KR20220061166A - anisotropic conductive film - Google Patents

anisotropic conductive film Download PDF

Info

Publication number
KR20220061166A
KR20220061166A KR1020227011340A KR20227011340A KR20220061166A KR 20220061166 A KR20220061166 A KR 20220061166A KR 1020227011340 A KR1020227011340 A KR 1020227011340A KR 20227011340 A KR20227011340 A KR 20227011340A KR 20220061166 A KR20220061166 A KR 20220061166A
Authority
KR
South Korea
Prior art keywords
anisotropic conductive
layer
conductive film
compound
mass
Prior art date
Application number
KR1020227011340A
Other languages
Korean (ko)
Inventor
히로키 오제키
Original Assignee
데쿠세리아루즈 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 데쿠세리아루즈 가부시키가이샤 filed Critical 데쿠세리아루즈 가부시키가이샤
Priority claimed from JP2020195914A external-priority patent/JP2021093357A/en
Publication of KR20220061166A publication Critical patent/KR20220061166A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/16Non-insulated conductors or conductive bodies characterised by their form comprising conductive material in insulating or poorly conductive material, e.g. conductive rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5046Amines heterocyclic
    • C08G59/5053Amines heterocyclic containing only nitrogen as a heteroatom
    • C08G59/5073Amines heterocyclic containing only nitrogen as a heteroatom having two nitrogen atoms in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/08Macromolecular additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J4/00Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16
    • C09J4/06Organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond in combination with a macromolecular compound other than an unsaturated polymer of groups C09J159/00 - C09J187/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R11/00Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts
    • H01R11/01Individual connecting elements providing two or more spaced connecting locations for conductive members which are, or may be, thereby interconnected, e.g. end pieces for wires or cables supported by the wire or cable and having means for facilitating electrical connection to some other wire, terminal, or conductive member, blocks of binding posts characterised by the form or arrangement of the conductive interconnection between the connecting locations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R43/00Apparatus or processes specially adapted for manufacturing, assembling, maintaining, or repairing of line connectors or current collectors or for joining electric conductors

Abstract

전자 부품의 배선 기판에 대한 실장에 적용하기 위한 이방성 도전 필름으로서, 입자 포착 효율을 저하시키지 않고 접속 저항값의 상승을 억제할 수 있는 이방성 도전 필름은, 에폭시계 화합물과 아니온 중합형 경화제와 아크릴계 화합물과 라디칼 중합 개시제와 성막용 수지와 도전 입자를 함유한다. 여기서, 아크릴계 화합물의 함유량은, 에폭시계 화합물과 아니온 중합형 경화제와 아크릴계 화합물과 라디칼 중합 개시제와 성막용 수지의 합계에 대해 1.0 질량% 이상 8.0 질량% 이하이다. 이방성 도전 필름은, 에폭시계 화합물, 아니온 중합형 경화제 및 성막용 수지를 각각 함유하는 제 1 층과 제 2 층이 적층되어 있어도 된다. 그 경우, 제 1 층만이, 아크릴계 화합물과 라디칼 중합 개시제를 함유해도 되고, 추가로 도전 입자도 함유해도 된다.As an anisotropic conductive film for application to mounting on a wiring board of an electronic component, the anisotropic conductive film capable of suppressing an increase in connection resistance without reducing particle trapping efficiency is an epoxy compound, an anion polymerization curing agent, and an acryl-based A compound, a radical polymerization initiator, resin for film-forming, and electrically-conductive particle are contained. Here, content of an acryl-type compound is 1.0 mass % or more and 8.0 mass % or less with respect to the sum total of an epoxy-type compound, an anion polymerization type hardening|curing agent, an acryl-type compound, a radical polymerization initiator, and resin for film-forming. As for the anisotropic conductive film, the 1st layer and 2nd layer each containing an epoxy-type compound, an anion polymerization type hardening|curing agent, and resin for film-forming may be laminated|stacked. In that case, only a 1st layer may contain an acryl-type compound and a radical polymerization initiator, and may also contain electrically-conductive particle further.

Description

이방성 도전 필름anisotropic conductive film

본 발명은, 이방성 도전 필름에 관한 것이다.The present invention relates to an anisotropic conductive film.

IC 칩 등의 전자 부품을 유리 기판 등의 배선 기판에 실장할 때에, 높은 접착 강도와 양호한 내수성·내열성을 실현할 수 있는 중합 성분으로서 에폭시계 수지를 함유하는 이방성 도전 필름이 사용되는 경우가 있다. 그러한 경우, 필름의 유연성을 개선하기 위해서, 아크릴 고무가 첨가되고 있었다.When an electronic component such as an IC chip is mounted on a wiring board such as a glass substrate, an anisotropic conductive film containing an epoxy resin as a polymerization component capable of realizing high adhesive strength and good water and heat resistance is sometimes used. In such a case, in order to improve the flexibility of the film, acrylic rubber was being added.

그런데, 아크릴 고무를 첨가한 경우에는, 이방성 도전 필름의 유연성은 개선되지만, 배선 기판의 이방성 도전 접합 지점에 노출된 폴리이미드 표면에 대한 접착성이 저하된다는 문제가 있었다. 이 때문에, 에폭시계 수지를 함유하는 이방성 도전 필름에 대해, 아크릴 고무를 가입하지 않아도 유연성을 담보한 후, 폴리이미드 표면에 대한 밀착성을 향상시키기 위해서, 아니온 중합성 화합물로서 에폭시계 화합물과, 아니온 중합형 경화제와, 라디칼 중합성 화합물로서 아크릴계 화합물과, 라디칼 중합 개시제와, 도전 입자와, 성막용 수지를 포함하는 이방성 도전 필름이 제안되어 있다 (특허문헌 1). 이 경우, 아크릴계 화합물을, 에폭시계 화합물과, 아니온 중합형 경화제와, 아크릴계 화합물과, 라디칼 중합 개시제와, 성막용 수지의 합계 100 질량부에 대해, 약 15 질량부 함유시키는 것이 실시되고 있다 (특허문헌 1 의 실시예 1).However, when acrylic rubber is added, although the flexibility of the anisotropic conductive film is improved, there is a problem in that the adhesion to the polyimide surface exposed at the anisotropic conductive bonding point of the wiring board is reduced. For this reason, with respect to the anisotropic conductive film containing the epoxy resin, after ensuring flexibility even without adding acrylic rubber, in order to improve adhesion to the polyimide surface, an epoxy compound as an anionic polymerizable compound, An anisotropic conductive film containing an on-polymerization curing agent, an acrylic compound as a radically polymerizable compound, a radical polymerization initiator, conductive particles, and a resin for film formation has been proposed (Patent Document 1). In this case, it is carried out to contain about 15 parts by mass of the acrylic compound with respect to 100 parts by mass of the total of the epoxy compound, the anion polymerization type curing agent, the acrylic compound, the radical polymerization initiator, and the resin for film formation ( Example 1 of Patent Document 1).

일본 공개특허공보 2007-224228호Japanese Laid-Open Patent Publication No. 2007-224228

그러나, 특허문헌 1 의 이방성 도전 필름으로 이방성 도전 접속을 열압착에 의해 실시한 경우, 열압착 초기 단계에서 수지 유동을 지나치게 억제해 버려, 도전 입자의 압입이 불충분해지고, 그 결과, 접속 저항값의 상승이 야기된다는 문제의 발생이 염려되었다. 반대로, 도전 입자의 압입을 개선하고자 하면, 과도한 수지 유동을 촉구하는 것으로 이어져, 입자 포착 효율의 저하가 염려되었다.However, when the anisotropic conductive connection is performed by thermocompression bonding with the anisotropic conductive film of Patent Document 1, the resin flow is suppressed excessively in the initial stage of thermocompression bonding, the press-fitting of the conductive particles becomes insufficient, and as a result, the connection resistance value rises. I was concerned about the occurrence of the problem that this would cause. Conversely, an attempt to improve the indentation of the conductive particles leads to an excessive flow of the resin, and there is concern about a decrease in the particle trapping efficiency.

본 발명의 과제는, 에폭시계 화합물과 아니온 중합형 경화제와 아크릴계 화합물과 라디칼 중합 개시제와 도전 입자와 성막용 수지를 포함하는 이방성 도전 필름을, 전자 부품을 배선 기판에 실장할 때에, 입자 포착 효율을 저하시키지 않고 접속 저항값의 상승을 억제할 수 있도록 하는 것이다.The object of the present invention is to mount an anisotropic conductive film containing an epoxy compound, an anion polymerization curing agent, an acryl compound, a radical polymerization initiator, conductive particles, and a film-forming resin on a wiring board when an electronic component is mounted on a wiring board, particle trapping efficiency This is to make it possible to suppress an increase in the connection resistance value without lowering the .

본 발명자는, 에폭시계 화합물과 아니온 중합형 경화제와 아크릴계 화합물과 라디칼 중합 개시제와 성막용 수지와 도전 입자를 함유하는 이방성 도전 필름에 있어서의 당해 아크릴계 화합물의 함유량을, 에폭시계 화합물과 아니온 중합형 경화제와 아크릴계 화합물과 라디칼 중합 개시제와 성막용 수지의 합계에 대해 특정한 범위 내에 들어가도록 함으로써, 상기 서술한 발명의 과제를 해결할 수 있는 것을 알아내어, 본 발명을 완성시키기에 이르렀다.The present inventors, the content of the acrylic compound in the anisotropic conductive film containing an epoxy compound, an anion polymerization curing agent, an acrylic compound, a radical polymerization initiator, a resin for film formation, and conductive particles, an epoxy compound and anion polymerization By making it fall within a specific range with respect to the total of a mold hardening agent, an acrylic compound, a radical polymerization initiator, and resin for film-forming, it discovered that the subject of the above-mentioned invention could be solved, and came to complete this invention.

즉, 본 발명은, 에폭시계 화합물과 아니온 중합형 경화제와 아크릴계 화합물과 라디칼 중합 개시제와 성막용 수지와 도전 입자를 함유하는 이방성 도전 필름으로서, 아크릴계 화합물의 함유량이, 에폭시계 화합물과 아니온 중합형 경화제와 아크릴계 화합물과 라디칼 중합 개시제와 성막용 수지의 합계에 대해 1.0 질량% 이상 8.0 질량% 이하인 이방성 도전 필름을 제공한다.That is, the present invention is an anisotropic conductive film containing an epoxy compound, an anion polymerization curing agent, an acrylic compound, a radical polymerization initiator, a film-forming resin, and conductive particles, wherein the content of the acrylic compound is an epoxy compound and anionic polymerization The anisotropic conductive film which is 1.0 mass % or more and 8.0 mass % or less with respect to the total of a mold hardening agent, an acrylic compound, a radical polymerization initiator, and resin for film-forming is provided.

또, 본 발명은, 상기 서술한 이방성 도전 필름으로, 제 1 전자 부품과 제 2 전자 부품이 이방성 도전 접속되어 있는 접속 구조체, 동일하게 상기 서술한 이방성 도전 필름으로, 제 1 전자 부품과 제 2 전자 부품을 이방성 도전 접속하는, 접속 구조체의 제조 방법을 제공한다.Moreover, this invention is the above-mentioned anisotropic conductive film, It is a bonded structure by which a 1st electronic component and a 2nd electronic component are anisotropically conductively connected, It is an anisotropic conductive film mentioned above similarly, A 1st electronic component and a 2nd electron The manufacturing method of the bonded structure which carries out anisotropic conductive connection of components is provided.

본 발명의 이방성 도전 필름은, 에폭시계 화합물과 아니온 중합형 경화제와 아크릴계 화합물과 라디칼 중합 개시제와 성막용 수지와 도전 입자를 함유한다. 이 이방성 도전 필름은, 아크릴계 화합물을, 에폭시계 화합물과 아니온 중합형 경화제와 아크릴계 화합물과 라디칼 중합 개시제와 성막용 수지의 합계에 대해 1.0 질량% 이상 8.0 질량% 이하가 되는 양으로 함유한다. 이 때문에, 아니온 중합 반응보다 라디칼 중합 반응을 우선시킴으로써, 수지 유동을 적당히 억제함과 함께, 도전 입자의 포착성을 개선할 수 있다. 따라서, 이방성 도전 필름을, IC 칩 등의 전자 부품의 유리 기판이나 플렉시블 기판 등의 배선 기판에 대한 실장에 적용할 때에, 양호한 입자 포착성을 실현할 수 있고, 접속 저항값의 상승을 억제할 수 있다.The anisotropic conductive film of this invention contains an epoxy compound, an anion polymerization type hardening|curing agent, an acrylic compound, a radical polymerization initiator, resin for film-forming, and electrically conductive particle. This anisotropic conductive film contains an acryl-type compound in the amount used as 1.0 mass % or more and 8.0 mass % or less with respect to the total of an epoxy-type compound, an anion polymerization type hardening|curing agent, an acrylic compound, a radical polymerization initiator, and resin for film-forming. For this reason, by giving priority to radical polymerization reaction over anionic polymerization reaction, while suppressing resin flow moderately, the trapping property of an electrically-conductive particle can be improved. Therefore, when the anisotropic conductive film is applied to the mounting of an electronic component such as an IC chip on a glass substrate or a wiring substrate such as a flexible substrate, good particle trapping properties can be realized and an increase in the connection resistance value can be suppressed. .

이하, 본 발명의 일례를, 상세하게 설명한다.Hereinafter, an example of this invention is demonstrated in detail.

<이방성 도전 필름> <Anisotropic conductive film>

본 발명의 이방성 도전 필름은, 에폭시계 화합물과, 아니온 중합형 경화제와, 아크릴계 화합물과, 라디칼 중합 개시제와, 성막용 수지와, 도전 입자를 함유한다. 이 이방성 도전 필름에 있어서는, 아크릴계 화합물의 함유량이, 에폭시계 화합물과 아니온 중합형 경화제와 아크릴계 화합물과 라디칼 중합 개시제와 성막용 수지의 합계에 대해 1.0 질량% 이상 8.0 질량% 이하, 바람직하게는 2.0 질량% 이상 7.0 질량% 이하이다. 이 때문에, 아니온 중합 반응보다 라디칼 중합 반응을 우선시켰을 때에, 이방성 도전 접속 시에 수지 유동을 적당히 억제함과 함께, 도전 입자의 포착성을 개선할 수 있다. 또한, 아크릴계 화합물의 함유량이 이 범위를 벗어나면, 이방성 도전 접속의 초기 단계에 있어서의 수지 유동이 과도하게 억제되어, 도전 입자의 압입이 불충분하게 되는 것이 염려된다.The anisotropic conductive film of this invention contains an epoxy compound, an anion polymerization type hardening|curing agent, an acrylic compound, a radical polymerization initiator, resin for film-forming, and electrically-conductive particle. In this anisotropic conductive film, content of an acrylic compound is 1.0 mass % or more and 8.0 mass % or less with respect to the total of an epoxy compound, an anion polymerization type hardening|curing agent, an acrylic compound, a radical polymerization initiator, and resin for film formation, Preferably 2.0 They are mass % or more and 7.0 mass % or less. For this reason, when giving priority to a radical polymerization reaction rather than an anionic polymerization reaction, while suppressing resin flow moderately at the time of anisotropic electrically conductive connection, the trapping property of an electrically-conductive particle can be improved. Moreover, when content of an acryl-type compound deviates from this range, it is anxious that the resin flow in the initial stage of anisotropic electrically conductive connection will be suppressed excessively, and press-fitting of an electrically-conductive particle will become inadequate.

본 발명의 이방성 도전 필름의 층두께는, 하한은 바람직하게는 3 ㎛ 이상, 보다 바람직하게는 5 ㎛ 이상, 보다 더욱 바람직하게는 8 ㎛ 이상이 된다. 상한은 50 ㎛ 이하, 보다 바람직하게는 25 ㎛ 이하, 보다 더욱 바람직하게는 20 ㎛ 이하이다. 2 층 이상의 다층 구조인 경우에는, 합계의 두께가 된다.The minimum layer thickness of the anisotropic conductive film of this invention becomes like this. Preferably it is 3 micrometers or more, More preferably, it is 5 micrometers or more, More preferably, it is set as 8 micrometers or more. The upper limit is 50 µm or less, more preferably 25 µm or less, and still more preferably 20 µm or less. In the case of a multilayer structure of two or more layers, it becomes the total thickness.

본 발명의 이방성 도전 필름은, 단층 구조여도 되고, 또 2 층 이상의 다층 구조여도 되는데, 제 1 층과 제 2 층이 적층되어 있는 2 층 구조의 양태가 바람직하다. 이 경우, 제 1 층과 제 2 층의 각각이 에폭시계 화합물, 아니온 중합형 경화제 및 성막용 수지를 함유하는 것이 바람직하다. 필름 전체에서 아니온 중합을 진행시키기 위해서이며, 또, 제 1 층과 제 2 층의 밀착성을 향상시키기 위해서 이기도 하다. 또, 아크릴계 화합물과 라디칼 중합 개시제는, 제 1 층과 제 2 층의 쌍방에 포함되어 있어도 되는데, 제 1 층과 제 2 층 중 어느 일방에 포함되어 있어도 된다. 제 1 층에 아크릴계 화합물과 라디칼 중합 개시제가 함유되어 있는 경우, 제 2 층에는, 아크릴계 화합물이 함유되지 않는 것이 바람직하지만, 라디칼 중합 개시제는 함유되어 있어도 된다. 또한, 도전 입자는, 제 1 층과 제 2 층 모두에 포함되어 있어도 되는데, 아크릴계 화합물과 라디칼 중합 개시제를 함유하는 층이 제 1 층만인 경우에는, 그 제 1 층에만 함유되어 있는 것이 바람직하다. 이 경우에는, 제 1 층이 도전 입자 함유층이 되고, 제 2 층이 절연성 접착층이 된다. 이와 같이, 도전 입자가 라디칼 중합에 의해 수지 유동이 억제된 층에 포함되어 있음으로써, 도통 저항값의 상승의 억제와 도전 입자의 포착 효율의 향상을 실현할 수 있다.Although a single layer structure may be sufficient as the anisotropic conductive film of this invention and the multilayer structure of two or more layers may be sufficient as it, the aspect of the two-layer structure in which the 1st layer and the 2nd layer are laminated|stacked is preferable. In this case, it is preferable that each of a 1st layer and a 2nd layer contains an epoxy-type compound, an anion polymerization type hardening|curing agent, and resin for film-forming. It is in order to advance anionic polymerization in the whole film, and also in order to improve the adhesiveness of a 1st layer and a 2nd layer. Moreover, although an acryl-type compound and a radical polymerization initiator may be contained in both of a 1st layer and a 2nd layer, they may be contained in either one of a 1st layer and a 2nd layer. When the acrylic compound and the radical polymerization initiator are contained in the first layer, it is preferable that the acrylic compound is not contained in the second layer, but the radical polymerization initiator may be contained in the second layer. In addition, although an electrically-conductive particle may be contained in both a 1st layer and a 2nd layer, when the layer containing an acryl-type compound and a radical polymerization initiator is only a 1st layer, it is preferable to contain it only in the 1st layer. In this case, a 1st layer becomes a conductive particle-containing layer, and a 2nd layer becomes an insulating adhesive layer. In this way, when the conductive particles are contained in the layer in which the resin flow is suppressed by radical polymerization, suppression of a rise in conduction resistance and improvement in the capture efficiency of the conductive particles can be realized.

그런데, 제 1 층이, 아크릴계 화합물과 라디칼 중합 개시제와 도전 입자를 함유하고, 제 2 층이 아크릴계 화합물을 함유하고 있지 않는 이방성 도전 필름에 있어서는, 제 1 층에 있어서의 아크릴계 화합물의 함유량은, 에폭시계 화합물과 아니온 중합형 경화제와 아크릴계 화합물과 라디칼 중합 개시제와 성막용 수지의 합계에 대해, 바람직하게는 2.0 질량% 이상 16.0 질량% 이하, 보다 바람직하게는 3.0 질량% 이상 15.0 질량% 이하, 보다 더욱 바람직하게는 4.0 질량% 이상 14.0 질량% 이하이다. 또한, 제 2 층은, 추가로 라디칼 중합 개시제를 함유하고 있지 않아도 된다.By the way, in the anisotropic conductive film in which a 1st layer contains an acryl-type compound, a radical polymerization initiator, and conductive particle, and a 2nd layer does not contain an acryl-type compound, content of the acryl-type compound in a 1st layer is epoxy With respect to the total of the system compound, the anion polymerization curing agent, the acrylic compound, the radical polymerization initiator, and the film-forming resin, preferably 2.0 mass% or more and 16.0 mass% or less, more preferably 3.0 mass% or more and 15.0 mass% or less, more More preferably, they are 4.0 mass % or more and 14.0 mass % or less. In addition, the 2nd layer does not need to contain a radical polymerization initiator further.

에폭시계 화합물로는, 범용의 글리시딜에테르계 화합물, 바람직하게는 비스페놀 A 형 에폭시 수지나 비스페놀 F 형 에폭시 수지를 사용할 수 있다. 또한, 이방성 도전 필름에 양호한 저온 속경화성을 부여하는 경우에는, 범용의 글리시딜에테르계 화합물보다 높은 반응성을 갖는 지환식 에폭시계 화합물을 단독으로 사용할 수 있고, 혹은 범용의 글리시딜에테르계 화합물과 병용할 수도 있다. 이와 같은 지환식 에폭시 화합물로는, 분자 내에 2 개 이상의 에폭시기를 갖는 것을 바람직하게 들 수 있다. 이들은 액상이어도 되고, 고체상이어도 된다. 구체적으로는, 디글리시딜헥사히드로비스페놀 A, 3,4-에폭시시클로헥세닐메틸-3',4'-에폭시시클로헥센카르복실레이트, 디에폭시비시클로헥실 등을 들 수 있다. 그 중에서도, 경화물의 광 투과성을 확보할 수 있고, 속경화성도 우수한 점에서, 디글리시딜헥사히드로비스페놀 A, 그 중에서도 디에폭시비시클로헥실을 바람직하게 사용할 수 있다.As the epoxy compound, a general-purpose glycidyl ether compound, preferably a bisphenol A type epoxy resin or a bisphenol F type epoxy resin, can be used. In addition, when imparting good low-temperature fast curing properties to the anisotropic conductive film, an alicyclic epoxy compound having a higher reactivity than a general-purpose glycidyl ether-based compound can be used alone, or a general-purpose glycidyl ether-based compound It can also be used in combination with As such an alicyclic epoxy compound, what has two or more epoxy groups in a molecule|numerator is mentioned preferably. Liquid phase may be sufficient as these, and solid phase may be sufficient as them. Specific examples thereof include diglycidyl hexahydrobisphenol A, 3,4-epoxycyclohexenylmethyl-3',4'-epoxycyclohexenecarboxylate, and diepoxybicyclohexyl. Especially, since the light transmittance of hardened|cured material can be ensured and it is excellent also in quick curing, diglycidyl hexahydrobisphenol A, especially diepoxybicyclohexyl can be used preferably.

본 발명의 이방성 도전 필름에 있어서의 에폭시계 화합물의 함유량은, 에폭시계 화합물과 아니온 중합형 경화제와 아크릴계 화합물과 라디칼 중합 개시제와 성막용 수지의 합계에 대해, 바람직하게는 2 질량% 이상, 보다 바람직하게는 5 질량% 이상, 보다 더욱 바람직하게는 10 질량% 이상이며, 상한에 대해서는 바람직하게는 35 질량% 이하, 보다 바람직하게는 30 질량% 이하, 보다 더욱 바람직하게는 25 질량% 이하이다. 에폭시계 화합물의 함유량이 2 질량% 미만이면, 경화 후의 접착 강도 등의 물성이 불충분하게 되는 것이 염려된다.The content of the epoxy compound in the anisotropic conductive film of the present invention is preferably 2% by mass or more with respect to the total of the epoxy compound, the anion polymerization curing agent, the acrylic compound, the radical polymerization initiator, and the resin for film formation, more Preferably it is 5 mass % or more, More preferably, it is 10 mass % or more, About an upper limit, Preferably it is 35 mass % or less, More preferably, it is 30 mass % or less, More preferably, it is 25 mass % or less. When content of an epoxy-type compound is less than 2 mass %, we are anxious about physical properties, such as adhesive strength after hardening, becoming inadequate.

(아니온 중합형 경화제) (Anionic polymerization curing agent)

본 발명의 이방성 도전 필름은, 에폭시계 화합물을 아니온 중합시키기 위해서 아니온 중합형 경화제를 함유한다. 이 아니온 중합형 경화제로는, 종래 공지된 아니온 중합형 경화제, 바람직하게는 아니온 중합형 잠재성 경화제를 사용할 수 있고, 구체적으로는, 이미다졸계 경화제, 히드라지드계 경화제, 3 불소붕소-아민 착물계 경화제, 아민이미드계 경화제, 폴리아민염계 경화제, 디시안디아미드계 경화제, 이들을 잠재성으로 한 것이나 변성한 것 등을 들 수 있다. 이들은 2 종 이상을 병용할 수도 있다. 또, 필요에 따라, 통상적인 방법에 의해 마이크로캡슐화하여 사용할 수도 있다. 경화제를 마이크로캡슐화한 것 (마이크로캡슐형 경화제) 중에는, 에폭시 수지와 경화제가 포함되어 있고, 마이크로캡슐형 경화제 100 질량부 중에, 통상, 경화제가 20 ∼ 50 질량부, 에폭시 수지가 80 ∼ 50 질량부 함유되어 있다. 이와 같이, 마이크로캡슐형 경화제의 경우, 그 배합량으로부터 마이크로캡슐형 경화제 중의 에폭시 수지를 제외한 양을 경화제의 양으로서 간주하는 것이 바람직하다.The anisotropic conductive film of this invention contains an anion polymerization type hardening|curing agent in order to anionically polymerize an epoxy-type compound. As the anion polymerization type curing agent, a conventionally known anion polymerization type curing agent, preferably an anion polymerization type latent curing agent can be used. Specifically, an imidazole type curing agent, a hydrazide type curing agent, and boron trifluoride -Amine complex type curing agent, amine imide type curing agent, polyamine salt type curing agent, dicyandiamide type curing agent, and those made latent or modified|denatured etc. are mentioned. These can also use 2 or more types together. Moreover, if necessary, it can also be used after microencapsulation by a conventional method. An epoxy resin and a curing agent are contained in the microencapsulated curing agent (microcapsule curing agent), and in 100 parts by mass of the microcapsule type curing agent, usually 20 to 50 parts by mass of the curing agent and 80 to 50 parts by mass of the epoxy resin. is contained. As described above, in the case of the microcapsule curing agent, it is preferable to consider the amount of the curing agent in an amount excluding the epoxy resin in the microcapsule curing agent from the blending amount.

본 발명의 이방성 도전 필름에 있어서의 아니온 중합형 경화제의 함유량은, 에폭시계 화합물 100 질량부에 대해, 충분한 경화 반응을 실현하기 위해서 바람직하게는 30 질량부 이상, 보다 바람직하게는 40 질량부 이상, 상한에 대해서는 바람직하게는 60 질량부 이하, 보다 바람직하게는, 50 중량부 이하이다.In order that content of the anion polymerization type hardening|curing agent in the anisotropic conductive film of this invention implement|achieves sufficient hardening reaction with respect to 100 mass parts of epoxy compounds, Preferably it is 30 mass parts or more, More preferably, it is 40 mass parts or more. , about the upper limit, Preferably it is 60 mass parts or less, More preferably, it is 50 mass parts or less.

(아크릴계 화합물) (Acrylic compound)

본 발명의 이방성 도전 필름은, 라디칼 중합성 화합물로서 아크릴계 화합물을 함유한다. 아크릴계 화합물에는, (메트)아크릴산, (메트)아크릴레이트, 그들의 이미드 화합물 등을 들 수 있다. 「(메트)아크릴산」은, 아크릴산과 메타크릴산을 포함하는 용어이며, 「(메트)아크릴레이트」는, 아크릴레이트와 메타크릴레이트를 포함하는 용어이다. 또, 이들은 모노머, 올리고머 어느 상태로 사용해도 되고, 모노머와 올리고머를 병용해도 된다. 아크릴계 화합물의 구체예로는, 알킬(메트)아크릴레이트, 예를 들어 메틸아크릴레이트, 에틸아크릴레이트, 이소프로필아크릴레이트, 이소부틸아크릴레이트 등 ; 폴리올폴리(메트)아크릴레이트, 예를 들어, 에틸렌글리콜디아크릴레이트, 디에틸렌글리콜디아크릴레이트, 트리메틸올프로판트리아크릴레이트, 테트라메틸올메탄테트라아크릴레이트 등 ; 아릴옥시-하이드록시알킬(메트)아크릴레이트, 예를 들어, 2-하이드록시-1,3-디아크릴옥시프로판, 2,2-비스〔4-(아크릴옥시메톡시)페닐〕프로판, 2,2-비스〔4-(아크릴옥시폴리에톡시)페닐〕프로판 등 ; 그 외, 디시클로펜테닐아크릴레이트, 트리시클로데카닐아크릴레이트, 트리스(아크릴로일옥시에틸)이소시아누레이트 등을 들 수 있다. 이들은 단독 또는 2 종 이상을 병용하여 사용할 수 있다. 또한, 이들의 구체예 중에서, 디시클로펜테닐기, 트리시클로데카닐기 혹은 트리아진 고리를 갖는 아크릴계 화합물은, 이방성 도전 필름의 내열성을 개선시킬 수 있다.The anisotropic conductive film of this invention contains an acryl-type compound as a radically polymerizable compound. (meth)acrylic acid, (meth)acrylate, those imide compounds, etc. are mentioned as an acrylic compound. "(meth)acrylic acid" is a term containing acrylic acid and methacrylic acid, and "(meth)acrylate" is a term containing acrylate and methacrylate. Moreover, these may be used in any state of a monomer and an oligomer, and may use a monomer and an oligomer together. As a specific example of an acrylic compound, An alkyl (meth)acrylate, for example, methyl acrylate, ethyl acrylate, isopropyl acrylate, isobutyl acrylate, etc.;; polyol poly(meth)acrylates such as ethylene glycol diacrylate, diethylene glycol diacrylate, trimethylolpropane triacrylate, tetramethylolmethane tetraacrylate; Aryloxy-hydroxyalkyl (meth) acrylates such as 2-hydroxy-1,3-diaryloxy propane, 2,2-bis [4- (acryloxymethoxy) phenyl] propane, 2, 2-bis[4-(acryloxypolyethoxy)phenyl]propane; In addition, dicyclopentenyl acrylate, tricyclo decanyl acrylate, tris (acryloyloxyethyl) isocyanurate, etc. are mentioned. These can be used individually or in combination of 2 or more types. Moreover, among these specific examples, the acryl-type compound which has a dicyclopentenyl group, a tricyclodecanyl group, or a triazine ring can improve the heat resistance of an anisotropic conductive film.

(라디칼 중합 개시제) (Radical polymerization initiator)

본 발명의 이방성 도전 필름은, 아크릴계 화합물을 라디칼 중합시키기 위한 유리 라디칼을 발생하는 라디칼 중합 개시제를 함유한다. 라디칼 중합 개시제로는, 과산화 화합물, 아조계 화합물 등의 열에 의해 유리 라디칼을 발생하는 것을 사용할 수 있다. 그 중에서도, 목적으로 하는 접속 온도, 접속 시간, 포트 라이프 등의 관점에서, 반감기 10 시간의 온도가 40 ℃ 이상 또한, 반감기 1 분의 온도가 180 ℃ 이하인 유기 과산화물이 바람직하고, 반감기 10 시간의 온도가 60 ℃ 이상 또한, 반감기 1 분의 온도가 170 ℃ 이하인 유기 과산화물이 보다 바람직하다. The anisotropic conductive film of this invention contains the radical polymerization initiator which generate|occur|produces the free radical for radically polymerizing an acrylic compound. As a radical polymerization initiator, what generate|occur|produces a free radical by heat, such as a peroxide compound and an azo compound, can be used. Among them, from the viewpoint of the target connection temperature, connection time, pot life, etc., an organic peroxide having a half-life of 10 hours at a temperature of 40° C. or higher and a half-life of 1 minute at 180° C. or less is preferable, and a temperature of 10 hours with a half-life is preferable. An organic peroxide having a temperature of not less than 60°C and a half-life of 1 minute of not more than 170°C is more preferable.

이와 같은 유기 과산화물로는, 퍼옥시에스테르, 디알킬퍼옥사이드, 디아실퍼옥사이드, 퍼옥시디카보네이트, 퍼옥시케탈, 하이드로퍼옥사이드, 실릴퍼옥사이드 등을 들 수 있다. 퍼옥시에스테르의 구체예로는, 쿠밀퍼옥시네오데카노에이트, 1,1,3,3-테트라메틸부틸퍼옥시네오데카노에이트, 1-시클로헥실-1-메틸에틸퍼옥시네오데카노에이트, t-헥실퍼옥시네오데카노에이트, t-부틸퍼옥시피발레이트, 1,1,3,3-테트라메틸부틸퍼옥시-2-에틸헥사노네이트, 2,5-디메틸-2,5-디(2-에틸헥사노일퍼옥시)헥산, 1-시클로헥실-1-메틸에틸퍼옥시-2-에틸헥사노네이트, L-헥실퍼옥시-2-에틸헥사노네이트, L-부틸퍼옥시-2-에틸헥사노네이트, t-부틸퍼옥시이소부티레이트, 1,1-비스(t-부틸퍼옥시)시클로헥산, t-헥실퍼옥시이소프로필모노카보네이트, t-부틸퍼옥시-3,5,5-트리메틸헥사노네이트, t-부틸퍼옥시라우레이트, 2,5-디메틸-2,5-디(m-톨루오일퍼옥시)헥산, t-부틸퍼옥시이소프로필모노카보네이트, t-부틸퍼옥시-2-에틸헥실모노카보네이트, t-헥실퍼옥시벤조에이트, t-부틸퍼옥시아세테이트 등을 들 수 있다. 디알킬퍼옥사이드의 구체예로는, α,α'-비스(t-부틸퍼옥시)디이소프로필벤젠, 디쿠밀퍼옥사이드, 2,5-디메틸-2,5-디(t-부틸퍼옥시)헥산, t-부틸쿠밀퍼옥사이드 등을 들 수 있다. 하이드로퍼옥사이드의 구체예로는, 디이소프로필벤젠하이드로퍼옥사이드, 쿠멘하이드로퍼옥사이드 등을 들 수 있다. 디아실퍼옥사이드의 구체예로는, 이소부틸퍼옥사이드, 2,4-디클로로벤조일퍼옥사이드, 3,5,5-트리메틸헥사노일퍼옥사이드, 옥타노일퍼옥사이드, 라우로일퍼옥사이드, 스테아로일퍼옥사이드, 숙시닉퍼옥사이드, 벤조일퍼옥시톨루엔, 벤조일퍼옥사이드 등을 들 수 있다. 퍼옥시디카보네이트의 구체예로는, 디-n-프로필퍼옥시디카보네이트, 디이소프로필퍼옥시디카보네이트, 비스(4-t-부틸시클로헥실)퍼옥시디카보네이트, 디-2-에톡시메톡시퍼옥시디카보네이트, 디(2-에틸헥실퍼옥시)디카보네이트, 디메톡시부틸퍼옥시디카보네이트, 디(3-메틸-3-메톡시부틸퍼옥시)디카보네이트 등을 들 수 있다. 퍼옥시케탈의 구체예로는, 1,1-비스(t-헥실퍼옥시)-3,3,5-트리메틸시클로헥산, 1,1-비스(t-헥실퍼옥시)시클로헥산, 1,1-비스(t-부틸퍼옥시)-3,3,5-트리메틸시클로헥산, 1,1-(t-부틸퍼옥시)시클로도데칸, 2,2-비스(t-부틸퍼옥시)데칸 등을 들 수 있다. 실릴퍼옥사이드의 구체예로는, t-부틸트리메틸실릴퍼옥사이드, 비스(t-부틸)디메틸실릴퍼옥사이드, t-부틸트리비닐실릴퍼옥사이드, 비스(t-부틸)디비닐실릴퍼옥사이드, 트리스(t-부틸)비닐실릴퍼옥사이드, t-부틸트리알릴실릴퍼옥사이드, 비스(t-부틸)디알릴실릴퍼옥사이드, 트리스(t-부틸)알릴실릴퍼옥사이드 등을 들 수 있다. 이들 유기 과산화물은, 2 종 이상을 병용할 수 있다.Examples of such organic peroxides include peroxy esters, dialkyl peroxides, diacyl peroxides, peroxydicarbonates, peroxyketals, hydroperoxides, and silyl peroxides. Specific examples of the peroxyester include cumyl peroxyneodecanoate, 1,1,3,3-tetramethylbutylperoxyneodecanoate, 1-cyclohexyl-1-methylethylperoxyneodecanoate. , t-hexylperoxyneodecanoate, t-butylperoxypivalate, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanonate, 2,5-dimethyl-2,5- Di(2-ethylhexanoylperoxy)hexane, 1-cyclohexyl-1-methylethylperoxy-2-ethylhexanonate, L-hexylperoxy-2-ethylhexanonate, L-butylperoxy- 2-ethylhexanonate, t-butylperoxyisobutyrate, 1,1-bis(t-butylperoxy)cyclohexane, t-hexylperoxyisopropylmonocarbonate, t-butylperoxy-3,5; 5-trimethylhexanonate, t-butylperoxylaurate, 2,5-dimethyl-2,5-di(m-toluylperoxy)hexane, t-butylperoxyisopropyl monocarbonate, t-butylper Oxy-2-ethylhexyl monocarbonate, t-hexyl peroxy benzoate, t-butyl peroxy acetate, etc. are mentioned. Specific examples of the dialkyl peroxide include α,α′-bis(t-butylperoxy)diisopropylbenzene, dicumylperoxide, 2,5-dimethyl-2,5-di(t-butylperoxy) Hexane, t-butylcumyl peroxide, etc. are mentioned. Specific examples of the hydroperoxide include diisopropylbenzene hydroperoxide and cumene hydroperoxide. Specific examples of diacyl peroxide include isobutyl peroxide, 2,4-dichlorobenzoyl peroxide, 3,5,5-trimethylhexanoyl peroxide, octanoyl peroxide, lauroyl peroxide, stearoyl peroxide, Succinic peroxide, benzoyl peroxytoluene, benzoyl peroxide, etc. are mentioned. Specific examples of peroxydicarbonate include di-n-propyl peroxydicarbonate, diisopropyl peroxydicarbonate, bis(4-t-butylcyclohexyl)peroxydicarbonate, and di-2-ethoxymethoxyperoxydicarbonate. , di(2-ethylhexylperoxy)dicarbonate, dimethoxybutylperoxydicarbonate, di(3-methyl-3-methoxybutylperoxy)dicarbonate, and the like. Specific examples of the peroxyketal include 1,1-bis(t-hexylperoxy)-3,3,5-trimethylcyclohexane, 1,1-bis(t-hexylperoxy)cyclohexane, 1,1 -bis(t-butylperoxy)-3,3,5-trimethylcyclohexane, 1,1-(t-butylperoxy)cyclododecane, 2,2-bis(t-butylperoxy)decane, etc. can be heard Specific examples of the silyl peroxide include t-butyltrimethylsilylperoxide, bis(t-butyl)dimethylsilylperoxide, t-butyltrivinylsilylperoxide, bis(t-butyl)divinylsilylperoxide, tris (t-butyl)vinylsilylperoxide, t-butyltriallylsilylperoxide, bis(t-butyl)diallylsilylperoxide, tris(t-butyl)allylsilylperoxide, etc. are mentioned. These organic peroxides can use 2 or more types together.

본 발명의 이방성 도전 필름에 있어서의 라디칼 중합 개시제의 함유량은, 아크릴계 화합물 100 질량부에 대해, 바람직하게는 0.5 질량부 이상, 보다 바람직하게는 1 질량부 이상이며, 상한에 대해서는, 본 발명의 효과를 얻기 위해서 바람직하게는 5 질량부 이하, 보다 바람직하게는 4 질량부 이하이다.To [ content of the radical polymerization initiator in the anisotropic conductive film of this invention / 100 mass parts of acryl-type compound ], Preferably it is 0.5 mass part or more, More preferably, it is 1 mass part or more, About an upper limit, about the effect of this invention In order to obtain, Preferably it is 5 mass parts or less, More preferably, it is 4 mass parts or less.

(성막용 수지) (Resin for film formation)

본 발명의 이방성 도전 필름은, 막 형성능을 갖는 성막용 수지를 함유한다. 이와 같은 성막용 수지로는, 페녹시 수지, 에폭시 수지, 불포화 폴리에스테르 수지, 포화 폴리에스테르 수지, 우레탄 수지, 부타디엔 수지, 폴리이미드 수지, 폴리아미드 수지, 폴리올레핀 수지 등을 들 수 있고, 이들의 2 종 이상을 병용할 수 있다. 이들 중에서도, 성막성, 가공성, 접속 신뢰성의 관점에서, 페녹시 수지를 바람직하게 사용할 수 있다.The anisotropic conductive film of this invention contains the resin for film-forming which has film-forming ability. Examples of such a film-forming resin include a phenoxy resin, an epoxy resin, an unsaturated polyester resin, a saturated polyester resin, a urethane resin, a butadiene resin, a polyimide resin, a polyamide resin, and a polyolefin resin. More than one species may be used in combination. Among these, a phenoxy resin can be used preferably from a viewpoint of film-forming property, workability, and connection reliability.

본 발명의 이방성 도전 필름에 있어서의 성막용 수지의 함유량은, 에폭시계 화합물과 아니온 중합형 경화제와 아크릴계 화합물과 라디칼 중합 개시제와 성막용 수지의 합계에 대해, 바람직하게는 25 질량% 이상, 보다 바람직하게는 30 질량% 이상이며, 상한에 대해서는, 본 발명의 효과를 얻기 위해서 바람직하게는 50 질량% 이하, 보다 바람직하게는 45 질량% 이하이다.The content of the resin for film formation in the anisotropic conductive film of the present invention is preferably 25% by mass or more with respect to the total of the epoxy compound, the anion polymerization curing agent, the acrylic compound, the radical polymerization initiator, and the resin for film formation, more Preferably it is 30 mass % or more, About an upper limit, in order to acquire the effect of this invention, Preferably it is 50 mass % or less, More preferably, it is 45 mass % or less.

(도전 입자) (conductive particles)

본 발명의 이방성 도전 필름은, 이방성 도전 접속을 가능하게 하기 위해, 도전 입자를 함유한다. 도전 입자로는, 종래 공지된 이방성 도전 필름에 이용되고 있는 것 중으로부터 적절히 선택하여 사용할 수 있다. 예를 들어 니켈, 코발트, 은, 동, 금, 팔라듐 등의 금속 입자, 땜납 등의 합금 입자, 금속 피복 수지 입자 등을 들 수 있다. 2 종 이상을 병용할 수도 있다. 도전 입자의 표면은, 접속 후의 도통에 지장을 초래하지 않는 정도로 절연 처리가 실시되어 있어도 된다. The anisotropic conductive film of this invention contains an electrically-conductive particle in order to enable anisotropic conductive connection. As an electrically-conductive particle, it can select suitably from what is used for the conventionally well-known anisotropic electrically-conductive film, and can use it. For example, metal particles, such as nickel, cobalt, silver, copper, gold|metal|money, palladium, alloy particles, such as solder, metal-coated resin particle|grains, etc. are mentioned. You can also use 2 or more types together. The surface of the electrically-conductive particle may be insulated to the extent which does not impair the conduction|electrical_connection after connection.

도전 입자의 평균 입경으로는, 일반적으로 1 ∼ 30 ㎛ 이다. 배선 높이의 편차에 대응할 수 있도록 하고, 또, 도통 저항의 상승을 억제하고, 또한 쇼트의 발생을 억제하기 위해서, 바람직하게는 2.5 ㎛ 이상, 보다 바람직하게는 3 ㎛ 이상이며, 상한에 대해서는 바람직하게는 30 ㎛ 이하, 보다 바람직하게는 9 ㎛ 이하이다. 도전 입자의 입경은, 일반적인 입도 분포 측정 장치에 의해 측정할 수 있고, 또, 그 평균 입경도 입도 분포 측정 장치를 사용하여 구할 수 있다.As an average particle diameter of an electrically-conductive particle, it is 1-30 micrometers generally. In order to be able to cope with the variation in the wiring height, to suppress the increase in the conduction resistance and to suppress the occurrence of a short circuit, it is preferably 2.5 µm or more, more preferably 3 µm or more, and the upper limit is preferably is 30 µm or less, more preferably 9 µm or less. The particle diameter of an electrically-conductive particle can be measured with a general particle size distribution analyzer, and can be calculated|required using the average particle size particle size distribution analyzer.

또한, 도전 입자가 금속 피복 수지 입자인 경우, 수지 코어 입자의 입자 경도 (20 % K 치 ; 압축 탄성 변형 특성 K20) 는, 양호한 접속 신뢰성을 얻기 위해서, 바람직하게는 100 kgf/㎟ 이상, 보다 바람직하게는 200 kgf/㎟ 이상이며, 상한에 대해서는 1000 kgf/㎟ 이하, 보다 바람직하게는 500 kgf/㎟ 이하이다. 압축 탄성 변형 특성 K20 은, 예를 들어, 미소 압축 시험기 (MCT-W201, (주) 시마즈 제작소 제조) 를 사용하여 측정 온도 20 ℃ 에서 측정할 수 있다.In addition, when the conductive particles are metal-coated resin particles, the particle hardness (20% K value; compressive elastic deformation characteristic K 20 ) of the resin core particles is preferably 100 kgf/mm 2 or more, in order to obtain good connection reliability, more Preferably it is 200 kgf/mm<2> or more, About an upper limit, it is 1000 kgf/mm<2> or less, More preferably, it is 500 kgf/mm<2> or less. Compressive elastic deformation characteristic K20 can be measured at the measurement temperature of 20 degreeC using the micro compression tester (MCT-W201, Shimadzu Corporation make), for example.

본 발명의 이방성 도전 필름에 있어서의 도전 입자의 함유량은, 도전 입자 포착 효율의 저하를 억제하고, 또한 쇼트의 발생을 억제하기 위해서, 1 평방㎜ 당, 바람직하게는 50 개 이상, 보다 바람직하게는 200 개 이상이며, 상한에 대해서는 바람직하게는 100000 개 이하, 보다 바람직하게는 70000 개 이하이다. 이 함유량의 측정은 이방성 도전 필름을 광학 현미경이나 금속 현미경 등으로 관찰함으로써 실시할 수 있다. 또한, 이방성 도전 접속 전에 있어서, 이방성 도전 필름 중의 도전 입자가 당해 필름 내에 존재하고 있기 때문에 광학 현미경으로 관찰하기 어려운 경우가 있다. 그러한 경우에는, 이방성 도전 접속 후의 이방성 도전 필름을 관찰해도 된다. 이 경우에는, 접속 전후의 필름 두께 변화를 고려하여 존재량을 산출할 수 있다.The content of the conductive particles in the anisotropic conductive film of the present invention is per square mm, preferably 50 or more, more preferably 50 or more, in order to suppress a decrease in the conductive particle trapping efficiency and suppress the occurrence of shorts. It is 200 or more, About an upper limit, Preferably it is 100000 or less, More preferably, it is 70000 or less. The measurement of this content can be performed by observing an anisotropic conductive film with an optical microscope, a metal microscope, etc. Moreover, before anisotropic conductive connection, since the electrically-conductive particle in the anisotropic conductive film exists in the said film, it may be difficult to observe with an optical microscope. In such a case, you may observe the anisotropic conductive film after anisotropic conductive connection. In this case, the abundance can be calculated in consideration of the film thickness change before and after connection.

또한, 본 발명의 이방성 도전 필름에 있어서의 도전 입자의 함유량은, 질량 기준으로 나타낼 수도 있다. 이 경우, 그 함유량은, 에폭시계 화합물과 아니온 중합형 경화제와 아크릴계 화합물과 라디칼 중합 개시제와 성막용 수지의 합계 100 질량부에 대해, 바람직하게는 1 질량부 이상, 보다 바람직하게는 3 질량부 이상, 상한에 대해서는 바람직하게는 30 질량부 이하, 보다 바람직하게는 10 질량부 이하가 되는 양이다.In addition, content of the electrically-conductive particle in the anisotropic conductive film of this invention can also be expressed on a mass basis. In this case, the content is preferably 1 part by mass or more, more preferably 3 parts by mass to 100 parts by mass in total of the epoxy compound, the anion polymerization type curing agent, the acrylic compound, the radical polymerization initiator, and the resin for film formation. As mentioned above, about an upper limit, Preferably it is 30 mass parts or less, More preferably, it is an amount used as 10 mass parts or less.

또, 본 발명의 이방성 도전 필름에 있어서의 도전 입자의 존재 양태로는, 필름이 단층인 경우, 필름 전체에 랜덤으로 분산되어 있어도 되고, 서로 이격하면서 규칙적으로 배열시켜도 되고, 규칙적으로 배열되어 있는 경우에는, 누락이나 응집이 일정수 포함되어 있어도 된다 (예를 들어, WO2016/068168A1, 일본 공개특허공보 2016-066573, 일본 공개특허공보 2016-085983, 일본 공개특허공보 2016-092004, 일본 공개특허공보 2016-103476, 일본 특허 6187665호 참조). 또, 필름이 다층 구조인 경우, 예를 들어 2 층 구조인 경우에는, 일방의 층에만 도전 입자를 존재시키도록 해도 된다. 또, 층의 경계에 존재시켜도 되고, 층의 외계면 (첩부면) 에 존재시켜도 된다.In addition, as the mode of existence of the conductive particles in the anisotropic conductive film of the present invention, when the film is a single layer, it may be randomly dispersed throughout the film, or may be arranged regularly while being spaced apart from each other, When they are arranged regularly may contain a certain number of omissions or aggregation (for example, WO2016/068168A1, Japanese Patent Application Laid-Open No. 2016-066573, Japanese Patent Application Laid-Open No. 2016-085983, Japanese Patent Application Laid-Open No. 2016-092004, Japanese Unexamined Patent Publication (Kokai) 2016 -103476, see Japanese Patent 6187665). Moreover, when a film is a multilayer structure, for example, in the case of a two-layer structure, you may make it make an electrically-conductive particle exist only in one layer. Moreover, it may be made to exist in the boundary of a layer, and you may make it exist in the outer boundary surface (sticking surface) of a layer.

(기타 성분) (Other Ingredients)

본 발명의 이방성 도전 필름은, 필요에 따라, 실란 커플링제, 충전제, 연화제, 촉진제, 노화 방지제, 착색제 (안료, 염료), 유기 용제, 이온 캐쳐제 등을 함유할 수 있다. 또, 필요에 따라, 하이드로퀴논, 메틸에테르하이드로퀴논류 등의 중합 금지제를 적절히 사용해도 된다. 그 중에서도, 실란 커플링제는, 에폭시계 화합물과 아니온 중합형 경화제와 아크릴계 화합물과 라디칼 중합 개시제와 성막용 수지의 합계 100 질량부에 대해, 0.5 질량부 이상 5 질량부 이하 함유하고 있는 것이, 피착체 간에 있어서의 접착성을 양호하게 하는 관점에서 바람직하다.The anisotropic conductive film of this invention can contain a silane coupling agent, a filler, a softener, an accelerator, an anti-aging agent, a colorant (pigment, dye), an organic solvent, an ion catcher, etc. as needed. Moreover, you may use suitably polymerization inhibitors, such as hydroquinone and methyl ether hydroquinones, as needed. Among them, the silane coupling agent contains 0.5 parts by mass or more and 5 parts by mass or less with respect to 100 parts by mass in total of the epoxy compound, the anion polymerization type curing agent, the acrylic compound, the radical polymerization initiator, and the resin for film formation, It is preferable from a viewpoint of making the adhesiveness in between complexes favorable.

(시차주사 열량 특성) (Differential scanning calorimetric properties)

본 발명의 이방성 도전 필름은, 아니온 중합계와 라디칼 중합계가 혼재하고 있기 때문에, 시차주사 열량계로의 측정 시의 발열 피크에 특징을 갖는다. 구체적으로는, 본 발명의 이방성 도전 필름의 배합 조성을, 시차주사 열량계로의 측정 시, 온도차가 10 ℃ 이상, 바람직하게는 15 ℃ 이상이며, 단시간으로의 접속을 위해서는 피크가 지나치게 떨어져 있지 않은 편이 보다 바람직하기 때문에 15 ∼ 30 ℃ 의 차를 갖는 2 개의 발열 피크를 갖도록 선택한다. 이로써, 이방성 도전 접속의 초기 단계에 있어서의 수지 유동을 적절히 억제하여, 도전 입자의 포착성과 압입성을 양호한 상태로 할 수 있고, 도통 저항의 상승을 억제할 수 있다. 또한, 통상, 낮은 쪽의 발열 피크는 라디칼 중합 반응에서 유래하고, 높은 쪽의 발열 피크는 아니온 중합 반응에서 유래한다고 생각된다.Since the anionic polymerization system and the radical polymerization system are mixed, the anisotropic conductive film of this invention has the characteristic in the exothermic peak at the time of measurement with a differential scanning calorimeter. Specifically, when the compounding composition of the anisotropic conductive film of the present invention is measured with a differential scanning calorimeter, the temperature difference is 10 ° C or more, preferably 15 ° C or more, and for a short time connection, the peak is not too far apart Because it is preferred, it is selected to have two exothermic peaks with a difference of 15 to 30°C. Thereby, the resin flow in the initial stage of anisotropic electrically conductive connection can be suppressed suitably, the trapping property of an electrically-conductive particle can be made into a favorable state, and a raise of conduction resistance can be suppressed. In addition, normally, it is thought that a lower exothermic peak originates in a radical polymerization reaction, and a higher exothermic peak originates in anionic polymerization reaction.

본 발명에서는, 필름의 최저 용융 점도를 조정함으로써, 접속 시의 수지 유동의 영향을 제어할 수 있다. 일반적으로는 도전 입자를 함유하고 있는 층의 영향이 크다. 2 층 이상인 경우에는, 도전 입자 함유층의 최저 용융 점도가 도전 입자를 포함하지 않는 층보다 크게 할 것이 요구된다. 최저 용융 점도는, 일례로서 회전식 레오미터 (TA Instruments 사 제조) 를 사용하고, 측정 압력 5 g 으로 일정하게 유지하고, 직경 8 ㎜ 의 측정 플레이트를 사용하여 구할 수 있고, 보다 구체적으로는, 온도 범위 30 ∼ 200 ℃ 에 있어서, 승온 속도 10 ℃/분, 측정 주파수 10 Hz, 상기 측정 플레이트에 대한 하중 변동 5 g 으로 함으로써 구할 수 있다.In this invention, the influence of the resin flow at the time of connection can be controlled by adjusting the minimum melt viscosity of a film. In general, the effect of the layer containing the conductive particles is large. In the case of two or more layers, it is calculated|required to make the minimum melt viscosity of an electrically-conductive particle containing layer larger than the layer which does not contain an electrically-conductive particle. The lowest melt viscosity can be obtained by using a rotary rheometer (manufactured by TA Instruments) as an example, maintaining a constant measuring pressure of 5 g, and using a measuring plate having a diameter of 8 mm, more specifically, the temperature range 30-200 degreeC WHEREIN: It can calculate|require by setting it as the temperature increase rate of 10 degree-C/min, the measurement frequency of 10 Hz, and 5 g of load fluctuations with respect to the said measurement plate.

(이방성 도전 필름의 제조) (Manufacture of anisotropic conductive film)

본 발명의 이방성 도전 필름은, 예를 들어, 상기 서술한, 에폭시계 화합물과, 아니온 중합형 경화제와, 아크릴계 화합물과, 라디칼 중합 개시제와, 성막용 수지와, 도전 입자를 함유하는 조성물을, 아크릴계 화합물의 함유량이 에폭시계 화합물과 아크릴계 화합물의 합계에 대해 5 질량% 미만이 되도록 조정한 후, 톨루엔 등의 유기 용매에 용해하여 도료로 하고, 그 도료를 공지된 필름화 수법을 이용하여 필름화함으로써 제조할 수 있다. 또한, 본 발명의 이방성 도전 필름이 다층 구조인 경우에는, 각각의 층을 필름화한 후, 그것들 필름끼리를 적층하면 된다. 또, 도전 입자를 규칙 배열시키는 경우에는, 전사형을 사용하는 공지된 방법 (일본 특허 제6187665호, 일본 특허 제6372542호, 일본 특허 제6372543호 등) 을 채용함으로써 실현할 수 있다.The anisotropic conductive film of the present invention, for example, the above-mentioned epoxy compound, an anion polymerization curing agent, an acrylic compound, a radical polymerization initiator, a resin for film formation, and a composition containing conductive particles, After adjusting so that the content of the acrylic compound is less than 5% by mass based on the total of the epoxy compound and the acrylic compound, it is dissolved in an organic solvent such as toluene to make a paint, and the paint is filmed using a known film forming method It can be manufactured by In addition, when the anisotropic conductive film of this invention has a multilayer structure, after forming each layer into a film, what is necessary is just to laminate|stack those films. Further, when the conductive particles are arranged in a regular arrangement, it can be realized by employing a known method using a transfer type (Japanese Patent No. 6187665, Japanese Patent No. 6372542, Japanese Patent No. 6372543, etc.).

<접속 구조체> <connected structure>

본 발명의 이방성 도전 필름은, IC 칩, IC 모듈, FPC (COF 라고 표기하는 경우도 있다) 등의 제 1 전자 부품과, 플라스틱 기판, 유리 기판, 리지드 기판, 세라믹 기판, FPC 등의 제 2 전자 부품을 이방성 도전 접속할 때에 바람직하게 적용할 수 있다. 이와 같은 본 발명의 이방성 도전 필름으로, 제 1 전자 부품과 제 2 전자 부품이 이방성 도전 접속되어 있는 접속 구조체도 본 발명의 일부이다. 이와 같은 접속 구조체는, 본 발명의 이방성 도전 필름으로, 제 1 전자 부품과 제 2 전자 부품을 이방성 도전 접속함으로써 제조할 수 있다. 또한, 이방성 도전 필름을 사용한 전자 부품의 접속 방법으로는, 공지된 수법을 이용할 수 있다.The anisotropic conductive film of the present invention includes a first electronic component such as an IC chip, an IC module, and an FPC (sometimes referred to as COF), and a second electronic component such as a plastic substrate, a glass substrate, a rigid substrate, a ceramic substrate, and an FPC. It can be preferably applied when connecting parts by anisotropic conduction. In such an anisotropic conductive film of this invention, the bonded structure by which the 1st electronic component and the 2nd electronic component are anisotropically conductively connected is also a part of this invention. Such a bonded structure is the anisotropic conductive film of this invention, and it can manufacture by carrying out anisotropic conductive connection of a 1st electronic component and a 2nd electronic component. In addition, as a connection method of the electronic component using an anisotropic conductive film, a well-known method can be used.

실시예Example

이하, 본 발명을 실시예에 의해 구체적으로 설명하지만, 이하의 실시예로 한정되지 않는다.Hereinafter, although an Example demonstrates this invention concretely, it is not limited to the following Example.

실시예 1 Example 1

아니온 중합형 경화제로서 마이크로캡슐형 이미다졸계 잠재성 경화제 (노바큐어 HX-3941HP, 아사히 화성 (주)) 50 질량부, 액상의 에폭시계 화합물 (jER828, 미츠비시 케미컬 (주)) 10 질량부, 성막용 수지로서 페녹시 수지 (YP-50, 닛테츠 케미컬 & 매테리얼 (주)) 35 질량부, 아크릴계 화합물 (에폭시에스테르 M-600A, 쿄에이샤 화학 (주)) 10 질량부, 라디칼 중합 개시제 (퍼헥사 C, 니치유 (주)) 2 질량부, 및 실란 커플링제 (KBE-403, 신에츠 화학 공업 (주)) 1 질량부로 이루어지는 혼합물에, 도전성 입자 (AUL-704, 세키스이 화학 공업 (주)) 를 분산시키고, 얻어진 혼합물을 성막하여 6 ㎛ 두께의 제 1 층 (도전 입자 함유층) 을 형성하였다. 도전 입자의 혼합량은, 제 1 층에 있어서의 입자 밀도가 8000 개/㎟ 가 되는 양이다. 또, 이 제 1 층의 회전식 레오미터 (TA Instruments 사 제조) 에 의한 최저 용융 점도 온도는 75 ℃ 였다.50 parts by mass of a microcapsule type imidazole latent curing agent (Novacure HX-3941HP, Asahi Chemical Co., Ltd.) as an anion polymerization type curing agent, 10 parts by mass of a liquid epoxy compound (jER828, Mitsubishi Chemical Co., Ltd.); As a film-forming resin, 35 parts by mass of phenoxy resin (YP-50, Nittetsu Chemicals & Materials Co., Ltd.), 10 parts by mass of an acrylic compound (epoxy ester M-600A, Kyoeisha Chemical Co., Ltd.), radical polymerization initiator (Perhexa C, Nichiyu Co., Ltd.) 2 parts by mass and a silane coupling agent (KBE-403, Shin-Etsu Chemical Co., Ltd.) 1 part by mass, conductive particles (AUL-704, Sekisui Chemical Co., Ltd.) Note)) was dispersed, and the obtained mixture was formed into a film to form a first layer (conductive particle-containing layer) having a thickness of 6 µm. The mixing amount of the conductive particles is such that the particle density in the first layer is 8000 pieces/mm 2 . Moreover, the minimum melt viscosity temperature of this 1st layer by the rotary rheometer (made by TA Instruments) was 75 degreeC.

다음으로, 마이크로캡슐형 이미다졸계 잠재성 경화제 (노바큐어 HX3941-HP, 아사히 화성 (주)) 50 질량부, 액상 에폭시계 화합물 (jER828, 미츠비시 케미컬 (주)) 15 질량부, 페녹시 수지 (YP-50, 닛테츠 케미컬 & 매테리얼 (주)) 35 질량부, 및 실란 커플링제 (KBE-403, 신에츠 화학 공업 (주)) 1 질량부로 이루어지는 혼합물을 성막하여 10 ㎛ 두께의 제 2 층 (절연성 접착제층) 을 형성하였다. 이 제 2 층의 회전식 레오미터 (TA Instruments 사 제조) 에 의한 최저 용융 점도 온도는 100 ℃ 였다.Next, 50 parts by mass of a microcapsule type imidazole-based latent curing agent (Novacure HX3941-HP, Asahi Chemical Co., Ltd.), 15 parts by mass of a liquid epoxy compound (jER828, Mitsubishi Chemical Co., Ltd.), phenoxy resin ( A mixture consisting of 35 parts by mass of YP-50, Nittetsu Chemicals & Materials Co., Ltd.) and 1 part by mass of a silane coupling agent (KBE-403, Shin-Etsu Chemical Co., Ltd.) was formed to form a second layer with a thickness of 10 μm ( insulating adhesive layer) was formed. The lowest melt viscosity temperature of this second layer by a rotary rheometer (manufactured by TA Instruments) was 100°C.

얻어진 제 1 층과 제 2 층을, 롤 라미네이터를 사용하여, 롤 온도 45 ℃ 에서 라미네이트함으로써 실시예 1 의 2 층 구조의 이방성 도전 필름을 얻었다.The anisotropic conductive film of the two-layer structure of Example 1 was obtained by laminating the obtained 1st layer and 2nd layer at the roll temperature of 45 degreeC using a roll laminator.

비교예 1 Comparative Example 1

아크릴계 화합물과 라디칼 중합 개시제를 사용하지 않는 것 이외에는, 실시예 1 과 동일한 6 ㎛ 두께의 제 1 층 (도전 입자 함유층) 을 형성하였다. 도전 입자의 혼합량도, 실시예 1 과 동일하게, 제 1 층에 있어서의 입자 밀도가 8000 개/㎟ 가 되는 양이다. 또, 이 제 1 층의 회전식 레오미터 (TA Instruments 사 제조) 에 의한 최저 용융 점도 온도는, 100 ℃ 였다.A first layer (conductive particle-containing layer) having a thickness of 6 µm similar to that of Example 1 was formed except that the acrylic compound and the radical polymerization initiator were not used. Similarly to Example 1, the mixing amount of an electrically-conductive particle is a quantity from which the particle density in a 1st layer will be 8000 pieces/mm<2>. In addition, the minimum melt viscosity temperature by the rotary rheometer (made by TA Instruments) of this 1st layer was 100 degreeC.

다음으로, 실시예 1 과 동일한 10 ㎛ 두께의 제 2 층 (절연성 접착제층) 을 형성하였다. 이 제 2 층의 회전식 레오미터 (TA Instruments 사 제조) 에 의한 최저 용융 점도 온도도, 실시예 1 과 동일하게 100 ℃ 였다.Next, a second layer (insulating adhesive layer) having the same thickness as in Example 1 (insulating adhesive layer) was formed. The minimum melt viscosity temperature of this 2nd layer by the rotary rheometer (made by TA Instruments) was also 100 degreeC similarly to Example 1.

얻어진 제 1 층과 제 2 층을, 롤 라미네이터를 사용하여, 롤 온도 45 ℃ 에서 라미네이트함으로써 비교예 1 의 2 층 구조의 이방성 도전 필름을 얻었다.The anisotropic conductive film of the two-layer structure of the comparative example 1 was obtained by laminating the obtained 1st layer and 2nd layer at the roll temperature of 45 degreeC using a roll laminator.

비교예 2 Comparative Example 2

실시예 1 과 동일한 6 ㎛ 두께의 제 1 층 (도전 입자 함유층) 을 형성하였다. 도전 입자의 혼합량도, 실시예 1 과 동일하게, 제 1 층에 있어서의 입자 밀도가 8000 개/㎟ 가 되는 양이다. 또, 이 제 1 층의 회전식 레오미터 (TA Instruments 사 제조) 에 의한 최저 용융 점도 온도도, 실시예 1 과 동일하게 75 ℃ 였다.A first layer (conductive particle-containing layer) having the same thickness as in Example 1 was formed of 6 µm. Similarly to Example 1, the mixing amount of an electrically-conductive particle is a quantity from which the particle density in a 1st layer will be 8000 pieces/mm<2>. Moreover, the minimum melt viscosity temperature of this 1st layer by the rotary rheometer (made by TA Instruments) was also 75 degreeC similarly to Example 1.

다음으로, 마이크로캡슐형 이미다졸계 잠재성 경화제 (노바큐어 HX3941-HP, 아사히 화성 (주)) 50 질량부, 액상 에폭시계 화합물 (jER828, 미츠비시 케미컬 (주)) 10 질량부, 페녹시 수지 (YP-50, 닛테츠 케미컬 & 매테리얼 (주)) 35 질량부, 아크릴계 화합물 (에폭시에스테르 M-600A, 쿄에이샤 화학 (주)) 10 질량부, 라디칼 중합 개시제 (퍼헥사 C, 니치유 (주)) 2 질량부, 및 실란 커플링제 (KBE-403, 신에츠 화학 공업 (주)) 1 질량부로 이루어지는 혼합물을 성막하여 10 ㎛ 두께의 제 2 층 (절연성 접착제층) 을 형성하였다. 이 제 2 층의 회전식 레오미터 (TA Instruments 사 제조) 에 의한 최저 용융 점도 온도는 75 ℃ 였다.Next, 50 parts by mass of a microcapsule-type imidazole-based latent curing agent (Novacure HX3941-HP, Asahi Chemical Co., Ltd.), 10 parts by mass of a liquid epoxy compound (jER828, Mitsubishi Chemical Co., Ltd.), phenoxy resin ( YP-50, Nittetsu Chemical & Materials Co., Ltd.) 35 parts by mass, acrylic compound (epoxy ester M-600A, Kyoeisha Chemical Co., Ltd.) 10 parts by mass, radical polymerization initiator (Perhexa C, Nichiyu) Note)) 2 parts by mass and 1 part by mass of a silane coupling agent (KBE-403, Shin-Etsu Chemical Co., Ltd.) was formed into a film to form a second layer (insulating adhesive layer) having a thickness of 10 µm. The lowest melt viscosity temperature of this second layer by a rotary rheometer (manufactured by TA Instruments) was 75°C.

얻어진 제 1 층과 제 2 층을, 롤 라미네이터를 사용하여, 롤 온도 45 ℃ 에서 라미네이트함으로써 비교예 2 의 2 층 구조의 이방성 도전 필름을 얻었다.The anisotropic conductive film of the two-layer structure of the comparative example 2 was obtained by laminating the obtained 1st layer and 2nd layer at 45 degreeC of roll temperature using a roll laminator.

비교예 3 Comparative Example 3

실시예 1 과 동일한 6 ㎛ 두께의 제 1 층 (도전 입자 함유층) 을 형성하였다. 도전 입자의 혼합량도, 실시예 1 과 동일하게, 제 1 층에 있어서의 입자 밀도가 8000 개/㎟ 가 되는 양이다. 또, 이 제 1 층의 회전식 레오미터 (TA Instruments 사 제조) 에 의한 최저 용융 점도 온도도, 실시예 1 과 동일하게 75 ℃ 였다. 이 비교예 3 에서는, 제 1 층만으로 이방성 도전 필름을 구성하였다.A first layer (conductive particle-containing layer) having the same thickness as in Example 1 was formed of 6 µm. Similarly to Example 1, the mixing amount of an electrically-conductive particle is a quantity from which the particle density in a 1st layer will be 8000 pieces/mm<2>. Moreover, the minimum melt viscosity temperature of this 1st layer by the rotary rheometer (made by TA Instruments) was also 75 degreeC similarly to Example 1. In this comparative example 3, the anisotropic conductive film was comprised only with the 1st layer.

실시예 2 Example 2

아크릴계 화합물의 사용량을 10 질량부로부터 3 질량부로 감량한 것 이외에는, 실시예 1 과 동일한 6 ㎛ 두께의 제 1 층 (도전 입자 함유층) 을 형성하였다. 도전 입자의 혼합량도, 실시예 1 과 동일하게, 제 1 층에 있어서의 입자 밀도가 8000 개/㎟ 가 되는 양이다. 또, 이 제 1 층의 회전식 레오미터 (TA Instruments 사 제조) 에 의한 최저 용융 점도 온도는 90 ℃ 였다.A first layer (conductive particle-containing layer) having a thickness of 6 µm similar to that of Example 1 was formed except that the amount of the acrylic compound used was reduced from 10 parts by mass to 3 parts by mass. Similarly to Example 1, the mixing amount of an electrically-conductive particle is a quantity from which the particle density in a 1st layer will be 8000 pieces/mm<2>. Moreover, the minimum melt viscosity temperature of this 1st layer by the rotary rheometer (made by TA Instruments) was 90 degreeC.

다음으로, 마이크로캡슐형 이미다졸계 잠재성 경화제 (노바큐어 HX3941-HP, 아사히 화성 (주)) 50 질량부, 액상 에폭시계 화합물 (jER828, 미츠비시 케미컬 (주)) 15 질량부, 페녹시 수지 (YP-50, 닛테츠 케미컬 & 매테리얼 (주)) 35 질량부, 및 실란 커플링제 (KBE-403, 신에츠 화학 공업 (주)) 1 질량부로 이루어지는 혼합물을 성막하여 10 ㎛ 두께의 제 2 층 (절연성 접착제층) 을 형성하였다. 이 제 2 층의 회전식 레오미터 (TA Instruments 사 제조) 에 의한 최저 용융 점도 온도는 100 ℃ 였다.Next, 50 parts by mass of a microcapsule type imidazole-based latent curing agent (Novacure HX3941-HP, Asahi Chemical Co., Ltd.), 15 parts by mass of a liquid epoxy compound (jER828, Mitsubishi Chemical Co., Ltd.), phenoxy resin ( A mixture consisting of 35 parts by mass of YP-50, Nittetsu Chemicals & Materials Co., Ltd.) and 1 part by mass of a silane coupling agent (KBE-403, Shin-Etsu Chemical Co., Ltd.) was formed to form a second layer with a thickness of 10 μm ( insulating adhesive layer) was formed. The lowest melt viscosity temperature of this second layer by a rotary rheometer (manufactured by TA Instruments) was 100°C.

얻어진 제 1 층과 제 2 층을, 롤 라미네이터를 사용하여, 롤 온도 45 ℃ 에서 라미네이트함으로써 실시예 2 의 2 층 구조의 이방성 도전 필름을 얻었다.The anisotropic conductive film of the two-layer structure of Example 2 was obtained by laminating the obtained 1st layer and 2nd layer at the roll temperature of 45 degreeC using a roll laminator.

실시예 3 Example 3

아크릴계 화합물의 사용량을 10 질량부로부터 15 질량부로 증량한 것 이외에는, 실시예 1 과 동일한 6 ㎛ 두께의 제 1 층 (도전 입자 함유층) 을 형성하였다. 도전 입자의 혼합량도, 실시예 1 과 동일하게, 제 1 층에 있어서의 입자 밀도가 8000 개/㎟ 가 되는 양이다. 또, 이 제 1 층의 회전식 레오미터 (TA Instruments 사 제조) 에 의한 최저 용융 점도 온도는 71 ℃ 였다.A first layer (conductive particle-containing layer) having a thickness of 6 µm similar to that of Example 1 was formed except that the amount of the acrylic compound used was increased from 10 parts by mass to 15 parts by mass. Similarly to Example 1, the mixing amount of an electrically-conductive particle is a quantity from which the particle density in a 1st layer will be 8000 pieces/mm<2>. Moreover, the minimum melt viscosity temperature of this 1st layer by the rotary rheometer (made by TA Instruments) was 71 degreeC.

다음으로, 실시예 1 과 동일한 10 ㎛ 두께의 제 2 층 (절연성 접착제층) 을 형성하였다. 이 제 2 층의 회전식 레오미터 (TA Instruments 사 제조) 에 의한 최저 용융 점도 온도도, 실시예 1 과 동일한 100 ℃ 였다.Next, a second layer (insulating adhesive layer) having the same thickness as in Example 1 (insulating adhesive layer) was formed. The minimum melt viscosity temperature of this 2nd layer by the rotary rheometer (made by TA Instruments) was also 100 degreeC similar to Example 1.

얻어진 제 1 층과 제 2 층을, 롤 라미네이터를 사용하여, 롤 온도 45 ℃ 에서 라미네이트함으로써 실시예 3 의 2 층 구조의 이방성 도전 필름을 얻었다.The anisotropic conductive film of the two-layer structure of Example 3 was obtained by laminating the obtained 1st layer and 2nd layer at the roll temperature of 45 degreeC using a roll laminator.

비교예 4 Comparative Example 4

아크릴계 화합물의 사용량을 10 질량부로부터 1 질량부로 감량한 것 이외에는, 실시예 1 과 동일한 6 ㎛ 두께의 제 1 층 (도전 입자 함유층) 을 형성하였다. 도전 입자의 혼합량도, 실시예 1 과 동일하게, 제 1 층에 있어서의 입자 밀도가 8000 개/㎟ 가 되는 양이다. 또, 이 제 1 층의 회전식 레오미터 (TA Instruments 사 제조) 에 의한 최저 용융 점도 온도는 91 ℃ 였다.A first layer (conductive particle-containing layer) having a thickness of 6 μm similar to that of Example 1 was formed except that the amount of the acrylic compound used was reduced from 10 parts by mass to 1 part by mass. Similarly to Example 1, the mixing amount of an electrically-conductive particle is a quantity from which the particle density in a 1st layer will be 8000 pieces/mm<2>. Moreover, the minimum melt viscosity temperature of this 1st layer by the rotary rheometer (made by TA Instruments) was 91 degreeC.

다음으로, 실시예 1 과 동일한 10 ㎛ 두께의 제 2 층 (절연성 접착제층) 을 형성하였다. 이 제 2 층의 회전식 레오미터 (TA Instruments 사 제조) 에 의한 최저 용융 점도 온도도, 실시예 1 과 동일한 100 ℃ 였다.Next, a second layer (insulating adhesive layer) having the same thickness as in Example 1 (insulating adhesive layer) was formed. The minimum melt viscosity temperature of this 2nd layer by the rotary rheometer (made by TA Instruments) was also 100 degreeC similar to Example 1.

얻어진 제 1 층과 제 2 층을, 롤 라미네이터를 사용하여, 롤 온도 45 ℃ 에서 라미네이트함으로써 비교예 4 의 2 층 구조의 이방성 도전 필름을 얻었다.The anisotropic conductive film of the two-layer structure of the comparative example 4 was obtained by laminating the obtained 1st layer and 2nd layer at the roll temperature of 45 degreeC using a roll laminator.

비교예 5 Comparative Example 5

아크릴계 화합물의 사용량을 10 질량부로부터 20 질량부로 증량한 것 이외에는, 실시예 1 과 동일한 6 ㎛ 두께의 제 1 층 (도전 입자 함유층) 을 형성하였다. 도전 입자의 혼합량도, 실시예 1 과 동일하게, 제 1 층에 있어서의 입자 밀도가 8000 개/㎟ 가 되는 양이다. 또, 이 제 1 층의 회전식 레오미터 (TA Instruments 사 제조) 에 의한 최저 용융 점도 온도는 70 ℃ 였다.A first layer (conductive particle-containing layer) having a thickness of 6 μm similar to that of Example 1 was formed except that the amount of the acrylic compound used was increased from 10 parts by mass to 20 parts by mass. Similarly to Example 1, the mixing amount of an electrically-conductive particle is a quantity from which the particle density in a 1st layer will be 8000 pieces/mm<2>. Moreover, the minimum melt viscosity temperature of this 1st layer by the rotary rheometer (made by TA Instruments) was 70 degreeC.

다음으로, 실시예 1 과 동일한 10 ㎛ 두께의 제 2 층 (절연성 접착제층) 을 형성하였다. 이 제 2 층의 회전식 레오미터 (TA Instruments 사 제조) 에 의한 최저 용융 점도 온도도, 실시예 1 과 동일한 100 ℃ 였다.Next, a second layer (insulating adhesive layer) having the same thickness as in Example 1 (insulating adhesive layer) was formed. The minimum melt viscosity temperature of this 2nd layer by the rotary rheometer (made by TA Instruments) was also 100 degreeC similar to Example 1.

얻어진 제 1 층과 제 2 층을, 롤 라미네이터를 사용하여, 롤 온도 45 ℃ 에서 라미네이트함으로써 비교예 5 의 2 층 구조의 이방성 도전 필름을 얻었다.The anisotropic conductive film of the two-layer structure of the comparative example 5 was obtained by laminating the obtained 1st layer and 2nd layer at the roll temperature of 45 degreeC using a roll laminator.

<<아크릴계 화합물의 함유량>> <<content of acrylic compound>>

이상의 실시예 및 비교예의 이방성 도전 필름 및 제 1 층에 있어서의, 에폭시계 화합물과 아니온 중합형 경화제와 아크릴계 화합물과 라디칼 중합 개시제와 성막용 수지의 합계에 대한 아크릴계 화합물의 함유량 (질량%) 을 산출하였다.In the anisotropic conductive film and the first layer of the above Examples and Comparative Examples, the content (mass %) of the acrylic compound relative to the total of the epoxy compound, the anion polymerization curing agent, the acrylic compound, the radical polymerization initiator, and the resin for film formation calculated.

<<접속 구조체의 제작>> <<Preparation of connected structure>>

평가 기재로서, 38 ㎛ 두께의 폴리이미드 필름에 8 ㎛ 두께의 Cu 층이 형성된 동 피복 적층 기재 (S'PERFLEX, 스미토모 금속 광산 (주)) 의 Cu 층을 50 ㎛ 피치의 전극으로 가공하고, 주석 도금을 실시하여 얻은 칩 온 플렉스 (COF) 기재와, 전체면에 ITO 박막이 코트된 0.7 ㎜ 두께의 유리 기판을, 실시예 및 비교예에서 제조한 이방성 도전 필름을 사용하여 이방성 도전 접속하였다. 구체적으로는, 실시예 및 비교예에서 제조한 이방성 도전 필름을 1.5 ㎜ 폭으로 슬릿하여 ITO 코팅 유리 기판에 첩부하고, 그 위에 COF 기재를 가고정한 후, 100 ㎛ 두께의 퍼플루오로폴리에틸렌 완충재를 개재하여, 가열폭 1.5 ㎜ 의 히트 툴 (180 ℃-3.5 ㎫-6 sec) 로, 조건 1 (압입 속도 10 ㎜/min, 스테이지 온도 40 ℃) 또는 조건 2 (압입 속도 1 ㎜/min, 스테이지 온도 100 ℃)) 로 열압착함으로써 이방성 도전 접속을 실시하여, 접속 구조체를 얻었다.As an evaluation substrate, a Cu layer of a copper-clad laminated substrate (S'PERFLEX, Sumitomo Metals Mining Co., Ltd.) in which an 8 µm-thick Cu layer was formed on a 38 µm-thick polyimide film was processed into an electrode with a pitch of 50 µm, and tin A chip on flex (COF) substrate obtained by plating and a 0.7 mm thick glass substrate coated with an ITO thin film on the entire surface were anisotropically conductively connected using the anisotropic conductive films prepared in Examples and Comparative Examples. Specifically, the anisotropic conductive film prepared in Examples and Comparative Examples was slitted to a width of 1.5 mm and adhered to an ITO-coated glass substrate, a COF substrate was temporarily fixed thereon, and then a 100 μm thick perfluoropolyethylene cushioning material was interposed. Then, with a heat tool (180°C-3.5 MPa-6 sec) with a heating width of 1.5 mm, condition 1 (pressing speed 10 mm/min, stage temperature 40° C.) or condition 2 (pressing speed 1 mm/min, stage temperature 100) °C)) by thermocompression bonding, anisotropic conductive connection was performed, and a bonded structure was obtained.

<<평가>> <<Evaluation>>

1) 시차주사 열량계 (DSC) 측정 1) Differential scanning calorimetry (DSC) measurement

얻어진 이방성 도전 필름으로부터 잘라낸 약 5 mg 의 샘플을, 알루미늄 PAN (TA Instruments 사 제조) 에 격납하고, 그것을 DSC 측정 장치 (Q2000, TA Instruments 사 제조) 에 세트하고, 30 ℃ 부터 250 ℃ 까지, 10 ℃/분의 승온 속도로 DSC 측정을 실시하였다. 얻어진 DSC 차트로부터, 라디칼 중합 반응에서 유래하는 제 1 발열 피크와, 아니온 중합 반응에서 유래하는 제 2 발열 피크를 판독하고, 2 개의 발열 피크가 관찰되는 경우에는, 발열 피크 간 온도차를 구하였다.About 5 mg of a sample cut out from the obtained anisotropic conductive film is stored in aluminum PAN (manufactured by TA Instruments), and it is set in a DSC measuring apparatus (Q2000, manufactured by TA Instruments), from 30°C to 250°C, 10°C DSC measurement was performed at a temperature increase rate of /min. From the obtained DSC chart, the first exothermic peak derived from the radical polymerization reaction and the second exothermic peak derived from the anionic polymerization reaction were read, and when two exothermic peaks were observed, the temperature difference between the exothermic peaks was calculated.

2) 도통 저항의 평가 2) Evaluation of conduction resistance

조건 1 또는 조건 2 로 얻어진 접속 구조체에 대해, 4 단자법을 사용하여 전류 1 ㎃ 를 흘렸을 때의 접속 저항값을 측정하였다. 조건 1 은, 통상적인 접속 조건이며, 조건 2 는, 라디칼 중합 반응을 가속한 경우에 도전 입자의 압입성이 저하하는지 여부를 도통 저항값을 지표로 하여 평가하기 위한 조건이다. 결과를 표 1 에 나타낸다. 1.5 Ω 미만을 「A」, 1.5 Ω 이상 2 Ω 미만을 「B」, 2.0 Ω 이상을 「C」라고 평가하였다. 실용상, 도통 저항 평가로 B 이상인 것이 바람직하다.About the bonded structure obtained by the conditions 1 or 2, the connection resistance value when 1 mA of electric current was flowed using the 4 terminal method was measured. Condition 1 is a normal connection condition, Condition 2 is a condition for evaluating whether the press-fitting property of an electrically-conductive particle falls when a radical polymerization reaction is accelerated|stimulated using conduction resistance value as an index|index. A result is shown in Table 1. Less than 1.5 Ω was evaluated as “A”, 1.5 Ω or more and less than 2 Ω as “B”, and 2.0 Ω or more as “C”. Practically, it is preferable that it is B or more in conduction resistance evaluation.

3) 입자 포착 효율의 평가 3) Evaluation of particle trapping efficiency

조건 1 로 얻어진 접속 구조체에 대해, 이방성 도전 접속 영역에 존재하는 단자의 단위면적당에 포착되어 있는 도전 입자수를 현미경 하에서 카운트하고, 그 도전 입자수의, 이방성 도전 필름의 당초의 단위면적당의 도전 입자수에 대한 비율을, 입자 포착 효율로서 산출하였다. 결과를 표 1 에 나타낸다. 실용상, 입자 포착 효율은 30 % 이상인 것이 바람직하다. With respect to the bonded structure obtained under condition 1, the number of conductive particles captured per unit area of terminals existing in the anisotropic conductive connection region was counted under a microscope, and the number of conductive particles per unit area of the original conductive film of the anisotropic conductive film was counted. The ratio to the number was calculated as the particle trapping efficiency. A result is shown in Table 1. Practically, it is preferable that the particle trapping efficiency is 30% or more.

Figure pct00001
Figure pct00001

<<평가 결과의 고찰>> <<Consideration of evaluation results>>

(실시예 1) (Example 1)

표 1 의 결과로부터, 실시예 1 의 경우, 아크릴계 화합물의 필름 전체에서의 함유량이 4.8 질량% 이며, 제 1 층에 있어서의 아크릴계 화합물의 함유량이 9.3 질량% 였으므로, 조건 1 및 2 에 있어서의 도통 저항이 A 평가이며, 입자 포착 효율에 대해서도 35 % 가 되어, 30 % 를 초과하는 양호한 결과가 얻어졌다. 그때의 DSC 측정에서 라디칼 중합 유래의 발열 피크와 아니온 중합 유래의 발열 피크가 관찰되고, 그들의 발열 피크차는 25 ℃ 였다.From the result of Table 1, in the case of Example 1, since content of the acrylic compound in the whole film was 4.8 mass %, and content of the acrylic compound in a 1st layer was 9.3 mass %, conduction in conditions 1 and 2 Resistance was A evaluation, and it became 35 % also about particle|grain capture|acquisition efficiency, and the favorable result exceeding 30 % was obtained. In the DSC measurement at that time, an exothermic peak derived from radical polymerization and an exothermic peak derived from anionic polymerization were observed, and the difference between their exothermic peaks was 25°C.

(비교예 1) (Comparative Example 1)

한편, 제 1 층이 아크릴계 화합물과 라디칼 중합 개시제를 함유하고 있지 않은 비교예 1 의 경우, 이방성 도전 접속 초기 단계에서 수지 유동이 억제되지 않아, 도전 입자의 단자 영역으로부터 이동하기 쉬워져, 입자 포착 효율이 15 % 가 되어, 30 % 를 크게 하회하고 있었다. 그때의 DSC 측정에서 아니온 중합 유래의 발열 피크만이 관찰되었다.On the other hand, in the case of Comparative Example 1 in which the first layer did not contain the acrylic compound and the radical polymerization initiator, the resin flow was not suppressed at the initial stage of the anisotropic conductive connection, and the conductive particles moved easily from the terminal region, resulting in particle trapping efficiency. This became 15 %, and was largely below 30 %. In the DSC measurement at that time, only an exothermic peak derived from anionic polymerization was observed.

(비교예 2) (Comparative Example 2)

제 1 층에 대해서는 실시예 1 과 동일하지만, 제 2 층에도 아크릴계 화합물이 함유되어 있는 비교예 2 의 경우, 제 1 층에 있어서의 아크릴계 화합물의 함유량이 9.3 질량% 이지만, 필름 전체에서의 아크릴계 화합물의 함유량이 실시예 1 의 경우에 비해 약 2 배 (9.3 질량%) 로 되어 있고, 도통 저항의 조건 2 로의 평가가 B 평가이며, 게다가 입자 포착 효율이 18 % 가 되어, 30 % 를 크게 하회하고 있었다. 그때의 DSC 측정에서 라디칼 중합 유래의 발열 피크와 아니온 중합 유래의 발열 피크가 관찰되고, 그들의 발열 피크차는 15 ℃ 였다.The first layer was the same as in Example 1, but in Comparative Example 2 in which the acrylic compound was also contained in the second layer, the content of the acrylic compound in the first layer was 9.3% by mass, but the acrylic compound in the entire film The content of is about 2 times (9.3 mass%) compared to the case of Example 1, the evaluation under the condition 2 of the conduction resistance is the B evaluation, and the particle trapping efficiency is 18%, significantly less than 30%, there was. In the DSC measurement at that time, an exothermic peak derived from radical polymerization and an exothermic peak derived from anionic polymerization were observed, and the difference between their exothermic peaks was 15°C.

(비교예 3) (Comparative Example 3)

또, 제 1 층에 대해서는 실시예 1 과 동일하지만, 제 2 층이 형성되어 있지 않은 비교예 3 의 경우, 결과적으로 아크릴계 화합물의 필름 전체 (제 1 층과 동일한 의미) 에서의 함유량이 실시예 1 의 경우에 비해 약 2 배가 되어 있어, 도통 저항의 조건 1, 2 로의 평가가 B, C 평가가 되어 있고, 게다가 입자 포착 효율이 24 % 가 되어, 30 % 를 하회하고 있었다. 그때의 DSC 측정에서 라디칼 중합 유래의 발열 피크와 아니온 중합 유래의 발열 피크가 관찰되고, 그들의 발열 피크차는 25 ℃ 였다.Moreover, about the 1st layer, although it was the same as Example 1, in the case of Comparative Example 3 in which the 2nd layer was not formed, as a result, the content in the whole film (meaning same as 1st layer) of the acrylic compound in Example 1 It is about 2 times compared with the case of , and evaluation by the conditions 1 and 2 of conduction resistance is B and C evaluation, Furthermore, the particle|grain capture|acquisition efficiency became 24 %, and was less than 30 %. In the DSC measurement at that time, an exothermic peak derived from radical polymerization and an exothermic peak derived from anionic polymerization were observed, and the difference between their exothermic peaks was 25°C.

(실시예 2) (Example 2)

필름 전체의 아크릴계 화합물의 함유량이 1.5 질량% 이며, 제 1 층에 있어서의 아크릴계 화합물의 함유량이 3.0 질량% 이므로, 조건 1 및 2 에 있어서의 도통 저항이 A 평가이며, 입자 포착 효율에 대해서도 33 % 가 되어, 30 % 를 초과하는 양호한 결과가 얻어졌다. 그때의 DSC 측정에서 라디칼 중합 유래의 발열 피크와 아니온 중합 유래의 발열 피크가 관찰되고, 그들의 발열 피크차는 21 ℃ 였다.Since content of the acrylic compound in the whole film is 1.5 mass %, and content of the acrylic compound in a 1st layer is 3.0 mass %, conduction resistance in conditions 1 and 2 is A evaluation, and it is 33% also about particle trapping efficiency. and good results exceeding 30% were obtained. In the DSC measurement at that time, an exothermic peak derived from radical polymerization and an exothermic peak derived from anionic polymerization were observed, and the difference between their exothermic peaks was 21°C.

(실시예 3) (Example 3)

필름 전체의 아크릴계 화합물의 함유량이 7.0 질량% 이며, 제 1 층에 있어서의 아크릴계 화합물의 함유량이 13.4 질량% 이므로, 조건 1 및 2 에 있어서의 도통 저항이 A 평가이며, 입자 포착 효율에 대해서도 38 % 가 되어, 30 % 를 초과하는 양호한 결과가 얻어졌다. 그때의 DSC 측정에서 라디칼 중합 유래의 발열 피크와 아니온 중합 유래의 발열 피크가 관찰되고, 그들의 발열 피크차는 28 ℃ 였다.Since the content of the acrylic compound in the entire film is 7.0% by mass and the content of the acrylic compound in the first layer is 13.4% by mass, the conduction resistance in the conditions 1 and 2 is an A evaluation, and the particle trapping efficiency is also 38% and good results exceeding 30% were obtained. In the DSC measurement at that time, an exothermic peak derived from radical polymerization and an exothermic peak derived from anionic polymerization were observed, and the difference between the exothermic peaks was 28°C.

(비교예 4) (Comparative Example 4)

필름 전체의 아크릴계 화합물의 함유량이 0.5 질량% 이며, 제 1 층에 있어서의 아크릴계 화합물의 함유량이 1.0 질량% 이므로, 조건 1 및 2 에 있어서의 도통 저항이 모두 A 평가였지만, 입자 포착 효율에 대해서는 26 % 가 되어, 30 % 를 하회하고 있었다. 그때의 DSC 측정에서 라디칼 중합 유래의 발열 피크와 아니온 중합 유래의 발열 피크가 관찰되고, 그들의 발열 피크차는 14 ℃ 였다.Since the content of the acrylic compound in the entire film was 0.5 mass% and the content of the acrylic compound in the first layer was 1.0 mass%, the conduction resistance in Conditions 1 and 2 were both A ratings, but the particle trapping efficiency was 26 %, and was less than 30%. In the DSC measurement at that time, an exothermic peak derived from radical polymerization and an exothermic peak derived from anionic polymerization were observed, and the difference between their exothermic peaks was 14°C.

(비교예 5) (Comparative Example 5)

필름 전체의 아크릴계 화합물의 함유량이 9.2 질량% 이며, 제 1 층에 있어서의 아크릴계 화합물의 함유량이 17.1 질량% 이므로, 입자 포착 효율에 대해서는 43 % 가 되어, 30 % 를 대폭 상회하고 있었지만, 도통 저항의 조건 1, 2 로의 평가가 B, C 평가가 되어 있었다. 그때의 DSC 측정에서 라디칼 중합 유래의 발열 피크와 아니온 중합 유래의 발열 피크가 관찰되고, 그들의 발열 피크차는 36 ℃ 였다.Since the content of the acrylic compound in the entire film is 9.2 mass% and the content of the acryl compound in the first layer is 17.1 mass%, the particle trapping efficiency is 43%, significantly exceeding 30%, but the conduction resistance is Evaluation under Conditions 1 and 2 was B and C evaluation. In the DSC measurement at that time, an exothermic peak derived from radical polymerization and an exothermic peak derived from anionic polymerization were observed, and the difference between their exothermic peaks was 36°C.

본 발명은, 에폭시계 화합물과, 아니온 중합형 경화제와, 아크릴계 화합물과, 라디칼 중합 개시제와, 도전 입자와, 성막용 수지를 포함하는 이방성 도전 필름을, 전자 부품을 배선 기판에 대한 실장에 적용할 때에, 입자 포착 효율을 저하시키지 않고 접속 저항값의 상승을 억제할 수 있다. 따라서, IC 칩 등의 전자 부품의 배선 기판에 대한 이방성 도전 접속에 유용하다.The present invention applies an anisotropic conductive film comprising an epoxy compound, an anion polymerization curing agent, an acrylic compound, a radical polymerization initiator, conductive particles, and a film-forming resin to mounting an electronic component on a wiring board When doing this, a raise of a connection resistance value can be suppressed, without reducing particle|grain capture|acquisition efficiency. Therefore, it is useful for anisotropic conductive connection to the wiring board of electronic components, such as an IC chip.

Claims (15)

에폭시계 화합물과 아니온 중합형 경화제와 아크릴계 화합물과 라디칼 중합 개시제와 성막용 수지와 도전 입자를 함유하는 이방성 도전 필름으로서,
아크릴계 화합물의 함유량이, 에폭시계 화합물과 아니온 중합형 경화제와 아크릴계 화합물과 라디칼 중합 개시제와 성막용 수지의 합계에 대해 1.0 질량% 이상 8.0 질량% 이하인 이방성 도전 필름.
An anisotropic conductive film comprising an epoxy compound, an anion polymerization curing agent, an acrylic compound, a radical polymerization initiator, a film-forming resin, and conductive particles,
The anisotropic conductive film whose content of an acryl-type compound is 1.0 mass % or more and 8.0 mass % or less with respect to the sum total of an epoxy-type compound, an anion polymerization type hardening|curing agent, an acryl-type compound, a radical polymerization initiator, and resin for film-forming.
에폭시계 화합물, 아니온 중합형 경화제 및 성막용 수지를 각각 함유하는 제 1 층과 제 2 층이 적층되어 있는 제 1 항에 기재된 이방성 도전 필름으로서, 제 1 층 및 제 2 층 중 적어도 어느 일방의 층이, 아크릴계 화합물과 라디칼 중합 개시제를 함유하는 이방성 도전 필름.The anisotropic conductive film according to claim 1, wherein the first layer and the second layer each containing an epoxy compound, an anion polymerization type curing agent, and a film-forming resin are laminated, wherein at least one of the first layer and the second layer is formed. The anisotropic conductive film in which a layer contains an acryl-type compound and a radical polymerization initiator. 제 2 항에 있어서,
제 1 층이, 아크릴계 화합물과 라디칼 중합 개시제를 함유하고, 제 2 층이 아크릴계 화합물을 함유하고 있지 않은 이방성 도전 필름.
3. The method of claim 2,
The anisotropic conductive film in which a 1st layer contains an acryl-type compound and a radical polymerization initiator, and a 2nd layer does not contain an acryl-type compound.
제 3 항에 있어서,
제 1 층이, 도전 입자를 함유하는 이방성 도전 필름.
4. The method of claim 3,
The anisotropic conductive film in which a 1st layer contains an electrically-conductive particle.
제 4 항에 있어서,
제 1 층에 있어서의 아크릴계 화합물의 함유량이, 에폭시계 화합물과, 아니온 중합형 경화제와, 아크릴계 화합물과, 라디칼 중합 개시제와, 성막용 수지의 합계에 대해 2.0 질량% 이상 16.0 질량% 이하인, 이방성 도전 필름.
5. The method of claim 4,
Content of the acrylic compound in the 1st layer is 2.0 mass % or more and 16.0 mass % or less with respect to the total of an epoxy compound, an anion polymerization type hardening|curing agent, an acrylic compound, a radical polymerization initiator, and resin for film-forming, Anisotropy conductive film.
제 1 항 내지 제 5 항 중 어느 한 항에 있어서,
에폭시계 화합물이, 글리시딜에테르계 화합물인 이방성 도전 필름.
6. The method according to any one of claims 1 to 5,
An anisotropic conductive film in which the epoxy compound is a glycidyl ether compound.
제 6 항에 있어서,
글리시딜에테르계 화합물이, 비스페놀 A 형 에폭시 수지 또는 비스페놀 F 형 에폭시 수지인 이방성 도전 필름.
7. The method of claim 6,
The anisotropic conductive film whose glycidyl ether type compound is a bisphenol A epoxy resin or a bisphenol F type epoxy resin.
제 1 항 내지 제 7 항 중 어느 한 항에 있어서,
아니온 중합형 경화제가, 마이크로캡슐형 이미다졸계 잠재성 경화제인 이방성 도전 필름.
8. The method according to any one of claims 1 to 7,
An anisotropic conductive film wherein the anionic polymerization curing agent is a microcapsule type imidazole latent curing agent.
제 1 항 내지 제 8 항 중 어느 한 항에 있어서,
에폭시계 화합물 100 질량부에 대해, 아니온 중합형 경화제를 30 질량부 이상 60 질량부 이하 함유하고 있는 이방성 도전 필름.
9. The method according to any one of claims 1 to 8,
The anisotropic conductive film which contains 30 mass parts or more and 60 mass parts or less of an anion polymerization type hardening|curing agent with respect to 100 mass parts of epoxy-type compounds.
제 1 항 내지 제 9 항 중 어느 한 항에 있어서,
아크릴계 화합물 100 질량부에 대해, 라디칼 중합 개시제를 0.5 질량부 이상 5 질량부 이하 함유하고 있는 이방성 도전 필름.
10. The method according to any one of claims 1 to 9,
The anisotropic conductive film which contains 0.5 mass part or more and 5 mass parts or less of a radical polymerization initiator with respect to 100 mass parts of acrylic compounds.
제 1 항 내지 제 10 항 중 어느 한 항에 있어서,
성막용 수지를, 에폭시계 화합물과 아니온 중합형 경화제와 아크릴계 화합물과 라디칼 중합 개시제와 성막용 수지의 합계에 대해, 25 질량% 이상 50 질량% 이하 함유하고 있는 이방성 도전 필름.
11. The method according to any one of claims 1 to 10,
The anisotropic conductive film which contains 25 mass % or more and 50 mass % or less of resin for film-forming with respect to the sum total of an epoxy-type compound, an anion polymerization type hardening|curing agent, an acrylic compound, a radical polymerization initiator, and resin for film-forming.
제 1 항 내지 제 11 항 중 어느 한 항에 있어서,
도전 입자를, 에폭시계 화합물과 아니온 중합형 경화제와 아크릴계 화합물과 라디칼 중합 개시제와 성막용 수지의 합계 100 질량부에 대해, 1 질량부 이상 30 질량부 이하 함유하고 있는 이방성 도전 필름.
12. The method according to any one of claims 1 to 11,
The anisotropic conductive film which contains 1 mass part or more and 30 mass parts or less of conductive particles with respect to a total of 100 mass parts of an epoxy compound, an anion polymerization type hardening|curing agent, an acrylic compound, a radical polymerization initiator, and resin for film-forming.
제 1 항 내지 제 12 항 중 어느 한 항에 있어서,
시차주사 열량계로의 측정 시에, 온도차가 10 ℃ 이상인 2 개의 발열 피크가 존재하고 있는 이방성 도전 필름.
13. The method according to any one of claims 1 to 12,
An anisotropic conductive film in which two exothermic peaks with a temperature difference of 10°C or higher exist when measured with a differential scanning calorimeter.
제 1 항 내지 제 12 항 중 어느 한 항에 기재된 이방성 도전 필름으로, 제 1 전자 부품과 제 2 전자 부품이 이방성 도전 접속되어 있는 접속 구조체.It is an anisotropic conductive film in any one of Claims 1-12, Comprising: The bonded structure by which the 1st electronic component and the 2nd electronic component are anisotropically conductively connected. 제 1 항 내지 제 12 항 중 어느 한 항에 기재된 이방성 도전 필름으로, 제 1 전자 부품과 제 2 전자 부품을 이방성 도전 접속하는, 접속 구조체의 제조 방법.The manufacturing method of a bonded structure which carries out anisotropic conductive connection of a 1st electronic component and a 2nd electronic component with the anisotropic conductive film in any one of Claims 1-12.
KR1020227011340A 2019-12-03 2020-11-26 anisotropic conductive film KR20220061166A (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2019218997 2019-12-03
JPJP-P-2019-218997 2019-12-03
JPJP-P-2020-195914 2020-11-26
JP2020195914A JP2021093357A (en) 2019-12-03 2020-11-26 Anisotropic conductive film
PCT/JP2020/044045 WO2021111978A1 (en) 2019-12-03 2020-11-26 Anisotropic conductive film

Publications (1)

Publication Number Publication Date
KR20220061166A true KR20220061166A (en) 2022-05-12

Family

ID=76221612

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020227011340A KR20220061166A (en) 2019-12-03 2020-11-26 anisotropic conductive film

Country Status (2)

Country Link
KR (1) KR20220061166A (en)
WO (1) WO2021111978A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007224228A (en) 2006-02-27 2007-09-06 Hitachi Chem Co Ltd Circuit-connecting material, connection structure of circuit terminal, and method for connecting circuit terminal

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1129748A (en) * 1997-05-12 1999-02-02 Fujitsu Ltd Adhesive, adhesion, and mounted substrate board assembly
JP2008111092A (en) * 2006-10-06 2008-05-15 Hitachi Chem Co Ltd Circuit-connecting material and connection structure using the same
JP5315031B2 (en) * 2008-12-08 2013-10-16 デクセリアルズ株式会社 Anisotropic conductive film, joined body and method for producing the same
JP5695881B2 (en) * 2010-10-28 2015-04-08 デクセリアルズ株式会社 Electronic component connection method and connection structure
JP6335588B2 (en) * 2014-03-31 2018-05-30 デクセリアルズ株式会社 Method for producing anisotropic conductive adhesive
JP6355954B2 (en) * 2014-04-07 2018-07-11 デクセリアルズ株式会社 Adhesive film and method for producing the same
CN104650789B (en) * 2015-02-11 2016-11-02 武汉轻工大学 A kind of anisotropy conductiving glue and method for packing

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007224228A (en) 2006-02-27 2007-09-06 Hitachi Chem Co Ltd Circuit-connecting material, connection structure of circuit terminal, and method for connecting circuit terminal

Also Published As

Publication number Publication date
WO2021111978A1 (en) 2021-06-10

Similar Documents

Publication Publication Date Title
KR101020469B1 (en) Circuit connecting material and connection structure of circuit member
KR101205170B1 (en) Circuit connecting material and structure for connecting circuit member
KR100732017B1 (en) Circuit connecting material, film-like circuit connecting material using the same, circuit member connecting structure, and method of producing the same
JP5146438B2 (en) Adhesive film for circuit connection
JP5152191B2 (en) Circuit connection material, connection structure and manufacturing method thereof
KR102036230B1 (en) Circuit connecting material, connection structure and method for producing connection structure
KR20090075749A (en) Circuit connection structure
JP2017101131A (en) Conductive adhesive, cured product and electronic component
KR20100009539A (en) Circuit-connecting material and circuit terminal connection structure
JP7020029B2 (en) Conductive adhesive film
JP5115676B1 (en) Adhesive composition, film-like adhesive and circuit connecting material using the same, circuit member connection structure, and manufacturing method thereof
KR20220061166A (en) anisotropic conductive film
JP2019044043A (en) Adhesive composition for circuit connection and structure
JP2018168336A (en) Conductive adhesive, cured product, electronic component and method for manufacturing electronic component
CN114787307A (en) Anisotropic conductive film
JP2011119154A (en) Connection method and connection structure
JP6107816B2 (en) Circuit connection material, connection structure and manufacturing method thereof
US9899122B2 (en) Display device connected by anisotropic conductive film
JP5067101B2 (en) Adhesive composition
KR100934802B1 (en) Modified polyurethane resin, adhesive composition using the same, circuit member connection method and circuit member connection structure
JP6127806B2 (en) Connection material, connection structure and manufacturing method thereof
JP5387592B2 (en) Circuit connection material and method of manufacturing circuit member connection structure
JP4905502B2 (en) Circuit board manufacturing method and circuit connecting material
KR101081290B1 (en) Adhesive composition
JP2009289729A (en) Anisotropic conductive film

Legal Events

Date Code Title Description
E902 Notification of reason for refusal