of the improved UE is transmitted in the existing PDCCH region or the E-PDCCH region.
  • the search space indication information may indicate whether the UE-specific search space for the UE improved in the existing PDCCH region or the E-PDCCH region. If the UE-specific search space for the UE improved by the search space indication information is indicated to exist in the existing PDCCH region, the size of the search space is N CCE, 1 .
  • the size of the search space is N CCE, 2 . Therefore, the total number of CCEs of the UE-specific search space may be changed according to the search space indication information.
  • the search space indication information may be transmitted by various methods. That is, the method for changing the UE search space from the PDCCH region to the E-PDCCH region based on the search space indication information to the improved UE may select one of the following methods.
  • the search space indication information is an example of transmitting the higher layer signal.
  • the terminal enters into a cell (S101).
  • the terminal searches for cell specific control information and terminal specific control information in the common search space and the terminal specific search space of the PDCCH region (S102).
  • the UE searches for cell specific control information in the common search space of the PDCCH region and searches for UE specific control information in the region indicated by the E-PDCCH triggering message (S104).
  • the E-PDCCH triggering message is search space indication information transmitted to a higher layer.
  • a method of allocating a node to a terminal may include, for example, informing the terminal of reference signal information of a virtual cell to be received.
  • the reference signal information may be information indicating a cell ID, a CSI-RS port number, a CSI-RS configuration, a CSI-RS subframe configuration, etc. of the virtual cell.
  • the virtual cell refers to a device in which an existing terminal is recognized as the same cell as the mother cell, but the improved terminal is recognized as a cell other than the mother cell, and may cover a part of an area covered by the mother cell.
  • the mother cell is a cell which is a reference of an operation such as handover, cell selection / reselection, and the like.
  • a base station may be a mother cell and a node may be a virtual cell.
  • the node may transmit a synchronization signal using the same cell ID as the base station, but may transmit a terminal specific signal using a cell ID other than the cell ID of the base station.
  • the existing terminal recognizes the node as the same cell as the base station, but the improved terminal may recognize the node as a cell different from the base station.
  • the node may be referred to as a virtual cell.
  • the terminal may know that the terminal is allocated to the virtual cell instead of the mother cell. Therefore, after receiving the reference signal information, the UE searches for UE specific control information in the E-PDCCH region instead of the PDCCH region.
  • Configuration information of the E-PDCCH of each node may be broadcast as cell specific control information or provided to the terminal as terminal specific control information through a DCI or an upper layer message.
  • the base station may provide the UE with the E-PDCCH configuration information through the PDCCH region.
  • the UE-specific control information thereafter may be recognized as meaning that the UE-specific control information is transmitted in the E-PDCCH region.
  • CRC masking may be defined by defining a new RNTI such as E-RNTI.
  • the base station may inform the terminal whether the E-PDCCH is received through the PDCCH.
  • the difference from the method of 3) above is a method of informing the presence or absence of the E-PDDCH through the PDCCH region and including explicit signaling.
  • the DCI may include search space indication information that explicitly indicates whether control information should be received in the E-PDCCH region or control information in the PDCCH region.
  • the terminal searches for control information through the E-PDCCH or PDCCH region in the future by the search space indication information included in the DCI.
  • the above-described methods of 1) to 4) are methods for notifying the UE which terminal specific control information is received in the PDCCH region or the E-PDCCH region through explicit or implicit signaling. Explain other alternatives to these methods.
  • This method is a method in which a base station periodically or aperiodically broadcasts a list of terminals to receive control information in the E-PDCCH region.
  • 11 illustrates an operation of a terminal when the base station broadcasts the terminal list.
  • the terminal receives a broadcast terminal list (S201).
  • a method for broadcasting the terminal list by the base station any one of four methods described below or a combination of two or more thereof may be used.
  • the terminal list includes information indicating the E-PDCCH region of each node (for example, location, size, reference signal information, etc. of the E-PDCCH), and / or a terminal to receive control information in the E-PDCCH region.
  • RNTI eg, C-RNTI, SPS C-RNTI, temporary C-RNTI, etc.
  • the UE checks whether its RNTI is included in the UE list (S202), and if so, sets the UE-specific search space to the E-PDCCH region thereafter (S203). Thereafter, the terminal receives control information in the E-PDCCH region (S204). If its RNTI is not included in the terminal list, the terminal maintains the terminal specific search space in the PDCCH region (S205) and receives control information in the PDCCH region (S206).
  • the base station may transmit the terminal list as cell specific control information or terminal specific control information through an upper layer, or may be transmitted through a physical layer such as a physical broadcast channel (PBCH), a PDCCH, and an E-PDCCH. In addition, it can be transmitted through a new channel for transmitting the terminal list.
  • PBCH physical broadcast channel
  • PDCCH PDCCH
  • E-PDCCH E-PDCCH
  • the PBCH is transmitted in the preceding four OFDM symbols of the second slot of the first subframe of the radio frame.
  • the PBCH carries system information necessary for the terminal to communicate with a base station or a node, and system information transmitted through the PBCH is called a master information block (MIB).
  • MIB master information block
  • the base station may transmit a terminal list including the terminal.
  • the base station may transmit the terminal list through the common search space of the PDCCH.
  • the base station may put a common search space on the E-PDCCH and transmit the terminal list here.
  • the common search space is not provided in the E-PDCCH region.
  • the common search space is included in the E-PDCCH region.
  • cell specific control information shared with an existing terminal is transmitted through the PDCCH region, and node-related common information including a terminal list in the common search space of the E-PDCCH region (eg, For example, reference signal configuration information for each node, antenna port information for each node, etc.) may be transmitted.
  • SI-RNTI Some of the SI-RNTI, P-RNTI, M-RNTI, RA-RNTI, TPC-PUCCH-RNTI, and TPC-PUSCH-RNTI used in the common search space of the E-PDCCH region are not used. You may not. For example, an SI-RNTI for transmitting system information, a P-RNTI for informing paging information or a change in system information, and an M-RNTI for informing MCCH information are not used in a common search space of an E-PDCCH. Do not.
  • TPC-PUCCH-RNTI and TPC-PUSCH-RNTI can be used in the common search space of the E-PDCCH region.
  • the RA-RNTI used to convey the random access response may also be used in the common search space of the E-PDCCH.
  • the RA-RNTI may be used when the base station transmits timing advance information for uplink transmission for each terminal, and this time advance information may be determined by a receiving node of each terminal.
  • the time advance information is node specific control information and can be used in the common search space of the E-PDCCH region.
  • a new RNTI may be defined and a terminal list may be transmitted through a common search space of the PDCCH region or a common search space of the E-PDCCH region using the new RNTI.
  • the new RNTI be called User Equipment List Notification (UL) -RNTI for convenience.
  • the UL-RNTI may use one of the values reserved in Table 2, that is, a value between FFF4 and FFFC.
  • the UL-RNTI may be defined to be used only in the common search space of the PDCCH region or the E-PDCCH region. Then, all terminals can check the list of terminals to be received in the E-PDCCH region in the common search space of the PDCCH region or the E-PDCCH region using the UL-RNTI.
  • the UL-RNTI may be defined to be used only in the common search space existing in the E-PDCCH region.
  • the base station may add a new channel to transmit the list of terminals receiving the E-PDCCH, and may transmit the list of terminals on the new channel.
  • the new channel is called E-PULICH (physical user equipment list indicator channel) for convenience.
  • the E-PULICH may be transmitted together with the E-PDCCH and the E-PHICH in the R-PDCCH region.
  • the E-PULICH may use a fixed CCE in the first 1 to 3 symbol periods of the corresponding subframe in the R-PDCCH region. That is, the E-PULICH may be transmitted using a fixed resource in advance without using dynamic resource allocation.
  • the E-PULICH may be used to transmit cell specific control information in addition to the terminal list.
  • FIG. 12 is a block diagram illustrating a base station and a terminal.
  • the base station 100 includes a processor 110, a memory 120, and an RF unit 130.
  • the processor 110 implements the proposed functions, processes and / or methods. For example, the processor 110 transmits search space indication information to the terminal. In addition, the terminal list can be broadcast.
  • the memory 120 is connected to the processor 110 and stores various information for driving the processor 110.
  • the RF unit 130 is connected to the processor 110 and transmits and / or receives a radio signal.
  • the terminal 200 includes a processor 210, a memory 220, and an RF unit 230.
  • the processor 210 implements the proposed functions, processes and / or methods. For example, the processor 210 receives the search space indication information to determine a search space to search for control information. In addition, the UE-specific search space may be changed to the E-PDCCH region by comparing the RNTI of the UE list with its RNTI.
  • the memory 220 is connected to the processor 210 and stores various information for driving the processor 210.
  • the RF unit 230 is connected to the processor 210 to transmit and / or receive a radio signal.
  • Processors 110 and 210 may include application-specific integrated circuits (ASICs), other chipsets, logic circuits, data processing devices, and / or converters for interconverting baseband signals and wireless signals.
  • ASICs application-specific integrated circuits
  • the OFDM transmitter and OFDM receiver of FIG. 7 may be implemented within processors 110 and 210.
  • the memory 120, 220 may include read-only memory (ROM), random access memory (RAM), flash memory, memory card, storage medium, and / or other storage device.
  • the RF unit 130 and 230 may include one or more antennas for transmitting and / or receiving a radio signal.
  • the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function.
  • the module may be stored in the memories 120 and 220 and executed by the processors 110 and 210.
  • the memories 120 and 220 may be inside or outside the processors 110 and 210, and may be connected to the processors 110 and 210 by various well-known means.

Abstract

복수의 노드들과 상기 복수의 노드들 각각과 연결되어 제어할 수 있는 기지국을 포함하는 다중 노드 시스템에서 단말의 제어 정보 검색 방법을 제공한다. 상기 방법은 상기 기지국으로부터 검색공간 지시 정보를 수신하는 단계; 및 상기 검색공간 지시 정보가 지시하는 무선자원 영역에서 제어 정보를 검색하는 단계를 포함하되, 상기 검색공간 지시 정보는 제1 검색공간 및 제2 검색공간 중 어느 하나를 지시하는 정보이고, 상기 제1 검색공간은 제1 RAT(radio access technology)에 의해 동작하는 제1 타입 단말이 제어 정보를 검색하는 무선자원 영역이고, 상기 제2 검색공간은 제2 RAT에 의해 동작하는 제2 타입 단말이 제어 정보를 검색하는 무선자원 영역이며, 상기 단말은 상기 제2 타입 단말인 것을 특징으로 한다.

Description

다중 노드 시스템에서 단말의 제어 정보 검색 방법 및 장치
본 발명은 무선 통신에 관한 것으로, 보다 상세하게는 다중 노드 시스템에서 단말의 제어 정보 검색 방법 및 장치에 관한 것이다.
최근 무선 통신망의 데이터 전송량이 빠르게 증가하고 있다. 그 이유는 머신 대 머신(Machine-to-Machine,M2M) 통신 및 높은 데이터 전송량을 요구하는 스마트폰, 태블릿 PC 등 다양한 디바이스의 출현 및 보급 때문이다. 요구되는 높은 데이터 전송량을 만족시키기 위해 더 많은 주파수 대역을 효율적으로 사용하는 반송파 집성(carrier aggregation : CA) 기술, 인지 무선(cognitive radio: CR) 기술 등과 한정된 주파수 내에서 데이터 용량을 높이기 위해 다중 안테나 기술, 다중 기지국 협력 전송 기술 등이 최근 부각되고 있다.
또한, 무선 통신망은 사용자 주변에 액세스 할 수 있는 노드(node)의 밀도가 높아지는 방향으로 진화하고 있다. 여기서, 노드란 분산 안테나 시스템(distributed antenna system, DAS)에서 일정 간격 이상으로 떨어진 안테나 또는 안테나 그룹을 의미하기도 하지만, 이러한 의미에 한정되지 않고 좀 더 넓은 의미로 사용될 수 있다. 즉, 노드는 매크로 기지국, 피코셀 기지국(PeNB), 홈 기지국(HeNB), RRH(remote radio head), RRU(remote radio unit), 중계기, 분산된 안테나(그룹) 등이 될 수도 있다. 높은 밀도의 노드를 갖춘 무선 통신 시스템은 노드 간의 협력에 의해 더 높은 시스템 성능을 보일 수 있다. 즉, 각 노드가 독립적인 기지국으로 서로 협력하지 않고 동작하는 경우보다, 각 노드가 하나의 제어국에 의해 송수신을 관리받아 하나의 셀에 대한 안테나 또는 안테나 그룹처럼 동작한다면 훨씬 우수한 시스템 성능을 낼 수 있다. 이하에서 복수의 노드 및 복수의 노드를 제어하는 기지국을 포함하는 무선 통신 시스템을 다중 노드 시스템(multi-node system)이라 칭한다.
다중 노드 시스템에서 단말의 제어 정보 검색 방법 및 장치를 제공하고자 한다.
본 발명의 일 측면에 따른, 복수의 노드들과 상기 복수의 노드들 각각과 연결되어 제어할 수 있는 기지국을 포함하는 다중 노드 시스템에서 단말의 제어 정보 검색 방법은 상기 기지국으로부터 검색공간 지시 정보를 수신하는 단계; 및 상기 검색공간 지시 정보가 지시하는 무선자원 영역에서 제어 정보를 검색하는 단계를 포함하되, 상기 검색공간 지시 정보는 제1 검색공간 및 제2 검색공간 중 어느 하나를 지시하는 정보이고, 상기 제1 검색공간은 제1 RAT(radio access technology)에 의해 동작하는 제1 타입 단말이 제어 정보를 검색하는 무선자원 영역이고, 상기 제2 검색공간은 제2 RAT에 의해 동작하는 제2 타입 단말이 제어 정보를 검색하는 무선자원 영역이며, 상기 단말은 상기 제2 타입 단말인 것을 특징으로 한다.
상기 제1 검색공간은 시간 영역에서 복수의 OFDM(orthogonal frequency division multiplexing) 심벌을 포함하고, 주파수 영역에서 복수의 자원 블록을 포함하는 서브프레임에서 최초 N개의 OFDM 심벌에 위치하고, 상기 제2 검색공간은 상기 서브프레임에서 상기 제1 검색공간 다음에 위치하는 적어도 하나의 OFDM 심벌에 위치할 수 있다. 상기 N은 1 내지 4 중 어느 하나의 자연수.
상기 제1 검색공간은 제1 공용 검색공간(first common search space) 및 제1 단말 특정 검색공간(first user equipment-specific search space)을 포함하고, 상기 제2 검색공간은 제2 단말 특정 검색공간(second user equipment-specific search space)만을 포함하되, 상기 제1 검색공간에서는 상기 제1 타입 단말 및 상기 제2 타입 단말에게 공통되는 셀 특정 제어정보가 전송될 수 있다.
상기 제2 타입 단말에 특정적인 제어정보는 상기 제1 검색공간 및 상기 제2 단말 특정 검색 공간 중 어느 하나의 검색공간에서 전송되며, 상기 어느 하나의 검색공간은 상기 검색공간 지시 정보에 의해 지시될 수 있다.
상기 검색공간 지시 정보는 상위 계층 신호를 통해 수신될 수 있다.
상기 검색공간 지시 정보는 상기 제1 검색공간에서 상기 기지국에 의해 전송되는 PDCCH(physical downlink control channel)의 하향링크 제어정보(downlink control channel : DCI)에 포함될 수 있다.
본 발명의 다른 측면에 따른, 복수의 노드들과 상기 복수의 노드들 각각과 연결되어 제어할 수 있는 기지국을 포함하는 다중 노드 시스템에서 단말의 제어 정보 검색 방법은 상기 기지국으로부터 단말 리스트를 수신하는 단계; 상기 단말 리스트에 기반하여 제어정보를 검색할 무선자원 영역을 결정하는 단계; 및 상기 결정된 무선자원 영역에서 제어정보를 검색하는 단계를 포함하되, 상기 단말 리스트는 상기 복수의 노드 중 적어도 하나의 노드가 제어정보를 전송하는 무선자원 영역을 나타내는 ‘E-PDCCH영역에 대한 정보’ 또는 상기 적어도 하나의 노드에서 제어정보를 수신하는 단말에 대한 RNTI(Radio Network Temporary Identifier)를 포함하는 것을 특징으로 한다.
상기 결정된 무선자원 영역은 제1 검색공간 및 제2 검색공간 중 어느 하나로 결정되고, 상기 제1 검색공간은 제1 RAT(radio access technology)에 의해 동작하는 제1 타입 단말이 제어 정보를 검색하는 무선자원 영역이고, 상기 제2 검색공간은 제2 RAT에 의해 동작하는 제2 타입 단말이 제어 정보를 검색하는 무선자원 영역이며, 상기 단말은 상기 제2 타입 단말일 수 있다.
상기 제1 검색공간은 시간 영역에서 복수의 OFDM(orthogonal frequency division multiplexing) 심벌을 포함하고, 주파수 영역에서 복수의 자원 블록을 포함하는 서브프레임에서 최초 N개의 OFDM 심벌에 위치하고, 상기 제2 검색공간은 상기 서브프레임에서 상기 제1 검색공간 다음에 위치하는 적어도 하나의 OFDM 심벌에 위치할 수 있다. 상기 N은 1 내지 4 중 어느 하나의 자연수.
상기 제1 검색공간은 제1 공용 검색공간(first common search space) 및 제1 단말 특정 검색공간(first user equipment-specific search space)을 포함하고, 상기 제2 검색공간은 제2 공용 검색공간(second common search space) 및 제2 단말 특정 검색공간(second user equipment-specific search space)을 포함할 수 있다.
상기 ‘E-PDCCH영역에 대한 정보’는 상기 제2 검색공간의 위치 및 크기를 나타내는 정보를 포함할 수 있다.
상기 RNTI는 단말의 식별자인 C-RNTI, Temporary C-RNTI, Semi-Persistent Scheduling C-RNTI,상향링크 전송전력 제어에 대한 제어정보를 디마스킹(demasking)하는데 사용되는 TPC-PUCCH-RNTI, TPC-PUSCH-RNTI 및 랜덤 액세스 응답을 전송하는데 사용되는 RA-RNTI들 중 적어도 하나를 포함할 수 있다.
상기 RNTI는 상기 제2 공용 검색 공간에서 사용되는 것일 수 있다.
상기 단말 리스트에 상기 단말 자신의 RNTI가 포함된 경우, 상기 단말의 단말 특정 제어정보는 상기 제2 단말 특정 검색 공간에서 수신될 수 있다.
상기 단말 리스트는 상기 기지국으로부터 브로드캐스트(broadcast)될 수 있다.
본 발명의 또 다른 측면에 따른 단말은 무선신호를 송수신하는 RF부; 및 상기 RF부에 연결되는 프로세서를 포함하되, 상기 프로세서는 기지국으로부터 검색공간 지시 정보를 수신하고, 상기 검색공간 지시 정보가 지시하는 무선자원 영역에서 제어 정보를 검색하되, 상기 검색공간 지시 정보는 제1 검색공간 및 제2 검색공간 중 어느 하나를 지시하는 정보이고, 상기 제1 검색공간은 제1 RAT(radio access technology)에 의해 동작하는 제1 타입 단말이 제어 정보를 검색하는 무선자원 영역이고, 상기 제2 검색공간은 제2 RAT에 의해 동작하는 제2 타입 단말이 제어 정보를 검색하는 무선자원 영역인 것을 특징으로 한다.
본 발명의 또 다른 측면에 따른 단말은 무선신호를 송수신하는 RF부; 및 상기 RF부에 연결되는 프로세서를 포함하되, 상기 프로세서는 기지국으로부터 단말 리스트를 수신하고, 상기 단말 리스트에 기반하여 제어정보를 검색할 무선자원 영역을 결정하고, 상기 결정된 무선자원 영역에서 제어정보를 검색하되, 상기 단말 리스트는 상기 복수의 노드 중 적어도 하나의 노드가 제어정보를 전송하는 무선자원 영역을 나타내는 ‘E-PDCCH영역에 대한 정보’ 및 상기 적어도 하나의 노드에서 제어정보를 수신하는 단말에 대한 RNTI(Radio Network Temporary Identifier)를 포함하는 것을 특징으로 한다.
본 발명에 따르면 다중 노드 시스템에서 추가적인 무선 자원을 노드의 제어정보 전송에 할당하여 효율적으로 제어정보를 송수신이 가능하다. 단말에게 어떤 무선 자원에서 제어정보가 전송되는지 알려주어 블라인드 디코딩 횟수를 줄일 수 있다.
도 1은 다중 노드 시스템의 일 예를 나타낸다.
도 2는 3GPP LTE에서 무선 프레임(radio frame)의 구조를 나타낸다.
도 3은 하나의 슬롯에 대한 자원 그리드(resource grid)의 일 예를 나타낸다.
도 4는 상향링크 서브프레임의 구조를 나타낸다.
도 5는 하향링크 서브프레임의 구조를 나타낸다.
도 6은 PDCCH의 생성과정을 나타낸 블록도이다.
도 7은 PDCCH의 자원 맵핑의 예를 나타낸다.
도 8은 PDCCH의 모니터링을 위한 공용 검색 공간과 단말 특정 검색 공간을 나타낸 예시도이다.
도 9는 본 발명의 일 실시예에 따라 추가되는 E-제어 영역을 나타낸다.
도 10은 상위 계층 신호를 통해 단말에게 단말 특정 검색 공간을 알려주는 예를 나타낸다.
도 11은 기지국이 단말 리스트를 브로드캐스트하는 경우 단말의 동작 과정을 나타낸다.
도 12는 기지국 및 단말을 나타내는 블록도이다.
이하의 기술은 CDMA(Code Division Multiple Access), FDMA(Frequency Division Multiple Access), TDMA(Time Division Multiple Access), OFDMA(Orthogonal Frequency Division Multiple Access), SC-FDMA (Single Carrier Frequency Division Multiple Access) 등과 같은 다양한 무선 통신 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11(Wi-Fi), IEEE 802.16(WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. IEEE 802.16m은 IEEE 802.16e의 진화로, IEEE 802.16e에 기반한 시스템과의 하위 호환성(backward compatibility)를 제공한다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(Long Term Evolution)은 E-UTRA(Evolved-UMTS Terrestrial Radio Access)를 사용하는 E-UMTS(Evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(Advanced)는 3GPP LTE의 진화이다.
설명을 명확하게 하기 위해, LTE-A 시스템에 적용되는 상황을 가정하여 기술하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다.
도 1은 다중 노드 시스템의 일 예를 나타낸다.
다중 노드 시스템은 기지국(base station : BS) 및 복수의 노드를 포함한다.
기지국은 특정한 지리적 영역에 대해 통신 서비스를 제공한다. 기지국은 일반적으로 단말과 통신하는 고정된 지점(fixed station)을 말하며, eNB(evolved-NodeB), BTS(Base Transceiver System), ABS(advanced base station) 등 다른 용어로 불릴 수 있다.
도 1에서는 노드의 일 예로 분산된 안테나를 나타내고 있으며 이러한 의미에서 노드를 안테나 노드(antenna node : AN)라 칭할 수 있다. 그러나 노드는 분산된 안테나에 한정되지 않으며, 예를 들어, 매크로 기지국, 피코셀 기지국(PeNB), 홈 기지국(HeNB), RRH(remote radio head), 중계기 등으로 구현될 수 있다. 노드는 포인트(point)라 칭하기도 한다. 이러한 노드는 기지국과 유선 또는 무선으로 연결되어 기지국에 의해 제어/관리될 수 있다.
노드는 단말 입장에서 보면, 참조 신호(reference signal:RS) 또는 파일럿(pilot) 신호를 통해 식별 또는 지시될 수 있다. 참조 신호(또는 파일럿 신호, 이하 동일)는 전송단과 수신단이 알고 있는 신호로 채널 측정, 데이터 복조 등에 이용되는 신호를 의미한다. 참조 신호로는 예를 들어, 3GPP LTE-A에서 규정하는 CSI-RS(channel status indication-reference signal), IEEE 802.16m에서 규정하는 프리앰블(preamble), 미드앰블(midamble) 등이 있다. 이러한 참조 신호 또는 참조 신호에 대한 설정(configuration)은 각 노드(또는 각 노드의 전송 안테나)에 맵핑(mapping)될 수 있다. 참조 신호 설정과 노드 간의 맵핑 정보가 단말에게 주어지거나 단말이 미리 알고 있다면, 단말은 CSI-RS 설정을 기반으로 노드를 식별하거나 지시받을 수 있고, 해당 노드에 대한 채널 상태 정보를 구할 수 있다. 참조 신호 설정은 설정 인덱스, 각 노드의 안테나 포트 개수, 사용하는 자원 요소(resource element : RE), 전송 주기 및 전송 시점의 오프셋(offset) 등에 대한 정보를 포함할 수 있다. 따라서, 본 명세서에서 설명의 편의상 단말이 특정 노드에 대하여 신호를 측정하거나 채널 상태 정보를 생성한다는 기술은 단말 입장에서 특정 참조 신호에 대한 신호를 측정하거나 채널 상태 정보를 생성한다는 의미일 수 있다.
다시 도 1을 참조하면, 노드는 기지국과 유/무선으로 연결되어 있으며, 각 노드는 하나의 안테나 또는 복수의 안테나(즉, 안테나 그룹)로 구성될 수 있다. 하나의 노드에 속한 안테나들은 지리적으로 수 미터 이내로 위치하여 동일한 특성을 나타낼 수 있다. 다중 노드 시스템에서, 노드는 단말이 접속(access)할 수 있는 접속점(access point, AP)의 역할을 한다.
상술한 바와 같이 노드가 안테나로 구성되는 경우, 이러한 다중 노드 시스템을 분산 안테나 시스템(distributed antenna system : DAS)이라 칭하기도 한다. 즉, 분산 안테나 시스템은 안테나(즉 노드)가 지리적으로 다양한 위치에 분산되어 배치되고, 이러한 안테나들을 기지국이 관리하는 시스템을 의미한다. 분산 안테나 시스템은, 종래 집중 안테나 시스템(Centralized antenna system : CAS)에서 기지국의 안테나들이 셀 중앙에 집중되어 배치되는 점과 차이가 있다.
여기서, 안테나들이 지리적으로 분산되어 배치된다는 의미는 하나의 수신기가 동일한 신호를 복수의 안테나들로부터 수신하는 경우, 각 안테나와 상기 수신기와의 채널 상태 차이가 특정 값 이상 차이가 나도록 배치된다는 의미일 수 있다. 안테나들이 집중 배치된다는 의미는 각 안테나와 하나의 수신기 사이의 채널 상태 차이가 특정 값 미만이 되도록 밀집 배치된다는 의미일 수 있다. 상기 특정 값은 안테나들에 사용되는 주파수, 서비스 종류 등에 따라 다양하게 결정될 수 있다.
일반적으로 하향링크는 기지국 또는 노드에서 단말로의 통신을 의미하며, 상향링크는 단말에서 기지국 또는 노드로의 통신을 의미한다.
도 2는 3GPP LTE에서 무선 프레임(radio frame)의 구조를 나타낸다.
도 2를 참조하면, 무선 프레임은 10개의 서브프레임(subframe)으로 구성되고, 하나의 서브프레임은 2개의 슬롯(slot)으로 구성된다. 무선 프레임 내 슬롯은 #0부터 #19까지 슬롯 번호가 매겨진다. 하나의 서브프레임이 전송되는 데 걸리는 시간을 TTI(Transmission Time Interval)라 한다. TTI는 데이터 전송을 위한 스케줄링 단위라 할 수 있다. 예를 들어, 하나의 무선 프레임의 길이는 10ms이고, 하나의 서브프레임의 길이는 1ms이고, 하나의 슬롯의 길이는 0.5ms 일 수 있다.
상기 무선 프레임의 구조는 일 예에 불과하다. 따라서 무선 프레임에 포함되는 서브프레임의 개수나 서브프레임에 포함되는 슬롯의 개수는 다양하게 변경될 수 있다.
도 3은 하나의 슬롯에 대한 자원 그리드(resource grid)의 일 예를 나타낸다.
슬롯은 하향링크 슬롯과 상향링크 슬롯이 있다. 하향링크 슬롯은 시간 영역에서 복수의 OFDM 심벌을 포함하고, 주파수 영역에서 NRB개의 자원블록(RB; Resource Block)을 포함한다. OFDM 심벌은 전송 방식에 따라 SC-FDMA 심벌이라 칭할 수도 있다. 자원블록은 자원 할당 단위로 시간 영역에서 하나의 슬롯, 주파수 영역에서 복수의 연속하는 부반송파를 포함한다.
하향링크 슬롯에 포함되는 자원블록의 수 NRB은 셀에서 설정되는 하향링크 전송 대역폭(bandwidth)에 종속한다. 예를 들어, LTE 시스템에서 NRB은 6 내지 110 중 어느 하나일 수 있다. 상향링크 슬롯의 구조도 상기 하향링크 슬롯의 구조와 동일할 수 있다.
자원 그리드 상의 각 요소(element)를 자원 요소(resource element, RE)라 한다. 자원 그리드 상의 자원 요소는 슬롯 내 인덱스 쌍(pair) (k,l)에 의해 식별될 수 있다. 여기서, k(k=0,...,NRB×12-1)는 주파수 영역 내 부반송파 인덱스이고, l(l=0,...,6)은 시간 영역 내 OFDM 심벌 인덱스이다.
하나의 자원블록은 시간 영역에서 7 OFDM 심벌, 주파수 영역에서 12 부반송파로 구성되어 7×12 자원 요소를 포함하는 것을 예시적으로 기술하나, 자원블록 내 OFDM 심벌의 수와 부반송파의 수는 이에 제한되는 것은 아니다. OFDM 심벌의 수와 부반송파의 수는 CP의 길이, 주파수 간격(frequency spacing) 등에 따라 다양하게 변경될 수 있다. 예를 들어, 노멀 CP의 경우 OFDM 심벌의 수는 7이고, 확장된 CP의 경우 OFDM 심벌의 수는 6이다. 하나의 OFDM 심벌에서 부반송파의 수는 128, 256, 512, 1024, 1536 및 2048 중 하나를 선정하여 사용할 수 있다.
도 4는 상향링크 서브프레임의 구조를 나타낸다.
상향링크 서브프레임은 주파수 영역에서 제어 영역과 데이터 영역으로 나뉠 수 있다. 제어 영역은 상향링크 제어 정보가 전송되기 위한 PUCCH(Physical Uplink Control Channel)이 할당된다. 데이터 영역은 데이터가 전송되기 위한 PUSCH(Physical Uplink Shared Channel)이 할당된다. 단말은 설정에 따라 PUCCH와 PUSCH를 동시에 전송하지 않거나, 동시에 전송할 수 있다.
하나의 단말에 대한 PUCCH는 서브프레임에서 자원블록 쌍(RB pair)으로 할당된다. 자원블록 쌍에 속하는 자원블록들은 제1 슬롯과 제2 슬롯 각각에서 서로 다른 부반송파를 차지한다. PUCCH에 할당되는 자원블록 쌍에 속하는 자원블록이 차지하는 주파수는 슬롯 경계(slot boundary)를 기준으로 변경된다. 이를 PUCCH에 할당되는 RB 쌍이 슬롯 경계에서 주파수가 홉핑(frequency-hopped)되었다고 한다. 단말이 상향링크 제어 정보를 시간에 따라 서로 다른 부반송파를 통해 전송함으로써, 주파수 다이버시티(diversity) 이득을 얻을 수 있다.
PUCCH 상으로 전송되는 상향링크 제어정보에는 HARQ(Hybrid Automatic Repeat reQuest) ACK(Acknowledgement)/NACK(Non-acknowledgement), 하향링크 채널 상태를 나타내는 CSI(Channel State Information), 상향링크 무선 자원 할당 요청인 SR(Scheduling Request) 등이 있다. CSI에는 프리코딩 행렬을 지시하는 PMI(precoding matrix index), 단말이 선호하는 랭크 값을 나타내는 RI(rank indicator), 채널 상태를 나타내는 CQI(channel quality indicator) 등이 있다.
PUSCH는 전송 채널(transport channel)인 UL-SCH(Uplink Shared Channel)에 맵핑된다. PUSCH 상으로 전송되는 상향링크 데이터는 TTI 동안 전송되는 UL-SCH를 위한 데이터 블록인 전송 블록(transport block)일 수 있다. 상기 전송 블록은 사용자 정보일 수 있다. 또는, 상향링크 데이터는 다중화된(multiplexed) 데이터일 수 있다. 다중화된 데이터는 UL-SCH를 위한 전송 블록과 제어정보가 다중화된 것일 수 있다. 예를 들어, 데이터에 다중화되는 제어정보에는 CQI, PMI, HARQ ACK/NACK, RI 등이 있을 수 있다. 또는 상향링크 데이터는 제어정보만으로 구성될 수도 있다.
도 5는 하향링크 서브프레임의 구조를 나타낸다.
하향링크 서브프레임은 시간 영역에서 2개의 슬롯을 포함하고, 각 슬롯은 노멀 CP에서 7개의 OFDM 심벌을 포함한다. 서브프레임 내의 첫 번째 슬롯의 앞선 최대 3 OFDM 심벌들(1.4Mhz 대역폭에 대해서는 최대 4 OFDM 심벌들)이 제어 채널들이 할당되는 제어 영역(control region)이고, 나머지 OFDM 심벌들은 PDSCH(Physical Downlink Shared Channel)가 할당되는 데이터 영역이 된다. PDSCH는 기지국 또는 노드가 단말에게 데이터를 전송하는 채널을 의미한다.
제어 영역에서 전송되는 제어채널에는 PCFICH(Physical Control Format Indicator Channel), PHICH(Physical Hybrid-ARQ Indicator Channel), PDCCH(Physical Downlink Control Channel)가 있다.
서브프레임의 첫번째 OFDM 심벌에서 전송되는 PCFICH는 서브프레임내에서 제어채널들의 전송에 사용되는 OFDM 심벌의 수(즉, 제어영역의 크기)에 관한 정보인 CFI(control format indicator)를 나른다. 단말은 먼저 PCFICH 상으로 CFI를 수신한 후, PDCCH를 모니터링한다. PDCCH와 달리, PCFICH는 블라인드 디코딩을 사용하지 않고, 서브프레임의 고정된 PCFICH 자원을 통해 전송된다.
PHICH는 상향링크 HARQ(hybrid automatic repeat request)를 위한 ACK(positive-acknowledgement)/ NACK(negative-acknowledgement) 신호를 나른다. 단말에 의해 전송되는 PUSCH상의 UL(uplink) 데이터에 대한 ACK/NACK 신호는 PHICH 상으로 전송된다.
PDCCH를 통해 전송되는 제어정보를 하향링크 제어정보(downlink control information, DCI)라고 한다. DCI는 PDSCH의 자원 할당(이를 DL 그랜트(downlink grant)라고도 한다), PUSCH의 자원 할당(이를 UL 그랜트(uplink grant)라고도 한다), 임의의 UE 그룹내 개별 UE들에 대한 전송 파워 제어 명령의 집합 및/또는 VoIP(Voice over Internet Protocol)의 활성화를 포함할 수 있다.
도 6은 PDCCH의 생성과정을 나타낸 블록도이다.
기지국은 단말에게 보내려는 DCI에 따라 PDCCH 포맷을 결정한 후 DCI에 CRC(Cyclic Redundancy Check)를 붙이고, PDCCH의 소유자(owner)나 용도에 따라 고유한 식별자(이를 RNTI(Radio Network Temporary Identifier)라고 한다)를 CRC에 마스킹한다(510).
다음 표는 RNTI의 종류를 나타낸다.
RNTI 용도 Transport Channel Logical Channel
P-RNTI 페이징 및 시스템 정보 변경을 알림(Paging and System Information change notification) PCH PCCH
SI-RNTI 시스템 정보의 브로드캐스트(Broadcast of System Information) DL-SCH BCCH
M-RNTI MCCH 정보 변경을 알림(MCCH Information change notification) N/A N/A
RA-RNTI 랜덤 액세스 응답(Random Access Response) DL-SCH N/A
Temporary C-RNTI 경쟁 해결, 유효한 C-RNTI가 사용가능하지 않을 때. (Contention Resolution(when no valid C-RNTI is available)) DL-SCH CCCH
Temporary C-RNTI 메시지 3 전송(Msg3 transmission) UL-SCH CCCH, DCCH, DTCH
C-RNTI 동적으로 스케줄링된 유니캐스트 전송(Dynamically scheduled unicast transmission) UL-SCH DCCH, DTCH
C-RNTI 동적으로 스케줄링된 유니캐스트 전송(Dynamically scheduled unicast transmission) DL-SCH CCCH, DCCH, DTCH
C-RNTI PDCCH 지시의 랜덤 액세스 트리거링(Triggering of PDCCH ordered random access) N/A N/A
Semi-Persistent Scheduling C-RNTI 반정적 스케줄링된 유니캐스트 전송, 활성화, 재활성화 및 재전송(Semi-Persistently scheduled unicast transmission
(activation, reactivation and retransmission))
DL-SCH, UL-SCH DCCH, DTCH
Semi-Persistent Scheduling C-RNTI 반정적 스케줄링된 유니캐스트 전송, 비활성화(Semi-Persistently scheduled unicast transmission
(deactivation))
N/A N/A
TPC-PUCCH-RNTI 물리 계층 상향링크 전력 제어(Physical layer Uplink power control) N/A N/A
TPC-PUSCH-RNTI 물리 계층 상향링크 전력 제어(Physical layer Uplink power control) N/A N/A

다음 표 2는 RNTI의 값들의 범위를 나타낸다.
값 (16진수) RNTI
0000 N/A
0001-003C RA-RNTI, C-RNTI, Semi-Persistent Scheduling C-RNTI, Temporary C-RNTI, TPC-PUCCH-RNTI and TPC-PUSCH-RNTI (see note)
003D-FFF3 C-RNTI, Semi-Persistent Scheduling C-RNTI, Temporary C-RNTI, TPC-PUCCH-RNTI and TPC-PUSCH-RNTI
FFF4-FFFC 미래의 용도를 위해 유보(Reserved for future use)
FFFD M-RNTI
FFFE P-RNTI
FFFF SI-RNTI

특정 단말을 위한 PDCCH라면 단말의 고유 식별자, 예를 들어 C-RNTI(Cell-RNTI)가 CRC에 마스킹될 수 있다. 또는, 페이징 메시지를 위한 PDCCH라면 페이징 지시 식별자, 예를 들어 P-RNTI(Paging-RNTI)가 CRC에 마스킹될 수 있다. 시스템 정보를 위한 PDCCH라면 시스템 정보 식별자, SI-RNTI(system information-RNTI)가 CRC에 마스킹될 수 있다. 단말의 랜덤 액세스 프리앰블의 전송에 대한 응답인 랜덤 액세스 응답을 지시하기 위해 RA-RNTI(random access-RNTI)가 CRC에 마스킹될 수 있다.
C-RNTI가 사용되면 PDCCH는 해당하는 특정 단말을 위한 제어정보(이를 단말 특정(UE-specific) 제어정보라 함)를 나르고, 다른 RNTI가 사용되면 PDCCH는 셀내 모든 또는 복수의 단말이 수신하는 공용(common) 제어정보를 나른다.
CRC가 부가된 DCI를 인코딩하여 부호화된 데이터(coded data)를 생성한다(520). 인코딩은 채널 인코딩과 레이트 매칭(rate matching)을 포함한다.
부호화된 데이터는 변조되어 변조 심벌들이 생성된다(530).
변조심벌들은 물리적인 RE(resource element)에 맵핑된다(540). 변조심벌 각각은 RE에 맵핑된다.
도 7은 PDCCH의 자원 맵핑의 예를 나타낸다.
도 7에서, R0은 제1 안테나 포트의 기준신호, R1은 제2 안테나 포트의 기준신호, R2는 제3 안테나 포트의 기준신호, R3는 제4 안테나 포트의 기준신호를 나타낸다.
서브프레임내의 제어영역은 복수의 CCE(control channel element)를 포함한다. CCE는 무선채널의 상태에 따른 부호화율을 PDCCH에게 제공하기 위해 사용되는 논리적 할당 단위로, 복수의 REG(resource element group)에 대응된다. CCE의 개수와 CCE들에 의해 제공되는 부호화율의 연관 관계에 따라 PDCCH의 포맷 및 가능한 PDCCH의 비트수가 결정된다.
하나의 REG(도면에서는 쿼드러플릿(quadruplet)으로 표시)는 4개의 RE를 포함하고, 하나의 CCE는 9개의 REG를 포함한다. 하나의 PDCCH를 구성하기 위해 {1, 2, 4, 8}개의 CCE를 사용할 수 있으며, {1, 2, 4, 8} 각각의 요소를 CCE 집합 레벨(aggregation level)이라 한다.
즉, PDCCH는 하나 또는 그 이상의 CCE로 구성되며, REG 단위의 인터리빙을 수행하고 셀 ID(identifier)에 기반한 순환 쉬프트(cyclic shift)가 수행된 후에 물리적 자원에 매핑된다.
하나의 서브프레임내에서 복수의 PDCCH가 전송될 수 있다. 단말은 매 서브프레임마다 복수의 PDCCH들을 모니터링한다. 여기서, 모니터링이란 단말이 PDCCH 포맷에 따라 PDCCH의 디코딩 또는 검출을 시도하는 것을 말한다.
3GPP LTE에서는 PDCCH의 검출을 위해 블라인드 디코딩(blind decoding)을 사용한다. 블라인드 디코딩은 블라인드 검출(detection)이라 칭하기도 한다. 블라인드 디코딩은 수신되는 PDCCH(이를 후보(candidtae) PDCCH라 함)의 CRC에 원하는 식별자를 디마스킹(demasking)하여, CRC 오류를 체크하여 해당 PDCCH가 자신의 제어채널인지 아닌지를 확인하는 방식이다. 단말은 자신의 PDCCH가 제어영역 내의 어느 위치에서 어떤 CCE 집합 레벨이나 DCI 포맷을 사용하여 전송되는지 알지 못하기 때문에 이러한 블라인드 디코딩을 수행한다.
3GPP LTE에서는 블라인드 디코딩으로 인한 부담을 줄이기 위해, 검색 공간(search space : SS)을 사용한다. 검색 공간은 PDCCH를 위한 CCE의 모니터링 집합(monitoring set)이라 할 수 있다. 단말은 해당되는 검색 공간 내에서 PDCCH를 모니터링한다.
도 8은 PDCCH의 모니터링을 위한 공용 검색 공간과 단말 특정 검색 공간을 나타낸 예시도이다.
검색 공간은 공용 검색 공간(common search space : CSS)과 단말 특정 검색 공간(UE-specific search space : USS)로 나뉜다. 공용 검색 공간은 공용 제어정보(이를 셀 특정 제어정보라 칭하기도 한다)를 갖는 PDCCH를 검색하는 공간으로 CCE 인덱스 0~15까지 16개 CCE로 구성될 수 있고, {4, 8}의 CCE 집합 레벨을 갖는 PDCCH을 지원한다. 하지만 공용 검색 공간에도 단말 특정 정보를 나르는 PDCCH (DCI 포맷 0, 1A)가 전송될 수도 있다. 단말 특정 검색 공간은 {1, 2, 4, 8}의 CCE 집합 레벨을 갖는 PDCCH을 지원한다.

이제 다중 노드 시스템에서 신호 전송 방법에 대해 설명한다. 이하에서 주로 다중 노드 시스템에서 본 발명이 적용되는 예를 설명하나 이에 제한되는 것은 아니다. 즉, 다중 노드 시스템이 아닌 임의의 무선 통신 시스템에도 적용될 수 있다.
다중 노드 시스템에는 높은 전송 전력을 가지는 기지국과 낮은 전송 전력을 가지는 노드가 다수 배치될 수 있다. 제한된 무선 자원을 통해 더 많은 단말을 지원하기 위해서는 새로운 신호 전송 방법이 요구된다. 특히, 제어 영역을 어떠한 방식으로 할당하여 단말에게 제어 신호를 전송할 것인지가 문제된다.

1. E-제어 영역.
도 9는 본 발명의 일 실시예에 따라 추가되는 E-제어 영역을 나타낸다.
도 9를 참조하면, E-제어 영역은 시간 영역에서 보면 기존의 제어 영역 다음에 위치할 수 있다. 예를 들어, 서브프레임의 첫 3개의 OFDM 심벌에서 기존의 제어 영역이 전송된다면 상기 3개의 OFDM 심벌 다음에 위치하는 OFDM 심벌들에 E-제어 영역이 추가될 수 있다. 주파수 영역에서 보면, 기존의 제어 영역과 E-제어 영역은 일치할 수도 있고 서로 다르게 설정될 수도 있다. 도 9에서는 기존의 제어 영역의 일부 주파수 대역에서만 E-제어 영역이 설정되는 예를 나타내었다.
여기서, E-제어 영역은 다중 노드 시스템의 노드 별로 서로 다른 제어 정보를 전송할 수 있는 무선자원영역을 의미할 수 있다. 이러한 의미에서 E-제어 영역은 ‘RRH 제어 영역’이라 칭할 수도 있다.
E-제어 영역에서는 개선된 단말(advanced UE)을 위한 신호가 전송될 수 있다. 개선된 단말은 본 발명에 따른 신호 송수신이 가능한 단말을 의미한다. 기존의 단말은 현재 통신 표준에 의해 동작하는 단말을 의미한다. 다시 말해, 기존의 단말은 제1 RAT(radio access technology) 예를 들어, 3GPP LTE Rel-10에 의해 동작하는 제1 타입(type) 단말일 수 있고, 개선된 단말은 제2 RAT 예를 들어, 3GPP LTE Rel-11에 의해 동작하는 제2 타입 단말일 수 있다. 여기서, 제2 RAT는 제1 RAT의 진화일 수 있다.
E-제어 영역에서는 예를 들어, 개선된 단말을 위한 제어 채널이 전송될 수 있다. 개선된 단말을 위한 제어 채널은 기존 단말을 위한 제어 채널과 구분하기 위해 E-제어 채널이라 칭한다. E-제어 채널에는 E-PDCCH, E-PCFICH, E-PHICH 등이 있다. 이하, PDCCH, PCFICH, PHICH는 기존의 제어 채널을 의미하고, E-PDCCH, E-PCFICH, E-PHICH 등은 본 발명에 따른 E-제어 채널을 의미한다. 또한, X 영역은 기지국 또는 노드 입장에서는 X 채널이 전송되는 무선자원 영역을 의미하고, 단말 입장에서는 X 채널을 수신하는 무선자원 영역을 의미한다. 예를 들어, E-PDCCH 영역은 E-PDCCH가 전송되는 무선자원 영역을 의미한다.
또한, E-제어 영역에서는 기존 단말이 사용하지 않는 참조 신호가 사용될 수 있다. 개선된 단말은 E-제어 영역에서 기존 단말이 사용하지 않는 참조 신호를 이용하여 신호를 수신할 수 있다.
E-제어 영역은 할당되는 자원 영역의 측면에서 보면, 기지국이 중계국에게 제어 정보를 전송하기 위해 사용하는 R-PDCCH 영역과 동일하게 설정될 수 있다. R-PDCCH 영역은 슬롯 별로 다음 표와 같이 설정될 수 있다.
설정
(Configuration)
‘DL-StartSymbol’ 마지막 심벌 인덱스
(End symbol index)
0 1 6
1 2 6
2 3 6

설정
(Configuration)
시작 심벌 인덱스
(Start symbol index)
마지막 심벌 인덱스
(End symbol index)
0 0 6
1 0 5

표 3은 첫번째 슬롯에 대한 R-PDCCH 설정을 나타내고, 표 4는 두번째 슬롯에 대한 R-PDCCH 설정을 나타낸다. 기지국은 상위 계층 신호를 통해 상기 표 3의 ‘DL-StartSymbol’파라미터를 준다. 기지국과 중계국이 서브프레임 경계로 시간 정렬된 하향링크 서브프레임을 전송하는 경우에는 표 4의 설정 1이 사용되고, 그렇지 아니하면 표 4의 설정 0이 사용된다. 즉, R-PDCCH는 ‘DL-StartSymbol’파라미터가 지시하는 첫번째 슬롯의 OFDM 심벌부터 두번째 슬롯의 OFDM 심벌 #6 또는 #5까지이다. E-제어 영역은 이러한 R-PDCCH 영역과 동일하게 설정될 수 있다. 예를 들어, 다중 노드 시스템 내에 중계국이 존재하지 않는 경우 R-PDCCH 영역과 동일한 자원 영역을 E-제어 영역으로 설정할 수 있다.
E-제어 영역과 R-PDCCH 영역은 그 용도 및 전송되는 제어 채널 측면에서 차이가 있다. 즉, R-PDCCH 영역은 기지국이 중계국에게 제어 정보를 전송하기 위한 용도로 사용되고, E-제어 영역은 기지국 또는 노드가 단말에게 제어 정보를 전송하기 위한 용도에 사용된다는 차이가 있다. E-제어 영역에서 전송되는 제어 정보는 궁극적으로 단말이 수신할 정보이며 셀 특정 제어 정보(예를 들어, 시스템 정보), 단말 특정 제어 정보, 노드 특정 제어 정보를 포함할 수 있다.
제어 채널 측면에서 보면, R-PDCCH 영역에서는 R-PDCCH만 전송됨에 반해, E-제어 영역에서는 E-PDCCH, E-PCFICH, E-PHICH가 전송될 수 있다는 차이가 있다.

2. E-제어 영역의 유무 및 구성정보 시그널링.
기지국(또는 노드)은 단말에게 E-제어 영역의 존재 여부 및 할당된 위치를 알려줄 수 있다. 예를 들어, 기지국은 기존의 PCFICH를 통해 전송하는 CFI 값을 통해 E-제어 영역의 존부 및/또는 할당 위치를 알려줄 수 있다.
다음 표는 현재 표준에서 규정하고 있는 CFI 인덱스와 CFI 코드워드를 나타낸다.
CFI CFI 코드워드
< b0, b1, …, b31 >
1 <0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1>
2 <1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0>
3 <1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1>
4 (유보)
(Reserved)
<0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0>

상기 표 5에 나타낸 바와 같이 CFI 인덱스 4는 유보된 인덱스이다. 이러한 유보된 CFI 인덱스를 활용하여 해당 서브프레임에 E-제어 영역이 존재하는지 여부 또는 E-제어영역의 설정을 지시할 수 있다. E-제어 영역의 설정이란, E-제어 영역의 크기 및 위치를 의미한다.
예를 들어, CFI 인덱스가 4인 경우, PDCCH 영역의 OFDM 심벌의 개수는 3개이고, E-제어 영역이 존재함을 나타낼 수 있다. 단말은 PCFICH를 통해 CFI 인덱스 4를 수신하면, E-제어 영역이 존재함을 알 수 있다. 또한, PDCCH가 서브프레임의 3개 OFDM 심벌에 존재하며 E-제어 영역은 상기 3개 OFDM 심벌 이후부터 서브프레임의 마지막 OFDM 심벌 또는 마지막에서 두번째 OFDM 심벌까지 위치함을 알 수 있다. 여기서, PDCCH의 OFDM 심벌의 개수가 3개인 것은 예시일 뿐이다.
CFI 인덱스가 4인 경우, 기존 단말들은 이를 인지하지 못하여 동작 오류를 일으킬 수 있다. 따라서, 기존 단말이 사용하지 않는 자원 영역 예를 들면, 기존 단말이 접근할 수 없는 반송파에서만 사용하도록 제한할 수 있다.

3. E-PDCCH 영역의 검색 공간과 전송되는 제어 정보.
E-PDCCH 영역은 E-제어 영역 내에서 E-PDCCH가 전송되는 무선자원 영역이다. 기존 PDCCH 영역은 공용 검색 공간과 단말 특정 검색 공간으로 구분되나, E-PDCCH 영역은 개선된 단말을 위한 단말 특정 검색 공간만으로 구성될 수 있다.
이처럼 E-PDCCH 영역에 개선된 단말을 위한 단말 특정 검색 공간만이 존재하는 경우, 개선된 단말에게 대한 셀 특정 제어 정보(예를 들어, 시스템 정보나 E-제어 영역의 설정 정보 등) 및 단말 특정 제어 정보를 어떠한 방식으로 전송할 것인지 문제된다. 이에 대해 설명한다.
다음 표는 개선된 단말에게 제어 정보를 전송하는 예를 나타낸다.
PDCCH 영역 E-PDCCH 영역
공용 검색 공간 단말 특정 검색 공간 단말 특정 검색 공간
셀 특정 제어정보,
단말 특정 제어정보
단말 특정 제어정보 단말 특정 제어정보
표 6을 참조하면, 기지국 또는 노드는 E-PDCCH 영역에서 기존 단말과 개선된 단말에게 공통적으로 적용되는 셀 특정 제어 정보는 전송하지 않는다. 개선된 단말에 대한 셀 특정 제어 정보는 기존 PDCCH 영역의 공용 검색 공간에서 전송된다. 따라서, 개선된 단말은 SI-RNTI, P-RNTI, M-RNTI, RA-RNTI, TPC-PUCCH-RNTI, TPC-PUSCH-RNTI를 이용하여 수신하여야 하는 셀 특정 제어정보 검색을 PDCCH 영역의 공용 검색 공간에서만 수행한다. 그리고, 개선된 단말에 대한 단말 특정 제어정보는 기존 PDCCH 영역, E-PDCCH 영역 모두에서 전송될 수 있다.
만약, 개선된 단말에 대한 단말 특정 제어정보가 E-PDCCH 영역을 통해서만 전송된다고 하면, E-PDCCH를 수신하기 위한 자원 할당 정보가 셀 특정 제어정보로 전송되어야 할 것이다. 그런데, 단말이 속한 노드에 따라 E-PDCCH 수신을 위해 알아야 하는 참조 신호에 대한 정보가 달라질 수 있다. 따라서, 단말은 E-PDCCH 수신 전에 단말이 속한 노드를 알려주는 노드 정보를 먼저 수신하여야 하는데, 이러한 노드 정보는 기존 PDCCH를 이용하는 것이 바람직하다.
다중 노드 시스템에서 중앙에 고전력 노드(예컨대, 기지국)가 존재하고 다수의 저전력 노드(예컨대, RRH)가 분산 배치되는 경우, 고전력 노드만 CRS와 기존 단말을 위한 PDCCH를 전송할 수 있다. 그리고, 저전력 노드들은 E-PDCCH를 전송하게 될 텐데 단말의 위치에 따라 E-PDCCH가 수신되지 않는 지역이 존재할 수 있다. 따라서, 개선된 단말에 대한 단말 특정 제어정보는 E-PDCCH 영역 뿐만 아니라 기존의 PDCCH 영역을 통해서도 전송하는 것이 바람직하다.
즉, 개선된 단말의 단말 특정 검색 공간은 기존 PDCCH 영역과 E-PDCCH영역을 포함할 수 있다. 따라서, 기존 PDCCH 영역의 CCE의 총 개수를 NCCE,1이라 하고, E-PDCCH 영역의 CCE의 총 개수를 NCCE,2라 하면, 총 검색 공간을 규정하는 CCE의 총 개수 NCCE는 기존 단말의 경우 NCCE,1가 되고, 개선된 단말의 경우 NCCE,1+ NCCE,2가 된다.
검색 공간에서 단말 특정 검색 공간이 증가하면, 단말 특정 제어정보를 찾기 위한 복잡도가 증가하는 문제가 있다. 따라서, 개선된 단말의 단말 특정 제어정보가 기존 PDCCH 영역과 E-PDCCH 영역 중 어느 영역에서 전달되는지를 알려주는 검색공간 지시 정보를 단말 특정적으로 전송하는 것이 효율적이다. 이러한 검색공간 지시 정보에 의해 개선된 단말에 대한 단말 특정 검색 공간이 기존 PDCCH 영역에 있는지 아니면 E-PDCCH 영역에 있는지를 알려줄 수 있다. 만약, 검색공간 지시 정보에 의해 개선된 단말에 대한 단말 특정 검색 공간이 기존 PDCCH 영역에 있는 것으로 지시되면, 검색 공간의 크기는 NCCE,1이 된다. 또는 검색공간 지시 정보에 의해 개선된 단말에 대한 단말 특정 검색 공간이 E-PDCCH 영역으로 지시되면 검색 공간의 크기는 NCCE,2가 된다. 따라서, 상기 검색공간 지시 정보에 따라 단말 특정 검색 공간의 총 CCE 개수가 바뀔 수 있다.
검색공간 지시 정보는 다양한 방법에 의해 전송될 수 있다. 즉, 개선된 단말에게 검색공간 지시 정보에 의해 단말 검색 공간을 PDCCH 영역에서 E-PDCCH 영역으로 변경하는 방법은 다음 방법들 중 어느 하나를 선택할 수 있다.
1). 상위 계층 신호를 이용한 시그널링.
도 10은 상위 계층 신호를 통해 단말에게 단말 특정 검색 공간을 알려주는 예를 나타낸다. 즉, 검색공간 지시 정보가 상위 계층 신호로 전송되는 일 예이다.
도 10을 참조하면, 단말이 셀 내로 진입한다(S101). 단말은 PDCCH 영역의 공용 검색 공간 및 단말 특정 검색 공간에서 셀 특정 제어 정보 및 단말 특정 제어 정보를 검색한다(S102).
단말은 만약, E-PDCCH 트리거링 메시지를 수신하면(S103), PDCCH 영역의 공용 검색 공간에서 셀 특정 제어정보를 검색하고, E-PDCCH 트리거링 메시지가 지시하는 영역에서 단말 특정 제어정보를 검색한다(S104). 여기서, E-PDCCH 트리거링 메시지는 상위 계층으로 전송되는 검색공간 지시 정보이다.
2). 노드 할당으로부터 묵시적으로 알려주는 방법.
이 방법은 기지국이 단말에게 특정 노드를 할당하면, 그 때부터 상기 단말은 상기 특정 노드에 해당하는 E-PDCCH 영역에서 단말 특정 제어정보를 검색하는 방법이다. 다중 노드 시스템에서 단말에게 노드를 할당하는 방법은 예를 들어, 단말에게 수신해야 할 가상 셀의 참조 신호 정보를 알려주는 방법이 있다. 여기서, 참조 신호 정보는 가상 셀의 셀 ID, CSI-RS 포트 넘버, CSI-RS 설정, CSI-RS 서브프레임 설정 등을 알려주는 정보일 수 있다. 가상 셀은 기존 단말은 머더 셀과 동일한 셀로 인식하나 개선된 단말은 머더 셀이 아닌 다른 셀로 인식하는 장치를 의미하며, 머더 셀이 커버하는 지역 중 일부 지역을 커버할 수 있다. 여기서, 머더 셀은 핸드오버, 셀 선택/재선택 등과 같은 동작의 기준이 되는 셀이다. 다중 노드 시스템에서 기지국은 머더 셀이 될 수 있고, 노드는 가상 셀이 될 수 있다. 일 예로 노드가 기지국과 동일한 셀 ID를 사용하여 동기화 신호를 전송하나 기지국의 셀 ID가 아닌 다른 셀 ID를 사용하여 단말 특정적 신호를 전송할 수 있다. 이 때, 기존 단말은 노드를 기지국과 동일한 셀로 인식하나 개선된 단말은 노드를 기지국과 다른 셀로 인식할 수 있다. 이러한 경우, 노드를 가상 셀이라 칭할 수 있다.
단말은 참조 신호 정보를 수신하면, 머더 셀이 아닌 가상 셀에 할당되었음을 알 수 있다. 따라서, 참조 신호 정보를 수신한 이후부터는 단말은 PDCCH 영역이 아닌 E-PDCCH 영역에서 단말 특정 제어정보를 검색한다. 각 노드의 E-PDCCH의 구성 정보는 셀 특정 제어정보로서 브로드캐스트되거나 DCI 혹은 상위 계층 메시지를 통해 단말 특정 제어정보로 단말에게 제공될 수 있다.

3) E-PDCCH 설정 정보로부터 묵시적으로 시그널링하는 방법.
기지국은 단말에게 PDCCH 영역을 통해 E-PDCCH 설정 정보를 제공할 수 있다. 단말 입장에서는 PDCCH 영역에서 수신한 단말 특정 제어정보 또는 셀 특정 제어정보에 E-PDCCH 설정 정보가 포함되어 있는 경우, 이 후의 단말 특정 제어정보는 E-PDCCH 영역에서 전송됨을 의미하는 것으로 인식할 수 있다. 셀 특정 제어정보로 E-PDCCH 설정 정보를 알려주는 경우 E-RNTI와 같은 새로운 RNTI를 정의하여 CRC 마스킹할 수 있다.

4). PDCCH를 이용한 명시적 물리 계층 신호 시그널링을 통해 알려주는 방법.
기지국은 단말에게 PDCCH를 통해 E-PDCCH 수신 여부를 알려줄 수 있다. 상술한 3)의 방법과 차이점은 PDCCH 영역을 통해 E-PDDCH의 존재 여부를 알려주되, 명시적인 시그널링을 포함하는 방법이다. 예를 들어, E-PDCCH 영역에서 제어정보를 수신하여야 하는지 아니면 PDCCH 영역에서 제어정보를 수신하여야 하는지를 명시적으로 지시하는 검색공간 지시 정보를 DCI에 포함하여 전송할 수 있다. 단말은 DCI에 포함된 검색공간 지시 정보에 의하여 향후 E-PDCCH 또는 PDCCH 영역을 통해 제어정보를 검색한다.
상술한 1) 내지 4)의 방법들은 명시적 또는 묵시적 시그널링을 통해 단말에게 PDCCH 영역, E-PDCCH 영역 중 어느 영역에서 단말 특정 제어정보를 수신하는지를 알려주는 방법들이다. 이러한 방법을 대체할 수 있는 다른 방법을 설명한다.

