KR20220043605A - Method for producing genome-edited tomato plant with increased salt tolerance by SlHKT1;2 gene editing and genome-edited tomato plant with increased salt tolerance produced by the same method - Google Patents

Method for producing genome-edited tomato plant with increased salt tolerance by SlHKT1;2 gene editing and genome-edited tomato plant with increased salt tolerance produced by the same method Download PDF

Info

Publication number
KR20220043605A
KR20220043605A KR1020200127207A KR20200127207A KR20220043605A KR 20220043605 A KR20220043605 A KR 20220043605A KR 1020200127207 A KR1020200127207 A KR 1020200127207A KR 20200127207 A KR20200127207 A KR 20200127207A KR 20220043605 A KR20220043605 A KR 20220043605A
Authority
KR
South Korea
Prior art keywords
tomato
genome
hkt1
expression cassette
sequence
Prior art date
Application number
KR1020200127207A
Other languages
Korean (ko)
Other versions
KR102550308B1 (en
Inventor
김재연
부반티엔
티 하이 드엉 도안
트란티밀
김지해
성연우
Original Assignee
경상국립대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경상국립대학교산학협력단 filed Critical 경상국립대학교산학협력단
Priority to KR1020200127207A priority Critical patent/KR102550308B1/en
Publication of KR20220043605A publication Critical patent/KR20220043605A/en
Application granted granted Critical
Publication of KR102550308B1 publication Critical patent/KR102550308B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H1/00Processes for modifying genotypes ; Plants characterised by associated natural traits
    • A01H1/06Processes for producing mutations, e.g. treatment with chemicals or with radiation
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H5/00Angiosperms, i.e. flowering plants, characterised by their plant parts; Angiosperms characterised otherwise than by their botanic taxonomy
    • A01H5/10Seeds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H6/00Angiosperms, i.e. flowering plants, characterised by their botanic taxonomy
    • A01H6/82Solanaceae, e.g. pepper, tobacco, potato, tomato or eggplant
    • A01H6/825Solanum lycopersicum [tomato]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8273Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for drought, cold, salt resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Botany (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental Sciences (AREA)
  • Developmental Biology & Embryology (AREA)
  • Physiology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Biophysics (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Peptides Or Proteins (AREA)

Abstract

The present invention relates to a method for producing a genome-edited tomato plant with increased salt tolerance by Solanum lycopersicum high-affinity k^+ transporter 1;2 (SIHKT1;2) gene editing, and a genome-edited tomato plant with increased salt tolerance produced by the same. According to the present invention, a specific mutation was induced in tomato HKT1;2 gene to develop tomato with increased salt tolerance through a single amino acid conversion (N217D) of the HKT1;2 protein. Accordingly, the tomato with the increased salt tolerance shows an excellent germination rate in high salt conditions, thereby being used as a tomato applicable to cultivation of salty tomatoes or high-salt conditions.

Description

SlHKT1;2 유전자 교정에 의해 내염성이 증가된 유전체 교정 토마토 식물체의 제조 방법 및 상기 방법에 의해 제조된 내염성이 증가된 유전체 교정 토마토 식물체{Method for producing genome-edited tomato plant with increased salt tolerance by SlHKT1;2 gene editing and genome-edited tomato plant with increased salt tolerance produced by the same method}SlHKT1;2 A method for producing a genome-edited tomato plant with increased salt tolerance by gene editing and a genome-edited tomato plant with increased salt tolerance prepared by the method {Method for producing genome-edited tomato plant with increased salt tolerance by SlHKT1;2 gene editing and genome-edited tomato plant with increased salt tolerance produced by the same method}

본 발명은 SlHKT1;2 (Solanum lycopersicum High-affinity K+ transporter 1;2) 유전자 교정에 의해 내염성이 증가된 유전체 교정 토마토 식물체의 제조 방법 및 상기 방법에 의해 제조된 내염성이 증가된 유전체 교정 토마토 식물체에 관한 것이다.The present invention relates to a method for producing a genome-edited tomato plant with increased salt tolerance by SlHKT1;2 ( Solanum lycopersicum High-affinity K + transporter 1:2) gene editing, and a genome-edited tomato plant with increased salt tolerance prepared by the method it's about

유전자가위 기술을 이용한 신육종기술은 최종 개발된 식물에 외부에서 도입된 유전자가 존재하지 않지만, 변형된 특성을 갖는 새로운 품종을 확보하는 기술로, 전통육종기술의 한계를 극복함과 동시에 그간의 상용화된 GM(genetically-modified) 작물에 대한 안정성 논란을 회피하거나 완화할 수 있는 기술로 주목받고 있다.New breeding technology using gene scissors technology is a technology that secures a new variety with modified characteristics even though there is no externally introduced gene in the finally developed plant. It is attracting attention as a technology that can avoid or alleviate the controversy over the stability of genetically-modified (GM) crops.

식물에서 상동재조합(homologous recombination, HR) 또는 상동성 기반 DNA 수선(homology-directed DNA repair, HDR)을 이용한 유전체 교정 기술을 상용화하는 것은 식물생명공학의 성배로 여겨지는 영역이었다. 담배종(Nicotiana species) 식물에서 이중가닥절단(double strand break, DSB)이 HDR을 증가시킨다는 사실은 1990년대 초에 보고되었으며, DSB를 유도하여 유전체를 변형시키는 유전자가위 또는 유전체교정/편집 기술은 20년 전에 알려졌으나, 식물 시스템에서 유전체 교정/편집 기술의 사용은 매우 제한적이었다. 본 발명자는 이전의 연구를 통해 식물체에서 상동재조합 기반의 유전자 편집 효율을 증가시키는 방법을 보고하였고(한국등록특허 제2002443호), 본 발명에서는 상기 기술을 주요 과채류인 토마토에 적용하여 형질이 개선된 유전체 교정 토마토 식물체를 개발하고자 하였다.Commercialization of genome editing technology using homologous recombination (HR) or homology-directed DNA repair (HDR) in plants has been considered the holy grail of plant biotechnology. The fact that double strand breaks (DSB) increase HDR in plants of Nicotiana species was reported in the early 1990s. Although known years ago, the use of genome editing/editing techniques in plant systems has been very limited. The present inventor has reported a method of increasing the efficiency of gene editing based on homologous recombination in plants through previous studies (Korea Patent No. 2002443), and in the present invention, the characteristics are improved by applying the technique to tomatoes, which are major fruits and vegetables. An attempt was made to develop a genome-correcting tomato plant.

한편, 한국공개특허 제2017-0140922호에는 salt-induced RING Finger Protein을 이용한 '식물의 내염성을 증가시키는 벼 유래의 OsSIRP1 유전자 및 이의 용도'가 개시되어 있고, 한국공개특허 제2009-0041648호에는 '남세균 유래 SyFBP/SBpase 유전자를 과발현시킴으로써 식물체의 내염성을 증가시키는 방법'이 개시되어 있으나, 본 발명의 SlHKT1;2 유전자 교정에 의해 내염성이 증가된 유전체 교정 토마토 식물체의 제조 방법 및 상기 방법에 의해 제조된 내염성이 증가된 유전체 교정 토마토 식물체에 대해서는 기재된 바가 없다.On the other hand, Korea Patent Application Publication No. 2017-0140922 discloses 'OsSIRP1 gene derived from rice that increases salt tolerance of plants and uses thereof' using salt-induced RING Finger Protein, and Korea Patent Publication No. 2009-0041648 discloses ' A method of increasing the salt tolerance of a plant by overexpressing the SyFBP/SBpase gene derived from cyanobacteria is disclosed, but the method for producing a genome-corrected tomato plant with increased salt tolerance by the SlHKT1;2 gene editing of the present invention and the method prepared by the method There is no description of genome-edited tomato plants with increased salt tolerance.

본 발명은 상기와 같은 요구에 의해 도출된 것으로서, 본 발명자들은 상동재조합 기반의 유전자 편집 기술을 이용하여 토마토의 HKT1;2 단백질에 단일 아미노산 변이(N217D)를 유도한 유전체 교정 토마토 식물체를 제조하였다. 상기 유전체 교정 토마토 식물체는 형태학적으로는 유전체 비교정 토마토 식물체와 차이가 없었으나, 고염 조건에서 우수한 발아율 및 성장 특성을 나타내는 것을 확인함으로써, 본 발명을 완성하였다.The present invention was derived from the above needs, and the present inventors prepared a genome-corrected tomato plant in which a single amino acid mutation (N217D) was induced in the tomato HKT1;2 protein using a homologous recombination-based gene editing technique. The genome-corrected tomato plant was morphologically not different from the genome-corrected tomato plant, but by confirming that it exhibited excellent germination rate and growth characteristics under high salt conditions, the present invention was completed.

상기 과제를 해결하기 위해, 본 발명은 Ti 플라스미드의 LB(left border) 및 RB(right border) 서열 사이에, 항생제 마커 발현 카세트; 토마토(Solanum lycopersicum) 유래 HKT1;2 (High-affinity K+ transporter 1;2) 유전자의 상동성 기반 DNA 수선(homology-directed DNA repair, HDR)을 위한 주형 서열을 포함하는 공여(donor) 서열; 이중(dual) HKT1;2 crRNA 발현 카세트; 및 엔도뉴클레아제(endonuclease) 발현 카세트;를 포함하는 재조합 벡터로 토마토 식물 세포를 형질전환하는 단계를 포함하는, 내염성이 증가된 유전체 교정 토마토 식물체의 제조 방법을 제공한다.In order to solve the above problems, the present invention provides an antibiotic marker expression cassette between the LB (left border) and RB (right border) sequences of the Ti plasmid; A donor sequence comprising a template sequence for homology-directed DNA repair (HDR) of the tomato ( Solanum lycopersicum )-derived HKT1;2 (High-affinity K + transporter 1 ;2) gene; dual HKT1;2 crRNA expression cassette; And endonuclease (endonuclease) expression cassette; provides a method for producing a genome-edited tomato plant with increased salt tolerance, comprising the step of transforming the tomato plant cell with a recombinant vector comprising a tomato plant.

또한, 본 발명은 상기 방법에 의해 제조된 내염성이 증가된 유전체 교정 토마토 식물체 및 이의 유전체가 교정된 종자를 제공한다.In addition, the present invention provides a genome-corrected tomato plant with increased salt tolerance prepared by the above method and a seed whose genome has been corrected.

또한, 본 발명은 Ti 플라스미드의 LB 및 RB 서열 사이에, 항생제 마커 발현 카세트; 토마토 유래 HKT1;2 유전자의 상동성 기반 DNA 수선을 위한 주형 서열을 포함하는 공여 서열; 이중(dual) HKT1;2 crRNA 발현 카세트; 및 엔도뉴클레아제 발현 카세트;를 포함하는 재조합 벡터를 유효성분으로 함유하는, 토마토 식물체의 내염성을 증가시키기 위한 유전체 교정용 조성물을 제공한다.In addition, the present invention provides an antibiotic marker expression cassette between the LB and RB sequences of the Ti plasmid; a donor sequence comprising a template sequence for DNA repair based on homology of the tomato-derived HKT1;2 gene; dual HKT1;2 crRNA expression cassette; and an endonuclease expression cassette; it provides a composition for genome editing for increasing the salt tolerance of tomato plants, which contains a recombinant vector comprising the as an active ingredient.

식물체의 내염성은 농산품의 품질 향상 및 고염 조건 토양에서 재배에 필요한 농업학적 특성으로, 본 발명에 따른 방법에 의해 제조된 내염성이 증가된 토마토 식물체는 짭짤이 토마토 종자로 사용이 가능하고, 간척지 등 고염 조건의 재배지에 유용하게 활용될 수 있을 것이다.The salt tolerance of the plant is an agricultural characteristic necessary for quality improvement of agricultural products and cultivation in high salt condition soil. It may be usefully utilized in the cultivation of conditions.

도 1은 HDR (homology-directed DNA repair)을 통한 HKT1;2N217D 편집을 위한 CRISPR/Cpf1 기반 레플리콘 시스템을 보여주는 것으로, (a)는 HKT1;2 유전자가 교정된 HDR 이벤트 #C156의 생거 시퀀싱 분석 결과이고, (b) HKT1;2 유전자 교정을 위한 HDR 컨스트럭트의 모식도이며, (c)는 HKT1;2 유전자가 교정된 HDR 이벤트 #C156 식물체가 일반 조건에서 발달 표현형이 야생형(WT)-유사 이벤트 식물체와 비교하여 차이가 없음을 보여주는 사진이다.
도 2는 토마토 유래 HKT1;2 유전자의 HDR을 위한 주형 서열을 포함하는 공여 서열(도 1b의 HKT1;2 donor에 해당, 서열번호 2)을 보여준다. 빨간색 표시된 염기가 아스파라긴(asparagine, N) 코딩 염기가 아스파르트산(aspartic acid, D) 코딩 염기로 변형된 위치이며, 노란색 형광 표시된 부분은 LbCpf1-gRNA에 의해 인식 및 절단되지 않도록 PAM 자리의 염기를 변형시킨 위치를 보여준다.
도 3은 고염 조건(100 mM NaCl)에서 HKT1;2 유전자가 교정된 HDR 이벤트 #C156 식물체와 야생형 식물체의 발아테스트 결과이다.
1 shows a CRISPR/Cpf1-based replicon system for HKT1;2 N217D editing through HDR (homology-directed DNA repair), (a) is Sanger sequencing of HDR event #C156 in which the HKT1;2 gene is corrected. It is the analysis result, (b) is a schematic diagram of the HDR construct for HKT1;2 gene correction, (c) is the HDR event #C156 plant in which the HKT1;2 gene is corrected, the developmental phenotype is wild type (WT)- It is a photograph showing that there is no difference compared to similar event plants.
2 shows a donor sequence (corresponding to HKT1;2 donor of FIG. 1b, SEQ ID NO: 2) including a template sequence for HDR of a tomato-derived HKT1;2 gene. The red marked base is the position where the asparagine (N) coding base is modified with the aspartic acid (D) coding base, and the yellow fluorescent part is the base at the PAM site so that it is not recognized and cleaved by LbCpf1-gRNA. show the location where it was made.
3 is a germination test result of HDR event #C156 plants and wild-type plants in which the HKT1;2 gene is corrected under high salt conditions (100 mM NaCl).

본 발명의 목적을 달성하기 위하여, 본 발명은 Ti 플라스미드의 LB(left border) 및 RB(right border) 서열 사이에, 항생제 마커 발현 카세트; 토마토(Solanum lycopersicum) 유래 HKT1;2 (High-affinity K+ transporter 1;2) 유전자의 상동성 기반 DNA 수선(homology-directed DNA repair, HDR)을 위한 주형 서열을 포함하는 공여(donor) 서열; 이중(dual) HKT1;2 crRNA 발현 카세트; 및 엔도뉴클레아제(endonuclease) 발현 카세트;를 포함하는 재조합 벡터로 토마토 식물 세포를 형질전환하는 단계를 포함하는, 내염성이 증가된 유전체 교정 토마토 식물체의 제조 방법을 제공한다.In order to achieve the object of the present invention, the present invention provides an antibiotic marker expression cassette between the LB (left border) and RB (right border) sequences of the Ti plasmid; A donor sequence comprising a template sequence for homology-directed DNA repair (HDR) of the tomato ( Solanum lycopersicum )-derived HKT1;2 (High-affinity K + transporter 1 ;2) gene; dual HKT1;2 crRNA expression cassette; And endonuclease (endonuclease) expression cassette; provides a method for producing a genome-edited tomato plant with increased salt tolerance, comprising the step of transforming the tomato plant cell with a recombinant vector comprising a tomato plant.

본 발명의 제조 방법에 있어서, 상기 토마토 유래 HKT1;2 유전자의 HDR을 위한 주형 서열은 서열번호 5의 아미노산 서열로 이루어진 토마토 HKT1;2 단백질 서열에서 217번째 아스파라긴(asparagine, N)이 아스파르트산(aspartic acid, D)으로 치환될 수 있도록 아스파라긴 코딩 염기(AAT)의 첫 번째 염기를 구아닌(guanine, G)으로 변경한 서열을 포함하는 것일 수 있고, 상기 G로 변경한 염기의 위치는 서열번호 2의 염기서열로 이루어진 공여 서열에서 1,015번째 염기이다(도 2 참고).In the production method of the present invention, the template sequence for HDR of the tomato-derived HKT1;2 gene is asparagine at position 217 in the tomato HKT1;2 protein sequence consisting of the amino acid sequence of SEQ ID NO: 5 aspartic acid (aspartic acid) acid, D) may include a sequence in which the first base of the asparagine coding base (AAT) is changed to guanine (G) so that it can be substituted, and the position of the base changed to G is the position of SEQ ID NO: It is the 1,015th nucleotide in the donor sequence consisting of the nucleotide sequence (refer to FIG. 2).

본 발명에 따른 제조 방법에 있어서, 상기 항생제 마커 발현 카세트, 공여 서열, crRNA 발현 카세트 및 엔도뉴클레아제 발현 카세트는 각각 서열번호 1, 서열번호 2, 서열번호 3 및 서열번호 4의 염기서열로 이루어진 것일 수 있으나, 이에 제한되지 않는다.In the preparation method according to the present invention, the antibiotic marker expression cassette, the donor sequence, the crRNA expression cassette and the endonuclease expression cassette each consist of nucleotide sequences of SEQ ID NO: 1, SEQ ID NO: 2, SEQ ID NO: 3 and SEQ ID NO: 4, respectively. may be, but is not limited thereto.

본 발명에서 용어 "발현 카세트"는 프로모터와 발현시키고자 하는 목적 단백질 코딩 서열 또는 발현시키고자 하는 폴리뉴클레오티드를 포함하고, 목적 단백질 또는 목적 서열 생산을 위해 목적 단백질 또는 목적 서열을 발현시킬 수 있는 단위 카세트를 의미한다.In the present invention, the term "expression cassette" includes a promoter and a target protein coding sequence to be expressed or a polynucleotide to be expressed, and a unit cassette capable of expressing the target protein or target sequence for the production of the target protein or target sequence. means

상기 서열번호 1의 염기서열로 이루어진 항생제 마커 발현 카세트는 pICSL11024 (pICH47732::NOSp-NPTⅡ-OCST; Addgene Plasmid #51144)로부터 클로닝된 것으로, 1~354번째 염기는 NOS 프로모터와 TMV Ω, 355~1,149번째 염기는 NptⅡ 코딩서열, 그리고 1,150~1,885번째 염기는 OCS (octopine synthase) 터미네이터 서열이다.The antibiotic marker expression cassette consisting of the nucleotide sequence of SEQ ID NO: 1 was cloned from pICSL11024 (pICH47732::NOSp-NPTII-OCST; Addgene Plasmid #51144), and the nucleotides 1 to 354 are NOS promoter and TMV Ω, 355 to 1,149 The first base is the NptII coding sequence, and the 1,150 to 1,885 bases are the OCS (octopine synthase) terminator sequence.

또한, 상기 서열번호 3의 염기서열로 이루어진 crRNA 발현 카세트는 다음과 같은 구성으로 이루어져 있다: 1~75번째 염기는 AtU6 프로모터, 76번째 염기는 전사 시작 염기(G), 77~97번째 염기는 LbCpf1 scaffold, 98~120번째 염기는 LbCpf1_gHKT1;2.1, 121~141번째 염기는 LbCpf1 scaffold, 142~164번째 염기는 LbCpf1_gHKT1;2.2, 165~170번째 염기는 종결 신호.In addition, the crRNA expression cassette consisting of the nucleotide sequence of SEQ ID NO: 3 has the following configuration: the 1st to 75th bases are the AtU6 promoter, the 76th base is the transcription start base (G), and the 77th to the 97th bases are LbCpf1 scaffold, nucleotides 98-120 are LbCpf1_gHKT1;2.1, nucleotides 121-141 are LbCpf1 scaffold, nucleotides 142-164 are LbCpf1_gHKT1;2.2, nucleotides 165-170 are termination signals.

또한, 상기 서열번호 4의 염기서열로 이루어진 엔도뉴클레아제 발현 카세트는 다음과 같은 구성으로 이루어져 있다: AtUBQ1 인트론 서열(1,350~1,653번째 염기)이 3' 말단 방향에 삽입되어 있는 CaMV 35S 프로모터 서열(1~1,349번째 및 1,654~1,736번째 염기), LbCpf1 코딩 서열의 앞(1,737~1,757번째 염기)과 뒤(5,654~5,674 및 5,681~5,701번째 염기)에 위치한 SV40 NLS 서열, 5' 말단 방향에 Trp1 인트론 서열(1,872~1,981번째 염기)이 삽입되어 있는 LbCpf1 코딩 서열(1,812~5,605번째 염기) 및 HA 태그(5,609~5,635번째 염기)와 링커 서열.In addition, the endonuclease expression cassette consisting of the nucleotide sequence of SEQ ID NO: 4 has the following configuration: CaMV 35S promoter sequence ( SV40 NLS sequence located at positions 1 to 1,349 and 1,654 to 1,736), before (1,737 to 1,757 bases) and after (5,654 to 5,674 and 5,681 to 5,701 bases) of the LbCpf1 coding sequence, Trp1 intron at the 5' end LbCpf1 coding sequence (bases 1,812 to 5,605) and HA tag (bases 5,609 to 5,635) into which the sequence (bases 1,872 to 1,981) is inserted, and a linker sequence.

본 명세서에서 용어 '유전체/유전자 교정(genome/gene editing)'은, 인간 세포를 비롯한 동·식물 세포의 유전체 염기서열에 표적지향형 변이를 도입할 수 있는 기술로서, DNA 절단에 의한 하나 이상의 핵산 분자의 결실, 삽입, 치환 등에 의하여 특정 유전자를 녹-아웃(knock-out) 또는 녹-인(knock-in)하거나, 단백질을 생성하지 않는 비-코딩 DNA 서열에도 변이를 도입할 수 있는 기술을 말한다. 본 발명의 목적상 상기 유전체 교정은 특히 엔도뉴클레아제(endonuclease) 예컨대, Cpf1 단백질 및 가이드 RNA를 이용하여 식물체에 변이를 도입하는 것일 수 있다.As used herein, the term 'genome/gene editing' is a technology capable of introducing a target-directed mutation into the genome sequence of animal and plant cells, including human cells, and one or more nucleic acid molecules by DNA cleavage. It refers to a technology that can knock-out or knock-in a specific gene by deletion, insertion, substitution, etc., or introduce a mutation into a non-coding DNA sequence that does not produce a protein . For the purpose of the present invention, the genome editing may be to introduce a mutation into a plant using an endonuclease, such as Cpf1 protein and guide RNA.

본 발명의 일 구현 예에 따른 제조방법에 있어서, 상기 엔도뉴클레아제 단백질은 Cas9(CRISPR associated protein 9), Cpf1(CRISPR from Prevotella and Francisella 1), TALEN(Transcription activator-like effector nuclease), ZFN(Zinc Finger Nuclease) 또는 이의 기능적 유사체로 이루어진 군으로부터 선택되는 하나 이상일 수 있고, 바람직하게는 LbCpf1(Lachnospiraceae bacterium ND2006 Cpf1) 단백질일 수 있으나, 이에 제한되지 않는다. 상기 엔도뉴클레아제의 유전자 정보는 NCBI(National Center for Biotechnology Information)의 GenBank와 같은 공지의 데이터베이스에서 얻을 수 있다.In the production method according to an embodiment of the present invention, the endonuclease protein is Cas9 (CRISPR associated protein 9), Cpf1 (CRISPR from Prevotella and Francisella 1), TALEN (Transcription activator-like effector nuclease), ZFN ( Zinc Finger Nuclease) or a functional analogue thereof may be at least one selected from the group consisting of, preferably LbCpf1 (Lachnospiraceae bacterium ND2006 Cpf1) protein, but is not limited thereto. The genetic information of the endonuclease can be obtained from a known database such as GenBank of NCBI (National Center for Biotechnology Information).

본 발명에 따른 제조 방법에 있어서, 상기 재조합 벡터를 식물세포에 형질도입하는 방법은 원형질체에 대한 칼슘/폴리에틸렌 글리콜 방법(Krens et al., 1982, Nature 296: 72-74; Negrutiu et al., 1987, Plant Mol. Biol. 8: 363-373), 원형질체의 전기천공법(Shillito et al., 1985, Bio/Technol. 3: 1099-1102), 식물 요소로의 현미주사법(Crossway et al., 1986, Mol. Gen. Genet. 202: 179-185), 각종 식물 요소의(DNA 또는 RNA-코팅된) 입자 충격법(Klein et al., 1987, Nature 327: 70), 아그로박테리움 튜메파시엔스(Agrobacterium tumefaciens) 매개된 유전자 전이에서(비완전성) 바이러스에 의한 감염(EP 0 301 316호) 등으로부터 적당하게 선택될 수 있다.In the production method according to the present invention, the method of transducing the recombinant vector into plant cells is a calcium/polyethylene glycol method for protoplasts (Krens et al., 1982, Nature 296: 72-74; Negrutiu et al., 1987). , Plant Mol. Biol. 8: 363-373), electroporation of protoplasts (Shillito et al., 1985, Bio/Technol. 3: 1099-1102), microinjection into plant elements (Crossway et al., 1986) , Mol. Gen. Genet. 202: 179-185), particle bombardment of various plant elements (DNA or RNA-coated) (Klein et al., 1987, Nature 327: 70), Agrobacterium tumefaciens ( Agrobacterium tumefaciens ) in mediated gene transfer (incomplete) infection by viruses (EP 0 301 316) and the like.

상기 형질전환에 이용되는 "식물 세포"는 어떤 식물 세포도 된다. 식물 세포는 배양 세포, 배양 조직, 배양기관 또는 전체 식물이다. "식물 조직"은 분화된 또는 미분화된 식물의 조직, 예를 들면 이에 한정되진 않으나, 뿌리, 줄기, 잎, 꽃가루, 종자, 암 조직 및 배양에 이용되는 다양한 형태의 세포들, 즉 단일 세포, 원형질체(protoplast), 싹 및 캘러스 조직을 포함한다. 식물 조직은 인 플란타(in planta)이거나 기관 배양, 조직배양 또는 세포 배양 상태일 수 있다. 본 발명에 따른 바람직한 식물 세포는 외식편(explant)이다.The "plant cell" used for the transformation may be any plant cell. A plant cell is a cultured cell, cultured tissue, cultured organ or whole plant. "Plant tissue" refers to differentiated or undifferentiated plant tissues, such as, but not limited to, roots, stems, leaves, pollen, seeds, cancer tissues and various types of cells used in culture, ie, single cells, protoplasts. (protoplast), shoots and callus tissue. The plant tissue may be in planta or in an organ culture, tissue culture or cell culture state. A preferred plant cell according to the invention is an explant.

본 발명의 제조 방법에 있어서, 상기 재조합 벡터로 형질전환되어 HKT1;2 유전체가 교정된 토마토 식물 세포로부터 유전체가 교정된 토마토 식물체를 재분화하는 방법은 당업계에 공지된 임의의 방법을 이용할 수 있다.In the production method of the present invention, any method known in the art may be used for redifferentiation of a tomato plant cell in which the genome has been corrected from the tomato plant cell in which the HKT1;2 genome has been corrected by being transformed with the recombinant vector.

본 발명은 또한, 상기 방법에 의해 제조된 내염성이 증가된 유전체 교정 토마토 식물체 및 이의 유전체가 교정된 종자를 제공한다.The present invention also provides a genome-corrected tomato plant with increased salt tolerance produced by the method and a seed whose genome has been corrected.

본 발명에 따른 내염성이 증가된 유전체 교정 토마토 식물체는 염 스트레스 조건 하에서 K+ 흡수 유지에 중요한 역할을 하는 HKT1;2 단백질의 217번째 아미노산이 N에서 D로 치환된 것으로, 상동성 기반 DNA 수선(homology-directed DNA repair, HDR) 기반의 유전자교정 기술을 이용하여 HKT1;2 유전자를 교정하여, 유전체를 교정하지 않은 토마토 식물체에 비해 고염 조건에서 발아율 및 생장 특성이 증가된 형질을 가지는 유전체 교정 토마토 식물체이다.In the genome-corrected tomato plant with increased salt tolerance according to the present invention, the 217th amino acid of the HKT1;2 protein, which plays an important role in maintaining K + absorption under salt stress conditions, is substituted from N to D, and homology-based DNA repair (homology) -Directed DNA repair (HDR)-based gene editing technology is used to correct the HKT1;2 gene, and it is a genome-corrected tomato plant with increased germination rate and growth characteristics under high salt conditions compared to tomato plants without genome editing. .

본 발명은 또한, Ti 플라스미드의 LB(left border) 및 RB(right border) 서열 사이에, 항생제 마커 발현 카세트; 토마토 유래 HKT1;2 (High-affinity K+ transporter 1;2) 유전자의 상동성 기반 DNA 수선(homology-directed DNA repair, HDR)을 위한 주형 서열을 포함하는 공여(donor) 서열; 이중(dual) HKT1;2 crRNA 발현 카세트; 및 엔도뉴클레아제(endonuclease) 발현 카세트;를 포함하는 재조합 벡터를 유효성분으로 함유하는, 토마토 식물체의 내염성을 증가시키기 위한 유전체 교정용 조성물을 제공한다.The present invention also, between the LB (left border) and RB (right border) sequence of the Ti plasmid, an antibiotic marker expression cassette; a donor sequence comprising a template sequence for homology-directed DNA repair (HDR) of the tomato-derived HKT1;2 (High-affinity K + transporter 1;2) gene; dual HKT1;2 crRNA expression cassette; And endonuclease (endonuclease) expression cassette; containing a recombinant vector comprising as an active ingredient, it provides a composition for genome editing for increasing the salt resistance of tomato plants.

본 발명의 유전체 교정용 조성물은 토마토 HKT1;2 단백질의 217번째 아미노산 아스파라긴을 아스파르트산으로 치환할 수 있도록 염기가 변형된 HDR 주형 서열을 포함하는 공여 서열(서열번호 2)을 포함하고 있는 재조합 벡터를 유효성분으로 함유하고 있어, 상기 조성물을 토마토 식물 세포에 처리할 경우, HKT1;2 유전자의 교정을 통해 HKT1;2N217D 변이를 유도할 수 있고, 이를 통해 토마토 식물체의 내염성(고염 저항성)을 증가시킬 수 있는 것이다.The composition for genome editing of the present invention is a recombinant vector containing a donor sequence (SEQ ID NO: 2) including an HDR template sequence in which the base is modified so that the 217th amino acid asparagine of the tomato HKT1;2 protein can be substituted with aspartic acid. Because it contains as an active ingredient, when the composition is treated in tomato plant cells, it is possible to induce HKT1;2 N217D mutation through the correction of the HKT1;2 gene, thereby increasing the salt tolerance (high salt resistance) of the tomato plant. it can be

이하, 본 발명을 실시예에 의해 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail by way of Examples. However, the following examples only illustrate the present invention, and the content of the present invention is not limited to the following examples.

재료 및 방법Materials and Methods

1. HDR 테스트 시스템의 구축 및 클로닝1. Construction and Cloning of the HDR Test System

전체 디자인 원리 및 모든 클로닝 절차는 MoClo(Weber et al., (2011) PLoS ONE, 6, e16765) 및 Golden Gate(Engler et al., (2014) ACS Synth. Biol. 3, 839-843) 프로토콜을 따랐다. pHRHKT12.1은 pLSLR 플라스미드(Cermak et al., (2015) Genome Biol. 16, 232)의 LIR (long intergenic region) 및 SIR (short intergenic region)을 증폭시켜 설계되었다. 레벨 2 Golden Gate BpiI 제한 사이트는 HDR 표현 카세트를 복제하기 위해 레플리콘 내로 통합시켰다. 환형의 DNA 레플리콘의 방출은 토마토 잎과 토마토 떡잎 외식편에서 검증되었다. pTC147과 pTC217 플라스미드는 Addgene에서 입수하여 참조로 사용하였다. LbCpf1 기반 HDR 레플리콘은 두 개의 가이드 RNA(LbCpf1_gRNA1 및 LbCpf1_gRNA2)를 포함한다. 공여(donor) DNA는 과발현을 유도하기 위해 CaMV 35S 프로모터 삽입을 통해 구성되었다. 이중(dual) 가이드 RNA 구조는 스캐폴드 RNA의 반복 염기(tandem repeat)로서 LbCpf1 crRNA를 멀티플렉싱한 후 23-nt 가이드 RNA 시퀀스를 따라 설계했다. crRNA는 AtU6 프로모터(Kamun Lab, Addgene #46968)에 의해 유도되도록 하였다(도 1a 및 1b).The overall design principle and all cloning procedures were based on MoClo (Weber et al., (2011) PLoS ONE, 6, e16765) and Golden Gate (Engler et al., (2014) ACS Synth. Biol. 3, 839-843) protocols. followed pHRHKT12.1 was designed by amplifying the long intergenic region (LIR) and short intergenic region (SIR) of the pLSLR plasmid (Cermak et al., (2015) Genome Biol. 16, 232). A level 2 Golden Gate BpiI restriction site was incorporated into the replicon to clone the HDR expression cassette. The release of circular DNA replicon was verified in tomato leaf and tomato cotyledon explants. The pTC147 and pTC217 plasmids were obtained from Addgene and used as a reference. The LbCpf1-based HDR replicon contains two guide RNAs (LbCpf1_gRNA1 and LbCpf1_gRNA2). Donor DNA was constructed via CaMV 35S promoter insertion to induce overexpression. A dual guide RNA structure was designed following the 23-nt guide RNA sequence after multiplexing LbCpf1 crRNA as a tandem repeat of the scaffold RNA. crRNA was induced by the AtU6 promoter (Kamun Lab, Addgene #46968) ( FIGS. 1A and 1B ).

2. 토마토 형질전환2. Tomato transformation

본 발명에서는 HDR 증진을 위한 모델 작물로 토마토(Hongkwang cultivar)를 사용하였다. 모든 바이너리 벡터는 전기천공법을 사용하여 아그로박테리움 튜메파시엔스(Agrobacterium tumefaciens) GV3101 균주로 형질전환하였고, 토마토 떡잎 단편으로 편집 툴을 전달하기 위해 아그로박테리움-매개 형질전환법을 사용하였다. 형질전환을 위한 외식편은 7일령의 토마토 떡잎을 사용하여 준비하였다. 홍광 품종의 멸균된 종자를 MSO 배지(30 g/L 수크로스를 포함하는 half-strength MS 배지, pH 5.8)에 치상하여 16시간 명/8시간 암의 광주기와 25±2℃의 온도 조건으로 배양하였다. 7일령의 유묘를 수집하고, 떡잎을 0.2~0.3 cm 크기 단편으로 자른 후, 상기 단편(=외식편)을 PREMC 배지(MS basal salts, Gamborg B5 vitamins, 2.0 mg/L of Zeatin trans isomer, 0.2 mg/L of indolyl acetic acid, 1 mM of putrescine 및 30 g/L of glucose, pH 5.7)에 1일간 전처리하였다. 상기 전배양한 외식편을 작은 구멍이 나도록 찌른 후 HR 컨스트럭트를 가지고 있는 아그로박테리움과 공동배양하였다. 이 후, 형질전환된 외식편은 300 mg/L의 티멘틴(timentin)과 80 mg/L의 카나마이신(kanamycin)을 포함하는 선별배지를 통해 선별하였다. 상세한 방법은 부티엔반 등(Plant Biotechnol J. 2020 Mar 16. doi: 10.1111/pbi.13373.)에 자세히 기술되어 있다.In the present invention, tomato (Hongkwang cultivar) was used as a model crop for HDR enhancement. All binary vectors were transformed into Agrobacterium tumefaciens GV3101 strain using electroporation, and Agrobacterium-mediated transformation was used to deliver the editing tool to tomato cotyledon fragments. Explants for transformation were prepared using 7-day-old tomato cotyledons. Sterilized seeds of Hongkwang cultivar were fertilized in MSO medium (half-strength MS medium containing 30 g/L sucrose, pH 5.8) and cultured at a photoperiod of 16 hours light/8 hours dark and a temperature of 25±2℃. did Seven-day-old seedlings were collected, cotyledons were cut into 0.2-0.3 cm pieces, and the fragments (= explants) were incubated in PREMC medium (MS basal salts, Gamborg B5 vitamins, 2.0 mg/L of Zeatin trans isomer, 0.2 mg). /L of indolyl acetic acid, 1 mM of putrescine, and 30 g/L of glucose, pH 5.7) were pretreated for 1 day. After stabbing the pre-cultured explants to make small holes, they were co-cultured with Agrobacterium having an HR construct. Thereafter, the transformed explants were selected through a selective medium containing 300 mg/L of timentin and 80 mg/L of kanamycin. The detailed method is described in detail in Butienbahn et al. (Plant Biotechnol J. 2020 Mar 16. doi: 10.1111/pbi.13373.).

3. HDR 이벤트 평가3. HDR event evaluation

유전자 타겟팅 정션의 평가는 왼쪽(UPANT1-F1/NptⅡ-R1)과 오른쪽 (ZY010F/TC140R) 정션의 측면에 대한 프라이머와 고성능의 Taq DNA polymerase (Phusion Taq, Thermo Fisher Scientific, USA)를 사용한 PCR과 생거 시퀀싱(Sanger sequencing)을 통해 수행하였다. DNA 앰플리콘 및 관련 공여 주형의 수준은 각각 반정량적 PCR 및 정량적 PCR(KAPA SYBR FAST qPCR Kits, Sigma-Aldrich, USA)을 사용하여 평가하였다. HDR-edited 대립유전자의 유전 양상은 genome-edited generation 1 (GE1)을 이용하여 PCR과 생거 시퀀싱으로 분석하였다. 환형의 레플리콘은 pHR01, 다중 레플리콘 또는 pTC217에 대한 프라이머를 사용하여 검출하였다. 상기 프라이머 정보는 부티엔반 등(Plant Biotechnol J. 2020 Mar 16. doi: 10.1111/pbi.13373.)에 기술되어 있다.The evaluation of the gene targeting junction was performed by PCR and Sanger using primers on the sides of the left (UPANT1-F1/NptII-R1) and right (ZY010F/TC140R) junctions and high-performance Taq DNA polymerase (Phusion Taq, Thermo Fisher Scientific, USA). Sequencing was performed through Sanger sequencing. The levels of DNA amplicons and associated donor templates were assessed using semi-quantitative PCR and quantitative PCR (KAPA SYBR FAST qPCR Kits, Sigma-Aldrich, USA), respectively. The genetic pattern of the HDR-edited allele was analyzed by PCR and Sanger sequencing using genome-edited generation 1 (GE1). Cyclic replicons were detected using primers for pHR01, multiple replicons or pTC217. The primer information is described in butienban et al. (Plant Biotechnol J. 2020 Mar 16. doi: 10.1111/pbi.13373.).

실시예 1. Example 1. HKT1;2HKT1;2 유전자 편집 토마토 식물체의 제조 Preparation of gene-edited tomato plants

High-affinity K+ transporter 1;2 (이하, HKT1;2)는 염 스트레스 조건 하에서 K+ 흡수 유지에 중요한 역할을 한다. 염분 내성은 HKT1;2의 공극(pore) 부위의 단일 아스파라긴(asparagine, N)/아스파르트산(aspartic acid, D) 변이에 의해 결정된다.High-affinity K + transporter 1;2 (hereafter, HKT1;2) plays an important role in maintaining K + absorption under salt stress conditions. Salt tolerance is determined by a single asparagine (N)/aspartic acid (D) mutation in the pore region of HKT1;2.

본 발명자는 대립유전자와 연관된 항생제 선택 마커나 색상 마커를 포함하지 않는 HKT1;2 유전자의 공여 주형(donor template)을 사용하여 CRISPR/Cpf1 기반 레플리콘 시스템(한국등록특허 제2002443호 참고)을 이용하여 토마토 식물체의 유전자 편집을 시도하였다. 150개의 이벤트를 분석한 결과, 이질성이지만 완벽한 HDR GE0 이벤트(#C156)를 생성하여 염분 내성 대립유전자(N217D)를 생산하는데 성공하였다. HKT1;2N217D 대립유전자를 가진 이벤트 #C156는 야생형과 비교하여 정상적인 표현형을 보여주었으며, 정상적으로 열매를 맺었다.The present inventors use a CRISPR/Cpf1-based replicon system (refer to Korean Patent No. 2002443) using a donor template of the HKT1;2 gene that does not contain an antibiotic selection marker or color marker associated with the allele. Therefore, the gene editing of tomato plants was attempted. As a result of analysis of 150 events, a heterogeneous but complete HDR GE0 event (#C156) was successfully generated to produce a salt resistance allele (N217D). Event #C156 with the HKT1;2 N217D allele showed a normal phenotype compared to the wild type and bore normally.

#C156 식물체를 자가수분하여 GE1 세대 식물체를 생산하였고, 상기 식물체의 종자를 100 mM 염화나트륨을 포함하는 배지에 치상하여 발아율 및 생장특성을 야생형과 비교하였다. 그 결과, 도 3에 개시된 것과 같이 HKT1;2N217D 대립유전자를 가진 이벤트 #C156의 GE1 세대 종자는 고염 조건에서도 야생형 대비 높은 발아율과 생장 특성을 보여주었다.#C156 plants were self-pollinated to produce GE1 generation plants, and seeds of the plants were dented in a medium containing 100 mM sodium chloride, and the germination rate and growth characteristics were compared with those of the wild type. As a result, as shown in FIG. 3 , the GE1 generation seed of event #C156 having the HKT1;2 N217D allele showed high germination rate and growth characteristics compared to the wild type even under high salt conditions.

<110> INDUSTRY-ACADEMIC COOPERATION FOUNDATION GYEONGSANG NATIONAL UNIVERSITY <120> Method for producing genome-edited tomato plant with increased salt tolerance by SlHKT1;2 gene editing and genome-edited tomato plant with increased salt tolerance produced by the same method <130> PN20194 <160> 5 <170> KoPatentIn 3.0 <210> 1 <211> 1885 <212> DNA <213> Artificial Sequence <220> <223> selection marker expression cassette <400> 1 attcggatcc ggagcggaga attaagggag tcacgttatg acccccgccg atgacgcggg 60 acaagccgtt ttacgtttgg aactgacaga accgcaacgt tgaaggagcc actgagccgc 120 gggtttctgg agtttaatga gctaagcaca tacgtcagaa accattattg cgcgttcaaa 180 agtcgcctaa ggtcactatc agctagcaaa tatttcttgt caaaaatgct ccactgacgt 240 tccataaatt cccctcggta tccaattaga gtctcatatt cactctccta tttttacaac 300 aattaccaac aacaacaaac aacaaacaac attacaatta catttacaat taccatggtt 360 gaacaagatg gattgcacgc aggttctccg gccgcttggg tggagaggct attcggctat 420 gactgggcac aacagacaat cggctgctct gatgccgccg tgttccggct gtcagcgcag 480 gggcgcccgg ttctttttgt caagaccgac ctgtccggtg ccctgaatga actgcaggac 540 gaggcagcgc ggctatcgtg gctggccacg acgggcgttc cttgcgcagc tgtgctcgac 600 gttgtcactg aagcgggaag ggactggctg ctattgggcg aagtgccggg gcaggatctc 660 ctgtcatctc accttgctcc tgccgagaaa gtatccatca tggctgatgc aatgcggcgg 720 ctgcatacgc ttgatccggc tacctgccca ttcgaccacc aagcgaaaca tcgcatcgag 780 cgagcacgta ctcggatgga agccggtctt gtcgatcagg atgatctgga cgaagagcat 840 caggggctcg cgccagccga actgttcgcc aggctcaagg cgcgcatgcc cgacggcgag 900 gatctcgtcg tgactcatgg cgatgcctgc ttgccgaata tcatggtgga aaatggccgc 960 ttttctggat tcatcgactg tggccggctg ggtgtggcgg accgctatca ggacatagcg 1020 ttggctaccc gtgatattgc tgaagagctt ggcggcgaat gggctgaccg cttcctcgtg 1080 ctttacggta tcgccgctcc cgattcgcag cgcatcgcct tctatcgcct tcttgacgag 1140 ttcttctgag cgggactctg gggttcgcta gagtcctgct ttaatgagat atgcgagacg 1200 cctatgatcg catgatattt gctttcaatt ctgttgtgca cgttgtaaaa aacctgagca 1260 tgtgtagctc agatccttac cgccggtttc ggttcattct aatgaatata tcacccgtta 1320 ctatcgtatt tttatgaata atattctccg ttcaatttac tgattgtacc ctactactta 1380 tatgtacaat attaaaatga aaacaatata ttgtgctgaa taggtttata gcgacatcta 1440 tgatagagcg ccacaataac aaacaattgc gttttattat tacaaatcca attttaaaaa 1500 aagcggcaga accggtcaaa cctaaaagac tgattacata aatcttattc aaatttcaaa 1560 agtgccccag gggctagtat ctacgacaca ccgagcggcg aactaataac gctcactgaa 1620 gggaactccg gttccccgcc ggcgcgcatg ggtgagattc cttgaagttg agtattggcc 1680 gtccgctcta ccgaaagtta cgggcaccat tcaacccggt ccagcacggc ggccgggtaa 1740 ccgacttgct gccccgagaa ttatgcagca tttttttggt gtatgtgggc cccaaatgaa 1800 gtgcaggtca aaccttgaca gtgacgacaa atcgttgggc gggtccaggg cgaattttgc 1860 gacaacatgt cgaggctcag ccgct 1885 <210> 2 <211> 1851 <212> DNA <213> Artificial Sequence <220> <223> donor sequence <400> 2 ggagactcat gaacttgaaa tgcatagaat gcctatttta acacgttttt aacaaataat 60 aaataagttg tatagcatct tataattcca ctaactctat gataaggaaa tatcagtgat 120 catttggcaa gaattattat attctaactc cttttggtac gtaccatatg ttgttgggat 180 taatttaaat cattggtaag aattattata ttctaactcc ttttgatacg taccatatgt 240 tattgggatt aatttaaagc ttacacaatg tgtctagtat aggcattcca ctacacaatt 300 tttactataa attgaaccct tgagtattat aataaaactt aagagacaaa caaatttatt 360 ttactaatga agtcatcact ttcaatttct ttctttaaga ttatgatgag tcttagggta 420 aagccatttt ggattgaatt agggtatttc acaacccttt cattgttagg tttcttagct 480 ttgaattatg tttcaaaacc tagaacccta ccgtcttttc gtcctcaaaa cctagatgtt 540 cttttcactt ctgtttcttc aaccacagtt tctagtatgt ccactattga aatggaagtt 600 ttctcaaatg ttcaacttgt tttcatgacc atattgatgt ttcttggtgg ggaagctttt 660 acctcttttc ttagccttaa actcatcaag aataaagaaa gcaaagataa atcttttagt 720 aacaaagatt atgagctagg gaatgtaata aacgttgaca ataagttaga agatgtgata 780 ataataaacc ctatcgaaga tcatattcat gatcatcacg atgaaattat aaagattaaa 840 tcgataaaat tgttgagtaa tgtggttttt ggatatattc ttgttgttat tcttcttggt 900 tcatcgttag tttctctcta tataataatc atccctagcg ccaaacaaat ccttgaccaa 960 aaaggcctta atttacatac tttctctcta ttcaccacag tatcaacttt tgcagattgt 1020 ggtttcttac caacaaatga aaacatgatg attttcaaga aaaattcagg acttcttctc 1080 attcttatcc ctcaagtcct tctagggaac actttgtttg ctccttgttt acgcatcgtt 1140 ataatgttct tatggaaaat cacaaagaga catgagtatg agtatatttt gaagaactca 1200 aaatgtgttg gatattcaca tatttttcca agttatgaaa caattggtat tgctattact 1260 gttgtgggat taatagtatt tcaatttgtt atgttttgtt cattggagtg gaattctgaa 1320 ggtacttctg gattaagtac ttatgagaag attgtgggat ctttgtttga agttgtgaat 1380 acaaggcatg ctggtctatc tgtatttgat ctttcaactt ttactccatc aatcttagta 1440 ttgtttgcct taatgatgta agtattctct acaatctatg ttctttcgtg ttctgtctca 1500 atttacgtga catatatact acttctttgt tttatatctg tgtctctgga agaattaatg 1560 tcaactttct atagttagaa ataacttaat tttcaaattc cctttttatc tttgattcac 1620 atgaatatct aagatttgct ttatattgca aattttcaaa tttgatgtta agttattaaa 1680 aagtatcaca tgaacaagag agaggagaaa gtagttcatt gtttagaaat ttatcatcca 1740 catgcaacta tgttaatact aacatatttg tttaagttgt tgtaatagga tatgataaac 1800 ttttaacaac aaattaagtt taactattaa acaaatgtgt taaaagtgtt a 1851 <210> 3 <211> 170 <212> DNA <213> Artificial Sequence <220> <223> crRNA expression cassette <400> 3 tgatcaaaag tcccacatcg atcaggtgat atatagcagc ttagtttata taatgataga 60 gtcgacatag cgattgtaat ttctactaag tgtagatact attcaccaca gtatcaactt 120 taatttctac taagtgtaga tcctacaaat gaaaacatga tgattttttt 170 <210> 4 <211> 5934 <212> DNA <213> Artificial Sequence <220> <223> endonuclease expression cassette <400> 4 gaattccaat cccacaaaaa tctgagctta acagcacagt tgctcctctc agagcagaat 60 cgggtattca acaccctcat atcaactact acgttgtgta taacggtcca catgccggta 120 tatacgatga ctggggttgt acaaaggcgg caacaaacgg cgttcccgga gttgcacaca 180 agaaatttgc cactattaca gaggcaagag cagcagctga cgcgtacaca acaagtcagc 240 aaacagacag gttgaacttc atccccaaag gagaagctca actcaagccc aagagctttg 300 ctaaggccct aacaagccca ccaaagcaaa aagcccactg gctcacgcta ggaaccaaaa 360 ggcccagcag tgatccagcc ccaaaagaga tctcctttgc cccggagatt acaatggacg 420 atttcctcta tctttacgat ctaggaagga agttcgaagg tgaaggtgac gacactatgt 480 tcaccactga taatgagaag gttagcctct tcaatttcag aaagaatgct gacccacaga 540 tggttagaga ggcctacgca gcaagtctca tcaagacgat ctacccgagt aacaatctcc 600 aggagatcaa ataccttccc aagaaggtta aagatgcagt caaaagattc aggactaatt 660 gcatcaagaa cacagagaaa gacatatttc tcaagatcag aagtactatt ccagtatgga 720 cgattcaagg cttgcttcat aaaccaaggc aagtaataga gattggagtc tctaaaaagg 780 tagttcctac tgaatctaag gccatgcatg gagtctaaga ttcaaatcga ggatctaaca 840 gaactcgccg tcaagactgg cgaacagttc atacagagtc ttttacgact caatgacaag 900 aagaaaatct tcgtcaacat ggtggagcac gacactctgg tctactccaa aaatgtcaaa 960 gatacagtct cagaagatca aagggctatt gagacttttc aacaaaggat aatttcggga 1020 aacctcctcg gattccattg cccagctatc tgtcacttca tcgaaaggac agtagaaaag 1080 gaaggtggct cctacaaatg ccatcattgc gataaaggaa aggctatcat tcaagatctc 1140 tctgccgaca gtggtcccaa agatggaccc ccacccacga ggagcatcgt ggaaaaagaa 1200 gaggttccaa ccacgtctac aaagcaagtg gattgatgtg acatctccac tgacgtaagg 1260 gatgacgcac aatcccacta tccttcgcaa gacccttcct ctatataagg aagttcattt 1320 catttggaga ggacacgctc gagtataagg taaatttctg tgttccttat tctctcaaaa 1380 tcttcgattt tgttttcgtt cgatcccaat ttcgtatatg ttctttggtt tagattctgt 1440 taatcttaga tcgaagatga ttttctgggt ttgatcgtta gatatcatct taattctcga 1500 ttagggtttc atagatatca tccgatttgt tcaaataatt tgagttttgt cgaataatta 1560 ctcttcgatt tgtgatttct atctagatct ggtgttagtt tctagtttgt gcgatcgaat 1620 ttgtcgatta atctgagttt ttctgattaa caggagctca tttttacaac aattaccaac 1680 aacaacaaac aacaaacaac attacaatta catttacaat tatcgataca atgatgccca 1740 agaagaagcg caaggtggga cgcgtctgca ggatatcaag cttgcggtac cgcgggcccg 1800 ggatcgccac catgagcaag ctggagaagt ttacaaactg ctactccctg tctaagaccc 1860 tgaggttcaa ggtaaagcct cgatttttgg gtttaggtgt ctgcttatta gagtaaaaac 1920 acatcctttg aaattgtttg tggtcatttg attgtgctct tgatccattg aattgctgca 1980 ggccatccct gtgggcaaga cccaggagaa catcgacaat aagcggctgc tggtggagga 2040 cgagaagaga gccgaggatt ataagggcgt gaagaagctg ctggatcgct actatctgtc 2100 ttttatcaac gacgtgctgc acagcatcaa gctgaagaat ctgaacaatt acatcagcct 2160 gttccggaag aaaaccagaa ccgagaagga gaataaggag ctggagaacc tggagatcaa 2220 tctgcggaag gagatcgcca aggccttcaa gggcaacgag ggctacaagt ccctgtttaa 2280 gaaggatatc atcgagacaa tcctgccaga gttcctggac gataaggacg agatcgccct 2340 ggtgaacagc ttcaatggct ttaccacagc cttcaccggc ttctttgata acagagagaa 2400 tatgttttcc gaggaggcca agagcacatc catcgccttc aggtgtatca acgagaatct 2460 gacccgctac atctctaata tggacatctt cgagaaggtg gacgccatct ttgataagca 2520 cgaggtgcag gagatcaagg agaagatcct gaacagcgac tatgatgtgg aggatttctt 2580 tgagggcgag ttctttaact ttgtgctgac acaggagggc atcgacgtgt ataacgccat 2640 catcggcggc ttcgtgaccg agagcggcga gaagatcaag ggcctgaacg agtacatcaa 2700 cctgtataat cagaaaacca agcagaagct gcctaagttt aagccactgt ataagcaggt 2760 gctgagcgat cgggagtctc tgagcttcta cggcgagggc tatacatccg atgaggaggt 2820 gctggaggtg tttagaaaca ccctgaacaa gaacagcgag atcttcagct ccatcaagaa 2880 gctggagaag ctgttcaaga attttgacga gtactctagc gccggcatct ttgtgaagaa 2940 cggccccgcc atcagcacaa tctccaagga tatcttcggc gagtggaacg tgatccggga 3000 caagtggaat gccgagtatg acgatatcca cctgaagaag aaggccgtgg tgaccgagaa 3060 gtacgaggac gatcggagaa agtccttcaa gaagatcggc tccttttctc tggagcagct 3120 gcaggagtac gccgacgccg atctgtctgt ggtggagaag ctgaaggaga tcatcatcca 3180 gaaggtggat gagatctaca aggtgtatgg ctcctctgag aagctgttcg acgccgattt 3240 tgtgctggag aagagcctga agaagaacga cgccgtggtg gccatcatga aggacctgct 3300 ggattctgtg aagagcttcg agaattacat caaggccttc tttggcgagg gcaaggagac 3360 aaacagggac gagtccttct atggcgattt tgtgctggcc tacgacatcc tgctgaaggt 3420 ggaccacatc tacgatgcca tccgcaatta tgtgacccag aagccctact ctaaggataa 3480 gttcaagctg tattttcaga accctcagtt catgggcggc tgggacaagg ataaggagac 3540 agactatcgg gccaccatcc tgagatacgg ctccaagtac tatctggcca tcatggataa 3600 gaagtacgcc aagtgcctgc agaagatcga caaggacgat gtgaacggca attacgagaa 3660 gatcaactat aagctgctgc ccggccctaa taagatgctg ccaaaggtgt tcttttctaa 3720 gaagtggatg gcctactata accccagcga ggacatccag aagatctaca agaatggcac 3780 attcaagaag ggcgatatgt ttaacctgaa tgactgtcac aagctgatcg acttctttaa 3840 ggatagcatc tcccggtatc caaagtggtc caatgcctac gatttcaact tttctgagac 3900 agagaagtat aaggacatcg ccggctttta cagagaggtg gaggagcagg gctataaggt 3960 gagcttcgag tctgccagca agaaggaggt ggataagctg gtggaggagg gcaagctgta 4020 tatgttccag atctataaca aggacttttc cgataagtct cacggcacac ccaatctgca 4080 caccatgtac ttcaagctgc tgtttgacga gaacaatcac ggacagatca ggctgagcgg 4140 aggagcagag ctgttcatga ggcgcgcctc cctgaagaag gaggagctgg tggtgcaccc 4200 agccaactcc cctatcgcca acaagaatcc agataatccc aagaaaacca caaccctgtc 4260 ctacgacgtg tataaggata agaggttttc tgaggaccag tacgagctgc acatcccaat 4320 cgccatcaat aagtgcccca agaacatctt caagatcaat acagaggtgc gcgtgctgct 4380 gaagcacgac gataacccct atgtgatcgg catcgatagg ggcgagcgca atctgctgta 4440 tatcgtggtg gtggacggca agggcaacat cgtggagcag tattccctga acgagatcat 4500 caacaacttc aacggcatca ggatcaagac agattaccac tctctgctgg acaagaagga 4560 gaaggagagg ttcgaggccc gccagaactg gacctccatc gagaatatca aggagctgaa 4620 ggccggctat atctctcagg tggtgcacaa gatctgcgag ctggtggaga agtacgatgc 4680 cgtgatcgcc ctggaggacc tgaactctgg ctttaagaat agccgcgtga aggtggagaa 4740 gcaggtgtat cagaagttcg agaagatgct gatcgataag ctgaactaca tggtggacaa 4800 gaagtctaat ccttgtgcaa caggcggcgc cctgaagggc tatcagatca ccaataagtt 4860 cgagagcttt aagtccatgt ctacccagaa cggcttcatc ttttacatcc ctgcctggct 4920 gacatccaag atcgatccat ctaccggctt tgtgaacctg ctgaaaacca agtataccag 4980 catcgccgat tccaagaagt tcatcagctc ctttgacagg atcatgtacg tgcccgagga 5040 ggatctgttc gagtttgccc tggactataa gaacttctct cgcacagacg ccgattacat 5100 caagaagtgg aagctgtact cctacggcaa ccggatcaga atcttccgga atcctaagaa 5160 gaacaacgtg ttcgactggg aggaggtgtg cctgaccagc gcctataagg agctgttcaa 5220 caagtacggc atcaattatc agcagggcga tatcagagcc ctgctgtgcg agcagtccga 5280 caaggccttc tactctagct ttatggccct gatgagcctg atgctgcaga tgcggaacag 5340 catcacaggc cgcaccgacg tggattttct gatcagccct gtgaagaact ccgacggcat 5400 cttctacgat agccggaact atgaggccca ggagaatgcc atcctgccaa agaacgccga 5460 cgccaatggc gcctataaca tcgccagaaa ggtgctgtgg gccatcggcc agttcaagaa 5520 ggccgaggac gagaagctgg ataaggtgaa gatcgccatc tctaacaagg agtggctgga 5580 gtacgcccag accagcgtga agcacgccta tccctatgac gtgcccgatt atgccagcct 5640 gggcagcggc tcccccaaga aaaaacgcaa ggtggaagat cctaagaaaa agcggaaagt 5700 ggacggcatt ggtagtggga gctaagcttc tctagctaga gtcgatcgac aagctcgagt 5760 ttctccataa taatgtgtga gtagttccca gataagggaa ttagggttcc tatagggttt 5820 cgctcatgtg ttgagcatat aagaaaccct tagtatgtat ttgtatttgt aaaatacttc 5880 tatcaataaa atttctaatt cctaaaacca aaatccagta ctaaaatcca gatc 5934 <210> 5 <211> 503 <212> PRT <213> Unknown <220> <223> Solanum lycopersicum <400> 5 Met Lys Ser Ser Leu Ser Ile Ser Phe Phe Lys Ile Met Met Ser Leu 1 5 10 15 Arg Val Lys Pro Phe Trp Ile Glu Leu Gly Tyr Phe Thr Thr Leu Ser 20 25 30 Leu Leu Gly Phe Leu Ala Leu Asn Tyr Val Ser Lys Pro Arg Thr Leu 35 40 45 Pro Ser Phe Arg Pro Gln Asn Leu Asp Val Leu Phe Thr Ser Val Ser 50 55 60 Ser Thr Thr Val Ser Ser Met Ser Thr Ile Glu Met Glu Val Phe Ser 65 70 75 80 Asn Val Gln Leu Val Phe Met Thr Ile Leu Met Phe Leu Gly Gly Glu 85 90 95 Ala Phe Thr Ser Phe Leu Ser Leu Lys Leu Ile Lys Asn Lys Glu Ser 100 105 110 Lys Asp Lys Ser Phe Ser Asn Lys Asp Tyr Glu Leu Gly Asn Val Ile 115 120 125 Asn Val Asp Asn Lys Leu Glu Asp Val Ile Ile Ile Asn Pro Ile Glu 130 135 140 Asp His Ile His Asp His His Asp Glu Ile Ile Lys Ile Lys Ser Ile 145 150 155 160 Lys Leu Leu Ser Asn Val Val Phe Gly Tyr Ile Leu Val Val Ile Leu 165 170 175 Leu Gly Ser Ser Leu Val Ser Leu Tyr Ile Ile Ile Ile Pro Ser Ala 180 185 190 Lys Gln Ile Leu Asp Gln Lys Gly Leu Asn Leu His Thr Phe Ser Leu 195 200 205 Phe Thr Thr Val Ser Thr Phe Ala Asn Cys Gly Phe Leu Pro Thr Asn 210 215 220 Glu Asn Met Met Ile Phe Lys Lys Asn Ser Gly Leu Leu Leu Ile Leu 225 230 235 240 Ile Pro Gln Val Leu Leu Gly Asn Thr Leu Phe Ala Pro Cys Leu Arg 245 250 255 Ile Val Ile Met Phe Leu Trp Lys Ile Thr Lys Arg His Glu Tyr Glu 260 265 270 Tyr Ile Leu Lys Asn Ser Lys Cys Val Gly Tyr Ser His Ile Phe Pro 275 280 285 Ser Tyr Glu Thr Ile Gly Ile Ala Ile Thr Val Val Gly Leu Ile Val 290 295 300 Phe Gln Phe Val Met Phe Cys Ser Leu Glu Trp Asn Ser Glu Gly Thr 305 310 315 320 Ser Gly Leu Ser Thr Tyr Glu Lys Ile Val Gly Ser Leu Phe Glu Val 325 330 335 Val Asn Thr Arg His Ala Gly Leu Ser Val Phe Asp Leu Ser Thr Phe 340 345 350 Thr Pro Ser Ile Leu Val Leu Phe Ala Leu Met Met Tyr Leu Ser Ser 355 360 365 Tyr Thr Thr Phe Leu Pro Val Asp Asn Tyr Glu Glu Lys Ser Glu Lys 370 375 380 Met Lys Lys Arg Lys Gly Arg Ser Leu Met Glu Tyr Ile Ser Leu Ser 385 390 395 400 Gln Pro Cys Cys Leu Val Ile Phe Thr Ile Leu Ile Cys Val Val Glu 405 410 415 Lys Asp Lys Met Lys Asn Asp Pro Leu Asn Phe Asn Val Leu Asn Ile 420 425 430 Leu Phe Glu Val Ile Ser Ala Tyr Gly Thr Val Gly Leu Ser Ile Gly 435 440 445 Tyr Ser Cys Ala Arg Gln Ile Asn Pro Asp Gly His Cys Lys Asp Val 450 455 460 Thr Tyr Gly Phe Ala Gly Lys Trp Ser Asn Thr Gly Lys Phe Ile Leu 465 470 475 480 Ile Ile Val Met Phe Phe Gly Arg Leu Lys Lys Tyr Asn Gln Arg Gly 485 490 495 Gly Lys Ala Trp Lys Val Leu 500 <110> INDUSTRY-ACADEMIC COOPERATION FOUNDATION GYEONGSANG NATIONAL UNIVERSITY <120> Method for producing genome-edited tomato plant with increased salt tolerance by SlHKT1;2 gene editing and genome-edited tomato plant with increased salt tolerance produced by the same method <130> PN20194 <160> 5 <170> KoPatentIn 3.0 <210> 1 <211> 1885 <212> DNA <213> Artificial Sequence <220> <223> selection marker expression cassette <400> 1 attcggatcc ggagcggaga attaagggag tcacgttatg acccccgccg atgacgcggg 60 acaaggtttgggtt ttacgttt aactgacaga accgcaacgt tgaaggagcc actgagccgc 120 gggtttctgg agtttaatga gctaagcaca tacgtcagaa accattattg cgcgttcaaa 180 agtcgcctaa ggtcactatc agctagcaaa tatttcttgt caaaaatgct ccactgacgt 240 tccataaatt cccctcggta tccaattaga gtctcatatt cactctccta tttttacaac 300 aattaccaac aacaacaaac aacaaacaac attacaatta catttacaat taccatggtt 360 gaacaagatg gattgcacgc aggttctccg gccgcttggg tggagaggct attcggctat 420 gactgggcac aacagacaat cggctgctct gatgccgccg tgttccggct gtcagcgcag 480 gggcgcccgg ttctttttgt caagaccgac ctgtccggtg ccctgaatga actgcaggac 540 gaggcagcgc ggctatcgtg gctggccacg acgggcgttc cttgcgcagc tgtgctcgac 600 gttgtcactg aagcgggaag ggactggctg ctattgggcg aagtgccggg gcaggatctc 660 ctgtcatctc accttgctcc tgccgagaaa gtatccatca tggctgatgc aatgcggcgg 720 ctgcatacgc ttgatccggc tacctgccca ttcgaccacc aagcgaaaca tcgcatcgag 780 cgagcacgta ctcggatgga agccggtctt gtcgatcagg atgatctgga cgaagagcat 840 caggggctcg cgccagccga actgttcgcc aggctcaagg cgcgcatgcc cgacggcgag 900 gatctcgtcg tgactcatgg cgatgcctgc ttgccgaata tcatggtgga aaatggccgc 960 ttttctggat tcatcgactg tggccggctg ggtgtggcgg accgctatca ggacatagcg 1020 ttggctaccc gtgatattgc tgaagagctt ggcggcgaat gggctgaccg cttcctcgtg 1080 ctttacggta tcgccgctcc cgattcgcag cgcatcgcct tctatcgcct tcttgacgag 1140 ttcttctgag cgggactctg gggttcgcta gagtcctgct ttaatgagat atgcgagacg 1200 cctatgatcg catgatattt gctttcaatt ctgttgtgca cgttgtaaaa aacctgagca 1260 tgtgtagctc agatccttac cgccggtttc ggttcattct aatgaatata tcacccgtta 1320 ctatcgtatt tttatgaata at attctccg ttcaatttac tgattgtacc ctactactta 1380 tatgtacaat attaaaatga aaacaatata ttgtgctgaa taggtttata gcgacatcta 1440 tgatagagcg ccacaataac aaacaattgc gttttattat tacaaatcca attttaaaaa 1500 aagcggcaga accggtcaaa cctaaaagac tgattacata aatcttattc aaatttcaaa 1560 agtgccccag gggctagtat ctacgacaca ccgagcggcg aactaataac gctcactgaa 1620 gggaactccg gttccccgcc ggcgcgcatg ggtgagattc cttgaagttg agtattggcc 1680 gtccgctcta ccgaaagtta cgggcaccat tcaacccggt ccagcacggc ggccgggtaa 1740 ccgacttgct gccccgagaa ttatgcagca tttttttggt gtatgtgggc cccaaatgaa 1800 gtgcaggtca aaccttgaca gtgacgacaa atcgttgggc gggtccaggg cgaattttgc 1860 gacaacatgt cgaggctcag ccgct 1885 <210> 2 <211> 1851 <212> DNA <213> Artificial sequence <220> <223> donor sequence <400> 2 ggagactcat gaacttgaaa tgcatagaat gcctatttta acacgttttt aacaaataat 60 aaataagttg tatagcatct tataattcca ctaactctat gataaggaaa tatcagtgat 120 catttggcaa gaattattat attctaactc cttttggtac gtaccatatg ttgttgggat 180 taattactaat cattggtaag aattattata tt g taccatatgt 240 tattgggatt aatttaaagc ttacacaatg tgtctagtat aggcattcca ctacacaatt 300 tttactataa attgaaccct tgagtattat aataaaactt aagagacaaa caaatttatt 360 ttactaatga agtcatcact ttcaatttct ttctttaaga ttatgatgag tcttagggta 420 aagccatttt ggattgaatt agggtatttc acaacccttt cattgttagg tttcttagct 480 ttgaattatg tttcaaaacc tagaacccta ccgtcttttc gtcctcaaaa cctagatgtt 540 cttttcactt ctgtttcttc aaccacagtt tctagtatgt ccactattga aatggaagtt 600 ttctcaaatg ttcaacttgt tttcatgacc atattgatgt ttcttggtgg ggaagctttt 660 acctcttttc ttagccttaa actcatcaag aataaagaaa gcaaagataa atcttttagt 720 aacaaagatt atgagctagg gaatgtaata aacgttgaca ataagttaga agatgtgata 780 ataataaacc ctatcgaaga tcatattcat gatcatcacg atgaaattat aaagattaaa 840 tcgataaaat tgttgagtaa tgtggttttt ggatatattc ttgttgttat tcttcttggt 900 tcatcgttag tttctctcta tataataatc atccctagcg ccaaacaaat ccttgaccaa 960 aaaggcctta atttacatac tttctctcta ttcaccacag tatcaacttt tgcagattgt 1020 ggtttcttac caacaaatga aaacatgatg attttcaaga aaaattcagg acttcttctc 1080a ttcttatcc ctcaagtcct tctagggaac actttgtttg ctccttgttt acgcatcgtt 1140 ataatgttct tatggaaaat cacaaagaga catgagtatg agtatatttt gaagaactca 1200 aaatgtgttg gatattcaca tatttttcca agttatgaaa caattggtat tgctattact 1260 gttgtgggat taatagtatt tcaatttgtt atgttttgtt cattggagtg gaattctgaa 1320 ggtacttctg gattaagtac ttatgagaag attgtgggat ctttgtttga agttgtgaat 1380 acaaggcatg ctggtctatc tgtatttgat ctttcaactt ttactccatc aatcttagta 1440 ttgtttgcct taatgatgta agtattctct acaatctatg ttctttcgtg ttctgtctca 1500 atttacgtga catatatact acttctttgt tttatatctg tgtctctgga agaattaatg 1560 tcaactttct atagttagaa ataacttaat tttcaaattc cctttttatc tttgattcac 1620 atgaatatct aagatttgct ttatattgca aattttcaaa tttgatgtta agttattaaa 1680 aagtatcaca tgaacaagag agaggagaaa gtagttcatt gtttagaaat ttatcatcca 1740 catgcaacta tgttaatact aacatatttg tttaagttgt tgtaatagga tatgataaac 1800 ttttaacaac aaattaagtt taactattaa acaaatgtgt taaaagtgtt a 1851 <210> 3 <211> 170 < 212> DNA <213> Artificial Sequence <220> <223> crRNA expression cass ette <400> 3 tgatcaaaag tcccacatcg atcaggtgat atatagcagc ttagtttata taatgataga 60 gtcgacatag cgattgtaat ttctactaag tgtagatact attcaccaca ase gtatcaactt 120 taatttacatac 213 34 Sequence nuclear 34 taatttacatac 211 34 taatttacatac 211 endogattat <4> cassette <400> 4 gaattccaat cccacaaaaa tctgagctta acagcacagt tgctcctctc agagcagaat 60 cgggtattca acaccctcat atcaactact acgttgtgta taacggtcca catgccggta 120 tatacgatga ctggggttgt acaaaggcgg caacaaacgg cgttcccgga gttgcacaca 180 agaaatttgc cactattaca gaggcaagag cagcagctga cgcgtacaca acaagtcagc 240 aaacagacag gttgaacttc atccccaaag gagaagctca actcaagccc aagagctttg 300 ctaaggccct aacaagccca ccaaagcaaa aagcccactg gctcacgcta ggaaccaaaa 360 ggcccagcag tgatccagcc ccaaaagaga tctcctttgc cccggagatt acaatggacg 420 atttcctcta tctttacgat ctaggaagga agttcgaagg tgaaggtgac gacactatgt 480 tcaccactga taatgagaag ca gttagcctct tcaattaga c tcaattaga c ggagtagat ca gcaacctaga gt aacaatctcc 600 aggagatcaa ataccttccc aagaaggtta aagatgcagt caaaagattc aggactaatt 660 gcatcaagaa cacagagaaa gacatatttc tcaagatcag aagtactatt ccagtatgga 720 cgattcaagg cttgcttcat aaaccaaggc aagtaataga gattggagtc tctaaaaagg 780 tagttcctac tgaatctaag gccatgcatg gagtctaaga ttcaaatcga ggatctaaca 840 gaactcgccg tcaagactgg cgaacagttc atacagagtc ttttacgact caatgacaag 900 aagaaaatct tcgtcaacat ggtggagcac gacactctgg tctactccaa aaatgtcaaa 960 gatacagtct cagaagatca aagggctatt gagacttttc aacaaaggat aatttcggga 1020 aacctcctcg gattccattg cccagctatc tgtcacttca tcgaaaggac agtagaaaag 1080 gaaggtggct cctacaaatg ccatcattgc gataaaggaa aggctatcat tcaagatctc 1140 tctgccgaca gtggtcccaa agatggaccc ccacccacga ggagcatcgt ggaaaaagaa 1200 gaggttccaa ccacgtctac aaagcaagtg gattgatgtg acatctccac tgacgtaagg 1260 gatgacgcac aatcccacta tccttcgcaa gacccttcct ctatataagg aagttcattt 1320 catttggaga ggacacgctc gagtataagg taaatttctg tgttccttat tctctcaaaa 1380 tcttcgattt tgttttcgtt cgatcccaat ttcgtatatg ttctttggtt tagattctgt 1440 taatcttaga tcgaagatga ttttctgggt ttgatcgtta gatatcatct taattctcga 1500 ttagggtttc atagatatca tccgatttgt tcaaataatt tgagttttgt cgaataatta 1560 ctcttcgatt tgtgatttct atctagatct ggtgttagtt tctagtttgt gcgatcgaat 1620 ttgtcgatta atctgagttt ttctgattaa caggagctca tttttacaac aattaccaac 1680 aacaacaaac aacaaacaac attacaatta catttacaat tatcgataca atgatgccca 1740 agaagaagcg caaggtggga cgcgtctgca ggatatcaag cttgcggtac cgcgggcccg 1800 ggatcgccac catgagcaag ctggagaagt ttacaaactg ctactccctg tctaagaccc 1860 tgaggttcaa ggtaaagcct cgatttttgg gtttaggtgt ctgcttatta gagtaaaaac 1920 acatcctttg aaattgtttg tggtcatttg attgtgctct tgatccattg aattgctgca 1980 ggccatccct gtgggcaaga cccaggagaa catcgacaat aagcggctgc tggtggagga 2040 cgagaagaga gccgaggatt ataagggcgt gaagaagctg ctggatcgct actatctgtc 2100 ttttatcaac gacgtgctgc acagcatcaa gctgaagaat ctgaacaatt acatcagcct 2160 gttccggaag aaaaccagaa ccgagaagga gaataaggag ctggagaacc tggagatcaa 2220 tctgcggaag gagatcgcca aggccttcaa gggcaacgag ggctacaagt ccctgtttaa 2280 gaaggatatc atcgagacaa tcctgccaga gttcctggac gataaggacg agatcgccct 2340 ggtgaacagc ttcaatggct ttaccacagc cttcaccggc ttctttgata acagagagaa 2400 tatgttttcc gaggaggcca agagcacatc catcgccttc aggtgtatca acgagaatct 2460 gacccgctac atctctaata tggacatctt cgagaaggtg gacgccatct ttgataagca 2520 cgaggtgcag gagatcaagg agaagatcct gaacagcgac tatgatgtgg aggatttctt 2580 tgagggcgag ttctttaact ttgtgctgac acaggagggc atcgacgtgt ataacgccat 2640 catcggcggc ttcgtgaccg agagcggcga gaagatcaag ggcctgaacg agtacatcaa 2700 cctgtataat cagaaaacca agcagaagct gcctaagttt aagccactgt ataagcaggt 2760 gctgagcgat cgggagtctc tgagcttcta cggcgagggc tatacatccg atgaggaggt 2820 gctggaggtg tttagaaaca ccctgaacaa gaacagcgag atcttcagct ccatcaagaa 2880 gctggagaag ctgttcaaga attttgacga gtactctagc gccggcatct ttgtgaagaa 2940 cggccccgcc atcagcacaa tctccaagga tatcttcggc gagtggaacg tgatccggga 3000 caagtggaat gccgagtatg acgatatcca cctgaagaag aaggccgtgg tgaccgagaa 3060 gtacgaggac gatcggagaa agtccttcaa gaagatcggc tccttttctc tggagcagct 3120 gcagga gtac gccgacgccg atctgtctgt ggtggagaag ctgaaggaga tcatcatcca 3180 gaaggtggat gagatctaca aggtgtatgg ctcctctgag aagctgttcg acgccgattt 3240 tgtgctggag aagagcctga agaagaacga cgccgtggtg gccatcatga aggacctgct 3300 ggattctgtg aagagcttcg agaattacat caaggccttc tttggcgagg gcaaggagac 3360 aaacagggac gagtccttct atggcgattt tgtgctggcc tacgacatcc tgctgaaggt 3420 ggaccacatc tacgatgcca tccgcaatta tgtgacccag aagccctact ctaaggataa 3480 gttcaagctg tattttcaga accctcagtt catgggcggc tgggacaagg ataaggagac 3540 agactatcgg gccaccatcc tgagatacgg ctccaagtac tatctggcca tcatggataa 3600 gaagtacgcc aagtgcctgc agaagatcga caaggacgat gtgaacggca attacgagaa 3660 gatcaactat aagctgctgc ccggccctaa taagatgctg ccaaaggtgt tcttttctaa 3720 gaagtggatg gcctactata accccagcga ggacatccag aagatctaca agaatggcac 3780 attcaagaag ggcgatatgt ttaacctgaa tgactgtcac aagctgatcg acttctttaa 3840 ggatagcatc tcccggtatc caaagtggtc caatgcctac gatttcaact tttctgagac 3900 agagaagtat aaggacatcg ccggctttta cagagaggtg gaggagcagg gctataaggt 3960 gagcttcgag t ctgccagca agaaggaggt ggataagctg gtggaggagg gcaagctgta 4020 tatgttccag atctataaca aggacttttc cgataagtct cacggcacac ccaatctgca 4080 caccatgtac ttcaagctgc tgtttgacga gaacaatcac ggacagatca ggctgagcgg 4140 aggagcagag ctgttcatga ggcgcgcctc cctgaagaag gaggagctgg tggtgcaccc 4200 agccaactcc cctatcgcca acaagaatcc agataatccc aagaaaacca caaccctgtc 4260 ctacgacgtg tataaggata agaggttttc tgaggaccag tacgagctgc acatcccaat 4320 cgccatcaat aagtgcccca agaacatctt caagatcaat acagaggtgc gcgtgctgct 4380 gaagcacgac gataacccct atgtgatcgg catcgatagg ggcgagcgca atctgctgta 4440 tatcgtggtg gtggacggca agggcaacat cgtggagcag tattccctga acgagatcat 4500 caacaacttc aacggcatca ggatcaagac agattaccac tctctgctgg acaagaagga 4560 gaaggagagg ttcgaggccc gccagaactg gacctccatc gagaatatca aggagctgaa 4620 ggccggctat atctctcagg tggtgcacaa gatctgcgag ctggtggaga agtacgatgc 4680 cgtgatcgcc ctggaggacc tgaactctgg ctttaagaat agccgcgtga aggtggagaa 4740 gcaggtgtat cagaagttcg agaagatgct gatcgataag ctgaactaca tggtggacaa 4800 gaagtctaat ccttgtg caa caggcggcgc cctgaagggc tatcagatca ccaataagtt 4860 cgagagcttt aagtccatgt ctacccagaa cggcttcatc ttttacatcc ctgcctggct 4920 gacatccaag atcgatccat ctaccggctt tgtgaacctg ctgaaaacca agtataccag 4980 catcgccgat tccaagaagt tcatcagctc ctttgacagg atcatgtacg tgcccgagga 5040 ggatctgttc gagtttgccc tggactataa gaacttctct cgcacagacg ccgattacat 5100 caagaagtgg aagctgtact cctacggcaa ccggatcaga atcttccgga atcctaagaa 5160 gaacaacgtg ttcgactggg aggaggtgtg cctgaccagc gcctataagg agctgttcaa 5220 caagtacggc atcaattatc agcagggcga tatcagagcc ctgctgtgcg agcagtccga 5280 caaggccttc tactctagct ttatggccct gatgagcctg atgctgcaga tgcggaacag 5340 catcacaggc cgcaccgacg tggattttct gatcagccct gtgaagaact ccgacggcat 5400 cttctacgat agccggaact atgaggccca ggagaatgcc atcctgccaa agaacgccga 5460 cgccaatggc gcctataaca tcgccagaaa ggtgctgtgg gccatcggcc agttcaagaa 5520 ggccgaggac gagaagctgg ataaggtgaa gatcgccatc tctaacaagg agtggctgga 5580 gtacgcccag accagcgtga agcacgccta tccctatgac gtgcccgatt atgccagcct 5640 gggcagcggc tcccccaaga aa aaacgcaa ggtggaagat cctaagaaaa agcggaaagt 5700 ggacggcatt ggtagtggga gctaagcttc tctagctaga gtcgatcgac aagctcgagt 5760 ttctccataa taatgtgtga gtagttccca gataagggaa ttagggttcc tatagggttt 5820 cgctcatgtg ttgagcatat aagaaaccct tagtatgtat ttgtatttgt aaaatacttc 5880 tatcaataaa atttctaatt cctaaaacca aaatccagta ctaaaatcca gatc 5934 <210> 5 <211> 503 <212> PRT <213> Unknown < 220> <223> Solanum lycopersicum <400> 5 Met Lys Ser Ser Leu Ser Ile Ser Phe Phe Lys Ile Met Met Ser Leu 1 5 10 15 Arg Val Lys Pro Phe Trp Ile Glu Leu Gly Tyr Phe Thr Thr Leu Ser 20 25 30 Leu Leu Gly Phe Leu Ala Leu Asn Tyr Val Ser Lys Pro Arg Thr Leu 35 40 45 Pro Ser Phe Arg Pro Gln Asn Leu Asp Val Leu Phe Thr Ser Val Ser 50 55 60 Ser Thr Thr Val Ser Ser Met Ser Thr Ile Glu Met Glu Val Phe Ser 65 70 75 80 Asn Val Gln Leu Val Phe Met Thr Ile Leu Met Phe Leu Gly Gly Glu 85 90 95 Ala Phe Thr Ser Phe Leu Ser Leu Lys Leu Ile Lys Asn Lys Glu Ser 100 105 110 Lys Asp Lys Ser Phe Ser Asn Lys Asp Tyr Glu Leu Gly Asn Val Ile 115 120 125 Asn Val Asp Asn Lys Leu Glu Asp Val Ile Ile Ile Asn Pro Ile Glu 130 135 140 Asp His Ile His Asp His His Asp Glu Ile Ile Lys Ile Lys Ser Ile 145 150 155 160 Lys Leu Leu Ser Asn Val Val Phe Gly Tyr Ile Leu Val Val Ile Leu 165 170 175 Leu Gly Ser Ser Leu Val Ser Leu Tyr Ile Ile Ile Ile Pro Ser Ala 180 185 190 Lys Gln Ile Leu Asp Gln Lys Gly Leu Asn Leu His Thr Phe Ser Leu 195 200 205 Phe Thr Thr Val Ser Thr Phe Ala Asn Cys Gly Phe Leu Pro Thr Asn 210 215 220 Glu Asn Met Met Ile Phe Lys Lys Asn Ser Gly Leu Leu Leu Ile Leu 225 230 235 240 Ile Pro Gln Val Leu Leu Gly Asn Thr Leu Phe Ala Pro Cys Leu Arg 245 250 255 Ile Val Ile Met Phe Leu Trp Lys Ile Thr Lys Arg His Glu Tyr Glu 260 265 270 Tyr Ile Leu Lys Asn Ser Lys Cys Val Gly Tyr Ser His Ile Phe Pro 275 280 285 Ser Tyr Glu Thr Ile Gly Ile Ala Ile Thr Val Val Gly Leu Ile Val 290 295 300 Phe Gln Phe Val Met Phe Cys Ser Leu Glu Trp Asn Ser Glu Gly Thr 305 310 315 320 Ser Gly Leu Ser Thr Tyr Glu Lys Ile Val Gly Ser Leu Phe Glu Val 325 330 335 Val Asn Thr Arg His Ala Gly Leu Ser Val Phe Asp Leu Ser Thr Phe 340 345 350 Thr Pro Ser Ile Leu Val Leu Phe Ala Leu Met Met Tyr Leu Ser Ser 355 360 365 Tyr Thr Thr Phe Leu Pro Val Asp Asn Tyr Glu Glu Lys Ser Glu Lys 370 375 380 Met Lys Lys Arg Lys Gly Arg Ser Leu Met Glu Tyr Ile Ser Leu Ser 385 390 395 400 Gln Pro Cys Cys Leu Val Ile Phe Thr Ile Leu Ile Cys Val Val Glu 405 410 415 Lys Asp Lys Met Lys Asn Asp Pro Leu Asn Phe Asn Val Leu Asn Ile 420 425 430 Leu Phe Glu Val Ile Ser Ala Tyr Gly Thr Val Gly Leu Ser Ile Gly 435 440 445 Tyr Ser Cys Ala Arg Gln Ile Asn Pro Asp Gly His Cys Lys Asp Val 450 455 460 Thr Tyr Gly Phe Ala Gly Lys Trp Ser Asn Thr Gly Lys Phe Ile Leu 465 470 475 480 Ile Ile Val Met Phe Phe Gly Arg Leu Lys Lys Tyr Asn Gln Arg Gly 485 490 495 Gly Lys Ala Trp Lys Val Leu 500

Claims (7)

Ti 플라스미드의 LB(left border) 및 RB(right border) 서열 사이에, 항생제 마커 발현 카세트; 토마토(Solanum lycopersicum) 유래 HKT1;2 (High-affinity K+ transporter 1;2) 유전자의 상동성 기반 DNA 수선(homology-directed DNA repair, HDR)을 위한 주형 서열을 포함하는 공여(donor) 서열; 이중(dual) HKT1;2 crRNA 발현 카세트; 및 엔도뉴클레아제(endonuclease) 발현 카세트;를 포함하는 재조합 벡터로 토마토 식물 세포를 형질전환하는 단계를 포함하는, 내염성이 증가된 유전체 교정 토마토 식물체의 제조 방법.Between the LB (left border) and RB (right border) sequences of the Ti plasmid, an antibiotic marker expression cassette; A donor sequence comprising a template sequence for homology-directed DNA repair (HDR) of the tomato ( Solanum lycopersicum )-derived HKT1;2 (High-affinity K + transporter 1 ;2) gene; dual HKT1;2 crRNA expression cassette; And Endonuclease (endonuclease) expression cassette; comprising the step of transforming the tomato plant cells with a recombinant vector comprising a, a method for producing a genome-edited tomato plant with increased salt resistance. 제1항에 있어서, 상기 토마토 유래 HKT1;2 유전자의 HDR을 위한 주형 서열은 서열번호 5의 아미노산 서열로 이루어진 토마토 HKT1;2 단백질 서열에서 217번째 아스파라긴(asparagine, N)이 아스파르트산(aspartic acid, D)으로 치환된 변이체를 코딩하는 서열을 포함하는 것을 특징으로 하는 제조 방법.According to claim 1, wherein the template sequence for HDR of the tomato-derived HKT1;2 gene is 217th asparagine (asparagine, N) in the tomato HKT1;2 protein sequence consisting of the amino acid sequence of SEQ ID NO: 5 aspartic acid (aspartic acid, D) A production method comprising a sequence encoding a substituted variant. 제2항에 있어서, 상기 공여 서열은 서열번호 2의 염기서열로 이루어진 것을 특징으로 하는 제조 방법.The method according to claim 2, wherein the donor sequence consists of the nucleotide sequence of SEQ ID NO: 2. 제1항에 있어서, 상기 항생제 마커 발현 카세트, crRNA 발현 카세트 및 엔도뉴클레아제 발현 카세트는 각각 서열번호 1, 서열번호 3 및 서열번호 4의 염기서열로 이루어진 것을 특징으로 하는 제조 방법.The method according to claim 1, wherein the antibiotic marker expression cassette, crRNA expression cassette and endonuclease expression cassette each consist of nucleotide sequences of SEQ ID NO: 1, SEQ ID NO: 3, and SEQ ID NO: 4, respectively. 제1항 내지 제4항 중 어느 한 항의 방법에 의해 제조된 내염성이 증가된 유전체 교정 토마토 식물체.[Claim 5] A genome-edited tomato plant with increased salt tolerance produced by the method of any one of claims 1 to 4. 제5항에 따른 식물체의 유전체가 교정된 종자.A seed in which the genome of the plant according to claim 5 is corrected. Ti 플라스미드의 LB(left border) 및 RB(right border) 서열 사이에, 항생제 마커 발현 카세트; 토마토 유래 HKT1;2 (High-affinity K+ transporter 1;2) 유전자의 상동성 기반 DNA 수선(homology-directed DNA repair, HDR)을 위한 주형 서열을 포함하는 공여(donor) 서열; 이중(dual) HKT1;2 crRNA 발현 카세트; 및 엔도뉴클레아제(endonuclease) 발현 카세트;를 포함하는 재조합 벡터를 유효성분으로 함유하는, 토마토 식물체의 내염성을 증가시키기 위한 유전체 교정용 조성물.Between the LB (left border) and RB (right border) sequences of the Ti plasmid, an antibiotic marker expression cassette; a donor sequence comprising a template sequence for homology-directed DNA repair (HDR) of the tomato-derived HKT1;2 (High-affinity K + transporter 1;2) gene; dual HKT1;2 crRNA expression cassette; And endonuclease (endonuclease) expression cassette; containing a recombinant vector comprising as an active ingredient, a composition for genome editing for increasing the salt tolerance of tomato plants.
KR1020200127207A 2020-09-29 2020-09-29 Method for producing genome-edited tomato plant with increased salt tolerance by SlHKT1;2 gene editing and genome-edited tomato plant with increased salt tolerance produced by the same method KR102550308B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200127207A KR102550308B1 (en) 2020-09-29 2020-09-29 Method for producing genome-edited tomato plant with increased salt tolerance by SlHKT1;2 gene editing and genome-edited tomato plant with increased salt tolerance produced by the same method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200127207A KR102550308B1 (en) 2020-09-29 2020-09-29 Method for producing genome-edited tomato plant with increased salt tolerance by SlHKT1;2 gene editing and genome-edited tomato plant with increased salt tolerance produced by the same method

Publications (2)

Publication Number Publication Date
KR20220043605A true KR20220043605A (en) 2022-04-05
KR102550308B1 KR102550308B1 (en) 2023-06-30

Family

ID=81182469

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200127207A KR102550308B1 (en) 2020-09-29 2020-09-29 Method for producing genome-edited tomato plant with increased salt tolerance by SlHKT1;2 gene editing and genome-edited tomato plant with increased salt tolerance produced by the same method

Country Status (1)

Country Link
KR (1) KR102550308B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019039417A1 (en) * 2017-08-21 2019-02-28 国立大学法人徳島大学 Target sequence specific alteration technology using nucleotide target recognition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019039417A1 (en) * 2017-08-21 2019-02-28 国立大学法人徳島大学 Target sequence specific alteration technology using nucleotide target recognition

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NCBI Reference Sequence, Solanum lycopersicum sodium transporter HKT1* *
Noelia Jaime-Perez, The sodium transporter encoded by the HKT1* *

Also Published As

Publication number Publication date
KR102550308B1 (en) 2023-06-30

Similar Documents

Publication Publication Date Title
CN107164347B (en) Ideal plant type gene NPT1 for controlling rice stem thickness, tillering number, spike grain number, thousand grain weight and yield and its application
WO2016057515A2 (en) Genetic control of axillary bud growth in tobacco plants
CN109705198B (en) Application of OsCKX7 protein and coding gene thereof in regulation and control of resistance to plant sheath blight
CN114045303B (en) Artificial gene editing system for rice
CN111088263B (en) Tomato mSLBZR1L gene and application thereof
CN112175965B (en) Gene and protein for enhancing resistance of rice blast and bacterial leaf blight and method for improving resistance of rice blast and bacterial leaf blight
CN110903368B (en) Gene for controlling female character of corn, kit for creating female sterile line of corn, mutant genotype and method
CN106754957B (en) OsSCAMP13 gene, encoding protein, application of stress resistance and acquisition method
CN110713994B (en) Plant stress tolerance associated protein TaMAPK3, and coding gene and application thereof
CN112342236B (en) Application of rice histone methyltransferase in enhancing crop drought resistance and improving single plant yield
CN113845578A (en) MYB transcription factor for regulating and controlling plant procyanidine synthesis, and coding gene and application thereof
CN107630033B (en) Application of protein OsZFP213 in regulation and control of plant stress resistance
KR102550308B1 (en) Method for producing genome-edited tomato plant with increased salt tolerance by SlHKT1;2 gene editing and genome-edited tomato plant with increased salt tolerance produced by the same method
CN110684088A (en) Protein ZmbZIPa3 and application of coding gene thereof in regulating and controlling plant growth and development and stress tolerance
CN111154771B (en) Application of tomato SlBZR1L gene
CN105175519B (en) Applications of the Protein S RL2 in cultivating leaf roll Qushui River rice
CN114574520A (en) Application of TaSR45a gene in cultivating anti-gibberellic disease plants
CN109912706B (en) Gene, protein and molecular marker related to rice weakness and premature senility and application
KR101636155B1 (en) Methyltrasnferase gene resistant to a bacterial blight, and the transgenic plant using the same
CN115466747A (en) Glycosyltransferase ZmKOB1 gene and application thereof in regulating and controlling maize ear fructification character or development
CN113136398A (en) Application of GsA 24 protein and related biological material thereof in regulation and control of plant stress tolerance
CN108690847B (en) Application of protein nog1 in regulation and control of plant yield and grain number per ear
CN107177602B (en) NtDR1 gene related to drought tolerance of plant and application thereof
CN114875043B (en) Betula alba BpPIF4 gene participating in adventitious root development and application thereof
CN110229801B (en) Gene for controlling rice leaf senescence and protein coded by same

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant