KR20220054533A - 사운드 생성 디바이스 - Google Patents

사운드 생성 디바이스 Download PDF

Info

Publication number
KR20220054533A
KR20220054533A KR1020210062716A KR20210062716A KR20220054533A KR 20220054533 A KR20220054533 A KR 20220054533A KR 1020210062716 A KR1020210062716 A KR 1020210062716A KR 20210062716 A KR20210062716 A KR 20210062716A KR 20220054533 A KR20220054533 A KR 20220054533A
Authority
KR
South Korea
Prior art keywords
membrane
sound
signal
driving signal
crossover
Prior art date
Application number
KR1020210062716A
Other languages
English (en)
Other versions
KR102465792B1 (ko
Inventor
젬 위에 량
시-성 천
츙 씨. 로
웬-치엔 첸
춘-아이 창
하오-신 창
Original Assignee
엑스멤스 랩스 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US17/153,849 external-priority patent/US11172300B2/en
Application filed by 엑스멤스 랩스 인코포레이티드 filed Critical 엑스멤스 랩스 인코포레이티드
Publication of KR20220054533A publication Critical patent/KR20220054533A/ko
Application granted granted Critical
Publication of KR102465792B1 publication Critical patent/KR102465792B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/04Circuits for transducers, loudspeakers or microphones for correcting frequency response
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/02Loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/26Spatial arrangements of separate transducers responsive to two or more frequency ranges
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/40Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers
    • H04R1/403Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers loud-speakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R5/00Stereophonic arrangements
    • H04R5/04Circuit arrangements, e.g. for selective connection of amplifier inputs/outputs to loudspeakers, for loudspeaker detection, or for adaptation of settings to personal preferences or hearing impairments
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/16Mounting or tensioning of diaphragms or cones
    • H04R7/18Mounting or tensioning of diaphragms or cones at the periphery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2201/00Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
    • H04R2201/003Mems transducers or their use

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Multimedia (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Piezo-Electric Transducers For Audible Bands (AREA)

Abstract

사운드 생성 디바이스는 제1 구동 신호에 의해 구동되고 제1 오디오 대역 상에서 제1 음향 사운드를 생성하도록 구성된 제1 사운드 생성 셀, 및 제2 구동 신호에 의해 구동되고 상기 제1 오디오 대역과 상이한 제2 오디오 대역 상에서 제2 음향 사운드를 생성하도록 구성된 제2 사운드 생성 셀을 포함한다. 제1 사운드 생성 셀의 제1 멤브레인과 제2 사운드 생성 셀의 제2 멤브레인은 MEMS(Micro Electro Mechanical System) 제조 멤브레인이다. 제1 오디오 대역은 제1 최대 주파수에 의해 상한이 제한되며, 제2 오디오 대역은 제2 최대 주파수에 의해 상한이 제한된다. 제1 멤브레인의 제1 공진 주파수는 제1 구동 신호의 제1 최대 주파수보다 높다. 제2 멤브레인의 제2 공진 주파수는 제2 구동 신호의 제2 최대 주파수보다 높다.