4.E-PDCCH 영역을 통해 제어정보를 수신할 단말 리스트를 브로드캐스트하는 방법.
이 방법은 E-PDCCH영역에서 제어정보를 수신할 단말의 리스트를 기지국이 주기적 또는 비주기적으로 브로드캐스트하는 방법이다.
도 11은 기지국이 단말 리스트를 브로드캐스트하는 경우 단말의 동작 과정을 나타낸다.
도 11을 참조하면, 단말은 브로드캐스트되는 단말 리스트를 수신한다(S201). 기지국이 단말 리스트를 브로드캐스트하는 방법은 후술할 4가지 방법 중 어느 하나 또는 둘 이상의 조합을 사용할 수 있다.
여기서, 단말 리스트는 각 노드의 E-PDCCH 영역을 나타내는 정보(예를 들어, E-PDCCH의 위치, 크기, 적용되는 참조 신호 정보 등), 및/또는 E-PDCCH 영역에서 제어 정보를 수신할 단말의 RNTI(예를 들어, C-RNTI, SPS C-RNTI, temporary C-RNTI 등)를 포함할 수 있다.
단말은 자신의 RNTI가 단말 리스트에 포함되어 있는지 여부를 확인하고(S202), 포함되어 있다면 이 후부터 단말 특정 검색 공간을 E-PDCCH 영역으로 설정한다(S203). 그 후, 단말은 E-PDCCH 영역에서 제어 정보를 수신한다(S204). 만약, 자신의 RNTI가 단말 리스트에 포함되어 있지 않다면 단말은 단말 특정 검색 공간을 PDCCH 영역으로 유지하고(S205), PDCCH 영역에서 제어 정보를 수신한다(S206).
이제 기지국이 단말 리스트를 브로드캐스트하는 방법들을 설명한다.
기지국은 단말 리스트를 상위 계층을 통해 셀 특정 제어정보 혹은 단말 특정 제어정보로 전송할 수도 있고, PBCH(physical broadcast channel), PDCCH, E-PDCCH 등의 물리계층을 통해 전송할 수도 있다. 또한, 단말 리스트를 전송하기 위한 새로운 채널을 통해 전송할 수 있다.
1). PBCH는 무선 프레임의 첫번째 서브프레임의 두번째 슬롯의 앞선 4개의 OFDM 심벌에서 전송된다. PBCH는 단말이 기지국 또는 노드와 통신하는데 필수적인 시스템 정보를 나르며, PBCH를 통해 전송되는 시스템 정보를 MIB(master information block)라 한다. 기지국은 MIB에 단말 리스트를 포함하여 전송할 수 있다.
2). 기지국이 단말 리스트를 PDCCH를 통해 전송하는 경우, PDCCH의 공용 검색 공간을 통해 단말 리스트를 전송할 수 있다.
3). 기지국은 E-PDCCH에 공용 검색 공간을 두어 여기서 단말 리스트를 전송할 수도 있다. 전술한 표 6에서는 E-PDCCH 영역에 공용 검색 공간을 두지 않았으나 본 실시예에서는 E-PDCCH 영역에 공용 검색 공간을 포함하는 차이가 있다. E-PDCCH 영역에 공용 검색 공간을 포함하는 경우, 기존 단말과 공유하는 셀 특정 제어정보는 PDCCH 영역을 통해 전송되고, E-PDCCH 영역의 공용 검색 공간에서는 단말 리스트를 포함하는 노드 관련 공통 정보(예를 들어, 노드 별 참조 신호 설정 정보, 노드 별 안테나 포트 정보 등)를 전송할 수 있다.
E-PDCCH 영역의 공용 검색 공간에서는 PDCCH 영역의 공용 검색 공간에서 사용되는 SI-RNTI, P-RNTI, M-RNTI, RA-RNTI, TPC-PUCCH-RNTI, TPC-PUSCH-RNTI 중 일부는 사용되지 않을 수 있다. 예를 들어, 시스템 정보를 전송하기 위한 SI-RNTI, 페이징 정보 전달 또는 시스템 정보 변경을 알려주기 위한 P-RNTI, MCCH 정보 변경을 알려주기 위한 M-RNTI는 E-PDCCH의 공용 검색 공간에서 사용되지 않는다.
반면, 개선된 단말의 상향링크 전력제어 정보는 노드 별로 전달할 수 있는 정보이므로 TPC-PUCCH-RNTI, TPC-PUSCH-RNTI는 E-PDCCH영역의 공용 검색 공간에서 사용될 수 있다. 또한, 랜덤 액세스 응답을 전달하기 위하여 사용되는 RA-RNTI도 E-PDCCH의 공용 검색 공간에서 사용될 수 있다. RA-RNTI는 기지국이 단말 별로 상향링크 전송에 대한 시간 전진(timing advance) 정보를 전송할 때 사용할 수 있는데, 이러한 시간 전진 정보는 각 단말의 수신 노드에서 결정할 수 있다. 따라서, 시간 전진 정보는 노드 특정 제어 정보이며, E-PDCCH 영역의 공용 검색 공간에서 사용될 수 있다.
또한, 새로운 RNTI를 정의하고, 새로운 RNTI를 이용하여 PDCCH 영역의 공용 검색 공간 또는 E-PDCCH 영역의 공용 검색 공간을 통해 단말 리스트를 전송할 수 있다. 새로운 RNTI를 편의상 UL(User equipment List notification)-RNTI라 칭하자. 그러면, UL-RNTI는 상술한 표 2에서 유보된 값 즉, FFF4 내지 FFFC 사이의 값 중 하나를 사용할 수 있다.
또한, UL-RNTI는 PDCCH 영역 또는 E-PDCCH 영역의 공용 검색 공간에서만 사용하도록 규정할 수 있다. 그러면, 모든 단말은 UL-RNTI를 이용하여 PDCCH 영역 또는 E-PDCCH 영역의 공용 검색 공간에서 E-PDCCH 영역에서 수신할 단말 리스트를 확인할 수 있다. UL-RNTI는 E-PDCCH 영역에 존재하는 공용 검색 공간에서만 사용되도록 규정될 수도 있다.
4) 기지국은 E-PDCCH를 수신하는 단말 리스트를 전달하기 위해 새로운 채널을 추가하고, 이 새로운 채널을 통해 단말 리스트를 전송할 수도 있다. 새로운 채널은 편의상 E-PULICH(physical user equipment list indicator channel)이라 칭한다. E-PULICH는 R-PDCCH 영역에서 E-PDCCH, E-PHICH와 함께 전송될 수 있다.
E-PULICH는 R-PDCCH 영역에서, 해당 서브프레임의 첫 1 내지 3개의 심벌 구간에서 고정된 CCE를 사용할 수 있다. 즉, E-PULICH는 동적 자원 할당에 의하지 아니하고 미리 고정된 자원을 이용하여 전송될 수 있다. E-PULICH는 단말 리스트 이외에 셀 특정 제어정보를 전송하기 위해 사용될 수도 있다.
도 12는 기지국 및 단말을 나타내는 블록도이다.
기지국(100)은 프로세서(processor, 110), 메모리(memory, 120) 및 RF부(RF(radio frequency) unit, 130)를 포함한다. 프로세서(110)는 제안된 기능, 과정 및/또는 방법을 구현한다. 예를 들어, 프로세서(110)는 단말에게 검색공간 지시 정보를 전송한다. 또한, 단말 리스트를 브로드캐스트할 수 있다. 메모리(120)는 프로세서(110)와 연결되어, 프로세서(110)를 구동하기 위한 다양한 정보를 저장한다. RF부(130)는 프로세서(110)와 연결되어, 무선 신호를 전송 및/또는 수신한다.
단말(200)은 프로세서(210), 메모리(220) 및 RF부(230)를 포함한다. 프로세서(210)는 제안된 기능, 과정 및/또는 방법을 구현한다. 예를 들어, 프로세서(210)는 검색공간 지시 정보를 수신하여 제어정보를 검색할 검색공간을 결정한다. 또한, 단말 리스트의 RNTI를 자신의 RNTI와 비교하여 단말 특정 검색공간을 E-PDCCH 영역으로 변경할 수 있다. 메모리(220)는 프로세서(210)와 연결되어, 프로세서(210)를 구동하기 위한 다양한 정보를 저장한다. RF부(230)는 프로세서(210)와 연결되어, 무선 신호를 전송 및/또는 수신한다.
프로세서(110,210)는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로, 데이터 처리 장치 및/또는 베이스밴드 신호 및 무선 신호를 상호 변환하는 변환기를 포함할 수 있다. 도 7의 OFDM 전송기 및 OFDM 수신기는 프로세서(110,210) 내에 구현될 수 있다. 메모리(120,220)는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. RF부(130,230)는 무선 신호를 전송 및/또는 수신하는 하나 이상의 안테나를 포함할 수 있다. 실시예가 소프트웨어로 구현될 때, 상술한 기법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리(120,220)에 저장되고, 프로세서(110,210)에 의해 실행될 수 있다. 메모리(120,220)는 프로세서(110,210) 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서(110,210)와 연결될 수 있다.
이상 본 발명에 대하여 실시예를 참조하여 설명하였지만, 해당 기술 분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시켜 실시할 수 있음을 이해할 수 있을 것이다. 따라서 상술한 실시예에 한정되지 않고, 본 발명은 이하의 특허청구범위의 범위 내의 모든 실시예들을 포함한다고 할 것이다.

Claims (17)

  1. 복수의 노드들과 상기 복수의 노드들 각각과 연결되어 제어할 수 있는 기지국을 포함하는 다중 노드 시스템에서 단말의 제어 정보 검색 방법에 있어서,
    상기 기지국으로부터 검색공간 지시 정보를 수신하는 단계; 및
    상기 검색공간 지시 정보가 지시하는 무선자원 영역에서 제어 정보를 검색하는 단계를 포함하되,
    상기 검색공간 지시 정보는 제1 검색공간 및 제2 검색공간 중 어느 하나를 지시하는 정보이고,
    상기 제1 검색공간은 제1 RAT(radio access technology)에 의해 동작하는 제1 타입 단말이 제어 정보를 검색하는 무선자원 영역이고, 상기 제2 검색공간은 제2 RAT에 의해 동작하는 제2 타입 단말이 제어 정보를 검색하는 무선자원 영역이며, 상기 단말은 상기 제2 타입 단말인 것을 특징으로 하는 방법.
  2. 제 1 항에 있어서,
    상기 제1 검색공간은 시간 영역에서 복수의 OFDM(orthogonal frequency division multiplexing) 심벌을 포함하고, 주파수 영역에서 복수의 자원 블록을 포함하는 서브프레임에서 최초 N개의 OFDM 심벌에 위치하고, 상기 제2 검색공간은 상기 서브프레임에서 상기 제1 검색공간 다음에 위치하는 적어도 하나의 OFDM 심벌에 위치하는 것을 특징으로 하는 방법. 상기 N은 1 내지 4 중 어느 하나의 자연수.
  3. 제 1 항에 있어서, 상기 제1 검색공간은 제1 공용 검색공간(first common search space) 및 제1 단말 특정 검색공간(first user equipment-specific search space)을 포함하고, 상기 제2 검색공간은 제2 단말 특정 검색공간(second user equipment-specific search space)만을 포함하되,
    상기 제1 검색공간에서는 상기 제1 타입 단말 및 상기 제2 타입 단말에게 공통되는 셀 특정 제어정보가 전송되는 것을 특징으로 하는 방법.
  4. 제 3 항에 있어서, 상기 제2 타입 단말에 특정적인 제어정보는 상기 제1 검색공간 및 상기 제2 단말 특정 검색 공간 중 어느 하나의 검색공간에서 전송되며, 상기 어느 하나의 검색공간은 상기 검색공간 지시 정보에 의해 지시되는 것을 특징으로 하는 방법.
  5. 제 1 항에 있어서, 상기 검색공간 지시 정보는 상위 계층 신호를 통해 수신되는 것을 특징으로 하는 방법.
  6. 제 1 항에 있어서, 상기 검색공간 지시 정보는 상기 제1 검색공간에서 상기 기지국에 의해 전송되는 PDCCH(physical downlink control channel)의 하향링크 제어정보(downlink control channel : DCI)에 포함되는 것을 특징으로 하는 방법.
  7. 복수의 노드들과 상기 복수의 노드들 각각과 연결되어 제어할 수 있는 기지국을 포함하는 다중 노드 시스템에서 단말의 제어 정보 검색 방법에 있어서,
    상기 기지국으로부터 단말 리스트를 수신하는 단계;
    상기 단말 리스트에 기반하여 제어정보를 검색할 무선자원 영역을 결정하는 단계; 및
    상기 결정된 무선자원 영역에서 제어정보를 검색하는 단계를 포함하되,
    상기 단말 리스트는 상기 복수의 노드 중 적어도 하나의 노드가 제어정보를 전송하는 무선자원 영역을 나타내는 ‘E-PDCCH영역에 대한 정보’ 또는 상기 적어도 하나의 노드에서 제어정보를 수신하는 단말에 대한 RNTI(Radio Network Temporary Identifier)를 포함하는 것을 특징으로 하는 방법.
  8. 제 7 항에 있어서, 상기 결정된 무선자원 영역은 제1 검색공간 및 제2 검색공간 중 어느 하나로 결정되고,
    상기 제1 검색공간은 제1 RAT(radio access technology)에 의해 동작하는 제1 타입 단말이 제어 정보를 검색하는 무선자원 영역이고, 상기 제2 검색공간은 제2 RAT에 의해 동작하는 제2 타입 단말이 제어 정보를 검색하는 무선자원 영역이며, 상기 단말은 상기 제2 타입 단말인 것을 특징으로 하는 방법.
  9. 제 8 항에 있어서,
    상기 제1 검색공간은 시간 영역에서 복수의 OFDM(orthogonal frequency division multiplexing) 심벌을 포함하고, 주파수 영역에서 복수의 자원 블록을 포함하는 서브프레임에서 최초 N개의 OFDM 심벌에 위치하고, 상기 제2 검색공간은 상기 서브프레임에서 상기 제1 검색공간 다음에 위치하는 적어도 하나의 OFDM 심벌에 위치하는 것을 특징으로 하는 방법. 상기 N은 1 내지 4 중 어느 하나의 자연수.
  10. 제 9 항에 있어서, 상기 제1 검색공간은 제1 공용 검색공간(first common search space) 및 제1 단말 특정 검색공간(first user equipment-specific search space)을 포함하고, 상기 제2 검색공간은 제2 공용 검색공간(second common search space) 및 제2 단말 특정 검색공간(second user equipment-specific search space)을 포함하는 것을 특징으로 하는 방법.
  11. 제 8 항에 있어서, 상기 ‘E-PDCCH영역에 대한 정보’는 상기 제2 검색공간의 위치 및 크기를 나타내는 정보를 포함하는 것을 특징으로 하는 방법.
  12. 제 8 항에 있어서, 상기 RNTI는 단말의 식별자인 C-RNTI, Temporary C-RNTI, Semi-Persistent Scheduling C-RNTI,
    상향링크 전송전력 제어에 대한 제어정보를 디마스킹(demasking)하는데 사용되는 TPC-PUCCH-RNTI, TPC-PUSCH-RNTI 및
    랜덤 액세스 응답을 전송하는데 사용되는 RA-RNTI들 중 적어도 하나를 포함하는 것을 특징으로 하는 방법.
  13. 제 12 항에 있어서, 상기 RNTI는 상기 제2 공용 검색 공간에서 사용되는 것을 특징으로 하는 방법.
  14. 제 13 항에 있어서, 상기 단말 리스트에 상기 단말 자신의 RNTI가 포함된 경우, 상기 단말의 단말 특정 제어정보는 상기 제2 단말 특정 검색 공간에서 수신되는 것을 특징으로 하는 방법.
  15. 제 7 항에 있어서, 상기 단말 리스트는 상기 기지국으로부터 브로드캐스트(broadcast)되는 것을 특징으로 하는 방법.
  16. 무선신호를 송수신하는 RF부; 및
    상기 RF부에 연결되는 프로세서를 포함하되, 상기 프로세서는
    기지국으로부터 검색공간 지시 정보를 수신하고, 상기 검색공간 지시 정보가 지시하는 무선자원 영역에서 제어 정보를 검색하되, 상기 검색공간 지시 정보는 제1 검색공간 및 제2 검색공간 중 어느 하나를 지시하는 정보이고, 상기 제1 검색공간은 제1 RAT(radio access technology)에 의해 동작하는 제1 타입 단말이 제어 정보를 검색하는 무선자원 영역이고, 상기 제2 검색공간은 제2 RAT에 의해 동작하는 제2 타입 단말이 제어 정보를 검색하는 무선자원 영역인 것을 특징으로 하는 단말.
  17. 무선신호를 송수신하는 RF부; 및
    상기 RF부에 연결되는 프로세서를 포함하되, 상기 프로세서는
    기지국으로부터 단말 리스트를 수신하고, 상기 단말 리스트에 기반하여 제어정보를 검색할 무선자원 영역을 결정하고, 상기 결정된 무선자원 영역에서 제어정보를 검색하되, 상기 단말 리스트는 상기 복수의 노드 중 적어도 하나의 노드가 제어정보를 전송하는 무선자원 영역을 나타내는 ‘E-PDCCH영역에 대한 정보’ 및 상기 적어도 하나의 노드에서 제어정보를 수신하는 단말에 대한 RNTI(Radio Network Temporary Identifier)를 포함하는 것을 특징으로 단말.
PCT/KR2011/009811 2011-03-01 2011-12-19 다중 노드 시스템에서 단말의 제어 정보 검색 방법 및 장치 WO2012118269A2 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013555351A JP5698390B2 (ja) 2011-03-01 2011-12-19 多重ノードシステムにおける端末の制御情報検索方法及び装置
CN201180068890.4A CN103404046B (zh) 2011-03-01 2011-12-19 在多节点系统中用终端搜索控制信息的方法和装置
EP11860046.9A EP2683098B1 (en) 2011-03-01 2011-12-19 Method and apparatus for searching control information by terminal in multinode system
US14/002,566 US9923659B2 (en) 2011-03-01 2011-12-19 Method and apparatus for searching control information by terminal in multinode system
KR1020137021983A KR20130119484A (ko) 2011-03-01 2011-12-19 다중 노드 시스템에서 단말의 제어 정보 검색 방법 및 장치

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201161448146P 2011-03-01 2011-03-01
US61/448,146 2011-03-01
US201161475201P 2011-04-13 2011-04-13
US61/475,201 2011-04-13

Publications (2)

Publication Number Publication Date
WO2012118269A2 true WO2012118269A2 (ko) 2012-09-07
WO2012118269A3 WO2012118269A3 (ko) 2012-10-26

Family

ID=46758164

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/KR2011/009811 WO2012118269A2 (ko) 2011-03-01 2011-12-19 다중 노드 시스템에서 단말의 제어 정보 검색 방법 및 장치
PCT/KR2011/009812 WO2012118270A1 (ko) 2011-03-01 2011-12-19 다중 노드 시스템에서 단말의 제어 정보 검색 방법 및 장치

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/009812 WO2012118270A1 (ko) 2011-03-01 2011-12-19 다중 노드 시스템에서 단말의 제어 정보 검색 방법 및 장치

Country Status (6)

Country Link
US (2) US9432138B2 (ko)
EP (1) EP2683098B1 (ko)
JP (1) JP5698390B2 (ko)
KR (2) KR20130119484A (ko)
CN (2) CN106027220B (ko)
WO (2) WO2012118269A2 (ko)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012231372A (ja) * 2011-04-27 2012-11-22 Sharp Corp 端末、基地局、通信システムおよび通信方法
JP2015164333A (ja) * 2011-07-29 2015-09-10 アルカテル−ルーセント プリコードされた物理ダウンリンク制御チャネルの参照信号およびブラインド復号のための方法および装置
JP2015529430A (ja) * 2012-09-24 2015-10-05 ゼットティーイー コーポレーション 制御シグナリング検出方法及び装置、並びに制御シグナリング検出を実現する方法及び装置
JP2015533039A (ja) * 2012-09-26 2015-11-16 ▲華▼▲為▼終端有限公司Huawei Device Co., Ltd. 制御チャネル送信方法及び装置
EP2890196A4 (en) * 2012-10-31 2015-12-16 Huawei Tech Co Ltd METHOD FOR CONFIGURING CLAMP SEQUENCE, DEVICE, USER EQUIPMENT, AND BASE STATION
CN105191450A (zh) * 2013-05-09 2015-12-23 夏普株式会社 终端装置、通信方法以及集成电路
US20160112881A1 (en) * 2013-06-28 2016-04-21 Huawei Technologies Co., Ltd. Multimode base station control method and base station
JPWO2014136927A1 (ja) * 2013-03-08 2017-02-16 シャープ株式会社 端末、基地局、通信システムおよび通信方法
US9763240B2 (en) 2012-05-11 2017-09-12 Ntt Docomo, Inc. Blind decoding method, radio base station, user terminal and radio communication system
WO2019084879A1 (zh) * 2017-11-02 2019-05-09 北京小米移动软件有限公司 剩余关键系统信息的公共资源集合的查找方法及装置
US11337220B2 (en) 2017-11-30 2022-05-17 Beijing Xiaomi Mobile Software Co., Ltd. Information indication method and apparatus, base station, and user equipment

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5977251B2 (ja) 2010-12-03 2016-08-24 インターデイジタル パテント ホールディングス インコーポレイテッド マルチ無線アクセス技術キャリアアグリゲーションを実行するための方法、装置、およびシステム
KR101777424B1 (ko) * 2011-01-19 2017-09-12 엘지전자 주식회사 다중 노드 시스템에서 신호 수신 방법 및 장치
CN115767752A (zh) 2011-02-11 2023-03-07 交互数字专利控股公司 用于增强型控制信道的系统和方法
WO2012148244A2 (en) * 2011-04-29 2012-11-01 Samsung Electronics Co., Ltd. Apparatus and method of resource allocation for data and control channels in a wireless communication system
US8369280B2 (en) 2011-07-01 2013-02-05 Ofinno Techologies, LLC Control channels in multicarrier OFDM transmission
WO2013006379A1 (en) 2011-07-01 2013-01-10 Dinan Esmael Hejazi Synchronization signal and control messages in multicarrier ofdm
US8582527B2 (en) 2011-07-01 2013-11-12 Ofinno Technologies, Llc Hybrid automatic repeat request in multicarrier systems
CN103947238B (zh) * 2011-07-04 2018-02-16 诺基亚通信公司 用于配置通信信道的方法和装置
US9503239B2 (en) * 2011-08-11 2016-11-22 Telefonaktiebolaget Lm Ericsson (Publ) Radio network node, user equipment and methods therein
US9374819B2 (en) * 2011-10-13 2016-06-21 Lg Electronics Inc. Method and device for receiving control information in wireless communication system
CN103095424B (zh) * 2011-10-27 2016-04-27 中国移动通信集团公司 一种控制信令传输方法、基站、终端和系统
US8427976B1 (en) 2011-12-04 2013-04-23 Ofinno Technology, LLC Carrier information exchange between base stations
JP5886639B2 (ja) * 2012-01-27 2016-03-16 シャープ株式会社 通信システム、移動局装置、基地局装置、通信方法および集積回路
US8953478B2 (en) * 2012-01-27 2015-02-10 Intel Corporation Evolved node B and method for coherent coordinated multipoint transmission with per CSI-RS feedback
KR102524731B1 (ko) * 2012-01-27 2023-04-21 인터디지탈 패튼 홀딩스, 인크 다중 캐리어 기반형 및/또는 의사 조합형 네트워크에서 epdcch를 제공하는 시스템 및/또는 방법
US9497756B2 (en) 2012-03-25 2016-11-15 Comcast Cable Communications, Llc Base station radio resource management
US9949265B2 (en) 2012-05-04 2018-04-17 Comcast Cable Communications, Llc Control channel in a wireless communication system
CN109982397B (zh) 2012-08-23 2021-12-21 交互数字专利控股公司 在无线系统中采用多个调度器进行操作
WO2014042423A2 (ko) * 2012-09-16 2014-03-20 엘지전자 주식회사 무선 통신 시스템에서 단말이 향상된 하향링크 제어 채널을 수신하는 방법 및 이를 위한 장치
CN104641708B (zh) * 2012-09-17 2019-07-09 Lg电子株式会社 在无线通信系统中接收下行链路信号的方法和设备
KR20150042845A (ko) * 2012-09-21 2015-04-21 후지쯔 가부시끼가이샤 무선 통신 방법, 무선 통신 시스템, 무선 단말기 및 무선 기지국
CN103716274B (zh) * 2012-09-29 2018-08-07 中兴通讯股份有限公司 下行控制信息的传输方法和装置
EP2905909B1 (en) 2012-10-04 2018-08-15 LG Electronics Inc. Method and apparatus for transreceiving downlink signal by considering antenna port relationship in wireless communication system
US9538515B2 (en) * 2013-03-28 2017-01-03 Samsung Electronics Co., Ltd. Downlink signaling for adaptation of an uplink-downlink configuration in TDD communication systems
TW201507497A (zh) * 2013-04-03 2015-02-16 Interdigital Patent Holdings 針對一個或多個載波類型的epdcch共用檢索空間設計
US9474089B2 (en) * 2013-10-22 2016-10-18 Acer Incorporated User equipment and base station with configurable carrier
CN106576327B (zh) * 2014-06-23 2021-03-19 意大利电信股份公司 用于动态地减少基站和多个远程无线电单元之间的前传载荷的方法
US10142876B2 (en) * 2014-08-21 2018-11-27 Telefonaktiebolaget Lm Ericsson (Publ) System overload control when in extended coverage
EP3471474B1 (en) * 2014-11-07 2022-03-02 Huawei Technologies Co., Ltd. Physical downlink control channel transmission method, base station device, and user equipment
CN112491522B (zh) 2015-01-09 2024-03-05 三星电子株式会社 在无线通信系统中传输用于终端的控制信道的方法和装置
US11496872B2 (en) * 2015-11-06 2022-11-08 Qualcomm Incorporated Search spaces and grants in eMTC
CA2997527A1 (en) * 2015-11-13 2017-05-18 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method of allocating radio resource and device utilizing the same
US10813123B2 (en) 2016-05-02 2020-10-20 Lg Electronics Inc. Method and apparatus for changing SPS operation in wireless communication system
RU2704254C1 (ru) * 2016-05-12 2019-10-25 Гуандун Оппо Мобайл Телекоммьюникейшнз Корп., Лтд. Способ передачи сигналов, сетевое оборудование и терминальное оборудование
AU2017310401B2 (en) 2016-08-10 2022-08-04 Interdigital Patent Holdings, Inc. Methods and apparatus for efficient power saving in wireless networks
CN107733607B (zh) * 2016-08-12 2022-05-06 中兴通讯股份有限公司 一种信息发送、检测方法及装置
WO2018045519A1 (zh) * 2016-09-08 2018-03-15 华为技术有限公司 无线通信的方法、基站和终端
US10412719B2 (en) * 2016-10-21 2019-09-10 Qualcomm Incorporated Service type based control search space monitoring
CN109565384B (zh) * 2016-11-02 2021-03-16 瑞典爱立信有限公司 无线通信网络中的搜索空间监视
CN109891966B (zh) 2016-11-03 2023-05-30 Oppo广东移动通信有限公司 传输信号的方法、终端设备和网络设备
PT3304982T (pt) * 2016-11-03 2019-06-12 Ericsson Telefon Ab L M Método para habilitar múltiplas numerologias numa rede
US20180132244A1 (en) * 2016-11-10 2018-05-10 Qualcomm Incorporated Techniques and apparatuses for configuring a common uplink portion in new radio
WO2018093304A1 (en) 2016-11-17 2018-05-24 Telefonaktiebolaget Lm Ericsson (Publ) Wireless device and method therein for determining a search space in a wireless communications network
CN108271259B (zh) * 2016-12-30 2023-10-24 华为技术有限公司 控制信道的资源指示方法、用户设备和网络设备
US11523376B2 (en) * 2017-01-05 2022-12-06 Huawei Technologies Co., Ltd. Method for downlink control channel design
EP3566518A4 (en) 2017-01-05 2020-09-02 Nokia Technologies Oy OPTIMIZING DOWNLINK CONTROL CHANNEL MONITORING FOR CONTINUOUS RECEPTION MODE AND / OR NARROW BAND OPERATION
US11601820B2 (en) * 2017-01-27 2023-03-07 Qualcomm Incorporated Broadcast control channel for shared spectrum
US20180309560A1 (en) * 2017-04-21 2018-10-25 Htc Corporation Device and Method for Handling Common Search Spaces
KR102366007B1 (ko) * 2017-07-14 2022-02-22 삼성전자 주식회사 무선 통신 시스템에서 하향링크 제어 채널 수신 시간 설정 방법 및 장치
AU2018314077B2 (en) 2017-08-10 2023-02-02 Samsung Electronics Co., Ltd. Apparatus and method of system information transmission and reception on a carrier supporting multiple bandwidth parts
KR102554390B1 (ko) * 2017-09-20 2023-07-11 삼성전자주식회사 무선 통신 시스템에서 제어 정보 송수신 방법 및 장치
PT3793285T (pt) 2018-07-25 2023-09-19 Guangdong Oppo Mobile Telecommunications Corp Ltd Método e aparelho de monitorização de canal, dispositivo terminal e dispositivo de rede
CN110831185A (zh) * 2018-08-10 2020-02-21 华为技术有限公司 一种通信方法及设备
WO2020068251A1 (en) * 2018-09-27 2020-04-02 Convida Wireless, Llc Sub-band operations in unlicensed spectrums of new radio
KR102174648B1 (ko) * 2019-01-11 2020-11-05 엘지전자 주식회사 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2020145747A1 (ko) * 2019-01-11 2020-07-16 엘지전자 주식회사 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
JP7394145B2 (ja) * 2019-03-29 2023-12-07 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおけるサイドリンク通信のための制御情報を送受信する方法及び装置
US20220311588A1 (en) * 2019-11-19 2022-09-29 Lenovo (Singapore) Pte. Ltd. Performing actions based on a group switching flag
CN117676854A (zh) * 2022-08-10 2024-03-08 北京三星通信技术研究有限公司 由用户设备执行的方法、由基站执行的方法及对应的设备

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MXPA06012750A (es) 2004-08-05 2007-01-16 Lg Electronics Inc Uso interrumpido de un esquema de convergencia de la capa de frecuencia.
WO2006031019A1 (en) 2004-08-12 2006-03-23 Lg Electronics Inc. Reception in dedicated service of wireless communication system
CN101488797B (zh) * 2008-01-14 2013-01-09 华为技术有限公司 一种ack信道反馈方法与装置
KR101595022B1 (ko) 2008-02-05 2016-03-02 엘지전자 주식회사 효율적인 무선채널 전송방법
KR101487553B1 (ko) * 2008-03-20 2015-01-30 엘지전자 주식회사 무선 통신 시스템에서 제어채널 모니터링 방법
US8619684B2 (en) * 2008-05-01 2013-12-31 Qualcomm Incorporated Method and apparatus for downlink data arrival
US8326292B2 (en) * 2008-06-03 2012-12-04 Innovative Sonic Limited Method and apparatus for determining dedicate searching space in physical downlink control channel
US8868121B2 (en) 2008-09-29 2014-10-21 Nokia Corporation Control channel gain factor with data channel scaling
JP5184703B2 (ja) * 2008-10-01 2013-04-17 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおける中継器のための無線リソース割当方法及び装置
WO2010070197A1 (en) * 2008-12-15 2010-06-24 Nokia Corporation Downlink control and physical hybrid arq indicator channel (phich) configuration for extended bandwidth system
CN102265530B (zh) * 2008-12-24 2016-06-01 Lg电子株式会社 向中继器分配资源的方法
US8005039B2 (en) 2008-12-30 2011-08-23 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for robust transmission of control information in wireless communication network
US8780833B2 (en) * 2009-02-23 2014-07-15 Lg Electronics Inc. Control channel monitoring apparatus in multi-carrier system and method thereof
US20100254329A1 (en) * 2009-03-13 2010-10-07 Interdigital Patent Holdings, Inc. Uplink grant, downlink assignment and search space method and apparatus in carrier aggregation
US8825051B2 (en) 2009-05-01 2014-09-02 Qualcomm Incorporated Idle handoff to hybrid femto cell based on system selection database
US9178676B2 (en) * 2009-05-14 2015-11-03 Lg Electronics Inc. Device and method for monitoring control channel in multicarrier system
HUE060448T2 (hu) * 2009-06-02 2023-02-28 Blackberry Ltd Rendszer és eljárás vakdekódolás csökkentésére vivõaggregációhoz és keresési terek véletlen generálásához a vivõindex, RNTI, és alkeret index függvényében
US8432859B2 (en) * 2009-06-22 2013-04-30 Alcatel Lucent Indicating dynamic allocation of component carriers in multi-component carrier systems
CN101944946A (zh) * 2009-07-08 2011-01-12 中兴通讯股份有限公司 无线通信系统和方法以及无线通信系统中发送导频的方法
KR20110020708A (ko) 2009-08-24 2011-03-03 삼성전자주식회사 Ofdm 시스템에서 셀간 간섭 조정을 위한 제어 채널 구성과 다중화 방법 및 장치
CN102549944B (zh) * 2009-09-28 2014-11-26 三星电子株式会社 扩展物理下行链路控制信道
US8804586B2 (en) * 2010-01-11 2014-08-12 Blackberry Limited Control channel interference management and extended PDCCH for heterogeneous network
EP2524436B1 (en) * 2010-01-11 2019-10-16 BlackBerry Limited Control channel interference management for heterogeneous network via an extended pdcch
US20110222491A1 (en) 2010-03-09 2011-09-15 Qualcomm Incorporated Method and apparatus for sending control information with enhanced coverage in a wireless network
CN101827444B (zh) * 2010-03-31 2015-03-25 中兴通讯股份有限公司 一种测量参考信号的信令配置系统及方法
CN115767752A (zh) 2011-02-11 2023-03-07 交互数字专利控股公司 用于增强型控制信道的系统和方法
US8711790B2 (en) * 2011-02-11 2014-04-29 Nokia Corporation DL control channel structure enhancement

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of EP2683098A4 *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9497776B2 (en) 2011-04-27 2016-11-15 Sharp Kabushiki Kaisha Terminal, base station, communication system, and communication method
JP2012231372A (ja) * 2011-04-27 2012-11-22 Sharp Corp 端末、基地局、通信システムおよび通信方法
JP2015164333A (ja) * 2011-07-29 2015-09-10 アルカテル−ルーセント プリコードされた物理ダウンリンク制御チャネルの参照信号およびブラインド復号のための方法および装置
US10492188B2 (en) 2011-07-29 2019-11-26 Alcatel Lucent Method of and apparatus for pre-coded physical downlink control channel reference signal and blind decoding
US9763240B2 (en) 2012-05-11 2017-09-12 Ntt Docomo, Inc. Blind decoding method, radio base station, user terminal and radio communication system
JP2015529430A (ja) * 2012-09-24 2015-10-05 ゼットティーイー コーポレーション 制御シグナリング検出方法及び装置、並びに制御シグナリング検出を実現する方法及び装置
US9692574B2 (en) 2012-09-24 2017-06-27 Zte Corporation Methods and devices for detecting control signaling and implementing control signaling detection
US10057820B2 (en) 2012-09-26 2018-08-21 Huawei Device (Shenzhen) Co., Ltd. Control channel transmission method and equipment
JP2015533039A (ja) * 2012-09-26 2015-11-16 ▲華▼▲為▼終端有限公司Huawei Device Co., Ltd. 制御チャネル送信方法及び装置
US10264572B2 (en) 2012-10-31 2019-04-16 Huawei Technologies Co., Ltd. Method and device for scrambling sequence configuration, user equipment, and base station
EP3270555A1 (en) * 2012-10-31 2018-01-17 Huawei Technologies Co., Ltd. Method and device for scrambling sequence configuration, user equipment, and base station
US9668254B2 (en) 2012-10-31 2017-05-30 Huawei Technologies Co., Ltd. Method and device for scrambling sequence configuration, user equipment, and base station
EP2890196A4 (en) * 2012-10-31 2015-12-16 Huawei Tech Co Ltd METHOD FOR CONFIGURING CLAMP SEQUENCE, DEVICE, USER EQUIPMENT, AND BASE STATION
US10085247B2 (en) 2013-03-08 2018-09-25 Sharp Kabushiki Kaisha Physical control channel monitoring
JPWO2014136927A1 (ja) * 2013-03-08 2017-02-16 シャープ株式会社 端末、基地局、通信システムおよび通信方法
CN105191450B (zh) * 2013-05-09 2019-02-05 夏普株式会社 终端装置、通信方法以及集成电路
CN105191450A (zh) * 2013-05-09 2015-12-23 夏普株式会社 终端装置、通信方法以及集成电路
US9532234B2 (en) * 2013-06-28 2016-12-27 Huawei Technologies Co., Ltd. Multimode base station control method and base station
US20160112881A1 (en) * 2013-06-28 2016-04-21 Huawei Technologies Co., Ltd. Multimode base station control method and base station
WO2019084879A1 (zh) * 2017-11-02 2019-05-09 北京小米移动软件有限公司 剩余关键系统信息的公共资源集合的查找方法及装置
US11337145B2 (en) 2017-11-02 2022-05-17 Beijing Xiaomi Mobile Software Co., Ltd. Method and device for searching for common resource set of remaining mission-critical system information
US11337220B2 (en) 2017-11-30 2022-05-17 Beijing Xiaomi Mobile Software Co., Ltd. Information indication method and apparatus, base station, and user equipment

Also Published As

Publication number Publication date
CN106027220A (zh) 2016-10-12
CN103404046A (zh) 2013-11-20
US9923659B2 (en) 2018-03-20
KR20130119484A (ko) 2013-10-31
CN106027220B (zh) 2021-03-12
JP5698390B2 (ja) 2015-04-08
EP2683098B1 (en) 2019-05-15
CN103404046B (zh) 2016-09-07
US20140003379A1 (en) 2014-01-02
KR101555112B1 (ko) 2015-10-01
WO2012118270A1 (ko) 2012-09-07
US20140003349A1 (en) 2014-01-02
EP2683098A2 (en) 2014-01-08
WO2012118269A3 (ko) 2012-10-26
US9432138B2 (en) 2016-08-30
EP2683098A4 (en) 2015-01-07
JP2014511056A (ja) 2014-05-01
KR20130116350A (ko) 2013-10-23

Similar Documents

Publication Publication Date Title
WO2012118269A2 (ko) 다중 노드 시스템에서 단말의 제어 정보 검색 방법 및 장치
US8995332B2 (en) Relay node device for receiving control information from a base station and method therefor
JP5980938B2 (ja) ダウンリンク制御チャネルモニタリング方法及び無線機器
KR101971969B1 (ko) Pdcch 전송 또는 수신 방법, 이를 위한 사용자기기 또는 기지국
KR101598523B1 (ko) 하향링크 제어 신호 수신 방법 및 사용자기기와, 하향링크 제어 신호 전송 방법 및 기지국
KR101487653B1 (ko) 다중 노드 시스템에서 단말의 제어 정보 모니터링 방법 및 상기 방법을 이용하는 단말
KR101530831B1 (ko) 다중 노드 시스템에서 단말의 제어 정보 검색 방법 및 장치
US8867441B2 (en) Wireless apparatus for a multi-carrier system
US9491741B2 (en) Method for transmitting control information on low-cost machine-type communication, and apparatus for supporting same
US20140348092A1 (en) Method and apparatus for searching for control channel in multi-node system
US20150003407A1 (en) Method and apparatus for receiving signal in wireless communication system
KR20110090813A (ko) 확장 캐리어에서의 측정 수행 방법 및 장치
US11140623B2 (en) Downlink control channel receiving method and apparatus for reducing power consumption of terminal in wireless communication system
US9986547B2 (en) Signal processing method for MTC and device therefor
US9549399B2 (en) Method and apparatus for monitoring downlink control channel
KR101901941B1 (ko) 하향링크 신호 수신방법 및 사용자기기와, 하향링크 신호 전송방법 및 기지국

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20137021983

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013555351

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011860046

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14002566

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11860046

Country of ref document: EP

Kind code of ref document: A2