KR20220033034A - Resin molded product for opto-semiconductor sealing - Google Patents

Resin molded product for opto-semiconductor sealing Download PDF

Info

Publication number
KR20220033034A
KR20220033034A KR1020210118804A KR20210118804A KR20220033034A KR 20220033034 A KR20220033034 A KR 20220033034A KR 1020210118804 A KR1020210118804 A KR 1020210118804A KR 20210118804 A KR20210118804 A KR 20210118804A KR 20220033034 A KR20220033034 A KR 20220033034A
Authority
KR
South Korea
Prior art keywords
optical
resin molding
optical semiconductor
structural unit
semiconductor sealing
Prior art date
Application number
KR1020210118804A
Other languages
Korean (ko)
Inventor
류이치 기무라
준 이케다
Original Assignee
닛토덴코 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 닛토덴코 가부시키가이샤 filed Critical 닛토덴코 가부시키가이샤
Publication of KR20220033034A publication Critical patent/KR20220033034A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • C08G59/4223Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • C08G59/4284Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof together with other curing agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • C08G59/686Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0203Containers; Encapsulations, e.g. encapsulation of photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K2003/1034Materials or components characterised by specific properties
    • C09K2003/1059Heat-curable materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Materials Engineering (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Epoxy Resins (AREA)
  • Led Device Packages (AREA)
  • Light Receiving Elements (AREA)

Abstract

The present invention provides a resin molding for optical semiconductor sealing, which provides an optical semiconductor sealing material with superior temperature cycle resistance. The resin molding for optical semiconductor sealing includes a compound of a structural unit (I) represented by chemical formula (I) and a compound of a structural unit (II) represented by chemical formula (II). In the chemical formula (I), A^1 represents an organic group, and R^1 represents an organic group having a non-aromatic ring. In the chemical formula (II), A^1 is the same as described above, R^(2a) represents a site containing a residue of an epoxy resin, and R^(2b) represents a hydrogen atom or a bonding key bond with R^(2a).

Description

광반도체 밀봉용 수지 성형물 {RESIN MOLDED PRODUCT FOR OPTO-SEMICONDUCTOR SEALING}Resin molding for optical semiconductor sealing {RESIN MOLDED PRODUCT FOR OPTO-SEMICONDUCTOR SEALING}

본 발명은 광반도체 밀봉용 수지 성형물에 관한 것이다.The present invention relates to a resin molding for optical semiconductor encapsulation.

광반도체 소자는, 세라믹 패키지 또는 플라스틱 패키지에 의해 밀봉되어 장치화되어 있다. 여기서, 세라믹 패키지는, 구성 재료가 비교적 고가인 점, 양산성이 떨어진다는 점에서, 플라스틱 패키지를 사용하는 것이 주류로 되고 있다. 그 중에서도 작업성, 양산성, 신뢰성의 점에서, 에폭시 수지 조성물을, 미리 태블릿상으로 타정 성형한 것을 트랜스퍼 몰드 성형하는 기술이 주류로 되고 있다.The optical semiconductor element is sealed with a ceramic package or a plastic package, and is deviceized. Here, as for the ceramic package, the use of a plastic package is becoming mainstream from the point that a constituent material is comparatively expensive and the point which mass productivity is inferior. Among them, from the viewpoints of workability, mass productivity, and reliability, a technique of transfer mold molding of an epoxy resin composition obtained by tableting in advance into a tablet form has become mainstream.

특허문헌 1에는, 에폭시 수지 조성물을 입상으로 조립하여 태블릿화하는 기술이 개시되어 있다.Patent Document 1 discloses a technique for granulating an epoxy resin composition into a tablet form.

일본 특허 공개 제2011-9394호 공보Japanese Patent Laid-Open No. 2011-9394

근년, 전자 기기의 고기능화 및 고출력화에 수반하여, 광반도체에는 더 높은 신뢰성이 요구되고 있다. 예를 들어, 저온에서부터 고온까지 온도가 반복하여 변화하는 환경 하에서의 사용에 의해, 밀봉재에 크랙이나 박리, 변색 등이 발생하는 경우가 있으며, 그것들에 기인하는 광반도체 소자에 대한 손상을 저감할 것이 요구되고 있다.In recent years, higher reliability is calculated|required by the optical semiconductor with high functionalization and high output of an electronic device. For example, cracks, peeling, discoloration, etc. may occur in the sealing material due to use in an environment where the temperature is repeatedly changed from low to high temperature, and it is required to reduce damage to the optical semiconductor element resulting from them is becoming

본 발명은 내온도 사이클성이 우수한 광반도체 밀봉재를 제공하는 광반도체 밀봉용 수지 성형물을 제공하는 것을 목적으로 한다.An object of the present invention is to provide a resin molded article for optical semiconductor encapsulation that provides an optical semiconductor encapsulant excellent in temperature cycle resistance.

본 발명은 하기 식 (I)로 표시되는 구조 단위 (I)을 갖는 화합물, 및 하기 식 (II)로 표시되는 구조 단위 (II)를 갖는 화합물을 포함하는 광반도체 밀봉용 수지 성형물에 관한 것이다.The present invention relates to a resin molding for optical semiconductor encapsulation comprising a compound having a structural unit (I) represented by the following formula (I), and a compound having a structural unit (II) represented by the following formula (II).

식 (I):Formula (I):

Figure pat00001
Figure pat00001

(식 중, A1은 유기기를 나타낸다. R1은 비방향족환을 갖는 유기기를 나타낸다.)(In the formula, A 1 represents an organic group. R 1 represents an organic group having a non-aromatic ring.)

식 (II):Formula (II):

Figure pat00002
Figure pat00002

(식 중, A1은 상기한 바와 같으며, R2a는 에폭시 수지의 잔기를 포함하는 부위를 나타낸다. R2b는 수소 원자, 또는 R2a와 결합하는 결합손을 나타낸다.)(Wherein, A 1 is as described above, and R 2a represents a moiety containing a residue of an epoxy resin. R 2b represents a hydrogen atom or a bond bonded to R 2a .)

상기 광반도체 밀봉용 수지 성형물은, 하기 관계식 (1)을 만족시키는 것이 바람직하다.It is preferable that the said resin molding for optical semiconductor sealing satisfy|fills following relational expression (1).

Y<370000X-36000000 (1)Y<370000X-3600000 (One)

(식 중, X는, 하기 방법으로 얻어진 경화체(크기: 폭 5mm×길이 35mm×두께 1mm)의 유리 전이 온도(℃)를 나타내고, Y는, 상기 경화체의 265℃에 있어서의 저장 탄성률(Pa)을 나타낸다.)(wherein X represents the glass transition temperature (°C) of the cured product (size: width 5 mm × length 35 mm × thickness 1 mm) obtained by the following method, Y is the storage elastic modulus at 265° C. of the cured product (Pa) indicates.)

(경화체의 제작 방법)(Manufacturing method of hardening body)

수지 성형물을 150℃에서 4분간 가열하여 성형하고, 그 후 150℃에서 3시간 가열함으로써 경화체를 얻는다.A resin molding is heated and molded at 150°C for 4 minutes, and then heated at 150°C for 3 hours to obtain a cured product.

구조 단위 (I)과 구조 단위 (II)의 합계에 대한 구조 단위 (I)의 몰비가 0.10 내지 0.60인 것이 바람직하다.It is preferable that the molar ratio of the structural unit (I) to the total of the structural unit (I) and (II) is 0.10 to 0.60.

상기 광반도체 밀봉용 수지 성형물은, 하기 방법에 의해 경화체(크기: 폭 50mm×길이 50mm×두께 1mm)로 한 경우의, 파장 450nm에서의 직선 투과율이 70% 이상인 것이 바람직하다.It is preferable that the said resin molding for optical semiconductor encapsulation has a linear transmittance at a wavelength of 450 nm of 70% or more when a cured body (size: 50 mm in width x 50 mm in length x 1 mm in thickness) is obtained by the following method.

(경화체의 제작 방법)(Manufacturing method of hardening body)

수지 성형물을 150℃에서 4분간 가열하여 성형하고, 그 후 150℃에서 3시간 가열함으로써 경화체를 얻는다.A resin molding is heated and molded at 150°C for 4 minutes, and then heated at 150°C for 3 hours to obtain a cured product.

본 발명은, 상기 광반도체 밀봉용 수지 성형물을 성형하여 얻어지는 광반도체 밀봉재에 관한 것이기도 하다.This invention also relates to the optical-semiconductor sealing material obtained by shape|molding the said resin molding for optical-semiconductor sealing.

본 발명은, 광반도체 소자와, 당해 광반도체 소자를 밀봉하는 상기 광반도체 밀봉재를 구비하는 광반도체 장치에 관한 것이기도 하다.This invention also relates to an optical-semiconductor device provided with an optical-semiconductor element and the said optical-semiconductor sealing material which seals the said optical-semiconductor element.

본 발명의 광반도체 밀봉용 수지 성형물에 따르면, 내온도 사이클성이 우수한 광반도체 밀봉재가 얻어지므로, 저온에서부터 고온까지 온도가 반복하여 변화하는 환경 하에서의 사용에 의해서도 광반도체 밀봉재에 크랙이나 박리, 변색 등이 발생하기 어려워, 그것들에 기인하는 광반도체 소자에 대한 손상을 저감할 수 있다.According to the resin molding for optical semiconductor encapsulation of the present invention, an optical semiconductor sealing material excellent in temperature cycle resistance is obtained. Therefore, cracks, peeling, discoloration, etc. It is hard to generate|occur|produce this, and the damage to the optical semiconductor element resulting from them can be reduced.

도 1은 실시예 및 비교예에서 사용한 평가 패키지를 도시하는 모식도이다.BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic diagram which shows the evaluation package used by the Example and the comparative example.

이하, 본 발명을 구체적으로 설명한다.Hereinafter, the present invention will be specifically described.

본 발명의 광반도체 밀봉용 수지 성형물은, 하기 식 (I)로 표시되는 구조 단위 (I)을 갖는 화합물, 및 하기 식 (II)로 표시되는 구조 단위 (II)를 갖는 화합물을 포함한다.The resin molding for optical semiconductor sealing of this invention contains the compound which has a structural unit (I) represented by following formula (I), and the compound which has structural unit (II) represented by following formula (II).

Figure pat00003
Figure pat00003

(식 중, A1은 유기기를 나타낸다. R1은 비방향족환을 갖는 유기기를 나타낸다.)(In the formula, A 1 represents an organic group. R 1 represents an organic group having a non-aromatic ring.)

Figure pat00004
Figure pat00004

(식 중, A1은 상기한 바와 같으며, R2a는 에폭시 수지의 잔기를 포함하는 부위를 나타낸다. R2b는 수소 원자, 또는 R2a와 결합하는 결합손을 나타낸다.)(Wherein, A 1 is as described above, and R 2a represents a moiety containing a residue of an epoxy resin. R 2b represents a hydrogen atom or a bond bonded to R 2a .)

본 발명의 광반도체 밀봉용 수지 성형물은, 구조 단위 (I)을 갖는 화합물을 포함함으로써, 유리 전이 온도가 높고, 게다가 고온 시에 탄성률이 낮은 경화체를 제공하므로, 내온도 사이클성이 우수한 광반도체 밀봉재가 얻어진다. 또한, 내땜납 리플로성, 내황변성, 온도 변화에 대한 치수 안정성, 충격 흡수성, 내충격성도 우수한 광반도체 밀봉재가 얻어진다. 이러한 광반도체 밀봉재는, 고온으로 되는 환경 하에서의 사용이나 땜납 리플로 공정에 의해서도 크랙이나 박리, 변색 등이 발생하기 어려우므로, 그것들에 기인하는 광반도체 소자에 대한 손상을 저감할 수 있다.The resin molding for optical semiconductor encapsulation of the present invention contains a compound having the structural unit (I) to provide a cured product having a high glass transition temperature and a low elastic modulus at high temperature, so an optical semiconductor sealing material excellent in temperature cycle resistance is obtained Moreover, the optical semiconductor sealing material excellent also in solder reflow resistance, yellowing resistance, dimensional stability with respect to temperature change, shock absorption property, and impact resistance is obtained. Since such an optical semiconductor sealing material does not easily generate cracks, peeling, discoloration, etc. even by use in a high temperature environment or a solder reflow process, damage to the optical semiconductor element resulting therefrom can be reduced.

일반적으로, 유리 전이 온도가 상승하면 탄성률도 상승하는 경향이 있지만, 구조 단위 (I)을 갖는 화합물을 포함하는 수지 성형물로부터는, 유리 전이 온도가 높고, 게다가 유리 전이 온도보다 고온측에서의 탄성률이 낮은 경화체가 얻어진다. 그 이유는 명확하지는 않지만, R1로 표시되는 분자쇄의 입체 반발이 크기 때문에, 상기 화합물의 주쇄의 강직성의 증대에 의해 유리 전이 온도가 상승함과 함께, 상기 화합물의 자유 체적의 증대에 의해 탄성률이 저하되는 것으로 추측된다.In general, when the glass transition temperature rises, the elastic modulus tends to also rise, but from a resin molded product containing a compound having the structural unit (I), a cured product having a high glass transition temperature and a lower elastic modulus on the high temperature side than the glass transition temperature. is obtained Although the reason is not clear, since the steric repulsion of the molecular chain represented by R 1 is large, the glass transition temperature rises due to the increase in the rigidity of the main chain of the compound, and the elastic modulus is increased due to the increase in the free volume of the compound. This is presumed to decrease.

본 발명의 광반도체 밀봉용 수지 성형물은, 또한 가열 성형 시에 지나치게 딱딱해지지 않으므로, 핸들링성, 성형성 및 이형성이 우수하다.Since the resin molding for optical semiconductor sealing of this invention does not become too hard at the time of further heat-molding, it is excellent in handling property, a moldability, and releasability.

식 (I) 중, A1은 유기기를 나타낸다. 상기 유기기는 2가의 유기기이다.In formula (I), A 1 represents an organic group. The organic group is a divalent organic group.

상기 유기기의 탄소수는 2 이상인 것이 바람직하고, 6 이상인 것이 보다 바람직하며, 또한 20 이하인 것이 바람직하고, 15 이하인 것이 보다 바람직하고, 10 이하인 것이 더욱 바람직하다.It is preferable that carbon number of the said organic group is 2 or more, It is more preferable that it is 6 or more, It is preferable that it is 20 or less, It is more preferable that it is 15 or less, It is still more preferable that it is 10 or less.

상기 유기기로서는 탄화수소기가 바람직하며, 산소 원자 등의 헤테로 원자나, 이중 결합 등의 불포화 결합을 포함하고 있어도 된다.As said organic group, a hydrocarbon group is preferable, and hetero atoms, such as an oxygen atom, and unsaturated bonds, such as a double bond, may be included.

상기 유기기는 환 구조를 가져도 되며, 환 구조를 갖는 것이 바람직하다.The said organic group may have a ring structure, and it is preferable to have a ring structure.

식 (I) 중, R1은 비방향족환을 갖는 유기기를 나타낸다. 상기 유기기는 2가의 유기기이다.In formula (I), R< 1 > represents the organic group which has a non-aromatic ring. The organic group is a divalent organic group.

상기 유기기의 탄소수는 3 이상인 것이 바람직하고, 5 이상인 것이 보다 바람직하고, 6 이상인 것이 더욱 바람직하며, 또한 30 이하인 것이 바람직하고, 20 이하인 것이 보다 바람직하다.It is preferable that carbon number of the said organic group is 3 or more, It is more preferable that it is 5 or more, It is still more preferable that it is 6 or more, It is preferable that it is 30 or less, It is more preferable that it is 20 or less.

상기 유기기로서는 탄화수소기가 바람직하며, 산소 원자 등의 헤테로 원자나, 이중 결합 등의 불포화 결합을 포함하고 있어도 된다.As said organic group, a hydrocarbon group is preferable, and hetero atoms, such as an oxygen atom, and unsaturated bonds, such as a double bond, may be included.

상기 비방향족환은 비방향족의 탄소환인 것이 보다 바람직하다. 상기 비방향족환은 불포화 결합을 갖고 있어도 되지만, 불포화 결합을 갖지 않는 것도 바람직하다. 상기 비방향족환은 단환식이어도 되고 다환식이어도 된다.It is more preferable that the said non-aromatic ring is a non-aromatic carbocyclic ring. Although the said non-aromatic ring may have an unsaturated bond, it is also preferable not to have an unsaturated bond. The said non-aromatic ring may be monocyclic or polycyclic may be sufficient as it.

상기 비방향족환은 가교 구조를 갖는 탄화수소환이어도 된다. 상기 가교 구조를 갖는 탄화수소환으로서는, 가교 구조를 갖는 2환식 또는 3환식의 탄화수소환이 바람직하고, 가교 구조를 갖는 3환식 탄화수소환이 보다 바람직하다.A hydrocarbon ring having a crosslinked structure may be sufficient as the said non-aromatic ring. As the hydrocarbon ring having a crosslinked structure, a bicyclic or tricyclic hydrocarbon ring having a crosslinked structure is preferable, and a tricyclic hydrocarbon ring having a crosslinked structure is more preferable.

상기 비방향족환으로서는 시클로헥산환이 특히 바람직하다.As said non-aromatic ring, a cyclohexane ring is especially preferable.

R1은, 후술하는 비방향족환을 갖는 다가 알코올로부터 2개의 수산기를 제외한 기여도 된다.R< 1 > may also contribute by removing two hydroxyl groups from the polyhydric alcohol which has a non-aromatic ring mentioned later.

식 (II) 중, R2a는 에폭시 수지의 잔기를 포함하는 부위를 나타낸다. 본 명세서에 있어서, 에폭시 수지의 잔기는, 에폭시 수지로부터 적어도 1개의 에폭시기(옥시란환)를 제외한 구조이다.In formula (II), R 2a represents the site|part containing the residue of an epoxy resin. In this specification, the residue of an epoxy resin is the structure remove|excluding at least 1 epoxy group (oxirane ring) from an epoxy resin.

R2a는, 나아가 미반응의 에폭시기를 1개 이상 포함하고 있어도 되고, 에폭시기가 다른 화합물(경화제, 경화 촉진제, 그 밖의 첨가제 등)과 반응한 구조를 포함하고 있어도 된다.R 2a may further include one or more unreacted epoxy groups, and may include a structure in which an epoxy group reacted with another compound (curing agent, curing accelerator, other additive, etc.).

식 (II) 중, R2b는 수소 원자, 또는 R2a와 결합하는 결합손을 나타낸다. R2b가 결합손인 경우, R2a와 결합하여 환을 형성한다.In formula (II), R 2b represents a hydrogen atom or a bond bonded to R 2a . When R 2b is a bond, it bonds with R 2a to form a ring.

본 발명의 광반도체 밀봉용 수지 성형물에 있어서는, 구조 단위 (I)과 구조 단위 (II)의 합계에 대한 구조 단위 (I)의 몰비(I/(I+II))가 0.10 내지 0.60인 것이 바람직하다. 상기 몰비는 0.15 이상인 것이 보다 바람직하고, 0.25 이상인 것이 더욱 바람직하며, 또한 0.50 이하인 것이 보다 바람직하고, 0.40 이하인 것이 더욱 바람직하다.In the resin molding for optical semiconductor encapsulation of the present invention, it is preferable that the molar ratio (I/(I+II)) of the structural unit (I) to the total of the structural unit (I) and the structural unit (II) is 0.10 to 0.60 Do. The molar ratio is more preferably 0.15 or more, still more preferably 0.25 or more, more preferably 0.50 or less, and still more preferably 0.40 or less.

이에 의해, 내온도 사이클성 및 내땜납 리플로성이 한층 우수한 광반도체 밀봉재가 얻어진다.Thereby, the optical-semiconductor sealing material further excellent in temperature cycle resistance and solder reflow resistance is obtained.

각 구조 단위의 함유량은 NMR에 의해 구할 수 있다.Content of each structural unit can be calculated|required by NMR.

본 발명의 광반도체 밀봉용 수지 성형물은, 하기 관계식 (1)을 만족시키는 것이 바람직하다.It is preferable that the resin molding for optical semiconductor sealing of this invention satisfy|fills following relational expression (1).

Y<370000X-36000000 (1)Y<370000X-3600000 (One)

(식 중, X는, 하기 방법으로 얻어진 경화체(크기: 폭 5mm×길이 35mm×두께 1mm)의 유리 전이 온도(℃)를 나타내고, Y는, 상기 경화체의 265℃에 있어서의 저장 탄성률(Pa)을 나타낸다.)(wherein X represents the glass transition temperature (°C) of the cured product (size: width 5 mm × length 35 mm × thickness 1 mm) obtained by the following method, Y is the storage elastic modulus at 265° C. of the cured product (Pa) indicates.)

(경화체의 제작 방법)(Manufacturing method of hardening body)

수지 성형물을 150℃에서 4분간 가열하여 성형하고, 그 후 150℃에서 3시간 가열함으로써 경화체를 얻는다.A resin molding is heated and molded at 150°C for 4 minutes, and then heated at 150°C for 3 hours to obtain a cured product.

이러한 수지 성형물을 경화하면, 유리 전이 온도가 한층 높고, 게다가 고온 시에 탄성률이 한층 낮은 경화체가 얻어지므로, 내온도 사이클성이 한층 우수한 광반도체 밀봉재가 얻어진다.When such a resin molding is cured, a cured product having a higher glass transition temperature and a lower elastic modulus at high temperatures is obtained, so that an optical semiconductor sealing material further excellent in temperature cycle resistance is obtained.

상기 유리 전이 온도(Tg)는, 상술한 방법에 의해 얻어진 경화체(크기: 폭 5mm×길이 35mm×두께 1mm)를 사용하여 동적 점탄성 측정(모드: 인장, 주사 온도: 0 내지 270℃, 주파수: 1Hz, 승온 속도: 10℃/분, 샘플 지지점간 거리: 22.5mm)을 실시하여, 저장 탄성률 E' 및 손실 탄성률 E"를 얻고, 이들로부터 tanδ(=E"/E')의 곡선을 구하여, tanδ의 피크 톱 온도를 구한다.The glass transition temperature (Tg) was measured by dynamic viscoelasticity (mode: tensile, scanning temperature: 0 to 270 ° C., frequency: 1 Hz) using the cured body (size: width 5 mm x length 35 mm x thickness 1 mm) obtained by the above method. , temperature increase rate: 10 ° C./min, distance between sample support points: 22.5 mm) to obtain storage elastic modulus E' and loss elastic modulus E". Find the peak top temperature of

상기 265℃에 있어서의 저장 탄성률(E'265℃)은, 상술한 방법으로 얻어진 경화체(크기: 폭 5mm×길이 35mm×두께 1mm)를 사용하여 265℃에 있어서의 동적 점탄성 측정(모드: 인장, 주사 온도: 0 내지 270℃, 주파수: 1Hz, 승온 속도: 10℃/분, 샘플 지지점간 거리: 22.5mm)에 의해 구한다.The storage modulus at 265°C (E′ 265°C ) was measured by dynamic viscoelasticity at 265°C (mode: tensile, Scanning temperature: 0 to 270°C, frequency: 1 Hz, temperature increase rate: 10°C/min, distance between sample support points: 22.5 mm).

본 발명의 광반도체 밀봉용 수지 성형물은, 상기 방법에 의해 경화체(크기: 폭 5mm×길이 35mm×두께 1mm)로 한 경우의 유리 전이 온도(Tg)가 110℃ 이상인 것이 바람직하고, 120℃ 이상인 것이 보다 바람직하고, 130℃ 이상인 것이 더욱 바람직하고, 140℃ 이상인 것이 특히 바람직하며, 또한 200℃ 이하인 것이 바람직하다.The resin molding for optical semiconductor encapsulation of the present invention preferably has a glass transition temperature (Tg) of 110° C. or higher when a cured body (size: width 5 mm×length 35 mm×thickness 1 mm) by the above method is 110° C. or higher, and 120° C. or higher It is more preferable, it is more preferable that it is 130 degreeC or more, It is especially preferable that it is 140 degreeC or more, and it is preferable that it is 200 degrees C or less.

경화체로 한 경우의 Tg가 상기 범위 내에 있으면, 내온도 사이클성이 한층 우수한 광반도체 밀봉재가 얻어진다.When Tg at the time of setting it as a hardening body exists in the said range, the optical-semiconductor sealing material further excellent in temperature cycling resistance will be obtained.

본 발명의 광반도체 밀봉용 수지 성형물은, 상기 방법에 의해 경화체(크기: 폭 5mm×길이 35mm×두께 1mm)로 한 경우의 265℃에 있어서의 저장 탄성률(E'265℃)이 5.0×107Pa 이하인 것이 바람직하고, 2.0×107Pa 이하인 것이 보다 바람직하고, 1.0×107Pa 이하인 것이 더욱 바람직하며, 또한 1.0×106Pa 이상인 것이 바람직하다.The resin molding for optical semiconductor encapsulation of the present invention has a storage elastic modulus (E' 265°C ) at 265°C of 5.0×10 7 when a cured body (size: width 5 mm×length 35 mm×thickness 1 mm) is obtained by the above method. It is preferably Pa or less, more preferably 2.0×10 7 Pa or less, still more preferably 1.0×10 7 Pa or less, and more preferably 1.0×10 6 Pa or more.

경화체로 한 경우의 E'265℃가 상기 범위 내에 있으면, 내온도 사이클성 및 내땜납 리플로성이 한층 우수한 광반도체 밀봉재가 얻어진다.When E' in the case of a hardening body is 265 degreeC in the said range, the optical-semiconductor sealing material which is further excellent in temperature cycling resistance and solder reflow resistance is obtained.

본 발명의 광반도체 밀봉용 수지 성형물은, 상기 방법에 의해 경화체(크기: 폭 5mm×길이 35mm×두께 1mm)로 한 경우의 25℃에 있어서의 저장 탄성률(E'25℃)이 5.0×108 내지 5.0×109Pa인 것이 바람직하고, 8.0×108 내지 4.0×109Pa인 것이 보다 바람직하고, 1.0×109 내지 3.0×109Pa인 것이 더욱 바람직하다.The resin molding for optical semiconductor encapsulation of the present invention has a storage elastic modulus (E' 25°C ) at 25°C of 5.0×10 8 when a cured body (size: width 5 mm×length 35 mm×thickness 1 mm) is obtained by the above method. to 5.0×10 9 Pa, more preferably 8.0×10 8 to 4.0×10 9 Pa, and still more preferably 1.0×10 9 to 3.0×10 9 Pa.

경화체로 한 경우의 E'25℃가 상기 범위 내에 있으면, 내온도 사이클성 및 내땜납 리플로성이 한층 우수한 광반도체 밀봉재가 얻어진다.When E' 25 degreeC in the case of a hardening body exists in the said range, the optical-semiconductor sealing material further excellent in temperature cycling resistance and solder reflow resistance is obtained.

E'25℃는, 상술한 방법으로 얻어진 경화체(크기: 폭 5mm×길이 35mm×두께 1mm)를 사용하여 25℃에 있어서의 동적 점탄성 측정(모드: 인장, 주사 온도: 0 내지 270℃, 주파수: 1Hz, 승온 속도: 10℃/분, 샘플 지지점간 거리: 22.5mm)에 의해 구한다.E' 25°C is a measurement of dynamic viscoelasticity at 25°C (mode: tensile, scanning temperature: 0 to 270°C, frequency: It is calculated|required by 1 Hz, temperature increase rate: 10 degreeC/min, distance between sample support points: 22.5 mm).

본 발명의 광반도체 밀봉용 수지 성형물은, 상기 방법에 의해 경화체(크기: 폭 50mm×길이 50mm×두께 1mm)로 한 경우의, 파장 450nm에서의 직선 투과율이 70% 이상인 것이 바람직하고, 90% 이상인 것이 보다 바람직하고, 95% 이상인 것이 더욱 바람직하다.The resin molding for optical semiconductor encapsulation of the present invention preferably has a linear transmittance of 70% or more at a wavelength of 450 nm when a cured body (size: 50 mm width × 50 mm length × 1 mm thickness) by the above method is 70% or more, and is 90% or more It is more preferable, and it is still more preferable that it is 95 % or more.

이에 의해, 광의 투과성(투명성)이 우수한 광반도체 밀봉재가 얻어진다.Thereby, the optical-semiconductor sealing material excellent in the transmittance|permeability (transparency) of light is obtained.

상기 직선 투과율은, 분광 광도계를 사용하여 상기 경화체의 파장 450nm에서의 투과 스펙트럼을 측정함으로써 구한다.The said linear transmittance is calculated|required by measuring the transmission spectrum in wavelength 450nm of the said hardening body using a spectrophotometer.

본 발명의 광반도체 밀봉용 수지 성형물은, 에폭시 수지, 산 무수물, 다가 알코올, 에폭시 수지와 산 무수물의 반응물, 다가 알코올과 산 무수물의 반응물, 및 경화 촉진제를 포함하는 것이 바람직하다.It is preferable that the resin molding for optical semiconductor sealing of this invention contains an epoxy resin, an acid anhydride, a polyhydric alcohol, the reaction product of an epoxy resin and an acid anhydride, the reaction product of a polyhydric alcohol and an acid anhydride, and a hardening accelerator.

상술한 구조 단위 (I)을 갖는 화합물은 다가 알코올과 산 무수물의 반응물이어도 되고, 구조 단위 (II)를 갖는 화합물은 에폭시 수지와 산 무수물의 반응물이어도 된다.The compound having the structural unit (I) described above may be a reaction product of a polyhydric alcohol and an acid anhydride, and the compound having the structural unit (II) may be a reaction product of an epoxy resin and an acid anhydride.

에폭시 수지로서는 착색이 적은 것이 바람직하며, 예를 들어 비스페놀 A형 에폭시 수지, 비스페놀 F형 에폭시 수지, 페놀노볼락형 에폭시 수지, 지환식 에폭시 수지, 트리글리시딜이소시아누레이트, 히단토인에폭시 등의 복소환 함유 에폭시 수지, 수소화 비스페놀 A형 에폭시 수지, 지방족계 에폭시 수지, 글리시딜에테르형 에폭시 수지 등을 들 수 있다. 에폭시 수지는, 1종을 단독으로 혹은 2종 이상을 함께 사용할 수 있다.As the epoxy resin, a thing with little coloring is preferable, for example, bisphenol A epoxy resin, bisphenol F type epoxy resin, phenol novolak type epoxy resin, alicyclic epoxy resin, triglycidyl isocyanurate, hydantoin epoxy, etc. A heterocyclic-containing epoxy resin, a hydrogenated bisphenol A epoxy resin, an aliphatic type epoxy resin, a glycidyl ether type epoxy resin, etc. are mentioned. An epoxy resin can be used individually by 1 type or in combination of 2 or more types.

산 무수물로서는, 예를 들어 무수 프탈산, 무수 말레산, 무수 트리멜리트산, 무수 피로멜리트산, 헥사히드로 무수 프탈산, 메틸헥사히드로프탈산 무수물, 테트라히드로 무수 프탈산, 무수 메틸나드산, 무수 나드산, 무수 글루타르산 등을 들 수 있다. 산 무수물은, 1종을 단독으로 혹은 2종 이상을 함께 사용할 수 있다.As an acid anhydride, for example, phthalic anhydride, maleic anhydride, trimellitic anhydride, pyromellitic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride, tetrahydrophthalic anhydride, methylnadic anhydride, nadic anhydride, anhydride glutaric acid etc. are mentioned. An acid anhydride can be used individually by 1 type or in combination of 2 or more types.

산 무수물의 배합량은 특별히 한정되지 않지만, 예를 들어 에폭시 수지 100질량부에 대하여 20 내지 200질량부가 바람직하다. 20질량부 미만이면, 경화 속도가 느려지고, 200질량부를 초과하면, 경화 반응에 대하여 과잉량이 존재하기 때문에, 여러 물성의 저하를 야기할 우려가 있다.Although the compounding quantity of an acid anhydride is not specifically limited, For example, 20-200 mass parts is preferable with respect to 100 mass parts of epoxy resins. When it is less than 20 parts by mass, the curing rate becomes slow, and when it exceeds 200 parts by mass, there is an excessive amount for the curing reaction, so there is a risk of causing deterioration of various physical properties.

또한, 산 무수물기의 당량(A)과 에폭시기의 당량(E)의 당량비(A/E)가 0.5 내지 1.5인 것이 바람직하고, 0.8 내지 1.2인 것이 보다 바람직하고, 0.9 내지 1.0인 것이 가장 바람직하다. 0.5 미만이거나, 1.5를 초과하거나 하면, 반응성이 저하되어, 경화물의 강도ㆍ내열성을 손상시킬 가능성이 있다.In addition, the equivalent ratio (A/E) of the equivalent (A) of the acid anhydride group and the equivalent (E) of the epoxy group is preferably 0.5 to 1.5, more preferably 0.8 to 1.2, and most preferably 0.9 to 1.0 . When it is less than 0.5 or exceeds 1.5, reactivity may fall and the intensity|strength and heat resistance of hardened|cured material may be impaired.

다가 알코올은 2개 이상의 히드록실기를 갖는 화합물이면 되지만, 디올(글리콜)인 것이 바람직하다.The polyhydric alcohol may be a compound having two or more hydroxyl groups, but is preferably a diol (glycol).

상기 다가 알코올로서는, 상술한 구조 단위 (I)을 용이하게 얻을 수 있는 점에서, 비방향족환을 갖는 다가 알코올이 바람직하다. 상기 다가 알코올은 지환식 다가 알코올이어도 된다. 상기 다가 알코올의 탄소수는 3 이상인 것이 바람직하고, 5 이상인 것이 보다 바람직하고, 6 이상인 것이 더욱 바람직하며, 또한 30 이하인 것이 바람직하고, 20 이하인 것이 보다 바람직하다.As said polyhydric alcohol, the polyhydric alcohol which has a non-aromatic ring is preferable at the point which can obtain the structural unit (I) mentioned above easily. The polyhydric alcohol may be an alicyclic polyhydric alcohol. It is preferable that carbon number of the said polyhydric alcohol is 3 or more, It is more preferable that it is 5 or more, It is still more preferable that it is 6 or more, It is preferable that it is 30 or less, It is more preferable that it is 20 or less.

상기 비방향족환으로서는, 상술한 식 (I)에 있어서의 R1로서의 유기기가 갖는 비방향족환과 마찬가지의 것을 들 수 있다.As said non-aromatic ring, the thing similar to the non-aromatic ring which the organic group as R< 1 > in Formula (I) mentioned above has is mentioned.

상기 다가 알코올로서는, 이하의 것을 예시할 수 있지만, 이들에 한정되는 것은 아니다. 또한, 입체 이성체가 존재하는 경우에는, 각 입체 이성체, 및 2 이상의 입체 이성체의 혼합물도 예시에 포함되는 것으로 한다.Although the following can be illustrated as said polyhydric alcohol, It is not limited to these. In addition, when stereoisomers exist, each stereoisomer and the mixture of two or more stereoisomers shall be included in an illustration.

Figure pat00005
Figure pat00005

다가 알코올은, 1종을 단독으로 혹은 2종 이상을 함께 사용할 수 있다.Polyhydric alcohol can be used individually by 1 type or in combination of 2 or more types.

다가 알코올의 배합량은, 특별히 한정되지 않지만, 에폭시 수지 100질량부에 대하여 예를 들어 5 내지 200질량부의 범위로부터 적절하게 선택할 수 있다.Although the compounding quantity of polyhydric alcohol is not specifically limited, For example, it can select suitably from the range of 5-200 mass parts with respect to 100 mass parts of epoxy resins.

또한, 다가 알코올 화합물의 몰수(B)와 산 무수물의 몰수(C)의 몰비(B/C)가 0.01 내지 0.70인 것이 바람직하고, 0.05 내지 0.60인 것이 보다 바람직하고, 0.10 내지 0.50인 것이 가장 바람직하다.Further, the molar ratio (B/C) of the number of moles (B) of the polyhydric alcohol compound and the number of moles (C) of the acid anhydride is preferably 0.01 to 0.70, more preferably 0.05 to 0.60, and most preferably 0.10 to 0.50. Do.

다가 알코올의 배합량이 지나치게 적으면, 얻어지는 경화체의 탄성률이 지나치게 높아지는 경우가 있고, 한편, 다가 알코올의 배합량이 지나치게 많으면, 얻어지는 경화체의 유리 전이 온도 및 탄성률이 지나치게 낮아지는 경우가 있다.When there is too little compounding quantity of polyhydric alcohol, the elasticity modulus of the hardening body obtained may become high too much, on the other hand, when there is too much compounding quantity of polyhydric alcohol, the glass transition temperature and elasticity modulus of the hardening body obtained may become low too much.

경화 촉진제로서는, 트리에탄올아민, 디메틸벤질아민 등의 3급 아민, 2-메틸이미다졸, 2-에틸-4-메틸이미다졸 등의 이미다졸류, 테트라페닐포스포늄ㆍ테트라페닐보레이트, 트리페닐포스핀 등의 유기 인 화합물, 1,8-디아자비시클로[5.4.0]운데센-7이나 1,5-디아자비시클로[4.3.0]노넨-5 등의 디아자비시클로알켄계 화합물 등을 들 수 있다. 이들도 단독으로 사용해도 되고 2종 이상을 병용해도 된다.Examples of the curing accelerator include tertiary amines such as triethanolamine and dimethylbenzylamine, imidazoles such as 2-methylimidazole and 2-ethyl-4-methylimidazole, tetraphenylphosphonium/tetraphenylborate, and triphenyl organophosphorus compounds such as phosphine, diazabicycloalkene compounds such as 1,8-diazabicyclo[5.4.0]undecene-7 and 1,5-diazabicyclo[4.3.0]nonene-5 can be heard These may also be used independently and may use 2 or more types together.

경화 촉진제의 배합량은, 특별히 한정되지 않지만, 에폭시 수지 100질량부에 대하여 예를 들어 0.1 내지 5질량부의 범위로부터 적절하게 선택할 수 있으며, 0.5 내지 3질량부가 바람직하고, 1 내지 2질량부가 보다 바람직하다. 경화 촉진제의 배합량이 지나치게 적으면, 경화 속도가 느려져, 생산성이 저하되고, 한편, 경화 촉진제의 배합량이 지나치게 많으면, 경화 반응 속도가 빨라, 반응 상태의 제어가 곤란해져, 반응의 변동을 발생시킬 우려가 있다.Although the compounding quantity of a hardening accelerator is not specifically limited, For example, it can select suitably from the range of 0.1-5 mass parts with respect to 100 mass parts of epoxy resins, 0.5-3 mass parts is preferable, and 1-2 mass parts is more preferable. . When the compounding amount of the curing accelerator is too small, the curing rate becomes slow and productivity is lowered. On the other hand, when the compounding amount of the curing accelerator is too large, the curing reaction rate is high, the control of the reaction state becomes difficult, and there is a risk of causing fluctuations in the reaction there is

본 발명의 광반도체 밀봉용 수지 성형물이 경화 촉진제를 포함하는 경우, 경화 촉진제의 일부가 에폭시 수지 및/또는 산 무수물과 반응해도 된다.When the resin molding for optical semiconductor sealing of this invention contains a hardening accelerator, a part of hardening accelerator may react with an epoxy resin and/or an acid anhydride.

본 발명의 광반도체 밀봉용 수지 성형물에는, 상기 각 성분 이외에 필요에 따라 착색 방지제, 활택제, 변성제, 열화 방지제, 이형제, 광을 파장 변화시키는 형광체나 확산시키는 무기ㆍ유기 필러 등의 첨가제가 사용된다. 또한, 실리카 분말 등의 충전제는 광의 투과를 손상시키지 않을 정도라면 배합할 수 있다.In the resin molded article for optical semiconductor encapsulation of the present invention, in addition to each of the above components, if necessary, additives such as color inhibitors, lubricants, modifiers, deterioration inhibitors, mold release agents, phosphors that change the wavelength of light, and inorganic/organic fillers that diffuse light are used. . In addition, fillers, such as a silica powder, can be mix|blended as long as it does not impair transmission of light.

착색 방지제로서는, 페놀계 화합물, 아민계 화합물, 유기 황계 화합물, 포스핀계 화합물 등을 들 수 있다.As a coloring inhibitor, a phenol type compound, an amine type compound, an organic sulfur type compound, a phosphine type compound, etc. are mentioned.

활택제로서는, 스테아르산, 스테아르산마그네슘, 스테아르산칼슘 등의 왁스나 탈크 등을 들 수 있다. 또한, 상기 활택제를 배합하는 경우, 그 배합량은 성형 조건에 따라 적절하게 설정되지만, 예를 들어 수지 성형물 전체의 0.1 내지 0.4질량%로 설정하는 것이 적합하다.Examples of the lubricant include waxes and talc such as stearic acid, magnesium stearate, and calcium stearate. In addition, when mix|blending the said lubricating agent, although the compounding quantity is set suitably according to molding conditions, it is suitable to set to 0.1-0.4 mass % of the whole resin molding, for example.

광을 파장 변화시키는 형광체나 확산시키는 무기ㆍ유기 필러로서는, 석영 유리 분말, 탈크, 용융 실리카 분말 및 결정성 실리카 분말 등의 실리카 분말, 알루미나, 질화규소, 질화알루미늄, 탄화규소 등을 들 수 있다. 또한, 형광체나 무기ㆍ유기 필러를 배합하는 경우, 그 배합량은 성형 조건에 따라 적절하게 설정된다. 구체적으로는, 형광체의 경우, 형광체의 배합량은, 수지 성형물 전체의 1질량% 내지 60질량%의 범위로부터 적절하게 설정할 수 있다. 한편, 광산란시키는 필러(유기ㆍ무기)의 경우, 광산란시키는 필러는, 수지 성형물 전체의 0.5질량% 내지 25질량%로부터 적절하게 설정할 수 있다.Examples of the phosphor for changing the wavelength of light and inorganic/organic fillers for diffusing light include silica powder such as quartz glass powder, talc, fused silica powder and crystalline silica powder, alumina, silicon nitride, aluminum nitride, silicon carbide, and the like. In addition, when mix|blending a fluorescent substance or an inorganic/organic filler, the compounding quantity is set suitably according to molding conditions. Specifically, in the case of a fluorescent substance, the compounding quantity of a fluorescent substance can be set suitably from 1 mass % - 60 mass % of the whole resin molding. On the other hand, in the case of a light-scattering filler (organic/inorganic), the light-scattering filler can be suitably set from 0.5 mass % to 25 mass % of the whole resin molding.

본 발명의 광반도체 밀봉용 수지 성형물로서는 태블릿, 시트 등을 들 수 있다.A tablet, a sheet, etc. are mentioned as resin molding for optical semiconductor sealing of this invention.

광반도체 밀봉용 수지 성형물이 태블릿인 경우, 그 체적은 특별히 한정되지 않지만, 1 내지 100㎤가 바람직하고, 10 내지 100㎤가 보다 바람직하다.Although the volume is not specifically limited when the resin molding for optical semiconductor sealing is a tablet, 1-100 cm<3> is preferable and 10-100 cm<3> is more preferable.

본 발명의 광반도체 밀봉용 수지 성형물은, 수광 소자 등의 광반도체 소자의 수지 밀봉에 사용되기 때문에, 광학적 관점에서 투명한 것이 바람직하다. 여기서, 「투명」이란, 상기 성형물의 경화체의, 400nm에 있어서의 투과율이 90% 이상인 것을 말한다. 또한, 전술한 광을 파장 변화시키는 형광체나 확산시키는 무기ㆍ유기 필러 등의 첨가물을 함유하는 경우의 투과율은, 첨가물을 제외한 수지부의 투과율을 의미한다.Since the resin molding for optical semiconductor sealing of this invention is used for resin sealing of optical semiconductor elements, such as a light receiving element, it is preferable from an optical point of view that it is transparent. Here, "transparency" means that the transmittance|permeability in 400 nm of the hardening body of the said molded object is 90 % or more. In addition, the transmittance|permeability in the case of containing additives, such as a fluorescent substance which changes the wavelength of light and an inorganic/organic filler which diffuses the above-mentioned, means the transmittance|permeability of the resin part excluding an additive.

본 발명의 광반도체 밀봉용 수지 성형물은, 예를 들어 The resin molding for optical semiconductor sealing of this invention is, for example,

에폭시 수지, 산 무수물, 다가 알코올 및 경화 촉진제를 혼련하여, 경화성 수지 조성물을 얻는 공정과,A step of kneading an epoxy resin, an acid anhydride, a polyhydric alcohol and a curing accelerator to obtain a curable resin composition;

해당 경화성 수지 조성물을 열처리하는 공정과,A step of heat-treating the curable resin composition;

해당 경화성 수지 조성물을 조립하여, 입상 경화성 수지 조성물을 얻는 공정과,A step of granulating the curable resin composition to obtain a granular curable resin composition;

해당 입상 경화성 수지 조성물을 성형하는 공정The step of molding the granular curable resin composition

을 포함하는 제조 방법에 의해, 적합하게 제조할 수 있다.It can manufacture suitably by the manufacturing method containing

혼련하는 방법은 특별히 한정되지 않지만, 예를 들어 압출기를 사용하는 방법 등을 들 수 있다. 혼련 온도도 특별히 한정되지 않으며, 에폭시 수지의 특성에 따라 적절하게 변경할 수 있다.Although the method of kneading is not specifically limited, For example, the method of using an extruder, etc. are mentioned. The kneading temperature is not particularly limited, either, and may be appropriately changed according to the properties of the epoxy resin.

혼련하여 얻어진 경화성 수지 조성물의 형상은 특별히 한정되지 않으며, 필름상, 시트상, 입상, 괴상 등을 들 수 있다.The shape of the curable resin composition obtained by kneading|mixing is not specifically limited, A film form, a sheet form, a granular form, a block form, etc. are mentioned.

혼련하여 얻어진 경화성 수지 조성물은, 열처리하여 B 스테이지상(반경화상)의 광반도체 밀봉용 수지 조성물을 얻는다. 열처리 온도 및 열처리 시간은 특별히 한정되지 않으며, 에폭시 수지의 특성에 따라 적절하게 변경할 수 있다.The curable resin composition obtained by kneading|mixing heat-processes and obtains the resin composition for optical semiconductor sealing of B-stage shape (semi-hardened image). The heat treatment temperature and heat treatment time are not particularly limited, and may be appropriately changed according to the characteristics of the epoxy resin.

열처리한 수지 조성물은, 조립하여 입상 경화성 수지 조성물을 얻는다. 조립 전에 볼 밀, 터보 밀 등을 사용하여 분쇄할 수도 있다. 조립 방법은 특별히 한정되지 않지만, 건식 압축 조립기를 사용하는 방법 등을 들 수 있다. 조립하여 얻어진 입상물의 평균 입경은 특별히 한정되지 않지만, 1 내지 5000㎛가 바람직하고, 100 내지 2000㎛가 보다 바람직하다. 5000㎛를 초과하면, 압축률이 저하되는 경향이 있다.The heat-treated resin composition is granulated to obtain a granular curable resin composition. It may be pulverized using a ball mill, turbo mill, or the like before granulation. Although the granulation method is not specifically limited, The method of using a dry compression granulator, etc. are mentioned. Although the average particle diameter of the granular material obtained by granulation is not specifically limited, 1-5000 micrometers is preferable, and 100-2000 micrometers is more preferable. When it exceeds 5000 micrometers, there exists a tendency for a compression rate to fall.

얻어진 입상 경화성 수지 조성물은, 성형하여 성형물을 얻는다. 성형물로서는 태블릿이나 시트를 들 수 있고, 성형 방법으로서는 태블릿을 얻는 타정 성형이나, 시트를 얻는 압출 성형 등을 들 수 있다. 얻어진 성형물은, 전술한 바와 같이 유리 전이 온도가 높고, 게다가 탄성률이 낮은 경화체를 제공할 수 있기 때문에, 내열성 및 내땜납 리플로성이 우수한 광반도체 밀봉재를 제공할 수 있다.The obtained granular curable resin composition is shape|molded, and a molded object is obtained. A tablet and a sheet|seat are mentioned as a molded object, and tablet molding which obtains a tablet, extrusion molding, etc. which obtain a sheet are mentioned as a shaping|molding method. Since the obtained molded object can provide the hardened|cured material with a high glass transition temperature and a low elastic modulus as mentioned above, it can provide the optical semiconductor sealing material excellent in heat resistance and solder reflow resistance.

성형물이 태블릿인 경우, 태블릿을 타정 성형할 때의 조건은, 입상 경화성 수지 조성물의 조성이나 평균 입경, 입도 분포 등에 따라 적절하게 조정되지만, 일반적으로, 그 타정 성형 시의 압축률은 90 내지 96%로 설정하는 것이 적합하다. 즉, 압축률의 값이 90%보다 작으면, 태블릿의 밀도가 낮아져 갈라지기 쉬워질 우려가 있고, 반대로, 압축률의 값이 96%보다 크면, 타정 시에 크랙이 발생하여 이형 시에 절결이나 꺾임이 발생할 우려가 있기 때문이다.When the molding is a tablet, the conditions for tableting the tablet are appropriately adjusted depending on the composition, average particle diameter, particle size distribution, etc. of the granular curable resin composition, but generally, the compression ratio at the time of tablet molding is 90 to 96%. It is appropriate to set That is, when the value of the compressibility is less than 90%, the density of the tablet is low and there is a risk of cracking easily. Conversely, when the value of the compressibility is larger than 96%, cracks occur during tableting, and notch or bend at the time of release is caused. because there is a risk of it happening.

본 발명의 광반도체 밀봉용 수지 성형물은, 트랜스퍼 몰드 성형 등의 성형 방법에 의해 광반도체 소자를 밀봉할 수 있다. 본 발명의 광반도체 밀봉용 수지 성형물을 성형하여 얻어지는 광반도체 밀봉재도, 본 발명의 하나이다. 본 발명의 광반도체 밀봉재는, 본 발명의 수지 성형물로부터 얻어지므로, 내온도 사이클성이 우수하다. 또한, 내땜납 리플로성, 내황변성, 온도 변화에 대한 치수 안정성, 충격 흡수성, 내충격성도 우수하다. 따라서, 저온에서부터 고온까지 온도가 반복하여 변화하는 환경 하에서의 사용이나, 땜납 리플로 공정에 의해서도 크랙이나 박리가 적어, 밀봉되는 광반도체 소자에 대한 손상을 저감할 수 있다.The resin molding for optical semiconductor sealing of this invention can seal an optical semiconductor element by molding methods, such as transfer mold molding. The optical semiconductor sealing material obtained by shape|molding the resin molding for optical semiconductor sealing of this invention is also one of this invention. Since the optical semiconductor sealing material of this invention is obtained from the resin molding of this invention, it is excellent in temperature cycling resistance. Moreover, it is excellent also in solder reflow resistance, yellowing resistance, dimensional stability with respect to temperature change, shock absorption, and impact resistance. Therefore, there are few cracks or peelings even by use in an environment in which the temperature is repeatedly changed from low to high temperature or by a solder reflow process, and damage to the optical semiconductor element to be sealed can be reduced.

본 명세서에 있어서, 광반도체 밀봉재란, 광반도체 장치를 구성하는 광반도체 소자를 덮도록 형성되며, 당해 소자를 밀봉하는 부재이다.In this specification, an optical-semiconductor sealing material is a member which forms so that the optical-semiconductor element which comprises an optical-semiconductor device may be covered, and seals the said element.

광반도체 소자와, 당해 광반도체 소자를 밀봉하는 본 발명의 광반도체 밀봉재를 구비하는 광반도체 장치도, 본 발명의 하나이다. 본 발명의 광반도체 장치는, 본 발명의 광반도체 밀봉재를 구비하므로, 저온에서부터 고온까지 온도가 반복하여 변화하는 환경 하에서 작동시킨 경우라도, 밀봉재의 크랙이나 박리가 적고, 광반도체 소자에 대한 손상이 적다.An optical-semiconductor device provided with an optical-semiconductor element and the optical-semiconductor sealing material of this invention which seals the said optical-semiconductor element is also one of this invention. Since the optical semiconductor device of the present invention is provided with the optical semiconductor sealing material of the present invention, even when operated under an environment in which the temperature is repeatedly changed from low to high temperature, cracks and peeling of the sealing material are small, and damage to the optical semiconductor element is reduced little.

본 발명의 광반도체 밀봉용 수지 성형물은, 저온에서부터 고온까지 온도가 반복하여 변화하는 환경 하에서 사용되는 경우가 많고, 또한 땜납 리플로 공정에 제공되는 경우가 많은 차량 탑재용 광반도체의 밀봉에 특히 적합하게 사용할 수 있다.The resin molding for optical semiconductor encapsulation of the present invention is often used under an environment in which the temperature is repeatedly changed from low to high temperature, and is particularly suitable for sealing in-vehicle optical semiconductors which are often provided in a solder reflow process can be used

<실시예><Example>

다음에 실시예를 들어 본 발명을 더 상세하게 설명하지만, 본 발명은 이들 실시예로만 한정되는 것은 아니다.Next, the present invention will be described in more detail with reference to Examples, but the present invention is not limited only to these Examples.

사용한 재료를 이하에 나타낸다.The materials used are shown below.

에폭시 수지 A: 비스페놀 A형 에폭시 수지(미쓰비시 케미컬사제 JER-1002W, 에폭시 당량 650)Epoxy resin A: Bisphenol A type epoxy resin (JER-1002W manufactured by Mitsubishi Chemical Corporation, epoxy equivalent 650)

에폭시 수지 B: 트리글리시딜이소시아누레이트(닛산 가가쿠사제 TEPIC-S, 에폭시 당량 100)Epoxy resin B: triglycidyl isocyanurate (TEPIC-S manufactured by Nissan Chemical Co., Ltd., epoxy equivalent 100)

산 무수물: 헥사히드로 무수 프탈산(신니혼 리카사제 리카시드 HH)Acid anhydride: Hexahydrophthalic anhydride (Ricaside HH manufactured by New Japan Rica Co., Ltd.)

디올 첨가제 A: 1,4-시클로헥산디메탄올Diol additive A: 1,4-cyclohexanedimethanol

디올 첨가제 B: 1,4-시클로헥산디올Diol additive B: 1,4-cyclohexanediol

디올 첨가제 C: 수소화 비스페놀 ADiol Additive C: Hydrogenated Bisphenol A

디올 첨가제 D: 1,6-헥산디올Diol additive D: 1,6-hexanediol

디올 첨가제 E: 네오펜틸글리콜Diol Additive E: Neopentylglycol

경화 촉진제: 디메틸벤질아민Cure Accelerator: Dimethylbenzylamine

실시예 1 내지 6 및 비교예 1 내지 4Examples 1 to 6 and Comparative Examples 1 to 4

표 1에 나타내는 각 성분을 동일 표에 나타내는 비율로 50 내지 140℃에서 용융 혼합 후, 냉각하여, 에폭시 수지 조성물을 얻었다. 얻어진 에폭시 수지 조성물을 40 내지 80℃에서 반응도 조정을 행하고, 분쇄하고, 타정 성형함으로써, 광반도체 밀봉용 수지 태블릿을 제작하였다.Each component shown in Table 1 was cooled after melt-mixing at 50-140 degreeC in the ratio shown in the same table, and the epoxy resin composition was obtained. The resin tablet for optical semiconductor sealing was produced by performing reactivity adjustment at 40-80 degreeC, grind|pulverizing the obtained epoxy resin composition at 40-80 degreeC, and tablet-molding.

각 실시예 및 비교예에서 제작한 태블릿을 사용하여, 각종 물성을 이하에 나타내는 방법으로 측정함과 함께, 내온도 사이클성, 내땜납 리플로성 및 투명성을 평가하였다. 결과를 표 1에 나타낸다.Using the tablets produced in Examples and Comparative Examples, various physical properties were measured by the following methods, and temperature cycle resistance, solder reflow resistance, and transparency were evaluated. A result is shown in Table 1.

<구조 단위의 몰비><Molar ratio of structural units>

디올 첨가제와 산 무수물의 반응물로부터 유래하는 구조 단위 A, 에폭시 수지와 산 무수물의 반응물로부터 유래하는 구조 단위 B의 함유량을 NMR에 의해 구하고, 구조 단위 A 및 구조 단위 B의 합계에 대한 구조 단위 A의 몰비(A/(A+B))를 산출하였다.The content of the structural unit A derived from the reaction product of the diol additive and the acid anhydride and the structural unit B derived from the reaction product of the epoxy resin and the acid anhydride was determined by NMR, The molar ratio (A/(A+B)) was calculated.

<시험편(경화체)의 제작><Production of test piece (hardening body)>

상기와 같이 하여 제작한 태블릿을 사용하여, 전용 금형으로 성형(경화 조건: 150℃×4분간 가열)함으로써, 측정 방법에 따른 크기의 시험편용 경화물을 제작하였다. 이것을 150℃에서 3시간 가열함으로써 완전히 경화를 종료시키고, 시험편을 얻었다.A cured product for a test piece having a size according to the measurement method was produced by molding (curing condition: 150°C x 4 minutes heating) using a dedicated mold using the tablet produced as described above. By heating this at 150 degreeC for 3 hours, hardening was complete|finished completely, and the test piece was obtained.

<저장 탄성률 E'><Storage modulus E'>

상기에서 제작한 시험편(크기: 폭 5mm×길이 35mm×두께 1mm)을 사용하여, RHEOMETRIC SCIENTIFIC사제의 RSA-II에 의해, 인장 모드, 주파수 1Hz, 주사 온도 0 내지 270℃, 승온 속도 10℃/분, 샘플 지지점간 거리 22.5mm의 측정 조건에서, 상기 시험편의 저장 탄성률 E'를 얻고, 측정 온도 265℃에 있어서 상기 경화체의 저장 탄성률을 도출하였다.Using the test piece prepared above (size: width 5 mm x length 35 mm x thickness 1 mm), by RSA-II manufactured by RHEOMETRIC SCIENTIFIC, tensile mode, frequency 1 Hz, scanning temperature 0 to 270 ° C, temperature increase rate 10 ° C/min , the storage elastic modulus E' of the test piece was obtained under the measurement conditions of the distance between the sample supporting points of 22.5 mm, and the storage elastic modulus of the cured body was derived at a measurement temperature of 265°C.

<유리 전이 온도(Tg)><Glass transition temperature (Tg)>

RHEOMETRIC SCIENTIFIC사제의 RSA-II에 의해, 인장 모드, 주파수 1Hz, 주사 온도 0 내지 270℃, 승온 속도 10℃/분, 샘플 지지점간 거리 22.5mm의 측정 조건에서, 상기에서 제작한 시험편(크기: 폭 5mm×길이 35mm×두께 1mm)의 저장 탄성률 E' 및 손실 탄성률 E"를 얻고, 이들로부터 tanδ(=E"/E')의 곡선을 구하여, tanδ의 피크 톱 온도를 구하였다.The test piece (size: width) prepared above under the measurement conditions of a tensile mode, a frequency of 1 Hz, a scanning temperature of 0 to 270 ° C., a temperature increase rate of 10 ° C./min, and a distance between the sample support points of 22.5 mm by RSA-II manufactured by RHEOMETRIC SCIENTIFIC. The storage modulus E' and the loss modulus E" of 5 mm x length 35 mm x thickness 1 mm were obtained, the curve of tan δ (=E"/E') was calculated|required from these, and the peak top temperature of tan δ was calculated|required.

또한, 유리 전이 온도를 X라 한 경우의 370000X-36000000의 값도 구하였다.Moreover, the value of 370000X-3600000 at the time of making a glass transition temperature X was also calculated|required.

<직선 투과율><Linear transmittance>

먼저 석영 셀 내를 후지 필름 와코 쥰야쿠사제의 유동 파라핀으로 채우고, 닛폰 분코사제의 분광 광도계 V-670을 사용하여 베이스 라인을 측정하였다. 그 후, 상기에서 제작한 시험편(크기: 폭 50mm×길이 50mm×두께 1mm)을 석영 셀 내의 유동 파라핀에 침지하고, 파장 450nm에서의 광투과율을 측정하였다. 또한, 이하의 기준으로 평가하였다.First, the inside of the quartz cell was filled with liquid paraffin manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., and the baseline was measured using a spectrophotometer V-670 manufactured by Nippon Bunko Corporation. Thereafter, the prepared test piece (size: width 50 mm × length 50 mm × thickness 1 mm) was immersed in liquid paraffin in a quartz cell, and the light transmittance at a wavelength of 450 nm was measured. In addition, the following criteria evaluated.

○: 직선 투과율이 70% 이상○: linear transmittance of 70% or more

×: 직선 투과율이 70% 미만x: linear transmittance less than 70%

<평가 패키지의 제작><Production of evaluation package>

도 1에 도시하는 바와 같이, 히라이 세미츠 고교사제의 신뢰성 평가 프레임(Ag)의 단부를 덮도록, 상기에서 제작한 태블릿을 사용하여, 크기: 폭 5mm×길이 6mm×두께 2mm로 성형(경화 조건: 150℃×4분간 가열)하였다. 이것을 150℃에서 3시간 가열함으로써 완전히 경화를 종료시키고, 평가 패키지를 얻었다. 각 실시예ㆍ비교예에 대하여, 상기 패키지를 20개 제작하였다.As shown in Fig. 1, the tablet prepared above was used to cover the end of the reliability evaluation frame (Ag) manufactured by Hirai Semitsu Kogyo Co., Ltd., and molded into a size: width 5 mm x length 6 mm x thickness 2 mm (curing conditions) : heated at 150°C for 4 minutes). By heating this at 150 degreeC for 3 hours, hardening was complete|finished completely, and the evaluation package was obtained. For each Example and Comparative Example, 20 packages were produced.

<온도 사이클 시험(TCT)><Temperature Cycle Test (TCT)>

상기 패키지를 고온(130℃) 및 저온(-40℃)에 각각 15분간씩 노출시켰다. 각 온도로의 복귀는 5분 이내에 완료시켰다. 이것을 1사이클로 하여, 상기 패키지에 대하여 1000사이클의 온도 사이클 시험을 행하였다. 그 후 패키지를 취출하고, 크랙의 유무를 관찰하여, 20개의 패키지 중 크랙이 발생한 패키지의 개수를 세어, 이하의 기준으로 평가하였다.The package was exposed to high temperature (130° C.) and low temperature (-40° C.) for 15 minutes each. Return to each temperature was completed within 5 minutes. By setting this as 1 cycle, the temperature cycle test of 1000 cycles was performed with respect to the said package. Then, the package was taken out, the presence or absence of a crack was observed, the number of the package in which the crack generate|occur|produced among 20 packages was counted, and the following reference|standard evaluated.

○: 0 내지 5개○: 0 to 5

△: 6 내지 10개△: 6 to 10 pieces

×: 11개 이상×: 11 or more

<땜납 리플로><Solder Reflow>

상기 패키지를 리플로로(톱 피크 265℃×10초)에 3회 통과시켰다.The package was passed through reflow (top peak 265 DEG C x 10 seconds) three times.

<내땜납 리플로성><Solder reflow resistance>

상기 땜납 리플로를 행한 패키지를 다이요 붓산사제의 레드 잉크에 침지하여, 10분간 감압하고, 그 후 패키지를 취출하고, 잉크의 침입을 눈으로 보아, 잉크가 침입한 패키지를 박리 불량으로 판정하였다. 20개의 패키지 중 박리 불량 패키지의 개수를 세어, 이하의 기준으로 내땜납 리플로성을 평가하였다.The package subjected to the solder reflow was immersed in red ink manufactured by Taiyo Bussan Co., Ltd., and the pressure was reduced for 10 minutes, after which the package was taken out. . The number of packages defective in peeling among the 20 packages was counted, and solder reflow resistance was evaluated based on the following criteria.

○: 0 내지 5개○: 0 to 5

×: 6개 이상×: 6 or more

Figure pat00006
Figure pat00006

본 발명은 광반도체 소자의 밀봉에 사용되는 광반도체 밀봉용 수지 성형물, 광반도체 밀봉재 및 광반도체 장치에 관한 것이며, 광반도체 장치의 제조에 이용할 수 있다.TECHNICAL FIELD This invention relates to the resin molding for optical-semiconductor sealing used for sealing of an optical-semiconductor element, an optical-semiconductor sealing material, and an optical-semiconductor device, It can utilize for manufacture of an optical-semiconductor device.

Claims (6)

하기 식 (I)로 표시되는 구조 단위 (I)을 갖는 화합물, 및 하기 식 (II)로 표시되는 구조 단위 (II)를 갖는 화합물을 포함하는, 광반도체 밀봉용 수지 성형물.
식 (I):
Figure pat00007

(식 중, A1은 유기기를 나타낸다. R1은 비방향족환을 갖는 유기기를 나타낸다.)
식 (II):
Figure pat00008

(식 중, A1은 상기한 바와 같으며, R2a는 에폭시 수지의 잔기를 포함하는 부위를 나타낸다. R2b는 수소 원자, 또는 R2a와 결합하는 결합손을 나타낸다.)
A resin molding for optical semiconductor encapsulation comprising a compound having a structural unit (I) represented by the following formula (I), and a compound having a structural unit (II) represented by the following formula (II).
Formula (I):
Figure pat00007

(In the formula, A 1 represents an organic group. R 1 represents an organic group having a non-aromatic ring.)
Formula (II):
Figure pat00008

(Wherein, A 1 is as described above, and R 2a represents a moiety containing a residue of an epoxy resin. R 2b represents a hydrogen atom or a bond bonded to R 2a .)
제1항에 있어서, 하기 관계식 (1)을 만족시키는, 광반도체 밀봉용 수지 성형물.
Y<370000X-36000000 (1)
(식 중, X는, 하기 방법으로 얻어진 경화체(크기: 폭 5mm×길이 35mm×두께 1mm)의 유리 전이 온도(℃)를 나타내고, Y는, 상기 경화체의 265℃에 있어서의 저장 탄성률(Pa)을 나타낸다.)
(경화체의 제작 방법)
수지 성형물을 150℃에서 4분간 가열하여 성형하고, 그 후 150℃에서 3시간 가열함으로써 경화체를 얻는다.
The resin molding for optical semiconductor encapsulation according to claim 1, which satisfies the following relational expression (1).
Y<370000X-3600000 (1)
(wherein X represents the glass transition temperature (°C) of the cured product (size: width 5 mm × length 35 mm × thickness 1 mm) obtained by the following method, Y is the storage elastic modulus at 265° C. of the cured product (Pa) indicates.)
(Manufacturing method of hardening body)
A resin molding is heated and molded at 150°C for 4 minutes, and then heated at 150°C for 3 hours to obtain a cured product.
제1항 또는 제2항에 있어서, 구조 단위 (I)과 구조 단위 (II)의 합계에 대한 구조 단위 (I)의 몰비가 0.10 내지 0.60인, 광반도체 밀봉용 수지 성형물.The resin molding for optical semiconductor encapsulation according to claim 1 or 2, wherein the molar ratio of the structural unit (I) to the total of the structural unit (I) and the structural unit (II) is 0.10 to 0.60. 제1항 내지 제3항 중 어느 한 항에 있어서, 하기 방법에 의해 경화체(크기: 폭 50mm×길이 50mm×두께 1mm)로 한 경우의, 파장 450nm에서의 직선 투과율이 70% 이상인, 광반도체 밀봉용 수지 성형물.
(경화체의 제작 방법)
수지 성형물을 150℃에서 4분간 가열하여 성형하고, 그 후 150℃에서 3시간 가열함으로써 경화체를 얻는다.
The optical semiconductor encapsulation according to any one of claims 1 to 3, wherein the linear transmittance at a wavelength of 450 nm is 70% or more when a cured body (size: 50 mm in width x 50 mm in length x 1 mm in thickness) is obtained by the following method. For resin moldings.
(Manufacturing method of hardening body)
A resin molding is heated and molded at 150°C for 4 minutes, and then heated at 150°C for 3 hours to obtain a cured product.
제1항 내지 제4항 중 어느 한 항에 기재된 광반도체 밀봉용 수지 성형물을 성형하여 얻어지는, 광반도체 밀봉재.The optical-semiconductor sealing material obtained by shape|molding the resin molding for optical-semiconductor sealing in any one of Claims 1-4. 광반도체 소자와, 당해 광반도체 소자를 밀봉하는 제5항에 기재된 광반도체 밀봉재를 구비하는, 광반도체 장치.An optical-semiconductor device provided with the optical-semiconductor element and the optical-semiconductor sealing material of Claim 5 which seals the said optical-semiconductor element.
KR1020210118804A 2020-09-08 2021-09-07 Resin molded product for opto-semiconductor sealing KR20220033034A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2020-150482 2020-09-08
JP2020150482A JP2022045020A (en) 2020-09-08 2020-09-08 Resin molding for optical semiconductor sealing

Publications (1)

Publication Number Publication Date
KR20220033034A true KR20220033034A (en) 2022-03-15

Family

ID=80462512

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210118804A KR20220033034A (en) 2020-09-08 2021-09-07 Resin molded product for opto-semiconductor sealing

Country Status (4)

Country Link
JP (1) JP2022045020A (en)
KR (1) KR20220033034A (en)
CN (1) CN114149567A (en)
TW (1) TW202223056A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011009394A (en) 2009-06-25 2011-01-13 Nitto Denko Corp Method of manufacturing resin tablet for sealing optical semiconductor, resin tablet for sealing optical semiconductor provided by the same, and optical semiconductor device using the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011009394A (en) 2009-06-25 2011-01-13 Nitto Denko Corp Method of manufacturing resin tablet for sealing optical semiconductor, resin tablet for sealing optical semiconductor provided by the same, and optical semiconductor device using the same

Also Published As

Publication number Publication date
CN114149567A (en) 2022-03-08
JP2022045020A (en) 2022-03-18
TW202223056A (en) 2022-06-16

Similar Documents

Publication Publication Date Title
JP5110311B2 (en) Method for producing thermosetting epoxy resin composition
EP2323178B1 (en) Light-emitting device, method for manufacturing same, molded body and sealing member
US9808970B2 (en) Light-emitting device, method for manufacturing same, and molded part
KR100834351B1 (en) Epoxy Resin Composition for Encapsulating Multichip?Package and the Multichip?Package using the same
JP2008189833A (en) Thermosetting epoxy resin composition and semiconductor apparatus
KR101202152B1 (en) Epoxy resin composition for optical semiconductor device encapsulation, cured body thereof, and optical semiconductor device using the epoxy resin composition
KR101939429B1 (en) Epoxy resin composition and electronic component device
KR20220033034A (en) Resin molded product for opto-semiconductor sealing
KR20110124154A (en) Epoxy resin composition for optical-semiconductor element encapsulation and optical-semiconductor device using the same
KR20210150294A (en) Resin molded article for optical semiconductor encapsulation
KR101908179B1 (en) Epoxy resin composition for encapsulating semiconductor device and semiconductor device encapsulated by using the same
JP6233229B2 (en) Thermosetting epoxy resin composition for optical semiconductor element sealing and optical semiconductor device using the same
JP2018111750A (en) Thermosetting epoxy resin composition for optical semiconductor element encapsulation and optical semiconductor deice using the same
JP2021192421A (en) Resin molded product for opto-semiconductor encapsulation
KR101266542B1 (en) Epoxy resin composition for encapsulating semiconductor device and semiconductor device package using the same
KR102623238B1 (en) Epoxy resin composition for encapsulating semiconductor device and semiconductor device encapsulated using the same
CN115703920A (en) Resin composition for optical semiconductor encapsulation, resin molded article, optical semiconductor encapsulating material, and optical semiconductor device
KR102126847B1 (en) Epoxy resin composition
KR102112866B1 (en) Composition for encapsulating semiconductor device and semiconductor device encapsulated by using the same
JPH0582675A (en) Semiconductor device
JP3965689B2 (en) Epoxy resin composition for optical semiconductor encapsulation and optical semiconductor device
JP3408744B2 (en) Epoxy resin composition for optical semiconductor encapsulation and optical semiconductor device
KR20200057565A (en) Epoxy resin composition for encapsulating semiconductor device and semiconductor device encapsulated using the same
JPH11335529A (en) Epoxy resin composition for optical semiconductor and optical semiconductor device
JPH11335528A (en) Epoxy resin composition for optical semiconductor and optical semiconductor device