Description

사운드 생성 디바이스{Sound Producing Device}
본 출원은, 2020년 2월 7일에 출원된 미국 가출원 번호 제62/971,364호, 2020년 10월 24일에 출원된 미국 가출원 번호 제63/105,286호, 그리고 2020년 11월 12일에 출원된 미국 가출원 번호 제63/112,860호에 대한 우선권을 주장하는 바이며, 상기 문헌의 내용은 그 전체로서 원용에 의해 본 명세서에 포함된다.
본 출원은 사운드 생성(Sound Producing) 디바이스에 관한 것으로, 보다 상세하게는 설계 유연성(design flexibility) 및/또는 음질(sound quality)을 향상시킬 수 있는 사운드 생성 디바이스에 관한 것이다.
마이크로 일렉트로 기계식 시스템(Micro Electro Mechanical System, MEMS) 스피커는 일반적으로 전체 가청/청각(audible/hearing) 범위를 커버하는 한 종류의 멤브레인(membrane)만을 사용하며, 따라서 입력 신호의 최대 입력 주파수는 일반적으로 성인에 대해 약 15~17KHz(KHz)인 인간의 최대 가청 주파수와 같다(equal). 이는 MEMS 스피커의 설계 유연성 및/또는 음질을 제한할 수 있다.
따라서, 본 출원의 주요 목적은 설계 유연성 및/또는 음질을 향상시킬 수 있는 사운드 생성 디바이스를 제공하는 것이다.
본 출원의 일 실시 예는 사운드 생성 디바이스(sound producing device, SPD)를 개시한다. 상기 SPD는, 제1 멤브레인(membrane)을 포함하고, 제1 구동 신호에 의해 구동되며, 제1 오디오 대역 상에서 제1 음향 사운드(acoustic sound)를 생성하도록(produce) 구성된 제1 사운드 생성 셀(cell); 및 제2 멤브레인을 포함하고, 제2 구동 신호에 의해 구동되며, 상기 제1 오디오 대역과 상이한 제2 오디오 대역상에서 제2 음향 사운드를 생성하도록 구성된 제2 사운드 생성 셀을 포함하고, 상기 제1 멤브레인 및 상기 제2 멤브레인은 MEMS(Micro Electro Mechanical System) 제조된 멤브레인이며, 상기 제1 구동 신호에 대응하는 상기 제1 오디오 대역은 제1 최대 주파수에 의해 상한이 제한되고(bounded), 상기 제2 구동 신호에 대응하는 상기 제2 오디오 대역은 제2 최대 주파수에 의해 상한이 제한되며, 상기 제1 멤브레인의 제1 공진 주파수는 상기 제1 구동 신호의 제1 최대 주파수보다 높고, 상기 제2 멤브레인의 제2 공진 주파수는 상기 제2 구동 신호의 제2 최대 주파수보다 높다.
본 출원의 다른 실시 예는 사운드 생성 디바이스(sound producing device, SPD) 내에 배치되는 크로스오버 회로를 개시하며, 상기 SPD는 제1 구동 신호에 의해 구동되는 제1 사운드 생성 셀 및 제2 구동 신호에 의해 구동되는 제2 사운드 생성 셀을 포함하며, 상기 크로스오버 회로는, 입력 단자에서 입력 신호를 수신하는 제1 필터; 및 제1 감산 회로를 포함하고, 상기 제1 감산 회로의 제1 입력 단자는 상기 제1 필터의 입력 단자에 결합되며(coupled), 상기 제1 감산 회로의 제2 입력 단자는 상기 제1 필터의 출력 단자에 결합되고, 상기 크로스오버 회로는 상기 제1 감산 회로의 제1 출력 신호에 따라 상기 제1 구동 신호를 생성하며, 상기 크로스오버 회로는 상기 제1 필터의 제2 출력 신호에 따라 상기 제2 구동 신호를 생성한다.
본 출원의 다른 실시 예는 사운드 생성 셀을 개시하며, 상기 사운드 생성 셀은 제1 멤브레인 서브파트 및 제2 멤브레인 서브파트를 포함하는 멤브레인을 포함하고, 상기 제1 멤브레인 서브파트 및 상기 제2 멤브레인 서브파트 각각의 하나의 에지만이 고정되고(anchored), 상기 제1 멤브레인 서브파트 및 상기 제2 멤브레인 서브파트 각각의 다른 에지가 해제된다(released).
본 발명의 이러한 목적 및 다른 목적은 다양한 그림 및 도면에 예시된 바람직한 실시 예의 다음의 상세한 설명을 읽은 후에 당업자에게 의심의 여지가 없을 것이다.
도 1은 본 출원의 실시 예에 따른 SPD의 개략도이다.
도 2는 본 출원의 실시 예에 따른 크로스오버 회로의 개략도이다.
도 3은 본 출원의 실시 예에 따른 크로스오버 회로에 대응하는 주파수 응답의 개략도이다.
도 4는 본 출원의 실시 예에 따른 셀 어레이의 개략도이다.
도 5 및 도 6은 각각 본 출원의 실시 예에 따른 멤브레인 패턴의 개략도이다.
도 7은 본 출원의 실시 예에 따른 셀 어레이의 평면도(top view)를 나타내는 개략도이다.
도 8은 본 출원의 실시 예에 따른 크로스오버 회로의 개략도이다.
도 9는 본 출원의 실시 예에 따른 SPD의 개략도이다.
도 10은 본 출원의 실시 예에 따른 셀 어레이의 평면도를 나타내는 개략도이다.
도 11은 본 출원의 실시 예에 따른 크로스오버 회로의 개략도이다.
도 1은 본 출원의 실시 예에 따른 사운드 생성 디바이스(sound producing device, SPD)(10)의 개략도이다. SPD(10)는 MEMS 마이크로 스피커 또는 MEMS 스피커, MEMS 제조 기술 또는 MEMS 제조 프로세스를 통해 제조된 스피커일 수 있다. SPD(10)은 웨어러블(wearable) 디바이스, 헤드폰, (인 이어(in-ear) 또는 온 이어(on-ear)) 헤드셋 또는 이어피스(earpiece), 보청기(hearing aid) 등과 같은 애플리케이션에 적용될 수 있다.
SPD(10)는 사운드 발생/생성(generating/producing) 셀 어레이(cell array)(100)를 포함할 수 있다. 셀 어레이(100)는 복수의 사운드 생성 셀을 포함하며, 이는 서로 다른 카테고리, 예를 들어, 고음역(higher register)의 사운드(P110)를 발생시키는 데 전문화된(specialized) 사운드 생성 셀(들)(110)과 낮은 음역(lower register)의 사운드(P130)를 발생시키는 데 전문화된 사운드 생성 셀(들)(130)로 나뉠 수 있으며, 사운드 생성 셀(110)의 공진 주파수(resonance frequency)가 셀(130)의 공진 주파수보다 높을 수 있다.
SPD(10)는 또한 크로스오버(crossover) 회로(190)를 포함할 수 있다. 입력 신호(Sn)를 수신하는 크로스오버 회로(190)는 입력 신호(Sn)에 대응하는 전체 오디오 대역을 구동 신호(driving signal)(S110)에 대응하는 제1 오디오 대역과, 구동 신호(S130)에 대응하는 제2 오디오 대역으로 파티셔닝하고(partition), 구동 신호(S110, S130)를 사운드 생성 셀(110, 130)에 각각 출력한다. 일 실시 예에서, 구동 신호(S130)의 주파수/오디오 대역/서브대역은 구동 신호(S110)의 주파수/오디오 대역/서브대역과 상이하거나 상보적(complementary)일 수 있다.
구체적으로, 도 2는 크로스오버 회로(190)의 실시 예에 따른 2-웨이(2-way) 크로스오버 회로(290)의 개략도이다. 크로스오버 회로(290)는 입력 신호(Sn)에 병렬로 연결된 고역 통과 필터(high-pass filter, HPF)(501) 및 저역 통과 필터(low-pass filter, LPF)(503)를 포함하고, 입력 신호(Sn)를 HPF(501)를 사용하는 고주파 사운드 생성 셀(110)(트위터(tweeter))을 위한 구동 신호(S110)와 LPF(503)를 사용하는 저주파 사운드 생성 셀(130)(우퍼(woofer))을 위한 구동 신호(S130)로 분할(split)한다.
도 3은 크로스오버 회로(290)에 대응하는 진폭(amplitude) 주파수 응답의 개략도이다. 도 3에 도시된 바와 같이, HPF(501)의 주파수 응답(MR1)과 LPF(503)의 주파수 응답(MR3)은 각각의 -6dB 지점의 크로스오버 주파수(fcx)에서 교차한다. 크로스오버 주파수(fcx)는 셀(110)과 셀(130) 사이에서 균등하게 사운드 생성의 워크로드(workload)를 나누기 위해, 인간의 청각(hearing)이 가장 민감한 주파수의 범위인 대략 800Hz 내지 4KHz 사이 또는 바람직하게 이에 속할(fall) 수 있다. 일 실시 예에서, HPF(501) 및 LPF(503)는 모두 크로스오버 주파수(fcx)에서 -6데시벨(dB) 롤오프(roll-off)를 갖는다. 결과적으로, 도 3에 도시된 바와 같이, 크로스오버 회로(290)로부터 조합된 출력의 주파수 응답(MR5)은 전체 주파수 범위에 걸쳐 평탄해질(flat) 것이다.
도 2에서, 크로스오버 회로(290)는 사운드 생성 셀(110, 130) 사이의 감도 차이를 보상하도록 구성된 이득(gain) 회로(또는 감도 보상(sensitivity compensation) 블록)(502)를 더 포함할 수 있다.
도 4는 본 출원의 실시 예에 따른 사운드 발생/생성 셀 어레이(400)의 개략도이다. 도 4의 (a)는 셀 어레이(400)의 평면도를 도시한다. 도 4의 (b)는 도 4의 (a)에 도시된 A-A' 단면 선(cross-sectional line)을 따라 취한 단면도이다. 도 1의 셀 어레이(100)는 도 4의 셀 어레이(400)로 구현될 수 있다. 셀 어레이(400)는 각각 하나의(MEMS) 멤브레인(110M 또는 130M)에 의해 정의되는 2개의 사운드 생성 셀(110) 및 하나의 사운드 생성 셀(130)을 포함한다.
도 4의 (a)에 도시된 바와 같이, 각 멤브레인(130M)의 면적(area)이 각 멤브레인(110M)의 면적보다 더 커서, 멤브레인(130M)의 공진 주파수가 멤브레인(110M)의 공진 주파수보다 낮다.
도 4의 (b)에 도시된 바와 같이, 사운드 생성 셀(110)은 멤브레인(110M)에 부착/배치된 적어도 하나의 액츄에이터(actuator)(110T)를 더 포함할 수 있다. 액츄에이터(110T)는 전극(111, 113)과 전극(111, 113) 사이에 끼워진 물질(marerial)(112)(예를 들어, 압전 물질)을 포함하는 압전 액츄에이터와 같은 박막(thin film) 액츄에이터일 수 있다. 일 실시 예에서, 물질(112)은 PZT(lead zirconate titanate)와 같은 박막 압전 물질(들)로 제조될 수 있다. 구동 신호(S110)는 전극(111, 113)을 가로질러 인가되어 물질(112)의 변형을 야기하므로, 멤브레인(110M)이 변형되어 Z 방향으로 이동하고 (음향(acoustic)) 사운드/압력(P110)을 발생시킨다.
일 실시 예에서, 사운드 생성 셀(110)은 크로스오버 주파수(fcx) 이상의 주파수 대역을 커버하기 위해 트위터로서 기능할 수 있고, 크로스오버 주파수(fcx)(예: 1.44KHz) 보다 상당히 낮은 주파수에 대해 높은 출력을 생성할 필요가 없을 것이다. 또한, fr,110으로 표시되는 사운드 생성 셀(110)(또는 그 내부의 멤브레인(110M))의 공진 주파수는, fmax,S110으로 표시되는 구동 신호(S110)의 최대 주파수 또는 최대 입력 오디오 주파수, 예를 들어 15KHz 또는 20KHz보다 상당히 높을 수 있으며, 여기서 제1 오디오 대역은 fmax,S110에 의해 상한이 제한될(bounded) 수 있다. 사운드 생성 셀(110)의 공진 주파수(fr,110)는 예를 들어 약 18KHz 또는 23KHz일 수 있다. 일 실시 예에서, fr,130으로 표시되는 사운드 생성 셀(130)(또는 그 내부의 멤브레인(130M))의 공진 주파수는, fmax,S130으로 표시되는 구동 신호(S130)의 최대 주파수보다 상당히 높을 수 있으며, 여기서 제2 오디오 대역은 fmax,S130에 의해 상한이 제한될 수 있다. 미국 가출원 번호 제62/897,365호 및/또는 미국 특허 번호 제10,805,751호에 개시된 바와 같이, 공진 주파수가 구동 신호의 최대 주파수보다 상당히 높다는 것은, 공진 주파수가 구동 신호의 최대 주파수에 공진 대역폭의 절반, 즉, Δf/2를 더한 것, 일명 HWHM(half width at half maximum)보다 적어도 높다는 것을 나타내며, 이는 여기에 참조로 포함된다.
본 발명의 일 측면에서, SPD(10)는 SPD(10)에 의해 생성될 전체 주파수 스펙트럼을 커버하기 위해 다중 멤브레인 설계가 사용될 수 있는 (2-웨이) 셀 어레이(100)를 포함한다. 사운드 생성 셀(110 및 130)은 입력 신호(Sn)의 주파수 스펙트럼을 2개의(또는 그 이상의) 상보적인 오디오 대역으로 파티셔닝하는 크로스오버 회로(190)의 출력에 의해 구동될 수 있다.
또한, 도 4에 도시된 바와 같이, 사운드 생성 셀(130)은 또한 적어도 하나의 액츄에이터(130T)를 포함할 수 있다. 구동 신호(S130)는 액츄에이터(130T)의 전극(131, 133)을 가로질러 인가되어 액츄에이터(130T)의 물질(132)의 변형을 유발하므로, 멤브레인(130M)의 Z 방향 이동에 의해 사운드/압력(P130)이 발생된다. 일 실시 예에서, 사운드 생성 셀(130)은 크로스오버 주파수(fcx) 아래의 주파수를 커버하기 위한 우퍼로서 기능할 수 있다.
일 실시 예에서, 사운드 생성 셀(130)의 공진 주파수는 크로스오버 회로(190)의 크로스오버 주파수(fcx)보다 높을 수 있고, 따라서 미국 가출원 번호 제62/897,365호 및/또는 미국 특허 번호 제10,805,751호에 개시된 조건을 준수한다. 4차 크로스오버(4th order crossover)의 경우에, 구동 신호(S130)가 40dB만큼 감쇠되는 주파수는 대략 1001/4·fcx 로 계산될 수 있다. 따라서, 일 예로서, 크로스오버 주파수(fcx) = 1.44KHz의 경우, 사운드 생성 셀(130)의 공진 주파수 fr,130은 1001/4·fcx
Figure pat00001
4.55KHz(fr,130 = 4.55KHz로 표현될 수 있음)일 수 있다. 본 발명의 특정 실시 예에서, 사운드 생성 셀(110 및 130)의 공진 주파수가 각각 23KHz 및 4.55KHz라고 가정하면, 셀(110)과 셀(130) 사이의 공진 주파수 비율은 23KHz/4.55KHz = 5배이다. 본 출원의 SPD 내에서 크로스오버 주파수(fcx)와 공진 주파수(fr,110 및 fr,130)는 fcx < fr,130 < fr,110(수식 1)의 관계를 가짐을 유의한다. 또한, fmax,S110는 구동 신호(S110)의 최대 주파수(예: 15KHz 또는 20KHz)를 표시한다고 가정하며, 수식 1에서의 관계는 추가로 fcx < fr,130 < fmax,S110 < fr,110(수식 2)로 확장될 수 있다.
멤브레인 공진 주파수를 낮추는 것에 의해, 멤브레인의 멤브레인의 강성(stiffness)이 낮추어져, 실리콘 단위 면적당 멤브레인 변위(membrane-displacement-per-unit-area-of-silicon)를 향상시킬 수 있다(즉, △UZ_AVE/mm2이며, △UZ_AVE는 평균 멤브레인 변위를 나타냄). 실제로,
Figure pat00002
의 경험적 수식(empirical equation)이 일반적으로 관찰되며, 여기서 A는 각 셀의 멤브레인 면적을 나타내고, f r 은 멤브레인의 공진 주파수를 나타낸다. 다시 말해서, 유사한 멤브레인 설계 패턴(예를 들어, 추후 설명할 도 5의 멤브레인 패턴(310 ~ 330) 중 하나)의 경우, 공진 주파수가 4.55KHz인 셀의 △UZ_AVE/mm2가 공진 주파수가 23KHz인 셀의 것보다 5배 더 높다.
도 4의 (a)에서, 멤브레인(110M 또는 130M)에 슬릿(slit)이 없을 수 있다. 다른 실시 예에서, 멤브레인(110M 또는 130M)은 멤브레인(110M 또는 130M) 상에 슬릿 패턴을 형성하기 위해 슬릿(들)을 가질 수 있고, 멤브레인(110M)의 슬릿 패턴은 멤브레인(130M)의 슬릿 패턴과 상이할 수 있다. 용어 "슬릿"은 멤브레인의 두께를 관통하는 가는 선을 의미한다. 슬릿의 너비(width)는 일반적으로 0.8 ~ 3 마이크로미터(μm)로 매우 좁지만, 이에 제한되지 않는다. 슬릿의 패턴은 전체 멤브레인의 강성에 영향을 미치며, 따라서 멤브레인의 공진 주파수에 영향을 미친다. 일반적으로, 주어진 멤브레인 표면적(surface area)에 대해 슬릿의 총(total) 길이가 길수록 멤브레인이 부드러워지고 공진 주파수가 낮아진다. 다시 말해서, 슬릿 패턴이 유사한 멤브레인 중에서, L(슬릿의 총 길이), A(멤브레인의 면적), f r(공진 주파수) 사이에 상관 관계가 있으며, 이는
Figure pat00003
로 표현될 수 있다. 슬릿의 길이 이외에도, 슬릿의 위치와 방위(orientation), 즉 슬릿의 패턴도 멤브레인의 강성을 결정하는 데 중요한 역할을 하므로 결과적으로 공진 주파수에 영향을 준다.
일 실시 예에서, 슬릿(들)의 총 길이 대 멤브레인(110M)의 면적의 비율은 멤브레인(130M)의 것과 상이하다. 일 실시 예에서, 멤브레인(110M) 상의 슬릿(들)의 패턴은 멤브레인(130M) 상의 패턴과 상이하다.
예를 들어, 도 5는 본 출원의 상이한 실시 예에서 이용될 수 있는 각각 상이한 이동 자유도(Z 방향으로)를 갖는 3개의 멤브레인 패턴(310-330)의 개략도이다. 도 5의 (a)는 멤브레인 패턴(310)의 평면도를 도시한다. 도 5의 (b)는 멤브레인 패턴(320)의 평면도를 도시한다. 도 5의 (c)는 멤브레인 패턴(330)의 평면도를 도시한다. 멤브레인(예: 멤브레인(110M 또는 130M))은 적합한 MEMS 제조 공정에 의해 에칭(etch)되어 슬릿(들)을 형성하고(각각 내부에서 외부로 배열된 슬릿 개구(opening)/세그먼트(segment)(313, 311 또는 312)를 포함함), 회전 대칭(rotational symmetry)의 멤브레인 패턴(310-330)을 만들(create) 수 있다. 용어 "멤브레인 패턴"은 멤브레인의 두께를 통해 절단된 슬릿(들) 패턴을 갖는 멤브레인을 지칭한다.
멤브레인 패턴(330)은 도 5의 3개의 멤브레인 패턴 중 가장 낮은 자유도를 갖는다. 멤브레인 패턴(330)과 비교하여, 멤브레인 패턴(320)에서, 4개의 슬릿 세그먼트(312)는 멤브레인의 4개의 코너(corner)에서 시작하는 멤브레인의 4개의 경계 에지(boundary edge)와 일치하도록 배치되어, 결과적으로 경계 에지를 부분적으로 해방시킨다(free). (셀) 경계 에지를 따라 (멤브레인) 이동의 자유도를 증가시키는 것에 의해, 멤브레인 패턴(320)(및 310)의 이러한 4개의 슬릿 세그먼트(312)는 멤브레인(320)(및 310) 상의 액츄에이터(들)의 효능(efficacy)을 증가시킨다. 멤브레인의 자유도 이외에, 슬릿 세그먼트(312)는 또한 멤브레인의 강성을 감소시키고 따라서 △UZ_AVE/mm2의 양을 더 증가시킨다. 요약하면, 경계 에지 상의 슬릿 개구/세그먼트가 없는 멤브레인 패턴(예: 멤브레인 패턴(330))에 비해, (멤브레인) 경계 에지를 따라 슬릿 개구/세그먼트가 있는 멤브레인 패턴(예: 멤브레인 패턴(310 및 320))은 증가된 이동의 자유도를 가질 것이며, 더 높은 △UZ_AVE/mm2를 생성한다.
도 5의 멤브레인 패턴 중 멤브레인 패턴(310)은, 멤브레인(예: 멤브레인(110M))을 구성하는 4개의 멤브레인 서브파트(subpart)(310A-310D)가 멤브레인 패턴의 중심에서 서로 제한되지 않고 슬릿 개구/세그먼트(311 및 312)를 따라 자유롭게 이동할 수 있기 때문에, 가장 높은 자유도를 갖는다.
그러나 공기가 멤브레인의 중심 근처에서 최대 멤브레인 변위가 있는 위치 주변의 슬릿(들)을 통해 흐를 수 있다. 예를 들어, 멤브레인 패턴(310)의 멤브레인 변위의 정점에서, 멤브레인 서브파트(310A-310D) 사이의 중심에서 이탈하는(disjoint) 전위(dislocation)가 발생하고 공기가 전위를 통과하여 음압 레벨(sound pressure level, SPL)이 저하될 수 있다. 뉴턴의 법칙에 따르면, 기류량은 수식 D=(a·t 2)/2에 따라 t 2에 비례하며, 여기서 D, a, 및 t는 각각 멤브레인 변위, 가속도 및 시간을 나타낸다. 결과적으로, 하나의 멤브레인의 동작 주파수(operating frequency)가 높을수록 멤브레인의 전위로 인한 기류의 영향이 적다. 다시 말해서, 잠재적 전위(potential dislocation)가 있는 멤브레인 패턴(310)은 고주파의 사운드를 생성하는 데 사용될 수 있으며, 저주파의 사운드를 생성할 때는 피해야 한다.
△UZ_AVE/mm2를 개선하는 데는 두 가지 팩터(factor)가 있으며, 이는 공진 주파수 감소 및/또는 멤브레인 이동의 자유도 증가를 포함한다. 셀(110)의 포커스(focus)는 공진 주파수 대신에 증가된 자유도로 멤브레인 이동을 개선하는 데 있다. 셀(130)의 포커스는 낮은 공진 주파수로 멤브레인 이동을 개선하는 데 있다.
짧은 기간(time period)(따라서 t)으로 인해, 크로스오버 주파수(fcx)보다 높은 주파수에서 슬릿을 통한 누출이 낮고 효과가 거의 무시될 수 있으며, (트위터) 셀(110)의 멤브레인(110M)에 채택된 멤브레인 패턴은 더 높은 자유도를 허용할 수 있다. 일 실시 예에서, 310 또는 320과 같이 더 높은 자유도를 갖는 멤브레인 패턴은 △UZ_AVE/mm2 를 1.5 ~ 2배 향상시킬 수 있는 셀(110)에 적용될 수 있다.
다른 한편으로, 셀(130)은 20Hz까지 내려가는 사운드 생성을 커버할 필요가 있으므로, 슬릿(들)을 통한 기류(airflow)로 인한 누출은 더 이상 얼버무리지(glossed over) 않을 수 있다. 셀(130)은 낮은 공기 누출 멤브레인 패턴을 채택할 수 있는 며, 여기서 멤브레인 서브파트(예: 멤브레인 서브파트(320A-320D) 또는 (330A-330D)) 사이의 갭이 더 낮은 자유도와 더 낮은 △UZ_AVE/mm2를 희생시키면서 멤브레인 변위의 전이(transition) 동안 유지된다. 다시 말해서, 멤브레인의 사운드 생성 주파수 범위가 낮을수록 멤브레인의 슬릿을 통한 허용된 공기 누출이 낮아져 일반적으로 자유도가 낮아진다. 슬릿 패턴(310)과 비교하여, 도 5의 슬릿 패턴(320, 330)은 멤브레인의 서브파트가 멤브레인 중심에서 함께 조인되어(joint) 멤브레인(130M)에 적합하기 때문에 멤브레인 서브파트 사이에서 더 낮은 이탈을 갖는다.
본 발명의 일 측면에서, 입력 신호(Sn)의 주파수/오디오 대역을 다중 오디오 대역으로 분할하는 것에 의해, 각 셀(110 또는 130)은 (수신된) 신호(S110 또는 S130)의 오디오 대역에 따라 최적화되어, 공진 주파수, 컴플라이언스(compliance)(예: 강성), 자유도 및/또는 공기 누출과 같은 팩터의 균형을 맞출 수 있다.
입력 신호(Sn)를 구동 신호(S110 및 S130)로 나누는 것에 의해, 사람의 청각이 가장 민감한 주파수 대역(대략 900Hz ~ 4KHz 사이) 주변에서 IEM(in-ear-monitor, IEM) 스피커와 자유 필드 스피커(free-field speaker) 사이의 불일치(discrepancy)가 경감될(mitigated) 수 있으므로, SPL 요건이 낮아지거나 완화될(relaxed) 수 있다. 구체적으로, 멤브레인 변위 사운드 D와 사운드의 주파수 f가 D∝1/f2의 관계를 갖는 자유 필드 스피커와 달리, IEM 스피커에서 공기 누출이 적다고 가정하면, 동일한 SPL에 대응하는 멤브레인 변위 D가, 밀폐된 챔버 압축 동작 모드로 인해, 약 900Hz 미만의 주파수에 대해 주파수와 크게 독립적이다. 다시 말해서, IEM 스피커가 100Hz에서 3KHz까지 10톤(10-tone) 신호를 생성할 때, 각 톤은 동일한 멤브레인 변위 D를 유발할 수 있으며; 다른 한편으로, 자유 필드 스피커는 더 높은 음역의 음(note)에 대해 훨씬 적은 멤브레인 변위를 일으킬 수 있다. 따라서, 실제 음악을 재생할 때 100Hz에서 최대 SPL 출력이 100dB/1m인 자유 필드 스피커가, 100Hz에서 최대 SPL 출력이 100dB인 IEM 스피커보다 훨씬 더 크게 들릴 수 있다. 이러한 불일치를 보상하기 위해, 일 실시 예에서 IEM 드라이버(driver)의 최대 SPL 요건에 대해 약 12-15dB가 추가되며; 다시 말해서, IEM 드라이버는 100dB 대신 100Hz에서 112-115dB의 최대 SPL 요건을 가질 수 있다. 다른 실시 예에서, 입력 신호(Sn)는 크로스오버 회로(190)에 의해 구동 신호(S130 및 S110)로 파티셔닝되며; 따라서 멤브레인 변위 요건을 2개의 상이한 그룹의 사운드 생성 셀(110 및 130)로 분리하는 것으로 인해 SPL 요건으로부터 4-6dB가 공제될(deduction) 수 있으므로, IEM 스피커 역할을 하는 셀(110 또는 130) 그룹의 최대 SPL 요건이 115dB에서 110-112dB로 감소될 수 있다.
입력 신호(Sn)의 주파수/오디오 대역을 다중 오디오 대역으로 나누는 것에 의해, 사운드/압력(P110 또는 P130)을 생성하기 위한 전력 소모도 감소될 수 있다. 특히, 압전 물질 구동 MEMS 마이크로 스피커의 경우, 전력 소비는 생성된 사운드 주파수에 110T 및 130T와 같은 액츄에이터의 면적을 곱한 값에 선형적으로 비례한다. 입력 신호(Sn)가 서로 다른/상보적인 오디오 대역의 구동 신호(S110, S130)로 분할된 후, 구동 신호(S110, S130)는 각각의 셀(110, 130)로 채널링되어(channeled) 대응하는 멤브레인 액츄에이터만을 구동하여 전력 소비를 감소시킨다.
도 6은 본 출원의 실시 예에 따른 멤브레인 패턴(사운드 생성 셀을 나타냄)(610P1)의 평면도의 개략도이다. 멤브레인 패턴(610P1)은 또한 본 출원의 사운드 생성 셀의 실시 예를 나타낸다.
사운드 생성 셀(610P1) 내의 멤브레인(예: 멤브레인(110M))은 두개의 멤브레인 서브파트(411, 412)로 분할되어, 반사 대칭을 갖는 멤브레인 패턴(610P1)을 형성할 수 있다. 멤브레인 서브파트(411, 412)는 멤브레인 상의 액츄에이터(들)(예: 액츄에이터(110T))에 인가되는 구동 신호(예: 구동 신호(S110))에 따라 도개교(a bascule bridge)의 플랩(flap)/리브(leave)로서 상하로(upwards/downwards) 스윙할(swing) 수 있다. 일 실시 예에서, 멤브레인 서브파트(411, 412)는 멤브레인 서브파트(411, 412) 사이의 큰 갭(들)이 형성되는 것을 방지하기 위해 Z 방향으로 동기식으로 위아래로 이동할 수 있다. 일 실시 예에서, 멤브레인 서브파트(411, 412)는 동일한 방향을 향해 이동하도록 작동될(actuated) 수 있다.
멤브레인(예: 멤브레인(110M))의 멤브레인 서브파트(411, 412) 각각이 하나의(고정된(anchored)) 에지(414) 상에만 부착/고정되고 멤브레인 서브파트(411 또는 412)의 다른 모든(3개) 에지가 제한되지 않기(unbounded) 때문에, 멤브레인 패턴(610P1)은 멤브레인 패턴(310-330) 중 어느 하나보다 가장 높은 자유도를 가질 수 있으며, 이에 따라 Z 방향 멤브레인 이동에 대한 제약이 가장 적다. 멤브레인 서브파트(411, 412)는 슬릿 개구/세그먼트(413, 415)를 따라 자유롭게 이동할 수 있기 때문에, 멤브레인 패턴(610P1)은 멤브레인 이동에서 높은 자유도를 갖는다.
일 실시 예에서, 서로 평행하지 않을 수 있는 슬릿 개구/세그먼트(413, 415)(또는 도 5에 도시된 슬릿 세그먼트(313, 311, 312))의 너비는, 가능한 한 작게 유지될 수 있으며, 일반적으로 공기 누출을 최소화하기 위해 약 1 마이크로미터(μm)이거나 또는 더 좁다.
도 6으로부터, 하나의 에지 즉, 멤브레인 서브파트(411/412)의 에지(414)만이 고정되고, 멤브레인 서브파트(411/412) 각각의 다른 에지가 해제된다. 슬릿 세그먼트(415)는 멤브레인 서브파트(411)와 SR 제2 멤브레인 서브파트(412) 사이에 형성되며, 멤브레인 서브파트(411/412)의 긴 에지에 평행하다. 슬릿 세그먼트(413)는 멤브레인 서브파트(411/412)의 짧은 에지를 따라 멤브레인 경계와 일치한다.
일 실시 예에서, 고정된 에지(414)의 길이 및 슬릿 세그먼트(415)의 길이는 동일하거나 실질적으로 동일하다. 일 실시 예에서, 멤브레인 서브파트(411)의 슬릿 세그먼트(413)의 길이는 멤브레인 서브파트(412)의 길이와 실질적으로 같다.
셀의 수 또는 배열은 상이한 설계 요건에 따라 조정될 수 있다. 예를 들어, 도 7은 본 출원의 실시 예에 따른 사운드 발생/생성 셀 어레이(700)의 평면도를 도시한 개략도이다. 셀 어레이(700)는 구동 신호(S110)를 수신하는 하나의 사운드 생성 (트위터) 셀(410)과 트위터 셀(410)을 둘러싸는 4개의 (우퍼) 셀(130)을 포함할 수 있다. 셀(410)은 도 6에 도시된 멤브레인 패턴(610P1)을 채택할 수 있으며, 한편, 우퍼 셀(130)은 도 5에 도시된 330 또는 320과 같은 멤브레인 패턴 또는 저주파 사운드를 생성하기에 적합한 다른 멤브레인 패턴을 채택할 수 있다.
사운드 생성 (트위터) 셀(410)의 단변(short side)은 더 높은 공진 주파수를 얻는 데 유익할 수 있으며, 사운드 생성 (트위터) 셀(410)의 장변(long side)은 SPL을 확대하는 데 유용할 수 있다. 다시 말해서, 단변의 길이에 대한 장변의 길이의 비율인 종횡비(aspect ratio)가 큰 셀(410)은, 더 작은 종횡비를 갖는 셀에 비해 더 높은 공진 주파수와 더 큰 SPL을 모두 달성할 수 있다. 또한, 높은 종횡비를 갖는 트위터 셀(410)은 셀 어레이(700)의 면적을 줄이는 데 도움이 될 수 있다. 트위터 셀의 종횡비는 실제 요건에 따라 달라질 수 있다. 종횡비가 2보다 크면 본 출원의 요건이 만족되며, 이는 본 출원의 범위 내에 있다.
또한, 크로스오버 회로의 구조는 상이한 설계 요건에 따라 조정될 수 있다. 일 실시 예에서, 도 1 또는 도 2에 도시된 크로스오버 회로(190 또는 290)는 BiQuad 무한 임펄스 응답(infinite impulse response, IIR) 필터로서 DSP 기능을 수행할 수 있다. 일 실시 예에서, 크로스오버 회로(190 또는 290)는 LPF 및 HPF 기능을 수행하기 위해 단순화된 BiQuad 필터를 캐스케이딩하는(cascading) 것에 의해 구현될 수 있는 4차(또는 6차) Linkwitz-Riley(LR-4 또는 LR-6)일 수 있다. 일 실시 예에서, BiQuad 필터는 5개의 곱셈 연산, 4개의 덧셈 연산 및 스테이지(stage) 당 2개의 레지스터를 포함하는 BiQuad 필터의 직접 포맷(Direct form) 2일 수 있다. 일 실시 예에서, 저역 통과 BiQuad IIR 필터는, 어떠한 곱셈도 없이 6개의 덧셈 연산 및 스테이지 당 2개의 레지스터를 가지고, 여기에 참조로 포함되는 미국 가출원 번호 제63/079,680호에 도입된 것과 같은 적절한 대안에 의해 구현될 수 있으며, 여기서 레지스터(들)는 저장 유닛(들)/회로(들)로서 역할(serve)/기능하고(function), 하나의 레지스터는 하나의 저장 유닛/회로를 나타낼 수 있다. 다시 말해서, 48Kpps(kilo sample per second)에서 1,439.24Hz 또는 96Kpps에서 2,878.5Hz의 크로스오버 주파수(fcx)를 가지는 LR-4 크로스오버 회로(190 또는 290)의 LPF 부분을 구현하기 위해 총 12개의 덧셈 연산이 필요하며, 크로스오버 회로(또는 그 안의 필터(들))의 LPF 부분은 곱셈 회로를 포함하지 않을 수 있다.
크로스오버 회로(290)의 구조를 추가로 조정하기 위해, LR-4 크로스오버 네트워크의 경우 S110과 S130 사이의 360 °위상 편이를 제외하고, HPF(501)의 출력(신호(S110))과 LPF(503)의 출력(신호(S130))의 합은, 입력 신호(Sn)와 같으며, 단위 합(unit sum)을 달성한다. 본 출원에서, 단위 합의 목적을 달성하기 위한 두 가지 대안이 크로스오버 회로(890A 및 890B)의 개략도에 의해, 도 8에 도시되어 있다.
도 8의 (a)에 도시된 크로스오버 회로(890A)는 크로스오버 회로(890A)의 감산 회로(506)(또는 감산기(subtracter/subtractor))에 의해 도 2의 HPF(501)를 대체하면서, (우퍼) 셀(130)에 대한 구동 신호(S130)를 출력하도록 구성된 LPF(503)를 포함할 수 있다. 감산 회로(506)는 입력 신호(Sn)에서 구동 신호(S130)를 감산하여 셀(110)에 대한 구동 신호(S110)에 대응하는 신호를 획득하도록 구성된다. 다시 말해서, 수식 VHPF=Vin-VLPF(또는 동등하게 VHPF+VLPF=Vin)가 만족되며, 여기서 VHPF, VLPF, Vin은 각각 구동 신호(S110)의 전압, 신호(S130)의 전압 및 입력 신호(Sn)의 전압을 나타낸다. 구동 신호(S130)를 LPF(503)를 통해 전달하고 감산 회로(506)로부터 구동 신호(S110)에 대응하는 더 높은 오디오 대역을 출력하는 것에 의해, 크로스오버 회로(890A)는 또한 도 2에 도시된 크로스오버 회로(290)와 같은 단위 합을 특징으로 한다.
위에서 볼 수 있듯이, 크로스오버 회로(890A)는 LR-4 크로스오버 네트워크의 LPF 기능을 수행하기 위해 12개의(즉, LPF(503)의 경우, 6×2=12) 덧셈 연산과, HPF 기능을 수행(구동 신호(S110)를 출력)하기 위해 하나의 (506의) 감산 연산만을 필요로 하여, 계산을 크게 단순화한다.
또한, 감산기(506)의 지연을 제외하고 신호(S130)와 신호(S110)의 합이 입력 신호(Sn)와 같고(즉, VHPF+VLPF=Vin), 크로스오버 회로(890A)의 출력의 합(즉, 구동 신호(S130)와 구동 신호(S110)의 합)과 입력 신호(Sn), 즉, S110 + S130 = Sn 사이에는 위상차(phase difference)가 없다. 이 제로 위상 편이(Zero-phase-shift) 특징은, 지연이 발생하면 위상 오정렬(phase misalignment)이 발생하고 ANC(active-noise cancelling) 회로의 효능이 저하될 수 있으므로, ANC에 매우 유용하다. 특히, ANC 분야에서 위상 응답은 진폭 응답만큼 중요하며, 평탄한 진폭 응답만으로는 높은 수준의 노이즈 제거를 달성하기에 충분하지 않다. ANC는 크로스오버 회로(890A)의 사용을 통해 완벽하게 달성될 수 있으며, 이는 전체 주파수 범위에서 평탄한 진폭 응답을 나타낼 뿐만 아니라 제로 위상 편이를 보장하거나 또는 입력 신호(Sn)에 대한 합산 신호(S110+S130)의 위상 편이가 예를 들어, 10°보다 작고, 25°미만의 입력 신호(Sn)에 대해 통합된 사운드(P110+P130)의 위상 지연을 달성하는 것을 보장한다.
수식 VHPF+VLPF=Vin의 일반성 때문에, 크로스오버 회로(890A)의 LPF(503)는 LR4로 제한되지 않는다. 임의의 저역 통과 필터를 사용하여 상이한 시스템 설계에 대한 특정 목적을 충족할 수 있다. 예를 들어, 6차 또는 8차 LPF가 채택되어 셀(130)에 대해 더 빠른 컷오프율(sharper cutoff rate)(즉, 더 가파른 주파수 응답 기울기)을 생성할 수 있다. VHPF+VLPF=Vin의 일반성으로 인해, LPF(503)에 대응하는 더 빠른 주파수 응답 컷오프율이 셀(110)에 대한 구동 신호(S110)에 각인되는(imprint) 반면, 셀(110 및 130)에 대한 크로스오버 회로(890A)의 조합된 출력은 항상 입력 신호(Sn)에 대해 같고, 항상 입력 신호(Sn)에 대해 제로 위상 편이를 갖는다.
회로(890A)의 실시 예는 아날로그 또는 디지털일 수 있다. 아날로그 실시 예에서, LPF(503)는 다단 연산 증폭기(multi-stage operational amplifier)에 의해 구현될 수 있고, 506의 감산 기능은 차동 증폭기로서 또는 증폭기(502)의 입력단 회로 토폴로지의 일부로서 구현될 수 있다. 디지털 실시 예에서, LPF(503)는 미국 가출원 번호 제63/079,680호에서 논의된 것과 같은 BiQuad 필터로 구현될 수 있고, 감산기(506)는 지연을 최소화하기 위해 조합 논리 게이트로 구현될 수 있다. 이러한 회로의 세부 사항은 연산 증폭기 설계 및/또는 디지털 회로 설계 분야에서 잘 문서화되어 있으며, 간결성을 위해 여기에서는 생략한다.
890A에 대한 대안으로서, 도 8의 (b)에 도시된 크로스오버 회로(890B)는 셀(110)에 대한 구동 신호(S110)를 출력하도록 구성된 HPF(501)를 포함할 수 있지만, 도 2에 도시된 LPF(503)는 크로스오버 회로(890B)의 감산 회로(506)로 대체된다.
위에서 도시된 바와 같이 MEMS 사운드 생성 셀의 0에 가까운 위상 래그(near-zero-phase lag)뿐만 아니라 도 8에 도시된 크로스오버 회로 중 하나에 의해 기여된 제로 위상 편이가 주어지면, 본 출원에서의 SPD는 ANC 능력을 갖춘 웨어러블 청각 디바이스(hearing device)에 적용될 수 있다.
셀 어레이의 셀들은 두 가지 이상의 유형으로 나뉠 수 있다. 예를 들어, 도 9는 본 출원의 실시 예에 따른 3-웨이 SPD(90)의 개략도이다. 도 9의 (a)는 SPD(90)의 구조를 나타낸다. 도 9의 (b)는 SPD(90)의 크로스오버 회로(990)에 대응하는 주파수 응답을 예시한다.
SPD(90)의 사운드 발생/생성 셀 어레이(900A)는 서로 다른 유형의 셀(110, 130, 120)을 포함할 수 있다. 예를 들어, 도 10은 본 출원의 실시 예에 따른 사운드 발생/생성 셀 어레이(900B)의 평면도를 예시하는 개략도이다. 도 9에 도시된 셀 어레이(900A)는 셀 어레이(900B)로 구현될 수 있다. 셀 어레이(900B)는 MR1에 대응하는 주파수 대역을 커버하고 사운드/압력(P110)을 생성하는 2개의 트위터 셀(110), MR3에 대응하는 주파수 대역을 커버하고 사운드/압력(P130)을 생성하는 1개의 우퍼 셀(130), 및 MR2에 대응하는 주파수 대역을 커버하고 사운드/압력(P120)을 생성하는 하나의 중간 범위(mid-range) 셀(120)을 포함한다.
유사하게, 중간 범위 사운드 생성 셀(120)은 제1 오디오 대역 및 제2 오디오 대역과는 상이한, 제3 오디오 대역 상에서 음향 사운드(P120)를 생성하도록 구성된다. 구동 신호(S120)에 대응하는 제3 오디오 대역은 최대 주파수(fmax,S120)에 의해 상한이 제한된다. 중간 범위 셀(120) 내의 멤브레인(120M)의 공진 주파수(fr,120)는 최대 주파수(fmax,S120) 보다 높다.
일 실시 예에서, 셀(120)은 중간 범위 주파수를 커버하기 위한 중간 범위 드라이버로서 기능할 수 있다. 멤브레인(120M)(중간 범위 셀(120) 내부)의 면적은 멤브레인(110M)(트위터 셀(110) 내부)의 면적보다 크고, 멤브레인(130M)(우퍼 셀(110) 내부)보다 작지만, (중간 범위) 멤브레인(120M)의 공진 주파수는 (트위터) 멤브레인(110M)의 공진 주파수보다 낮고 (우퍼) 멤브레인(130M)의 공진 주파수보다 높을 수 있다. 일 실시 예에서, (중간 범위) 셀(120)의 공진 주파수는 구동 신호(S120)와 구동 신호(S110) 사이의 크로스오버 주파수(fcx2)보다 상당히 높을 수 있다(나중에 자세히 설명됨). 실제로, MR3과 MR2에 대응하는 오디오 대역 간 크로스오버 주파수(fcx1)은 300Hz ~ 1KHz 범위에 있을 수 있고, MR1과 MR2에 대응하는 오디오 대역 간 크로스오버 주파수(fcx2)는 2KHz 내지 6KHz 범위에 있을 수 있다.
일 실시 예에서, 셀(110, 120, 130)은 SOI(Silicon-On-Insulator) 또는 POI(Poly-On-Insulator) 웨이퍼로 만들어 질 수 있으며; Si 층 또는 Poly 층은 멤브레인(110M, 120M, 130M)을 형성하며; SOI 또는 POI 웨이퍼의 Si 기판은 셀 간 격벽(cell-to-cell partition wall)(102) 및 전체 칩 경계벽(overall chip border wall)(106)을 형성한다. 일 실시 예에서, 셀(110, 120, 130)은 모놀리식(monolithic) 실리콘 기판으로 제조될 수 있고 일체로 형성될 수 있으므로, 셀(110, 120, 130)은 동일한 물질로 형성되고 이들의 연결에는 기계적 조인트(mechanical joint)가 없다.
도 9에 도시된 크로스오버 회로(990)는 입력 신호(Sn)를 3개의 구동 신호(S110, S120, S130)로 파티셔닝하여 각각 셀(110, 120, 130)로 전달되도록 구성된다. 크로스오버 회로(990)는 입력 신호(Sn)에 따라 구동 신호(S130, S120, S110)를 생성하기 위해 저역 통과 필터링 동작, 대역 통과 필터링 동작 및 고역 통과 필터링 동작을 수행해야 할 수 있다. 일 실시 예에서, 크로스오버 회로(990)는 HPF(501)(고역 통과 필터링 동작을 수행하기 위해), LPF(503)(저역 통과 필터링 동작을 수행하기 위해) 및 셀(120)을 위한 대역 통과 필터를 포함할 수 있다.
다른 실시 예에서, 위상 래그(lag)/편이를 감소시키거나 제로 위상 편이를 달성하기 위해, 감산기가 필터링 동작(들)을 수행하도록 포함될 수 있다. 도 11에 도시된 바와 같이, 크로스오버 회로(990')가 도시되어 있다. 크로스오버 회로(990')는 LPF(503, 593) 및 감산기(506, 596)를 포함한다. LPF(503)는 fcx1에서 컷오프 주파수를 가질 수 있고, LPF(593)는 fcx2에서 컷오프 주파수를 가질 수 있다. 현재 실시 예에서, fcx2 > fcx1이다. 감산기(596)의 "+"로 표시된 양의 입력 단자는 LPF(503)의 입력 단자에 연결되고; 감산기(506)의 "+"로 표시된 양의 입력 단자는 LPF(593)의 입력 단자에 연결되며; 감산기(596)의 "-"로 표시된 음의 입력 단자는 LPF(503)의 출력 단자에 연결되고; 감산기(506)의 "-"로 표시된 음의 입력 단자는 LPF(593)의 출력 단자에 연결된다. LPF(503)의 입력 단자는 입력 신호(Sn)을 수신한다.
대역 통과 필터링 동작의 기능은 LPF(503)에서 출력 신호를 가져 와서 이를 감산기(596)의 음의 입력 단자에 연결하여 LPF(503)의 입력 신호 즉, Sn에서 감산하고, 그리고 LPF(503)에 의한 결과 신호(감산기(596)에 의해 생성됨)에 대해 저역 통과 필터링 동작을 수행하는 것에 의해 수행된다. HPF(501)(또는 고역 통과 필터링 동작)의 기능은 LPF(593)에서 출력 신호를 가져 와서 이를 감산기(506)의 음의 입력 단자에 연결하여 LPF(593)의 입력 신호에서 감산하는 것에 의해 수행된다.
감도 보상(sensitivity compensation) 블록(502, 592)에 대해 G1 = G2 = 1인 경우, S110 S120 S130으로 표현되는 크로스오버 회로(990)의 출력 신호의 합은 자동으로 단위 합, 주파수 범위에 대한 평탄도 및 그리고 제로 위상 편이 특성을 갖는다. 즉, S110 + S120 + S130 = Sn(G1 = G2 = 1일 때)이다. 또한, (fx1에서) MR3과 MR2 사이의 크로스오버는 MR3과 MR2가 자동으로 6dB 감소한 주파수 상에 떨어지며(fall), (fx2에서) MR1과 MR2 사이의 크로스오버는 MR1과 MR2가 자동으로 6dB 감소한 주파수 상에 떨어진다. 주파수(fcx1, fcx2)는 크로스오버 회로(990')의 크로스오버 주파수로 간주될 수 있다. 일 실시 예에서, fcx1 < fr,130 < fcx2 < fr,120 < fmax,S110 < fr,110이며, fr,120은 멤브레인(120M)의 공진 주파수를 나타낸다.
일 실시 예에서, 입력 신호(Sn)는 48Ksps(kilo samples per second) 또는 96Ksps 샘플 레이트에서 펄스 코드 변조(pulse-code modulation, PCM) 포맷일 수 있다.
본 발명의 일 측면에서, 입력 신호(Sn)를 다중 주파수 대역으로 파티셔닝하는 것에 의해, 미국 가출원 번호 제62/897,365호 및/또는 미국 특허 번호 제10,805,751호에 개시된 바와 같이 최대 입력 주파수(즉, 구동 신호(S120 또는 S130)의 최대 주파수)를 멤브레인의 공진 주파수보다 상당히 낮게 하면서, 멤브레인(예: 멤브레인(120M 또는 130M))의 공진 주파수를 낮출 수 있다. 따라서, 본 발명은 미국 가출원 번호 제62/897,365호 및/또는 미국 특허 번호 제10,805,751호에 개시된 설계 원칙에 따른 사운드 품질 및 생성의 일관성을 희생하지 않고, 낮은 멤브레인 강성, 증가된 멤브레인 컴플라이언스, 더 효과적인 멤브레인 설계, 셀(예: 셀(120 및 130))의 개선된 단위 실리콘 면적 사운드 생성 효능(unit silicon area sound generating efficacy)을 가질 수 있다.
본 발명의 또 다른 측면에서, 입력 신호(Sn)를 다중 주파수 대역으로 파티셔닝하는 것에 의해, 멤브레인 패턴(예: 멤브레인 패턴(310))을 구성하는 슬릿(들)을 통한 멤브레인 누출이, 낮은 음역의 사운드를 생성할 책임이 없는 셀(예: 셀(110))에 대해 경감될 수 있다. 따라서, 보다 효율적인 멤브레인 설계가 적용될 수 있으며, 그 결과 셀(예를 들어, 셀(120, 130))의 단위 실리콘 면적 사운드 생성 효율이 향상될 수 있다.
당업자는 본 발명의 교시를 유지하면서 디바이스 및 방법의 수많은 수정 및 변경이 이루어질 수 있음을 쉽게 알 수 있을 것이다. 따라서, 상기 개시는 첨부된 청구 범위의 경계(mete)와 범위(bound)에 의해서만 제한되는 것으로 해석되어야 한다.

Claims (30)

  1. 사운드 생성 디바이스(sound producing device, SPD)로서,
    제1 멤브레인(membrane)을 포함하고, 제1 구동 신호에 의해 구동되며, 제1 오디오 대역 상에서 제1 음향 사운드(acoustic sound)를 생성하도록(produce) 구성된 제1 사운드 생성 셀(cell); 및
    제2 멤브레인을 포함하고, 제2 구동 신호에 의해 구동되며, 상기 제1 오디오 대역과 상이한 제2 오디오 대역상에서 제2 음향 사운드를 생성하도록 구성된 제2 사운드 생성 셀
    을 포함하고,
    상기 제1 멤브레인 및 상기 제2 멤브레인은 MEMS(Micro Electro Mechanical System) 제조된 멤브레인이며,
    상기 제1 구동 신호에 대응하는 상기 제1 오디오 대역은 제1 최대 주파수에 의해 상한이 제한되고(bounded), 상기 제2 구동 신호에 대응하는 상기 제2 오디오 대역은 제2 최대 주파수에 의해 상한이 제한되며,
    상기 제1 멤브레인의 제1 공진 주파수는 상기 제1 구동 신호의 제1 최대 주파수보다 높고,
    상기 제2 멤브레인의 제2 공진 주파수는 상기 제2 구동 신호의 제2 최대 주파수보다 높은, SPD.
  2. 제1항에 있어서,
    상기 제1 멤브레인 및 상기 제2 멤브레인에 결합되고, 상기 제1 구동 신호 및 상기 제2 구동 신호를 발생시키도록(generate) 구성된 크로스오버(crossover) 회로 - 상기 크로스오버 회로는 크로스오버 주파수를 가짐 -
    를 더 포함하며,
    상기 제1 공진 주파수는 상기 제2 공진 주파수보다 높고, 상기 제2 공진 주파수는 상기 크로스오버 주파수보다 높은, SPD.
  3. 제1항에 있어서,
    상기 제1 최대 주파수가 상기 제2 공진 주파수보다 높은, SPD.
  4. 제1항에 있어서,
    상기 제1 공진 주파수가 상기 제2 공진 주파수보다 높도록, 상기 제1 멤브레인의 제1 면적(area)이 상기 제2 멤브레인의 제2 면적과 상이한, SPD.
  5. 제1항에 있어서,
    상기 제1 공진 주파수가 상기 제2 공진 주파수보다 높도록, 상기 제1 사운드 생성 셀의 제1 멤브레인 패턴이 상기 제2 사운드 생성 셀의 제2 멤브레인 패턴과 상이한, SPD.
  6. 제1항에 있어서,
    상기 제1 공진 주파수가 상기 제2 공진 주파수보다 높도록, 상기 제1 사운드 생성 셀의 제1 멤브레인 패턴이, 상기 제2 사운드 생성 셀의 제2 멤브레인 패턴과 상이한 자유도(degrees of freedom)를 가지는, SPD.
  7. 제1항에 있어서,
    상기 제1 공진 주파수가 상기 제2 공진 주파수보다 높도록, 상기 제1 사운드 생성 셀의 제1 멤브레인 강성(membrane stiffness)이 상기 제2 사운드 생성 셀의 제2 멤브레인 강성과 상이한, SPD.
  8. 제1항에 있어서,
    상기 제1 사운드 생성 셀의 제1 멤브레인 패턴이, 상기 제1 사운드 생성 셀의 적어도 하나의 최외곽 에지(outermost edge)를 따라 배치된 적어도 하나의 슬릿 세그먼트(slit segment)를 포함하는, SPD.
  9. 제1항에 있어서,
    상기 제1 사운드 생성 셀의 제1 멤브레인 패턴이 서로 분리된 복수의 멤브레인 서브파트(subpart)를 포함하는, SPD.
  10. 제1항에 있어서,
    상기 제1 멤브레인 및 상기 제2 멤브레인에 결합되고, 상기 제1 구동 신호 및 상기 제2 구동 신호를 발생시키도록 구성된 크로스오버 회로
    를 포함하고,
    상기 크로스오버 회로는 제1 필터를 포함하며,
    상기 크로스오버 회로는 상기 제1 필터의 제1 출력 신호에 따라 상기 제1 구동 신호와 상기 제2 구동 신호 중 하나의 구동 신호를 발생시키는, SPD.
  11. 제10항에 있어서,
    상기 크로스오버 회로는,
    제2 필터를 포함하고,
    상기 크로스오버 회로는 상기 제2 필터의 제2 출력 신호에 따라, 상기 제1 출력 신호에 따라 발생된 상기 하나의 구동 신호 이외에, 상기 제1 구동 신호와 상기 제2 구동 신호 중 다른 구동 신호를 발생시키는, SPD.
  12. 제10항에 있어서,
    상기 크로스오버 회로는 이득(gain) 회로를 포함하고,
    상기 이득 회로는 상기 제1 사운드 생성 셀에 결합되고, 상기 제1 사운드 생성 셀과 상기 제2 사운드 생성 셀 사이의 감도 차이(sensitivity difference)를 보상하도록 구성되는, SPD.
  13. 제10항에 있어서,
    상기 제1 필터는 필터 계수 곱셈을 수행하기 위한 저장 유닛(storage unit) 및 가산기(adder)를 포함하고, 상기 제1 필터는 곱셈 회로를 포함하지 않는, SPD.
  14. 제10항에 있어서,
    상기 크로스오버 회로는,
    감산 회로
    를 포함하고,
    상기 제1 필터의 입력 단자가 상기 감산 회로의 제1 입력 단자에 결합되고, 상기 제1 필터의 출력 단자는 상기 감산 회로의 제2 입력 단자에 결합되며;
    상기 크로스오버 회로는 상기 감산 회로의 제2 출력 신호에 따라, 상기 제1 출력 신호에 따라 발생된 상기 하나의 구동 신호 이외에, 상기 제1 구동 신호 및 상기 제2 구동 신호 중 다른 구동 신호를 발생시키는, SPD.
  15. 제1항에 있어서,
    제3 멤브레인을 포함하고, 상기 크로스오버 회로에 결합되고 상기 크로스오버 회로에 의해 발생된 제3 구동 신호에 의해 구동되며, 상기 제1 오디오 대역 및 상기 제2 오디오 대역과 상이한 제3 오디오 대역 상에서 제3 음향 사운드를 생성하도록 구성된 제3 사운드 생성 셀
    을 더 포함하고,
    상기 제3 구동 신호에 대응하는 제3 오디오 대역은 제3 최대 주파수에 의해 상한이 제한되며,
    상기 제3 멤브레인의 제3 공진 주파수는 상기 제3 최대 주파수보다 높은, SPD.
  16. 제15항에 있어서,
    상기 제3 공진 주파수는 제2 공진 주파수보다 높고 제1 공진 주파수보다 낮은, SPD.
  17. 제1항에 있어서,
    상기 제1 사운드 생성 셀에 대한 상기 제1 구동 신호 및 상기 제1 사운드 생성 셀에 대한 상기 제2 구동 신호를 발생시키도록 구성된 크로스오버 회로
    를 포함하고,
    상기 크로스오버 회로는 Linkwitz-Riley 크로스오버 필터를 포함하는, SPD.
  18. 제1항에 있어서,
    상기 SPD가 인 이어 모니터 스피커(in-ear monitor speaker)로서 기능할 때, 상기 제1 사운드 생성 셀의 제1 최대 SPL 요건(requirement)이 상기 제2 사운드 생성 셀의 제2 최대 SPL 요건보다 낮은, SPD.
  19. 제1항에 있어서,
    상기 SPD에 의해 생성된 통합된 사운드(aggregated sound)는 상기 제1 음향 사운드 및 상기 제2 음향 사운드를 포함하고,
    상기 SPD는 입력 신호에 따라 상기 통합된 사운드를 생성하며,
    상기 입력 신호에 대한 상기 통합된 사운드의 위상 편이(phase shift)가 25°보다 작은, SPD.
  20. 제1항에 있어서,
    상기 제1 구동 신호와 상기 제2 구동 신호의 합에 의해 합산 신호(summation signal)가 형성되고,
    상기 SPD는 입력 신호에 따라 상기 제1 구동 신호 및 상기 제2 구동 신호를 발생시키며,
    상기 입력 신호에 대한 합산 신호의 위상 편이가 20°보다 작은, SPD.
  21. 제1항에 있어서,
    상기 SPD는 웨어러블 청각 디바이스(wearable hearing device) 내에 배치되는, SPD.
  22. 제21항에 있어서,
    상기 웨어러블 청각 디바이스는 능동 소음 제거 능력(active noise cancellation capability)을 포함하는, SPD.
  23. 사운드 생성 디바이스(sound producing device, SPD) 내에 배치되는 크로스오버 회로로서,
    상기 SPD는 제1 구동 신호에 의해 구동되는 제1 사운드 생성 셀 및 제2 구동 신호에 의해 구동되는 제2 사운드 생성 셀을 포함하며,
    상기 크로스오버 회로는,
    입력 단자에서 입력 신호를 수신하는 제1 필터; 및
    제1 감산 회로
    를 포함하고,
    상기 제1 감산 회로의 제1 입력 단자는 상기 제1 필터의 입력 단자에 결합되며, 상기 제1 감산 회로의 제2 입력 단자는 상기 제1 필터의 출력 단자에 결합되고,
    상기 크로스오버 회로는 상기 제1 감산 회로의 제1 출력 신호에 따라 상기 제1 구동 신호를 생성하며,
    상기 크로스오버 회로는 상기 제1 필터의 제2 출력 신호에 따라 상기 제2 구동 신호를 생성하는, 크로스오버 회로.
  24. 제23항에 있어서,
    상기 제1 구동 신호와 상기 제2 구동 신호의 합에 의해 합산 신호가 형성되고,
    상기 입력 신호에 대한 합산 신호의 위상 편이가 20°보다 작으며,
    상기 제1 사운드 생성 셀은 제1 음향 사운드를 생성하고,
    상기 제2 사운드 생성 셀은 제1 음향 사운드를 생성하며,
    상기 SPD에 의해 생성된 통합된 사운드는 상기 제1 음향 사운드 및 상기 제2 음향 사운드를 포함하고,
    상기 입력 신호에 대한 상기 통합된 사운드의 위상 편이가 25°보다 작은, 크로스오버 회로.
  25. 제23항에 있어서,
    상기 SPD는,
    제3 구동 신호에 의해 구동되는 제3 사운드 생성 셀을 포함하고,
    상기 크로스오버 회로는,
    상기 제1 감산 회로의 제1 출력 신호를 수신하는 제2 필터; 및
    제2 감산 회로
    를 포함하며,
    상기 제2 감산 회로의 제1 입력 단자는 상기 제2 필터의 입력 단자에 결합되고, 상기 제2 감산 회로의 제2 입력 단자는 상기 제2 필터의 출력 단자에 결합되며,
    상기 크로스오버 회로는 상기 제2 필터의 제3 출력 신호에 따라 상기 제1 구동 신호를 생성하고;
    상기 크로스오버 회로는 상기 제2 감산 회로의 제4 출력 신호에 따라 상기 제3 구동 신호를 생성하는, 크로스오버 회로.
  26. 사운드 생성 셀로서,
    제1 멤브레인 서브파트 및 제2 멤브레인 서브파트를 포함하는 멤브레인
    을 포함하고,
    상기 제1 멤브레인 서브파트 및 상기 제2 멤브레인 서브파트 각각의 하나의 에지만이 고정되고(anchored), 상기 제1 멤브레인 서브파트 및 상기 제2 멤브레인 서브파트 각각의 다른 에지가 해제되는(released), 사운드 생성 셀.
  27. 제26항에 있어서,
    상기 사운드 생성 셀의 종횡비가 2보다 크고, 상기 사운드 생성 셀의 종횡비는 상기 사운드 생성 셀의 단변(short side)의 짧은 길이에 대한 상기 사운드 생성 셀의 장변(long side)의 제1 길이의 비율인, 사운드 생성 셀.
  28. 제26항에 있어서,
    제1 슬릿 세그먼트가 상기 제1 멤브레인 서브파트의 긴 해제된 에지와 상기 제2 멤브레인 서브파트의 긴 해제된 에지 사이에 형성되고, 제2 슬릿 세그먼트가 상기 제1 멤브레인 서브파트의 짧은 해제된 에지와 상기 제2 멤브레인 서브파트의 짧은 해제된 에지에 의해 형성되는, 사운드 생성 셀.
  29. 제28항에 있어서,
    상기 고정된 에지의 길이와 상기 제1 슬릿 세그먼트의 길이가 실질적으로 동일한, 사운드 생성 셀.
  30. 제26항에 있어서,
    상기 제1 멤브레인 서브파트와 상기 제2 멤브레인 서브파트가 동일한 방향을 향해 이동하도록 작동되는, 사운드 생성 셀.
KR1020210062716A 2020-10-24 2021-05-14 사운드 생성 디바이스 KR102465792B1 (ko)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US202063105286P 2020-10-24 2020-10-24
US63/105,286 2020-10-24
US202063112860P 2020-11-12 2020-11-12
US63/112,860 2020-11-12
US17/153,849 2021-01-20
US17/153,849 US11172300B2 (en) 2020-02-07 2021-01-20 Sound producing device

Publications (2)

Publication Number Publication Date
KR20220054533A true KR20220054533A (ko) 2022-05-03
KR102465792B1 KR102465792B1 (ko) 2022-11-09

Family

ID=81491788

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210062716A KR102465792B1 (ko) 2020-10-24 2021-05-14 사운드 생성 디바이스

Country Status (2)

Country Link
KR (1) KR102465792B1 (ko)
CN (1) CN114501268A (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117714955A (zh) * 2022-09-08 2024-03-15 广州乐仪投资有限公司 Mems扬声器阵列

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007060367A (ja) * 2005-08-25 2007-03-08 Tetsuo Furumoto 音響装置
KR20070059941A (ko) * 2005-12-07 2007-06-12 한국전자통신연구원 판 스프링 구조를 갖는 초소형 마이크로 폰, 스피커 및이를 이용한 음성 인식/합성장치
KR20170127570A (ko) * 2016-01-19 2017-11-21 붐클라우드 360, 인코포레이티드 헤드 마운트형 스피커를 위한 오디오 향상 기법
KR102101738B1 (ko) * 2018-10-19 2020-05-29 엑스멤스 랩스 인코포레이티드 사운드 생성 장치
US10805751B1 (en) * 2019-09-08 2020-10-13 xMEMS Labs, Inc. Sound producing device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5129006A (en) * 1989-01-06 1992-07-07 Hill Amel L Electronic audio signal amplifier and loudspeaker system
JP4063269B2 (ja) * 2004-10-29 2008-03-19 ヤマハ株式会社 オーディオアンプ及びオーディオシステム
EP2417777A1 (en) * 2009-04-10 2012-02-15 Koninklijke Philips Electronics N.V. An audio driver
US9432761B2 (en) * 2014-10-08 2016-08-30 Nxp B.V. Signal processor
SE538743C2 (en) * 2015-02-13 2016-11-08 Keyofd Ab Loudspeaker enclosure with a sealed acoustic suspension chamber
KR102468272B1 (ko) * 2016-06-30 2022-11-18 삼성전자주식회사 음향 출력 장치 및 그 제어 방법
AU2018243565B2 (en) * 2017-03-30 2023-03-16 Magic Leap, Inc. Non-blocking dual driver earphones

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007060367A (ja) * 2005-08-25 2007-03-08 Tetsuo Furumoto 音響装置
KR20070059941A (ko) * 2005-12-07 2007-06-12 한국전자통신연구원 판 스프링 구조를 갖는 초소형 마이크로 폰, 스피커 및이를 이용한 음성 인식/합성장치
KR20170127570A (ko) * 2016-01-19 2017-11-21 붐클라우드 360, 인코포레이티드 헤드 마운트형 스피커를 위한 오디오 향상 기법
KR102101738B1 (ko) * 2018-10-19 2020-05-29 엑스멤스 랩스 인코포레이티드 사운드 생성 장치
US10805751B1 (en) * 2019-09-08 2020-10-13 xMEMS Labs, Inc. Sound producing device

Also Published As

Publication number Publication date
CN114501268A (zh) 2022-05-13
KR102465792B1 (ko) 2022-11-09

Similar Documents

Publication Publication Date Title
US5138663A (en) Method and apparatus for performing noise cancelling and headphoning
JPWO2006062120A1 (ja) マイクロホン装置
JP4844411B2 (ja) 静電型超音波トランスデューサ、静電型超音波トランスデューサの製造方法、超音波スピーカ、音声信号再生方法、超指向性音響システム及び表示装置
JP7200256B2 (ja) 補正回路を有する指向性memsマイクロホン
KR20120014591A (ko) 감소된 진동 감도를 갖는 마이크로폰
TWI771455B (zh) 具有輔助埠之移動線圈麥克風換能器
JP2010114878A (ja) マイクロホン
US11076220B2 (en) Loudspeaker system
KR102465792B1 (ko) 사운드 생성 디바이스
KR20120056020A (ko) 마이크로 음향 변환기
US20110158449A1 (en) Microphone Unit
EP2369855B1 (en) Electronic device with electret electro-acoustic transducer
KR102475665B1 (ko) 크로스오버 회로
EP3886459A1 (en) Sound producing device, crossover circuit and sound producing cell thereof
CN110337056B (zh) 一种高密度指向性压电电声换能器阵列的制作方法
US11304005B2 (en) Crossover circuit
JP2004349795A (ja) 局所空間拡声方法、局所空間拡声装置、局所空間拡声プログラム及びこのプログラムを記録した記録媒体
JP2011055062A (ja) コンデンサマイクロホンユニット
TWI609367B (zh) 電子裝置及利用窗化濾波器差異之特定頻段補償增益方法
JP6976839B2 (ja) 水平モード容量性マイクロフォン
TW202348046A (zh) 氣脈衝產生裝置
TW202348044A (zh) 高效傳播的氣脈衝產生裝置
Stoppel et al. Highly Miniaturized in-ear MEMS Loudspeaker Featuring High SPL
TW202410703A (zh) 產生不對稱氣脈衝的氣脈衝產生裝置
JPH01234000A (ja) コンデンサマイクロホン

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant