KR20210129015A - Coating method of porcelain insulators metal fitting and porcelain insulator manufactured by thereof - Google Patents

Coating method of porcelain insulators metal fitting and porcelain insulator manufactured by thereof Download PDF

Info

Publication number
KR20210129015A
KR20210129015A KR1020210140138A KR20210140138A KR20210129015A KR 20210129015 A KR20210129015 A KR 20210129015A KR 1020210140138 A KR1020210140138 A KR 1020210140138A KR 20210140138 A KR20210140138 A KR 20210140138A KR 20210129015 A KR20210129015 A KR 20210129015A
Authority
KR
South Korea
Prior art keywords
coating
mgf
solution
coating film
zinc
Prior art date
Application number
KR1020210140138A
Other languages
Korean (ko)
Other versions
KR102413511B1 (en
Inventor
최인혁
윤용범
김태균
윤형빈
최철원
Original Assignee
한국전력공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전력공사 filed Critical 한국전력공사
Priority to KR1020210140138A priority Critical patent/KR102413511B1/en
Publication of KR20210129015A publication Critical patent/KR20210129015A/en
Application granted granted Critical
Publication of KR102413511B1 publication Critical patent/KR102413511B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/002Processes for applying liquids or other fluent materials the substrate being rotated
    • B05D1/005Spin coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/18Processes for applying liquids or other fluent materials performed by dipping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/50Insulators or insulating bodies characterised by their form with surfaces specially treated for preserving insulating properties, e.g. for protection against moisture, dirt, or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/56Insulating bodies
    • H01B17/62Insulating-layers or insulating-films on metal bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/46Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes silicones

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Soft Magnetic Materials (AREA)
  • Insulators (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

The present invention relates to a coating method of a magnetic insulator metallic device for preventing deterioration of performance of the magnetic insulator metallic device and improving the light reflectance, and to a magnetic insulator metallic device manufactured by the same. More specifically, the method comprises the steps of: preparing a methyl silicone solution by mixing methyltriethoxysilane (CH_3Si(OC_2H_5)_3), ethanol, hydrochloric acid and water in a certain ratio; preparing a MgF_2 solution by mixing magnesium acetate (Mg(CH_3COO)_2), hydrofluoric acid (HF), anhydrous ethanol and ethanol in a predetermined ratio; preparing a coating solution by mixing the methyl silicone solution and the MgF_2 solution; and coating a surface of a magnetic insulator metallic device having a zinc (Zn) coating film formed thereon with the coating solution to form a MgF_2 coating film. The method allows a MgF_2 coating layer to be applied on top of a zinc coating layer, and thus the double coating enables the prevention of the formation of a natural oxide layer and enhances the light reflectance.

Description

자기 애자 금구류의 코팅 방법 및 이의 의해 제조된 자기 애자{COATING METHOD OF PORCELAIN INSULATORS METAL FITTING AND PORCELAIN INSULATOR MANUFACTURED BY THEREOF}Coating method of magnetic insulator fittings and magnetic insulator manufactured by same

본 발명은 자기 애자 금구류의 코팅에 관한 발명으로서, 보다 상세하게는 자기 애자에서 금구류의 성능저하 방지 및 빛 반사율 개선을 위한 자기애자 금구류의 코팅 방법 및 이의 의해 제조된 자기 애자에 관한 것이다.The present invention relates to a coating of magnetic insulator fittings, and more particularly, to a method for coating magnetic insulator fittings for preventing performance degradation of fittings and improving light reflectance in magnetic insulators, and magnetic insulators manufactured by the same .

일반적으로 송배전 철탑에서 전기적 절연 기능과 기계적 지지를 위해 사용되고 있는 자기 애자는 세라믹 원료로 제조된 자기(porcelain), 캡(cap)과 핀(pin)으로 구성되는 금구류와 상기 자기 및 금구류를 연결시켜주는 시멘트(cement)로 구성되어 있다.In general, magnetic insulators used for electrical insulation and mechanical support in transmission and distribution pylons connect porcelain made of ceramic raw materials, a cap and a pin, and the porcelain and the metal fittings. It is made up of cement.

자기 애자의 금구류는 다양한 환경요인에 의해 부식이 발생하며, 도 1은 자기 애자의 금구류 중에서 캡(cap) 부분에서 부식된 모습을 나타낸 것으로, 왼쪽부터 순서대로 부식된 캡(101), 부식 진행 중인 캡(102) 및 부식이 진행되지 않은 캡(103)의 모습이다.Corrosion occurs in the metal fittings of magnetic insulators due to various environmental factors, and FIG. 1 shows the corrosion of the cap part among the fittings of magnetic insulators, and the cap 101 corroded in order from the left, corrosion A view of the cap 102 in progress and the cap 103 in which corrosion has not progressed.

이처럼 자기 애자의 금구류의 부식의 주요원인으로는 빛을 받아 생기는 열에 의한 손상과, 수분 침투에 의한 손상이 있다. 이와 같은 자기 애자의 손상은 자기 애자에 열화현상을 일으키며 코로나전압이 발생하는 원인이 된다.As such, the main causes of corrosion of metal fittings of magnetic insulators include heat damage caused by light and damage caused by moisture penetration. Such damage to the magnetic insulator causes deterioration of the magnetic insulator and causes corona voltage to occur.

또한, 물의 투습과 빛에 대한 스트레스 및 소나기와 같은 환경적 요인으로 인해 급랭 발생시 자기 애자에서 열팽창 계수가 자기는 4×10-6K이고, 시멘트는 10×10-6K이고, 금구는 11×10-6K이므로, 금구와 시멘트는 자기보다 열팽창 계수가 2배 정도 차이가 발생하기 때문에 냉열 변화를 받으면 각 부분의 열팽창 차이로 인에 금구에 큰 응력이 작용하게 된다.Further, the quench in the case of magnetic insulators due to environmental factors such as stress and a shower of water for moisture-permeable and light thermal expansion coefficient × 10 -6 K and self is 4, the cement is 10 × 10 -6 K, brackets 11 × Since it is 10 -6 K, the difference in coefficient of thermal expansion between metal and cement is about twice that of porcelain. Therefore, when subjected to a change in heat or cold, a large stress is applied to the metal due to the difference in thermal expansion of each part.

따라서 이러한 문제를 보완하기 위해 종래에는 자기 애자의 금구류 부분을 아연(Zn) 도금으로 코팅하는 방식을 사용해왔다.Therefore, in order to compensate for this problem, conventionally, a method of coating the metal parts of magnetic insulators with zinc (Zn) plating has been used.

그러나 도 2에 도시된 바와 같이, 종래 일반적인 아연(Zn) 코팅막은 공기 중에 존재하고 있는 수분(H2O)이 아연(Zn)으로부터 생성된 전자(e-)랑 결합하여 아연 코팅막 표면에 산소(oxygen, O2)가 달라붙어 아연이 산화하여 산화아연(ZnO)막이 형성된다. 이 산화아연(ZnO) 막이 생성되면 빛 반사도는 급격히 감소되어 금구류에서 빛의 흡수량이 증가하게 되어 금구의 절연내력이 저하되는 문제가 발생하였다.However, as shown in FIG. 2, in the conventional zinc (Zn) coating film, moisture (H 2 O) present in the air combines with electrons (e-) generated from zinc (Zn) to form oxygen ( Oxygen, O 2 ) adheres and zinc is oxidized to form a zinc oxide (ZnO) film. When the zinc oxide (ZnO) film is formed, the light reflectivity is rapidly reduced, and the amount of light absorbed by the metal fittings increases, causing a problem in that the dielectric strength of the metal fittings is lowered.

또한, 아연(Zn) 코팅막에서 발생되는 자연 산화막은 최대 100nm/years로 자라게 되는데, 이렇게 증가되는 자연 산화막의 두께가 본래 아연 코팅막이 가지고 있던 소수성 특성의 저하시키는 문제가 발생한다.In addition, the native oxide film generated from the zinc (Zn) coating film grows at a maximum of 100 nm/years, and the increased thickness of the native oxide film causes a problem in that the hydrophobicity characteristic of the original zinc coating film is deteriorated.

일본등록특허 제4094162호Japanese Patent No. 4094162

앞서 설명한 바와 같이 종래 사용된 자기 애자에서는 절연 특성에서 금구류의 표면이 여러 환경요인으로 습할 경우나 염분과 같은 불순물 등이 쌓일 경우에도, 변질하지 않는 절연 내력과 온도와 같은 환경 변화에 강한 내구성을 가진 자기 애자의 금구류를 형성하기 위해 소수성 특성을 유지하여 수분의 흡수를 줄이며, 직사광선의 빛 반사를 높여 빛 에너지 흡수를 최소화하는 금구류의 코팅의 필요성이 요구되고 있다.As described above, in the magnetic insulators used in the prior art, in terms of insulation characteristics, even when the surface of metal fittings is wet due to various environmental factors or when impurities such as salt are accumulated, the dielectric strength that does not change and strong durability against environmental changes such as temperature In order to form a magnetic insulator with magnetic insulators, there is a need for a coating on metal fittings that reduces absorption of moisture by maintaining hydrophobic properties and minimizes light energy absorption by increasing light reflection of direct sunlight.

따라서 이와 같은 점을 감안한 본 발명은 자기애자 금구류에 아연(Zn) 코팅막 표면에 소수성 특성과 빛 반사도가 높은 물질인 플루오린화 마그네슘에 메틸실리콘(methyl silicone)을 처리하여 개량된 물질인 마그네슘 플루오라이드(Magnesium fluorid, MgF2)를 사용하여 코팅한 것으로써, 직사광선의 빛 반사를 높여 빛 에너지 흡수를 최소화하고 여러 환경요인으로 인한 오염 및 수분의 흡수를 줄일 수 있도록 하여 자기 애자의 수명 저하를 방지할 수 있는 자기 애자에서 금구류의 코팅 방법을 제공하는 것을 목적으로 한다.Therefore, the present invention in consideration of these points is magnesium fluoride, which is an improved material by treating magnesium fluoride, which is a material with high hydrophobicity and light reflectivity, on the surface of the zinc (Zn) coating film on magnetic insulator fittings with methyl silicone. As a coating using (Magnesium fluorid, MgF 2 ), it is possible to minimize the absorption of light energy by increasing the light reflection of direct sunlight and to reduce the absorption of contamination and moisture caused by various environmental factors, thereby preventing the deterioration of the lifespan of the magnetic insulator. An object of the present invention is to provide a method for coating metal fittings in a magnetic insulator that can be used.

또한, 본 발명은 상기 코팅 방법에 의해 표면에 소수성 특성을 가지고, 빛에너지 흡수를 최소화하는 박막 코팅층을 가져 송전 효율이 높은 자기 애자를 제공하는 것을 목적으로 한다.In addition, an object of the present invention is to provide a magnetic insulator with high power transmission efficiency by having a thin film coating layer that has hydrophobic properties on the surface and minimizes light energy absorption by the coating method.

상기와 같은 목적을 달성하기 위한 본 발명의 자기 애자에서 금구류의 코팅 방법은 메틸트리에톡시실란(methyltriethoxysilane, CH3Si(OC2H5)3), 에탄올(C2H5OH), 염산(HCl) 및 물(H2O)을 일정 비율로 배합하여 메틸 실리콘 용액(methyl silicone solution)을 제조하는 단계; 마그네슘 아세테이트(magnesium acetate, Mg(CH3COO)2), 불산(hydrofluoric acid, HF), 무수에탄올 및 에탄올을 일정 비율로 배합하여 마그네슘 플루오라이드 용액(이하, 'MgF2 용액'이라고도 함)을 제조하는 단계; 상기 메틸 실리콘 용액과 상기 MgF2 용액을 혼합하여 코팅액을 제조하는 단계; 및 상기 코팅액을 아연(Zn) 코팅막이 형성된 자기 애자의 금구류 표면에 코팅하여 MgF2 코팅막을 형성시키는 코팅단계;를 포함하여 이루어질 수 있다.The coating method of the metal fittings in the magnetic insulator of the present invention for achieving the above object is methyltriethoxysilane (CH 3 Si(OC 2 H 5 ) 3 ), ethanol (C 2 H 5 OH), hydrochloric acid (HCl) and water (H 2 O) by mixing a predetermined ratio to prepare a methyl silicone solution (methyl silicone solution); Magnesium acetate (Mg(CH 3 COO) 2 ), hydrofluoric acid (HF), absolute ethanol and ethanol are mixed in a certain ratio to prepare a magnesium fluoride solution (hereinafter, also referred to as ‘MgF 2 solution’) to do; preparing a coating solution by mixing the methyl silicone solution and the MgF 2 solution; and coating the coating solution on the surface of a metal fitting of a magnetic insulator having a zinc (Zn) coating film formed thereon to form a MgF 2 coating film.

상기 메틸 실리콘 용액은 총 메틸 실리콘 용액 부피 250mL를 기준으로, 메틸트리에톡시실란(CH3Si(OC2H5)3) 15mL 내지 25mL, 에탄올 180mL 내지 220mL, 염산 0.02g 내지 0.08g 및 물 4g 내지 10g을 포함하여 제조할 수 있다. 여기서, 메틸 실리콘 용액에 포함되는 각 조성의 함량은 상기 제시된 범위를 만족하는 것이 바람직하나, 반드시 이에 한정되지 않는다.The methyl silicone solution is based on a total methyl silicone solution volume of 250 mL, methyltriethoxysilane (CH 3 Si(OC 2 H 5 ) 3 ) 15mL to 25mL, ethanol 180mL to 220mL, hydrochloric acid 0.02g to 0.08g, and water 4g It can be prepared including to 10 g. Here, the content of each composition included in the methyl silicone solution preferably satisfies the above range, but is not necessarily limited thereto.

상기 MgF2 용액을 제조하는 단계는, 총 MgF2 용액 부피 220mL를 기준으로, 마그네슘 아세테이트(Mg(CH3COO)2) 3.46 내지 6.92g, 불산(HF) 1.29g 내지 2.58g 무수에탄올 18.6g 내지 37.2g 및 에탄올 76.6g 내지 153.2g를 포함하고, 이를 혼합하여 혼합용액을 제조하는 단계; 상기 혼합용액을 여과하는 단계; 및 여과된 혼합용액을 열처리하여 불산(HF)을 제거하여, MgF2 입자가 포함된 MgF2 용액을 제조하는 열처리 단계;를 포함하여 MgF2 용액을 제조할 수 있다.The step of preparing the MgF 2 solution is, based on the total MgF 2 solution volume 220mL, magnesium acetate (Mg(CH 3 COO) 2 ) 3.46 to 6.92 g, hydrofluoric acid (HF) 1.29 g to 2.58 g absolute ethanol 18.6 g to 37.2 g and 76.6 g to 153.2 g of ethanol to prepare a mixed solution by mixing them; filtering the mixed solution; and heat-treating the filtered mixed solution to remove hydrofluoric acid (HF), and a heat treatment step of preparing a MgF 2 solution containing MgF 2 particles; including a MgF 2 solution can be prepared.

여기서, 상기 열처리 단계는 상기 혼합용액을 250℃ 온도에서 24시간 동안 가열하여 혼합용액에서 잔류하고 있는 불산(HF)을 제거할 수 있다.Here, in the heat treatment step, the hydrofluoric acid (HF) remaining in the mixed solution may be removed by heating the mixed solution at a temperature of 250° C. for 24 hours.

그리고 상기 MgF2 용액을 제조하는 단계에서 상기 혼합용액에 포함되는 각 조성의 함량은 상기 제시된 범위를 만족하는 것이 바람직하나, 반드시 이에 한정되지 않는다.In addition, the content of each composition included in the mixed solution in the step of preparing the MgF 2 solution preferably satisfies the above-mentioned range, but is not necessarily limited thereto.

상기 코팅액을 제조하는 단계는, 상기 메틸 실리콘 용액과 상기 MgF2 용액을 50 : 50의 중량비로 혼합하여 코팅액을 제조할 수 있다.In the preparing of the coating solution, the methyl silicone solution and the MgF 2 solution may be mixed in a weight ratio of 50:50 to prepare a coating solution.

상기 코팅단계에서 아연(Zn) 코팅막이 형성된 자기 애자의 금구류 표면에 코팅되는 코팅막의 두께는 빛에 대한 반사율이 좋도록 240nm 내지 350nm로 형성되는 바람직하다.In the coating step, the thickness of the coating film coated on the surface of the metal fittings of the magnetic insulator on which the zinc (Zn) coating film is formed is preferably formed in a range of 240 nm to 350 nm to have good reflectivity to light.

상기 코팅단계는, 침지 코팅(dipping coating), 스핀 코팅(spin coating) 또는 바 코팅(bar coating) 공정을 수행하여 MgF2 코팅막을 형성할 수 있다.In the coating step, a dipping coating, spin coating, or bar coating process may be performed to form an MgF 2 coating layer.

또한, 상기와 같은 목적을 달성하기 위한 본 발명의 자기 애자는 앞서 설명한 바와 같이 메틸트리에톡시실란, 에탄올, 염산 및 물을 일정 비율로 배합하여 메틸 실리콘 용액을 제조하는 단계; 마그네슘 아세테이트(Mg(CH3COO)2), 불산(HF), 무수에탄올 및 에탄올을 일정 비율로 혼합하여 MgF2 용액을 제조하는 단계; 상기 메틸 실리콘 용액과 상기 MgF2 용액을 혼합하여 코팅액을 제조하는 단계; 및 상기 코팅액을 아연(Zn) 코팅막이 형성된 자기 애자의 금구류 표면에 코팅하여 MgF2 코팅막을 형성시키는 코팅 단계;를 거쳐서 제조될 수 있다.In addition, the magnetic insulator of the present invention for achieving the above object comprises the steps of preparing a methyl silicone solution by mixing methyltriethoxysilane, ethanol, hydrochloric acid and water in a certain ratio as described above; Magnesium acetate (Mg(CH 3 COO) 2 ), hydrofluoric acid (HF), anhydrous ethanol and ethanol were mixed in a predetermined ratio to prepare a MgF 2 solution; preparing a coating solution by mixing the methyl silicone solution and the MgF 2 solution; and coating the coating solution on the surface of the metal fittings of the magnetic insulator on which the zinc (Zn) coating film is formed, thereby forming a MgF 2 coating film.

여기서, 상기 각 단계는 앞서 설명한 코팅 방법과 동일하므로 복잡성을 피하기위해 중복하여 설명하지 않는다.Here, since each step is the same as the coating method described above, it is not described repeatedly to avoid complexity.

상기 아연(Zn) 코팅막이 형성된 자기 애자의 금구류 표면에 형성된 MgF2 코팅막의 두께는 빛에 대한 반사율이 좋도록 240nm 내지 350nm로 형성되는 바람직하며, 보다 바람직하게는 300nm의 두께로 형성되는 것이 좋을 수 있다. 또한, MgF2 코팅막을 2층 이상으로 다중층을 형성할 때, 300nm×N(여기서, N은 1이상의 자연수)의 두께로 형성할 수 있다. The thickness of the MgF 2 coating film formed on the surface of the metal fittings of the magnetic insulator on which the zinc (Zn) coating film is formed is preferably 240 nm to 350 nm so as to have good reflectivity to light, more preferably, it is preferably formed to a thickness of 300 nm can In addition, when the MgF2 coating film is formed as a multi-layer with two or more layers, it may be formed to a thickness of 300 nm×N (here, N is a natural number greater than or equal to 1).

만약, 상기 코팅막의 두께가 상기 제시된 범위를 벗어나면 자기 애자의 금구류의 빛 반사율이 감소되므로 금구에서의 열화현상이 발생되는 문제가 발생되므로, 상기의 두께 범위를 만족하는 것이 바람직하다.If the thickness of the coating film is out of the range given above, the light reflectance of the magnetic insulator is reduced, so that the problem of deterioration in the metal fitting occurs. Therefore, it is preferable to satisfy the above thickness range.

그리고 상기 자기 애자의 금구류 표면에 코팅된 아연(Zn) 코팅막은 금속 아연을 도금방법으로 자기 애자의 금구류 표면을 처리하여 형성된 것으로, 바람직하게 아연(Zn) 코팅막은 70㎛의 두께로 형성될 수 있으나, 반드시 이에 한정된 것이 아니라 필요에 따라 어느 특정 두께로 변경할 수 있음은 통상의 기술자에 있어 자며할 것이다.And the zinc (Zn) coating film coated on the surface of the metal fittings of the magnetic insulator is formed by treating the surface of the metal fittings of the magnetic insulator by a plating method. Preferably, the zinc (Zn) coating film is formed to a thickness of 70 μm. However, it is not necessarily limited thereto, and it will be apparent to those skilled in the art that it can be changed to any specific thickness as needed.

상기 MgF2 코팅막은 300nm 내지 1100nm 파장에서 평균 빛 반사율이 81% 이상일 수 있다.The MgF 2 coating layer may have an average light reflectance of 81% or more at a wavelength of 300 nm to 1100 nm.

또한, 상기 MgF2 코팅막은 물에 대한 접촉각이 83° 내지 113°일 수 있다.In addition, the MgF 2 coating film may have a contact angle with respect to water of 83° to 113°.

본 발명의 코팅방법을 통해 아연(Zn) 코팅막 상부에 MgF2 코팅막이 코팅된 자기 애자의 경우 물에 대한 접촉각이 최대 113°로 이는 종래 아연(Zn) 코팅막에서의 접촉각 82.07°보다 현저히 높은 접촉각을 형성되므로 소수성이 우수함을 확인할 수 있었다. In the case of a magnetic insulator coated with a MgF 2 coating film on top of a zinc (Zn) coating film through the coating method of the present invention, the contact angle to water is up to 113°, which is significantly higher than the contact angle of 82.07° in the conventional zinc (Zn) coating film. Therefore, it was confirmed that the hydrophobicity was excellent.

이는 외부환경에 접촉에 따른 부식으로 인해 수명저하를 방지하는 역할과 부식으로 인한 코로나 발생을 방지하며, 송전 효율을 높일 수 있는 특징이 있다.This has the function of preventing the deterioration of lifespan due to corrosion due to contact with the external environment, preventing corona generation due to corrosion, and improving power transmission efficiency.

또한, 빛 반사율 특성에 대해서도 종래 아연(Zn) 코팅막은 자연 산화막이 형성되어 빛 반사율 특성이 급격히 저하되는 것을 볼 수 있으나, 이와 달리 본 발명의 MgF2 코팅막의 경우 빛 반사율이 81% 이상으로 종래 아연 코팅막에서보다 높고, 특히 300nm 두께로 코팅되었을 때 평균 빛 반사율은 84.8%로 아연 코팅막 대비 안정적이며 가시영역이 아닌 장파장대에서도 안정적인 빛 반사도 특성을 효과를 나타낸다.In addition, conventional zinc also in light reflectivity characteristics (Zn) coating film is a native oxide film is formed, but can see that the light reflectance properties rapidly decrease, On the other hand, this light reflection factor more than 81% of MgF 2 coating film of the present invention the conventional zinc It is higher than that of the coating film, especially when it is coated with a thickness of 300 nm, the average light reflectance is 84.8%, which is stable compared to the zinc coating film, and it exhibits stable light reflectivity characteristics even in the long wavelength band, not the visible region.

도 1은 부식된 애자의 금구, 부식 진행 중인 금구 및 부식이 진행되지 않은 금구를 나타낸 것이다.
도 2는 종래 아연(Zn) 코팅막에서 발생되는 부식 현상의 화학적 개념도이다.
도 3은 본 발명의 일 실시예에 따라 코팅막이 형성된 자기 애자의 구조를 나타낸 부분 단면도이다.
도 4는 본 발명의 일 실시예에 따른 소수성 특성을 가진 MgF2 코팅막의 코팅 방법의 순서도이다.
도 5는 본 발명의 일 실시예에 따라 개량된 MgF2 코팅막의 화학적 개념도이다.
도 6은 기존 아연(Zn) 코팅막에서 자연 산화막이 생성될 때의 빛 반사율 특성을 보여주는 그래프이다.
도 7은 본 발명의 일 실시예에 따라 MgF2 코팅막을 형성 시 빛 반사율 특성을 그래프이다.
도 8은 표면 접촉각(contact angle)에 대한 개념도이다.
도 9는 종래 아연(Zn) 코팅막에서의 물에 대한 접촉각을 나타내는 도면이다.
도 10은 본 발명의 일 실시예에 따른 MgF2 코팅막에서의 물에 대한 접촉각을 나타내는 도면이다.
1 shows a metal fitting of a corroded insulator, a metal fitting in which corrosion is in progress, and a fitting in which corrosion is not in progress.
2 is a chemical conceptual diagram of a corrosion phenomenon occurring in a conventional zinc (Zn) coating film.
3 is a partial cross-sectional view showing the structure of a magnetic insulator on which a coating film is formed according to an embodiment of the present invention.
4 is a flowchart of a coating method of a MgF 2 coating film having hydrophobic properties according to an embodiment of the present invention.
5 is a chemical conceptual diagram of an improved MgF 2 coating film according to an embodiment of the present invention.
6 is a graph showing light reflectance characteristics when a natural oxide film is formed from a conventional zinc (Zn) coating film.
7 is a graph showing light reflectance characteristics when forming a MgF 2 coating film according to an embodiment of the present invention.
8 is a conceptual diagram of a surface contact angle.
9 is a view showing a contact angle with respect to water in a conventional zinc (Zn) coating film.
10 is a view showing a contact angle with respect to water in the MgF 2 coating film according to an embodiment of the present invention.

이하 본 발명을 첨부된 예시도면을 참조로 상세히 설명하며, 아래 설명되는 내용은 일례로서 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 여러 가지 상이한 형태로 구현될 수 있으므로, 여기에서 설명하는 것에 한정되지 않는다.Hereinafter, the present invention will be described in detail with reference to the accompanying illustrative drawings, and the contents described below may be implemented in various different forms by those of ordinary skill in the art to which the present invention pertains as an example. not limited

도 3은 본 발명의 자기 애자의 일예 구조를 나타내는 부분 단면도이다.3 is a partial cross-sectional view showing an example structure of a magnetic insulator of the present invention.

도 3에 도시된 바와 같이, 자기 애자의 본체로 알루미나가 함유된 자기원료로 구성되는 자기부(200)가 구성되어 있고, 상기 자기부(200)를 중심으로 금구류인 캡(100)과 핀볼(400)이 형성되어 있고, 상기 캡(100)과 자기부(200) 사이를 접합하고, 자기부(200)와 핀볼(400) 사이를 접합하여 연결시키는 시멘트(300)가 포함되어 구성되어있다. 그리고 상기 자기 애자에서 금구류인 캡(100)부의 표면에는 아연(Zn) 코팅막 상부에 소수성 및 빛 반사도가 우수한 개질된 MgF2(silicone-modified MgF2)을 코팅물질로 사용하여 MgF2 코팅막을 포함하는 코팅부(500)가 형성되어있다.As shown in FIG. 3 , the magnetic insulator 200 is composed of a magnetic raw material containing alumina as the main body of the magnetic insulator, and the magnetic part 200 is the center of the cap 100 and pinball ( 400) is formed, and cement 300 for bonding the cap 100 and the magnetic part 200 and bonding between the magnetic part 200 and the pinball 400 to connect is included. And on the surface of the cap 100, which is a metal fitting in the magnetic insulator, modified MgF 2 (silicone-modified MgF 2 ) having excellent hydrophobicity and light reflectance on the zinc (Zn) coating film as a coating material is used as a coating material to include a MgF 2 coating film The coating part 500 is formed.

여기서, 상기 캡(100)은 국가기술표준원 KSD 4303 규격에서 규정하는 2종 또는 이외 동등이상의 강재를 사용할 수 있다.Here, the cap 100 may be made of two types of steel or other equivalent or higher stipulated in the KSD 4303 standard of the National Institute of Technology and Standards.

상기 핀볼(400)은 KSD 3053 규격에서 규정하는 SS490 또는 인장강도 72kgf/mm2(490 M/mm2) 이상, 신장률 17% 이상의 강재를 사용할 수 있다.The pinball 400 may be made of SS490 defined in the KSD 3053 standard or steel with a tensile strength of 72kgf/mm 2 (490 M/mm 2 ) or more and an elongation of 17% or more.

상기 시멘트(300)는 국가기술표준원 KSL 5201 규격에서 규정하는 시멘트 또는 이외 동등이상의 시멘트를 사용할 수 있다.The cement 300 may use cement stipulated in the KSL 5201 standard of the National Institute of Technology and Standards or other equivalent or higher cement.

상기 도 3의 자기 애자의 구성에 있어서 본 발명의 특징은 코팅부(500)에 대한 특성 및 이를 구성하는 MgF2 코팅막에 있다.The characteristic of the present invention in the configuration of the magnetic insulator of FIG. 3 lies in the characteristics of the coating part 500 and the MgF 2 coating film constituting it.

이하에서는 상기 설명한 자기 애자의 구성에서 코팅부(500)를 구성하는 MgF2 코팅막의 코팅 방법에 대해 좀 더 자세히 설명한다. Hereinafter, the coating method of the MgF 2 coating film constituting the coating part 500 in the configuration of the magnetic insulator described above will be described in more detail.

도 4는 본 발명의 일 실시예에 따른 소수성 특성을 가진 MgF2 코팅막의 코팅 방법의 순서도이다.4 is a flowchart of a coating method of a MgF 2 coating film having hydrophobic properties according to an embodiment of the present invention.

도 4에 도시된 바와 같이, 본 발명의 자기 애자에서 금구류의 코팅 방법은 메틸트리에톡시실란(CH3Si(OC2H5)3), 에탄올(C2H5OH), 염산(HCl) 및 물(H2O)을 배합하여 메틸 실리콘 용액(methyl silicone solution)을 제조하는 단계(S410), 마그네슘 아세테이트(Mg(CH3COO)2), 불산(HF), 무수에탄올 및 에탄올을 배합하여 MgF2 용액을 제조하는 단계(S420), 상기 메틸 실리콘 용액과 상기 MgF2 용액을 혼합하여 코팅액을 제조하는 단계(S430), 및 상기 코팅액을 아연(Zn) 코팅막이 형성된 자기 애자의 금구류 표면에 코팅하여 MgF2 코팅막을 형성시키는 코팅단계(S440)를 포함하여 이루어질 수 있다.As shown in Figure 4, the coating method of the metal fittings in the magnetic insulator of the present invention is methyltriethoxysilane (CH 3 Si(OC 2 H 5 ) 3 ), ethanol (C 2 H 5 OH), hydrochloric acid (HCl) ) and water (H 2 O) to prepare a methyl silicone solution (S410), magnesium acetate (Mg(CH 3 COO) 2 ), hydrofluoric acid (HF), absolute ethanol and ethanol are combined to prepare a MgF 2 solution (S420), preparing a coating solution by mixing the methyl silicon solution and the MgF 2 solution (S430), and applying the coating solution to the surface of a magnetic insulator with a zinc (Zn) coating film It may be made including a coating step (S440) of coating the MgF 2 to form a coating film.

먼저, 메틸 실리콘 용액을 제조하는 단계(S410)는 총 메틸 실리콘 용액 부피 250mL를 기준으로, 메틸트리에톡시실란(CH3Si(OC2H5)3) 15mL 내지 25mL, 에탄올 180mL 내지 220mL, 염산 0.02g 내지 0.08g 및 물 4g 내지 10g이 포함되도록 배합하여 메틸 실리콘 용액을 제조할 수 있다.First, the step of preparing a methyl silicone solution (S410) is based on a total methyl silicone solution volume of 250 mL, methyltriethoxysilane (CH 3 Si(OC 2 H 5 ) 3 ) 15mL to 25mL, ethanol 180mL to 220mL, hydrochloric acid A methyl silicone solution can be prepared by mixing to include 0.02 g to 0.08 g and 4 g to 10 g of water.

일 구체예로, 메틸트리에톡시실란(CH3Si(OC2H5)3) 10mL, 에탄올 100mL, HCl을 0.02g 및 물(H2O) 4g를 혼합하고, 이 혼합물을 실온에서 4일 동안 보관하면 메틸트리에톡시실란(CH3Si(OC2H5)3)이 분해되면서 pH값 2인 메틸 실리콘(methyl silicone) 용액을 제조한다.In one embodiment , 10 mL of methyltriethoxysilane (CH 3 Si(OC 2 H 5 ) 3 ), 100 mL of ethanol, 0.02 g of HCl and 4 g of water (H 2 O) were mixed, and the mixture was stirred at room temperature for 4 days. When stored for a while, methyltriethoxysilane (CH 3 Si(OC 2 H 5 ) 3 ) is decomposed to prepare a methyl silicone solution having a pH value of 2.

또 다른 일 구체예로, 메틸 실리콘 용액을 구성하는 혼합물의 조성을 메틸트리에톡시실란(CH3Si(OC2H5)3) 20mL, 에탄올 200mL, 염산(HCl)을 0.04g 및 물(H2O) 8g이 포함되도록 배합하여 메틸 실리콘 용액을 제조한다.In another embodiment, the composition of the mixture constituting the methyl silicone solution is methyltriethoxysilane (CH 3 Si(OC 2 H 5 ) 3 ) 20 mL, ethanol 200 mL, hydrochloric acid (HCl) 0.04 g and water (H 2 O) Prepare a methyl silicone solution by mixing to include 8 g.

MgF2 용액을 제조하는 단계(S420)는 총 MgF2 용액 부피 220mL를 기준으로, 마그네슘 아세테이트(Mg(CH3COO)2) 3.46 내지 6.92g, 불산(HF) 1.29g 내지 2.58g, 무수에탄올 18.6g 내지 37.2g 및 에탄올 76.6g 내지 153.2g이 포함되도록 배합하여 MgF2 용액을 제조할 수 있다.The step of preparing a MgF 2 solution (S420) is based on a total MgF 2 solution volume of 220 mL, magnesium acetate (Mg(CH 3 COO) 2 ) 3.46 to 6.92 g, hydrofluoric acid (HF) 1.29 g to 2.58 g, anhydrous ethanol 18.6 MgF 2 solution may be prepared by mixing to include g to 37.2 g and ethanol 76.6 g to 153.2 g.

일 구체예로, 마그네슘 아세테이트(Mg(CH3COO)2) 3.46g, 불산(HF) 1.29g, 무수에탄올 18.6g 및 에탄올 76.6g를 혼합하여 혼합용액을 제조하고, 제조된 혼합용액을 0.22㎛ PVDF(PolyVinyliDene Fluoride) 필터를 통해 여과시킨다. 여과된 혼합용액을 250℃ 온도에서 24시간 동안 가열하는 열처리를 통해 잔류하는 불산(HF)을 제거하여 MgF2 용액을 제조한다.In one embodiment, magnesium acetate (Mg(CH 3 COO) 2 ) 3.46 g, hydrofluoric acid (HF) 1.29 g, anhydrous ethanol 18.6 g, and ethanol 76.6 g were mixed to prepare a mixed solution, and the prepared mixed solution was 0.22 μm Filtration through a PVDF (PolyVinyliDene Fluoride) filter. MgF 2 solution is prepared by removing residual hydrofluoric acid (HF) through heat treatment in which the filtered mixed solution is heated at a temperature of 250° C. for 24 hours.

또 다른 일 구체예로, 마그네슘 아세테이트(Mg(CH3COO)2) 6.92g, 불산(HF) 2.58g, 무수에탄올 37.2g 및 에탄올 153.2g을 혼합용액을 제조하고, 앞서 설명한 것과 동일하게 제조된 혼합용액을 0.22㎛ PVDF(PolyVinyliDene Fluoride) 필터를 통해 여과시킨 후, 여과된 혼합용액을 250℃ 온도에서 24시간 동안 가열하는 열처리를 통해 잔류하는 불산(HF)을 제거하여 MgF2 용액을 제조한다.In another embodiment, magnesium acetate (Mg(CH 3 COO) 2 ) 6.92 g, hydrofluoric acid (HF) 2.58 g, anhydrous ethanol 37.2 g, and ethanol 153.2 g to prepare a mixed solution, prepared in the same manner as described above After filtering the mixed solution through a 0.22㎛ PVDF (PolyVinyliDene Fluoride) filter, the filtered mixed solution is heated at 250° C. for 24 hours to remove residual hydrofluoric acid (HF) to prepare a MgF 2 solution.

코팅액을 제조하는 단계(S430)는 상기 S410 단계를 통해 제조된 메틸 실리콘 용액과 상기 S420 단계를 통해 제조된 MgF2 용액을 50 : 50의 중량비로 혼합하여 코팅액을 제조할 수 있다.In the step of preparing the coating solution (S430), the methyl silicone solution prepared in step S410 and the MgF 2 solution prepared in step S420 are mixed in a weight ratio of 50:50 to prepare a coating solution.

코팅단계(S440)는 상기 S430 단계에서 제조된 코팅액을 아연(Zn) 코팅막이 형성된 자기 애자의 금구류 표면에 코팅 방법으로 침지 코팅(dipping coating), 스핀 코팅(spin coating) 또는 바 코팅(bar coating) 공정을 수행하여 MgF2 코팅막을 형성할 수 있다. 본 발명에서는 바람직하게 침지 코팅(dipping coating) 방법으로 형성된다.In the coating step (S440), the coating solution prepared in step S430 is coated on the surface of the magnetic insulator on which the zinc (Zn) coating film is formed by dipping coating, spin coating, or bar coating. ) process to form a MgF 2 coating film. In the present invention, it is preferably formed by a dipping coating method.

도 5는 본 발명의 일 실시예에 따라 개량된 MgF2 코팅막의 화학적 개념도를 나타낸 것으로, 도시된 바와 같이 마그네슘 아세테이트(Mg(CH3COO)2)와 불산(HF)을 반응시킨 다음 열처리를 통해 잔류하는 불산(HF)을 제거하면 마그네슘 플루오라이드(MgF2)가 제조한다. 그리고 메틸트리에톡시실란(CH3Si(OC2H5)3), 에탄올(C2H5OH), 염산(HCl) 및 물(H2O)을 배합하여 메틸 실리콘(methyl silicone)을 제조한다. 5 is a chemical conceptual diagram of an improved MgF 2 coating film according to an embodiment of the present invention. As shown, magnesium acetate (Mg(CH 3 COO) 2 ) and hydrofluoric acid (HF) are reacted and then through heat treatment. When the residual hydrofluoric acid (HF) is removed, magnesium fluoride (MgF 2 ) is produced. And methyltriethoxysilane (CH 3 Si(OC 2 H 5 ) 3 ), ethanol (C 2 H 5 OH), hydrochloric acid (HCl) and water (H 2 O) were mixed to prepare methyl silicone (methyl silicone) do.

이렇게 제조된 마그네슘 플루오라이드(MgF2)와 메틸 실리콘(methyl silicone)이 결합하게 되면 마그네슘 플루오라이드(MgF2)의 원자 표면에 메틸 실리콘(methyl silicone)이 감싸주게 되므로, 아연(Zn) 코팅막이 형성된 자기 애자의 표면에서 물에서부터 결합할 수 있는 빈 부분을 메틸 실리콘(methyl silicone)가 채워지기 때문에 물과의 결합력이 떨어지게 된다. 따라서 코팅부의 소수성 특성이 우수해지게 된다.When the prepared magnesium fluoride (MgF 2 ) and methyl silicone are combined, the methyl silicone wraps around the atomic surface of the magnesium fluoride (MgF 2 ), so that a zinc (Zn) coating film is formed. Since methyl silicone fills the empty part that can be bonded from water on the surface of the magnetic insulator, the bonding strength with water is reduced. Accordingly, the hydrophobic property of the coating part is improved.

즉, 본 명세서에서 설명되는 MgF2 코팅막이란 마그네슘 플루오라이드(MgF2)의 원자 표면에 메틸 실리콘(methyl silicone) 감싸 형성되는 개량된 마그네슘 플루오라이드(methyl silicone-modifide MgF2)으로 형성된 코팅막이라 할 수 있다.That is, can be called a coating film formed of MgF 2 coating film is magnesium fluoride, methyl silicone (methyl silicone) of magnesium fluoride (methyl silicone-modifide MgF 2) improved formed wrapped atoms surface (MgF 2) described herein have.

이처럼 본 발명의 코팅방법을 통해 자기 애자 금구류의 코팅부(500)에 형성된 코팅막의 구조는 굴절율이 550nm에서 1.95 내지 2.05이고, 녹는점이 419.53℃이며, 끓는점이 907℃인 특성을 갖는 아연(Zn)으로 코팅된 아연 코팅막 상부에, 상기 제조 방법을 통해 제조된 소수성과 반사도가 높은 물질로서 굴절율이 550nm에서 1.38이고, 녹는점이 1263℃이며, 끓는점이 2260℃인 특성을 갖는 마그네슘 플루오라이드(MgF2)가 코팅된 이중코팅이다.As such, the structure of the coating film formed on the coating part 500 of the magnetic insulator through the coating method of the present invention has a refractive index of 1.95 to 2.05 at 550 nm, a melting point of 419.53 ° C., and a boiling point of 907 ° C. Zinc (Zn) ) on top of the zinc coating film coated with magnesium fluoride (MgF 2 ) is a double-coated coating.

상기와 같은 코팅방법에 의해 MgF2 코팅막이 형성된 자기 애자의 300nm 내지 1100nm 파장영역에서 빛 반사율 특성은 도 6, 도 7, 표 1 및 표 2에 나타내었으며, 여기서 빛 반사율 측정은 UV visible spectrometer(SCINCO, S-3100 model)를 이용하여 측정하였다.The light reflectance characteristics in the 300 nm to 1100 nm wavelength region of the magnetic insulator on which the MgF 2 coating film is formed by the coating method as described above are shown in FIGS. , S-3100 model) was used.

기존 자기애자의 경우 금구 부분에 아연(Zn) 코팅막을 70㎛의 두께로 코팅하며, 이러한 아연 코팅막에는 자연 산화막(ZnO)이 연간 최대 100nm 두께로 형성되어 자기 애자의 소수성 특성을 저하시킨다.In the case of an existing magnetic insulator, a zinc (Zn) coating film is coated to a thickness of 70 µm on the metal part, and a natural oxide film (ZnO) is formed with a maximum thickness of 100 nm per year on this zinc coating film, thereby reducing the hydrophobic properties of the magnetic insulator.

도 6 및 하기 표 1은 종래 70㎛의 두께로 형성된 아연(Zn) 코팅막에서 자연 산화막이 20nm, 50nm, 100nm 두께로 생성될 때의 빛 반사율 특성을 보여주는 결과이다.6 and Table 1 below are results showing the light reflectance characteristics when a natural oxide film is formed to a thickness of 20 nm, 50 nm, or 100 nm in a conventional zinc (Zn) coating film formed to a thickness of 70 μm.

CoatingCoating Average Relectance(%)
300~1100 nm
Average Reflectance (%)
300 to 1100 nm
ZnZn 87.387.3 Zn-ZnO-20nmZn-ZnO-20nm 78.978.9 Zn-ZnO-50nmZn-ZnO-50nm 68.268.2 Zn-ZnO-100nmZn-ZnO-100nm 6969

도 6과 표 1에 나타낸 바와 같이 아연(Zn) 코팅막에 순서대로 자연 산화막이 20nm, 50nm, 100nm 두께로 형성되면 파장대 300nm 내지 1100nm 영역대에서 평균적인 빛 반사율 값은 자연 산화막이 형성되지 않은 아연(Zn) 코팅막의 빛 반사율인 87.3%에서 68.2%까지 약 19.1% 확인할 수 있으며, 자연 산화막이 100nm인 경우 평균 빛 반사율이 자연 산화막이 50nm인 경우에서 보다 소폭 상승한 것처럼 보이나 자연 산화막의 두께가 두꺼워질수록 빛 반사율은 급격히 저하됨을 확인하였다.도 7 및 하기 표 2는 본 발명의 일 실시예에 따라 아연(Zn) 코팅막 상부에 MgF2 코팅막을 120nm, 140nm, 160nm, 180nm, 200nm, 220nm, 240nm, 260nm, 300nm, 350nm 두께로 형성 시 빛 반사율 특성을 보여주는 결과이다.As shown in Figure 6 and Table 1, when the natural oxide film is formed to a thickness of 20 nm, 50 nm, and 100 nm in order on the zinc (Zn) coating film, the average light reflectance value in the wavelength range of 300 nm to 1100 nm is zinc ( About 19.1% of the light reflectance of the Zn) coating film can be confirmed from 87.3% to 68.2%, and when the natural oxide film is 100 nm, the average light reflectance seems to have slightly increased compared to the case where the natural oxide film is 50 nm, but as the thickness of the natural oxide film becomes thicker, It was confirmed that the light reflectance was rapidly reduced. Figure 7 and Table 2 below show the MgF 2 coating film on the zinc (Zn) coating film according to an embodiment of the present invention at 120 nm, 140 nm, 160 nm, 180 nm, 200 nm, 220 nm, 240 nm, 260 nm. , the results showing the light reflectance characteristics when formed to a thickness of 300 nm and 350 nm.

CoatingCoating Average Relectance(%)
300~1100 nm
Average Reflectance (%)
300 to 1100 nm
Zn-MgF2-120nmZn-MgF 2 -120nm 81.181.1 Zn-MgF2-140nmZn-MgF 2 -140nm 81.681.6 Zn-MgF2-160nmZn-MgF 2 -160nm 82.182.1 Zn-MgF2-180nmZn-MgF 2 -180nm 82.582.5 Zn-MgF2-200nmZn-MgF 2 -200nm 82.982.9 Zn-MgF2-220nmZn-MgF 2 -220nm 83.683.6 Zn-MgF2-240nmZn-MgF 2 -240nm 84.284.2 Zn-MgF2-260nmZn-MgF 2 -260nm 84.684.6 Zn-MgF2-300nmZn-MgF 2 -300nm 84.884.8 Zn-MgF2-350nmZn-MgF 2 -350nm 84.084.0

도 7 및 표 2에서처럼, 70㎛의 두께의 아연(Zn) 코팅막 상부에 MgF2 코팅막이 형성된 자기 애자에서의 빛 반사율은 변화가 있으나 81% 이상이며, 특히 300nm 두께로 코팅되었을 때 같은 파장에서 평균 빛 반사율 특성이 84.8%로 아연 코팅막 대비 안정적이고 가시영역이 아닌 장파장대(800nm 이상) 영역에서도 안정적인 빛 반사율 특성을 보여주고 있다.그러므로 이와 같은 점을 감안하여 MgF2 코팅막을 2층 이상으로 다중층을 형성할 때, 300nm×N(여기서, N은 1이상의 자연수)의 두께로 형성할 수 있다. 7 and Table 2, the light reflectance of the magnetic insulator in which the MgF 2 coating film is formed on the zinc (Zn) coating film with a thickness of 70 μm is 81% or more, although there is a change. stable light reflectance properties of zinc coated film compared with 84.8% and showed a stable light reflection characteristics in the long wavelength for (at least 800nm) zone other than the visible region, so the this MgF 2 coating film in view of the points in two or more layer multi-layer When forming, it may be formed to a thickness of 300 nm×N (here, N is a natural number greater than or equal to 1).

도 8 내지 도 10은 코팅막의 소수성 특성을 측정한 결과로, 표면에서 물에 대한 접촉각(contact angle)을 측정하여 종래 아연(Zn) 코팅막과 본 발명의 MgF2 코팅막에서의 소수성을 특성을 측정하였다.8 to 10 are the results of measuring the hydrophobic property of the coating film, by measuring the contact angle with respect to water on the surface of the conventional zinc (Zn) coating film and the MgF 2 coating film of the present invention The hydrophobic property was measured. .

도 9는 종래 아연(Zn) 코팅막에서의 물에 대한 접촉각을 나타내는 도면이고, 도 10은 본 발명의 일 실시예에 따른 MgF2 코팅막에서의 물에 대한 접촉각을 나타내는 도면이다.9 is a view showing a contact angle with respect to water in a conventional zinc (Zn) coating film, FIG. 10 is a view showing a contact angle with respect to water in a MgF 2 coating film according to an embodiment of the present invention.

도 9 및 도 10에 도시된 바와 같이 본 발명의 MgF2 코팅막의 경위 접촉각이 113°로 나타났으며, 이는 비교대상인 종래 아연(Zn) 코팅막의 접촉각 82.07°보다 높은 각도를 나타낸다.As shown in FIGS. 9 and 10 , the theodolite contact angle of the MgF 2 coating film of the present invention was 113°, which is higher than the contact angle of the conventional zinc (Zn) coating film as a comparison object of 82.07°.

이와 같은 결과는 도 8에 도시된 접촉각(contact angle)의 개념도를 살펴보았을 때, 접촉각이 클수록 소수성으로 물에 대한 저항이 크다는 것을 의미하므로, 기존 아연 코팅막보다 MgF2 코팅막이 물에 대한 저항성이 훨씬 높다는 것을 증명한다.These results, when viewed at the conceptual diagram of the contact angle (contact angle) shown in Figure 8, it means that the larger the contact angle is greater resistance to the water to a hydrophobic, than conventional zinc coating MgF 2 coating film is resistant to water much prove that it is high

앞서 살펴본 바와 같이, 본 발명의 코팅방법으로 아연 코팅막 상부에 추가적으로 MgF2 코팅막을 형성하여 이중코팅을 수행한 경우, 종래 자기 애자에서 금구류의 손상을 줄이기 위해 예방 차원에서 사용했던 기존 아연(Zn) 코팅막과 비교하였을 때 우수한 빛 반사율과 소수성을 보여 주는 바, 직사광선 노출 시 자기 애자의 금구류에서 받는 빛에 대한 스트레스는 줄어들며, 이는 금구 자체의 고온화를 막을 수 있으며, 또한, 우수한 소수성으로 자연 산화막이 형성되는 것을 막아 자기 애자에서 금구류가 손상되는 것을 방지할 수 있는 효과가 있다. As described above, in the case of performing double coating by forming an additional MgF 2 coating film on top of the zinc coating film by the coating method of the present invention, conventional zinc (Zn) used as a preventive measure to reduce damage to metal fittings in conventional magnetic insulators. Compared to the coating film, it shows excellent light reflectivity and hydrophobicity. When exposed to direct sunlight, the stress on the light received from the magnetic insulator's fittings is reduced, which can prevent the metal fittings from being heated at a high temperature. It has the effect of preventing the metal insulators from being damaged by preventing them from forming.

앞서 설명한 내용은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진자('당업자'라고도 함)가 본 발명을 용이하게 실시할 수 있도록 설명하는 바람직한 실시 예일 뿐, 전술한 내용과 첨부한 도면에 한정되는 것은 아니므로 이로 인해 본 발명의 권리범위가 한정되는 것은 아니다. 따라서, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하다는 것이 당업자에게 있어 명백할 것이며, 당업자에 의해 용이하게 변경 가능한 부분도 본 발명의 권리범위에 포함됨은 자명하다.The above-described content is only a preferred embodiment for explaining so that a person of ordinary skill in the art (also referred to as a 'person of ordinary skill in the art') can easily practice the present invention, and is limited to the foregoing and the accompanying drawings. Therefore, the scope of the present invention is not limited thereto. Accordingly, it will be apparent to those skilled in the art that various substitutions, modifications, and changes are possible within the scope of the present invention, and it is apparent that parts easily changeable by those skilled in the art are also included in the scope of the present invention. .

100 : 캡
200 : 자기부
300, 310 : 시멘트
400 : 핀볼
500 : 코팅부
100: cap
200: magnetic part
300, 310: cement
400: pinball
500: coating part

Claims (1)

알루미나가 함유된 자기원료로 구성되는 자기부(200)를 중심으로 금구류인 캡(100)과 핀볼(400)이 형성되어 있고, 상기 캡(100)의 표면에는 아연(Zn) 코팅막이 있는 자기 애자에 있어서,
메틸트리에톡시실란(CH3Si(OC2H5)3), 에탄올, 염산 및 물을 일정 비율로 배합하여 메틸 실리콘 용액을 제조하는 단계;
마그네슘 아세테이트(Mg(CH3COO)2), 불산(HF), 무수에탄올 및 에탄올을 일정 비율로 배합하여 마그네슘 플루오라이드(MgF2) 입자가 포함된 MgF2 용액을 제조하는 단계;
상기 메틸 실리콘 용액과 상기 MgF2 용액을 혼합하여 코팅액을 제조하는 단계; 및
상기 코팅액을 상기 자기 애자의 금구류 표면에 코팅하여 코팅층을 형성시키는 코팅단계;를 거쳐서 상기 아연(Zn) 코팅막이 형성된 상기 자기 애자의 금구류 표면에 MgF2 코팅막이 형성되며,
상기 MgF2 코팅막은 2층 이상의 다중층이 300nm X N(여기서 N은 1이상의 자연수)의 두께로 형성가능한 것을 특징으로 하는 자기 애자.
A cap 100 and a pinball 400 are formed around a magnetic part 200 made of a magnetic raw material containing alumina, and a magnetic insulator having a zinc (Zn) coating film on the surface of the cap 100 is formed. In
Preparing a methyl silicone solution by mixing methyltriethoxysilane (CH 3 Si(OC 2 H 5 ) 3 ), ethanol, hydrochloric acid and water in a certain ratio;
Magnesium acetate (Mg(CH 3 COO) 2 ), hydrofluoric acid (HF), anhydrous ethanol and ethanol are mixed in a predetermined ratio to prepare a MgF 2 solution containing magnesium fluoride (MgF 2 ) particles;
preparing a coating solution by mixing the methyl silicone solution and the MgF 2 solution; and
A coating step of forming a coating layer by coating the coating solution on the surface of the metal fittings of the magnetic insulator; a MgF 2 coating film is formed on the metal fittings surface of the magnetic insulator on which the zinc (Zn) coating film is formed,
The MgF 2 coating film is a magnetic insulator, characterized in that two or more multi-layers can be formed to a thickness of 300 nm XN (where N is a natural number greater than or equal to 1).
KR1020210140138A 2017-08-18 2021-10-20 Coating method of porcelain insulators metal fitting and porcelain insulator manufactured by thereof KR102413511B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210140138A KR102413511B1 (en) 2017-08-18 2021-10-20 Coating method of porcelain insulators metal fitting and porcelain insulator manufactured by thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170105037A KR102336645B1 (en) 2017-08-18 2017-08-18 Coating method of porcelain insulators metal fitting and porcelain insulator manufactured by thereof
KR1020210140138A KR102413511B1 (en) 2017-08-18 2021-10-20 Coating method of porcelain insulators metal fitting and porcelain insulator manufactured by thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020170105037A Division KR102336645B1 (en) 2017-08-18 2017-08-18 Coating method of porcelain insulators metal fitting and porcelain insulator manufactured by thereof

Publications (2)

Publication Number Publication Date
KR20210129015A true KR20210129015A (en) 2021-10-27
KR102413511B1 KR102413511B1 (en) 2022-06-28

Family

ID=65560920

Family Applications (3)

Application Number Title Priority Date Filing Date
KR1020170105037A KR102336645B1 (en) 2017-08-18 2017-08-18 Coating method of porcelain insulators metal fitting and porcelain insulator manufactured by thereof
KR1020210140138A KR102413511B1 (en) 2017-08-18 2021-10-20 Coating method of porcelain insulators metal fitting and porcelain insulator manufactured by thereof
KR1020210140137A KR102413510B1 (en) 2017-08-18 2021-10-20 Coating method of porcelain insulators metal fitting and porcelain insulator manufactured by thereof

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020170105037A KR102336645B1 (en) 2017-08-18 2017-08-18 Coating method of porcelain insulators metal fitting and porcelain insulator manufactured by thereof

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020210140137A KR102413510B1 (en) 2017-08-18 2021-10-20 Coating method of porcelain insulators metal fitting and porcelain insulator manufactured by thereof

Country Status (1)

Country Link
KR (3) KR102336645B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4094162B2 (en) 1999-03-15 2008-06-04 日本碍子株式会社 High voltage porcelain insulator
KR20140009864A (en) * 2012-07-13 2014-01-23 한국철도기술연구원 Polymer insulator for electric railway comprising hydrophobic coating layer and method for preparing the same
KR20150104133A (en) * 2012-12-31 2015-09-14 나노플루오르 게엠베하 Magnesium fluoride sol and optically active surface coatings derived thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4094162B2 (en) 1999-03-15 2008-06-04 日本碍子株式会社 High voltage porcelain insulator
KR20140009864A (en) * 2012-07-13 2014-01-23 한국철도기술연구원 Polymer insulator for electric railway comprising hydrophobic coating layer and method for preparing the same
KR20150104133A (en) * 2012-12-31 2015-09-14 나노플루오르 게엠베하 Magnesium fluoride sol and optically active surface coatings derived thereof

Also Published As

Publication number Publication date
KR102413511B1 (en) 2022-06-28
KR102413510B1 (en) 2022-06-28
KR20210129014A (en) 2021-10-27
KR20190019734A (en) 2019-02-27
KR102336645B1 (en) 2021-12-08

Similar Documents

Publication Publication Date Title
KR100949600B1 (en) Transparent substrate equipped with an electrode, method for using the substrate and solar cell comprising the substrate
JP5262110B2 (en) Base with antireflection film
EP2881765B1 (en) Cover glass for photoelectric conversion device
US20110111203A1 (en) Substrate with a sol-gel layer and method for producing a composite material
EP2511738B1 (en) Cover glass for photoelectric converter and process for producing same
JP6299755B2 (en) Protective film, reflective member, and method of manufacturing protective film
RU2570054C2 (en) Outer coating from zirconium oxide, doped with gadolinium oxide and/or method of obtaining thereof
EP2952939A1 (en) Method for producing infrared radiation reflecting film
KR101788369B1 (en) Low-emissivity coating film, method for preparing the same and functional building material for windows comprising the same
BR112019012722A2 (en) low emissivity coating for a glass substrate
JP2002529367A (en) Glazing with low emissivity stack
JP2014016158A (en) High-temperature heat-resistant temperature sensor
JP6518670B2 (en) Low radiation coating film, method for producing the same, and functional building material for window including the same
JP6594311B2 (en) Laminated body for light emitting device and method for manufacturing the same
KR101979625B1 (en) Low-emissivity coat and functional building material including low-emissivity coat for windows
RU2578071C1 (en) Ir-reflecting and transparent system of layers having colour stability, and method of making same manufacture, glass block
JPS58125638A (en) Glass composition for coating semiconductor
KR102413510B1 (en) Coating method of porcelain insulators metal fitting and porcelain insulator manufactured by thereof
JP4600685B2 (en) UV and near infrared shielding glass
DE602005004798T2 (en) ELECTRIC LAMP AND INTERFERENCE COATING
JP2023502373A (en) coated glass substrate
JP2018140552A (en) Laminate
JP7216471B2 (en) Plastic lens for in-vehicle lens and manufacturing method thereof
JP5954620B2 (en) Sputtering target for forming transparent oxide film and method for producing the same
KR20150090419A (en) Low Thermal Emissivity Film Using Amorphous Si-In-ZnO Multilayer Structure

Legal Events

Date Code Title Description
A107 Divisional application of patent
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant