KR20220041225A - 메모리 구성요소의 동일한 평면 내에서 데이터 압축 - Google Patents

메모리 구성요소의 동일한 평면 내에서 데이터 압축 Download PDF

Info

Publication number
KR20220041225A
KR20220041225A KR1020227008625A KR20227008625A KR20220041225A KR 20220041225 A KR20220041225 A KR 20220041225A KR 1020227008625 A KR1020227008625 A KR 1020227008625A KR 20227008625 A KR20227008625 A KR 20227008625A KR 20220041225 A KR20220041225 A KR 20220041225A
Authority
KR
South Korea
Prior art keywords
memory
data
plane
memory pages
data block
Prior art date
Application number
KR1020227008625A
Other languages
English (en)
Inventor
도모꼬 오구라 이와사끼
아바니 에프. 트리베디
아파르나 유. 리마예
젠민 황
트레이시 디. 에반스
Original Assignee
마이크론 테크놀로지, 인크.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 마이크론 테크놀로지, 인크. filed Critical 마이크론 테크놀로지, 인크.
Publication of KR20220041225A publication Critical patent/KR20220041225A/ko

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0602Interfaces specially adapted for storage systems specifically adapted to achieve a particular effect
    • G06F3/0608Saving storage space on storage systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F12/00Accessing, addressing or allocating within memory systems or architectures
    • G06F12/02Addressing or allocation; Relocation
    • G06F12/0223User address space allocation, e.g. contiguous or non contiguous base addressing
    • G06F12/023Free address space management
    • G06F12/0238Memory management in non-volatile memory, e.g. resistive RAM or ferroelectric memory
    • G06F12/0246Memory management in non-volatile memory, e.g. resistive RAM or ferroelectric memory in block erasable memory, e.g. flash memory
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F12/00Accessing, addressing or allocating within memory systems or architectures
    • G06F12/02Addressing or allocation; Relocation
    • G06F12/08Addressing or allocation; Relocation in hierarchically structured memory systems, e.g. virtual memory systems
    • G06F12/10Address translation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/14Handling requests for interconnection or transfer
    • G06F13/16Handling requests for interconnection or transfer for access to memory bus
    • G06F13/1668Details of memory controller
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0602Interfaces specially adapted for storage systems specifically adapted to achieve a particular effect
    • G06F3/061Improving I/O performance
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0628Interfaces specially adapted for storage systems making use of a particular technique
    • G06F3/0638Organizing or formatting or addressing of data
    • G06F3/064Management of blocks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0628Interfaces specially adapted for storage systems making use of a particular technique
    • G06F3/0646Horizontal data movement in storage systems, i.e. moving data in between storage devices or systems
    • G06F3/0647Migration mechanisms
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0628Interfaces specially adapted for storage systems making use of a particular technique
    • G06F3/0646Horizontal data movement in storage systems, i.e. moving data in between storage devices or systems
    • G06F3/0652Erasing, e.g. deleting, data cleaning, moving of data to a wastebasket
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0668Interfaces specially adapted for storage systems adopting a particular infrastructure
    • G06F3/0671In-line storage system
    • G06F3/0673Single storage device
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0668Interfaces specially adapted for storage systems adopting a particular infrastructure
    • G06F3/0671In-line storage system
    • G06F3/0673Single storage device
    • G06F3/0679Non-volatile semiconductor memory device, e.g. flash memory, one time programmable memory [OTP]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/06Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
    • G06F3/0601Interfaces specially adapted for storage systems
    • G06F3/0668Interfaces specially adapted for storage systems adopting a particular infrastructure
    • G06F3/0671In-line storage system
    • G06F3/0673Single storage device
    • G06F3/068Hybrid storage device
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2212/00Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
    • G06F2212/10Providing a specific technical effect
    • G06F2212/1016Performance improvement
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2212/00Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
    • G06F2212/10Providing a specific technical effect
    • G06F2212/1041Resource optimization
    • G06F2212/1044Space efficiency improvement
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2212/00Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
    • G06F2212/72Details relating to flash memory management
    • G06F2212/7201Logical to physical mapping or translation of blocks or pages
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2212/00Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
    • G06F2212/72Details relating to flash memory management
    • G06F2212/7203Temporary buffering, e.g. using volatile buffer or dedicated buffer blocks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2212/00Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
    • G06F2212/72Details relating to flash memory management
    • G06F2212/7205Cleaning, compaction, garbage collection, erase control
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2212/00Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
    • G06F2212/72Details relating to flash memory management
    • G06F2212/7208Multiple device management, e.g. distributing data over multiple flash devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2212/00Indexing scheme relating to accessing, addressing or allocation within memory systems or architectures
    • G06F2212/72Details relating to flash memory management
    • G06F2212/7209Validity control, e.g. using flags, time stamps or sequence numbers

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Techniques For Improving Reliability Of Storages (AREA)

Abstract

메모리 또는 저장 시스템 또는 솔리드 스테이트 드라이브와 같은 서브시스템의 데이터 압축과 관련된 시스템, 장치 및 방법이 설명된다. 예를 들어, 유효 데이터를 저장하는 하나 이상의 메모리 페이지는 메모리 구성요소의 평면에 있는 제1 데이터 블록으로부터 식별될 수 있고 평면에 대응하는 페이지 버퍼에 복사될 수 있다. 시스템 또는 서브시스템의 제어기는 메모리 구성요소의 평면에 하나 이상의 메모리 페이지를 저장할 수 있는 용량을 가진 다른 데이터 블록이 있는지 여부를 결정할 수 있고, 하나 이상의 메모리 페이지를 페이지 버퍼에서 다른 데이터 블록으로 복사하거나 메모리 구성요소의 다른 평면에 있는 다른 데이터 블록으로 복사할 수 있다.

Description

메모리 구성요소의 동일한 평면 내에서 데이터 압축
본 개시의 실시예는 일반적으로 메모리 서브시스템에 관한 것이고, 보다 구체적으로, 메모리 구성요소의 동일한 평면 내의 데이터 압축(compaction)에 관한 것이다.
메모리 서브시스템은 솔리드 스테이트 드라이브(SSD)와 같은 저장 시스템일 수 있고, 데이터를 저장하는 하나 이상의 메모리 구성요소를 포함할 수 있다. 메모리 구성요소는, 예를 들어, 비휘발성 메모리 구성요소 및 휘발성 메모리 구성요소일 수 있다. 일반적으로, 호스트 시스템은 메모리 서브시스템을 활용하여 메모리 구성요소에 데이터를 저장하고 메모리 구성요소로부터 데이터를 검색할 수 있다.
본 개시내용은 이하에 주어진 상세한 설명 및 본 개시내용의 다양한 실시예의 첨부 도면으로부터 보다 완전하게 이해될 것이다.
도 1은 본 개시내용의 일부 실시예에 따른 메모리 서브시스템을 포함하는 예시적인 컴퓨팅 환경을 도시한다.
도 2는 본 개시내용의 일부 실시예에 따른 메모리 구성요소에서의 데이터 압축의 예를 도시한다.
도 3은 본 개시내용의 일부 실시예에 따른 데이터 압축을 사용하여 메모리 서브시스템의 메모리 구성요소에서 데이터를 저장하는 예시적인 방법의 흐름도이다.
도 4는 본 개시내용의 일부 실시예에 따른 데이터 압축을 사용하여 메모리 서브시스템의 메모리 구성요소에서 데이터를 저장하는 예의 흐름도이다.
도 5는 본 개시내용의 실시예가 동작할 수 있는 예시적인 컴퓨터 시스템의 블록도이다.
본 개시의 양태는 메모리 구성요소의 동일한 평면(plane) 내에서 데이터 압축을 포함하는 메모리 서브시스템을 관리하는 것에 관한 것이다. 메모리 서브시스템은 저장 디바이스, 메모리 모듈, 또는 저장 디바이스와 메모리 모듈의 하이브리드일 수 있다. 저장 디바이스 및 메모리 모듈의 예는 도 1과 함께 아래에 설명되어 있다. 일반적으로, 호스트 시스템은 데이터를 저장하는 메모리 디바이스와 같은 하나 이상의 구성요소를 포함하는 메모리 서브시스템을 활용할 수 있다. 호스트 시스템은 메모리 서브시스템에 저장될 데이터를 제공할 수 있고 메모리 서브시스템으로부터 검색될 데이터를 요청할 수 있다.
메모리 서브시스템은 호스트 시스템으로부터의 데이터를 저장할 수 있는 다중 메모리 구성요소를 포함할 수 있다. 각 메모리 구성요소는 상이한 유형의 미디어(media)를 포함할 수 있다. 미디어의 예는, 단일 레벨 셀(SLC) 메모리, 트리플 레벨 셀(TLC) 메모리 및 쿼드 레벨 셀(QLC) 메모리와 같은, 비휘발성 메모리와 플래시 기반 메모리의 교차점 어레이를 포함하지만 이에 제한되지는 않는다. 상이한 미디어 유형의 특성은 미디어 유형마다 다를 수 있다. 메모리 구성요소와 관련된 특성의 한 예는 데이터 밀도(data density)이다. 데이터 밀도는 메모리 구성요소의 메모리 셀당 저장할 수 있는 데이터의 양(예를 들어, 데이터 비트)에 대응한다. 플래시 기반 메모리의 예를 사용하면, 쿼드 레벨 셀(QLC)은 4비트의 데이터를 저장할 수 있고 단일 레벨 셀(SLC)은 1비트의 데이터를 저장할 수 있다. 따라서, QLC 메모리 셀을 포함하는 메모리 구성요소는 SLC 메모리 셀을 포함하는 메모리 구성요소보다 더 높은 데이터 밀도를 가질 것이다. 메모리 구성요소의 또 다른 특성은 액세스 속도이다. 액세스 속도는 메모리 구성요소가 메모리 구성요소에 저장된 데이터에 액세스하는 시간에 대응한다.
메모리 구성요소의 다른 특성은 데이터를 저장하기 위한 메모리 구성요소의 내구성(endurance)과 연관될 수 있다. 메모리 구성요소의 메모리 셀에 데이터가 기록 및/또는 그로부터 소거될 때, 메모리 셀이 손상될 수 있다. 메모리 셀에 수행되는 기록 동작 및/또는 소거 동작의 횟수가 증가함에 따라, 메모리 셀이 손상될수록 메모리 셀에 저장된 데이터에 오류가 포함될 확률이 증가한다. 메모리 구성요소의 내구성과 관련된 특성은 메모리 구성요소의 메모리 셀에서 수행되는 기록 동작의 수 또는 프로그래밍/소거 동작의 수이다. 메모리 셀에 수행된 기록 동작의 임계 수가 초과되는 경우, 데이터가 수정될 수 없는 많은 수의 오류를 포함할 수 있으므로 데이터는 더 이상 메모리 셀에 안정적으로 저장될 수 없다. 미디어 유형에 따라 데이터 저장에 대한 내구성도 다를 수 있다. 예를 들어, 제1 미디어 유형은 1,000,000회 기록 동작의 임계값을 가질 수 있는 반면 제2 미디어 유형은 2,000,000회 기록 동작의 임계값을 가질 수 있다. 따라서, 데이터를 저장하기 위한 제1 미디어 유형의 내구성은 데이터를 저장하기 위한 제2 미디어 유형의 내구성보다 작다.
데이터를 저장하기 위한 메모리 구성요소의 내구성과 관련된 또 다른 특성은 메모리 구성요소의 메모리 셀에 기록된 총 바이트다. 기록 횟수와 유사하게, 메모리 구성요소의 동일한 메모리 셀에 새로운 데이터가 기록됨에 따라 메모리 셀이 손상되고 메모리 셀에 저장된 데이터에 오류가 포함될 확률이 증가한다. 메모리 구성요소의 메모리 셀에 기록된 총 바이트 수가 총 바이트의 임계 수를 초과하면 메모리 셀은 더 이상 데이터를 안정적으로 저장할 수 없다.
기존의 메모리 서브시스템은 가비지 수집(GC), 웨어 레벨링, 폴딩 등과 같은 메모리 관리 동작의 대상이 되는 메모리 구성요소를 포함할 수 있다. 가비지 수집은 부실하거나 유효하지 않은 데이터가 차지하는 메모리를 회수하려고 한다. 데이터는 여러 셀로 구성된 페이지라는 단위로 메모리 구성요소에 기록될 수 있다. 그러나 메모리는 여러 페이지로 구성된 블록이라는 더 큰 단위로만 소거될 수 있다. 예를 들어, 블록은 64페이지를 포함할 수 있다. 블록의 크기는 128KB일 수 있지만 이와 다를 수 있다. 블록의 일부 페이지에 있는 데이터가 더 이상 필요하지 않은 경우(예를 들어, 오래되거나 유효하지 않은 페이지) 해당 블록은 가비지 수집 대상이 된다. 가비지 수집 프로세스 동안 블록에 양호한/유효 데이터가 있는 페이지가 판독되고 다른 빈 블록에 다시 기록된다. 그런 다음 원본 블록이 소거되어, 원본 블록의 모든 페이지가 새 데이터에 사용될 수 있다.
가비지 수집 프로세스에는 데이터를 판독하고 메모리 구성요소에 다시 기록하는 동작이 포함된다. 이는 호스트로부터의 새로운 기록이 전체 블록의 판독, 다른 블록에 대한 블록 내의 유효한 페이지의 기록, 그리고 새로운 데이터의 기록을 수반할 수 있음을 의미한다. 새 데이터 기록 직전에 수행되는 가비지 수집 프로세스는 시스템 성능을 크게 저하시킬 수 있다. 일부 메모리 서브시스템 제어기는 유휴 가비지 수집 또는 유휴 시간 가비지 수집(ITGC)이라고도 하는 백그라운드 가비지 수집(BGC)을 구현하며, 여기서 제어기는 호스트가 새 데이터를 기록해야 하기 전에 메모리 구성요소의 블록을 통합하기 위해 유휴 시간을 사용한다. 이를 통해 디바이스의 성능을 높게 유지할 수 있다. 제어기가 그것이 절대적으로 필요하기 전에 모든 예비 블록을 백그라운드 가비지 수집하는 경우, 호스트로부터 기록된 새 데이터는 데이터를 미리 이동하지 않고도 기록될 수 있으므로 성능이 최고 속도로 작동할 수 있다. 트레이드오프는 이러한 데이터 블록 중 일부가 실제로 호스트에 의해 필요하지 않고 결국 삭제되지만 운영 체제(OS)가 이 정보를 제어기에 전달하지 않는다는 것이다. 그 결과 곧 삭제될 데이터가 메모리 구성요소의 다른 위치에 다시 기록되어 기록 증폭이 증가하고 메모리 구성요소의 내구성에 부정적인 영향을 미친다. 기록 증폭(WA)은 관리 메모리, 저장 메모리, 솔리드 스테이트 드라이브(SSD) 등과 같은 메모리 서브시스템과 관련된 바람직하지 않은 현상이며, 여기서 저장 매체에 물리적으로 기록된 정보의 실제 양은 기록하려는 논리적 양의 배수이다. 일부 메모리 서브시스템에서, 백그라운드 가비지 수집은 적은 수의 블록만 지운 다음 중지하여 과도한 기록의 양을 제한한다. 또 다른 솔루션은 호스트 기록과 병렬로 필요한 이동을 수행할 수 있는 효율적인 가비지 수집 시스템을 갖는 것이다. 이 솔루션은 메모리 서브시스템이 거의 유휴 상태가 아닌 높은 기록 환경에서 더 효과적이다.
기존 가비지 수집은 동일한 평면에서 판독하고 기록할 필요가 없기 때문에 과도한 전력과 시간을 소비한다. 하나의 평면에서 데이터를 판독하고 다른 평면에 데이터를 기록하는 것은 시간이 많이 걸리고 비용이 많이 들고 비효율적이다. 또한, 기존의 가비지 수집 프로세스에는 불필요하게 메모리 구성요소에서 데이터를 이동하는 작업이 포함될 수 있다.
전통적으로, 가비지 수집 중에, 제어기는 제1 블록에서 제2 블록으로 유효 데이터를 이동시킨다. 제어기는 제2 블록의 사용 가능한 공간이 제1 블록과 동일한 평면에 있는지 여부에 관계없이 유효 데이터를 폴딩(folding)하기 위해 메모리 구성요소의 블록에서 임의의 사용 가능한 공간을 검색한다. 따라서 때때로, 제어기는 제1 평면의 한 블록에서 제2 평면의 다른 블록으로 데이터를 이동시킨다. 제어기가 제1 평면에서 제2 평면으로 데이터를 폴딩할 때, 데이터는 두 평면들 사이의 데이터 버스를 통과한다. 데이터 버스를 통과하는 것과 관련된 이동 시간은 가비지 수집 동작에서 레이턴시(latency)를 생성하여, 메모리 서브시스템이 호스트 요청을 처리하거나 다른 동작을 수행하는 데 사용될 수 없도록 한다.
본 개시의 양태는 메모리 구성요소의 동일한 평면 내에서 데이터 압축(data compaction)을 수행하는 메모리 서브시스템을 가짐으로써 상기 및 다른 결점을 해결한다. 이러한 메모리 서브시스템은 여러 평면을 사용하는 것과는 반대로 가능한 한 동일한 평면에 머무르게 함으로써 데이터 압축(예를 들어, SLC에서 TLC로), 데이터 폴딩(예를 들어, TLC에서 TLC로) 및 기타 형태의 가비지 수집에 필요한 리소스를 줄임으로써 비용을 낮출 수 있다. 본 발명의 이점 중 하나는 가비지 수집 동안 제어기가 제1 평면에 있는 블록에 데이터를 위한 공간이 있는지 확인한다는 것이다. 제1 평면에 공간이 있는 경우 데이터 버스 이동 시간으로 인한 레이턴시를 피할 수 있으므로 메모리 시스템에 이점이 있다. 동일한 평면에서 데이터를 폴딩할 공간이 없으면, 제어기는 제2 평면에서 제2 블록을 찾을 수 있다. 본 개시의 실시예는 데이터 폴딩 동안 데이터를 다른 평면으로 이동하기 전에 동일한 평면에서 임의의 자유 공간을 이용한다.
도 1은 본 개시내용의 일부 실시예에 따른 메모리 서브시스템(110)을 포함하는 예시적인 컴퓨팅 환경(100)을 도시한다. 메모리 서브시스템(110)은 메모리 구성요소들(112A 내지 112N)과 같은 매체를 포함할 수 있다. 메모리 구성요소들(112A 내지 112N)은 휘발성 메모리 구성요소, 비휘발성 메모리 구성요소, 또는 이들의 조합일 수 있다. 일부 실시예에서, 메모리 서브시스템은 저장 시스템이다. 저장 시스템의 예는 SSD이다. 일부 실시예에서, 메모리 서브시스템(110)은 하이브리드 메모리/저장 서브시스템이다. 일반적으로, 컴퓨팅 환경(100)은 메모리 서브시스템(110)을 사용하는 호스트 시스템(120)을 포함할 수 있다. 예를 들어, 호스트 시스템(120)은 메모리 서브시스템(110)에 데이터를 기록하고 메모리 서브시스템(110)으로부터 데이터를 판독할 수 있다.
호스트 시스템(120)은 데스크탑 컴퓨터, 랩톱 컴퓨터, 네트워크 서버, 모바일 디바이스와 같은 컴퓨팅 디바이스, 또는 메모리 및 처리 디바이스를 포함하는 그러한 컴퓨팅 디바이스일 수 있다. 호스트 시스템(120)은 호스트 시스템(120)이 메모리 서브시스템(110)으로부터 데이터를 판독하거나 이에 데이터를 기록할 수 있도록 메모리 서브시스템(110)을 포함하거나 이에 연결될 수 있다. 호스트 시스템(120)은 물리적 호스트 인터페이스를 통해 메모리 서브시스템(110)에 연결될 수 있다. 본 명세서에 사용된 바와 같이, "연결된"은 일반적으로 구성요소들 간의 연결을 의미하며, 이는 전기, 광학, 자기 등과 같은 연결을 포함하여, 유선이든 무선이든, 간접 통신 연결 또는 직접 통신 연결(예를 들어, 중간 구성요소 없이)이 될 수 있다. 물리적 호스트 인터페이스의 예에는 SATA(Serial Advanced Technology Attachment) 인터페이스, PCIe(Peripheral Component Interconnect Express) 인터페이스, 범용 직렬 버스(USB) 인터페이스, 파이버 채널, SAS(Serial Attached SCSI) 등이 포함되지만 이에 제한되지는 않는다. 물리적 호스트 인터페이스는 호스트 시스템(120)과 메모리 서브시스템(110) 사이에서 데이터를 전송하는데 사용될 수 있다. 메모리 서브시스템(110)이 PCIe 인터페이스에 의해 호스트 시스템(120)과 연결될 때 호스트 시스템(120)은 NVMe(NVM Express) 인터페이스를 추가로 활용하여 메모리 구성요소들(112A 내지 112N)에 액세스할 수 있다. 물리적 호스트 인터페이스는 메모리 서브시스템(110)과 호스트 시스템(120) 사이에서 제어, 어드레스, 데이터 및 기타 신호를 전달하기 위한 인터페이스를 제공할 수 있다.
메모리 구성요소들(112A 내지 112N)은 상이한 유형의 비휘발성 메모리 구성요소 및/또는 휘발성 메모리 구성요소의 임의의 조합을 포함할 수 있다. 비휘발성 메모리 구성요소의 예는 네거티브 및(NAND) 유형 플래시 메모리를 포함한다. 메모리 구성요소들(112A 내지 112N)의 각각은, 단일 레벨 셀들(SLC) 또는 다중 레벨 셀들(MLC)(예를 들어, 트리플 레벨 셀들(TLC) 또는 쿼드 레벨 셀들(QLC))과 같은, 메모리 셀들의 하나 이상의 어레이들을 포함할 수 있다. 일부 실시예에서, 특정 메모리 구성요소는 메모리 셀들의 SLC 부분 및 MLC 부분 모두를 포함할 수 있다. 메모리 셀들의 각각은 호스트 시스템(120)에 의해 사용되는 하나 이상의 데이터 비트(예를 들어, 데이터 블록)를 저장할 수 있다. NAND 유형 플래시 메모리와 같은 비휘발성 메모리 구성요소가 설명되지만, 메모리 구성요소들(112A 내지 112N)은 휘발성 메모리와 같은 임의의 다른 유형의 메모리에 기초할 수 있다. 일부 실시예에서, 메모리 구성요소들(112A 내지 112N)은, 이에 제한되는 것은 아니지만, 랜덤 액세스 메모리(RAM), 판독 전용 메모리(ROM), 동적 랜덤 액세스 메모리(DRAM), 동기식 동적 랜덤 액세스 메모리(SDRAM), 상변화 메모리(PCM), 마그네토 랜덤 액세스 메모리(MRAM), 네거티브 또는(NOR) 플래시 메모리, 전기적으로 소거 가능한 프로그래밍 가능한 판독 전용 메모리(EEPROM) 및 비휘발성 메모리 셀의 교차점 어레이일 수 있다. 비휘발성 메모리의 교차점 어레이는, 스택 가능한 교차 그리드 데이터 액세스 어레이와 함께, 벌크 저항의 변화에 기초한 비트 저장을 수행할 수 있다. 또한, 많은 플래시 기반 메모리와 달리, 교차점 비휘발성 메모리는 제자리 기록 동작(write in-place operation)을 수행할 수 있고, 여기서, 비휘발성 메모리 셀은 비휘발성 메모리 셀이 사전에 소거되지 않고 프로그래밍 될 수 있다. 또한, 메모리 구성요소들(112A 내지 112N)의 메모리 셀들은 데이터를 저장하는 데 사용되는 메모리 구성요소의 단위를 지칭할 수 있는 메모리 페이지 또는 데이터 블록으로서 그룹화될 수 있다.
메모리 시스템 제어기(115)(이하 "제어기"라 함)는 메모리 구성요소들(112A 내지 112N)과 통신하여 메모리 구성요소들(112A 내지 112N)에서 데이터 판독, 데이터 기록, 또는 데이터 소거와 같은 동작을 및 기타 이러한 동작을 수행한다. 제어기(115)는 하나 이상의 집적 회로 및/또는 이산 구성요소, 버퍼 메모리, 또는 이들의 조합과 같은 하드웨어를 포함할 수 있다. 제어기(115)는 마이크로제어기, 특수 목적 논리 회로(예를 들어, FPGA(field programmable gate array), ASIC(application specific integrated circuit) 등), 또는 다른 적절한 프로세서일 수 있다. 제어기(115)는 로컬 메모리(119)에 저장된 명령어를 실행하도록 구성된 프로세서(처리 디바이스)(117)를 포함할 수 있다. 예시된 예에서, 제어기(115)의 로컬 메모리(119)는, 메모리 서브시스템(110)과 호스트 시스템(120) 사이의 통신을 처리하는 것을 포함하는, 메모리 서브시스템(110)의 동작을 제어하는 다양한 프로세스, 동작, 논리 흐름, 및 루틴을 수행하기 위한 명령어를 저장하도록 구성된 내장형 메모리를 포함한다. 일부 실시예에서, 로컬 메모리(119)는 메모리 포인터, 페치된 데이터 등을 저장하는 메모리 레지스터를 포함할 수 있다. 로컬 메모리(119)는 또한 마이크로 코드(micro-code)를 저장하기 위한 판독 전용 메모리(ROM)를 포함할 수 있다. 도 1의 예시적인 메모리 서브시스템(110)은 제어기(115)를 포함하는 것으로 도시되었지만, 본 발명의 다른 실시예에서, 메모리 서브시스템(110)은 제어기(115)를 포함하지 않을 수 있고, 대신 외부 제어(예를 들어, 외부 호스트에 의해, 또는 메모리 서브시스템과 분리된 프로세서 또는 제어기에 의해 제공됨)에 의존할 수 있다.
일반적으로, 제어기(115)는 호스트 시스템(120)으로부터 커맨드 또는 동작을 수신할 수 있고 커맨드 또는 동작을 메모리 구성요소들(112A 내지 112N)에 대한 원하는 액세스를 달성하기 위해 명령어 또는 적절한 커맨드로 변환할 수 있다. 제어기(115)는 웨어 레벨링 동작, 가비지 수집 동작, 오류 검출 및 오류 수정 코드(ECC) 동작, 암호화 동작, 캐싱 동작 및 메모리 구성요소들(112A 내지 112N)과 연관된 물리적 블록 어드레스와 논리적 블록 어드레스 사이에서 어드레스 변환과 같은 다른 동작을 담당할 수 있다. 제어기(115)는 물리적 호스트 인터페이스를 통해 호스트 시스템(120)과 통신하기 위한 호스트 인터페이스 회로를 더 포함할 수 있다. 호스트 인터페이스 회로는 호스트 시스템으로부터 수신된 커맨드를 메모리 구성요소들(112A 내지 112N)에 액세스하기 위한 커맨드 명령어로 변환할 수 있고 뿐만 아니라 메모리 구성요소들(112A 내지 112N)과 연관된 응답을 호스트 시스템(120)에 대한 정보로 변환할 수 있다.
메모리 서브시스템(110)은 또한 도시되지 않은 추가 회로 또는 구성요소를 포함할 수 있다. 일부 실시예에서, 메모리 서브시스템(110)은 캐시 또는 버퍼(예를 들어, DRAM) 및 제어기(115)로부터 어드레스를 수신하고 어드레스를 디코딩하여 메모리 구성요소들(112A 내지 112N)에 액세스할 수 있는 어드레스 회로(예를 들어, 로우 디코더 및 컬럼 디코더)를 포함할 수 있다.
메모리 서브시스템(110)은 제어기(115)가 메모리 구성요소들(112A, 112N) 중 하나 이상의 동일한 평면 내에서 데이터를 압축하는 데 사용할 수 있는 데이터 압축 구성요소(113)를 포함한다. 일부 실시예에서, 제어기(115)는 데이터 압축 구성요소(113)의 적어도 일부를 포함한다. 예를 들어, 제어기(115)는 본원에 설명된 동작을 수행하기 위해 로컬 메모리(119)에 저장된 명령어를 실행하도록 구성된 프로세서(117)(처리 디바이스)를 포함할 수 있다. 일부 실시예에서, 데이터 압축 구성요소(113)는 호스트 시스템(120), 어플리케이션, 또는 운영 체제의 일부이다.
데이터 블록의 일부 페이지에 있는 데이터가 더 이상 필요하지 않은 경우(예를 들어, 오래되거나 유효하지 않은 페이지), 해당 블록은 가비지 수집 대상이 된다. 데이터 압축 구성요소(113)는 데이터 압축을 위한 평면 내의 후보 데이터 블록을 식별할 수 있다. 데이터 압축 구성요소(113)는 데이터 블록으로부터 페이지 버퍼로 유효 데이터를 복사할 수 있다. 데이터 압축 구성요소(113)는 페이지 버퍼로부터 유효 데이터를 동일한 평면 및/또는 다른 평면 내의 블록으로 복사할 수 있다. 데이터 압축 구성요소(113)의 동작에 관한 추가 세부사항은 아래에서 설명된다.
도 2는 메모리 구성요소(200)에서의 데이터 압축의 예이다. 메모리 구성요소(200)는 4개의 평면들을 포함한다: 평면 1, 평면 2, 평면 3 및 평면 4. 각 평면은 대응하는 페이지 버퍼(page buffer)를 갖고 평면들은 데이터 버스(208)에 의해 서로 연결된다. 데이터 버스(208)는 평면들과 제어기(115) 사이의 통신 및 데이터 전송을 허용한다. 제어기(115)는 데이터 버스(208)를 이용하여 평면들과 관련된 다양한 동작을 실행한다. 각 평면은 블록들(예를 들어, 블록들(204, 210, 214))이라고 하는 더 작은 섹션들로 나뉜다. 본 개시의 일부 실시예에서, 제어기(115)는 개별 메모리 페이지들을 판독하고 기록할 수 있지만, 블록 레벨에서 소거할 수 있다.
평면 1(202)은 오래된 블록(204) 및 새로운 블록(210)을 포함하는 다수의 데이터 블록은 물론 임의의 수의 다른 데이터 블록을 포함한다. 이 예에서, 데이터 블록(204)의 메모리 페이지들에 있는 일부 데이터는 더 이상 필요하지 않으며(예를 들어, 부실 또는 무효 페이지), 따라서 데이터 압축 구성요소(113)는 데이터 블록(204)을 가비지 수집을 위한 후보로 식별한다. 데이터 압축 구성요소(113)는 다양한 메모리 구성요소들(112A-112N)을 스캔함으로써 데이터 블록(204)에서 무효 페이지를 식별하여 유효하지 않거나 오래된 데이터를 저장하는 하나 이상의 메모리 페이지를 식별한다. 일부 예들에서, 스캐닝은 비어 있지 않은 페이지들(예를 들어, 논리적 0을 포함하는 페이지의 메모리 셀들)을 식별함으로써 시작될 수 있다. 페이지가 비어 있지 않은지 식별한 후, 데이터 압축 구성요소(113)는 데이터가 부실/무효인지(예를 들어, 메모리 서브시스템(110)에 저장된 데이터의 가장 최근 버전이 아님) 검증할 수 있다. 데이터가 포함된 페이지는 데이터가 대응하는 논리적 어드레스의 최신 물리적 어드레스에 있지 않은 경우, 프로그램 작동에 데이터가 더 이상 필요하지 않은 경우 및/또는 데이터가 다른 방식으로 손상된 경우 유효하지 않은 것으로 간주될 수 있다. 데이터가 대응하는 논리적 어드레스의 최신 물리적 어드레스에 있는 경우, 데이터가 프로그램 작동에 필요한 경우 및/또는 데이터가 다른 방식으로 손상되지 않은 경우 데이터가 포함된 페이지가 유효한 것으로 간주될 수 있다. 대안적으로, 데이터 압축 구성요소(113)는 로컬 메모리(119)의 레코드를 참조함으로써 유효 데이터를 저장하는 하나 이상의 메모리 페이지를 식별할 수 있다.
평면 1(202)은 데이터 압축 구성요소(113)가 평면 1(202)이 새로운 데이터를 저장하기 위한 저장 용량이 부족해지기 시작하고 및/또는 평면 1(202)의 적어도 하나의 블록이 무효 데이터를 포함한다는 것을 검출할 때 데이터 압축을 위해 선택될 수 있다. 데이터 압축을 위해 평면 1(202)이 선택되면, 데이터 압축 구성요소(113)는 유효 데이터를 포함하는 페이지를 오래된 블록(204)에서 페이지 버퍼(206)로 복사할 수 있다. 페이지 버퍼(206)는 평면 1(202)에 연결되고 이에 대응한다. 페이지 버퍼(206)는 또한 데이터 버스(208)에 연결된다. 오래된 블록(204)으로부터의 유효 데이터를 포함하는 페이지는 페이지 버퍼(206)에서 새로운 블록(210)으로 복사될 수 있으며, 이는 데이터 압축 구성요소(113)가 새로운 블록(210)이 인커밍 데이터를 저장할 저장 용량을 갖는다는 것을 검출하기 때문이다. 데이터 압축 구성요소(113)는 평면 1, 평면 2, 평면 3 및 평면 4의 블록을 스캔하여 빈 페이지(예를 들어, 논리적 1을 포함하는 페이지의 메모리 셀)를 식별하거나 로컬 메모리(119)의 레코드를 참조함으로써 블록의 자유 저장 용량을 식별할 수 있다. 새로운 블록(210)은 오래된 블록(204)으로부터의 유효 데이터 중 일부를 저장하기에 충분한 공간이 있을 때 저장 용량을 갖는 것으로 간주될 수 있다. 일부 실시예에서, 오래된 블록(204)으로부터의 유효 데이터의 일부는 새로운 블록(210)에 저장될 수 있고 오래된 블록(204)으로부터의 유효 데이터의 다른 부분은 저장 용량을 가진 하나 이상의 다른 블록에 저장될 수 있다. 블록이 저장 용량을 가질 때, 데이터 압축 구성요소(113)는 데이터가 압축될 다른 블록으로부터 유효 데이터를 저장하기 위한 타겟 블록으로서 블록을 식별할 수 있다.
이러한 예의 시간 절약 및 비용 효율적인 양태는 오래된 블록(204)과 새로운 블록(210)이 동일한 평면, 즉 평면 1(202)에 있다는 사실이다. 따라서, 오래된 블록(204)으로부터의 유효 데이터를 포함하는 페이지는 다른 평면(예를 들어, 평면 2(212), 평면 3 또는 평면 4)에 도달하기 위해 데이터 버스(206)를 통과할 필요가 없다.
일 예에서, 제어기(115) 또는 데이터 압축 구성요소(113)는 오래된 블록(204)으로부터의 유효 데이터를 다시 오래된 블록(204)으로 압축할 수 있다(예를 들어, 오래된 블록(204)으로부터의 유효 데이터는 페이지 버퍼(206)로 복사되고, 오래된 블록(204)은 소거되며, 페이지 버퍼(206)로부터의 유효 데이터는 다시 오래된 블록(204)으로 복사됨). 이러한 경우, 메모리 구성요소의 요소(예를 들어, 블록)가 제한된 횟수만 프로그래밍 및 소거될 수 있는 기록 증폭의 부작용은 웨어 레벨링(wear leveling)과 같은 다양한 기술을 사용하여 메모리 서브시스템(110)에 의해 설명될 수 있다. 기록 증폭은 종종 메모리 구성요소(112N)가 그 수명 동안 유지할 수 있는 프로그래밍/소거 사이클(P/E 사이클)의 최대 수로 지칭된다. 명목상(nominally), 각 NAND 블록은 100,000 P/E 주기를 견딜 수 있다. 웨어 레벨링은 모든 물리적 블록이 균일하게 작동되도록 할 수 있다. 제어기(115)는 본 개시의 임의의 예에서 균일한 프로그래밍 및 소거를 보장하기 위해 웨어 레벨링을 사용할 수 있다. 호스트 시스템(120), 메모리 서브시스템(110), 데이터 압축 구성요소(113), 및/또는 제어기(115)는 주어진 메모리 구성요소(112A-112N)를 마모시키지 않기 위해 블록이 프로그래밍(예를 들어, 기록)되고 소거된 횟수의 레코드를 유지할 수 있다.
일부 예들에서, 유효 데이터는 메모리 페이지 단위의 메모리 세그먼트에서 오래된 블록(204)에서 대응하는 페이지 버퍼(206)로 그리고 페이지 버퍼(206)에서 새로운 블록(210)으로 전송될 수 있다. 다른 예들에서, 유효 데이터는 메모리 페이지보다 작은 세그먼트에서 오래된 블록(204)에서 대응하는 페이지 버퍼(206)로 그리고 페이지 버퍼(206)에서 새로운 블록(210)으로 전송될 수 있다. 예를 들어, 이전 블록(204)으로부터의 유효 데이터는 증분 방식(piecemeal fashion)으로 대응하는 페이지 버퍼(206)에 복사될 수 있고, 여기서, 하나의 메모리 페이지의 크기보다 작은 유효 데이터의 세그먼트는 페이지 버퍼(206)에 복사된다. 증분 데이터 전송은 메모리 페이지 크기 청크(chunk)로 데이터를 복사하는 것보다 더 효율적일 수 있으며, 이는 데이터의 증분 청크가 이동 속도가 더 빠르기 때문이다. 데이터의 증분 청크는 2KB, 4KB, 6KB, 8KB 또는 기타 크기일 수 있다. 이 증분 데이터 전송을 부분 페이지 프로그래밍이라고 할 수 있다.
메모리 페이지의 크기가 크기 때문에, 부분 페이지 프로그래밍은 더 적은 양의 데이터를 저장하는 데 유용하다. 일부 예에서, 각 2112바이트 메모리 페이지는 4개의 PC 크기, 512바이트 섹터를 수용할 수 있다. 각 페이지의 여분의 64바이트 영역은 오류 수정 코드(ECC)를 위한 추가 저장소를 제공할 수 있다. 한 번에 4개의 섹터를 모두 기록하는 것이 유리할 수 있지만, 종종 이것이 불가능하다. 예를 들어, 데이터가 파일에 추가될 때, 파일은 512바이트로 시작하여 1024바이트로 커질 수 있다. 이 상황에서, 제1 프로그램 페이지 동작은 첫 번째 512바이트를 메모리 서브시스템(110)에 기록하는 데 사용될 수 있고, 제2 프로그램 페이지 동작은 두 번째 512바이트를 메모리 서브시스템(110)에 기록하는 데 사용될 수 있다. 일부 예들에서, 소거가 요구되기 전에 부분 페이지가 프로그래밍될 수 있는 최대 횟수는 4회이다. MLC 메모리 서브시스템을 사용하는 일부 예에서, 페이지당 하나의 부분 페이지 프로그램만이 소거 동작 사이에 지원될 수 있다.
도 3은 메모리 구성요소의 동일한 평면 내에서 데이터를 압축하는 예시적인 방법(300)의 흐름도이다. 방법(300)은 하드웨어(예를 들어, 처리 디바이스, 회로, 전용 논리, 프로그래밍 가능 논리, 마이크로코드, 디바이스의 하드웨어, 집적 회로 등), 소프트웨어(예를 들어, 처리 디바이스에서 실행되거나 실행되는 명령어), 또는 이들의 조합을 포함할 수 있는 처리 로직에 의해 수행될 수 있다. 일부 실시예에서, 방법(300)은 도 1의 데이터 압축 구성요소(113)에 의해 수행된다. 특정한 시퀀스나 순서로 도시되어 있지만 달리 명시되지 않는 한 프로세스의 순서는 수정될 수 있다. 따라서, 도시된 실시예는 예시로서만 이해되어야 하며, 도시된 프로세스는 다른 순서로 수행될 수 있으며, 일부 프로세스는 병렬로 수행될 수 있다. 또한, 다양한 실시예에서 하나 이상의 프로세스가 생략될 수 있다. 따라서, 모든 실시예에서 모든 프로세스가 필요한 것은 아니다. 다른 프로세스 흐름이 가능하다.
블록(302)에서, 처리 디바이스는 메모리 구성요소들(112A, 112N)의 제1 평면(202)의 제1 데이터 블록(204)으로부터 하나 이상의 메모리 페이지를 식별할 수 있고, 하나 이상의 메모리 페이지는 유효 데이터를 저장한다. 처리 디바이스는 메모리 구성요소들(112A, 112N)의 제1 평면(202)의 제1 데이터 블록(204)으로부터의 유효 데이터를 저장하는 하나 이상의 메모리 페이지들을 식별하기 위해 데이터 압축 구성요소(113)를 사용할 수 있다. 데이터 압축 구성요소(113)는 유효 데이터를 저장하는 하나 이상의 메모리 페이지를 식별하기 위해 다양한 메모리 구성요소들(112A-112N)을 스캔할 수 있다. 일부 예들에서, 데이터 압축 구성요소(113)는 비어 있지 않은 페이지를 스캔하고 식별할 수 있다(예를 들어, 페이지의 메모리 셀이 논리적 0을 포함). 페이지가 비어 있지 않다는 것을 식별한 후, 데이터 압축 구성요소(113)는 데이터가 여전히 유효한지를 검증할 수 있다. 데이터가 대응하는 논리적 어드레스의 최신 물리적 어드레스에 있는 경우, 데이터가 프로그램에 필요한 경우 및/또는 데이터가 다른 방식으로 손상되지 않은 경우 데이터가 포함된 페이지가 유효한 것으로 간주될 수 있다. 대안적으로, 데이터 압축 구성요소(113)는 로컬 메모리(119)의 레코드를 참조함으로써 유효 데이터를 저장하는 하나 이상의 메모리 페이지를 식별할 수 있다. 데이터 압축 구성요소(113)가 유효 데이터를 저장하기 위한 여유 공간이 메모리 구성요소(112A-112N) 중 하나에서 고갈되기 시작한다고 결정할 때, 제어기(115)는 데이터 압축 구성요소(113)를 트리거하여 본원에 개시된 데이터 압축 시퀀스를 시작할 수 있다.
블록(304)에서, 처리 디바이스는 메모리 구성요소들(112A, 112N)의 제1 평면(202)에 대응하는 제1 페이지 버퍼(206)에 하나 이상의 메모리 페이지를 복사할 수 있다. 메모리 페이지 복사에는 페이지 판독 동작이 포함될 수 있다. 페이지 판독 동작은 페이지가 메모리 셀 어레이로부터 액세스되고 페이지 버퍼(206)로 로딩되는 동안의 약 25μs가 걸릴 수 있다. 페이지 버퍼(206)는 16,896비트(2112바이트) 레지스터일 수 있다. 그 다음, 처리 디바이스는 페이지 버퍼(206)의 데이터에 액세스하여 데이터를 새로운 위치(예를 들어, 새로운 블록(210))에 기록할 수 있다. 메모리 페이지 복사에는 기록 동작도 포함될 수 있고, 여기서 처리 디바이스는 다양한 레이트(예를 들어, 7MB/s 이상)에서 새로운 블록(210)에 데이터를 기록할 수 있다.
블록(306)에서, 처리 디바이스는 메모리 구성요소의 제1 평면(202)이 하나 이상의 메모리 페이지를 저장할 용량을 갖는 제2 데이터 블록(210)을 갖는지를 결정할 수 있다. 처리 장치는 데이터 압축 구성요소(113)를 사용하여 메모리 구성요소(112A, 121N)의 제1 평면(202)이 하나 이상의 메모리 페이지를 저장할 수 있는 용량을 갖는 제2 데이터 블록(210)을 갖는지 여부를 결정할 수 있다. 데이터 압축 구성요소(113)는 새로운 데이터를 위한 저장 용량을 갖는 하나 이상의 메모리 페이지를 식별하기 위해 다양한 메모리 구성요소(112A-112N)를 스캔할 수 있다. 저장 용량이 있는 메모리 페이지는 "자유 메모리 페이지(free memory page)"라고 할 수 있다. 대안적으로, 데이터 압축 구성요소(113)는 로컬 메모리(119)의 레코드를 참조함으로써 하나 이상의 자유 메모리 페이지를 식별할 수 있다.
제2 데이터 블록(210)이 하나 이상의 메모리 페이지를 저장할 수 있는 용량을 갖는 경우, 블록(308)에서 처리 디바이스는 제1 페이지 버퍼(206)로부터 제1 평면(202)의 제2 데이터 블록(210)으로 하나 이상의 메모리 페이지를 복사하도록 진행할 수 있다. 복사는 제1 페이지 버퍼(206)로부터 하나 이상의 메모리 페이지를 판독하고 제2 데이터 블록(210)에 하나 이상의 메모리 페이지를 기록하는 것을 포함할 수 있다. 일부 예에서 데이터의 한 페이지를 기록하는 데 처리 장치가 220μs 내지 600μs가 소요될 수 있다. 블록(308)에서, 처리 디바이스는 제1 페이지 버퍼(206)에서 제2 데이터 블록(210)으로 하나 이상의 메모리 페이지를 전송하기 위해 데이터 버스(208)를 사용할 필요가 없으며, 이는 제2 데이터 블록(210)이 제1 데이터 블록(204)과 동일한 평면(202)에 있기 때문이다. 이 데이터 전송 시퀀스에서 데이터 버스 이동이 방지되기 때문에 데이터 버스를 따라 데이터를 이동하는 것과 관련된 레이턴시도 회피된다. 따라서, 메모리 서브 시스템(110)의 동작 효율이 향상된다.
제2 데이터 블록(210)이 하나 이상의 메모리 페이지를 저장할 용량이 없는 경우, 블록(310)에서 처리 디바이스는 제1 페이지 버퍼(206)로부터 제2 평면(212)의 제3 데이터 블록(214)으로 하나 이상의 메모리 페이지를 복사하도록 진행할 수 있다. 제3 데이터 블록(214)이 제1 데이터 블록과 다른 평면에 있기 때문에, 하나 이상의 메모리 페이지는 제2 평면(212)에 도달하기 위해 데이터 버스 상에서 이동한다. 이 이동 시간은 데이터 버스(208) 및 메모리 서브시스템(110)의 작동 속도 및 가용 대역폭에 영향을 미친다. 다른 예들에서, 처리 디바이스는 또한 제1 페이지 버퍼(206)로부터의 하나 이상의 메모리 페이지들을 제2 데이터 블록(214)으로부터의 하나의 메모리 페이지(218)로 복사할 수 있다(예를 들어, 3개의 SLC 페이지가 하나의 TLC 페이지에 기록될 있는, SLC에서 TLC로 압축; 및 TLC에서 TLC로 폴딩). 처리 디바이스는 또한 하나의 메모리 페이지의 크기보다 작은 증분 양으로 제1 데이터 블록(204)으로부터 제 1 페이지 버퍼(206)로 하나 이상의 메모리 페이지를 복사할 수 있다(예를 들어, 0.5KB, 1KB, 2KB, 3KB 또는 4KB 피스).
블록(312)에서, 처리 장치는 제1 데이터 블록(204)의 모든 데이터를 소거할 수 있고, 따라서 기록될 제1 데이터 블록을 완전히 비울 수 있다. 일부 예들에서, 처리 디바이스는 블록의 메모리 셀들을 논리 1로 설정함으로써 소거 절차를 실행할 수 있다. 일부 예에서 처리 디바이스는 삭제를 완료하는 데 최대 500μs가 소요될 수 있다.
방법(300)은 내부 데이터 이동 커맨드에 대한 판독을 포함할 수 있다. 내부 데이터 이동 커맨드에 대한 판독은 "복사"라고도 한다. 이는 데이터를 한 페이지에서 다른 페이지로 내부적으로 이동하는 기능을 제공하고-데이터는 메모리 서브시스템(110)을 떠나지 않는다. 내부 데이터 이동 동작을 위한 판독은 하나 이상의 메모리 페이지로부터 판독된 데이터를 페이지 버퍼(예를 들어, 페이지 버퍼(206))로 전송한다. 그 다음, 데이터는 메모리 서브시스템(110)의 다른 페이지에 프로그래밍/기록될 수 있다(예를 들어, 제2 블록(210)에서). 이는 제어기(115)가 블록(204)을 소거하기 전에 블록(204) 외부로 데이터를 이동해야 하는 경우(예를 들어, 데이터 압축)에서 매우 유용하다. 프로그램 동작을 시작하기 전에 판독 데이터를 수정할 수도 있다. 이는 제어기(115)가 프로그래밍 이전에 데이터를 변경하기를 원하는 경우에 유용하다.
처리 디바이스는 메모리 구성요소 온 및/또는 오프에서 에러 검출 및 수정을 더 수행할 수 있다. 이 프로세스에서 오류 수정 코드 메모리(ECC 메모리)를 사용할 수 있다. ECC 메모리는 가장 일반적인 종류의 내부 데이터 손상을 감지하고 수정할 수 있는 컴퓨터 데이터 저장소 유형이다. ECC 메모리는 단일 비트 오류에 대한 면역을 갖는 메모리 시스템을 유지할 수 있다: 각 워드로부터 판독된 데이터는 실제로 저장된 비트 중 하나가 잘못된 상태로 플립된 경우에도 항상 그것에 기록된 데이터와 동일하다.
ECC는 단일 비트 메모리 오류를 검출한 다음 수정하는 방법을 지칭할 수도 있다. 단일 비트 메모리 오류는 서버/시스템/호스트 출력 또는 프로덕션의 데이터 오류일 수 있으며, 오류의 존재는 서버/시스템/호스트 성능에 큰 영향을 미칠 수 있다. 단일 비트 메모리 오류에는: 하드 오류와 소프트 오류의 두 가지 유형이 있다. 하드 오류는 과도한 온도 변화, 전압 스트레스 또는 메모리 비트에 가해지는 물리적 스트레스와 같은 물리적 요인으로 인해 발생한다. 소프트 오류는 메모리의 비트를 플립할 수 있는 우주 광선(cosmic ray) 또는 방사성 붕괴에 대한 마더보드의 전압 변동과 같이 원래 의도한 것과 다르게 데이터를 기록하거나 판독할 때 발생한다. 비트는 전하의 형태로 프로그래밍된 값을 유지하기 때문에, 이러한 유형의 간섭은 메모리 비트의 전하를 변경하여, 오류를 일으킬 수 있다. 서버에는, 오류가 발생할 수 있는 여러 위치가 있다: 스토리지 드라이브, CPU 코어, 네트워크 연결을 통해, 그리고 다양한 유형의 메모리에서. 오류 검출 및 수정은 이러한 오류의 영향을 완화할 수 있다.
도 4는 메모리 구성요소의 동일한 평면(202) 내에서 데이터를 압축하는 예시적인 방법(400)의 흐름도이다. 방법(400)은 하드웨어(예를 들어, 처리 디바이스, 회로, 전용 논리, 프로그래밍 가능 논리, 마이크로코드, 디바이스의 하드웨어, 집적 회로 등), 소프트웨어(예를 들어, 처리 디바이스에서 운영되거나 실행되는 명령어), 또는 이들의 조합을 포함할 수 있는 처리 로직에 의해 수행될 수 있다. 일부 실시예에서, 방법(400)은 도 1의 데이터 압축 구성요소(113)에 의해 수행된다. 특정한 시퀀스나 순서로 도시되어 있지만, 달리 명시되지 않는 한 프로세스의 순서는 수정될 수 있다. 따라서, 도시된 실시예는 예시로서만 이해되어야 하며, 도시된 프로세스는 다른 순서로 수행될 수 있으며, 일부 프로세스는 병렬로 수행될 수 있다. 또한, 다양한 실시예에서 하나 이상의 프로세스가 생략될 수 있다. 따라서, 모든 실시예에서 모든 프로세스가 필요한 것은 아니다. 다른 프로세스 흐름이 가능하다.
블록(402)에서, 처리 디바이스는 메모리 구성요소들(112A, 112N)의 제1 평면(202)에 있는 제1 데이터 블록(204)으로부터 하나 이상의 제1 물리적 어드레스에서 하나 이상의 메모리 페이지를 식별할 수 있고, 하나 이상의 메모리 페이지는 유효 데이터를 저장하고, 논리적 어드레스는 제1 물리적 어드레스에 매핑된다. 논리적 어드레스는 중앙 처리 장치(CPU)에 의해 생성될 수 있으며, 이는 호스트 시스템(120) 또는 메모리 서브시스템(110)에 포함되거나 이와 함께 작동한다. 논리적 어드레스는 물리적으로 존재하지 않는 가상 어드레스다. 이 가상 어드레스는 CPU에 의해 물리적 메모리 위치에 액세스하기 위한 참조로 사용된다. 논리적 어드레스 공간이라는 용어는 프로그램의 관점에서 생성된 모든 논리적 어드레스 세트에 대해 사용될 수 있다. 호스트 시스템(120)은 논리적 어드레스를 그의 대응하는 물리적 어드레스에 매핑하는 메모리 관리 장치(MMU)라고 하는 하드웨어 디바이스를 포함하거나 이와 함께 작동할 수 있다. 물리적 어드레스는 메모리 구성요소(112A, 112N)에서 데이터의 물리적 위치를 식별한다. 호스트 시스템(120)은 물리적 어드레스를 다루지 않고 다만 그의 대등하는 논리적 어드레스를 이용하여 물리적 어드레스에 액세스할 수 있다. 프로그램은 논리적 어드레스를 생성하지만 프로그램은 그 실행을 위해 물리 메모리가 필요하므로 논리적 어드레스는 사용되기 전에 MMU에 의해 물리적 어드레스에 매핑된다. 물리적 어드레스 공간이라는 용어는 논리적 어드레스 공간의 논리적 어드레스에 대응하는 모든 물리적 어드레스에 사용된다. 재배치 레지스터(relocation register)를 사용하여 다양한 방법으로 논리적 어드레스를 물리적 어드레스에 매핑할 수 있다. 일부 예에서 CPU가 논리적 어드레스(예를 들어, 345)를 생성할 때, MMU는 물리적 어드레스(예를 들어, 345+300 = 645)의 위치를 식별하기 위해 논리적 어드레스에 추가되는 재배치 레지스터(예를 들어, 300)를 생성할 수 있다. 본 발명에서 유효 데이터가 한 블록에서 다른 블록으로 이동하는 경우, 재배치 레지스터는 유효 데이터의 새 위치를 반영하도록 업데이트될 수 있다.
블록(402)에서, 처리 디바이스는 메모리 구성요소들(112A, 112N)의 제1 평면(202)에 있는 제1 데이터 블록(204)으로부터 유효 데이터를 저장하는 하나 이상의 메모리 페이지를 식별하기 위해 데이터 압축 구성요소(113)를 사용할 수 있다. 데이터 압축 구성요소(113)는 유효 데이터를 저장하는 하나 이상의 메모리 페이지를 식별하기 위해 다양한 메모리 구성요소들(112A-112N)을 스캔할 수 있다. 일부 예들에서, 데이터 압축 구성요소(113)는 비어 있지 않은 페이지를 스캔하고 식별할 수 있다(예를 들어, 페이지의 메모리 셀들은 논리적 0을 포함함). 페이지가 비어 있지 않다는 것을 식별한 후, 데이터 압축 구성요소(113)는 데이터가 여전히 유효한지를 검증할 수 있다. 데이터가 포함된 페이지는 데이터가 대응하는 논리적 어드레스의 최신 물리적 어드레스에 있는 경우, 데이터가 여전히 프로그램에 필요한 경우 및/또는 데이터가 다른 방식으로 손상되지 않은 경우 유효한 것으로 간주될 수 있다. 대안적으로, 데이터 압축 구성요소(113)는 로컬 메모리(119)의 레코드를 참조함으로써 유효 데이터를 저장하는 하나 이상의 메모리 페이지를 식별할 수 있다. 제어기(115)가 유효 데이터를 저장하기 위한 여유 공간이 메모리 구성요소(112A-112N) 중 하나에서 고갈되기 시작한다고 결정할 때, 제어기(115)는 데이터 압축 시퀀스를 시작하기 위해 데이터 압축 구성요소(113)를 트리거할 수 있다.
블록(404)에서, 처리 디바이스는 메모리 구성요소의 제1 평면(202)에 대응하는 페이지 버퍼(206)에 하나 이상의 메모리 페이지를 복사할 수 있다. 메모리 페이지 복사에는 페이지 판독 동작이 포함될 수 있다. 페이지 판독 동작은 페이지가 메모리 셀 어레이로부터 액세스되고 페이지 버퍼(206)로 로딩되는 동안의 약 25μs가 걸릴 수 있다. 페이지 버퍼(206)는 16,896비트(2112바이트) 레지스터일 수 있다. 그 다음, 처리 디바이스는 페이지 버퍼(206)의 데이터에 액세스하여 데이터를 새로운 위치에 기록할 수 있다. 메모리 페이지를 복사하는 것은 또한 기록 동작을 포함할 수 있으며, 여기서 처리 장치는 다양한 레이트(예를 들어, 7MB/s 이상)로 새로운 블록(210)에 데이터를 기록할 수 있다.
블록(406)에서, 처리 디바이스는 메모리 구성요소의 제1 평면(202)이 하나 이상의 메모리 페이지를 저장할 용량을 갖는 제2 물리적 어드레스에서 제2 데이터 블록(210)을 갖는다고 결정할 수 있다. 처리 디바이스는 데이터 압축 구성요소(113)를 사용하여 메모리 구성요소의 제1 평면(202)이 하나 이상의 메모리 페이지를 저장할 용량을 갖는 제2 데이터 블록(210)을 갖는다고 결정할 수 있다. 데이터 압축 구성요소(113)는 새로운 데이터를 위한 저장 용량을 갖는 하나 이상의 메모리 페이지를 식별하기 위해 다양한 메모리 구성요소들(112A-112N)을 스캔할 수 있다. 저장 용량을 갖는 메모리 페이지는 "자유 메모리 페이지"라고 지칭될 수 있다. 대안적으로, 데이터 압축 구성요소(113)는 로컬 메모리(119)의 레코드를 참조함으로써 하나 이상의 자유 메모리 페이지를 식별할 수 있다.
블록(408)에서, 처리 디바이스는 페이지 버퍼(206)로부터 제2 데이터 블록(210)으로 하나 이상의 메모리 페이지를 복사할 수 있고, 여기서 논리적 어드레스는 제2 물리적 어드레스에 매핑되도록 업데이트된다. 복사는 하나 이상의 메모리 페이지를 제2 데이터 블록(210)에 기록하는 것을 포함할 수 있다. 일부 예에서 처리 디바이스는 한 페이지의 데이터를 기록하는 데 220μs 내지 600μs가 소요될 수 있다. 블록(308)에서, 처리 디바이스는 제1 페이지 버퍼(206)에서 제2 데이터 블록(210)으로 하나 이상의 메모리 페이지를 전송하기 위해 데이터 버스(208)를 사용할 필요가 없으며, 이는 제2 데이터 블록(210)이 제1 데이터 블록(204)과 동일한 평면(202)에 있기 때문이다. 이 데이터 전송 시퀀스에서는 불필요한 데이터 버스 이동이 방지되므로 데이터 버스를 따라 데이터를 이동하는 것과 관련된 레이턴시도 방지된다. 따라서, 메모리 서브 시스템(110)의 동작 효율이 향상된다.
블록(410)에서, 처리 디바이스는 제1 데이터 블록(204)의 모든 데이터를 소거할 수 있고, 따라서 제1 데이터 블록(204)이 기록되거나 프로그래밍될 수 있도록 완전히 비울 수 있다. 일부 예들에서, 처리 디바이스는 블록의 메모리 셀들을 논리 1로 설정함으로써 소거 절차를 실행할 수 있다. 일부 예에서 처리 디바이스는 소거를 완료하는 데 최대 500μs가 소요될 수 있다.
도 5는 머신으로 하여금 본원에서 논의된 방법론 중 임의의 하나 이상을 수행하게 하기 위한 명령어 세트가 실행될 수 있는 컴퓨터 시스템(500)의 예시적인 머신을 도시한다. 일부 실시예에서, 컴퓨터 시스템(500)은 메모리 서브시스템(예를 들어, 도 1의 메모리 서브시스템(110))을 포함하거나 이에 연결되거나 이를 활용하는 호스트 시스템(예를 들어, 도 1의 호스트 시스템(120))에 대응할 수 있거나 제어기의 동작을 수행하는 데 사용될 수 있다(예를 들어, 운영 체제를 실행하여 도 1의 데이터 압축 구성요소(113)에 대응하는 동작을 수행하기 위해). 대안적인 실시예에서, 머신은 LAN, 인트라넷, 엑스트라넷, 및/또는 인터넷의 다른 머신에 연결(예를 들어, 네트워크 연결)될 수 있다. 머신은 클라이언트-서버 네트워크 환경에서 서버 또는 클라이언트 머신의 용량으로 피어 투 피어(또는 분산) 네트워크 환경에서 피어 머신으로, 또는 클라우드 컴퓨팅 인프라 또는 환경에서 서버 또는 클라이언트 시스템으로 작동할 수 있다.
머신은 개인용 컴퓨터(PC), 태블릿PC, 셋톱박스(STB), 개인휴대정보비서(PDA), 휴대폰, 웹 어플라이언스, 서버, 네트워크 라우터, 스위치 또는 브리지, 또는 해당 머신이 취해야 할 조치를 지정하는 명령어 세트(순차적이든 아니든)을 실행할 수 있는 임의의 머신일 수 있다. 또한, 단일 머신이 예시되어 있지만, "머신"이라는 용어는 또한 본원에서 논의된 방법론 중 하나 이상을 수행하기 위해 명령어 세트(또는 다중 세트)를 개별적으로 또는 공동으로 실행하는 머신의 집합을 포함하는 것으로 간주되어야 한다.
예시적인 컴퓨터 시스템(500)은 처리 디바이스(502), 메인 메모리(504)(예를 들어, 판독 전용 메모리(ROM), 플래시 메모리, 동적 랜덤 액세스 메모리(DRAM), 예를 들어, 동기식 DRAM(SDRAM) 또는 램버스 DRAM(RDRAM) 등), 정적 메모리(506)(예를 들어, 플래시 메모리, 정적 랜덤 액세스 메모리(SRAM) 등), 및 버스(530)를 통해 서로 통신하는 데이터 저장 시스템(518)을 포함한다.
처리 디바이스(502)는 마이크로프로세서, 중앙 처리 장치 등과 같은 하나 이상의 범용 처리 디바이스를 나타낸다. 보다 구체적으로, 처리 디바이스는 CISC(complex instruction set computing) 마이크로프로세서, RISC(reduced instruction set computing) 마이크로프로세서, VLIW(very long instruction word) 마이크로프로세서 또는 다른 명령어 세트를 구현하는 프로세서, 또는 명령어 세트의 조합을 구현하는 프로세서일 수 있다. 처리 디바이스(502)는 또한 하나 이상의 특수 목적 처리 디바이스, 예를 들어, ASIC(application specific integrated circuit), FPGA(Ffield programmable gate array), DSP(digital signal processor), 네트워크 프로세서 등일 수 있다. 처리 디바이스(502)는 본원에서 논의된 동작 및 단계를 수행하기 위한 명령어(526)를 실행하도록 구성된다. 컴퓨터 시스템(500)은 네트워크(520)를 통해 통신하기 위한 네트워크 인터페이스 디바이스(508)를 더 포함할 수 있다.
데이터 저장 시스템(518)은 하나 이상의 명령어 세트(526) 또는 본원에 설명된 방법론 또는 기능 중 임의의 하나 이상을 구현하는 소프트웨어가 저장되어 있는 머신 판독 가능 저장 매체(524)(컴퓨터 판독 가능 매체라고도 함)를 포함할 수 있다. 명령어(526)는 또한 컴퓨터 시스템(500)에 의한 실행 동안 메인 메모리(504) 및/또는 처리 디바이스(502) 내에 완전히 또는 적어도 부분적으로 상주할 수 있고, 메인 메모리(504) 및 처리 디바이스(502)는 또한 기계 판독 가능 저장 매체를 구성한다. 머신 판독 가능 저장 매체(524), 데이터 저장 시스템(518), 및/또는 메인 메모리(504)는 도 1의 메모리 서브시스템(110)에 대응할 수 있다.
일 실시예에서, 명령어(526)는 데이터 압축 구성요소(예를 들어, 도 1의 데이터 압축 구성요소(113))에 대응하는 기능을 구현하기 위한 명령어를 포함한다. 머신 판독 가능 저장 매체(524)는 예시적인 실시예에서 단일 매체인 것으로 도시되어 있지만, "머신 판독 가능 저장 매체"라는 용어는 하나 이상의 명령어 세트를 저장하는 단일 매체 또는 다중 매체를 포함하는 것으로 간주되어야 한다. "머신 판독 가능 저장 매체"라는 용어는 머신에 의해 실행하기 위한 명령어 세트를 저장하거나 인코딩할 수 있고 머신이 본 개시의 방법론들 중 임의의 하나 이상을 수행하게 하는 임의의 매체를 포함하는 것으로 간주된다. 따라서 "머신 판독 가능 저장 매체"라는 용어는 솔리드 스테이트 메모리, 광학 매체 및 자기 매체를 포함하지만 이에 제한되지 않는 것으로 간주되어야 한다.
이전의 상세한 설명의 일부는 컴퓨터 메모리 내의 데이터 비트에 대한 동작의 알고리즘 및 기호 표현의 관점에서 제시되었다. 이러한 알고리즘 설명 및 표현은 데이터 처리 기술 분야의 기술자가 자신의 작업 내용을 해당 기술 분야의 다른 사람에게 가장 효과적으로 전달하기 위해 사용하는 방법이다. 알고리즘은 본원에서 일반적으로 원하는 결과로 이어지는 자체 일관된 작업 시퀀스로 간주된다. 동작은 물리량의 물리적 조작이 필요한 동작이다. 일반적으로 반드시 그런 것은 아니지만 이러한 양은 저장, 결합, 비교 및 조작할 수 있는 전기 또는 자기 신호의 형태를 취한다. 주로 일반적인 사용을 위해 이러한 신호를 비트, 값, 요소, 기호, 문자, 용어, 숫자 등으로 지칭하는 것이 때때로 편리한 것으로 입증되었다.
그러나 이러한 모든 용어 및 유사한 용어는 적절한 물리량과 관련되어야 하며 이러한 양에 적용되는 편리한 레이블일 뿐이라는 점을 염두에 두어야 한다. 본 개시는 컴퓨터 시스템의 레지스터와 메모리 내에서 물리적(전자적) 수량으로 표현된 데이터를 컴퓨터 시스템 메모리나 레지스터 또는 기타 정보 저장 시스템 내에서 물리적 수량으로 유사하게 표현된 다른 데이터로 조작하고 변환하는 컴퓨터 시스템 또는 유사한 전자 컴퓨팅 장치의 동작 및 프로세스를 참조할 수 있다.
본 개시는 또한 본원의 동작을 수행하기 위한 장치에 관한 것이다. 이 장치는 의도된 목적을 위해 특별히 구성되거나 컴퓨터에 저장된 컴퓨터 프로그램에 의해 선택적으로 활성화되거나 재구성되는 범용 컴퓨터를 포함할 수 있다. 이러한 컴퓨터 프로그램은 플로피 디스크, 광 디스크, CD-ROM 및 광자기 디스크를 포함한 임의의 유형의 디스크, 판독 전용 메모리(ROM), 랜덤 액세스 메모리(RAM), EPROM, EEPROM, 자기 또는 광학 카드, 또는 전자 명령어를 저장하는 데 적합한 모든 유형의 미디어와 같은, 그러나 이에 제한되지 않은 컴퓨터 판독 가능한 기록매체에 저장될 수 있고, 각각은 컴퓨터 시스템 버스에 연결된다.
본원에 제시된 알고리즘 및 디스플레이는 본질적으로 특정 컴퓨터 또는 기타 장치와 관련이 없다. 다양한 범용 시스템이 본 명세서의 교시에 따른 프로그램과 함께 사용될 수 있거나, 방법을 수행하기 위해 보다 전문화된 장치를 구성하는 것이 편리할 수 있다. 이러한 다양한 시스템의 구조는 아래 설명에 설명된 대로 나타난다. 또한, 본 개시는 임의의 특정 프로그래밍 언어를 참조하여 설명되지 않는다. 다양한 프로그래밍 언어가 본원에 설명된 바와 같이 본 개시내용의 교시를 구현하기 위해 사용될 수 있다는 것이 이해될 것이다.
본 개시내용은 명령어가 저장된 머신 판독가능 매체를 포함할 수 있는 컴퓨터 프로그램 제품 또는 소프트웨어로서 제공될 수 있으며, 이는 본 개시내용에 따른 프로세스를 수행하기 위해 컴퓨터 시스템(또는 다른 전자 디바이스)을 프로그래밍하는 데 사용될 수 있다. 머신 판독 가능 매체는 머신(예를 들어, 컴퓨터)에 의해 판독 가능한 형태로 정보를 저장하기 위한 임의의 메커니즘을 포함한다. 일부 실시예에서, 머신 판독가능(예를 들어, 컴퓨터 판독가능) 매체는 판독 전용 메모리("ROM"), 랜덤 액세스 메모리("RAM"), 자기 디스크 저장 매체, 광 저장 매체, 플래시 메모리 구성요소 등과 같은 머신(예를 들어, 컴퓨터) 판독가능 저장 매체를 포함한다.
전술한 명세서에서, 본 개시의 실시예들은 그 특정 예시적인 실시예들을 참조하여 설명되었다. 다음의 청구범위에 기재된 본 개시내용의 실시형태의 보다 넓은 사상 및 범위를 벗어나지 않고 다양한 변형이 이루어질 수 있음이 명백할 것이다. 따라서, 본 명세서 및 도면은 제한적인 의미가 아니라 예시적인 의미로 간주되어야 한다.

Claims (20)

  1. 방법에 있어서,
    메모리 구성요소(memory component)의 제1 평면(plane)의 제1 데이터 블록(data block)으로부터 하나 이상의 메모리 페이지(memory page)들을 식별하는 단계-상기 하나 이상의 메모리 페이지들은 유효 데이터를 저장함-;
    상기 하나 이상의 메모리 페이지들을 상기 메모리 구성요소의 상기 제1 평면에 대응하는 제1 페이지 버퍼(page buffer)에 복사하는 단계;
    상기 메모리 구성요소의 상기 제1 평면이 상기 하나 이상의 메모리 페이지들을 저장할 수 있는 용량(capacity)을 갖는 제2 데이터 블록을 갖는지 여부를 결정하는 단계; 및 적어도 하나의:
    상기 제2 데이터 블록이 상기 용량을 갖는 것에 응답하여, 상기 제1 페이지 버퍼로부터 상기 제2 데이터 블록으로 상기 하나 이상의 메모리 페이지들을 복사하는 단계; 또는
    상기 제2 데이터 블록이 상기 용량이 부족한 것에 응답하여, 상기 제1 데이터 버퍼로부터 상기 메모리 구성요소의 제2 평면의 제3 데이터 블록으로 유효 데이터를 저장하는 상기 하나 이상의 메모리 페이지들을 복사하는 단계를 포함하는, 방법.
  2. 제1항에 있어서, 상기 메모리 구성요소는 복수의 평면들을 포함하고, 상기 복수의 평면들은 상기 제1 평면 및 상기 제2 평면을 포함하는, 방법.
  3. 제2항에 있어서, 상기 복수의 평면들의 각각의 평면은 각각의 연관된 페이지 버퍼를 갖는, 방법.
  4. 제1항에 있어서,
    데이터 버스(data bus)를 통해 유효 데이터를 저장하는 상기 하나 이상의 메모리 페이지들을 전송하는 단계를 더 포함하는, 방법.
  5. 제1항에 있어서, 상기 하나 이상의 메모리 페이지들은 상기 제2 데이터 블록으로부터 하나의 메모리 페이지로 복사되는, 방법.
  6. 제1항에 있어서, 상기 하나 이상의 메모리 페이지들은 상기 하나 이상의 메모리 페이지들 내의 하나의 메모리 페이지의 크기보다 작은 증분적 양(piecemeal quantity)으로 상기 제1 페이지 버퍼에 복사되는, 방법.
  7. 제1항에 있어서,
    상기 제1 데이터 블록의 모든 데이터를 소거하는 단계를 더 포함하는, 방법.
  8. 시스템에 있어서,
    메모리 구성요소; 및
    상기 메모리 구성요소에 결합된 처리 디바이스를 포함하고, 상기 처리 디바이스는:
    메모리 구성요소의 제1 평면의 제1 데이터 블록으로부터 하나 이상의 메모리 페이지들을 식별하고-상기 하나 이상의 메모리 페이지들은 유효 데이터를 저장함-;
    상기 하나 이상의 메모리 페이지들을 상기 메모리 구성요소의 상기 제1 평면에 대응하는 제1 페이지 버퍼에 복사하고;
    상기 메모리 구성요소의 상기 제1 평면이 상기 하나 이상의 메모리 페이지들을 저장할 수 있는 용량을 갖는 제2 데이터 블록을 갖는지 여부를 결정하고; 그리고 적어도 하나의:
    상기 제2 데이터 블록이 상기 용량을 갖는 것에 응답하여, 상기 제1 페이지 버퍼로부터 상기 제2 데이터 블록으로 상기 하나 이상의 메모리 페이지들을 복사하고; 또는
    상기 제2 데이터 블록이 상기 용량이 부족한 것에 응답하여, 상기 제1 데이터 버퍼로부터 상기 메모리 구성요소의 제2 평면의 제3 데이터 블록으로 유효 데이터를 저장하는 상기 하나 이상의 메모리 페이지들을 복사하는, 시스템.
  9. 제8항에 있어서, 상기 메모리 구성요소는 복수의 평면들을 포함하고, 상기 복수의 평면들은 상기 제1 평면 및 상기 제2 평면을 포함하는, 시스템.
  10. 제9항에 있어서, 상기 복수의 평면들의 각각의 평면은 각각의 연관된 페이지 버퍼를 갖는, 시스템.
  11. 제8항에 있어서, 상기 처리 디바이스는 데이터 버스를 통해 유효 데이터를 저장하는 상기 하나 이상의 메모리 페이지들을 전송하는, 시스템.
  12. 제8항에 있어서, 상기 처리 디바이스는 상기 제1 페이지 버퍼로부터의 유효 데이터를 저장하는 상기 하나 이상의 메모리 페이지들을 상기 제2 데이터 블록으로부터의 하나의 메모리 페이지로 복사하는, 시스템.
  13. 제8항에 있어서, 상기 처리 디바이스는 상기 하나 이상의 메모리 페이지들 내의 하나의 메모리 페이지의 크기보다 작은 증분적 양으로 상기 제1 데이터 블록으로부터 상기 제1 페이지 버퍼로 상기 하나 이상의 메모리 페이지들을 복사하는, 시스템.
  14. 제8항에 있어서, 상기 처리 디바이스는 상기 메모리 구성요소에 대해 또는 그 다른 구성에 대한 오류 검출 및 수정을 더 수행하는, 시스템.
  15. 명령어(instruction)를 포함하는 비일시적 컴퓨터 판독 가능 저장 매체에 있어서, 상기 명령어는 처리 디바이스에 의해 실행될 때 상기 처리 디바이스로 하여금:
    메모리 구성요소의 제1 평면의 제1 데이터 블록으로부터 제1 물리적 어드레스(physical address)에서 하나 이상의 메모리 페이지들을 식별하게 하고-상기 하나 이상의 메모리 페이지들은 유효 데이터를 저장하고, 논리적 어드레스(logical address)는 상기 제1 물리적 어드레스에 매핑됨-;
    상기 하나 이상의 메모리 페이지들을 상기 메모리 구성요소의 상기 제1 평면에 대응하는 페이지 버퍼에 복사하게 하고;
    상기 메모리 구성요소의 상기 제1 평면이 상기 하나 이상의 메모리 페이지들을 저장할 수 있는 용량을 갖는 제2 물리적 어드레스에서 제2 데이터 블록을 갖는지 여부를 결정하게 하고; 그리고 적어도 하나의:
    상기 제2 데이터 블록이 상기 용량을 갖는 것에 응답하여, 상기 페이지 버퍼로부터 상기 제2 데이터 블록으로 상기 하나 이상의 메모리 페이지들을 복사하게 하고-상기 논리적 어드레스는 상기 제2 물리적 어드레스에 매핑되도록 업데이트됨-; 또는
    상기 제2 데이터 블록이 상기 용량이 부족한 것에 응답하여, 상기 제1 데이터 버퍼로부터 상기 메모리 구성요소의 제2 평면의 제3 데이터 블록으로 유효 데이터를 저장하는 상기 하나 이상의 메모리 페이지들의 복사를 수행하게 하는, 비일시적 컴퓨터 판독 가능 저장 매체.
  16. 제15항에 있어서, 상기 메모리 구성요소는 복수의 평면들을 포함하고, 상기 복수의 평면들은 상기 제1 평면 및 상기 제2 평면을 포함하는, 비일시적 컴퓨터 판독가능 저장 매체.
  17. 제16항에 있어서, 상기 복수의 평면들의 각각의 평면은 각각의 연관된 페이지 버퍼를 갖는, 비일시적 컴퓨터 판독가능 저장 매체.
  18. 제15항에 있어서, 상기 처리 디바이스는 또한 데이터 버스를 통해 유효 데이터를 저장하는 상기 하나 이상의 메모리 페이지들을 전송하는, 비일시적 컴퓨터 판독 가능 저장 매체.
  19. 제15항에 있어서, 상기 처리 디바이스는 상기 제1 페이지 버퍼로부터의 유효 데이터를 저장하는 상기 하나 이상의 메모리 페이지들을 상기 제2 데이터 블록으로부터의 하나의 메모리 페이지로 복사하는, 비일시적 컴퓨터 판독가능 저장 매체
  20. 제15항에 있어서, 상기 처리 디바이스는 상기 하나 이상의 메모리 페이지들 내의 하나의 메모리 페이지의 크기보다 작은 증분적 양으로 상기 하나 이상의 메모리 페이지들을 상기 제1 데이터 블록으로부터 상기 제1 페이지 버퍼로 복사하는, 비일시적 컴퓨터 판독가능 저장 매체.
KR1020227008625A 2019-08-20 2020-08-20 메모리 구성요소의 동일한 평면 내에서 데이터 압축 KR20220041225A (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201962889237P 2019-08-20 2019-08-20
US62/889,237 2019-08-20
US16/947,794 US20210055878A1 (en) 2019-08-20 2020-08-17 Data compaction within the same plane of a memory component
US16/947,794 2020-08-17
PCT/US2020/047260 WO2021035083A1 (en) 2019-08-20 2020-08-20 Data compaction within the same plane of a memory component

Publications (1)

Publication Number Publication Date
KR20220041225A true KR20220041225A (ko) 2022-03-31

Family

ID=74645328

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020227008625A KR20220041225A (ko) 2019-08-20 2020-08-20 메모리 구성요소의 동일한 평면 내에서 데이터 압축

Country Status (5)

Country Link
US (1) US20210055878A1 (ko)
EP (1) EP4018314A4 (ko)
KR (1) KR20220041225A (ko)
CN (1) CN114270304B (ko)
WO (1) WO2021035083A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220043588A1 (en) * 2020-08-06 2022-02-10 Micron Technology, Inc. Localized memory traffic control for high-speed memory devices
US20220413757A1 (en) * 2021-06-24 2022-12-29 Western Digital Technologies, Inc. Write Performance by Relocation During Sequential Reads

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050052688A1 (en) * 2003-08-12 2005-03-10 Teruyuki Maruyama Document edit method and image processing apparatus
US7631138B2 (en) * 2003-12-30 2009-12-08 Sandisk Corporation Adaptive mode switching of flash memory address mapping based on host usage characteristics
US20050144516A1 (en) * 2003-12-30 2005-06-30 Gonzalez Carlos J. Adaptive deterministic grouping of blocks into multi-block units
US7433993B2 (en) * 2003-12-30 2008-10-07 San Disk Corportion Adaptive metablocks
US7139864B2 (en) * 2003-12-30 2006-11-21 Sandisk Corporation Non-volatile memory and method with block management system
KR100918707B1 (ko) * 2007-03-12 2009-09-23 삼성전자주식회사 플래시 메모리를 기반으로 한 메모리 시스템
JP4892746B2 (ja) * 2008-03-28 2012-03-07 エヌイーシーコンピュータテクノ株式会社 分散共有メモリ型マルチプロセッサシステム及びプレーンデグレード方法
KR101143397B1 (ko) * 2009-07-29 2012-05-23 에스케이하이닉스 주식회사 페이지 복사 발생 빈도를 줄이는 반도체 스토리지 시스템 및 그 제어 방법
KR101201838B1 (ko) * 2009-12-24 2012-11-15 에스케이하이닉스 주식회사 프로그램 시간을 감소시킨 비휘발성 메모리 장치
US9189385B2 (en) * 2010-03-22 2015-11-17 Seagate Technology Llc Scalable data structures for control and management of non-volatile storage
KR102147628B1 (ko) * 2013-01-21 2020-08-26 삼성전자 주식회사 메모리 시스템
US9189389B2 (en) * 2013-03-11 2015-11-17 Kabushiki Kaisha Toshiba Memory controller and memory system
US9218279B2 (en) * 2013-03-15 2015-12-22 Western Digital Technologies, Inc. Atomic write command support in a solid state drive
KR20160008365A (ko) * 2014-07-14 2016-01-22 삼성전자주식회사 저장 매체, 메모리 시스템 및 메모리 시스템에서의 저장 영역 관리 방법
US10684795B2 (en) * 2016-07-25 2020-06-16 Toshiba Memory Corporation Storage device and storage control method
CN106681652B (zh) * 2016-08-26 2019-11-19 合肥兆芯电子有限公司 存储器管理方法、存储器控制电路单元与存储器存储装置
US10101942B1 (en) * 2017-04-17 2018-10-16 Sandisk Technologies Llc System and method for hybrid push-pull data management in a non-volatile memory
TWI674505B (zh) * 2017-11-30 2019-10-11 宜鼎國際股份有限公司 資料存取效率的預估方法
US11030094B2 (en) * 2018-07-31 2021-06-08 SK Hynix Inc. Apparatus and method for performing garbage collection by predicting required time
KR102533207B1 (ko) * 2018-08-30 2023-05-17 에스케이하이닉스 주식회사 데이터 저장 장치 및 동작 방법, 이를 포함하는 스토리지 시스템
KR20200042791A (ko) * 2018-10-16 2020-04-24 에스케이하이닉스 주식회사 데이터 저장 장치 및 그것의 동작 방법
KR20210017481A (ko) * 2019-08-08 2021-02-17 에스케이하이닉스 주식회사 컨트롤러 및 컨트롤러의 동작방법
KR20220036468A (ko) * 2020-09-16 2022-03-23 에스케이하이닉스 주식회사 저장 장치 및 그 동작 방법
KR20220082509A (ko) * 2020-12-10 2022-06-17 에스케이하이닉스 주식회사 저장 장치 및 그 동작 방법

Also Published As

Publication number Publication date
WO2021035083A1 (en) 2021-02-25
CN114270304B (zh) 2024-06-18
EP4018314A1 (en) 2022-06-29
US20210055878A1 (en) 2021-02-25
CN114270304A (zh) 2022-04-01
EP4018314A4 (en) 2023-08-23

Similar Documents

Publication Publication Date Title
CN114341824B (zh) 用于粗映射存储器子系统的取消映射
CN113126907B (zh) 用于存储器装置的异步电力损失恢复
US11726869B2 (en) Performing error control operation on memory component for garbage collection
US11775389B2 (en) Deferred error-correction parity calculations
CN114730300A (zh) 对区命名空间存储器的增强型文件系统支持
CN112740189B (zh) 非易失性存储器的多级损耗均衡
CN112912857B (zh) 对存储器子系统的写入原子性管理
KR20210034677A (ko) 인-플레이스 데이터 대체 매체를 위한 하이브리드 웨어 레벨링
CN112835828A (zh) 用于非连续源及目的地存储器地址的直接存储器存取(dma)命令
CN114270304B (zh) 存储器组件的同一平面内的数据压缩
CN113590502B (zh) 一种非挥发性记忆体存储设备的垃圾回收方法与垃圾回收系统
US20210342236A1 (en) Data recovery within a memory sub-system
US11222673B2 (en) Memory sub-system managing remapping for misaligned memory components
US11836377B2 (en) Data transfer management within a memory device having multiple memory regions with different memory densities
US20230069122A1 (en) Metadata management for ungraceful shutdown of a memory sub-system
US10817435B1 (en) Queue-based wear leveling of memory components
US20210157727A1 (en) Bit masking valid sectors for write-back coalescing
CN113126906A (zh) 用于存储器装置的元数据指示
US11467976B2 (en) Write requests with partial translation units
CN114647377A (zh) 基于有效存储器单元计数的数据操作
CN113126899A (zh) 完全多平面操作启用
CN116909802A (zh) 用于经分区存储系统的动态rain