KR20220030385A - 안트라센 또는 트라이페닐렌 유도체 및 이를 포함한 유기전계발광소자 - Google Patents

안트라센 또는 트라이페닐렌 유도체 및 이를 포함한 유기전계발광소자 Download PDF

Info

Publication number
KR20220030385A
KR20220030385A KR1020200109581A KR20200109581A KR20220030385A KR 20220030385 A KR20220030385 A KR 20220030385A KR 1020200109581 A KR1020200109581 A KR 1020200109581A KR 20200109581 A KR20200109581 A KR 20200109581A KR 20220030385 A KR20220030385 A KR 20220030385A
Authority
KR
South Korea
Prior art keywords
group
mmol
layer
compound
formula
Prior art date
Application number
KR1020200109581A
Other languages
English (en)
Inventor
석문기
고병수
김혜정
권영재
박용필
윤정훈
김규리
한갑종
오유진
Original Assignee
주식회사 랩토
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 랩토 filed Critical 주식회사 랩토
Priority to KR1020200109581A priority Critical patent/KR20220030385A/ko
Publication of KR20220030385A publication Critical patent/KR20220030385A/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D263/00Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings
    • C07D263/52Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings condensed with carbocyclic rings or ring systems
    • C07D263/54Benzoxazoles; Hydrogenated benzoxazoles
    • C07D263/56Benzoxazoles; Hydrogenated benzoxazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached in position 2
    • C07D263/57Aryl or substituted aryl radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/60Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings condensed with carbocyclic rings or ring systems
    • C07D277/62Benzothiazoles
    • C07D277/64Benzothiazoles with only hydrocarbon or substituted hydrocarbon radicals attached in position 2
    • C07D277/66Benzothiazoles with only hydrocarbon or substituted hydrocarbon radicals attached in position 2 with aromatic rings or ring systems directly attached in position 2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/04Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/10Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/04Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/10Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings
    • H01L51/0052
    • H01L51/0067
    • H01L51/0069
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/656Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

유기 전계 발광 소자의 실질적인 광 효율과 시야각 향상에 기여하는 안트라센 또는 트라이페닐렌 유도체를 제공한다.
본 발명에 따른 유기 전계 발광 소자는, 제1 전극; 제2 전극; 상기 제1 전극과 제2 전극 사이에 배치된 1층 이상의 유기물층; 및 캡핑층을 포함하고, 상기 유기물층 또는 캡핑층은 하기 화학식 1로 표시되는 안트라센 또는 트라이페닐렌 유도체를 포함한다.
[화학식 1]
Figure pat00804

(상기 화학식 1에서 각 치환기들은 발명의 상세한 설명에서 정의한 바와 같다.)

Description

안트라센 또는 트라이페닐렌 유도체 및 이를 포함한 유기전계발광소자 {Anthracene, Triphenylene derivatives and organic electroluminescent device including the same}
본 발명은 안트라센 또는 트라이페닐렌 유도체 및 이를 포함하는 유기 전계 발광 소자에 관한 것으로, 안트라센 또는 트라이페닐렌 유도체에 의해 캡핑층을 포함한 유기 전계 발광 소자가 저굴절률 특성을 갖도록 하는 것이다.
디스플레이 산업에서 자기 발광 현상을 이용한 디스플레이로서 OLED(유기발광다이오드, Organic Light Emitting Diodes)가 주목받고 있다.
OLED에 있어, 1963년 Pope 등에 의하여 안트라센(Anthracene) 방향족 탄화수소의 단결정을 이용한 캐리어 주입형 전계발광(Electroluminescence; EL)의 연구가 최초로 시도되었다. 이러한 연구로부터 유기물에서 전하주입, 재결합, 여기자 생성, 발광 등의 기초적 메커니즘과 전기발광 특성이 이해되고 연구되어왔다.
특히 발광 효율을 높이기 위해 소자의 구조 변화 및 물질 개발 등 다양한 접근이 이루어지고 있다[Sun, S., Forrest, S. R., Appl. Phys. Lett. 91, 263503 (2007)/Ken-Tsung Wong, Org. Lett., 7, 2005, 5361-5364].
OLED 디스플레이의 기본적 구조는 일반적으로 양극(Anode), 정공주입층(Hole Injection Layer, HIL), 정공수송층(Hole Transporting Layer, HTL), 발광층 (Emission Layer, EML), 전자수송층(Electron Transporting Layer, ETL), 그리고 음극(Cathode)의 다층 구조로 구성되며, 전자 유기 다층막이 두 전극 사이에 형성된 샌드위치 구조로 되어 있다.
일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기에너지를 빛에너지로 전환시켜주는 현상을 말한다. 유기 발광 현상을 이용하는 유기 발광 소자는 통상 양극과 음극 및 이들 사이에 유기물층을 포함하는 구조를 가진다. 여기서 유기물층은 유기 발광 소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공 주입층, 정공 수송층, 발광층, 전자 수송층, 전자 주입층 등을 포함할 수 있다. 이러한 유기 발광 소자의 구조에서 두 전극 사이에 전압을 걸어주게 되면 양극에서는 정공이, 음극에서는 전자가 유기물층으로 주입되고, 주입된 정공과 전자가 만났을 때 엑시톤(exciton)이 형성되며, 이 엑시톤이 바닥상태로 떨어질 때 빛이 나게 된다. 이러한 유기 발광 소자는 자발광, 고휘도, 고효율, 낮은 구동전압, 넓은 시야각, 높은 콘트라스트, 고속 응답성 등의 특성을 갖는 것으로 알려져 있다.
유기 발광 소자에서 유기물층으로 사용되는 재료는 기능에 따라, 발광 재료와 전하 수송 재료, 예컨대 정공 주입 재료, 정공 수송 재료, 전자 수송 재료, 전자 주입 재료 등으로 분류될 수 있다.
발광 재료는 발광색에 따라 청색, 녹색, 적색 발광 재료와 보다 나은 천연색을 구현하기 위해 필요한 노란색 및 주황색 발광 재료가 있다. 또한, 색순도의 증가와 에너지 전이를 통한 발광 효율을 증가시키기 위하여, 발광 재료로서 호스트/도판트 계를 사용할 수 있다. 그 원리는 발광층을 주로 구성하는 호스트보다 에너지 대역 간극이 작고 발광 효율이 우수한 도판트를 발광층에 소량 혼합하면, 호스트에서 발생한 엑시톤이 도판트로 수송되어 효율이 높게 빛을 내는 것이다. 이 때 호스트의 파장이 도판트의 파장대로 이동하므로, 이용하는 도판트의 종류에 따라 원하는 파장의 빛을 얻을 수 있다.
전술한 유기 발광 소자가 갖는 우수한 특징들을 충분히 발현하기 위해, 소자 내 유기물층을 이루는 물질, 예컨대 정공 주입 물질, 정공 수송 물질, 발광 물질, 전자 수송 물질, 전자 주입 물질 등이 개발되었고, 이로 인해 상용화된 제품들에 의해 유기 발광 소자의 성능을 인정받고 있다.
그러나 유기 발광 소자의 상용화가 이루어지고 시간이 지남에 따라 유기 발광 소자 자체의 발광 특성 이외에 다른 특성들의 필요성이 대두되고 있다.
유기 발광 소자는 외부 광원에 노출되는 시간이 많은 경우가 대부분이므로 고에너지를 갖는 자외선에 노출되는 환경에 있게 된다. 이에 따라 유기 발광 소자를 구성하는 유기물이 지속적인 영향을 받는 문제가 있다. 이러한 고에너지 광원에 노출을 막기 위해 자외선 흡수 특성을 갖는 캡핑층을 유기 발광 소자에 적용함으로써 문제를 해결할 수 있다.
일반적으로 유기 발광 소자의 시야각 특성은 넓다고 알려져 있지만 광원 스펙트럼 관점에서는 시야각에 따라 상당한 편차가 발생하게 되며 이는 유기 발광 소자를 이루는 유리 기판, 유기물, 전극재료 등의 전체 굴절률과 유기 발광 소자의 발광파장에 따른 적절한 굴절률 사이에서 편차가 발생하는 것에 기인한다.
일반적으로 청색의 필요한 굴절률 값이 크고 파장이 길어질수록 필요 굴절률의 값은 작아진다. 이에 따라 상기 언급된 자외선 흡수특성과 적정 굴절률을 동시에 만족하는 캡핑층을 이루는 재료의 개발이 필요하다.
유기 발광 소자의 효율은 일반적으로 내부 발광 효율 (internal luminescent efficiency)과 외부 발광 효율로 나눌 수 있다. 내부 발광 효율은 광변환이 이루어지기 위해 유기층에서 엑시톤의 형성의 효율성에 관련된다.
외부 발광 효율은 유기층에서 생성된 광이 유기 발광 소자 외부로 방출되는 효율을 말한다.
전체적으로 효율을 제고하기 위해서는 내부 발광 효율뿐만 아니라 외부 발광 효율을 높여야 한다. 외부 발광 효율을 높이는 능력이 우수한 캡핑층(CPL, 광효율 개선층) 물질 개발이 요구되고 있다.
한편, 공진 구조의 전면(Top) 소자 구조는 비공진 구조의 배면(Bottom) 소자 구조와 비교해보면 형성된 빛이 반사막인 애노드에 반사되어 캐소드쪽으로 나오므로 SPP(Surface Plasmon Polariton)에 의한 광학 에너지 손실이 크다.
따라서, EL Spectrum의 모양과 효율향상을 위한 중요한 방법 중의 하나는 탑 캐소드(Top cathode)에 광효율 개선층(캡핑층)을 사용하는 방법이 있다.
일반적으로 SPP는 전자방출은 Al, Pt, Ag, Au의 4종의 금속이 주로 사용되며 금속 전극 표면에서 표면 프라즈몬이 발생한다. 예를 들어 음극을 Ag로 사용할 경우 방출되는 빛이 SPP에 의해 Quenching(Ag로 인한 빛에너지 손실)되어 효율이 감소된다.
반면, 캡핑층(광효율 개선층)을 사용할 경우에는 MgAg 전극과 유기재료 경계면에서 SPP가 발생하는데, 이때 상기 유기재료가 고굴절의 경우에(예를 들면 n>1.69 @620), 그 중 TE(Transverse electric) 편광된 빛은 소산파(evanescent wave)에 의해 수직 방향으로 캡핑층면(광효율 개선층면)에서 소멸되며, 음극과 캡핑층을 따라 이동하는 TM(Transverse magnetic) 편광된 빛은 표면 프라즈마 공진(Surface plasma resonance)에 의해 파장의 증폭현상이 일어나며, 이로 인해 피크(peak)의 세기(Intensity)가 증가하여 높은 효율과 효과적인 색순도 조절이 가능하게 된다.
그러나 여전히 유기 발광 소자에서 효율과 색순도의 향상과 더불어 균형이 있게 다양한 특성의 향상에 필요한 재료와 구조의 개발이 요구되고 있다.
대한민국 공개특허공보 제2016-0062307호(발명의 명칭: 고굴절률 캡핑층을 포함하는 유기발광 표시장치)
본 발명의 목적은, 발광 효율과 수명을 개선할 수 있고 동시에 시야각 특성을 개선할 수 있는, 유기 발광 소자용 캡핑층 재료를 제공하는 것이다.
본 발명의 목적은 특히 유기 전계 발광 소자의 광 추출율을 개선하기 위하여 굴절률 조절된 캡핑층을 포함하는 고효율 및 장수명의 유기 전계 발광 소자를 제공하는 것에 있다.
본 발명은 제1 전극; 상기 제1 전극 상에 배치된 유기물층; 상기 유기물층 상에 배치된 제2전극; 및 제2 전극 상에 배치된 캡핑층을 포함하며, 상기 유기물층 또는 캡핑층은 하기 화학식 1로 표시되는 안트라센 또는 트라이페닐렌 유도체를 포함하는 유기 전계 발광 소자를 제공한다.
[화학식 1]
Figure pat00001
상기 화학식 1에 있어서,
A는 안트라센 또는 트라이페닐렌이며,
Ar1 및 Ar2는 각각 독립적으로 하기의 화학식 중 어느 하나를 가지며,
Figure pat00002
X1은 O 또는 S 이고,
X2은 CH 또는 N 이며,
R6는 페닐, 나프틸, 바이페닐 및 에틸 중 어느 하나로 선택되며,
Ar3은 F; CF3; Si(CH3)3; CN; 페닐기; F, CF3, CN 또는 Si(CH3)3 로 치환된 페닐기; 피리딜기; 나프틸기; 퀴놀린기; 페난트릴기; 페난트리딘기; 페나트롤린기; 트리페닐렌기; 플루오레닐기; 디벤조퓨란기; 벤조티오펜기; 벤조퀴놀린기; 카바졸기; 페닐기로 치환된 카바졸기; 벤즈옥사졸기; 및 벤즈티아졸기; 중에서 선택되고,
R1 내지 R5는 각각 독립적으로 H, F, CF3, CN 또는 Si(CH3)3 이고,
r, p, q 및 n은 각각 0 내지 2의 정수이다.
본 명세서에 기재된 화합물은 유기 발광 소자의 유기물층의 재료로서 사용될 수 있다.
본 명세서에 기재된 화합물을 저굴절 캡핑층(광효율 개선층)으로 이용한 유기 발광 소자에서 발광효율 향상, 발광 스펙트럼 반치폭 감소에 따른 색순도를 현저히 개선시킬 수 있다.
본 발명에 따른 유기 전계 발광 소자는 MgAg 전극 상에 고굴절의 유기재료 박막과 저굴절의 박막을 연속해서 도입함으로써 도파로 공진 현상으로 인해 공기 중으로 추출되는 빛의 시야각과 광효율 향상이 이루어질 수 있다.
도 1은 본 발명의 일 실시예에 따른 기판(100) 위에 제1 전극(110), 정공주입층(210), 정공수송층(215), 발광층(220), 전자수송층(230), 전자주입층(235), 제2 전극(120) 및 캡핑층(300)이 순차적으로 적층된 유기 발광 소자의 예를 도시한 것이다.
도 2는 본 발명의 일 실시예에 따른 안트라센 또는 트라이페닐렌 유도체를 이용할 경우에 나타나는 빛의 굴절과 흡수 특성의 그래프이다.
이하 본 발명에 대하여 더욱 상세히 설명한다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다. 첨부된 도면에 있어서, 구조물들의 치수는 본 발명의 명확성을 위하여 실제보다 확대하여 도시한 것이다. 제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. 또한, 층, 막, 영역, 판 등의 부분이 다른 부분 "상에" 있다고 할 경우, 이는 다른 부분 "바로 위에" 있는 경우뿐 만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다.
본 명세서에서, “치환 또는 비치환된”은 중수소 원자, 할로겐 원자, 시아노기, 니트로기, 아미노기, 히드록시기, 실릴기, 붕소기, 포스핀 옥사이드기, 포스핀 설파이드기, 알킬기, 알콕시기, 알케닐기, 아릴기, 헤테로 아릴기 및 헤테로 고리기로 이루어진 군에서 선택되는 1개 이상의 치환기로 치환 또는 비치환된 것을 의미할 수 있다. 또한, 상기 예시된 치환기 각각은 치환 또는 비치환된 것일 수 있다. 예를 들어, 바이페닐기는 아릴기로 해석될 수도 있고, 페닐기로 치환된 페닐기로 해석될 수도 있다.
본 명세서에서, 할로겐 원자의 예로는 불소 원자, 염소 원자, 브롬 원자 또는 요오드 원자가 있다.
본 명세서에서, 알킬기는 직쇄, 분지쇄 또는 고리형일 수 있다. 알킬기의 탄소수는 1 이상 50 이하, 1 이상 30 이하, 1 이상 20 이하, 1 이상 10 이하 또는 1 이상 6 이하이다. 알킬기의 예로는 메틸기, 에틸기, n-프로필기, 이소프로필기, n-부틸기, s-부틸기, t-부틸기, i-부틸기, 2- 에틸부틸기, 3, 3-디메틸부틸기, n-펜틸기, i-펜틸기, 네오펜틸기, t-펜틸기, 시클로펜틸기, 1-메틸펜틸기, 3-메틸펜틸기, 2-에틸펜틸기, 4-메틸-2-펜틸기, n-헥실기, 1-메틸헥실기, 2-에틸헥실기, 2-부틸헥실기, 시클로헥실기, 4-메틸시클로헥실기, 4-t-부틸시클로헥실기, n-헵틸기, 1-메틸헵틸기, 2,2-디메틸헵틸기, 2-에틸헵틸기, 2-부틸헵틸기, n-옥틸기, t-옥틸기, 2-에틸옥틸기, 2-부틸옥틸기, 2-헥실옥틸기, 3,7-디메틸옥틸기, 시클로옥틸기, n-노닐기, n-데실기, 아다만틸기, 2-에틸데실기, 2-부틸데실기, 2-헥실데실기, 2-옥틸데실기, n-운데실기, n-도데실기, 2-에틸도데실기, 2-부틸도데실기, 2-헥실도데실기, 2-옥틸도데실기, n-트리데실기, n-테트라데실기, n-펜타데실기, n-헥사데실기, 2-에틸헥사데실기, 2-부틸헥사데실기, 2-헥실헥사데실기, 2-옥틸헥사데실기, n-헵타데실기, n-옥타데실기, n-노나데실기, n-이코실기, 2-에틸이코실기, 2-부틸이코실기, 2-헥실이코실기, 2-옥틸이코실기, n-헨이코실기, n-도코실기, n-트리코실기, n-테트라코실기, n-펜타코실기, n-헥사코실기, n-헵타코실기, n-옥타코실기, n-노나코실기, 및 n-트리아콘틸기 등을 들 수 있지만, 이들에 한정되지 않는다.
본 명세서에서, 탄화수소 고리기는 지방족 탄화수소 고리로부터 유도된 임의의 작용기 또는 치환기를 의미한다. 탄화수소 고리기는 고리 형성 탄소수 5 이상 20 이하의 포화 탄화수소 고리기일 수 있다.
본 명세서에서, 아릴기는 방향족 탄화수소 고리로부터 유도된 임의의 작용기 또는 치환기를 의미한다. 아릴기는 단환식 아릴기 또는 다환식 아릴기일 수 있다. 아릴기의 고리 형성 탄소수는 6 이상 30 이하, 6 이상 20 이하, 또는 6 이상 15 이하일 수 있다. 아릴기의 예로는 페닐기, 나프틸기, 플루오레닐기, 안트라세닐기, 페난트릴기, 바이페닐기, 터페닐기, 쿼터페닐기, 퀸크페닐기, 섹시페닐기, 트리페닐에닐기, 피레닐기, 페릴렌일기, 나프타세닐기, 파이레닐기, 벤조 플루오란테닐기, 크리세닐기 등을 예시할 수 있지만, 이들에 한정되지 않는다.
본 명세서에서, 플루오레닐기는 치환될 수 있고, 치환기 2개가 서로 결합하여 스피로 구조를 형성할 수도 있다.
본 명세서에서, 헤테로아릴기는 이종 원소로 O, N, P, Si 및 S 중 1개 이상을 포함하는 헤테로아릴기일 수 있다. N 및 S 원자는 경우에 따라 산화될 수 있고, N 원자(들)은 경우에 따라 4차화될 수 있다. 헤테로아릴기의 고리 형성 탄소수는 2 이상 30 이하 또는 2 이상 20 이하이다. 헤테로아릴기는 단환식 헤테로아릴기 또는 다환식 헤테로아릴기일 수 있다. 다환식 헤테로아릴기는 예를 들어, 2환 또는 3환 구조를 갖는 것일 수 있다.
헤테로아릴기의 예로는 티오펜기, 퓨란기, 피롤기, 이미다졸기, 피라졸릴기, 티아졸기, 옥사졸기, 옥사디아졸기, 트리아졸기, 피리딘기, 비피리딘기, 피리미딘기, 트리아진기, 테트라진기, 트리아졸기, 테트라졸기, 아크리딜기, 피리다진기, 피라지닐기, 퀴놀린기, 퀴나졸린기, 퀴녹살린기, 페녹사진기, 프탈라진기, 피리도 피리미딘기, 피리도 피라지노 피라진기, 이소퀴놀린기, 신놀리기, 인돌기, 이소인돌기, 인다졸기, 카바졸기, N-아릴카바졸기, N-헤테로아릴카바졸기, N-알킬카바졸기, 벤조옥사졸기, 벤조이미다졸기, 벤조티아졸기, 벤조카바졸기, 벤조티오펜기, 벤조티오펜기, 벤조이소티아졸릴, 벤조이속사졸릴, 디벤조티오펜기, 티에노티오펜기, 벤조퓨란기, 페난트롤린기, 페난트리딘기, 티아졸기, 이소옥사졸기, 옥사디아졸기, 티아디아졸기, 이소티아졸기, 이속사졸기, 페노티아진기, 벤조디옥솔기, 디벤조실롤기 및 디벤조퓨란기, 이소벤조퓨란기 등이 있으나, 이들에 한정되지 않는다. 또한, 상기 단환식 헤테로 아릴기 또는 다환식 헤테로 아릴기에 상응하는 N-옥사이드 아릴기, 예를 들어, 피리딜 N-옥사이드기, 퀴놀릴 N-옥사이드기 등의 4차 염 등이 있으나, 이들에 한정되지 않는다.
본 명세서에서, 실릴기는 알킬 실릴기 및 아릴 실릴기를 포함한다. 실릴기의 예로는 트리메틸실릴기, 트리에틸실릴기, t-부틸디메틸실릴기, 비닐디메틸실릴기, 프로필디메틸실릴기, 트리페닐실릴기, 디페닐실릴기, 페닐실릴기 등이 있으나, 이들에 한정되지 않는다.
본 명세서에서, 붕소기는 알킬 붕소기 및 아릴 붕소기를 포함한다. 붕소기의 예로는 트리메틸붕소기, 트리에틸붕소기, t-부틸디메틸붕소기, 트리페닐붕소기, 디페닐붕소기, 페닐붕소기 등이 있으나, 이들에 한정되지 않는다.
본 명세서에서, 알케닐기는 직쇄 또는 분지쇄일 수 있다. 탄소수는 특별히 한정되지 않으나, 2 이상 30 이하, 2 이상 20 이하 또는 2 이상 10 이하이다. 알케닐기의 예로는 비닐기, 1-부테닐기, 1-펜테닐기, 1,3-부타디에닐 아릴기, 스티레닐기, 스티릴비닐기 등이 있으나, 이들에 한정되지 않는다.
본 명세서에 있어서, 아릴아민기의 예로는 치환 또는 비치환된 모노아릴아민기, 치환 또는 비치환된 디아릴아민기, 또는 치환 또는 비치환된 트리아릴아민기가 있다. 상기 아릴아민기 중의 아릴기는 단환식 아릴기일 수 있고, 다환식 아릴기, 또는 단환식아릴기와 다환식 아릴기를 동시에 포함할 수 있다.
아릴 아민기의 구체적인 예로는 페닐아민기, 나프틸아민기, 비페닐아민기, 안트라세닐아민기, 3-메틸-페닐아민기, 4-메틸-나프틸아민기, 2-메틸-비페닐아민기, 9-메틸-안트라세닐아민기, 디페닐 아민기, 페닐 나프틸아민기, 디톨릴 아민기, 페닐 톨릴 아민기, 카바졸 및 트리페닐 아민기 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 헤테로알릴아민기의 예로는 치환 또는 비치환된 모노헤테로아릴아민기, 치환 또는 비치환된 디헤테로아릴아민기, 또는 치환 또는 비치환된 트리헤테로아릴아민기가 있다. 상기 헤테로아릴아민기 중의 헤테로아릴기는 단환식 헤테로 고리기일 수 있고, 다환식 헤테로 고리기일 수 있다. 상기 2이상의 헤테로 고리기를 포함하는 헤테로아릴아민기는 단환식 헤테로 고리기, 다환식 헤테로 고리기, 또는 단환식 헤테로 고리기와 다환식 헤테로 고리기를 동시에 포함할 수 있다.
본 명세서에 있어서, 아릴헤테로아릴아민기는 아릴기 및 헤테로 고리기로 치환된 아민기를 의미한다.
본 명세서에서, “인접하는 기”는 해당 치환기가 치환된 원자와 직접 연결된 원자에 치환된 치환기, 해당 치환기가 치환된 원자에 치환된 다른 치환기 또는 해당 치환기와 입체구조적으로 가장 인접한 치환기를 의미할 수 있다. 예컨대, 1,2-디메틸벤젠(1,2-dimethylbenzene)에서 2개의 메틸기는 서로 “인접하는 기”로 해석될 수 있고, 1,1-디에틸시클로펜테인(1,1-diethylcyclopentene)에서 2개의 에틸기는 서로 “인접하는 기”로 해석될 수 있다.
이하에서는 상기 유기물층 및/또는 캡핑층에 사용되는 안트라센 또는 트라이페닐렌 유도체 화합물에 대해 설명한다.
본 발명의 일 실시예에 따른 안트라센 또는 트라이페닐렌 유도체 화합물은 하기 화학식 1로 표시된다
[화학식 1]
Figure pat00003
상기 화학식 1에 있어서,
A는 안트라센 또는 트라이페닐렌이며,
Ar1 및 Ar2는 각각 독립적으로 하기의 화학식 중 어느 하나를 가지며,
Figure pat00004
X1은 O 또는 S 이고,
X2은 CH 또는 N 이며,
R6는 페닐, 나프틸, 바이페닐 및 에틸 중 어느 하나로 선택되며,
Ar3은 F; CF3; Si(CH3)3; CN; 페닐기; F, CF3, CN 또는 Si(CH3)3 로 치환된 페닐기; 피리딜기; 나프틸기; 퀴놀린기; 페난트릴기; 페난트리딘기; 페나트롤린기; 트리페닐렌기; 플루오레닐기; 디벤조퓨란기; 벤조티오펜기; 벤조퀴놀린기; 카바졸기; 페닐기로 치환된 카바졸기; 벤즈옥사졸기; 및 벤즈티아졸기; 중에서 선택되고,
R1 내지 R5는 각각 독립적으로 H, F, CF3, CN 또는 Si(CH3)3 이고,
r, p, q 및 n은 각각 0 내지 2의 정수이다.
본 발명의 일 실시예에 따르면, 상기 화학식 1은 하기 화학식 1-1 및 화학식 1-2 중에서 선택되는 유기전계발광소자 용 안트라센 또는 트라이페닐렌 유도체이다.
[화학식 1-1]
Figure pat00005
[화학식 1-2]
Figure pat00006
상기 화학식 1-1 및 화학식 1-2에 있어서,
Ar1 및 Ar2는 각각 독립적으로 하기의 화학식 중 어느 하나를 가지며,
Figure pat00007
X1은 O 또는 S 이고,
X2은 CH 또는 N 이며,
R6는 페닐, 나프틸, 바이페닐 및 에틸 중 어느 하나로 선택되며,
Ar3, R1 내지 R5, r, p, q 및 n는 상기 화학식 1에서 정의된 것과 같다.
본 발명의 일 실시예에 있어서, 상기 화학식 1은 하기 화학식 2 및 화학식 3의 화합물 중에서 선택된 어느 하나일 수 있고, 하기 화합물들은 추가로 치환될 수 있다.
[화학식 2]
Figure pat00008
Figure pat00009
Figure pat00010
Figure pat00011
Figure pat00012
Figure pat00013
Figure pat00014
Figure pat00015
Figure pat00016
Figure pat00017
Figure pat00018
Figure pat00019
Figure pat00020
Figure pat00021
Figure pat00022
Figure pat00023
Figure pat00024
Figure pat00025
Figure pat00026
Figure pat00027
Figure pat00028
Figure pat00029
Figure pat00030
Figure pat00031
Figure pat00032
Figure pat00033
Figure pat00034
Figure pat00035
Figure pat00036
Figure pat00037
Figure pat00038
Figure pat00039
Figure pat00040
Figure pat00041
Figure pat00042
Figure pat00043
Figure pat00044
Figure pat00045
Figure pat00046
Figure pat00047
Figure pat00048
Figure pat00049
Figure pat00050
Figure pat00051
Figure pat00052
Figure pat00053
Figure pat00054
Figure pat00055
Figure pat00056
Figure pat00057
Figure pat00058
Figure pat00059
Figure pat00060
Figure pat00061
Figure pat00062
Figure pat00063
Figure pat00064
Figure pat00065
Figure pat00066
Figure pat00067
Figure pat00068
Figure pat00069
Figure pat00070
Figure pat00071
Figure pat00072
Figure pat00073
Figure pat00074
Figure pat00075
Figure pat00076
Figure pat00077
Figure pat00078
Figure pat00079
Figure pat00080
Figure pat00081
Figure pat00082
Figure pat00083
Figure pat00084
Figure pat00085
Figure pat00086
Figure pat00087
Figure pat00088
Figure pat00089
Figure pat00090
Figure pat00091
Figure pat00092
Figure pat00093
Figure pat00094
Figure pat00095
Figure pat00096
Figure pat00097
Figure pat00098
Figure pat00099
Figure pat00100
Figure pat00101
Figure pat00102
Figure pat00103
Figure pat00104
Figure pat00105
Figure pat00106
Figure pat00107
Figure pat00108
Figure pat00109
Figure pat00110
Figure pat00111
Figure pat00112
Figure pat00113
Figure pat00114
Figure pat00115
Figure pat00116
Figure pat00117
Figure pat00118
Figure pat00119
Figure pat00120
Figure pat00121
Figure pat00122
Figure pat00123
Figure pat00124
Figure pat00125
Figure pat00126
Figure pat00127
Figure pat00128
Figure pat00129
Figure pat00130
Figure pat00131
Figure pat00132
Figure pat00133
Figure pat00134
Figure pat00135
Figure pat00136
Figure pat00137
Figure pat00138
Figure pat00139
Figure pat00140
Figure pat00141
Figure pat00142
Figure pat00143
Figure pat00144
Figure pat00145
Figure pat00146
Figure pat00147
Figure pat00148
Figure pat00149
Figure pat00150
Figure pat00151
Figure pat00152
Figure pat00153
Figure pat00154
Figure pat00155
Figure pat00156
Figure pat00157
Figure pat00158
Figure pat00159
Figure pat00160
[화학식 3]
Figure pat00161
Figure pat00162
Figure pat00163
Figure pat00164
Figure pat00165
Figure pat00166
Figure pat00167
Figure pat00168
Figure pat00169
Figure pat00170
Figure pat00171
Figure pat00172
Figure pat00173
Figure pat00174
Figure pat00175
Figure pat00176
Figure pat00177
Figure pat00178
Figure pat00179
Figure pat00180
Figure pat00181
Figure pat00182
Figure pat00183
Figure pat00184
Figure pat00185
Figure pat00186
Figure pat00187
Figure pat00188
Figure pat00189
Figure pat00190
Figure pat00191
Figure pat00192
Figure pat00193
Figure pat00194
Figure pat00195
Figure pat00196
Figure pat00197
Figure pat00198
Figure pat00199
Figure pat00200
Figure pat00201
Figure pat00202
Figure pat00203
Figure pat00204
Figure pat00205
Figure pat00206
Figure pat00207
Figure pat00208
Figure pat00209
Figure pat00210
Figure pat00211
Figure pat00212
Figure pat00213
Figure pat00214
Figure pat00215
Figure pat00216
Figure pat00217
Figure pat00218
Figure pat00219
Figure pat00220
Figure pat00221
Figure pat00222
Figure pat00223
Figure pat00224
Figure pat00225
Figure pat00226
Figure pat00227
Figure pat00228
Figure pat00229
Figure pat00230
Figure pat00231
Figure pat00232
Figure pat00233
Figure pat00234
Figure pat00235
Figure pat00236
Figure pat00237
Figure pat00238
Figure pat00239
Figure pat00240
Figure pat00241
Figure pat00242
Figure pat00243
Figure pat00244
Figure pat00245
Figure pat00246
Figure pat00247
Figure pat00248
Figure pat00249
Figure pat00250
Figure pat00251
Figure pat00252
Figure pat00253
Figure pat00254
Figure pat00255
Figure pat00256
Figure pat00257
Figure pat00258
Figure pat00259
Figure pat00260
Figure pat00261
Figure pat00262
Figure pat00263
Figure pat00264
Figure pat00265
Figure pat00266
Figure pat00267
Figure pat00268
Figure pat00269
Figure pat00270
Figure pat00271
Figure pat00272
Figure pat00273
Figure pat00274
Figure pat00275
Figure pat00276
Figure pat00277
Figure pat00278
Figure pat00279
Figure pat00280
Figure pat00281
Figure pat00282
Figure pat00283
Figure pat00284
Figure pat00285
Figure pat00286
Figure pat00287
Figure pat00288
Figure pat00289
Figure pat00290
Figure pat00291
Figure pat00292
Figure pat00293
Figure pat00294
Figure pat00295
Figure pat00296
Figure pat00297
Figure pat00298
Figure pat00299
Figure pat00300
Figure pat00301
Figure pat00302
Figure pat00303
Figure pat00304
Figure pat00305
Figure pat00306
Figure pat00307
Figure pat00308
Figure pat00309
Figure pat00310
Figure pat00311
Figure pat00312
Figure pat00313
Figure pat00314
Figure pat00315
Figure pat00316
Figure pat00317
Figure pat00318
Figure pat00319
Figure pat00320
Figure pat00321
Figure pat00322
Figure pat00323
Figure pat00324
Figure pat00325
Figure pat00326
Figure pat00327
Figure pat00328
Figure pat00329
Figure pat00330
Figure pat00331
Figure pat00332
Figure pat00333
Figure pat00334
Figure pat00335
Figure pat00336
Figure pat00337
Figure pat00338
Figure pat00339
Figure pat00340
Figure pat00341
Figure pat00342
Figure pat00343
Figure pat00344
Figure pat00345
Figure pat00346
Figure pat00347
Figure pat00348
Figure pat00349
Figure pat00350
Figure pat00351
Figure pat00352
Figure pat00353
Figure pat00354
Figure pat00355
Figure pat00356
Figure pat00357
Figure pat00358
Figure pat00359
Figure pat00360
Figure pat00361
Figure pat00362
Figure pat00363
Figure pat00364
Figure pat00365
Figure pat00366
Figure pat00367
Figure pat00368
Figure pat00369
Figure pat00370
Figure pat00371
Figure pat00372
Figure pat00373
이하 도 1 및 2를 참조하여 본 발명의 실시예를 설명한다.
도 1은 본 발명의 일 실시예에 따른 유기 발광 소자를 개략적으로 나타낸 단면도이다. 도 1을 참조하면, 일 실시예에 따른 유기 발광 소자는 기판(100)위에 순차적으로 적층된 제1 전극(110), 정공주입층(210), 정공수송층(215), 발광층(220), 전자수송층(230), 전자주입층(235), 제2 전극(120), 캡핑층(300)을 포함할 수 있다.
제1 전극(110)과 제2 전극(120)은 서로 마주하고 배치되며, 제1 전극(110)과 제2 전극(120) 사이에는 유기물층(200)이 배치될 수 있다. 유기물층(200)은 정공주입층(210), 정공수송층(215), 발광층(220), 전자수송층(230), 전자주입층(235)를 포함할 수 있다.
한편, 본 발명에서 제시되는 캡핑층(300)은 제2 전극(120) 위에 증착되는 기능층으로서, 본 발명의 화학식 1에 따른 유기물을 포함한다.
도 1에 도시된 일 실시예의 유기 발광 소자에서 제1 전극(110)은 도전성을 갖는다. 제1 전극(110)은 금속 합금 또는 도전성 화합물로 형성될 수 있다. 제1 전극(110)은 일반적으로 양극(anode)이지만 전극으로의 기능은 제한하지 않는다.
제1 전극(110)은 기판(100) 상부에 전극 물질을 증착법, 전자빔 증발 또는 스퍼터링법 등을 이용하여 형성할 수 있다. 제1 전극(110)의 재료는 유기 발광 소자 내부로 정공의 주입이 용이하도록 높은 일함수를 갖는 물질 중에서 선택될 수 있다.
본 발명에서 제안되는 캡핑층(300)은 유기 발광 소자의 발광방향이 전면발광일 경우에 적용되며 따라서 제1 전극(110)은 반사형 전극을 사용한다. 이들의 재료로는 산화물이 아닌 Mg(마그네슘), Al(알루미늄), Al-Li(알루미늄-리튬), Ca(칼슘), Mg-In(마그네슘-인듐), Mg-Ag(마그네슘-은)과 같은 금속을 사용하여 제작할 수도 있다. 최근에 와서는 CNT(탄소나노튜브), Graphene(그래핀) 등 탄소기판 유연 전극 재료가 사용될 수도 있다.
상기 유기물층(200)은 복수의 층으로 형성될 수 있다. 상기 유기물층(200)이 복수의 층인 경우, 유기물층(200)은 제1 전극(110) 상에 배치된 정공수송영역(210~215), 상기 정공 수송영역 상에 배치된 발광층(220), 상기 발광층(220) 상에 배치된 전자 수송 영역(230~235)를 포함할 수 있다.
일 실시예의 상기 캡핑층(300)은 후술하는 화학식 1로 표시되는 유기화합물을 포함한다.
정공 수송 영역(210~215)은 제1 전극(110) 상에 제공된다. 정공 수송 영역(210~215)은 정공 주입층(210), 정공 수송층(215), 정공 버퍼층 및 전자 저지층(EBL) 중 적어도 하나를 포함할 수 있고, 유기 발광 소자 내로 원활한 정공 주입과 수송의 역할을 맡고 있으며 일반적으로 정공이동도가 전자이동도 보다 빠르기 때문에 전자 수송영역보다 두꺼운 두께를 갖는다.
정공 수송 영역(210~215)은 단일 물질로 이루어진 단일층, 복수의 서로 다른 물질로 이루어진 단일층 또는 복수의 서로 다른 물질로 이루어진 복수의 층을 갖는 다층 구조를 가질 수 있다.
예를 들어, 정공 수송 영역(210~215)은 정공 주입층(210) 또는 정공 수송층(215)의 단일층의 구조를 가질 수도 있고, 정공 주입 물질과 정공 수송 물질로 이루어진 단일층 구조를 가질 수도 있다. 또한, 정공 수송 영역(210~215)은, 복수의 서로 다른 물질로 이루어진 단일층의 구조를 갖거나, 제1 전극(110)으로부터 차례로 적층된 정공 주입층(210)/정공 수송층(215), 정공 주입층(210)/정공 수송층(215)/정공 버퍼층, 정공 주입층(210)/정공 버퍼층, 정공 수송층(215)/정공 버퍼층, 또는 정공 주입층(210)/정공 수송층(215)/전자 저지층(EBL)의 구조를 가질 수 있으나, 실시예가 이에 한정되는 것은 아니다.
상기 정공 수송 영역(210~215) 중 정공 주입층(210)은 양극 위로 진공증착법, 스핀코팅법, 캐스트법, LB법 등 다양한 방법으로 형성될 수 있다. 진공 증착법에 의하여 정공 주입층(210)을 형성하는 경우, 그 증착 조건은 정공주입층(210) 재료로 사용하는 화합물, 목적으로 하는 정공주입층(210)의 구조 및 열적 특성 등에 따라 100 내지 500Å에서 증착 속도를 1Å/s 전 후로 하여 자유롭게 조절할 수 있으며, 특정한 조건에 한정되는 것은 아니다. 스핀 코팅법에 의하여 정공주입층(210)을 형성하는 경우 코팅 조건은 정공주입층(210) 재료로 사용하는 화합물과 계면으로 형성되는 층들 간의 특성에 따라 상이 하지만 고른 막형성을 위해 코팅속도, 코팅 후 용매 제거를 위한 열처리 등이 필요하다.
Figure pat00374
상기 정공 수송 영역(210~215)은, 예를 들면, m-MTDATA, TDATA, 2-TNATA, NPB, β-NPB, TPD, Spiro-TPD, Spiro-NPB, methylated-NPB, TAPC, HMTPD, TCTA(4,4',4"-트리스(N-카바졸일)트리페닐아민(4,4',4"-tris(Ncarbazolyl) triphenylamine)), Pani/DBSA (Polyaniline/Dodecylbenzenesulfonic acid:폴리아닐린/도데실벤젠술폰산), PEDOT/PSS (Poly(3,4-ethylenedioxythiophene) /Poly(4-styrene sulfonate):폴리(3,4-에틸렌디옥시티오펜) /폴리(4-스티렌술포네이트)), Pani/CSA (Polyaniline/Camphor sulfonicacid : 폴리아닐린/캠퍼술폰산), PANI/PSS (Polyaniline)/Poly(4-styrenesulfonate):폴리아닐린)/폴리(4-스티렌술포네이트)) 등을 포함할 수 있다.
Figure pat00375
상기 정공 수송 영역(210~215)의 두께는 약 100 내지 약 10,000Å으로 형성될 수 있으며, 각 정공 수송영역(210~215)의 해당 유기물 층들은 같은 두께로 한정되는 것은 아니다. 예를 들면, 정공 주입층(210)의 두께가 50Å이면 정공 수송층(215)의 두께는 1000Å, 전자 저지층의 두께는 500Å을 형성할 수 있다. 정공 수송영역(210~215)의 두께 조건은 유기 발광 소자의 구동전압 상승이 커지지 않는 범위 내에서 효율과 수명을 만족하는 정도로 정할 수 있다. 상기 유기막(200)은 정공주입층(210), 정공수송층(215), 정공주입 기능과 정공수송 기능을 동시에 갖는 기능층, 버퍼층, 전자저지층, 발광층(220), 정공저지층, 전자수송층(230), 전자주입층(235), 및 전자수송 기능과 전자주입 기능을 동시에 갖는 기능층으로 이루어진 군 중에서 선택되는 1층 이상을 포함할 수 있다.
정공 수송 영역(210~215)은 발광층(220)과 마찬가지로 특성 향상을 위해 도핑을 사용할 수 있으며 이러한 정공 수송 영역(210~215) 내로 전하-생성 물질의 도핑은 유기 발광 소자의 전기적 특성을 향상시킬 수 있다.
전하-생성 물질은 일반적으로 HOMO와 LUMO가 굉장히 낮은 물질로 이루어지며 예를 들어, 전하-생성 물질의 LUMO는 정공수송층(215) 물질의 HOMO와 유사한 값을 갖는다. 이러한 낮은 LUMO로 인하여 LUMO의 전자가 비어있는 특성을 이용하여 인접한 정공수송층(215)에 쉽게 정공을 전달하여 전기적 특성을 향상시킨다.
상기 전하-생성 물질은 예를 들면, p-도펀트일 수 있다. 상기 p-도펀트는 퀴논 유도체, 금속 산화물 및 시아노기-함유 화합물 중 하나일 수 있으나, 이에 한정되는 것은 아니다. 예를 들어, 상기 p-도펀트의 비제한적인 예로는, 테트라사이아노퀴논다이메테인(TCNQ) 및 2,3,5,6-테트라플루오로-테트라사이아노-1,4-벤조퀴논다이메테인(F4-TCNQ) 등과 같은 퀴논 유도체; 텅스텐 산화물 및 몰리브덴 산화물 등과 같은 금속 산화물; 및 시아노기-함유 화합물 등을 들 수 있으나, 이에 한정되는 것은 아니다.
Figure pat00376
정공 수송 영역(210~215)은 앞서 언급한 물질 외에, 도전성 향상을 위하여 전하 생성 물질을 더 포함할 수 있다. 전하 생성 물질은 정공 수송 영역(210~215) 내에 균일하게 또는 불균일하게 분산되어 있을 수 있다. 전하 생성 물질은 예를 들어, p-도펀트(dopant)일 수 있다. p-도펀트는 퀴논(quinone) 유도체, 금속 산화물 및 시아노(cyano)기 함유 화합물 중 하나일 수 있으나, 이에 한정되는 것은 아니다. 예를 들어, p-도펀트의 비제한적인 예로는, TCNQ(Tetracyanoquinodimethane) 및 F4-TCNQ(2,3,5,6-tetrafluoro-tetracyanoquinodimethane) 등과 같은 퀴논 유도체, 텅스텐 산화물 및 몰리브덴 산화물 등과 같은 금속 산화물 등을 들 수 있으나, 이에 한정되는 것은 아니다.
전술한 바와 같이, 정공 수송 영역(210~215)은 정공 주입층(210) 및 정공 수송층(215) 외에, 정공 버퍼층 및 전자 저지층 중 적어도 하나를 더 포함할 수 있다. 정공 버퍼층은 발광층(220)에서 방출되는 광의 파장에 따른 공진 거리를 보상하여 광 방출 효율을 증가시킬 수 있다. 정공 버퍼층에 포함되는 물질로는 정공 수송 영역(210~215)에 포함될 수 있는 물질을 사용할 수 있다.
전자 저지층은 전자 수송 영역(230~235)으로부터 정공 수송 영역(210~215)으로의 전자 주입을 방지하는 역할을 하는 층이다. 전자 저지층은 정공 수송영역으로 이동하는 전자를 저지할 뿐 아니라 발광층(220)에서 형성된 엑시톤이 정공수송영역(210~215)으로 확산되지 않도록 높은 T1 값을 갖는 재료를 사용할 수 있다. 예를 들면 일반적으로 높은 T1값을 갖는 발광층(220)의 호스트 등을 전자저지층 재료로 사용할 수 있다.
발광층(220)은 정공 수송 영역(210~215) 상에 제공된다. 발광층(220)은 예를 들어 약 100Å내지 약 1000Å또는, 약 100Å내지 약 300Å의 두께를 갖는 것일 수 있다. 발광층(220)은 단일 물질로 이루어진 단일층, 복수의 서로 다른 물질로 이루어진 단일층 또는 복수의 서로 다른 물질로 이루어진 복수의 층을 갖는 다층 구조를 가질 수 있다.
발광층(220)은 정공과 전자가 만나 엑시톤을 형성하는 영역으로 발광층(220)을 이루는 재료는 높은 발광 특성 및 원하는 발광색을 나타내도록 적절한 에너지밴드갭을 가져야 하며 일반적으로 호스트와 도판트 두가지 역할을 가지는 두 재료로 이루어지나, 이에 한정된 것은 아니다.
상기 호스트는 하기 TPBi, TBADN, ADN("DNA"라고도 함), CBP, CDBP, TCP, mCP, 중 적어도 하나를 포함할 수 있고, 특성이 적절하다면 재료는 이에 한정된 것은 아니다.
Figure pat00377
Figure pat00378
일 실시예의 발광층(220)의 도판트는 유기 금속 착물일 수 있다. 일반적인 도판트의 함량은 0.01 내지 20%로 선택될 수 있으며, 경우에 따라 이에 한정되는 것은 아니다.
전자 수송 영역(230~235)은 발광층(220) 상에 제공된다. 전자 수송 영역(230~235)은, 정공 저지층, 전자 수송층(230) 및 전자 주입층(235) 중 적어도 하나를 포함할 수 있으나, 이에 한정되는 것은 아니다.
전자 수송 영역(230~235)은 단일 물질로 이루어진 단일층, 복수의 서로 다른 물질로 이루어진 단일층 또는 복수의 서로 다른 물질로 이루어진 복수의 층을 갖는 다층 구조를 가질 수 있다.
예를 들어, 전자 수송 영역(230~235)은 전자 주입층(235) 또는 전자 수송층(230)의 단일층의 구조를 가질 수도 있고, 전자 주입 물질과 전자 수송 물질로 이루어진 단일층 구조를 가질 수도 있다. 또한, 전자 수송 영역(230~235)은, 복수의 서로 다른 물질로 이루어진 단일층의 구조를 갖거나, 발광층(220)으로부터 차례로 적층된 전자 수송층(230)/전자 주입층(235), 정공 저지층/전자 수송층(230)/전자 주입층(235) 구조를 가질 수 있으나, 이에 한정되는 것은 아니다. 전자 수송 영역(230~235)의 두께는 예를 들어, 약 1000Å내지 약 1500Å인 것일 수 있다.
전자 수송 영역(230~235)은, 진공 증착법, 스핀 코팅법, 캐스트법, LB법(Langmuir-Blodgett), 잉크젯 프린팅법, 레이저 프린팅법, 레이저 열전사법(Laser Induced Thermal Imaging, LITI) 등과 같은 다양한 방법을 이용하여 형성될 수 있다.
전자 수송 영역(230~235)이 전자 수송층(230)을 포함할 경우, 전자 수송 영역(230)은 안트라센계 화합물을 포함하는 것일 수 있다. 다만, 이에 한정되는 것은 아니며, 전자 수송 영역은 예를 들어, Alq3(Tris(8-hydroxyquinolinato)aluminum),1,3,5-tri[(3-pyridyl)-phen-3-yl]benzene,2,4,6-tris(3'-(pyridin-3-yl)biphenyl-3-yl)-1,3,5-triazine,2-(4-(N-phenylbenzoimidazolyl-1-ylphenyl)-9,10-dinaphthylanthracene,TPBi(1,3,5-Tri(1-phenyl-1H-benzo[d]imidazol-2-yl)phenyl),BCP(2,9-Dimethyl-4,7-diphenyl-1,10-phenanthroline),Bphen(4,7-Diphenyl-1,10-phenanthroline),TAZ(3-(4-Biphenylyl)-4-phenyl-5-tert-butylphenyl-1,2,4-triazole),NTAZ(4-(Naphthalen-1-yl)-3,5-diphenyl-4H-1,2,4-triazole),tBu-PBD(2-(4-Biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole),BAlq(Bis(2-methyl-8-quinolinolato-N1,O8)-(1,1'-Biphenyl-4-olato)aluminum),Bebq2(berylliumbis(benzoquinolin-10-olate),ADN(9,10-di(naphthalene-2-yl)anthracene)및 이들의 혼합물을 포함하는 것일 수 있다.
Figure pat00379
전자 수송층(230)은 유기 발광 소자 구조에 따라 빠른 전자이동도 혹은 느린 전자이동도의 재료로 선택되므로 다양한 재료의 선택이 필요하며, 경우에 따라서 하기 Liq나 Li이 도핑되기도 한다.
전자 수송층(230)들의 두께는 약 100Å내지 약 1000Å, 예를 들어 약 150Å내지 약 500Å일 수 있다. 전자 수송층(230)들의 두께가 전술한 바와 같은 범위를 만족할 경우, 실질적인 구동 전압 상승없이 만족스러운 정도의 전자 수송 특성을 얻을 수 있다.
전자 수송 영역(230~235)이 전자 주입층(235)을 포함할 경우, 전자 수송 영역(230~235)은 전자의 주입을 용이하게 하는 금속재료를 선택하며, LiF, LiQ(Lithium quinolate), Li2O, BaO,NaCl,CsF,Yb와 같은 란타넘족 금속, 또는 RbCl, RbI와 같은 할로겐화 금속 등이 사용될 수 있으나 이에 한정되는 것은 아니다.
전자 주입층(235)은 또한 전자 수송 물질과 절연성의 유기 금속염(organo metal salt)이 혼합된 물질로 이루어질 수 있다. 유기 금속염은 에너지 밴드 갭(energy band gap)이 대략 4eV 이상의 물질이 될 수 있다. 구체적으로 예를 들어, 유기 금속염은 금속 아세테이트(metal acetate), 금속 벤조에이트(metal benzoate), 금속 아세토아세테이트(metal acetoacetate), 금속 아세틸아세토네이트(metal acetylacetonate) 또는 금속 스테아레이트(stearate)를 포함할 수 있다. 전자 주입층(235)들의 두께는 약 1Å내지 약 100Å, 약 3Å내지 약 90Å일 수 있다. 전자 주입층(235)들의 두께가 전술한 바와 같은 범위를 만족할 경우, 실질적인 구동 전압 상승 없이 만족스러운 정도의 전자 주입 특성을 얻을 수 있다.
전자 수송 영역(230~235)은 앞서 언급한 바와 같이, 정공 저지층을 포함할 수 있다. 정공 저지층은 예를 들어, BCP(2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline), Bphen(4,7-diphenyl-1,10-phenanthroline) 및 Balq 중 적어도 하나를 포함할 수 있으나, 이에 한정되는 것은 아니다.
제2 전극(120)은 전자 수송 영역(230~235) 상에 제공된다. 제2 전극(120)은 공통 전극 또는 음극일 수 있다. 제2 전극(120)은 투과형 전극 또는 반투과형 전극 전극일 수 있다. 제2 전극(120)은 제1 전극(110)과 다르게 상대적으로 낮은 일함수를 갖는 금속, 전기전도성 화합물, 합금 등을 조합하여 사용할 수 있다.
제2 전극(120)은 반투과형 전극 또는 반사형 전극이다. 제2 전극(120)은 Li(리튬), Mg(마그네슘), Al(알루미늄), Al-Li(알루미늄-리튬), Ca(칼슘), Mg-In(마그네슘-인듐), Mg-Ag(마그네슘-은) 또는 이들을 포함하는 화합물이나 혼합물(예를 들어, Ag와 Mg의 혼합물)을 포함할 수 있다. 또는 상기 물질로 형성된 반사막이나 반투과막 및 ITO(indium tin oxide), IZO(indium zinc oxide), ZnO(zinc oxide), ITZO(indium tin zinc oxide) 등으로 형성된 투명 도전막을 포함하는 복수의 층 구조일 수 있다.
도시하지는 않았으나, 제2 전극(120)은 보조 전극과 연결될 수 있다. 제2 전극(120)가 보조 전극과 연결되면, 제2 전극(120)의 저항을 감소시킬 수 있다.
도시된 기판(100) 상에 전극 및 유기물층을 형성하며, 이 때 기판(100) 재료는 경성 또는 연성 재료를 사용할 수 있으며, 예를 들어 경성 재료로는 소다라임 글래스, 무알칼리 글래스, 알루미노 실리케이트 글래스 등을 사용할 수 있으며, 연성 재료로는 PC(폴리카보네이트), PES(폴리에테르술폰), COC(싸이클릭올리펜코폴리머), PET(폴리에틸렌테레프탈레이트), PEN(폴리에틸렌나프탈레이트) 등을 사용할 수 있다.
유기 발광 소자에서, 제1 전극(110)과 제2 전극(120)에 각각 전압이 인가됨에 따라 제1 전극(110)으로부터 주입된 정공(hole)은 정공 수송 영역(210~215)을 거쳐 발광층(220)으로 이동되고, 제2 전극(120)로부터 주입된 전자가 전자 수송 영역(230~235)을 거쳐 발광층(220)으로 이동된다. 전자와 정공은 발광층(220)에서 재결합하여 여기자(exciton)를 생성하며, 여기자가 여기 상태에서 바닥 상태로 떨어지면서 발광하게 된다.
발광층(220)에서 발생된 광경로는 유기 발광 소자를 구성하는 유무기물들의 굴절률에 따라 매우 다른 경향을 나타낼 수 있다. 제2 전극(120)을 통과하는 빛은 제2 전극(120)의 임계각보다 작은 각도로 투과되는 빛들만 통과할 수 있다. 그 외 임계각보다 크게 제2 전극(120)에 접촉하는 빛들은 전반사 또는 반사되어 유기 발광 소자 외부로 방출되지 못한다.
캡핑층(300)의 굴절률이 높으면 이러한 전반사 또는 반사 현상을 줄여서 발광효율 향상에 기여하고 또한 적절한 두께를 갖게 되면 미소공동현상(Micro-cavity)현상의 극대화로 높은 효율 향상과 색순도 향상에도 기여하게 된다.
캡핑층(300)은 유기 발광 소자의 가장 바깥에 위치하게 되며, 소자의 구동에 전혀 영향을 주지 않으면서 소자특성에는 지대한 영향을 미친다. 따라서 캡핑층(300)은 유기 발광 소자의 내부 보호역할과 동시에 소자특성 향상 두가지 관점에서 모두 중요하다. 유기물질들은 특정파장영역의 광에너지를 흡수하며 이는 에너지밴드갭에 의존한다. 이 에너지밴드갭을 유기 발광 소자내부의 유기물질들에 영향을 줄 수 있는 UV영역의 흡수를 목적으로 조정하면 캡핑층(300)이 광학특성 개선을 포함하여 유기 발광 소자 보호의 목적으로도 사용될 수 있다.
본 명세서에 따른 유기 발광 소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다.
이하 본 명세서를 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나 본 명세서에 따른 실시예들은 여러가지 다른 형태로 변형될 수 있으며, 본 출원의 범위가 아래에서 상술하는 실시예들에 한정되는 것으로 해석되지 않는다. 본 출원의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 명세서를 보다 완전하게 설명하기 위해 제공되는 것이다.
[제조예]
중간체 합성예 1: 중간체(3)의 합성
Figure pat00380
(중간체(2)의 합성)
2-아미노페놀(2-aminophenol) 10.0 g(0.09 mol), 4-브로모벤즈알데히드(4-Bromobenzaldehyde) 16.9 g(0.09 mol)과 에탄올 114 mL를 넣고 상온에서 6시간 교반하였다. 반응이 종결된 후 용매를 감압 증류하고 건조하여 Crude 중간체(1)를 얻었다. 정제 처리 과정을 생략하고 다음 반응을 진행하였다.
중간체(1)를 디클로로메탄 370 mL에 녹인 후, 상온에서 교반하면서 2,3-디클로로-5,6-디사이아노-p-벤조퀴논(2,3-Dichloro-5,6-dicyano-p-benzoquinone, DDQ) 22.8 g(0.10 mol)을 천천히 넣었다. 하루 동안 교반한 후 컬럼 크로마토그래피(DCM)로 정제하고 메탄올로 고체화하여 흰색 고체의 화합물(중간체(2)) 30.5 g(수율: 94.4%)을 얻었다.
(중간체(3)의 합성)
1구 500 mL 플라스크에서 중간체(2)를 10.0 g(36.5 mmol), Bis(pinacolato)diboron 10.2 g(40.1 mmol), Pd(dppf)Cl2·CH2Cl2 1.2 g(1.5 mmol), 아세트산칼륨(KOAc) 7.2 g (73.0 mmol)과 디옥산(Dioxane) 300 mL를 혼합한 후, 100℃에서 하루 종일 환류 교반하였다. 반응이 종결되면 용매 제거 후 얻어진 화합물을 실리카겔 컬럼 크로마토그래피(CHCl3)로 정제하여 흰색 고체의 화합물(중간체(3)) 8.6 g(수율: 73.4%)을 얻었다.
중간체 합성예 2: 중간체(5)의 합성
Figure pat00381
(중간체(4)의 합성)
1 구 1 L 플라스크에 중간체(2) 20.0 g(73.0 mmol), 안트라센-9-닐보론 산(anthracen-9-ylboronic acid) 16.2 g(73.0 mmol), Pd(PPh3)4 4.2 g(3.7 mmol), 2 M K2CO3 73.0 mL(145.9 mmol) 및 톨루엔(Toluene) 370 mL를 넣고 혼합한 후 5시간 동안 환류, 교반하였다. 반응을 종결하고 상온으로 냉각한 후 디클로로메탄과 증류수를 첨가한 후 유기 층을 추출하였다. 추출한 유기층을 무수 황산나트륨으로 건조한 후 감압 농축하였다. 반응물을 디클로로메탄과 메탄올로 재결정하여 석출된 고체화합물을 여과한 후 실리카겔 컬럼 크로마토그래피(Hex:MC)로 정제하여 흰색 고체의 화합물(중간체(4)) 21.3 g(수율: 78.6%)을 얻었다.
(중간체(5)의 합성)
1구 500 mL 플라스크에서 중간체(4) 10.0 g(26.9 mmol)을 클로로포름(Chloroform) 140 mL에 용해시킨 후 0℃로 냉각 및 교반하였다. 반응물에 NBS 4.8 g(26.9 mmol)을 천천히 첨가한 후 상온으로 올리고 2시간 동안 교반하였다. 반응을 종결 후 디클로로메탄과 증류수를 첨가하고 유기 층을 추출하였다. 추출한 유기 층을 무수 황산나트륨으로 건조한 후 감압 하에 용매를 제거하였다. 농축한 유기물에 메탄올로 고체화하여 노란색의 결정형 고체 화합물(중간체(5)) 9.7 g(수율: 80.0%)을 얻었다.
중간체 합성예 3: 중간체(6)의 합성
Figure pat00382
(중간체(6)의 합성)
중간체(3) 20.0 g(62.3 mmol), 2,7-다이브로모트라이페닐렌(2,7-dibromotriphenylene) 24.0 g(62.3 mmol), Pd(PPh3)4 2.16 g(1.9 mmol), 2M K2CO3 46.7 mL(93.4 mmol), 톨루엔 320 mL 및 에탄올 160 mL의 혼합물을 12 시간 동안 환류 교반하였다. 반응 혼합물을 상온으로 냉각한 후 용매를 제거하고 물을 첨가한 후 디클로로메탄을 넣어 유기층을 추출 분리하여 무수 황산마그네슘으로 건조하고 얻어진 화합물을 실리카겔 컬럼 크로마토그래피로 정제하여 노란색 고체 화합물(중간체(6)) 15.4 g(수율: 49.4%)을 얻었다.
중간체 합성예 4: 중간체(8)의 합성
Figure pat00383
(중간체(7)의 합성)
2-아미노-4-브로모페놀(2-amino-4-bromophenol) 10.0 g(53.2 mmol), 벤즈알데히드(Benzaldehyde) 5.6 g(53.2 mmol)과 에탄올 100 mL를 넣고 상온에서 6시간 교반하였다. 반응이 종결된 후 용매를 감압 증류하고 건조하여 Crude 중간체(7)을 얻었다. 정제 처리 과정을 생략하고 다음 반응을 진행하였다.
(중간체(8)의 합성)
중간체(7)를 디클로로메탄 300 mL에 녹인 후, 상온에서 교반하면서 2,3-디클로로-5,6-디사이아노-p-벤조퀴논(2,3-Dichloro-5,6-dicyano-p-benzoquinone, DDQ) 14.5 g(63.82 mmol)을 천천히 적가하였다. 하루 동안 교반한 후 컬럼 크로마토그래피(DCM)를 이용하여 정제하였다. 메탄올로 고체화하여 흰색 고체의 화합물 중간체(8) 10.8 g(수율: 74.0 %)을 얻었다.
중간체 합성예 5: 중간체(10)의 합성
Figure pat00384
(중간체(9)의 합성)
1 구 1 L 플라스크에 중간체(8) 20.0 g(73.0 mmol), 안트라센-9-닐보론 산(anthracen-9-ylboronic acid) 17.8 g(80.3 mmol), Pd(PPh3)4 4.2 g(3.7 mmol), 2 M K2CO3 73.0 mL(146.0 mmol), 톨루엔(Toluene) 365 mL와 에탄올(Ethanol) 183 mL를 넣고 혼합한 후 5시간 동안 환류, 교반하였다. 반응을 종결하고 상온으로 냉각시킨 후 디클로로메탄과 증류수를 첨가한 후 유기 층을 추출하였다. 추출한 유기 층을 무수 황산나트륨으로 건조한 후 감압 하에 용매를 제거하였다. 반응물을 디클로로메탄과 메탄올로 재결정하여 석출된 고체화합물을 여과한 후 실리카겔 컬럼 크로마토그래피(Hex:MC)로 정제하여 흰색의 고체화합물(중간체(9)) 18.5 g(수율: 68.26%)을 얻었다.
(중간체(10)의 합성)
1구 500 mL 플라스크에 중간체(9) 10.0 g(26.9 mmol)을 클로로포름(Chloroform) 135 mL에 용해시킨 후 0℃로 냉각 및 교반하였다. 반응물에 NBS 4.8 g(26.9 mmol)을 천천히 첨가한 후 상온으로 올리고 2시간 동안 교반하였다. 반응을 종결한 후 디클로로메탄과 증류수를 첨가한 후 유기 층을 추출하였다. 추출한 유기 층을 무수 황산나트륨으로 건조한 후 감압 하에 용매를 제거하였다. 농축한 유기물에 메탄올로 고체화하여 노란색의 결정형 고체 화합물(중간체(10)) 10.7 g(수율: 88.3%)을 얻었다.
중간체 합성예 6: 중간체(11)의 합성
Figure pat00385
(중간체(11)의 합성)
1 구 1000 mL 플라스크에서 4'-브로모-[1,1'-바이페닐]-4-카보나이트릴(4'-bromo-[1,1'-biphenyl]-4-carbonitrile) 20.0 g(77.5 mmol), PIN2B2 29.5 g(116.3 mmol), Pd(dppf)Cl2·CH2Cl2 3.2 g(3.9 mmol), KOAc 15.2 g(115.0 mmol)과 디옥세인(Dioxane) 310 mL를 혼합한 후 17시간 동안 환류, 교반하였다. 반응을 종결하고 상온으로 냉각시킨 후 감압 하에 최대한 농축하였다. 농축한 유기물에 디클로로메탄을 첨가하여 용해시킨 후 실리카겔 및 셀라이트 여과를 한 후 농축하였다. 농축한 화합물을 헥산으로 재결정하여 흰색의 결정형 고체 화합물(중간체(11)) 15.0 g(수율: 63.4%)을 얻었다.
중간체 합성예 7: 중간체(13)의 합성
Figure pat00386
(중간체(12)의 합성)
1 구 2 L 플라스크에서 1-브로모-4-클로로벤젠(1-bromo-4-chlorobenzene) 10.0 g(52.2 mmol), (3,5-비스(트리플루오로메틸)페닐)보론산((3,5-bis(trifluoromethyl)phenyl)boronic acid) 14.8 g(57.5 mmol), Pd(PPh3)4 3.0 g(2.6 mmol), 2 M K2CO3 52.2 mL(104.5 mmol), 톨루엔(Toluene) 262 mL와 에탄올(Ethanol) 131 mL를 혼합한 후 3시간 동안 환류, 교반하였다. 반응을 종결하고 상온으로 냉각시킨 후 디클로로메탄과 증류수를 첨가한 후 유기 층을 추출하였다. 추출한 유기 층을 무수 황산나트륨으로 건조한 후 감압 하에 용매를 제거하였다. 화합물을 실리카겔 및 셀라이트 여과하고 혼합용액(Hex:DCM)으로 세척하여 투명한 액체 화합물 (중간체(12)) 14.2 g(수율: 83.7%)을 얻었다.
(중간체(13)의 합성)
1구 500 mL 플라스크에서 중간체(12) 10.0 g(30.8 mmol), 비스피나콜디보론(Bis(pinacolato)diboron) 11.7 g(46.2 mmol), Pd(dppf)Cl2-CH2Cl2 503 mg(616.1 μmol), KOAc 9.1 g(92.4 mmol) 및 1,4-디옥산 154 mL를 혼합한 다음, 100℃에서 12시간 동안 교반 하였다. 반응이 종결된 후 상온으로 냉각하고 반응물을 셀라이트 패드에 통과시킨 후 감압 농축하였다. 반응 혼합물을 실리카겔 컬럼 크로마토그래피(CHCl3)로 정제하여 흰색 고체의 화합물(중간체(13)) 10.8 g(수율: 84.3%)을 얻었다.
중간체 합성예 8: 중간체(15)의 합성
Figure pat00387
(중간체(14)의 합성)
4-브로모-2-요오드아닐린(4-Bromo-2-iodoaniline) 40.0 g(134.26 mmol), 프로피오닐 클로라이드(Propionyl chloride) 12.4 g(134.26 mmol) 및 THF 360 mL를 넣고 상온에서 3시간 교반하였다. 반응이 종결된 후 용매를 감압 증류하였다. 컬럼 크로마토그래피(Hex:DCM)를 이용하여 정제하여 흰색의 고체 화합물(중간체(14)) 45.8 g(수율: 96.3 %)을 얻었다.
(중간체(15)의 합성)
1구 1 L 플라스크에서 중간체(14) 45.8 g(129.38 mmol), CuI 1.23 g(6.47 mmol), 1,10-Phenanthroline 2.33 g(12.94 mmol), Cs2CO3 84.3 g(258.77 mmol) 및 디메톡시에탄(DME) 400 mL를 90℃에서 하루 종일 교반하였다. 반응이 종결된 후 DCM으로 셀라이트 패드에 통과시켰다. 용매 제거 후 고체를 클로로포름에 녹인 후 컬럼 크로마토그래피(CHCl3)를 이용하여 정제하였다. 메탄올로 고체화하여 흰색의 고체 화합물(중간체(15)) 23.8 g(수율: 81.3 %)을 얻었다.
중간체 합성예 9: 중간체(17)의 합성
Figure pat00388
(중간체(16)의 합성)
1 구 1 L 플라스크에 중간체(15) 20.0 g(88.5 mmol), 안트라센-9-닐보론 산(anthracen-9-ylboronic acid) 19.6 g(88.5 mmol), Pd(PPh3)4 5.1 g(4.4 mmol), 2 M K2CO3 88.5 mL(176.9 mmol), 톨루엔(Toluene) 442 mL와 에탄올(Ethanol) 221 mL를 넣고 혼합한 후 5시간 동안 환류, 교반하였다. 반응을 종결하고 상온으로 냉각시킨 후 디클로로메탄과 증류수를 첨가한 후 유기 층을 추출하였다. 추출한 유기 층을 무수 황산나트륨으로 건조한 후 감압 하에 용매를 제거하였다. 반응물을 디클로로메탄과 메탄올로 재결정하여 석출된 고체화합물을 여과한 후 실리카겔 컬럼 크로마토그래피(Hex:MC)로 정제하여 흰색의 고체화합물(중간체(16)) 20.7 g(수율: 72.4%)을 얻었다.
(중간체(17)의 합성)
1구 500 mL 플라스크에서 중간체(16) 10.0 g(30.9 mmol)을 클로로포름(Chloroform) 155 mL에 용해시킨 후 0℃로 냉각 및 교반하였다. 반응물에 NBS 5.5 g(30.9 mmol)을 천천히 첨가한 후 상온으로 올리고 2시간 동안 교반하였다. 반응을 종결한 후 디클로로메탄과 증류수를 첨가한 후 유기 층을 추출하였다. 추출한 유기 층을 무수 황산나트륨으로 건조한 후 감압 하에 용매를 제거하였다. 농축한 유기물에 메탄올로 고체화하여 노란색의 결정형 고체 화합물(중간체(17)) 9.7 g(수율: 78.0%)을 얻었다.
중간체 합성예 10: 중간체(19)의 합성
Figure pat00389
(중간체(18)의 합성)
4-브로모-2-요오드아닐린(4-Bromo-2-iodoaniline) 40.0 g(134.26 mmol), 벤조일 클로라이드(Benzoyl chloride) 18.9 g(134.26 mmol) 및 THF 360 mL를 넣고 상온에서 3시간 교반하였다. 반응이 종결된 후 용매를 감압 증류하였다. 디아이소프로필 에테르(IPE)로 고체화하여 흰색의 고체 화합물(중간체(18)) 52.3 g(수율: 96.8 %)을 얻었다.
(중간체(19)의 합성)
1구 1 L 플라스크에서 중간체(18) 52.3 g(130.09 mmol), CuI 1.24 g(6.50 mmol), 1,10-Phenanthroline 2.34 g(13.01 mmol), Cs2CO3 84.7 g(260.18 mmol) 및 디메톡시에탄(DME) 180 mL를 90℃에서 하루 종일 교반하였다. 반응이 종결된 후 DCM으로 셀라이트 패드에 통과시켰다. 용매 제거 후 고체를 클로로포름에 녹인 후 컬럼 크로마토그래피(CHCl3)를 이용하여 정제하였다. 메탄올로 고체화하여 흰색의 고체 화합물(중간체(19)) 23.6 g(수율: 71.1 %)을 얻었다.
중간체 합성예 11: 중간체(21)의 합성
Figure pat00390
(중간체(20)의 합성)
1 구 1 L 플라스크에 중간체(19) 20.0 g(73.0 mmol), 안트라센-9-닐보론 산(anthracen-9-ylboronic acid) 16.2 g(73.0 mmol), Pd(PPh3)4 4.2 g(3.7 mmol), 2 M K2CO3 73.0 mL(146.0 mmol), 톨루엔(Toluene) 365 mL와 에탄올(Ethanol) 188 mL를 넣고 혼합한 후 5시간 동안 환류, 교반하였다. 반응을 종결하고 상온으로 냉각시킨 후 디클로로메탄과 증류수를 첨가한 후 유기 층을 추출하였다. 추출한 유기 층을 무수 황산나트륨으로 건조한 후 감압 하에 용매를 제거하였다. 반응물을 디클로로메탄과 메탄올로 재결정하여 석출된 고체화합물을 여과한 후 실리카겔 컬럼 크로마토그래피(Hex:MC)로 정제하여 흰색 고체의 화합물(중간체(20)) 23.7 g(수율: 87.5%)을 얻었다.
(중간체(21)의 합성)
1구 500 mL 플라스크에 중간체(20) 10.0 g(26.9 mmol)을 클로로포름(Chloroform) 135 mL에 용해시킨 후 0℃로 냉각 및 교반하였다. 반응물에 NBS 4.8 g(26.9 mmol)을 천천히 첨가한 후 상온으로 올리고 2시간 동안 교반하였다. 반응을 종결한 후 디클로로메탄과 증류수를 첨가한 후 유기 층을 추출하였다. 추출한 유기 층을 무수 황산나트륨으로 건조한 후 감압 하에 용매를 제거하였다. 농축한 유기물에 메탄올로 고체화하여 노란색의 결정형 고체 화합물(중간체(21)) 7.7 g(수율: 63.5%)을 얻었다.
중간체 합성예 12: 중간체(22)의 합성
Figure pat00391
6-브로모퀴놀린(2-bromoquinoline) 20.0 g(96.1 mmol), 4-클로로페닐보론산((4-chlorophenyl)boronic acid) 15.0 g(96.1 mmol), Pd(PPh3)4 5.6 (9.6mmol), 2 M K2CO3 96.1 mL(192.3 mmol), 톨루엔 480 mL 및 에탄올 240 mL 넣고 혼합한 후 12 시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 물을 넣고 에틸아세테이트로 추출한 후 감압 하에 용매를 제거하였다. 얻어진 반응혼합물을 실리카겔 컬럼 크로마토그래피(CHCl3)로 정제하고 혼합용액(DCM/Hex)으로 고체화하여, 흰색 고체의 화합물(중간체(22)) 16.7 g(수율: 72.5%)을 얻었다.
중간체 합성예 13: 중간체(24)의 합성
Figure pat00392
(중간체(23)의 합성)
1 구 1 L 플라스크에 중간체(22) 20.0 g(83.4 mmol), 안트라센-9-닐보론 산(anthracen-9-ylboronic acid) 18.5 g(83.4 mmol), Pd(PPh3)4 4.8 g(4.2 mmol), 2 M K2CO3 83.4 mL(166.9 mmol), 톨루엔(Toluene) 417 mL와 에탄올(Ethanol) 209 mL를 넣고 혼합한 후 5시간 동안 환류, 교반하였다. 반응을 종결하고 상온으로 냉각시킨 후 디클로로메탄과 증류수를 첨가한 후 유기 층을 추출하였다. 추출한 유기 층을 무수 황산나트륨으로 건조한 후 감압 하에 용매를 제거하였다. 반응물을 디클로로메탄과 메탄올로 재결정하여 석출된 고체화합물을 여과한 후 실리카겔 컬럼 크로마토그래피(Hex:MC)로 정제하여 흰색의 고체화합물(중간체(23)) 25.7 g(수율: 80.7%)을 얻었다.
(중간체(24)의 합성)
1구 500 mL 플라스크에서 중간체(23) 10.0 g(26.2 mmol)을 클로로포름(Chloroform) 131 mL에 용해시킨 후 0℃로 냉각 및 교반하였다. 반응물에 NBS 4.7 g(26.2 mmol)을 천천히 첨가한 후 상온으로 올리고 2시간 동안 교반하였다. 반응을 종결한 후 디클로로메탄과 증류수를 첨가한 후 유기 층을 추출하였다. 추출한 유기 층을 무수 황산나트륨으로 건조한 후 감압 하에 용매를 제거하였다. 농축한 유기물에 메탄올로 고체화하여 노란색의 결정형 고체 화합물(중간체(24)) 6.7 g(수율: 55.5%)을 얻었다
중간체 합성예 14: 중간체(26)의 합성
Figure pat00393
6-브로모피리딘(2-bromopyridine) 20.0 g(126.6 mmol), 4-클로로페닐보론산((4-chlorophenyl)boronic acid) 19.8 g(126.6 mmol), Pd(PPh3)4 7.3 g(6.33mmol), 2 M K2CO3 126.6 mL(253.6 mmol), 톨루엔 633 mL 및 에탄올 217 mL을 혼합한 후 12 시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 물을 넣고 에틸아세테이트로 추출한 후 감압 하에 용매를 제거하였다. 얻어진 반응혼합물을 실리카겔 컬럼 크로마토그래피(CHCl3)로 정제하고 혼합용액(DCM/Hex)으로 고체화하여, 흰색 고체의 화합물(중간체(25)) 20.2 g(수율: 84.2%)을 얻었다.
(중간체(26)의 합성)
1구 500 mL 플라스크에서 중간체(25) 10.0 g(52.7 mmol), 비스피나콜디보론(Bis(pinacolato)diboron) 13.4 g(52.7 mmol), Pd(dppf)Cl2-CH2Cl2 861 mg(1.1 mol), KOAc 15.5 g(158.2 mmol) 및 1,4-디옥산 264 mL를 혼합한 다음, 100℃에서 12시간 동안 교반 하였다. 반응이 종결된 후 상온으로 냉각하고 반응물을 셀라이트 패드에 통과시킨 후 감압 농축하였다. 반응 혼합물을 실리카겔 컬럼 크로마토그래피(CHCl3)로 정제하여 흰색 고체의 화합물(중간체(26)) 11.2 g(수율: 75.5%)을 얻었다.
중간체 합성예 15: 중간체(28)의 합성
Figure pat00394
(중간체(27)의 합성)
1 구 1 L 플라스크에 중간체(25) 20.0 g(105.5 mmol), 안트라센-9-닐보론 산(anthracen-9-ylboronic acid) 23.4 g(105.5 mmol), Pd(PPh3)4 6.1 g(5.3 mmol), 2 M K2CO3 105.5 mL(210.9 mmol), 톨루엔(Toluene) 527 mL와 에탄올(Ethanol) 264 mL를 넣고 혼합한 후 5시간 동안 환류, 교반하였다. 반응을 종결하고 상온으로 냉각시킨 후 디클로로메탄과 증류수를 첨가한 후 유기 층을 추출하였다. 추출한 유기 층을 무수 황산나트륨으로 건조한 후 감압 하에 용매를 제거하였다. 반응물을 디클로로메탄과 메탄올로 재결정하여 석출된 고체화합물을 여과한 후 실리카겔 컬럼 크로마토그래피(Hex:MC)로 정제하여 흰색 고체의 화합물(중간체(27)) 29.1 g(수율: 83.2%)을 얻었다.
(중간체(28)의 합성)
1구 500 mL 플라스크에서 중간체(27) 10.0 g(30.2 mmol)을 클로로포름(Chloroform) 150 mL에 용해시킨 후 0℃로 냉각 및 교반하였다. 반응물에 NBS 5.4 g(30.2 mmol)을 천천히 첨가한 후 상온으로 올리고 2시간 동안 교반하였다. 반응을 종결한 후 디클로로메탄과 증류수를 첨가한 후 유기 층을 추출하였다. 추출한 유기 층을 무수 황산나트륨으로 건조한 후 감압 하에 용매를 제거하였다. 농축한 유기물에 메탄올로 고체화하여 노란색 고체의 화합물(중간체(28)) 6.3 g(수율: 50.9%)을 얻었다
중간체 합성예 16: 중간체(29)의 합성
Figure pat00395
(중간체(29)의 합성)
중간체(26) 10.0 g(35.6 mmol), 2,7-다이브로모트라이페닐렌(2,7-dibromotriphenylene) 13.7 g(35.6 mmol), Pd(PPh3)4 2.1 g(1.8 mmol), 2 M K2CO3 35.6 mL(210.9 mmol), 톨루엔 178 mL 및 에탄올 89 mL의 혼합물을 12 시간 동안 환류 교반하였다. 반응 혼합물을 상온으로 냉각한 후 용매를 제거하고 물을 첨가한 후 유기층을 분리하여 무수 황산마그네슘으로 건조하고 얻어진 화합물을 실리카겔 컬럼 크로마토그래피로 정제하여 노란색 고체의 화합물(중간체(29) 7.2 g(수율: 44.0%)을 얻었다.
중간체 합성예 17: 중간체(31)의 합성
Figure pat00396
(중간체(30)의 합성)
1 구 1 L 플라스크에 4-(4-브로모페닐)다이벤조퓨란(4-(4-bromophenyl)dibenzo[b,d]furan) 20.0 g(61.9 mmol), 안트라센-9-닐보론 산(anthracen-9-ylboronic acid) 13.7 g(61.9 mmol), Pd(PPh3)4 3.6 g(3.1 mmol), 2 M K2CO3 61.9 mL(123.8 mmol), 톨루엔(Toluene) 309 mL와 에탄올(Ethanol) 155 mL를 넣고 혼합한 후 5시간 동안 환류, 교반하였다. 반응을 종결하고 상온으로 냉각시킨 후 디클로로메탄과 증류수를 첨가한 후 유기 층을 추출하였다. 추출한 유기 층을 무수 황산나트륨으로 건조한 후 감압 하에 용매를 제거하였다. 반응물을 디클로로메탄과 메탄올로 재결정하여 석출된 고체화합물을 여과한 후 실리카겔 컬럼 크로마토그래피(Hex:MC)로 정제하여 흰색 고체의 화합물(중간체(30)) 19.8 g(수율: 76.1%)을 얻었다.
(중간체(31)의 합성)
1구 500 mL 플라스크에서 중간체(30) 10.0 g(23.8 mmol)을 클로로포름(Chloroform) 120 mL에 용해시킨 후 0℃로 냉각 및 교반하였다. 반응물에 NBS 4.2 g(23.8 mmol)을 천천히 첨가한 후 상온으로 올리고 2시간 동안 교반하였다. 반응을 종결한 후 디클로로메탄과 증류수를 첨가한 후 유기 층을 추출하였다. 추출한 유기 층을 무수 황산나트륨으로 건조한 후 감압 하에 용매를 제거하였다. 농축한 유기물에 메탄올로 고체화하여 노란색 고체의 화합물(중간체(31)) 7.6 g(수율: 64.0%)을 얻었다.
중간체 합성예 18: 중간체(33)의 합성
Figure pat00397
(중간체(32)의 합성)
(4-브로모페닐)트리메틸실란((4-bromophenyl)trimethylsilane) 20.0 g(87.3 mmol), 4-클로로페닐보론산((4-chlorophenyl)boronic acid) 13.7 g(87.3 mmol), Pd(PPh3)4 5.0 g(4.4mmol), 2 M K2CO3 87.3 mL(174.5 mmol), 톨루엔 436 mL 및 에탄올 218 mL을 혼합한 다음 12 시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 물을 넣고 에틸아세테이트로 추출한 후 감압 하에 용매를 제거하였다. 얻어진 반응혼합물을 실리카겔 컬럼 크로마토그래피(CHCl3)로 정제하고 혼합용액(DCM/Hex)으로 고체화하여, 흰색 고체의 화합물(중간체(32)) 18.5 g(수율: 81.3%)을 얻었다.
(중간체(33)의 합성)
1구 500 mL 플라스크에서 중간체(32) 10.0 g(38.3 mmol), 비스피나콜디보론(Bis(pinacolato)diboron) 9.7 g(38.3 mmol), Pd(dppf)Cl2-CH2Cl2 626 mg(766.8 μmol), KOAc 11.3 g(115.0 mmol) 및 1,4-디옥산 192 mL를 혼합한 다음, 100℃에서 12시간 동안 교반 하였다. 반응이 종결된 후 상온으로 냉각하고 반응물을 셀라이트 패드에 통과시킨 후 감압 농축하였다. 반응 혼합물을 실리카겔 컬럼 크로마토그래피(CHCl3)로 정제하여 흰색 고체의 화합물(중간체(33)) 8.7 g(수율: 64.4%)을 얻었다.
중간체 합성예 19: 중간체(35)의 합성
Figure pat00398
(중간체(34)의 합성)
(3-브로모페닐)트리메틸실란((3-bromophenyl)trimethylsilane) 20.0 g(87.3 mmol), 4-클로로페닐보론산((4-chlorophenyl)boronic acid) 13.7 g(87.3 mmol), Pd(PPh3)4 5.0 g(4.4mmol), 2 M K2CO3 87.3 mL(174.5 mmol), 톨루엔 436 mL 및 에탄올 218 mL를 혼합한 다음 12 시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 물을 넣고 에틸아세테이트로 추출한 후 감압 하에 용매를 제거하였다. 얻어진 반응혼합물을 실리카겔 컬럼 크로마토그래피(CHCl3)로 정제하고 혼합용액(DCM/Hex)으로 고체화하여, 흰색 고체의 화합물(중간체(34)) 17.3 g(수율: 76.0%)을 얻었다.
(중간체(35)의 합성)
1구 500 mL 플라스크에서 중간체(34) 10.0 g(38.3 mmol), 비스피나콜디보론(Bis(pinacolato)diboron) 9.7 g(38.3 mmol), Pd(dppf)Cl2-CH2Cl2 626 mg(766.8 μmol), KOAc 11.3 g(115.0 mmol) 및 1,4-디옥산 192 mL를 혼합한 다음, 100℃에서 12시간 동안 교반 하였다. 반응이 종결된 후 상온으로 냉각하고 반응물을 셀라이트 패드에 통과시킨 후 감압 농축하였다. 반응 혼합물을 실리카겔 컬럼 크로마토그래피(CHCl3)로 정제하여 흰색 고체의 화합물(중간체(35)) 7.9 g(수율: 58.5%)을 얻었다.
중간체 합성예 20: 중간체(37)의 합성
Figure pat00399
(중간체(36)의 합성)
1 구 1 L 플라스크에 중간체(34) 20.0 g(76.7 mmol), 안트라센-9-닐보론 산(anthracen-9-ylboronic acid) 17.0 g(76.7 mmol), Pd(PPh3)4 4.4 g(3.8 mmol), 2 M K2CO3 76.7 mL(153.3 mmol), 톨루엔(Toluene) 383 mL와 에탄올(Ethanol) 192 mL를 넣고 혼합한 후 5시간 동안 환류, 교반하였다. 반응을 종결하고 상온으로 냉각시킨 후 디클로로메탄과 증류수를 첨가한 후 유기 층을 추출하였다. 추출한 유기 층을 무수 황산나트륨으로 건조한 후 감압 하에 용매를 제거하였다. 반응물을 디클로로메탄과 메탄올로 재결정하여 석출된 고체화합물을 여과한 후 실리카겔 컬럼 크로마토그래피(Hex:MC)로 정제하여 흰색 고체의 화합물(중간체(36)) 25.4 g(수율: 82.3%)을 얻었다.
(중간체(37)의 합성)
1구 500 mL 플라스크에서 중간체(36) 10.0 g(24.8 mmol)을 클로로포름(Chloroform) 124 mL에 용해시킨 후 0℃로 냉각 및 교반하였다. 반응물에 NBS 4.4 g(24.8 mmol)을 천천히 첨가한 후 상온으로 올리고 2시간 동안 교반하였다. 반응을 종결한 후 디클로로메탄과 증류수를 첨가한 후 유기 층을 추출하였다. 추출한 유기 층을 무수 황산나트륨으로 건조한 후 감압 하에 용매를 제거하였다. 농축한 유기물에 메탄올로 고체화하여 노란색의 결정형 고체 화합물(중간체(37)) 7.2 g(수율: 60.2%)을 얻었다.
중간체 합성예 21: 중간체(38)의 합성
Figure pat00400
(중간체(38)의 합성)
중간체(35) 10.0 g(28.4 mmol), 2,7-다이브로모트라이페닐렌(2,7-dibromotriphenylene) 11.0 g(28.4 mmol), Pd(PPh3)4 1.6 g(1.4 mmol), 2 M K2CO3 28.4 mL(56.8 mmol), 톨루엔 142 mL 및 에탄올 71 mL의 혼합물을 12 시간 동안 환류 교반하였다. 반응 혼합물을 상온으로 냉각한 후 용매를 제거하고 물을 첨가한 후 디클로로메탄을 넣어 유기층을 추출 분리하여 무수 황산마그네슘으로 건조하고 얻어진 화합물을 실리카겔 컬럼 크로마토그래피로 정제하여 노란색 고체의 화합물(중간체(38) 6.2 g(수율: 41.1%)을 얻었다.
중간체 합성예 22: 중간체(40)의 합성
Figure pat00401
(중간체(39)의 합성)
(3-브로모페닐)트리메틸실란((3-bromophenyl)trimethylsilane) 20.0 g(87.3 mmol), (5-클로로피리딘-2-닐)보론산((5-chloropyridin-2-yl)boronic acid) 13.7 g(87.3 mmol), Pd(PPh3)4 5.0 g(4.4mmol), 2 M K2CO3 87.3 mL(174.5 mmol), 톨루엔 436 mL 및 에탄올 218 mL을 혼합한 후 12 시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 물을 넣고 에틸아세테이트로 추출한 후 감압 하에 용매를 제거하였다. 얻어진 반응혼합물을 실리카겔 컬럼 크로마토그래피(CHCl3)로 정제하고 혼합용액(DCM/Hex)으로 고체화하여, 흰색 고체의 화합물(중간체(39)) 15.1 g(수율: 66.1%)을 얻었다.
(중간체(40)의 합성)
1구 500 mL 플라스크에서 중간체(39) 10.0 g(38.2 mmol), 비스피나콜디보론(Bis(pinacolato)diboron) 9.7 g(38.2 mmol), Pd(dppf)Cl2-CH2Cl2 623.8 mg(763.9 μmol), KOAc 11.3 g(114.6 mmol) 및 1,4-디옥산 190 mL를 혼합한 다음, 100℃에서 12시간 동안 교반 하였다. 반응이 종결된 후 상온으로 냉각하고 반응물을 셀라이트 패드에 통과시킨 후 감압 농축하였다. 반응 혼합물을 실리카겔 컬럼 크로마토그래피(CHCl3)로 정제하여 흰색 고체의 화합물(중간체(40)) 8.9 g(수율: 66.0%)을 얻었다.
중간체 합성예 23: 중간체(42)의 합성
Figure pat00402
(중간체(41)의 합성)
1-브로모-4-플로로벤젠(1-bromo-4-fluorobenzene) 20.0 g(114.3 mmol), (5-클로로피리딘-2-닐)보론산((5-chloropyridin-2-yl)boronic acid) 18.0 g(114.3 mmol), Pd(PPh3)4 6.6 g(5.7mmol), 2 M K2CO3 114.3 mL(228.6 mmol), 톨루엔 571 mL 및 에탄올 286 mL을 혼합한 후 12 시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 물을 넣고 에틸아세테이트로 추출한 후 감압 하에 용매를 제거하였다. 얻어진 반응혼합물을 실리카겔 컬럼 크로마토그래피(CHCl3)로 정제하고 혼합용액(DCM/Hex)으로 고체화하여, 흰색 고체의 화합물(중간체(41)) 14.6 g(수율: 61.5%)을 얻었다.
(중간체(42)의 합성)
1구 500 mL 플라스크에서 중간체(41) 10.0 g(48.2 mmol), 비스피나콜디보론(Bis(pinacolato)diboron) 12.2 g(48.2 mmol), Pd(dppf)Cl2-CH2Cl2 786.6 mg(963.2 μmol), KOAc 14.2 g(144.5 mmol) 및 1,4-디옥산 240 mL를 혼합한 다음, 100℃에서 12시간 동안 교반 하였다. 반응이 종결된 후 상온으로 냉각하고 반응물을 셀라이트 패드에 통과시킨 후 감압 농축하였다. 반응 혼합물을 실리카겔 컬럼 크로마토그래피(CHCl3)로 정제하여 흰색 고체의 화합물(중간체(42)) 10.5 g(수율: 72.9%)을 얻었다.
중간체 합성예 24: 중간체(44)의 합성
Figure pat00403
(중간체(43)의 합성)
2-브로모나프탈렌(2-bromonaphthalene) 20.0 g(96.6 mmol), 4-클로로페닐보론산((4-chlorophenyl)boronic acid) 15.1 g(96.6 mmol), Pd(PPh3)4 5.6 g(4.8mmol), 2 M K2CO3 96.6 mL(193.2 mmol), 톨루엔 483 mL 및 에탄올 242 mL을 혼합한 후 12 시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 물을 넣고 에틸아세테이트로 추출한 후 감압 하에 용매를 제거하였다. 얻어진 반응혼합물을 실리카겔 컬럼 크로마토그래피(CHCl3)로 정제하고 혼합용액(DCM/Hex)으로 고체화하여, 흰색 고체의 화합물(중간체(43)) 15.7 g(수율: 68.1%)을 얻었다.
(중간체(44)의 합성)
1구 500 mL 플라스크에서 중간체(43) 10.0 g(41.9 mmol), 비스피나콜디보론(Bis(pinacolato)diboron) 10.6 g(41.9 mmol), Pd(dppf)Cl2-CH2Cl2 684.2 mg(837.8 μmol), KOAc 12.3 g(125.7 mmol) 및 1,4-디옥산 210 mL를 혼합한 다음, 100℃에서 12시간 동안 교반 하였다. 반응이 종결된 후 상온으로 냉각하고 반응물을 셀라이트 패드에 통과시킨 후 감압 농축하였다. 반응 혼합물을 실리카겔 컬럼 크로마토그래피(CHCl3)로 정제하여 흰색 고체의 화합물(중간체(44)) 9.3 g(수율: 67.2%)을 얻었다.
중간체 합성예 25: 중간체(45)의 합성
Figure pat00404
(중간체(45)의 합성)
중간체(44) 10.0 g(30.3 mmol), 2,7-다이브로모트라이페닐렌(2,7-dibromotriphenylene) 11.7 g(30.3 mmol), Pd(PPh3)4 1.8 g(1.5 mmol), 2 M K2CO3 30.3 mL(60.6 mmol), 톨루엔 151 mL 및 에탄올 76 mL의 혼합물을 12 시간 동안 환류 교반하였다. 반응 혼합물을 상온으로 냉각한 후 용매를 제거하고 물을 첨가한 후 디클로로메탄을 넣어 유기층을 추출 분리하여 무수 황산마그네슘으로 건조하고 얻어진 화합물을 실리카겔 컬럼 크로마토그래피로 정제하여 노란색 고체의 화합물(중간체(45)) 6.2 g(수율: 40.2%)을 얻었다.
중간체 합성예 26: 중간체(46)의 합성
Figure pat00405
(중간체(46)의 합성)
2-브로모나프탈렌(2-bromonaphthalene) 30.0 g(144.9 mmol), (5-클로로피리딘-2-닐)보론산((5-chloropyridin-2-yl)boronic acid) 22.8 g(144.9 mmol), Pd(PPh3)4 8.4 g(7.2mmol), 2 M K2CO3 144.9 mL(289.8 mmol), 톨루엔 724 mL 및 에탄올 362 mL를 혼합한 후 12 시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 물을 넣고 에틸아세테이트로 추출한 후 감압 하에 용매를 제거하였다. 얻어진 반응혼합물을 실리카겔 컬럼 크로마토그래피(CHCl3)로 정제하고 혼합용액(DCM/Hex)으로 고체화하여, 흰색 고체의 화합물(중간체(46)) 24.1 g(수율: 69.4%)을 얻었다.
중간체 합성예 27: 중간체(48)의 합성
Figure pat00406
(중간체(47)의 합성)
1 구 1 L 플라스크에 중간체(46) 20.0 g(83.4 mmol), 안트라센-9-닐보론 산(anthracen-9-ylboronic acid) 18.5 g(83.4 mmol), Pd(PPh3)4 483 g(4.2 mmol), 2 M K2CO3 83.4 mL(166.9 mmol), 톨루엔(Toluene) 417 mL와 에탄올(Ethanol) 209 mL를 넣고 혼합한 후 5시간 동안 환류, 교반하였다. 반응을 종결하고 상온으로 냉각시킨 후 디클로로메탄과 증류수를 첨가한 후 유기 층을 추출하였다. 추출한 유기 층을 무수 황산나트륨으로 건조한 후 감압 하에 용매를 제거하였다. 반응물을 디클로로메탄과 메탄올로 재결정하여 석출된 고체화합물을 여과한 후 실리카겔 컬럼 크로마토그래피(Hex:MC)로 정제하여 흰색 고체의 화합물(중간체(47)) 21.3 g(수율: 66.9%)을 얻었다.
(중간체(48)의 합성)
1구 500 mL 플라스크에 중간체(47) 10.0 g(26.2 mmol)을 클로로포름(Chloroform) 130 mL에 용해시킨 후 0℃로 냉각 및 교반하였다. 반응물에 NBS 4.7 g(26.2 mmol)을 천천히 첨가한 후 상온으로 올리고 2시간 동안 교반하였다. 반응을 종결한 후 디클로로메탄과 증류수를 첨가한 후 유기 층을 추출하였다. 추출한 유기 층을 무수 황산나트륨으로 건조한 후 감압 하에 용매를 제거하였다. 농축한 유기물에 메탄올로 고체화하여 노란색 고체의 화합물(중간체(48)) 8.4 g(수율: 69.6%)을 얻었다.
상기 합성된 중간체 화합물을 이용하여 이하와 같이 다양한 유도체를 합성하였다.
제조예 1: 화합물 2-1(LT20-35-521)의 합성
Figure pat00407
1구 250 mL 플라스크에서 중간체(5) 5.0 g (11.1 mmol), (3,5-비스(트리플루오로메틸)페닐)보론산((3,5-bis(trifluoromethyl)phenyl) boronic acid) 2.9 g(11.1 mmol), Pd(PPh3)4 256.6 mg(222.1 μmol), 2 M K2CO3 11.1 mL(22.2 mmol), 톨루엔 60 mL, 에탄올 30 mL 및 물 30 mL를 혼합한 다음 12 시간 동안 환류 교반하였다. 반응이 종결된 후 상온으로 냉각하고, 물을 넣고 에틸아세테이트로 추출한 후 감압 하에 용매를 제거하였다. 얻어진 반응 혼합물을 실리카겔 컬럼 크로마토그래피(CHCl3)로 정제하고 혼합용액(DCM/Hex)으로 고체화하여, 흰색 고체의 화합물2-1(LT20-35-521) 4.7 g(수율: 72.5%)을 얻었다.
제조예 2: 화합물 2-41(LT18-30-540)의 합성
Figure pat00408
1구 250 mL 플라스크에 중간체(21) 4.0 g (8.9 mmol), (3,5-비스(트리플루오로메틸)페닐)보론산 (3,5-bis(trifluoromethyl)phenyl)boronic acid) 3.6 g(8.9 mmol), Pd(PPh3)4 0.5 g(0.4 mmol), K2CO3 2.5 g(17.8 mmol) 및 Toluene / EtOH / water 90 mL(4 / 2 / 1)를 혼합한 다음, 6시간 환류 교반하였다. 반응이 종결된 후 상온에서 냉각하고 증류수와 디클로로메탄(DCM)으로 추출하였다. 분리된 유기층을 무수 Na2SO4로 건조한 후 감압 하에 용매를 제거하고 컬럼 크로마토그래피(EA)로 정제, 농축하여 흰색 고체의 화합물2-41(LT18-30-540) 2.7 g(수율: 52.1 %)을 얻었다.
제조예 3: 화합물 2-65(LT18-30-500)의 합성
Figure pat00409
1구 500 mL 플라스크에서 중간체(17) 4.2 g (10.4 mmol), (3,5-비스(트리플루오로메틸)페닐)보론산 (3,5-bis(trifluoromethyl)phenyl)boronic acid) 2.7 g(10.4 mmol), Pd(PPh3)4 0.6 g(0.5 mmol), K2CO3 2.9 g(20.9 mmol) 및 Toluene / EtOH / water 120 mL(4 / 2 / 1)를 혼합한 후 6시간 환류 교반하였다. 반응이 종결된 후 상온에서 냉각하고 증류수와 디클로로메탄(DCM)으로 추출하였다. 분리된 유기층을 무수 Na2SO4로 건조한 후 감압 하에 용매를 제거하고 컬럼 크로마토그래피(CHCl3)로 정제, 농축하였다. EA로 재결정화 하여 분홍색 고체의 화합물2-65(LT18-30-500) 1.7 g(수율: 30.4 %)을 얻었다.
제조예 4: 화합물 2-97(LT19-30-623)의 합성
Figure pat00410
1 구 250 mL 플라스크에 중간체(10) 3.9 g(8.7 mmol). 중간체(13) 5.1 g(12.2 mmol), Pd(PPh3)4 0.6 g(0.5 mmol), 2 M K2CO3 8.7 mL(17.4 mmol), 톨루엔(Toluene) 40 mL와 에탄올(Ethanol) 20 mL를 넣고 혼합한 뒤 2시간 동안 환류, 교반하였다. 반응을 종결하고 상온으로 냉각시킨 뒤 디클로로메탄과 증류수를 첨가한 후 유기 층을 추출하였다. 추출한 유기 층을 무수 황산나트륨으로 건조한 뒤 감압 하에 용매를 제거하였다. 실리카겔 컬럼 크로마토그래피(Hex:DCM)로 정제한 뒤 톨루엔과 헥산으로 결정화하여 노랑색 고체의 화합물2-97(LT19-30-623) 2.8 g(수율: 49.1%)을 얻었다.
제조예 5: 화합물 2-102(LT20-30-012)의 합성
Figure pat00411
1 구 500 mL 플라스크에서 중간체(10) 10.0 g(22.2 mmol), 중간체(11) 6.8 g(22.2 mmol), Pd(PPh3)4 1.4 g(1.2 mmol), 2 M K2CO3 22.2 mL(44.4 mmol), 톨루엔(Toluene) 100 mL와 에탄올(Ethanol) 50 mL를 혼합한 후 6시간 동안 환류, 교반하였다. 반응을 종결하고 상온으로 냉각시킨 후 증류수 100 mL를 첨가 후 교반하였다. 석출된 고체화합물을 여과하고 메탄올, 아세톤, 디클로로메탄 순으로 세척한 후 디클로로메탄에 첨가하여 교반하였다. 반응물을 여과한 후 건조하여 흰색 고체의 화합물2-102(LT20-30-012) 4.2 g(수율: 34.5%)을 얻었다.
제조예 6: 화합물 2-276(LT20-35-598)의 합성
Figure pat00412
1 구 250 mL 플라스크에서 중간체(28) 4.2 g(10.2 mmol), (4-(트리메틸실릴)페닐)보론산((4-(trimethylsilyl)phenyl)boronic acid) 2.0 g(10.2 mmol), Pd(PPh3)4 236.6 mg(204.7 μmol), 2 M K2CO3 10.2 mL(20.5 mmol), 톨루엔(Toluene) 80 mL와 에탄올(Ethanol) 40 mL를 혼합한 후 환류, 교반하였다. 반응을 종결하고 상온으로 냉각시킨 후 증류수를 첨가한 후 교반하였다. 석출된 고체화합물을 여과하고 메탄올, 아세톤, 디클로로메탄 순으로 세척한 후 디클로로메탄에 첨가 후 교반하였다. 반응물을 여과한 후 건조하여 흰색 고체의 화합물2-276(LT20-35-598) 2.7 g(수율: 55.0%)을 얻었다.
제조예 7: 화합물 2-347(LT20-35-562)의 합성
Figure pat00413
1 구 500 mL 플라스크에서 중간체(48) 4.8 g(10.4 mmol), 중간체(42) 3.1 g(10.4 mmol), Pd(PPh3)4 241.0 mg(208.5 μmol), 2 M K2CO3 10.4 mL(20.8 mmol), 톨루엔(Toluene) 80 mL와 에탄올(Ethanol) 40 mL를 혼합한 후 환류, 교반하였다. 반응을 종결하고 상온으로 냉각시킨 후 증류수를 첨가한 후 교반하였다. 석출된 고체화합물을 여과하고 메탄올, 아세톤, 디클로로메탄 순으로 세척한 후 디클로로메탄에 첨가하여 교반하였다. 반응물을 여과한 후 건조하여 흰색 고체의 화합물2-347(LT20-35-562) 3.5 g(수율: 60.7%)을 얻었다.
제조예 8: 화합물 2-354(LT20-35-577)의 합성
Figure pat00414
1 구 500 mL 플라스크에서 중간체(24) 4.5 g(9.8 mmol), (4-(트리플로로메틸)페닐)보론산((4-(trifluoromethyl)phenyl)boronic acid) 1.9 g(9.8 mmol), Pd(PPh3)4 225.9 mg(195.5 μmol), 2 M K2CO3 9.8 mL(19.6 mmol), 톨루엔(Toluene) 100 mL와 에탄올(Ethanol) 50 mL를 혼합한 후 환류, 교반하였다. 반응을 종결하고 상온으로 냉각시킨 후 증류수를 첨가한 후 교반하였다. 석출된 고체화합물을 여과하고 메탄올, 아세톤, 디클로로메탄 순으로 세척한 후 디클로로메탄에 첨가하여 교반하였다. 반응물을 여과한 후 건조하여 흰색 고체의 화합물2-354(LT20-35-577) 2.3 g(수율: 44.8%)을 얻었다.
제조예 9: 화합물 2-397(LT20-35-555)의 합성
Figure pat00415
1 구 500 mL 플라스크에서 중간체(37) 5.0 g(10.4 mmol), (3,5-비스(트리플루오로메틸)페닐)보론산 (3,5-bis(trifluoromethyl)phenyl)boronic acid) 2.7 g(10.4 mmol), Pd(PPh3)4 240.0 g(207.7 μmol), 2 M K2CO3 10.4 mL(20.8 mmol), 톨루엔(Toluene) 100 mL와 에탄올(Ethanol) 50 mL를 혼합한 후 1시간 동안 환류, 교반하였다. 반응을 종결하고 상온으로 냉각시킨 후 증류수를 첨가한 후 교반하였다. 반응이 종결된 후 상온으로 냉각하고 반응물을 셀라이트 패드에 통과시킨 후 감압 농축하였다. 반응 혼합물을 실리카겔 컬럼 크로마토그래피(CHCl3)로 정제하여 흰색 고체의 화합물2-397(LT20-35-555) 4.1 g(수율: 64.2%)을 얻었다.
제조예 10: 화합물 2-401(LT20-35-504)의 합성
Figure pat00416
1 구 500 mL 플라스크에서 중간체(31) 4.0 g(8.0 mmol), (3,5-비스(트리플루오로메틸)페닐)보론산 (3,5-bis(trifluoromethyl)phenyl)boronic acid) 2.1 g(8.0 mmol), Pd(PPh3)4 185.1 mg(160.2 μmol), 2 M K2CO3 8.0 mL(16.0 mmol), 톨루엔(Toluene) 80 mL와 에탄올(Ethanol) 40 mL를 혼합한 후 1시간 동안 환류, 교반하였다. 반응을 종결하고 상온으로 냉각시킨 후 증류수를 첨가한 후 교반하였다. 반응이 종결된 후 상온으로 냉각하고 반응물을 셀라이트 패드에 통과시킨 후 감압 농축하였다. 반응 혼합물을 실리카겔 컬럼 크로마토그래피(CHCl3)로 정제하여 흰색 고체의 화합물2-401(LT20-35-504) 3.2 g(수율: 63.1%)을 얻었다.
제조예 11: 화합물 2-433(LT20-35-502)의 합성
Figure pat00417
1 구 500 mL 플라스크에서 9, 10-다이브로모안트라센 (9,10-dibromoanthracene) 5.0 g(14.9 mmol), (3,5-비스(트리플루오로메틸)페닐)보론산 (3,5-bis(trifluoromethyl)phenyl)boronic acid) 7.7 g(29.8 mmol), Pd(PPh3)4 859.8 mg(744.0 μmol), 2 M K2CO3 29.8 mL(59.5 mmol), 톨루엔(Toluene) 100 mL와 에탄올(Ethanol) 50 mL를 혼합한 후 환류, 교반하였다. 반응을 종결하고 상온으로 냉각시킨 후 증류수를 첨가한 후 교반하였다. 석출된 고체화합물을 여과하고 메탄올, 아세톤, 디클로로메탄 순으로 세척한 후 디클로로메탄에 첨가하여 교반하였다. 반응물을 여과한 후 건조하여 흰색 고체의 화합물2-433(LT20-35-502) 5.2 g(수율: 58.0%)을 얻었다.
제조예 12: 화합물 2-441(LT20-35-535)의 합성
Figure pat00418
1 구 500 mL 플라스크에서 9, 10-다이브로모안트라센 (9,10-dibromoanthracene) 3.5 g(10.4 mmol), 중간체(13) 8.7 g(20.8 mmol), Pd(PPh3)4 601.8 mg(520.8 μmol), 2 M K2CO3 20.8 mL(41.7 mmol), 톨루엔(Toluene) 100 mL와 에탄올(Ethanol) 50 mL를 혼합한 후 1시간 동안 환류, 교반하였다. 반응을 종결하고 상온으로 냉각시킨 후 증류수를 첨가한 후 교반하였다. 반응이 종결된 후 상온으로 냉각하고 반응물을 셀라이트 패드에 통과시킨 후 감압 농축하였다. 반응 혼합물을 실리카겔 컬럼 크로마토그래피(CHCl3)로 정제하여 흰색 고체의 화합물2-441(LT20-35-535) 3.6 g(수율: 45.8%)을 얻었다.
제조예 13: 화합물 3-396(LT20-30-348)의 합성
Figure pat00419
1 구 500 mL 플라스크에서 2-브로모트리페닐렌(2-bromotriphenylene) 4.5 g(14.7 mmol), 중간체(13) 6.1 g(14.7 mmol), Pd(PPh3)4 338.6 mg(293.0 μmol), 2 M K2CO3 14.7 mL(29.3 mmol), 톨루엔(Toluene) 100 mL와 에탄올(Ethanol) 50 mL를 혼합한 후 환류, 교반하였다. 반응을 종결하고 상온으로 냉각시킨 후 증류수를 첨가한 후 교반하였다. 석출된 고체화합물을 여과하고 메탄올, 아세톤, 디클로로메탄 순으로 세척한 후 디클로로메탄에 첨가하여 교반하였다. 반응물을 여과한 후 건조하여 흰색 고체의 화합물3-396(LT20-30-348) 3.1 g(수율: 41.0%)을 얻었다.
제조예 14: 화합물 3-399(LT20-35-612)의 합성
Figure pat00420
1 구 500 mL 플라스크에서 2-브로모트리페닐렌(2-bromotriphenylene) 4.5 g(14.7 mmol), 중간체(33) 5.2 g(14.7 mmol), Pd(PPh3)4 338.6 mg(293.0 μmol), 2 M K2CO3 14.7 mL(29.3 mmol), 톨루엔(Toluene) 100 mL와 에탄올(Ethanol) 50 mL를 혼합한 후 환류, 교반하였다. 반응을 종결하고 상온으로 냉각시킨 후 증류수를 첨가한 후 교반하였다. 석출된 고체화합물을 여과하고 메탄올, 아세톤, 디클로로메탄 순으로 세척한 후 디클로로메탄을 첨가하여 교반하였다. 반응물을 여과한 후 건조하여 흰색 고체의 화합물3-399(LT20-35-612) 3.7 g(수율: 55.8%)을 얻었다.
제조예 15: 화합물 3-1(LT20-35-627)의 합성
Figure pat00421
1 구 500 mL 플라스크에서 중간체(6) 5.0 g(10.0 mmol), (3,5-비스(트리플루오로메틸)페닐)보론산 (3,5-bis(trifluoromethyl)phenyl)boronic acid) 2.6 g(10.0 mmol), Pd(PPh3)4 231.0 mg(200.0 μmol), 2 M K2CO3 10.0 mL(20.0 mmol), 톨루엔(Toluene) 80 mL와 에탄올(Ethanol) 40 mL를 혼합한 후 1시간 동안 환류, 교반하였다. 반응이 종결된 후 상온으로 냉각하고 반응물을 셀라이트 패드에 통과시킨 후 감압 농축하였다. 반응 혼합물을 실리카겔 컬럼 크로마토그래피(CHCl3)로 정제하여 흰색 고체의 화합물3-1(LT20-35-627) 2.9 g(수율: 45.8%)을 얻었다.
제조예 16: 화합물 3-276(LT20-35-657)의 합성
Figure pat00422
1 구 500 mL 플라스크에서 중간체(29) 5.0 g(10.9 mmol), (3,5-비스(트리플루오로메틸)페닐)보론산 (3,5-bis(trifluoromethyl)phenyl)boronic acid) 2.8 g(10.9 mmol), Pd(PPh3)4 251.0 mg(217.2 μmol), 2 M K2CO3 10.9 mL(21.7 mmol), 톨루엔(Toluene) 100 mL와 에탄올(Ethanol) 50 mL를 혼합한 후 환류, 교반하였다. 반응을 종결하고 상온으로 냉각시킨 후 증류수를 첨가한 후 교반하였다. 반응이 종결된 후 상온으로 냉각하고 반응물을 셀라이트 패드에 통과시킨 후 감압 농축하였다. 반응 혼합물을 실리카겔 컬럼 크로마토그래피(CHCl3)로 정제하여 흰색 고체의 화합물3-276(LT20-35-657) 3.4 g(수율: 52.7%)을 얻었다.
제조예 17: 화합물 3-304(LT20-35-649)의 합성
Figure pat00423
1 구 500 mL 플라스크에서 중간체(29) 5.0 g(10.9 mmol), 중간체(40) 3.8 g(10.9 mmol), Pd(PPh3)4 251.0 mg(217.2 μmol), 2 M K2CO3 10.9 mL(21.7 mmol), 톨루엔(Toluene) 100 mL와 에탄올(Ethanol) 50 mL를 혼합한 후 1시간 동안 환류, 교반하였다. 반응을 종결하고 상온으로 냉각시킨 후 증류수를 첨가한 후 교반하였다. 석출된 고체화합물을 여과하고 메탄올, 아세톤, 디클로로메탄 순으로 세척한 후 디클로로메탄에 첨가하여 교반하였다. 반응물을 여과한 후 건조하여 흰색 고체의 화합물3-304(LT20-35-649) 2.1 g(수율: 31.9%)을 얻었다.
제조예 18: 화합물 3-318(LT20-35-638)의 합성
Figure pat00424
1 구 500 mL 플라스크에서 중간체(45) 6.0 g(11.8 mmol), (4-플로로페닐)보론산((4-fluorophenyl)boronic acid) 1.7 g(11.8 mmol), Pd(PPh3)4 272.2 mg(235.6 μmol), 2 M K2CO3 11.8 mL(23.6 mmol), 톨루엔(Toluene) 100 mL와 에탄올(Ethanol) 50 mL를 혼합한 후 환류, 교반하였다. 반응을 종결하고 상온으로 냉각시킨 후 증류수를 첨가한 후 교반하였다. 석출된 고체화합물을 여과하고 메탄올, 아세톤, 디클로로메탄 순으로 세척한 후 디클로로메탄에 첨가하여 교반하였다. 반응물을 여과한 후 건조하여 흰색 고체의 화합물3-318(LT20-35-638) 2.6 g(수율: 42.1%)을 얻었다.
제조예 19: 화합물 3-440(LT20-35-604)의 합성
Figure pat00425
1 구 500 mL 플라스크에서 중간체(38) 5.5 g(10.4 mmol), (3,5-비스(트리플루오로메틸)페닐)보론산(3,5-bis(trifluoromethyl)phenyl)boronic acid) 2.7 g(11.4 mmol), Pd(PPh3)4 239.1 mg(206.9 μmol), 2 M K2CO3 10.4 mL(20.7 mmol), 톨루엔(Toluene) 120 mL와 에탄올(Ethanol) 60 mL를 혼합한 후 환류, 교반하였다. 반응을 종결하고 상온으로 냉각시킨 후 증류수를 첨가한 후 교반하였다. 반응이 종결된 후 상온으로 냉각하고 반응물을 셀라이트 패드에 통과시킨 후 감압 농축하였다. 반응 혼합물을 실리카겔 컬럼 크로마토그래피(CHCl3)로 정제하여 흰색 고체의 화합물3-440(LT20-35-604) 2.4 g(수율: 34.9%)을 얻었다.
제조예 20: 화합물 3-476(LT20-35-612)의 합성
Figure pat00426
1 구 500 mL 플라스크에서 2,7-다이브로모트리페닐렌(2,7-dibromotriphenylene) 4.0 g(10.4 mmol), 3,5-비스트리플루오로메틸페닐보론산(3,5-bis(trifluoromethyl)phenyl)boronic acid) 5.3 g(10.4 mmol), Pd(PPh3)4 598.6 mg(518.0 μmol), 2 M K2CO3 20.7 mL(41.4 mmol), 톨루엔(Toluene) 180 mL와 에탄올(Ethanol) 90 mL를 혼합한 후 1시간 동안 환류, 교반하였다. 반응이 종결된 후 상온으로 냉각하고 반응물을 셀라이트 패드에 통과시킨 후 감압 농축하였다. 반응 혼합물을 실리카겔 컬럼 크로마토그래피(CHCl3)로 정제하여 흰색 고체의 화합물3-476(LT20-35-612) 3.7 g(수율: 54.7%)을 얻었다
제조예 21: 화합물 3-484(LT20-35-666)의 합성
Figure pat00427
1 구 500 mL 플라스크에서 2,7-다이브로모트리페닐렌(2,7-dibromotriphenylene) 4.0 g(10.4 mmol), 중간체(13) 8.6 g(10.4 mmol), Pd(PPh3)4 598.6 mg(518.0 μmol), 2 M K2CO3 20.7 mL(41.4mmol), 톨루엔(Toluene) 180 mL와 에탄올(Ethanol) 90 mL를 혼합한 후 환류, 교반하였다. 반응이 종결된 후 상온으로 냉각하고 반응물을 셀라이트 패드에 통과시킨 후 감압 농축하였다. 반응 혼합물을 실리카겔 컬럼 크로마토그래피(CHCl3)로 정제하여 흰색 고체의 화합물3-484(LT20-35-666) 3.1 g(수율: 37.2%)을 얻었다.
<시험예>
본 발명의 화합물에 대하여 J.A. WOOLLAM社 Ellipsometer 기기를 이용하여 광학 특성 평가용 단막의 n(refractive index)와 k(extinction coefficient)을 측정하였다.
광학 특성 평가용 단막 제작 :
화합물의 광학 특성 측정을 위해, 유리기판(0.7T)을 Ethanol, DI Water, Acetone에 각각 10분씩 세척한 후, 2×10- 2Torr에서 125 W로 2분간 산소 플라즈마 처리하고, 9×10- 7Torr의 진공도에서 1Å/sec의 속도로 유리기판 위에 화합물을 800Å 증착하여 단막을 제작한다.
상기 광학 특성 평가용 단막 제작에서 화합물로 Alq3와 REF01을 각각 사용하였다.
Figure pat00428
< 시험예 1 내지 21 >
상기 광학 특성 평가용 단막 제작에서 화합물로 하기 표 1에 나타낸 각각의 화합물을 각각 사용하였다.
상기 비교시험예 및 시험예 1 내지 21에 의한 화합물의 광학 특성을 표 1에 나타냈다.
광학 특성은 460nm 및 620nm 파장에서 굴절률 상수이다.
Figure pat00429
상기 표 1에서 알 수 있는 바와 같이, 비교시험예(Alq3)의 청색영역(460nm)과 적색영역(620nm)에서의 n값이 각각 1.808, 1.690이었고, 이에 반해 대부분의 본 발명에 따른 화합물들은 대체적으로 청색영역, 녹색영역 및 적색영역에서 비교시험예 화합물(Alq3) 보다 낮은 굴절률(n<1.69 @620nm)을 갖는 것으로 확인되었다. 이것은 청색영역에서의 높은 시야각을 확보하기 위해 필요한 낮은 굴절률 값에 만족한다.
<실시예>
소자 제작
소자 제작을 위해 투명 전극인 ITO는 양극 층으로 사용하였고, 2-TNATA는 정공 주입층, NPB는 정공 수송층, αβ-ADN은 발광층의 호스트, Pyrene-CN은 청색 형광 도판트, Alq3는 전자 수송층, Liq는 전자 주입층, Mg:Ag은 음극으로 사용하였다. 이 화합물들의 구조는 하기의 화학식과 같다.
Figure pat00430
비교실시예 1(캡핑층이 없음): ITO / 2-TNATA(60 nm) / NPB(20 nm) / αβ-ADN:10% Pyrene-CN(30 nm) / Alq3(30 nm) / Liq(2 nm) / Mg:Ag(1:9, 10 nm)
비교실시예 2(캡핑층을 1층으로 구성): ITO / 2-TNATA(60 nm) / NPB(20 nm) / αβ-ADN:10% Pyrene-CN(30 nm) / Alq3(30 nm) / Liq(2 nm) / Mg:Ag(1:9, 10 nm) / Alq3(80nm)
실시예 (캡핑층을 2층으로 구성): ITO / 2-TNATA(60 nm) / NPB(20 nm) / αβ-ADN:10% Pyrene-CN(30 nm) / Alq3(30 nm) / Liq(2 nm) / Mg:Ag(1:9, 10 nm) / 본 발명의 화합물(20nm, 저굴절 화합물) / REF01(60nm, 고굴절 화합물)
청색 형광 유기발광소자는 ITO(180 nm) / 2-TNATA (60 nm) / NPB (20 nm) / αβ-ADN:Pyrene-CN 10% (30 nm) / Alq3 (30 nm) / Liq (2 nm) / Mg:Ag (1:9, 10 nm) / 캡핑층 순으로 증착하여 소자를 제작하였다.
유기물을 증착하기 전에 ITO 전극은 2 × 10- 2Torr에서 125W로 2분간 산소 플라즈마 처리를 하였다. 유기물은 9 × 10- 7Torr의 진공도에서 증착하였으며, Liq는 0.1 Å/sec, αβ-ADN은 0.18 Å/sec의 기준으로 Pyrene-CN는 0.02 Å/sec으로 동시 증착하였고, 나머지 유기물들은 모두 1 Å/sec의 속도로 증착하였다.
소자 제작이 끝난 후 소자의 공기 및 수분의 접촉을 막기 위하여 질소 기체로 채워져 있는 글러브 박스 안에서 봉지를 하였다. 3M사의 접착용 테이프로 격벽을 형성 후 수분 등을 제거할 수 있는 흡습제인 바륨산화물(Barium Oxide)을 넣고 유리판을 붙였다.
Figure pat00431
< 실시예 1 내지 21 >
상기 실시예에서, 캡핑층으로서 저굴절 층(20nm) 위에 고굴절 층(60nm)이 형성된 복층을 구비하고, 고굴절 층에 REF01 화합물을 저굴절 층에 하기 표 2에 나타낸 각각의 화합물을 사용하여 소자를 제작하였다.
상기 비교실시예 1, 비교실시예 2 및 실시예 1 내지 21에서 제조된 유기 발광 소자에 대한 전기적 발광특성을 표 2에 나타냈다.
Figure pat00432
상기 표 2의 결과로부터 알 수 있듯이, 캡핑층(Capping Layer, 광효율 개선층)이 있는 소자(비교실시예2)와 없는 소자(비교실시예1)의 결과를 보면 캡핑층(Capping Layer, 광효율 개선층)으로 효율을 상승시킬 수 있음을 확인할 수 있다.
상기 표 2의 결과로부터, 본 발명에 따른 특정의 안트라센 또는 트라이페닐렌 유도체 화합물은 유기 발광 소자를 비롯한 유기 전자 소자의 저굴절 캡핑층(n<1.69 @620nm)의 재료로서 사용될 수 있고, 이를 이용한 유기 발광 소자를 비롯한 유기 전자 소자는 효율, 구동전압, 안정성 등에서 우수한 특성을 나타냄을 알 수 있다.
캡핑층(Capping Layer, 광효율 개선층)으로 고굴절(n>1.69 @620nm) 화합물로 단일층만 사용하고 있는 소자와 고굴절(n>1.69 @620nm) 화합물과 저굴절(n<1.69 @620nm) 화합물로 복층으로 사용하고 있는 소자의 결과를 보면 복층으로 사용한 캡핑층(Capping Layer, 광효율 개선층)이 효율을 상승시킬 수 있음을 확인할 수 있으며, 캡핑층(Capping Layer, 광효율 개선층)으로 Alq3를 사용한 소자(비교실시예2) 보다 본 발명의 재료를 복층으로 사용하였을 경우에 효율이 개선됨을 알 수 있다.
이는 굴절률로 설명할 수 있는데, 고굴절률을 가지는 REF01 단일층 보다 높은 굴절률(고굴절)과 낮은 굴절률(저굴절)을 가지는 본 발명의 화합물을 복층으로 사용한 유기 전기발광소자가 높은 효율을 가지는 것은 자명한 일이다.
따라서 화학식 1의 화합물은 OLED에서 저굴절 캡핑층으로 사용하기 위한 의외의 바람직한 특성을 가지고 있다.
본 발명의 화합물이 이러한 특성에 의해 산업용 유기 전자 소자 제품에 적용될 수 있다.
다만, 전술한 합성예는 일 예시이며, 반응 조건은 필요에 따라 변경될 수 있다. 또한, 본 발명의 일 실시예에 따른 화합물은 당 기술분야에 알려진 방법 및 재료를 이용하여 다양한 치환기를 가지도록 합성될 수 있다. 화학식 1로 표시되는 코어 구조에 다양한 치환체를 도입함으로써 유기 전계 발광 소자에 사용되기에 적합한 특성을 가질 수 있다.
100: 기판, 110: 제1 전극, 120: 제2 전극, 200: 유기물층, 210: 정공주입층, 215: 정공수송층, 220: 발광층, 230: 전자수송층, 235: 전자주입층, 300: 캡핑층

Claims (7)

  1. 하기 화학식 1로 표시되는, 유기전계발광소자 용 안트라센 또는 트라이페닐렌 유도체.
    [화학식 1]
    [화학식 1]
    Figure pat00433

    상기 화학식 1에 있어서,
    A는 안트라센 또는 트라이페닐렌이며,
    Ar1 및 Ar2는 각각 독립적으로 하기의 화학식 중 어느 하나를 가지며,
    Figure pat00434

    X1은 O 또는 S 이고,
    X2은 CH 또는 N 이며,
    R6는 페닐, 나프틸, 바이페닐 및 에틸 중 어느 하나로 선택되며,
    Ar3은 F; CF3; Si(CH3)3; CN; 페닐기; F, CF3, CN 또는 Si(CH3)3 로 치환된 페닐기; 피리딜기; 나프틸기; 퀴놀린기; 페난트릴기; 페난트리딘기; 페나트롤린기; 트리페닐렌기; 플루오레닐기; 디벤조퓨란기; 벤조티오펜기; 벤조퀴놀린기; 카바졸기; 페닐기로 치환된 카바졸기; 벤즈옥사졸기; 및 벤즈티아졸기; 중에서 선택되고,
    R1 내지 R5는 각각 독립적으로 H, F, CF3, CN 또는 Si(CH3)3 이고,
    r, p, q 및 n은 각각 0 내지 2의 정수이다.
  2. 제 1항에 있어서,
    상기 화학식 1은 하기 화학식 1-1 및 화학식 1-2 중에서 선택되는 유기전계발광소자 용 안트라센 또는 트라이페닐렌 유도체.
    [화학식 1-1]
    Figure pat00435

    [화학식 1-2]
    Figure pat00436

    상기 화학식 1-1 및 화학식 1-2에 있어서,
    Ar1 및 Ar2는 각각 독립적으로 하기의 화학식 중 어느 하나를 가지며,
    Figure pat00437

    X1은 O 또는 S 이고,
    X2은 CH 또는 N 이며,
    R6는 페닐, 나프틸, 바이페닐 및 에틸 중 어느 하나로 선택되며,
    Ar3, R1 내지 R5, r, p, q 및 n는 상기 화학식 1에서 정의된 것과 같다.
  3. 제 1항에 있어서,
    상기 화학식 1은 하기 화학식 2 및 화학식 3의 화합물 중에서 선택되는 유기전계발광소자 용 안트라센 또는 트라이페닐렌 유도체.
    [화학식 2]
    Figure pat00438

    Figure pat00439

    Figure pat00440

    Figure pat00441

    Figure pat00442

    Figure pat00443

    Figure pat00444

    Figure pat00445

    Figure pat00446

    Figure pat00447

    Figure pat00448

    Figure pat00449

    Figure pat00450

    Figure pat00451

    Figure pat00452

    Figure pat00453

    Figure pat00454

    Figure pat00455

    Figure pat00456

    Figure pat00457

    Figure pat00458

    Figure pat00459

    Figure pat00460

    Figure pat00461

    Figure pat00462

    Figure pat00463

    Figure pat00464

    Figure pat00465

    Figure pat00466

    Figure pat00467

    Figure pat00468

    Figure pat00469

    Figure pat00470

    Figure pat00471

    Figure pat00472

    Figure pat00473

    Figure pat00474

    Figure pat00475

    Figure pat00476

    Figure pat00477

    Figure pat00478

    Figure pat00479

    Figure pat00480

    Figure pat00481

    Figure pat00482

    Figure pat00483

    Figure pat00484

    Figure pat00485

    Figure pat00486

    Figure pat00487

    Figure pat00488

    Figure pat00489

    Figure pat00490

    Figure pat00491

    Figure pat00492

    Figure pat00493

    Figure pat00494

    Figure pat00495

    Figure pat00496

    Figure pat00497

    Figure pat00498

    Figure pat00499

    Figure pat00500

    Figure pat00501

    Figure pat00502

    Figure pat00503

    Figure pat00504

    Figure pat00505

    Figure pat00506

    Figure pat00507

    Figure pat00508

    Figure pat00509

    Figure pat00510

    Figure pat00511

    Figure pat00512

    Figure pat00513

    Figure pat00514

    Figure pat00515

    Figure pat00516

    Figure pat00517

    Figure pat00518

    Figure pat00519

    Figure pat00520

    Figure pat00521

    Figure pat00522

    Figure pat00523

    Figure pat00524

    Figure pat00525

    Figure pat00526

    Figure pat00527

    Figure pat00528

    Figure pat00529

    Figure pat00530

    Figure pat00531

    Figure pat00532

    Figure pat00533

    Figure pat00534

    Figure pat00535

    Figure pat00536

    Figure pat00537

    Figure pat00538

    Figure pat00539

    Figure pat00540

    Figure pat00541

    Figure pat00542

    Figure pat00543

    Figure pat00544

    Figure pat00545

    Figure pat00546

    Figure pat00547

    Figure pat00548

    Figure pat00549

    Figure pat00550

    Figure pat00551

    Figure pat00552

    Figure pat00553

    Figure pat00554

    Figure pat00555

    Figure pat00556

    Figure pat00557

    Figure pat00558

    Figure pat00559

    Figure pat00560

    Figure pat00561

    Figure pat00562

    Figure pat00563

    Figure pat00564

    Figure pat00565

    Figure pat00566

    Figure pat00567

    Figure pat00568

    Figure pat00569

    Figure pat00570

    Figure pat00571

    Figure pat00572

    Figure pat00573

    Figure pat00574

    Figure pat00575

    Figure pat00576

    Figure pat00577

    Figure pat00578

    Figure pat00579

    Figure pat00580

    Figure pat00581

    Figure pat00582

    Figure pat00583

    Figure pat00584

    Figure pat00585

    Figure pat00586

    Figure pat00587

    Figure pat00588

    Figure pat00589

    Figure pat00590

    [화학식 3]
    Figure pat00591

    Figure pat00592

    Figure pat00593

    Figure pat00594

    Figure pat00595

    Figure pat00596

    Figure pat00597

    Figure pat00598

    Figure pat00599

    Figure pat00600

    Figure pat00601

    Figure pat00602

    Figure pat00603

    Figure pat00604

    Figure pat00605

    Figure pat00606

    Figure pat00607

    Figure pat00608

    Figure pat00609

    Figure pat00610

    Figure pat00611

    Figure pat00612

    Figure pat00613

    Figure pat00614

    Figure pat00615

    Figure pat00616

    Figure pat00617

    Figure pat00618

    Figure pat00619

    Figure pat00620

    Figure pat00621

    Figure pat00622

    Figure pat00623

    Figure pat00624

    Figure pat00625

    Figure pat00626

    Figure pat00627

    Figure pat00628

    Figure pat00629

    Figure pat00630

    Figure pat00631

    Figure pat00632

    Figure pat00633

    Figure pat00634

    Figure pat00635

    Figure pat00636

    Figure pat00637

    Figure pat00638

    Figure pat00639

    Figure pat00640

    Figure pat00641

    Figure pat00642

    Figure pat00643

    Figure pat00644

    Figure pat00645

    Figure pat00646

    Figure pat00647

    Figure pat00648

    Figure pat00649

    Figure pat00650

    Figure pat00651

    Figure pat00652

    Figure pat00653

    Figure pat00654

    Figure pat00655

    Figure pat00656

    Figure pat00657

    Figure pat00658

    Figure pat00659

    Figure pat00660

    Figure pat00661

    Figure pat00662

    Figure pat00663

    Figure pat00664

    Figure pat00665

    Figure pat00666

    Figure pat00667

    Figure pat00668

    Figure pat00669

    Figure pat00670

    Figure pat00671

    Figure pat00672

    Figure pat00673

    Figure pat00674

    Figure pat00675

    Figure pat00676

    Figure pat00677

    Figure pat00678

    Figure pat00679

    Figure pat00680

    Figure pat00681

    Figure pat00682

    Figure pat00683

    Figure pat00684

    Figure pat00685

    Figure pat00686

    Figure pat00687

    Figure pat00688

    Figure pat00689

    Figure pat00690

    Figure pat00691

    Figure pat00692

    Figure pat00693

    Figure pat00694

    Figure pat00695

    Figure pat00696

    Figure pat00697

    Figure pat00698

    Figure pat00699

    Figure pat00700

    Figure pat00701

    Figure pat00702

    Figure pat00703

    Figure pat00704

    Figure pat00705

    Figure pat00706

    Figure pat00707

    Figure pat00708

    Figure pat00709

    Figure pat00710

    Figure pat00711

    Figure pat00712

    Figure pat00713

    Figure pat00714

    Figure pat00715

    Figure pat00716

    Figure pat00717

    Figure pat00718

    Figure pat00719

    Figure pat00720

    Figure pat00721

    Figure pat00722

    Figure pat00723

    Figure pat00724

    Figure pat00725

    Figure pat00726

    Figure pat00727

    Figure pat00728

    Figure pat00729

    Figure pat00730

    Figure pat00731

    Figure pat00732

    Figure pat00733

    Figure pat00734

    Figure pat00735

    Figure pat00736

    Figure pat00737

    Figure pat00738

    Figure pat00739

    Figure pat00740

    Figure pat00741

    Figure pat00742

    Figure pat00743

    Figure pat00744

    Figure pat00745

    Figure pat00746

    Figure pat00747

    Figure pat00748

    Figure pat00749

    Figure pat00750

    Figure pat00751

    Figure pat00752

    Figure pat00753

    Figure pat00754

    Figure pat00755

    Figure pat00756

    Figure pat00757

    Figure pat00758

    Figure pat00759

    Figure pat00760

    Figure pat00761

    Figure pat00762

    Figure pat00763

    Figure pat00764

    Figure pat00765

    Figure pat00766

    Figure pat00767

    Figure pat00768

    Figure pat00769

    Figure pat00770

    Figure pat00771

    Figure pat00772

    Figure pat00773

    Figure pat00774

    Figure pat00775

    Figure pat00776

    Figure pat00777

    Figure pat00778

    Figure pat00779

    Figure pat00780

    Figure pat00781

    Figure pat00782

    Figure pat00783

    Figure pat00784

    Figure pat00785

    Figure pat00786

    Figure pat00787

    Figure pat00788

    Figure pat00789

    Figure pat00790

    Figure pat00791

    Figure pat00792

    Figure pat00793

    Figure pat00794

    Figure pat00795

    Figure pat00796

    Figure pat00797

    Figure pat00798

    Figure pat00799

    Figure pat00800

    Figure pat00801

    Figure pat00802

    Figure pat00803
  4. 제 1항에 있어서,
    상기 안트라센 또는 트라이페닐렌 유도체는 굴절률 상수가 1.69(@620nm) 또는 1.808(@460nm) 미만인 것을 특징으로 하는 유기전계발광소자 용 안트라센 또는 트라이페닐렌 유도체.
  5. 제1 전극;
    상기 제1 전극 상에 배치된, 복수의 유기물층으로 구성된 유기물층;
    상기 유기물층 상에 배치된 제2 전극; 및
    상기 제2 전극 상에 배치된 캡핑층;을 포함하고,
    상기 유기물층 또는 캡핑층은 상기 제 1항 내지 제 4항 중 어느 한 항에 따른 안트라센 또는 트라이페닐렌 유도체를 포함하는 유기전계발광소자.
  6. 제 5항에 있어서,
    상기 캡핑층은 상이한 굴절률을 가지는 복수개의 층을 포함하여 이루어진 것을 특징으로 하는 유기전계발광소자.
  7. 제 5항에 있어서,
    상기 유기물층은 발광층과 전자수송층을 포함하고, 상기 전자수송층은 상기 안트라센 또는 트라이페닐렌 유도체를 포함하는 유기전계발광소자.
KR1020200109581A 2020-08-28 2020-08-28 안트라센 또는 트라이페닐렌 유도체 및 이를 포함한 유기전계발광소자 KR20220030385A (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200109581A KR20220030385A (ko) 2020-08-28 2020-08-28 안트라센 또는 트라이페닐렌 유도체 및 이를 포함한 유기전계발광소자

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200109581A KR20220030385A (ko) 2020-08-28 2020-08-28 안트라센 또는 트라이페닐렌 유도체 및 이를 포함한 유기전계발광소자

Publications (1)

Publication Number Publication Date
KR20220030385A true KR20220030385A (ko) 2022-03-11

Family

ID=80814472

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200109581A KR20220030385A (ko) 2020-08-28 2020-08-28 안트라센 또는 트라이페닐렌 유도체 및 이를 포함한 유기전계발광소자

Country Status (1)

Country Link
KR (1) KR20220030385A (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220100362A (ko) * 2021-01-08 2022-07-15 주식회사 엘지화학 안트라센계 화합물, 및 이를 포함하는 유기 발광 소자
KR20220100361A (ko) * 2021-01-08 2022-07-15 주식회사 엘지화학 안트라센계 화합물, 및 이를 포함하는 유기 발광 소자

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160062307A (ko) 2014-11-24 2016-06-02 삼성디스플레이 주식회사 고굴절률 캡핑층을 포함하는 유기발광 표시장치

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160062307A (ko) 2014-11-24 2016-06-02 삼성디스플레이 주식회사 고굴절률 캡핑층을 포함하는 유기발광 표시장치

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220100362A (ko) * 2021-01-08 2022-07-15 주식회사 엘지화학 안트라센계 화합물, 및 이를 포함하는 유기 발광 소자
KR20220100361A (ko) * 2021-01-08 2022-07-15 주식회사 엘지화학 안트라센계 화합물, 및 이를 포함하는 유기 발광 소자

Similar Documents

Publication Publication Date Title
KR102099171B1 (ko) 아릴아민 유도체 및 이를 포함한 유기 전계 발광 소자
KR102060645B1 (ko) 3차 아민 유도체 및 이를 포함한 유기 전계 발광 소자
KR102059550B1 (ko) 트리벤즈아졸 아민 유도체 및 이를 포함한 유기 전계 발광 소자
KR102517278B1 (ko) 트리아진 또는 피리미딘 유도체, 및 이를 포함한 유기전계발광소자
KR102252493B1 (ko) 벤즈아졸 유도체 및 이를 포함한 유기전계발광소자
EP4129964A1 (en) Organic compound and organic electroluminescent device comprising same
KR20220030385A (ko) 안트라센 또는 트라이페닐렌 유도체 및 이를 포함한 유기전계발광소자
KR20210141824A (ko) 벤즈아졸 유도체 및 이를 포함한 유기전계발광소자
KR20210141825A (ko) 벤즈아졸 유도체 및 이를 포함한 유기전계발광소자
KR102517277B1 (ko) 시아노기가 치환된 아릴 또는 헤테로아릴 유도체 및 이를 포함한 유기전계발광소자
KR102417622B1 (ko) 3차 아민 유도체 및 이를 포함한 유기 전계 발광 소자
KR102261704B1 (ko) 3차 아민 유도체 및 이를 포함한 유기전계발광소자
KR20230025723A (ko) 시아노기가 치환된 카바졸 유도체 및 이를 포함한 유기전계발광소자
KR102470622B1 (ko) 3차 아민 유도체 및 이를 포함한 유기 전계 발광 소자
KR20230028821A (ko) 시아노기가 치환된 헤테로아릴 아민 유도체 및 이를 포함한 유기전계발광소자
KR102460493B1 (ko) 디벤조 5원고리 화합물 및 이를 포함한 유기전계발광소자
KR102274482B1 (ko) 헤테로아릴 유도체 및 이를 포함한 유기 전계 발광 소자
KR102443601B1 (ko) 3차 아민 유도체 및 이를 포함한 유기 전계 발광 소자
KR102256222B1 (ko) 3차 아민 유도체 및 이를 포함한 유기전계발광소자
KR102612519B1 (ko) 유기화합물 및 이를 포함한 유기전계발광소자
KR102561396B1 (ko) 다이아민 유도체 및 이를 포함한 유기전계발광소자
KR20190082052A (ko) 아릴 아민 유도체 및 이를 포함한 유기 전계 발광 소자
KR102099172B1 (ko) 아릴 아민 유도체 및 이를 포함한 유기 전계 발광 소자
KR20220050764A (ko) 고굴절 벤즈아졸 유도체 및 이를 포함한 유기전계발광소자
KR20230020069A (ko) 3차 아민 유도체 및 이를 포함한 유기전계발광소자