KR20210125891A - 호스트 재료용 안트라센 화합물, 발광 디바이스, 발광 장치, 전자 기기, 및 조명 장치 - Google Patents

호스트 재료용 안트라센 화합물, 발광 디바이스, 발광 장치, 전자 기기, 및 조명 장치 Download PDF

Info

Publication number
KR20210125891A
KR20210125891A KR1020207037157A KR20207037157A KR20210125891A KR 20210125891 A KR20210125891 A KR 20210125891A KR 1020207037157 A KR1020207037157 A KR 1020207037157A KR 20207037157 A KR20207037157 A KR 20207037157A KR 20210125891 A KR20210125891 A KR 20210125891A
Authority
KR
South Korea
Prior art keywords
light emitting
emitting device
layer
abbreviation
phenyl
Prior art date
Application number
KR1020207037157A
Other languages
English (en)
Inventor
히로끼 스즈끼
사또시 세오
히로시 가도마
즈네노리 스즈끼
나오아끼 하시모또
Original Assignee
가부시키가이샤 한도오따이 에네루기 켄큐쇼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 한도오따이 에네루기 켄큐쇼 filed Critical 가부시키가이샤 한도오따이 에네루기 켄큐쇼
Priority to KR1020237005703A priority Critical patent/KR102656004B1/ko
Publication of KR20210125891A publication Critical patent/KR20210125891A/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/20Polycyclic condensed hydrocarbons
    • C07C15/27Polycyclic condensed hydrocarbons containing three rings
    • C07C15/28Anthracenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/20Polycyclic condensed hydrocarbons
    • C07C15/27Polycyclic condensed hydrocarbons containing three rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C13/00Cyclic hydrocarbons containing rings other than, or in addition to, six-membered aromatic rings
    • C07C13/28Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof
    • C07C13/32Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings
    • C07C13/54Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with three condensed rings
    • C07C13/547Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with three condensed rings at least one ring not being six-membered, the other rings being at the most six-membered
    • C07C13/567Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with three condensed rings at least one ring not being six-membered, the other rings being at the most six-membered with a fluorene or hydrogenated fluorene ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C13/00Cyclic hydrocarbons containing rings other than, or in addition to, six-membered aromatic rings
    • C07C13/28Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof
    • C07C13/32Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings
    • C07C13/62Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with more than three condensed rings
    • C07C13/66Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with more than three condensed rings the condensed ring system contains only four rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C13/00Cyclic hydrocarbons containing rings other than, or in addition to, six-membered aromatic rings
    • C07C13/28Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof
    • C07C13/32Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings
    • C07C13/72Spiro hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • H01L51/0058
    • H01L51/5024
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/624Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing six or more rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/06Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members
    • C07C2603/10Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings
    • C07C2603/12Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings only one five-membered ring
    • C07C2603/18Fluorenes; Hydrogenated fluorenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/22Ortho- or ortho- and peri-condensed systems containing three rings containing only six-membered rings
    • C07C2603/24Anthracenes; Hydrogenated anthracenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/40Ortho- or ortho- and peri-condensed systems containing four condensed rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/93Spiro compounds
    • C07C2603/94Spiro compounds containing "free" spiro atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

신규 호스트 재료용 화합물을 제공한다. 또는 발광 디바이스의 수명을 향상시킬 수 있는 호스트 재료용 화합물을 제공한다. 또는 수명이 양호한 발광 디바이스를 제공한다. 또는 유리 전이점 등의 열물성이 높은 재료를 제공한다. 하기 일반식(G1)으로 나타내어지는 호스트용 안트라센 화합물을 제공한다.
Figure pct00046

(다만, 상기 일반식(G1)에서 R1 내지 R7은 각각 독립적으로 수소 또는 탄소수 1 내지 25의 아릴기를 나타낸다)

Description

호스트 재료용 안트라센 화합물, 발광 디바이스, 발광 장치, 전자 기기, 및 조명 장치
본 발명의 일 형태는 호스트 재료용 안트라센 화합물, 발광 소자, 발광 디바이스, 디스플레이 모듈, 조명 모듈, 표시 장치, 발광 장치, 전자 기기, 및 조명 장치에 관한 것이다. 또한 본 발명의 일 형태는 상기 기술분야에 한정되지 않는다. 본 명세서 등에서 개시(開示)하는 발명의 일 형태가 속하는 기술분야는 물건, 방법, 또는 제조 방법에 관한 것이다. 또는 본 발명의 일 형태는 공정(process), 기계(machine), 제품(manufacture), 또는 조성물(composition of matter)에 관한 것이다. 따라서 본 명세서에서 개시하는 본 발명의 일 형태가 속하는 기술분야의 더 구체적인 예로서는 반도체 장치, 표시 장치, 액정 표시 장치, 발광 장치, 조명 장치, 축전 장치, 기억 장치, 촬상 장치, 이들의 구동 방법, 또는 이들의 제조 방법을 들 수 있다.
유기 화합물을 사용하고 일렉트로루미네선스(EL: Electroluminescence)를 이용하는 발광 디바이스(유기 EL 소자)의 실용화가 진행되고 있다. 이들 발광 디바이스의 기본적인 구성은 발광 재료를 포함하는 유기 화합물층(EL층)을 한 쌍의 전극 사이에 끼운 것이다. 이 소자에 전압을 인가하여 캐리어를 주입하고, 상기 캐리어의 재결합 에너지를 이용함으로써, 발광 재료로부터의 발광을 얻을 수 있다.
이와 같은 발광 디바이스는 자발광형이기 때문에, 액정 디스플레이와 비교하여 시인성이 높아 디스플레이의 화소로서 적합하다. 또한 이와 같은 발광 디바이스를 사용한 디스플레이는 백라이트가 불필요하므로 얇고 가볍게 제작할 수 있다는 것도 큰 이점이다. 또한 응답 속도가 매우 빠르다는 것도 특징 중 하나이다.
또한 이들 발광 디바이스는 발광층을 이차원으로 연속하여 형성할 수 있기 때문에 면발광을 얻을 수 있다. 이것은 백열 전구나 LED로 대표되는 점광원, 또는 형광등으로 대표되는 선광원으로는 얻기 어려운 특색이기 때문에, 조명 등에 응용할 수 있는 면광원으로서의 이용 가치도 높다.
이와 같이 발광 디바이스를 사용한 디스플레이나 조명 장치는 다양한 전자 기기에 적합하지만, 효율, 수명이 더 양호한 발광 디바이스를 위하여 연구 개발이 진행되고 있다.
발광 디바이스의 특성은 현저하게 향상되어 왔지만, 효율이나 내구성을 비롯하여 각종 특성에 대한 고도한 요구에 대응하기에는 아직 불충분하다고 할 수 밖에 없다. 특히 EL에 특유한 문제로서 여전히 꼽히는 잔상(burn-in) 등의 문제를 해결하기 위해서는 열화로 인한 효율의 저하는 작으면 작을수록 바람직하다.
열화에 관해서는 발광 중심 물질이나 그 주변의 재료에 크게 좌우되기 때문에 특성이 양호한 호스트 재료의 개발이 활발히 진행되고 있다.
일본 공개특허공보 특개2004-59535호
그래서 본 발명의 일 형태에서는 신규 호스트 재료용 화합물을 제공하는 것을 목적으로 한다. 또는 본 발명의 일 형태에서는 발광 디바이스의 수명을 향상시킬 수 있는 호스트 재료용 화합물을 제공하는 것을 목적으로 한다. 또는 본 발명의 일 형태에서는 수명이 양호한 발광 디바이스를 제공하는 것을 목적으로 한다. 또는 본 발명의 일 형태에서는 유리 전이점 등의 열물성이 높은 재료를 제공하는 것을 목적으로 한다.
또는 본 발명의 다른 일 형태는 신뢰성이 높은 발광 장치, 전자 기기, 및 표시 장치를 각각 제공하는 것을 목적으로 한다.
본 발명은 상술한 과제 중 어느 하나를 해결하면 되는 것으로 한다.
본 발명의 일 형태는 하기 일반식(G1)으로 나타내어지는 호스트용 안트라센 화합물이다.
[화학식 1]
Figure pct00001
다만, 일반식(G1)에서 R1 내지 R7은 각각 독립적으로 수소 또는 탄소수 1 내지 25의 아릴기를 나타낸다.
또는 본 발명의 다른 일 형태는 상기 구성에서 R1 내지 R7 중 하나가 탄소수 1 내지 25의 아릴기를 나타내고, 나머지가 수소인 호스트용 안트라센 화합물이다.
또는 본 발명의 다른 일 형태는 하기 일반식(G2)으로 나타내어지는 호스트 재료용 안트라센 화합물이다.
[화학식 2]
Figure pct00002
다만, 상기 일반식(G2)에서 R4는 수소 또는 탄소수 1 내지 25의 아릴기를 나타낸다.
또는 본 발명의 다른 일 형태는 상기 구성에서 상기 탄소수 1 내지 25의 아릴기가 페닐기인 호스트 재료용 안트라센 화합물이다.
또는 본 발명의 다른 일 형태는 하기 구조식(100)으로 나타내어지는 호스트용 안트라센 화합물이다.
[화학식 3]
Figure pct00003
또는 본 발명의 다른 일 형태는 양극과, 음극과, 상기 양극과 음극 사이에 위치하는 EL층을 갖고, 상기 EL층은 발광 중심 물질과 호스트 재료를 갖고, 상기 호스트 재료가 상기 구성을 갖는 호스트 재료용 안트라센 화합물인 발광 디바이스이다.
또는 본 발명의 다른 일 형태는 상기 구성에서 상기 발광 중심 물질이 청색 형광을 발하는 발광 디바이스이다.
또는 본 발명의 다른 일 형태는 상기 구성을 갖는 발광 디바이스와, 트랜지스터 또는 기판을 갖는 발광 장치이다.
또는 본 발명의 다른 일 형태는 상기 구성을 갖는 발광 장치와, 센서, 조작 버튼, 스피커, 또는 마이크로폰을 갖는 전자 기기이다.
또는 본 발명의 다른 일 형태는 상기 구성을 갖는 발광 장치와 하우징을 갖는 조명 장치이다.
또한 본 명세서에서의 발광 장치란, 발광 디바이스를 사용한 화상 표시 디바이스를 포함한다. 또한 발광 디바이스에 커넥터, 예를 들어 이방 도전성 필름 또는 TCP(Tape Carrier Package)가 장착된 모듈, TCP 끝에 인쇄 배선판이 제공된 모듈, 또는 발광 디바이스에 COG(Chip On Glass) 방식으로 IC(집적 회로)가 직접 실장된 모듈도 발광 장치에 포함되는 경우가 있다. 또한 조명 기구 등은 발광 장치를 갖는 경우가 있다.
본 발명의 일 형태에 의하여, 신규 유기 화합물을 제공할 수 있다. 또는 정공 수송성을 갖는 신규 유기 화합물을 제공할 수 있다. 또는 신규 정공 수송 재료를 제공할 수 있다. 또는 신규 발광 디바이스를 제공할 수 있다. 또는 수명이 양호한 발광 디바이스를 제공할 수 있다. 또는 발광 효율이 양호한 발광 디바이스를 제공할 수 있다. 또는 구동 전압이 낮은 발광 디바이스를 제공할 수 있다. 또는 구동 시간의 축적에 따른 전압 변화가 작은 소자를 제공할 수 있다.
또는 본 발명의 다른 일 형태에 의하여, 신뢰성이 높은 발광 장치, 전자 기기, 및 표시 장치를 각각 제공할 수 있다. 또는 본 발명의 다른 일 형태에 의하여, 소비전력이 작은 발광 장치, 전자 기기, 및 표시 장치를 각각 제공할 수 있다.
또한 이들 효과의 기재는 다른 효과의 존재를 방해하는 것은 아니다. 또한 본 발명의 일 형태는 이들 효과 모두를 반드시 가질 필요는 없다. 또한 이들 이외의 효과는 명세서, 도면, 청구항 등의 기재로부터 저절로 명백해질 것이고, 명세서, 도면, 청구항 등의 기재로부터 이들 이외의 효과를 추출할 수 있다.
도 1의 (A1), (A2), (B), (C)는 발광 디바이스의 개략도이다.
도 2의 (A), (B)는 액티브 매트릭스형 발광 장치의 개념도이다.
도 3의 (A), (B)는 액티브 매트릭스형 발광 장치의 개념도이다.
도 4는 액티브 매트릭스형 발광 장치의 개념도이다.
도 5의 (A), (B)는 패시브 매트릭스형 발광 장치의 개념도이다.
도 6의 (A), (B)는 조명 장치를 나타낸 도면이다.
도 7의 (A), (B1), (B2), (C)는 전자 기기를 나타낸 도면이다.
도 8의 (A), (B), (C)는 전자 기기를 나타낸 도면이다.
도 9는 조명 장치를 나타낸 도면이다.
도 10은 조명 장치를 나타낸 도면이다.
도 11은 차량 탑재 표시 장치 및 조명 장치를 나타낸 도면이다.
도 12의 (A), (B)는 전자 기기를 나타낸 도면이다.
도 13의 (A), (B), (C)는 전자 기기를 나타낸 도면이다.
도 14의 (A), (B)는 2αN-αNPhA의 1H-NMR 차트이다.
도 15는 2αN-αNPhA의 톨루엔 용액에서의 흡수 스펙트럼 및 발광 스펙트럼이다.
도 16은 2αN-αNPhA의 박막에서의 흡수 스펙트럼 및 발광 스펙트럼이다.
도 17의 (A), (B)는 2PαN-αNPhA의 1H-NMR 차트이다.
도 18은 2PαN-αNPhA의 톨루엔 용액에서의 흡수 스펙트럼 및 발광 스펙트럼이다.
도 19는 2PαN-αNPhA의 박막에서의 흡수 스펙트럼 및 발광 스펙트럼이다.
도 20은 발광 디바이스 1, 비교 발광 디바이스 1, 및 비교 발광 디바이스 2의 휘도-전류 밀도 특성이다.
도 21은 발광 디바이스 1, 비교 발광 디바이스 1, 및 비교 발광 디바이스 2의 전류 효율-휘도 특성이다.
도 22는 발광 디바이스 1, 비교 발광 디바이스 1, 및 비교 발광 디바이스 2의 휘도-전압 특성이다.
도 23은 발광 디바이스 1, 비교 발광 디바이스 1, 및 비교 발광 디바이스 2의 전류-전압 특성이다.
도 24는 발광 디바이스 1, 비교 발광 디바이스 1, 및 비교 발광 디바이스 2의 외부 양자 효율-휘도 특성이다.
도 25는 발광 디바이스 1, 비교 발광 디바이스 1, 및 비교 발광 디바이스 2의 발광 스펙트럼이다.
도 26은 발광 디바이스 1, 비교 발광 디바이스 1, 및 비교 발광 디바이스 2의 정규화 휘도-시간 변화 특성이다.
도 27은 발광 디바이스 2, 비교 발광 디바이스 3, 및 비교 발광 디바이스 4의 휘도-전류 밀도 특성이다.
도 28은 발광 디바이스 2, 비교 발광 디바이스 3, 및 비교 발광 디바이스 4의 전류 효율-휘도 특성이다.
도 29는 발광 디바이스 2, 비교 발광 디바이스 3, 및 비교 발광 디바이스 4의 휘도-전압 특성이다.
도 30은 발광 디바이스 2, 비교 발광 디바이스 3, 및 비교 발광 디바이스 4의 전류-전압 특성이다.
도 31은 발광 디바이스 2, 비교 발광 디바이스 3, 및 비교 발광 디바이스 4의 외부 양자 효율-휘도 특성이다.
도 32는 발광 디바이스 2, 비교 발광 디바이스 3, 및 비교 발광 디바이스 4의 발광 스펙트럼이다.
도 33은 발광 디바이스 2, 비교 발광 디바이스 3, 및 비교 발광 디바이스 4의 정규화 휘도-시간 변화 특성이다.
도 34는 발광 디바이스 3, 발광 디바이스 4, 및 비교 발광 디바이스 5 내지 비교 발광 디바이스 10의 휘도-전류 밀도 특성이다.
도 35는 발광 디바이스 3, 발광 디바이스 4, 및 비교 발광 디바이스 5 내지 비교 발광 디바이스 10의 전류 효율-휘도 특성이다.
도 36은 발광 디바이스 3, 발광 디바이스 4, 및 비교 발광 디바이스 5 내지 비교 발광 디바이스 10의 휘도-전압 특성이다.
도 37은 발광 디바이스 3, 발광 디바이스 4, 및 비교 발광 디바이스 5 내지 비교 발광 디바이스 10의 전류-전압 특성이다.
도 38은 발광 디바이스 3, 발광 디바이스 4, 및 비교 발광 디바이스 5 내지 비교 발광 디바이스 10의 외부 양자 효율-휘도 특성이다.
도 39는 발광 디바이스 3, 발광 디바이스 4, 및 비교 발광 디바이스 5 내지 비교 발광 디바이스 10의 발광 스펙트럼이다.
도 40은 발광 디바이스 5, 비교 발광 디바이스 11, 및 비교 발광 디바이스 12의 휘도-전류 밀도 특성이다.
도 41은 발광 디바이스 5, 비교 발광 디바이스 11, 및 비교 발광 디바이스 12의 전류 효율-휘도 특성이다.
도 42는 발광 디바이스 5, 비교 발광 디바이스 11, 및 비교 발광 디바이스 12의 휘도-전압 특성이다.
도 43은 발광 디바이스 5, 비교 발광 디바이스 11, 및 비교 발광 디바이스 12의 전류-전압 특성이다.
도 44는 발광 디바이스 5, 비교 발광 디바이스 11, 및 비교 발광 디바이스 12의 외부 양자 효율-휘도 특성이다.
도 45는 발광 디바이스 5, 비교 발광 디바이스 11, 및 비교 발광 디바이스 12의 발광 스펙트럼이다.
도 46은 발광 디바이스 5, 비교 발광 디바이스 11, 및 비교 발광 디바이스 12의 정규화 휘도-시간 변화 특성이다.
아래에서, 본 발명의 실시형태에 대해서 도면을 참조하여 자세히 설명한다. 다만, 본 발명은 아래의 설명에 한정되지 않고, 본 발명의 취지 및 그 범위에서 벗어남이 없이 그 형태 및 자세한 사항을 다양하게 변경할 수 있는 것은 통상의 기술자라면 용이하게 이해할 수 있다. 따라서 본 발명은 아래에 나타내는 실시형태의 기재 내용에 한정되어 해석되는 것은 아니다.
(실시형태 1)
본 발명의 일 형태인 호스트 재료용 안트라센 화합물은 하기 일반식(G1)으로 나타내어지는 유기 화합물이다.
[화학식 4]
Figure pct00004
다만, 상기 일반식(G1)에서 R1 내지 R7은 각각 독립적으로 수소 또는 탄소수 6 내지 25의 아릴기를 나타내는 것으로 한다.
탄소수 6 내지 25의 아릴기로서는, 안트릴기, 페난트릴기, 피렌일기, 트라이페닐렌일기, 플루오란텐일기, 바이페닐기, 터페닐기, 쿼터페닐기 등을 들 수 있다.
R1 내지 R7은 모두가 수소인 것, 또는 하나가 탄소수 6 내지 25의 아릴기이고 나머지가 수소인 것이 바람직하다. 또한 하나가 탄소수 6 내지 25의 아릴기이고 나머지가 수소인 경우, 하기 일반식(G2)과 같이, R4가 아릴기인 것이 더 바람직하다.
[화학식 5]
Figure pct00005
상술한 바와 같은 구성을 갖는 본 발명의 일 형태의 호스트 재료용 안트라센 화합물은 유기 화합물을 사용한 발광 디바이스의 발광층에서의 호스트 재료로서 사용함으로써 수명이 긴 발광 디바이스를 제공할 수 있다.
또한 상기 일반식(G1)으로 나타내어지는 화합물을 호스트 재료로서 사용한 발광 디바이스는 상기 일반식(G1)으로 나타내어지는 화합물에서의 안트라센 골격의 9위치 및 10위치에 결합되는 나프틸기 및 페닐기 중 어느 것에 치환기가 있는 화합물을 호스트 재료로서 사용한 발광 디바이스보다 양호한 수명을 갖는 발광 디바이스로 할 수 있다.
또한 마찬가지로 상기 일반식(G1)으로 나타내어지는 화합물을 호스트 재료로서 사용한 발광 디바이스는 상기 일반식(G1)으로 나타내어지는 화합물에서의 안트라센 골격의 9위치 및 2위치에 결합되는 나프틸기 중 어느 것에 알킬기 또는 알킬실릴기가 결합된 화합물을 호스트 재료로서 사용한 발광 디바이스보다 양호한 수명을 갖는 발광 디바이스로 할 수 있다. 또한 상기 일반식(G1)으로 나타내어지는 화합물에서의 안트라센 골격의 2위치에 결합되는 나프틸기에 탄소수 6 내지 25의 아릴기가 결합된 화합물을 호스트 재료로서 사용한 발광 디바이스는 양호한 수명을 갖는 발광 디바이스로 할 수 있다.
상기 구성을 갖는 유기 화합물의 구체적인 예를 아래에 나타낸다.
[화학식 6]
Figure pct00006
[화학식 7]
Figure pct00007
상술한 바와 같은 유기 화합물은 하기 합성 스킴 등에 의하여 합성할 수 있다.
본 발명의 일 형태의 호스트 재료용 안트라센 화합물(G1)은 아래와 같은 합성 스킴에 의하여 합성할 수 있다. 즉 안트라센 유도체의 할로젠 화합물 또는 트라이플레이트기를 갖는 화합물(a1)과, 나프탈렌 화합물의 보론산 또는 유기 붕소 화합물(a2)을 Suzuki-Miyaura 반응에 의하여 커플링함으로써 본 발명의 일 형태의 안트라센 화합물(G1)을 얻을 수 있다.
[화학식 8]
Figure pct00008
상기 합성 스킴에서, R1 내지 R7은 각각 독립적으로 수소 및 탄소수 6 내지 25의 아릴기 중 어느 하나를 나타낸다. 또한 R8, R9는 각각 독립적으로 수소 및 탄소수 1 내지 6의 알킬기 중 어느 것을 나타내고, R8과 R9는 서로 결합하여 고리를 형성하여도 좋다.
또한 X는 할로젠 또는 트라이플레이트기를 나타내고, X가 할로젠인 경우에는 염소, 브로민, 또는 아이오딘인 것이 특히 바람직하다.
상기 합성 스킴으로 나타내어지는 반응에서 사용할 수 있는 팔라듐 촉매로서는, 아세트산 팔라듐(II), 테트라키스(트라이페닐포스핀)팔라듐(0), 비스(트라이페닐포스핀)팔라듐(II)다이클로라이드 등을 들 수 있다.
상기 팔라듐 촉매의 배위자로서는, 다이(1-아다만틸)-n-뷰틸포스핀, 트라이(오쏘-톨릴)포스핀, 트라이페닐포스핀, 트라이사이클로헥실포스핀 등을 들 수 있다.
상기 합성 스킴으로 나타내어지는 반응에서 사용할 수 있는 염기로서는, 소듐 tert-뷰톡사이드 등의 유기 염기나, 탄산 포타슘, 탄산 소듐 등의 무기 염기 등을 들 수 있다.
상기 합성 스킴으로 나타내어지는 반응에서 사용할 수 있는 용매로서는, 톨루엔과 물의 혼합 용매, 톨루엔과 에탄올 등의 알코올과 물의 혼합 용매, 자일렌과 물의 혼합 용매, 자일렌과 에탄올 등의 알코올과 물의 혼합 용매, 벤젠과 물의 혼합 용매, 벤젠과 에탄올 등의 알코올과 물의 혼합 용매, 에틸렌글라이콜다이메틸에터 등의 에터류와 물의 혼합 용매, 에틸렌글라이콜다이메틸에터 등의 에터류와 에탄올 등의 알코올의 혼합 용매 등을 들 수 있다. 다만, 사용할 수 있는 용매는 이들에 한정되는 것은 아니다. 또한 톨루엔과 물, 또는 톨루엔과 에탄올과 물의 혼합 용매, 에틸렌글라이콜다이메틸에터 등의 에터류와 물의 혼합 용매, 에틸렌글라이콜다이메틸에터 등의 에터류와 에탄올 등의 알코올의 혼합 용매가 더 바람직하다.
상기 합성 스킴에서 사용할 수 있는 커플링 반응으로서는, 화합물(a2)로 나타내어지는 유기 붕소 화합물 또는 보론산을 사용하는 Suzuki-Miyaura 커플링 반응 대신에, 유기 알루미늄, 유기 지르코늄, 유기 아연, 유기 주석 화합물 등을 사용하는 크로스 커플링 반응을 사용하여도 좋다. 또한 상기 합성 스킴에 나타낸 반응에서, 안트라센 화합물의 유기 붕소 화합물 또는 보론산과, 나프탈렌 화합물의 할로젠화물 또는 트라이플레이트 치환체를 Suzuki-Miyaura 반응에 의하여 커플링하여도 좋다.
본 발명의 일 형태의 호스트 재료용 안트라센 화합물은 상술한 바와 같이 합성할 수 있다.
(실시형태 2)
도 1의 (A1)에 본 발명의 일 형태의 발광 디바이스를 나타내었다. 본 발명의 일 형태의 발광 디바이스는 제 1 전극(101), 제 2 전극(102), EL층(103)을 갖고, EL층(103)은 발광층(113)을 갖고, 상기 발광층에 실시형태 1에서 설명한 본 발명의 일 형태의 호스트 재료용 안트라센 유도체를 포함한다.
EL층(103)은 발광층(113) 외에 정공 주입층(111), 정공 수송층(112), 전자 수송층(114), 및 전자 주입층(115)을 가져도 좋고, 그 외에 캐리어 블로킹층, 여기자 블로킹층, 전하 발생층 등 다양한 층을 가져도 좋다. 또한 정공 수송층(112)은, 도 1의 (A2)와 같이, 다른 재료를 사용하여 제 1 정공 수송층(112-1)과 제 2 정공 수송층(112-2)의 2층으로 나누어 형성하여도 좋다. 또한 제 2 정공 수송층(112-2)은 전자 블로킹층으로서도 기능한다.
상기 호스트 재료용 안트라센 화합물은 발광층(113)에 포함되는 호스트 재료로서 사용한다. 상기 호스트 재료용 안트라센 화합물을 호스트 재료로서 사용한 본 발명의 일 형태의 발광 디바이스는 수명이 긴 발광 디바이스로 할 수 있다.
제 1 전극(101)은 일함수가 큰(구체적으로는 4.0eV 이상) 금속, 합금, 도전성 화합물, 및 이들의 혼합물 등을 사용하여 형성되는 것이 바람직하다. 구체적으로는 예를 들어 산화 인듐-산화 주석(ITO: Indium Tin Oxide), 실리콘 또는 산화 실리콘을 함유한 산화 인듐-산화 주석, 산화 인듐-산화 아연, 산화 텅스텐 및 산화 아연을 함유한 산화 인듐(IWZO) 등이 있다. 이들 도전성 금속 산화물막은 일반적으로 스퍼터링법에 의하여 형성되지만, 졸-겔법 등을 응용하여 제작하여도 좋다. 제작 방법의 예로서는 산화 인듐에 대하여 1wt% 내지 20wt%의 산화 아연이 첨가된 타깃을 사용한 스퍼터링법에 의하여, 산화 인듐-산화 아연을 형성하는 방법 등이 있다. 또한 산화 인듐에 대하여 산화 텅스텐이 0.5wt% 내지 5wt%, 산화 아연이 0.1wt% 내지 1wt% 함유된 타깃을 사용한 스퍼터링법에 의하여, 산화 텅스텐 및 산화 아연이 함유된 산화 인듐(IWZO)을 형성할 수도 있다. 이 외에, 금(Au), 백금(Pt), 니켈(Ni), 텅스텐(W), 크로뮴(Cr), 몰리브데넘(Mo), 철(Fe), 코발트(Co), 구리(Cu), 팔라듐(Pd), 또는 금속 재료의 질화물(예를 들어 질화 타이타늄) 등을 들 수 있다. 그래핀을 사용할 수도 있다. 또한 후술하는 복합 재료를 EL층(103)에서 제 1 전극(101)과 접하는 층에 사용함으로써, 일함수에 상관없이 전극 재료를 선택할 수 있다.
EL층(103)의 적층 구조에 대해서는, 본 실시형태에서는 도 1의 (A1)에 도시된 바와 같이, 정공 주입층(111), 정공 수송층(112), 발광층(113)에 더하여 전자 수송층(114) 및 전자 주입층(115)을 갖는 구성, 그리고 도 1의 (B)에 도시된 바와 같이, 정공 주입층(111), 정공 수송층(112), 발광층(113)에 더하여 전자 수송층(114) 및 전하 발생층(116)을 갖는 구성의 2가지에 대하여 설명한다. 각 층을 구성하는 재료에 대하여 아래에서 구체적으로 설명한다.
정공 주입층(111)은 억셉터성을 갖는 물질을 포함한 층이다. 억셉터성을 갖는 물질로서는 전자 흡인기(할로젠기나 사이아노기)를 갖는 화합물을 사용할 수 있고, 7,7,8,8-테트라사이아노-2,3,5,6-테트라플루오로퀴노다이메테인(약칭: F4-TCNQ), 3,6-다이플루오로-2,5,7,7,8,8-헥사사이아노퀴노다이메테인, 클로라닐, 2,3,6,7,10,11-헥사사이아노-1,4,5,8,9,12-헥사아자트라이페닐렌(약칭: HAT-CN), 1,3,4,5,7,8-헥사플루오로테트라사이아노-나프토퀴노다이메테인(약칭: F6-TCNNQ) 등 전자 흡인기를 갖는 화합물 등을 사용할 수 있다. 억셉터성을 갖는 유기 화합물로서는, HAT-CN과 같이 헤테로 원자를 복수로 갖는 축합 방향족 고리에 전자 흡인기가 결합된 화합물은 열적으로 안정적이므로 바람직하다. 또한 전자 흡인기(특히 플루오로기와 같은 할로젠기나 사이아노기)를 갖는 [3]라디알렌 유도체는 전자 수용성이 매우 높기 때문에 바람직하고, 구체적으로는 α,α',α''-1,2,3-사이클로프로페인트라이일리덴트리스[4-사이아노-2,3,5,6-테트라플루오로벤젠아세토나이트릴], α,α',α''-1,2,3-사이클로프로페인트라이일리덴트리스[2,6-다이클로로-3,5-다이플루오로-4-(트라이플루오로메틸)벤젠아세토나이트릴], α,α',α''-1,2,3-사이클로프로페인트라이일리덴트리스[2,3,4,5,6-펜타플루오로벤젠아세토나이트릴] 등을 들 수 있다. 억셉터성을 갖는 물질로서는 상술한 유기 화합물 외에도 몰리브데넘 산화물이나 바나듐 산화물, 루테늄 산화물, 텅스텐 산화물, 망가니즈 산화물 등을 사용할 수 있다. 이 외에는 프탈로사이아닌(약칭: H2Pc)이나 구리 프탈로사이아닌(CuPc) 등의 프탈로사이아닌계 착체 화합물, 4,4'-비스[N-(4-다이페닐아미노페닐)-N-페닐아미노]바이페닐(약칭: DPAB), N,N'-비스{4-[비스(3-메틸페닐)아미노]페닐}-N,N'-다이페닐-(1,1'-바이페닐)-4,4'-다이아민(약칭: DNTPD) 등의 방향족 아민 화합물, 또는 폴리(3,4-에틸렌다이옥시싸이오펜)/폴리(스타이렌설폰산)(PEDOT/PSS) 등의 고분자 화합물 등에 의해서도 정공 주입층(111)을 형성할 수 있다. 억셉터성을 갖는 물질은, 전계를 인가함으로써, 인접한 정공 수송층(또는 정공 수송 재료)으로부터 전자를 추출할 수 있다.
또한 정공 주입층(111)으로서, 정공 수송성을 갖는 물질에 억셉터성 물질을 포함시킨 복합 재료를 사용할 수도 있다. 또한 정공 수송성 물질에 억셉터성 물질을 포함시킨 복합 재료를 사용함으로써, 일함수에 상관없이 전극을 형성하는 재료를 선택할 수 있다. 즉, 제 1 전극(101)으로서 일함수가 큰 재료뿐만 아니라, 일함수가 작은 재료도 사용할 수 있게 된다. 상기 억셉터성 물질로서 상술한 억셉터성을 갖는 물질을 사용할 수 있고, 이들 중에서도 산화 몰리브데넘은 대기 중에서도 안정적이고 흡습성이 낮으며 취급하기 쉬워 바람직하다.
복합 재료에 사용하는 정공 수송성 물질로서는 방향족 아민 화합물, 카바졸 유도체, 방향족 탄화수소, 고분자 화합물(올리고머, 덴드리머, 폴리머 등) 등, 각종 유기 화합물을 사용할 수 있다. 또한 복합 재료에 사용하는 정공 수송성 물질은 1Х10-6cm2/Vs 이상의 정공 이동도를 갖는 물질인 것이 바람직하다. 또한 본 발명의 일 형태의 유기 화합물도 적합하게 사용할 수 있다. 아래에서는, 복합 재료에서 정공 수송성 물질로서 사용할 수 있는 유기 화합물을 구체적으로 열거한다.
복합 재료에 사용할 수 있는 방향족 아민 화합물로서는 N,N'-다이(p-톨릴)-N,N'-다이페닐-p-페닐렌다이아민(약칭: DTDPPA), 4,4'-비스[N-(4-다이페닐아미노페닐)-N-페닐아미노]바이페닐(약칭: DPAB), N,N'-비스{4-[비스(3-메틸페닐)아미노]페닐}-N,N'-다이페닐-(1,1'-바이페닐)-4,4'-다이아민(약칭: DNTPD), 1,3,5-트리스[N-(4-다이페닐아미노페닐)-N-페닐아미노]벤젠(약칭: DPA3B) 등을 들 수 있다. 카바졸 유도체로서는 구체적으로, 3-[N-(9-페닐카바졸-3-일)-N-페닐아미노]-9-페닐카바졸(약칭: PCzPCA1), 3,6-비스[N-(9-페닐카바졸-3-일)-N-페닐아미노]-9-페닐카바졸(약칭: PCzPCA2), 3-[N-(1-나프틸)-N-(9-페닐카바졸-3-일)아미노]-9-페닐카바졸(약칭: PCzPCN1), 4,4'-다이(N-카바졸릴)바이페닐(약칭: CBP), 1,3,5-트리스[4-(N-카바졸릴)페닐]벤젠(약칭: TCPB), 9-[4-(10-페닐-9-안트릴)페닐]-9H-카바졸(약칭: CzPA), 1,4-비스[4-(N-카바졸릴)페닐]-2,3,5,6-테트라페닐벤젠 등을 사용할 수 있다. 방향족 탄화수소로서는 예를 들어, 2-tert-뷰틸-9,10-다이(2-나프틸)안트라센(약칭: t-BuDNA), 2-tert-뷰틸-9,10-다이(1-나프틸)안트라센, 9,10-비스(3,5-다이페닐페닐)안트라센(약칭: DPPA), 2-tert-뷰틸-9,10-비스(4-페닐페닐)안트라센(약칭: t-BuDBA), 9,10-다이(2-나프틸)안트라센(약칭: DNA), 9,10-다이페닐안트라센(약칭: DPAnth), 2-tert-뷰틸안트라센(약칭: t-BuAnth), 9,10-비스(4-메틸-1-나프틸)안트라센(약칭: DMNA), 2-tert-뷰틸-9,10-비스[2-(1-나프틸)페닐]안트라센, 9,10-비스[2-(1-나프틸)페닐]안트라센, 2,3,6,7-테트라메틸-9,10-다이(1-나프틸)안트라센, 2,3,6,7-테트라메틸-9,10-다이(2-나프틸)안트라센, 9,9'-바이안트릴, 10,10'-다이페닐-9,9'-바이안트릴, 10,10'-비스(2-페닐페닐)-9,9'-바이안트릴, 10,10'-비스[(2,3,4,5,6-펜타페닐)페닐]-9,9'-바이안트릴, 안트라센, 테트라센, 루브렌, 페릴렌, 2,5,8,11-테트라(tert-뷰틸)페릴렌 등을 들 수 있다. 또한 이 외에 펜타센, 코로넨 등을 사용할 수도 있다. 바이닐 골격을 가져도 좋다. 바이닐기를 갖는 방향족 탄화수소로서는 예를 들어 4,4'-비스(2,2-다이페닐바이닐)바이페닐(약칭: DPVBi), 9,10-비스[4-(2,2-다이페닐바이닐)페닐]안트라센(약칭: DPVPA) 등을 들 수 있다.
또한 폴리(N-바이닐카바졸)(약칭: PVK)이나 폴리(4-바이닐트라이페닐아민)(약칭: PVTPA), 폴리[N-(4-{N'-[4-(4-다이페닐아미노)페닐]페닐-N'-페닐아미노}페닐)메타크릴아마이드](약칭: PTPDMA), 폴리[N,N'-비스(4-뷰틸페닐)-N,N'-비스(페닐)벤지딘](약칭: Poly-TPD) 등의 고분자 화합물을 사용할 수도 있다.
정공 주입층(111)을 형성함으로써, 정공 주입성이 양호해져 구동 전압이 작은 발광 디바이스를 얻을 수 있다. 또한 억셉터성을 갖는 유기 화합물은 증착에 의한 성막이 쉽기 때문에 취급하기 쉬운 재료이다.
정공 수송층(112)은 정공 수송 재료를 포함하여 형성된다. 정공 수송 재료로서는 1Х10-6cm2/Vs 이상의 정공 이동도를 갖는 것이 바람직하다. 상기 정공 수송 재료로서는 상기 복합 재료에 사용할 수 있는 정공 수송 재료로서 든 유기 화합물을 사용할 수 있다.
발광층(113)은 발광 재료 및 호스트 재료를 포함한 층이다. 발광 재료는 형광 발광 물질이어도 좋고, 인광 발광 물질이어도 좋고, 열 활성화 지연 형광(TADF)을 나타내는 물질이어도 좋고, 그 외의 발광 재료이어도 좋다. 또한 단층이어도 좋고, 상이한 발광 재료가 포함되는 복수의 층으로 이루어져도 좋다. 또한 본 발명의 일 형태는 발광층(113)이 형광 발광을 나타내는 층, 특히 청색 형광 발광을 나타내는 층인 경우에 더 적합하게 적용할 수 있다.
발광층(113)에서 형광 발광 물질로서 사용할 수 있는 재료의 예로서는, 다음과 같은 것을 들 수 있다. 또한 이들 외의 형광 발광 물질을 사용할 수도 있다.
5,6-비스[4-(10-페닐-9-안트릴)페닐]-2,2'-바이피리딘(약칭: PAP2BPy), 5,6-비스[4'-(10-페닐-9-안트릴)바이페닐-4-일]-2,2'-바이피리딘(약칭: PAPP2BPy), N,N'-다이페닐-N,N'-비스[4-(9-페닐-9H-플루오렌-9-일)페닐]피렌-1,6-다이아민(약칭: 1,6FLPAPrn), N,N'-비스(3-메틸페닐)-N,N'-비스[3-(9-페닐-9H-플루오렌-9-일)페닐]피렌-1,6-다이아민(약칭: 1,6mMemFLPAPrn), N,N'-비스[4-(9H-카바졸-9-일)페닐]-N,N'-다이페닐스틸벤-4,4'-다이아민(약칭: YGA2S), 4-(9H-카바졸-9-일)-4'-(10-페닐-9-안트릴)트라이페닐아민(약칭: YGAPA), 4-(9H-카바졸-9-일)-4'-(9,10-다이페닐-2-안트릴)트라이페닐아민(약칭: 2YGAPPA), N,9-다이페닐-N-[4-(10-페닐-9-안트릴)페닐]-9H-카바졸-3-아민(약칭: PCAPA), 페릴렌, 2,5,8,11-테트라-(tert-뷰틸)페릴렌(약칭: TBP), 4-(10-페닐-9-안트릴)-4'-(9-페닐-9H-카바졸-3-일)트라이페닐아민(약칭: PCBAPA), N,N''-(2-tert-뷰틸안트라센-9,10-다이일다이-4,1-페닐렌)비스[N,N',N'-트라이페닐-1,4-페닐렌다이아민](약칭: DPABPA), N,9-다이페닐-N-[4-(9,10-다이페닐-2-안트릴)페닐]-9H-카바졸-3-아민(약칭: 2PCAPPA), N-[4-(9,10-다이페닐-2-안트릴)페닐]-N,N',N'-트라이페닐-1,4-페닐렌다이아민(약칭: 2DPAPPA), N,N,N',N',N'',N'',N''',N'''-옥타페닐다이벤조[g,p]크리센-2,7,10,15-테트라아민(약칭: DBC1), 쿠마린30, N-(9,10-다이페닐-2-안트릴)-N,9-다이페닐-9H-카바졸-3-아민(약칭: 2PCAPA), N-[9,10-비스(1,1'-바이페닐-2-일)-2-안트릴]-N,9-다이페닐-9H-카바졸-3-아민(약칭: 2PCABPhA), N-(9,10-다이페닐-2-안트릴)-N,N',N'-트라이페닐-1,4-페닐렌다이아민(약칭: 2DPAPA), N-[9,10-비스(1,1'-바이페닐-2-일)-2-안트릴]-N,N',N'-트라이페닐-1,4-페닐렌다이아민(약칭: 2DPABPhA), 9,10-비스(1,1'-바이페닐-2-일)-N-[4-(9H-카바졸-9-일)페닐]-N-페닐안트라센-2-아민(약칭: 2YGABPhA), N,N,9-트라이페닐안트라센-9-아민(약칭: DPhAPhA), 쿠마린545T, N,N'-다이페닐퀴나크리돈(약칭: DPQd), 루브렌, 5,12-비스(1,1'-바이페닐-4-일)-6,11-다이페닐테트라센(약칭: BPT), 2-(2-{2-[4-(다이메틸아미노)페닐]에텐일}-6-메틸-4H-피란-4-일리덴)프로페인다이나이트릴(약칭: DCM1), 2-{2-메틸-6-[2-(2,3,6,7-테트라하이드로-1H,5H-벤조[ij]퀴놀리진-9-일)에텐일]-4H-피란-4-일리덴}프로페인다이나이트릴(약칭: DCM2), N,N,N',N'-테트라키스(4-메틸페닐)테트라센-5,11-다이아민(약칭: p-mPhTD), 7,14-다이페닐-N,N,N',N'-테트라키스(4-메틸페닐)아세나프토[1,2-a]플루오란텐-3,10-다이아민(약칭: p-mPhAFD), 2-{2-아이소프로필-6-[2-(1,1,7,7-테트라메틸-2,3,6,7-테트라하이드로-1H,5H-벤조[ij]퀴놀리진-9-일)에텐일]-4H-피란-4-일리덴}프로페인다이나이트릴(약칭: DCJTI), 2-{2-tert-뷰틸-6-[2-(1,1,7,7-테트라메틸-2,3,6,7-테트라하이드로-1H,5H-벤조[ij]퀴놀리진-9-일)에텐일]-4H-피란-4-일리덴}프로페인다이나이트릴(약칭: DCJTB), 2-(2,6-비스{2-[4-(다이메틸아미노)페닐]에텐일}-4H-피란-4-일리덴)프로페인다이나이트릴(약칭: BisDCM), 2-{2,6-비스[2-(8-메톡시-1,1,7,7-테트라메틸-2,3,6,7-테트라하이드로-1H,5H-벤조[ij]퀴놀리진-9-일)에텐일]-4H-피란-4-일리덴}프로페인다이나이트릴(약칭: BisDCJTM), N,N'-(피렌-1,6-다이일)비스[(6,N-다이페닐벤조[b]나프토[1,2-d]퓨란)-8-아민](약칭: 1,6BnfAPrn-03), 3,10-비스[N-(9-페닐-9H-카바졸-2-일)-N-페닐아미노]나프토[2,3-b;6,7-b']비스벤조퓨란(약칭: 3,10PCA2Nbf(IV)-02), 3,10-비스[N-(다이벤조퓨란-3-일)-N-페닐아미노]나프토[2,3-b;6,7-b']비스벤조퓨란(약칭: 3,10FrA2Nbf(IV)-02) 등을 들 수 있다. 특히, 1,6FLPAPrn, 1,6mMemFLPAPrn, 1,6BnfAPrn-03과 같은 피렌다이아민 화합물로 대표되는 축합 방향족 다이아민 화합물은 정공 트랩성이 높고, 발광 효율이나 신뢰성이 우수하기 때문에 바람직하다.
발광층(113)에서 발광 중심 재료로서 인광 발광 물질을 사용하는 경우, 사용할 수 있는 재료의 예로서는, 다음과 같은 것을 들 수 있다.
트리스{2-[5-(2-메틸페닐)-4-(2,6-다이메틸페닐)-4H-1,2,4-트라이아졸-3-일-κN2]페닐-κC}이리듐(III)(약칭: [Ir(mpptz-dmp)3]), 트리스(5-메틸-3,4-다이페닐-4H-1,2,4-트라이아졸레이토)이리듐(III)(약칭: [Ir(Mptz)3]), 트리스[4-(3-바이페닐)-5-아이소프로필-3-페닐-4H-1,2,4-트라이아졸레이토]이리듐(III)(약칭: [Ir(iPrptz-3b)3])과 같은 4H-트라이아졸 골격을 갖는 유기 금속 이리듐 착체나, 트리스[3-메틸-1-(2-메틸페닐)-5-페닐-1H-1,2,4-트라이아졸레이토]이리듐(III)(약칭: [Ir(Mptz1-mp)3]), 트리스(1-메틸-5-페닐-3-프로필-1H-1,2,4-트라이아졸레이토)이리듐(III)(약칭: [Ir(Prptz1-Me)3])과 같은 1H-트라이아졸 골격을 갖는 유기 금속 이리듐 착체나, fac-트리스[1-(2,6-다이아이소프로필페닐)-2-페닐-1H-이미다졸]이리듐(III)(약칭: [Ir(iPrpmi)3]), 트리스[3-(2,6-다이메틸페닐)-7-메틸이미다조[1,2-f]페난트리디네이토]이리듐(III)(약칭: [Ir(dmpimpt-Me)3])과 같은 이미다졸 골격을 갖는 유기 금속 이리듐 착체나, 비스[2-(4',6'-다이플루오로페닐)피리디네이토-N,C2']이리듐(III)테트라키스(1-피라졸릴)보레이트(약칭: FIr6), 비스[2-(4',6'-다이플루오로페닐)피리디네이토-N,C2']이리듐(III)피콜리네이트(약칭: FIrpic), 비스{2-[3',5'-비스(트라이플루오로메틸)페닐]피리디네이토-N,C2'}이리듐(III)피콜리네이트(약칭: [Ir(CF3ppy)2(pic)]), 비스[2-(4',6'-다이플루오로페닐)피리디네이토-N,C2']이리듐(III)아세틸아세토네이트(약칭: FIr(acac))와 같은 전자 흡인기를 갖는 페닐피리딘 유도체를 배위자로 하는 유기 금속 이리듐 착체를 들 수 있다. 이들은 청색 인광 발광을 나타내는 화합물이고, 440nm 내지 520nm에 발광 피크를 갖는 화합물이다.
또한 트리스(4-메틸-6-페닐피리미디네이토)이리듐(III)(약칭: [Ir(mppm)3]), 트리스(4-t-뷰틸-6-페닐피리미디네이토)이리듐(III)(약칭: [Ir(tBuppm)3]), (아세틸아세토네이토)비스(6-메틸-4-페닐피리미디네이토)이리듐(III)(약칭: [Ir(mppm)2(acac)]), (아세틸아세토네이토)비스(6-tert-뷰틸-4-페닐피리미디네이토)이리듐(III)(약칭: [Ir(tBuppm)2(acac)]), (아세틸아세토네이토)비스[6-(2-노보닐)-4-페닐피리미디네이토]이리듐(III)(약칭: [Ir(nbppm)2(acac)]), (아세틸아세토네이토)비스[5-메틸-6-(2-메틸페닐)-4-페닐피리미디네이토]이리듐(III)(약칭: [Ir(mpmppm)2(acac)]), (아세틸아세토네이토)비스(4,6-다이페닐피리미디네이토)이리듐(III)(약칭: [Ir(dppm)2(acac)])과 같은 피리미딘 골격을 갖는 유기 금속 이리듐 착체나, (아세틸아세토네이토)비스(3,5-다이메틸-2-페닐피라지네이토)이리듐(III)(약칭: [Ir(mppr-Me)2(acac)]), (아세틸아세토네이토)비스(5-아이소프로필-3-메틸-2-페닐피라지네이토)이리듐(III)(약칭: [Ir(mppr-iPr)2(acac)])과 같은 피라진 골격을 갖는 유기 금속 이리듐 착체나, 트리스(2-페닐피리디네이토-N,C2')이리듐(III)(약칭: [Ir(ppy)3]), 비스(2-페닐피리디네이토-N,C2')이리듐(III)아세틸아세토네이트(약칭: [Ir(ppy)2(acac)]), 비스(벤조[h]퀴놀리네이토)이리듐(III)아세틸아세토네이트(약칭: [Ir(bzq)2(acac)]), 트리스(벤조[h]퀴놀리네이토)이리듐(III)(약칭: [Ir(bzq)3]), 트리스(2-페닐퀴놀리네이토-N,C2')이리듐(III)(약칭: [Ir(pq)3]), 비스(2-페닐퀴놀리네이토-N,C2')이리듐(III)아세틸아세토네이트(약칭: [Ir(pq)2(acac)])와 같은 피리딘 골격을 갖는 유기 금속 이리듐 착체 외에, 트리스(아세틸아세토네이토)(모노페난트롤린)터븀(III)(약칭: [Tb(acac)3(Phen)])과 같은 희토류 금속 착체를 들 수 있다. 이들은 주로 녹색 인광 발광을 나타내는 화합물이고, 500nm 내지 600nm에 발광 피크를 갖는다. 또한 피리미딘 골격을 갖는 유기 금속 이리듐 착체는 신뢰성이나 발광 효율도 매우 우수하기 때문에 특히 바람직하다.
또한 (다이아이소뷰티릴메타네이토)비스[4,6-비스(3-메틸페닐)피리미디네이토]이리듐(III)(약칭: [Ir(5mdppm)2(dibm)]), 비스[4,6-비스(3-메틸페닐)피리미디네이토](다이피발로일메타네이토)이리듐(III)(약칭: [Ir(5mdppm)2(dpm)]), 비스[4,6-다이(나프탈렌-1-일)피리미디네이토](다이피발로일메타네이토)이리듐(III)(약칭: [Ir(d1npm)2(dpm)])과 같은 피리미딘 골격을 갖는 유기 금속 이리듐 착체나, (아세틸아세토네이토)비스(2,3,5-트라이페닐피라지네이토)이리듐(III)(약칭: [Ir(tppr)2(acac)]), 비스(2,3,5-트라이페닐피라지네이토)(다이피발로일메타네이토)이리듐(III)(약칭: [Ir(tppr)2(dpm)]), (아세틸아세토네이토)비스[2,3-비스(4-플루오로페닐)퀴녹살리네이토]이리듐(III)(약칭: [Ir(Fdpq)2(acac)])과 같은 피라진 골격을 갖는 유기 금속 이리듐 착체나, 트리스(1-페닐아이소퀴놀리네이토-N,C2')이리듐(III)(약칭: [Ir(piq)3]), 비스(1-페닐아이소퀴놀리네이토-N,C2')이리듐(III)아세틸아세토네이트(약칭: [Ir(piq)2(acac)])와 같은 피리딘 골격을 갖는 유기 금속 이리듐 착체 외에, 2,3,7,8,12,13,17,18-옥타에틸-21H,23H-포르피린백금(II)(약칭: PtOEP)과 같은 백금 착체나, 트리스(1,3-다이페닐-1,3-프로페인다이오네이토)(모노페난트롤린)유로퓸(III)(약칭: [Eu(DBM)3(Phen)]), 트리스[1-(2-테노일)-3,3,3-트라이플루오로아세토네이토](모노페난트롤린)유로퓸(III)(약칭: [Eu(TTA)3(Phen)])과 같은 희토류 금속 착체를 들 수 있다. 이들은 적색 인광 발광을 나타내는 화합물이고, 600nm 내지 700nm에 발광 피크를 갖는다. 또한 피라진 골격을 갖는 유기 금속 이리듐 착체로부터는 색도가 좋은 적색 발광을 얻을 수 있다.
또한 상술한 인광성 화합물 외에, 공지의 인광성 발광 재료를 선택하여 사용하여도 좋다.
TADF 재료로서는 풀러렌 및 그 유도체, 아크리딘 및 그 유도체, 에오신 유도체 등을 사용할 수 있다. 또한 마그네슘(Mg), 아연(Zn), 카드뮴(Cd), 주석(Sn), 백금(Pt), 인듐(In), 또는 팔라듐(Pd) 등을 포함하는 금속 함유 포르피린을 들 수 있다. 상기 금속 함유 포르피린으로서는, 예를 들어 아래의 구조식으로 나타내어지는 프로토포르피린-플루오린화 주석 착체(SnF2(Proto IX)), 메소포르피린-플루오린화 주석 착체(SnF2(Meso IX)), 헤마토포르피린-플루오린화 주석 착체(SnF2(Hemato IX)), 코프로포르피린테트라메틸에스터-플루오린화 주석 착체(SnF2(Copro III-4Me)), 옥타에틸포르피린-플루오린화 주석 착체(SnF2(OEP)), 에티오포르피린-플루오린화 주석 착체(SnF2(Etio I)), 옥타에틸포르피린-염화 백금 착체(PtCl2OEP) 등도 들 수 있다.
[화학식 9]
Figure pct00009
또한 아래의 구조식으로 나타내어지는 2-(바이페닐-4-일)-4,6-비스(12-페닐인돌로[2,3-a]카바졸-11-일)-1,3,5-트라이아진(약칭: PIC-TRZ), 9-(4,6-다이페닐-1,3,5-트라이아진-2-일)-9'-페닐-9H,9'H-3,3'-바이카바졸(약칭: PCCzTzn), 2-{4-[3-(N-페닐-9H-카바졸-3-일)-9H-카바졸-9-일]페닐}-4,6-다이페닐-1,3,5-트라이아진(약칭: PCCzPTzn), 2-[4-(10H-페녹사진-10-일)페닐]-4,6-다이페닐-1,3,5-트라이아진(약칭: PXZ-TRZ), 3-[4-(5-페닐-5,10-다이하이드로페나진-10-일)페닐]-4,5-다이페닐-1,2,4-트라이아졸(약칭: PPZ-3TPT), 3-(9,9-다이메틸-9H-아크리딘-10-일)-9H-크산텐-9-온(약칭: ACRXTN), 비스[4-(9,9-다이메틸-9,10-다이하이드로아크리딘)페닐]설폰(약칭: DMAC-DPS), 10-페닐-10H,10'H-스파이로[아크리딘-9,9'-안트라센]-10'-온(약칭: ACRSA) 등의 π전자 과잉형 헤테로 방향족 고리와 π전자 부족형 헤테로 방향족 고리의 한쪽 또는 양쪽을 갖는 헤테로 고리 화합물도 사용할 수 있다. 상기 헤테로 고리 화합물은 π전자 과잉형 헤테로 방향족 고리 및 π전자 부족형 헤테로 방향족 고리를 포함하기 때문에, 전자 수송성 및 정공 수송성이 모두 높아 바람직하다. 이들 중에서도, π전자 부족형 헤테로 방향족 고리를 포함하는 골격 중, 피리딘 골격, 다이아진 골격(피리미딘 골격, 피라진 골격, 피리다진 골격), 및 트라이아진 골격은 안정적이고 신뢰성이 양호하기 때문에 바람직하다. 특히, 벤조퓨로피리미딘 골격, 벤조티에노피리미딘 골격, 벤조퓨로피라진 골격, 벤조티에노피라진 골격은 억셉터성이 높고 신뢰성이 양호하기 때문에 바람직하다. 또한 π전자 과잉형 헤테로 방향족 고리를 포함하는 골격 중에서도, 아크리딘 골격, 페녹사진 골격, 페노싸이아진 골격, 퓨란 골격, 싸이오펜 골격, 및 피롤 골격은 안정적이고 신뢰성이 양호하기 때문에, 상기 골격 중 적어도 하나를 갖는 것이 바람직하다. 또한 퓨란 골격으로서는 다이벤조퓨란 골격이 바람직하고, 싸이오펜 골격으로서는 다이벤조싸이오펜 골격이 바람직하다. 또한 피롤 골격으로서는 인돌 골격, 카바졸 골격, 인돌로 카바졸 골격, 바이카바졸 골격, 3-(9-페닐-9H-카바졸-3-일)-9H-카바졸 골격이 특히 바람직하다. 또한 π전자 과잉형 헤테로 방향족 고리와 π전자 부족형 헤테로 방향족 고리가 직접 결합된 물질은, π전자 과잉형 헤테로 방향족 고리의 전자 공여성과 π전자 부족형 헤테로 방향족 고리의 전자 수용성이 모두 강해지고, S1 준위와 T1 준위의 에너지 차이가 작아지기 때문에, 열 활성화 지연 형광을 효율적으로 얻을 수 있어 특히 바람직하다. 또한 π전자 부족형 헤테로 방향족 고리 대신에, 사이아노기와 같은 전자 흡인기가 결합된 방향족 고리를 사용하여도 좋다. 또한 π전자 과잉형 골격으로서 방향족 아민 골격, 페나진 골격 등을 사용할 수 있다. 또한 π전자 부족형 골격으로서 크산텐 골격, 싸이오크산텐다이옥사이드 골격, 옥사다이아졸 골격, 트라이아졸 골격, 이미다졸 골격, 안트라퀴논 골격, 페닐보레인이나 보레인트렌 등의 붕소를 포함하는 골격, 벤조나이트릴 또는 사이아노벤젠 등의 나이트릴기 또는 사이아노기를 갖는 방향족 고리나 헤테로 방향족 고리, 벤조페논 등의 카보닐 골격, 포스핀옥사이드 골격, 설폰 골격 등을 사용할 수 있다. 이와 같이, π전자 부족형 헤테로 방향족 고리 및 π전자 과잉형 헤테로 방향족 고리 중 적어도 하나 대신에 π전자 부족형 골격 및 π전자 과잉형 골격을 사용할 수 있다.
[화학식 10]
Figure pct00010
또한 TADF 재료는, S1 준위와 T1 준위의 차이가 작고, 역 항간 교차에 의하여 에너지를 삼중항 여기 에너지로부터 단일항 여기 에너지로 변환하는 기능을 갖는 재료이다. 그러므로 삼중항 여기 에너지를 미량의 열 에너지에 의하여 단일항 여기 에너지로 업컨버트(역 항간 교차)할 수 있고, 단일항 여기 상태를 효율적으로 생성할 수 있다. 또한 삼중항 여기 에너지를 발광으로 변환할 수 있다.
또한 2종류의 물질로 여기 상태를 형성하는 들뜬 복합체(엑사이플렉스, 엑시플렉스, 또는 Exciplex라고도 함)는, S1 준위와 T1 준위의 차이가 매우 작고, 삼중항 여기 에너지를 단일항 여기 에너지로 변환할 수 있는 TADF 재료로서의 기능을 갖는다.
또한 T1 준위의 지표로서는, 저온(예를 들어 77K 내지 10K)에서 관측되는 인광 스펙트럼을 사용하면 좋다. TADF 재료는, 그 형광 스펙트럼의 단파장 측의 테일(tail)에서 접선을 긋고, 그 외삽선의 파장의 에너지를 S1 준위로 하고, 인광 스펙트럼의 단파장 측의 테일에서 접선을 긋고, 그 외삽선의 파장의 에너지를 T1 준위로 한 경우에 그 S1과 T1의 차이가 0.3eV 이하인 것이 바람직하고, 0.2eV 이하인 것이 더 바람직하다.
또한 TADF 재료를 발광 중심 재료로서 사용하는 경우, 호스트 재료의 S1 준위는 TADF 재료의 S1 준위보다 높은 것이 바람직하다. 또한 호스트 재료의 T1 준위는 TADF 재료의 T1 준위보다 높은 것이 바람직하다.
발광층의 호스트 재료로서는, 실시형태 1에서 설명한 본 발명의 일 형태의 호스트 재료용 안트라센 화합물을 사용하는 것이 바람직하다. 상기 호스트 재료용 안트라센 화합물을 사용함으로써 수명이 양호한 발광 디바이스를 제공할 수 있다.
또한 호스트 재료로서 실시형태 1에 기재된 호스트 재료용 안트라센 화합물을 사용하지 않는 경우, 전자 수송성을 갖는 재료나 정공 수송성을 갖는 재료 등 다양한 캐리어 수송 재료를 사용할 수 있다.
정공 수송성을 갖는 재료로서는, 4,4'-비스[N-(1-나프틸)-N-페닐아미노]바이페닐(약칭: NPB), N,N'-비스(3-메틸페닐)-N,N'-다이페닐-[1,1'-바이페닐]-4,4'-다이아민(약칭: TPD), 4,4'-비스[N-(스파이로-9,9'-바이플루오렌-2-일)-N-페닐아미노]바이페닐(약칭: BSPB), 4-페닐-4'-(9-페닐플루오렌-9-일)트라이페닐아민(약칭: BPAFLP), 4-페닐-3'-(9-페닐플루오렌-9-일)트라이페닐아민(약칭: mBPAFLP), 4-페닐-4'-(9-페닐-9H-카바졸-3-일)트라이페닐아민(약칭: PCBA1BP), 4,4'-다이페닐-4''-(9-페닐-9H-카바졸-3-일)트라이페닐아민(약칭: PCBBi1BP), 4-(1-나프틸)-4'-(9-페닐-9H-카바졸-3-일)트라이페닐아민(약칭: PCBANB), 4,4'-다이(1-나프틸)-4''-(9-페닐-9H-카바졸-3-일)트라이페닐아민(약칭: PCBNBB), 9,9-다이메틸-N-페닐-N-[4-(9-페닐-9H-카바졸-3-일)페닐]플루오렌-2-아민(약칭: PCBAF), N-페닐-N-[4-(9-페닐-9H-카바졸-3-일)페닐]스파이로-9,9'-바이플루오렌-2-아민(약칭: PCBASF) 등의 방향족 아민 골격을 갖는 화합물이나, 1,3-비스(N-카바졸릴)벤젠(약칭: mCP), 4,4'-다이(N-카바졸릴)바이페닐(약칭: CBP), 3,6-비스(3,5-다이페닐페닐)-9-페닐카바졸(약칭: CzTP), 3,3'-비스(9-페닐-9H-카바졸)(약칭: PCCP) 등의 카바졸 골격을 갖는 화합물이나, 4,4',4''-(벤젠-1,3,5-트라이일)트라이(다이벤조싸이오펜)(약칭: DBT3P-II), 2,8-다이페닐-4-[4-(9-페닐-9H-플루오렌-9-일)페닐]다이벤조싸이오펜(약칭: DBTFLP-III), 4-[4-(9-페닐-9H-플루오렌-9-일)페닐]-6-페닐다이벤조싸이오펜(약칭: DBTFLP-IV) 등의 싸이오펜 골격을 갖는 화합물이나, 4,4',4''-(벤젠-1,3,5-트라이일)트라이(다이벤조퓨란)(약칭: DBF3P-II), 4-{3-[3-(9-페닐-9H-플루오렌-9-일)페닐]페닐}다이벤조퓨란(약칭: mmDBFFLBi-II) 등의 퓨란 골격을 갖는 화합물이 있다. 상술한 것 중에서도 방향족 아민 골격을 갖는 화합물이나 카바졸 골격을 갖는 화합물은, 신뢰성이 양호하고, 정공 수송성이 높아 구동 전압 저감에도 기여하기 때문에 바람직하다. 또한 실시형태 1에 기재된 유기 화합물도 적합하게 사용할 수 있다.
전자 수송성을 갖는 재료로서는 예를 들어 비스(10-하이드록시벤조[h]퀴놀리네이토)베릴륨(II)(약칭: BeBq2), 비스(2-메틸-8-퀴놀리놀레이토)(4-페닐페놀레이토)알루미늄(III)(약칭: BAlq), 비스(8-퀴놀리놀레이토)아연(II)(약칭: Znq), 비스[2-(2-벤즈옥사졸릴)페놀레이토]아연(II)(약칭: ZnPBO), 비스[2-(2-벤조싸이아졸릴)페놀레이토]아연(II)(약칭: ZnBTZ) 등의 금속 착체나, 2-(4-바이페닐릴)-5-(4-tert-뷰틸페닐)-1,3,4-옥사다이아졸(약칭: PBD), 3-(4-바이페닐릴)-4-페닐-5-(4-tert-뷰틸페닐)-1,2,4-트라이아졸(약칭: TAZ), 2-[3'-(9,9-다이메틸-9H-플루오렌-2-일)-1,1'-바이페닐-3-일]-4,6-다이페닐-1,3,5-트라이아진(약칭: mFBPTzn), 1,3-비스[5-(p-tert-뷰틸페닐)-1,3,4-옥사다이아졸-2-일]벤젠(약칭: OXD-7), 9-[4-(5-페닐-1,3,4-옥사다이아졸-2-일)페닐]-9H-카바졸(약칭: CO11), 2,2',2''-(1,3,5-벤젠트라이일)트리스(1-페닐-1H-벤즈이미다졸)(약칭: TPBI), 2-[3-(다이벤조싸이오펜-4-일)페닐]-1-페닐-1H-벤즈이미다졸(약칭: mDBTBIm-II), 2-{4-[9,10-다이(나프탈렌-2-일)-2-안트릴]페닐}-1-페닐-1H-벤즈이미다졸(약칭: ZADN) 등의 폴리아졸 골격을 갖는 헤테로 고리 화합물이나, 2-[3-(다이벤조싸이오펜-4-일)페닐]다이벤조[f,h]퀴녹살린(약칭: 2mDBTPDBq-II), 2-[3'-(다이벤조싸이오펜-4-일)바이페닐-3-일]다이벤조[f,h]퀴녹살린(약칭: 2mDBTBPDBq-II), 2-[3'-(9H-카바졸-9-일)바이페닐-3-일]다이벤조[f,h]퀴녹살린(약칭: 2mCzBPDBq), 4,6-비스[3-(페난트렌-9-일)페닐]피리미딘(약칭: 4,6mPnP2Pm), 4,6-비스[3-(4-다이벤조싸이엔일)페닐]피리미딘(약칭: 4,6mDBTP2Pm-II) 등의 다이아진 골격을 갖는 헤테로 고리 화합물이나, 3,5-비스[3-(9H-카바졸-9-일)페닐]피리딘(약칭: 35DCzPPy), 1,3,5-트라이[3-(3-피리딜)페닐]벤젠(약칭: TmPyPB) 등의 피리딘 골격을 갖는 헤테로 고리 화합물이 있다. 상술한 것 중에서도 다이아진 골격을 갖는 헤테로 고리 화합물이나 피리딘 골격을 갖는 헤테로 고리 화합물은 신뢰성이 양호하기 때문에 바람직하다. 특히, 다이아진(피리미딘이나 피라진) 골격을 갖는 헤테로 고리 화합물은 전자 수송성이 높아 구동 전압 저감에도 기여한다.
형광 발광 물질을 발광 재료로서 사용하는 경우, 호스트 재료로서는 안트라센 골격을 갖는 재료가 적합하다. 안트라센 골격을 갖는 물질을 형광 발광 물질의 호스트 재료로서 사용하면, 발광 효율 및 내구성 모두가 양호한 발광층을 실현할 수 있다. 안트라센 골격을 갖는 재료는 HOMO 준위가 깊은 재료가 많기 때문에, 본 발명의 일 형태를 적합하게 적용할 수 있다. 호스트 재료로서 사용하는 안트라센 골격을 갖는 물질로서는 다이페닐안트라센 골격, 특히 9,10-다이페닐안트라센 골격을 갖는 물질이 화학적으로 안정적이기 때문에 바람직하다. 또한 호스트 재료가 카바졸 골격을 갖는 경우, 정공의 주입성·수송성이 높아지기 때문에 바람직하지만, 카바졸에 벤젠 고리가 더 축합된 벤조카바졸 골격을 갖는 경우에는, 카바졸보다 HOMO가 0.1eV 정도 얕아져 정공이 들어가기 쉬워지기 때문에 더 바람직하다. 특히, 호스트 재료가 다이벤조카바졸 골격을 갖는 경우, 카바졸보다 HOMO가 0.1eV 정도 얕아져 정공이 들어가기 쉬워질 뿐만 아니라, 정공 수송성도 우수하고 내열성도 높아지므로 바람직하다. 따라서 호스트 재료로서 더 바람직한 것은, 9,10-다이페닐안트라센 골격 및 카바졸 골격(또는 벤조카바졸 골격이나 다이벤조카바졸 골격)을 동시에 갖는 물질이다. 또한 상기 정공 주입성·수송성의 관점에서, 카바졸 골격 대신에 벤조플루오렌 골격이나 다이벤조플루오렌 골격을 사용하여도 좋다. 이와 같은 물질의 예로서는 9-페닐-3-[4-(10-페닐-9-안트릴)페닐]-9H-카바졸(약칭: PCzPA), 3-[4-(1-나프틸)-페닐]-9-페닐-9H-카바졸(약칭: PCPN), 9-[4-(10-페닐-9-안트릴)페닐]-9H-카바졸(약칭: CzPA), 7-[4-(10-페닐-9-안트릴)페닐]-7H-다이벤조[c,g]카바졸(약칭: cgDBCzPA), 6-[3-(9,10-다이페닐-2-안트릴)페닐]-벤조[b]나프토[1,2-d]퓨란(약칭: 2mBnfPPA), 9-페닐-10-{4-(9-페닐-9H-플루오렌-9-일)바이페닐-4'-일}안트라센(약칭: FLPPA) 등을 들 수 있다. 특히 CzPA, cgDBCzPA, 2mBnfPPA, PCzPA는 특성이 매우 양호하기 때문에 바람직하다.
또한 본 발명의 일 형태의 발광 디바이스는 특히 청색 형광 발광을 나타내는 발광 디바이스에 적용하는 것이 바람직하다.
또한 호스트 재료는 복수 종류의 물질이 혼합된 재료이어도 좋고, 혼합된 호스트 재료를 사용하는 경우에는 전자 수송성을 갖는 재료와 정공 수송성을 갖는 재료를 혼합하는 것이 바람직하다. 전자 수송성을 갖는 재료와 정공 수송성을 갖는 재료를 혼합함으로써, 발광층(113)의 수송성을 쉽게 조정할 수 있어 재결합 영역을 쉽게 제어할 수도 있다. 정공 수송성을 갖는 재료와 전자 수송성을 갖는 재료의 함유량의 비는 정공 수송성을 갖는 재료:전자 수송성을 갖는 재료=1:9 내지 9:1로 하면 좋다.
또한 이들 혼합된 재료들이 들뜬 복합체를 형성하여도 좋다. 상기 들뜬 복합체로서 발광 재료의 가장 낮은 에너지 측의 흡수대의 파장과 겹치는 발광을 나타내는 들뜬 복합체를 형성하는 조합을 선택하면, 에너지 이동이 원활하게 수행되어 발광을 효율적으로 얻을 수 있기 때문에 바람직하다. 또한 상기 구성을 사용하면, 구동 전압도 저하되기 때문에 바람직하다.
전자 수송층(114)은 전자 수송성을 갖는 물질을 포함하는 층이다. 전자 수송성을 갖는 물질로서는, 상기 호스트 재료에 사용할 수 있는 전자 수송성을 갖는 물질로서 예를 든 것을 사용할 수 있다.
전자 수송층(114)과 제 2 전극(102) 사이에는 전자 주입층(115)으로서 플루오린화 리튬(LiF), 8-하이드록시퀴놀리네이토-리튬(약칭: Liq), 플루오린화 세슘(CsF), 플루오린화 칼슘(CaF2) 등의 알칼리 금속 또는 알칼리 토금속, 혹은 이들의 화합물을 포함한 층을 제공하여도 좋다. 전자 주입층(115)으로서는 전자 수송성을 갖는 물질로 이루어지는 층 내에 알칼리 금속 또는 알칼리 토금속, 혹은 이들의 화합물을 포함시킨 것이나, 전자화물을 사용하여도 좋다. 전자화물로서는, 예를 들어 칼슘과 알루미늄의 혼합 산화물에 전자를 고농도로 첨가한 물질 등이 있다.
또한 전자 주입층(115) 대신에 전하 발생층(116)을 제공하여도 좋다(도 1의 (B) 참조). 전하 발생층(116)은 전위를 인가함으로써 상기 층의 음극 측과 접하는 층에 정공을, 양극 측과 접하는 층에 전자를 주입할 수 있는 층을 말한다. 전하 발생층(116)에는 적어도 P형층(117)이 포함된다. P형층(117)은 상술한 정공 주입층(111)을 구성할 수 있는 재료로서 열거한 복합 재료를 사용하여 형성되는 것이 바람직하다. 또한 P형층(117)은 복합 재료를 구성하는 재료로서 상술한 억셉터 재료를 포함하는 막과 정공 수송성 재료를 포함하는 막을 적층하여 구성되어도 좋다. P형층(117)에 전위를 인가함으로써, 전자 수송층(114)에 전자가, 음극인 제 2 전극(102)에 정공이 주입되어, 발광 디바이스가 동작한다.
또한 전하 발생층(116)에는 P형층(117) 외에, 전자 릴레이층(118) 및 전자 주입 버퍼층(119) 중 어느 한쪽 또는 양쪽 모두가 제공되는 것이 바람직하다.
전자 릴레이층(118)은 적어도 전자 수송성을 갖는 물질을 포함하고, 전자 주입 버퍼층(119)과 P형층(117)의 상호 작용을 방지하여 전자를 원활하게 수송하는 기능을 갖는다. 전자 릴레이층(118)에 포함되는 전자 수송성을 갖는 물질의 LUMO 준위는 P형층(117)에서의 억셉터성 물질의 LUMO 준위와, 전자 수송층(114)에서의 전하 발생층(116)과 접하는 층에 포함되는 물질의 LUMO 준위 사이인 것이 바람직하다. 전자 릴레이층(118)에 사용되는 전자 수송성을 갖는 물질에서의 LUMO 준위의 구체적인 에너지 준위는 -5.0eV 이상, 바람직하게는 -5.0eV 이상 -3.0eV 이하인 것이 좋다. 또한 전자 릴레이층(118)에 사용되는 전자 수송성을 갖는 물질로서는 프탈로사이아닌계 재료 또는 금속-산소 결합과 방향족 배위자를 갖는 금속 착체를 사용하는 것이 바람직하다.
전자 주입 버퍼층(119)에는 알칼리 금속, 알칼리 토금속, 희토류 금속, 및 이들의 화합물(알칼리 금속 화합물(산화 리튬 등의 산화물, 할로젠화물, 탄산 리튬이나 탄산 세슘 등의 탄산염을 포함함), 알칼리 토금속 화합물(산화물, 할로젠화물, 탄산염을 포함함), 또는 희토류 금속의 화합물(산화물, 할로젠화물, 탄산염을 포함함)) 등 전자 주입성이 높은 물질을 사용할 수 있다.
또한 전자 주입 버퍼층(119)이 전자 수송성을 갖는 물질과 도너성 물질을 포함하여 형성되는 경우에는, 도너성 물질로서 알칼리 금속, 알칼리 토금속, 희토류 금속, 및 이들의 화합물(알칼리 금속 화합물(산화 리튬 등의 산화물, 할로젠화물, 탄산 리튬이나 탄산 세슘 등의 탄산염을 포함함), 알칼리 토금속 화합물(산화물, 할로젠화물, 탄산염을 포함함), 또는 희토류 금속의 화합물(산화물, 할로젠화물, 탄산염을 포함함))을 사용할 수 있고, 이 외에도 테트라싸이아나프타센(약칭: TTN), 니켈로센, 데카메틸니켈로센 등의 유기 화합물을 사용할 수도 있다. 또한 전자 수송성을 갖는 물질로서는, 상술한 전자 수송층(114)을 구성하는 재료와 같은 재료를 사용하여 형성할 수 있다.
제 2 전극(102)을 형성하는 물질로서는, 일함수가 작은(구체적으로는 3.8eV 이하) 금속, 합금, 전기 전도성 화합물, 및 이들의 혼합물 등을 사용할 수 있다. 이와 같은 음극 재료의 구체적인 예로서는, 리튬(Li)이나 세슘(Cs) 등의 알칼리 금속, 및 마그네슘(Mg), 칼슘(Ca), 스트론튬(Sr) 등의 주기율표의 1족 또는 2족에 속하는 원소, 및 이들을 포함하는 합금(MgAg, AlLi), 유로퓸(Eu), 이터븀(Yb) 등의 희토류 금속, 및 이들을 포함하는 합금 등을 들 수 있다. 다만 제 2 전극(102)과 전자 수송층 사이에 전자 주입층을 제공함으로써, 일함수의 크기에 상관없이 Al, Ag, ITO, 실리콘, 또는 산화 실리콘을 함유하는 산화 인듐-산화 주석 등 다양한 도전성 재료를 제 2 전극(102)에 사용할 수 있다. 이들 도전성 재료는 진공 증착법이나 스퍼터링법 등의 건식법, 잉크젯법, 스핀 코팅법 등을 사용하여 성막할 수 있다. 또한 졸-겔법을 사용하여 습식법으로 형성하여도 좋고, 금속 재료의 페이스트를 사용하여 습식법으로 형성하여도 좋다.
또한 EL층(103)의 형성 방법으로서는 건식법, 습식법을 불문하고 다양한 방법을 사용할 수 있다. 예를 들어 진공 증착법, 그라비어 인쇄법, 오프셋 인쇄법, 스크린 인쇄법, 잉크젯법, 또는 스핀 코팅법 등을 사용하여도 좋다.
또한 상술한 각 전극 또는 각 층을 상이한 성막 방법을 사용하여 형성하여도 좋다.
또한 제 1 전극(101)과 제 2 전극(102) 사이에 제공되는 층의 구성은 상술한 것에 한정되지 않는다. 다만 발광 영역과 전극이나 캐리어 주입층에 사용되는 금속이 근접하여 일어나는 소광이 억제되도록, 제 1 전극(101) 및 제 2 전극(102)에서 떨어진 곳에 정공과 전자가 재결합되는 발광 영역을 제공하는 구성이 바람직하다.
또한 발광층(113)과 접하는 정공 수송층이나 전자 수송층, 특히 발광층(113)에서의 재결합 영역에 가까운 캐리어 수송층은, 발광층에서 생성된 여기자로부터의 에너지 이동을 억제하기 위하여, 발광층을 구성하는 발광 재료 또는 발광층에 포함되는 발광 재료가 갖는 밴드갭보다 큰 밴드갭을 갖는 물질로 구성되는 것이 바람직하다.
다음으로, 복수의 발광 유닛이 적층된 구성을 갖는 발광 디바이스(적층형 소자, 탠덤형 소자라고도 함)의 형태에 대하여 도 1의 (C)를 참조하여 설명한다. 이 발광 디바이스는 양극과 음극 사이에 복수의 발광 유닛을 갖는 발광 디바이스이다. 하나의 발광 유닛은 도 1의 (A1), (A2), 및 (B) 등에 나타낸 EL층(103)과 거의 같은 구성을 갖는다. 즉, 도 1의 (C)에 나타낸 발광 디바이스는 복수의 발광 유닛을 갖는 발광 디바이스이고, 도 1의 (A1), (A2), 및 (B)에 나타낸 발광 디바이스는 하나의 발광 유닛을 갖는 발광 디바이스라고 할 수 있다.
도 1의 (C)에서, 양극(501)과 음극(502) 사이에는 제 1 발광 유닛(511)과 제 2 발광 유닛(512)이 적층되어 있고, 제 1 발광 유닛(511)과 제 2 발광 유닛(512) 사이에는 전하 발생층(513)이 제공되어 있다. 양극(501)과 음극(502)은 각각 도 1의 (A1) 등에서의 제 1 전극(101)과 제 2 전극(102)에 상당하고, 도 1의 (A1)의 설명에서 기재한 것과 같은 것을 적용할 수 있다. 또한 제 1 발광 유닛(511)과 제 2 발광 유닛(512)의 구성은 같아도 좋고 달라도 좋다.
전하 발생층(513)은, 양극(501)과 음극(502)에 전압이 인가되었을 때 한쪽 발광 유닛에 전자를 주입하고 다른 쪽 발광 유닛에 정공을 주입하는 기능을 갖는다. 즉, 도 1의 (C)에서, 양극의 전위가 음극의 전위보다 높아지도록 전압이 인가된 경우, 전하 발생층(513)은 제 1 발광 유닛(511)에 전자를 주입하고 제 2 발광 유닛(512)에 정공을 주입하는 것이면 좋다.
전하 발생층(513)은 도 1의 (B)에서 설명한 전하 발생층(116)과 같은 구성을 가지도록 형성하는 것이 바람직하다. 유기 화합물과 금속 산화물의 복합 재료는 캐리어 주입성, 캐리어 수송성이 우수하기 때문에, 저전압 구동, 저전류 구동을 실현할 수 있다. 또한 발광 유닛의 양극 측의 면이 전하 발생층(513)과 접하는 경우에는, 전하 발생층(513)이 발광 유닛의 정공 주입층으로서의 역할도 할 수 있기 때문에, 이 발광 유닛에는 정공 주입층을 제공하지 않아도 된다.
또한 전하 발생층(513)에 전자 주입 버퍼층(119)을 제공하는 경우에는, 이 전자 주입 버퍼층(119)이 양극 측의 발광 유닛에서의 전자 주입층으로서의 역할을 하기 때문에, 양극 측의 발광 유닛에는 전자 주입층을 반드시 형성할 필요는 없다.
도 1의 (C)에서는 2개의 발광 유닛을 갖는 발광 디바이스에 대하여 설명하였지만, 3개 이상의 발광 유닛을 적층한 발광 디바이스에 대해서도 마찬가지로 적용할 수 있다. 본 실시형태에 따른 발광 디바이스와 같이, 한 쌍의 전극 사이에 복수의 발광 유닛을 전하 발생층(513)으로 칸막이하여 배치함으로써, 전류 밀도를 낮게 유지하면서 고휘도 발광을 가능하게 하고 수명이 더 긴 소자를 실현할 수 있다. 또한 저전압 구동이 가능하고 소비전력이 낮은 발광 장치를 실현할 수 있다.
또한 각 발광 유닛의 발광색을 다르게 함으로써, 발광 디바이스 전체로 원하는 색의 발광을 얻을 수 있다. 예를 들어, 2개의 발광 유닛을 갖는 발광 디바이스에서, 제 1 발광 유닛으로 적색과 녹색의 발광색을, 제 2 발광 유닛으로 청색의 발광색을 얻음으로써, 발광 디바이스 전체로 백색 발광하는 발광 디바이스를 얻을 수도 있다. 또한 3층 구조인 경우, 제 1 발광 유닛으로 청색의 발광색을, 제 2 발광 유닛으로 적색과 녹색의 발광색을, 제 3 발광 유닛으로 청색의 발광색을 얻음으로써 백색 발광을 얻어도 좋다.
또한 상술한 EL층(103), 제 1 발광 유닛(511), 제 2 발광 유닛(512), 및 전하 발생층 등의 각 층이나 전극은 예를 들어 증착법(진공 증착법을 포함함), 액적 토출법(잉크젯법이라고도 함), 도포법, 그라비어 인쇄법 등의 방법을 사용하여 형성할 수 있다. 또한 이들은 저분자 재료, 중분자 재료(올리고머, 덴드리머를 포함함), 또는 고분자 재료를 포함하여도 좋다.
(실시형태 3)
본 실시형태에서는, 실시형태 1 및 실시형태 2에 기재된 발광 디바이스를 사용한 발광 장치에 대하여 설명한다.
본 실시형태에서는, 실시형태 1 및 실시형태 2에 기재된 발광 디바이스를 사용하여 제작한 발광 장치에 대하여 도 2를 참조하여 설명한다. 또한 도 2의 (A)는 발광 장치를 나타낸 상면도이고, 도 2의 (B)는 도 2의 (A)를 선 A-B 및 선 C-D를 따라 절단한 단면도이다. 이 발광 장치는 발광 디바이스의 발광을 제어하는 것으로서, 점선으로 나타낸 구동 회로부(소스선 구동 회로)(601), 화소부(602), 구동 회로부(게이트선 구동 회로)(603)를 포함한다. 또한 604는 밀봉 기판을, 605는 실재를 나타내고, 실재(605)로 둘러싸인 내측은 공간(607)이 되어 있다.
또한 리드 배선(608)은 소스선 구동 회로(601) 및 게이트선 구동 회로(603)에 입력되는 신호를 전송(傳送)하기 위한 배선이고, 외부 입력 단자가 되는 FPC(flexible printed circuit)(609)로부터 비디오 신호, 클럭 신호, 스타트 신호, 리셋 신호 등을 받는다. 또한 여기서는 FPC만을 도시하였지만, 이 FPC에 인쇄 배선 기판(PWB)이 장착되어도 좋다. 본 명세서에서는, 발광 장치 본체뿐만 아니라, 이에 FPC 또는 PWB가 장착된 것도 발광 장치의 범주에 포함하는 것으로 한다.
다음으로, 단면 구조에 대하여 도 2의 (B)를 참조하여 설명한다. 소자 기판(610) 위에는 구동 회로부 및 화소부가 형성되어 있지만, 여기서는 구동 회로부인 소스선 구동 회로(601)와, 화소부(602) 내의 하나의 화소를 도시하였다.
소자 기판(610)은 유리, 석영, 유기 수지, 금속, 합금, 반도체 등으로 이루어지는 기판 외에, FRP(Fiber Reinforced Plastics), PVF(폴리바이닐플루오라이드), 폴리에스터, 또는 아크릴 등으로 이루어지는 플라스틱 기판을 사용하여 제작하면 좋다.
화소나 구동 회로에 사용되는 트랜지스터의 구조는 특별히 한정되지 않는다. 예를 들어, 역 스태거형 트랜지스터로 하여도 좋고, 스태거형 트랜지스터로 하여도 좋다. 또한 톱 게이트형 트랜지스터로 하여도 좋고, 보텀 게이트형 트랜지스터로 하여도 좋다. 트랜지스터에 사용되는 반도체 재료는 특별히 한정되지 않고, 예를 들어 실리콘, 저마늄, 탄소화 실리콘, 질화 갈륨 등을 사용할 수 있다. 또는 In-Ga-Zn계 금속 산화물 등 인듐, 갈륨, 및 아연 중 적어도 하나를 포함한 산화물 반도체를 사용하여도 좋다.
트랜지스터에 사용하는 반도체 재료의 결정성에 대해서도 특별히 한정되지 않고, 비정질 반도체, 결정성을 갖는 반도체(미결정 반도체, 다결정 반도체, 단결정 반도체, 또는 일부에 결정 영역을 갖는 반도체) 중 어느 것을 사용하여도 좋다. 결정성을 갖는 반도체를 사용하면, 트랜지스터 특성의 열화를 억제할 수 있으므로 바람직하다.
여기서, 상기 화소나 구동 회로에 제공되는 트랜지스터 외에, 후술하는 터치 센서 등에 사용되는 트랜지스터 등의 반도체 장치에는 산화물 반도체를 적용하는 것이 바람직하다. 특히 실리콘보다 밴드갭이 넓은 산화물 반도체를 적용하는 것이 바람직하다. 실리콘보다 밴드갭이 넓은 산화물 반도체를 사용함으로써, 트랜지스터의 오프 상태에서의 전류를 저감할 수 있다.
상기 산화물 반도체는 적어도 인듐(In) 또는 아연(Zn)을 포함하는 것이 바람직하다. 또한 In-M-Zn계 산화물(M은 Al, Ti, Ga, Ge, Y, Zr, Sn, La, Ce, 또는 Hf 등의 금속)로 표기되는 산화물을 포함하는 산화물 반도체인 것이 더 바람직하다.
여기서, 본 발명의 일 형태에 사용할 수 있는 산화물 반도체에 대하여 아래에서 설명한다.
산화물 반도체는 단결정 산화물 반도체와 이 외의 비단결정 산화물 반도체로 나누어진다. 비단결정 산화물 반도체로서는, 예를 들어 CAAC-OS(c-axis aligned crystalline oxide semiconductor), 다결정 산화물 반도체, nc-OS(nano crystalline oxide semiconductor), a-like OS(amorphous-like oxide semiconductor), 및 비정질 산화물 반도체 등이 있다.
CAAC-OS는 c축 배향성을 갖고, a-b면 방향에서 복수의 나노 결정이 연결되고, 변형을 갖는 결정 구조를 갖는다. 또한 변형이란 복수의 나노 결정이 연결되는 영역에서, 격자 배열이 정렬된 영역과 격자 배열이 정렬된 다른 영역 사이에서 격자 배열의 방향이 변화되는 부분을 가리킨다.
나노 결정은 육각형을 기본으로 하지만 정육각형에 한정되지 않고, 비정육각형인 경우가 있다. 또한 오각형 및 칠각형 등의 격자 배열이 변형에 포함되는 경우가 있다. 또한 CAAC-OS에서 변형 근방에서도 명확한 결정립계(그레인 바운더리라고도 함)를 확인하는 것은 어렵다. 즉, 격자 배열의 변형에 의하여 결정립계의 형성이 억제되어 있다는 것을 알 수 있다. 이는, CAAC-OS가 a-b면 방향에서 산소 원자의 배열이 조밀하지 않거나, 금속 원소가 치환됨으로써 원자 사이의 결합 거리가 변화되는 것 등에 의하여 변형을 허용할 수 있기 때문이다.
또한 CAAC-OS는 인듐 및 산소를 포함하는 층(이하, In층)과, 원소 M, 아연, 및 산소를 포함하는 층(이하, (M, Zn)층)이 적층된 층상의 결정 구조(층상 구조라고도 함)를 갖는 경향이 있다. 또한 인듐과 원소 M은 서로 치환할 수 있고, (M, Zn)층의 원소 M이 인듐과 치환된 경우, (In, M, Zn)층이라고 나타낼 수도 있다. 또한 In층의 인듐이 원소 M과 치환된 경우, (In, M)층이라고 나타낼 수도 있다.
CAAC-OS는 결정성이 높은 산화물 반도체이다. 한편, CAAC-OS에서는 명확한 결정립계를 확인하기 어렵기 때문에, 결정립계에 기인하는 전자 이동도의 저하가 일어나기 어렵다고 할 수 있다. 또한 산화물 반도체의 결정성은 불순물의 혼입이나 결함의 생성 등에 의하여 저하되는 경우가 있기 때문에, CAAC-OS는 불순물이나 결함(산소 결손(VO: oxygen vacancy라고도 함) 등)이 적은 산화물 반도체라고도 할 수 있다. 따라서 CAAC-OS를 갖는 산화물 반도체는 물리적 성질이 안정된다. 그러므로 CAAC-OS를 갖는 산화물 반도체는 열에 강하고 신뢰성이 높다.
nc-OS는 미소한 영역(예를 들어, 1nm 이상 10nm 이하의 영역, 특히 1nm 이상 3nm 이하의 영역)에서 원자 배열에 주기성을 갖는다. 또한 nc-OS에서는 상이한 나노 결정 간에서 결정 방위에 규칙성이 보이지 않는다. 그러므로 막 전체에서 배향성이 보이지 않는다. 따라서 nc-OS는 분석 방법에 따라서는 a-like OS나 비정질 산화물 반도체와 구별할 수 없는 경우가 있다.
또한 인듐, 갈륨, 및 아연을 포함하는 산화물 반도체의 한 종류인 인듐-갈륨-아연 산화물(이하, IGZO)은 상술한 나노 결정으로 형성됨으로써 안정적인 구조를 갖는 경우가 있다. 특히 IGZO는 대기 중에서 결정 성장하기 어려운 경향이 있기 때문에, 큰 결정(여기서는 수mm의 결정 또는 수cm의 결정)으로 형성되는 경우보다 작은 결정(예를 들어 상술한 나노 결정)으로 형성되는 경우에 구조적으로 더 안정되는 경우가 있다.
a-like OS는 nc-OS와 비정질 산화물 반도체의 중간의 구조를 갖는 산화물 반도체이다. a-like OS는 공동(void) 또는 저밀도 영역을 갖는다. 즉, a-like OS는 nc-OS 및 CAAC-OS와 비교하여 결정성이 낮다.
산화물 반도체는 다양한 구조를 갖고, 각각이 상이한 특성을 갖는다. 본 발명의 일 형태에 따른 산화물 반도체는 비정질 산화물 반도체, 다결정 산화물 반도체, a-like OS, nc-OS, CAAC-OS 중 2종류 이상을 가져도 좋다.
또한 상술한 산화물 반도체 이외에는 CAC(Cloud-Aligned Composite)-OS를 사용하여도 좋다.
CAC-OS는 재료의 일부에서는 도전성 기능을 갖고 재료의 다른 일부에서는 절연성 기능을 가지며, 재료의 전체로서는 반도체로서의 기능을 갖는다. 또한 CAC-OS를 트랜지스터의 반도체층에 사용하는 경우, 도전성 기능은 캐리어가 되는 전자(또는 정공)를 흘리는 기능이고, 절연성 기능은 캐리어가 되는 전자를 흘리지 않는 기능이다. 도전성 기능과 절연성 기능의 상보적인 작용에 의하여 CAC-OS는 스위칭 기능(온/오프시키는 기능)을 가질 수 있다. CAC-OS에서 각 기능을 분리시킴으로써 양쪽의 기능을 최대한으로 높일 수 있다.
또한 CAC-OS는 도전성 영역 및 절연성 영역을 갖는다. 도전성 영역은 상술한 도전성 기능을 갖고, 절연성 영역은 상술한 절연성 기능을 갖는다. 또한 재료 내에서 도전성 영역과 절연성 영역은 나노 입자 레벨로 분리되어 있는 경우가 있다. 또한 도전성 영역과 절연성 영역은 각각 재료 내에 편재(偏在)하는 경우가 있다. 또한 도전성 영역은 경계가 흐릿해져 클라우드상(cloud-like)으로 연결되어 관찰되는 경우가 있다.
또한 CAC-OS에서 도전성 영역과 절연성 영역은 각각 0.5nm 이상 10nm 이하, 바람직하게는 0.5nm 이상 3nm 이하의 크기로 재료 내에 분산되어 있는 경우가 있다.
또한 CAC-OS는 상이한 밴드갭을 갖는 성분으로 구성된다. 예를 들어 CAC-OS는 절연성 영역에 기인하는 넓은 갭을 갖는 성분과 도전성 영역에 기인하는 좁은 갭을 갖는 성분으로 구성된다. 이 구성의 경우, 캐리어를 흘릴 때에 좁은 갭을 갖는 성분에서 주로 캐리어가 흐른다. 또한 좁은 갭을 갖는 성분이 넓은 갭을 갖는 성분에 상보적으로 작용되고, 좁은 갭을 갖는 성분과 연동하여 넓은 갭을 갖는 성분에도 캐리어가 흐른다. 따라서 상기 CAC-OS를 트랜지스터의 채널 형성 영역에 사용하는 경우, 트랜지스터의 온 상태에서 높은 전류 구동력, 즉 큰 온 전류 및 높은 전계 효과 이동도를 얻을 수 있다.
즉 CAC-OS는 매트릭스 복합재(matrix composite) 또는 금속 매트릭스 복합재(metal matrix composite)라고 부를 수도 있다.
반도체층에 상술한 산화물 반도체 재료를 사용함으로써, 전기 특성의 변동이 억제되고 신뢰성이 높은 트랜지스터를 실현할 수 있다.
또한 상술한 반도체층을 갖는 트랜지스터는 오프 전류가 낮기 때문에, 트랜지스터를 통하여 용량 소자에 축적된 전하가 장기간에 걸쳐 유지될 수 있다. 이와 같은 트랜지스터를 화소에 적용함으로써, 각 표시 영역에 표시된 화상의 계조를 유지하면서 구동 회로를 정지할 수도 있다. 이 결과, 소비전력이 매우 저감된 전자 기기를 실현할 수 있다.
트랜지스터의 특성 안정화 등을 위하여 하지막을 제공하는 것이 바람직하다. 하지막으로서는 산화 실리콘막, 질화 실리콘막, 산화질화 실리콘막, 질화산화 실리콘막 등의 무기 절연막을 사용하고, 단층으로 또는 적층하여 제작할 수 있다. 하지막은 스퍼터링법, CVD(Chemical Vapor Deposition)법(플라스마 CVD법, 열 CVD법, MOCVD(Metal Organic CVD)법 등), ALD(Atomic Layer Deposition)법, 도포법, 인쇄법 등을 사용하여 형성할 수 있다. 또한 하지막은 필요에 따라 제공하면 된다.
또한 FET(623)는 구동 회로부(601)에 형성되는 트랜지스터 중 하나를 도시한 것이다. 또한 구동 회로는 다양한 CMOS 회로, PMOS 회로, 또는 NMOS 회로로 형성되면 좋다. 또한 본 실시형태에서는, 기판 위에 구동 회로를 형성한 드라이버 일체형에 대하여 설명하지만, 반드시 그럴 필요는 없고 구동 회로를 기판 위가 아니라 외부에 형성할 수도 있다.
또한 화소부(602)는 스위칭용 FET(611), 전류 제어용 FET(612), 및 전류 제어용 FET(612)의 드레인에 전기적으로 접속된 제 1 전극(613)을 포함하는 복수의 화소로 형성되어 있지만, 이에 한정되지 않고 3개 이상의 FET와, 용량 소자를 조합한 화소부로 하여도 좋다.
또한 제 1 전극(613)의 단부를 덮어 절연물(614)이 형성되어 있다. 여기서는, 포지티브형 감광성 아크릴을 사용함으로써 형성할 수 있다.
또한 나중에 형성하는 EL층 등의 피복성을 양호하게 하기 위하여, 절연물(614)의 상단부 또는 하단부에 곡률을 갖는 곡면이 형성되도록 한다. 예를 들어, 절연물(614)의 재료로서 포지티브형 감광성 아크릴을 사용한 경우에는, 절연물(614)의 상단부에만 곡률 반경(0.2μm 내지 3μm)을 갖는 곡면을 갖도록 하는 것이 바람직하다. 또한 절연물(614)로서는, 네거티브형 감광성 수지 및 포지티브형 감광성 수지 중 어느 쪽을 사용할 수도 있다.
제 1 전극(613) 위에는 EL층(616) 및 제 2 전극(617)이 각각 형성되어 있다. 여기서, 제 1 전극(613)에 사용하는 재료에는 일함수가 큰 재료를 사용하는 것이 바람직하다. 예를 들어 ITO막, 실리콘을 포함한 인듐 주석 산화물막, 2wt% 내지 20wt%의 산화 아연을 포함한 산화 인듐막, 질화 타이타늄막, 크로뮴막, 텅스텐막, Zn막, Pt막 등의 단층막 외에, 질화 타이타늄막과 알루미늄을 주성분으로 포함하는 막의 적층, 질화 타이타늄막과 알루미늄을 주성분으로 포함하는 막과 질화 타이타늄막의 3층 구조 등을 사용할 수 있다. 또한 적층 구조로 하면, 배선으로서의 저항도 낮고, 양호한 옴 접촉(ohmic contact)이 얻어지며, 양극으로서 기능시킬 수 있다.
또한 EL층(616)은 증착 마스크를 사용한 증착법, 잉크젯법, 스핀 코팅법 등의 다양한 방법으로 형성된다. EL층(616)은 실시형태 1 및 실시형태 2에서 설명한 것과 같은 구성을 포함한다. 또한 EL층(616)을 구성하는 다른 재료로서는, 저분자 화합물 또는 고분자 화합물(올리고머, 덴드리머를 포함함)을 사용하여도 좋다.
또한 EL층(616) 위에 형성되고 제 2 전극(617)에 사용하는 재료로서는, 일함수가 작은 재료(Al, Mg, Li, Ca, 또는 이들의 합금이나 화합물(MgAg, MgIn, AlLi 등) 등)를 사용하는 것이 바람직하다. 또한 EL층(616)에서 생긴 광이 제 2 전극(617)을 투과하는 경우에는, 제 2 전극(617)으로서 막 두께가 얇은 금속 박막과, 투명 도전막(ITO, 2wt% 내지 20wt%의 산화 아연을 포함한 산화 인듐, 실리콘을 포함한 인듐 주석 산화물, 산화 아연(ZnO) 등)의 적층을 사용하는 것이 좋다.
또한 제 1 전극(613), EL층(616), 및 제 2 전극(617)으로 발광 디바이스가 형성되어 있다. 이 발광 디바이스는 실시형태 1 및 실시형태 2에 기재된 발광 디바이스이다. 또한 화소부에는 복수의 발광 디바이스가 형성되어 있지만, 본 실시형태의 발광 장치에는, 실시형태 1 및 실시형태 2에 기재된 발광 디바이스와, 이와 다른 구성을 갖는 발광 디바이스의 양쪽이 포함되어도 좋다.
또한 실재(605)로 밀봉 기판(604)과 소자 기판(610)을 접합함으로써, 소자 기판(610), 밀봉 기판(604), 및 실재(605)로 둘러싸인 공간(607)에 발광 디바이스(618)가 제공된 구조가 된다. 또한 공간(607)에는 충전재가 충전되어 있고, 불활성 가스(질소나 아르곤 등)가 충전되는 경우 외에, 실재로 충전되는 경우가 있다. 밀봉 기판에 오목부를 형성하고 거기에 건조제를 제공함으로써, 수분의 영향으로 인한 열화를 억제할 수 있어 바람직하다.
또한 실재(605)에는 에폭시계 수지나 유리 프릿(glass frit)을 사용하는 것이 바람직하다. 또한 이들 재료는 수분이나 산소를 가능한 한 투과시키지 않는 재료인 것이 바람직하다. 또한 밀봉 기판(604)에 사용하는 재료로서는 유리 기판이나 석영 기판 외에, FRP(Fiber Reinforced Plastics), PVF(폴리바이닐플루오라이드), 폴리에스터, 또는 아크릴 등으로 이루어지는 플라스틱 기판을 사용할 수 있다.
도 2에는 도시하지 않았지만, 음극 위에 보호막을 제공하여도 좋다. 보호막은 유기 수지막이나 무기 절연막으로 형성하면 좋다. 또한 실재(605)의 노출된 부분을 덮도록 보호막이 형성되어도 좋다. 또한 보호막은 한 쌍의 기판의 표면 및 측면, 밀봉층, 절연층 등의 노출된 측면을 덮어 제공할 수 있다.
보호막에는 물 등의 불순물을 투과시키기 어려운 재료를 사용할 수 있다. 따라서 물 등의 불순물이 외부로부터 내부로 확산되는 것을 효과적으로 억제할 수 있다.
보호막을 구성하는 재료로서는 산화물, 질화물, 플루오린화물, 황화물, 삼원 화합물, 금속, 또는 폴리머 등을 사용할 수 있고, 예를 들어 산화 알루미늄, 산화 하프늄, 하프늄실리케이트, 산화 란타넘, 산화 실리콘, 타이타늄산 스트론튬, 산화 탄탈럼, 산화 타이타늄, 산화 아연, 산화 나이오븀, 산화 지르코늄, 산화 주석, 산화 이트륨, 산화 세륨, 산화 스칸듐, 산화 어븀, 산화 바나듐, 또는 산화 인듐 등을 포함한 재료나, 질화 알루미늄, 질화 하프늄, 질화 실리콘, 질화 탄탈럼, 질화 타이타늄, 질화 나이오븀, 질화 몰리브데넘, 질화 지르코늄, 또는 질화 갈륨 등을 포함한 재료, 타이타늄 및 알루미늄을 포함하는 질화물, 타이타늄 및 알루미늄을 포함하는 산화물, 알루미늄 및 아연을 포함하는 산화물, 망가니즈 및 아연을 포함하는 황화물, 세륨 및 스트론튬을 포함하는 황화물, 어븀 및 알루미늄을 포함하는 산화물, 이트륨 및 지르코늄을 포함하는 산화물 등을 포함한 재료를 사용할 수 있다.
보호막은 단차 피복성(step coverage)이 양호한 성막 방법을 이용하여 형성되는 것이 바람직하다. 이와 같은 방법 중 하나에 원자층 퇴적(ALD: Atomic Layer Deposition)법이 있다. ALD법을 사용하여 형성할 수 있는 재료를 보호막에 사용하는 것이 바람직하다. ALD법을 사용함으로써, 크랙이나 핀홀 등의 결함이 저감되거나 두께가 균일한, 치밀한 보호막을 형성할 수 있다. 또한 보호막의 형성 시에 가공 부재에 가해지는 손상을 저감할 수 있다.
예를 들어 ALD법을 사용함으로써, 복잡한 요철 형상을 갖는 표면이나, 터치 패널의 상면, 측면, 및 뒷면에도 균일하고 결함이 적은 보호막을 형성할 수 있다.
상술한 바와 같이 하여, 실시형태 1 및 실시형태 2에 기재된 발광 디바이스를 사용하여 제작된 발광 장치를 얻을 수 있다.
본 실시형태에서의 발광 장치에는 실시형태 1 및 실시형태 2에 기재된 발광 디바이스를 사용하기 때문에, 특성이 양호한 발광 장치를 얻을 수 있다. 구체적으로는, 실시형태 1 및 실시형태 2에 기재된 발광 디바이스는 수명이 긴 발광 디바이스이기 때문에, 신뢰성이 높은 발광 장치로 할 수 있다. 또한 실시형태 1 및 실시형태 2에 기재된 발광 디바이스를 사용한 발광 장치는 발광 효율이 양호하기 때문에, 소비전력이 작은 발광 장치로 할 수 있다.
도 3에는, 백색 발광을 나타내는 발광 디바이스를 형성하고 착색층(컬러 필터) 등을 제공함으로써 풀 컬러 표시를 실현한 발광 장치의 예를 나타내었다. 도 3의 (A)에는 기판(1001), 하지 절연막(1002), 게이트 절연막(1003), 게이트 전극(1006, 1007, 1008), 제 1 층간 절연막(1020), 제 2 층간 절연막(1021), 주변부(1042), 화소부(1040), 구동 회로부(1041), 발광 디바이스의 양극(1024W, 1024R, 1024G, 1024B), 격벽(1025), EL층(1028), 발광 디바이스의 제 2 전극(1029), 밀봉 기판(1031), 실재(1032) 등을 도시하였다.
또한 도 3의 (A)에서는 착색층(적색 착색층(1034R), 녹색 착색층(1034G), 청색 착색층(1034B))이 투명한 기재(1033)에 제공되어 있다. 또한 블랙 매트릭스(1035)를 더 제공하여도 좋다. 착색층 및 블랙 매트릭스가 제공된 투명한 기재(1033)는, 위치를 맞추어 기판(1001)에 고정된다. 또한 착색층 및 블랙 매트릭스(1035)는 오버코트층(1036)으로 덮여 있다. 또한 도 3의 (A)에서는 광이 착색층을 투과하지 않고 외부로 방출되는 발광층과, 광이 각 색의 착색층을 투과하여 외부로 방출되는 발광층이 있고, 착색층을 투과하지 않는 광은 백색이 되고, 착색층을 투과하는 광은 적색, 녹색, 청색이 되기 때문에, 4색의 화소로 영상을 표현할 수 있다.
도 3의 (B)에는 착색층(적색 착색층(1034R), 녹색 착색층(1034G), 청색 착색층(1034B))을 게이트 절연막(1003)과 제 1 층간 절연막(1020) 사이에 형성하는 예를 나타내었다. 이와 같이, 착색층은 기판(1001)과 밀봉 기판(1031) 사이에 제공되어도 좋다.
또한 상술한 발광 장치는, FET가 형성된 기판(1001) 측으로 광이 추출되는 구조(보텀 이미션형)의 발광 장치이지만, 밀봉 기판(1031) 측으로 광이 추출되는 구조(톱 이미션형)의 발광 장치이어도 좋다. 톱 이미션형 발광 장치의 단면도를 도 4에 도시하였다. 이 경우, 기판(1001)으로서는 광을 투과시키지 않는 기판을 사용할 수 있다. FET와 발광 디바이스의 양극을 접속하는 접속 전극을 제작하는 단계까지는 보텀 이미션형 발광 장치와 같은 식으로 형성한다. 그 후, 전극(1022)을 덮어 제 3 층간 절연막(1037)을 형성한다. 이 절연막은 평탄화의 역할을 가져도 좋다. 제 3 층간 절연막(1037)은 제 2 층간 절연막과 같은 재료를 사용하여 형성할 수 있고, 다른 공지의 재료를 사용하여 형성할 수도 있다.
여기서 발광 디바이스의 양극(1024W, 1024R, 1024G, 1024B)은 양극이지만, 음극으로서 형성하여도 좋다. 또한 도 4와 같은 톱 이미션형 발광 장치의 경우, 양극을 반사 전극으로 하는 것이 바람직하다. EL층(1028)의 구성은 실시형태 1 및 실시형태 2에서 설명한 EL층(103)과 유사한 구성으로 하고, 또한 백색 발광을 얻을 수 있는 소자 구조로 한다.
도 4와 같은 톱 이미션 구조의 경우, 착색층(적색 착색층(1034R), 녹색 착색층(1034G), 청색 착색층(1034B))을 제공한 밀봉 기판(1031)으로 밀봉을 할 수 있다. 밀봉 기판(1031)에는 화소들 사이에 위치하도록 블랙 매트릭스(1035)를 제공하여도 좋다. 착색층(적색 착색층(1034R), 녹색 착색층(1034G), 청색 착색층(1034B))이나 블랙 매트릭스는 오버코트층으로 덮여 있어도 좋다. 또한 밀봉 기판(1031)에는 투광성을 갖는 기판을 사용한다. 또한 여기서는 적색, 녹색, 청색, 백색의 4색을 사용하여 풀 컬러 표시를 수행하는 예를 제시하였지만, 이에 특별히 한정되지 않고, 적색, 황색, 녹색, 청색의 4색이나, 적색, 녹색, 청색의 3색을 사용하여 풀 컬러 표시를 수행하여도 좋다.
톱 이미션형 발광 장치에서는 마이크로캐비티 구조를 바람직하게 적용할 수 있다. 마이크로캐비티 구조를 갖는 발광 디바이스는, 양극을 반사 전극으로 하고, 음극을 반투과·반반사 전극으로 함으로써 얻을 수 있다. 반사 전극과 반투과·반반사 전극 사이에는 적어도 EL층을 갖고, 적어도 발광 영역이 되는 발광층을 갖는다.
또한 반사 전극은 가시광의 반사율이 40% 내지 100%, 바람직하게는 70% 내지 100%이고, 또한 저항률이 1Х10-2Ωcm 이하인 막이다. 또한 반투과·반반사 전극은 가시광의 반사율이 20% 내지 80%, 바람직하게는 40% 내지 70%이고, 또한 저항률이 1Х10-2Ωcm 이하인 막이다.
EL층에 포함되는 발광층으로부터 사출되는 발광은 반사 전극과 반투과·반반사 전극에 의하여 반사되어 공진된다.
상기 발광 디바이스에서는, 투명 도전막이나 상술한 복합 재료, 캐리어 수송 재료 등의 두께를 바꿈으로써 반사 전극과 반투과·반반사 전극 사이의 광학적 거리를 변경할 수 있다. 이로써, 반사 전극과 반투과·반반사 전극 사이에서, 공진하는 파장의 광을 강하게 하고, 공진하지 않는 파장의 광을 감쇠시킬 수 있다.
또한 반사 전극에 의하여 반사되어 되돌아온 광(제 1 반사광)은 발광층으로부터 반투과·반반사 전극에 직접 입사하는 광(제 1 입사광)과의 큰 간섭을 일으키기 때문에, 반사 전극과 발광층의 광학적 거리를 (2n-1)λ/4(다만 n은 1 이상의 자연수이고, λ는 증폭하고자 하는 발광의 파장임)로 조절하는 것이 바람직하다. 상기 광학적 거리를 조절함으로써, 제 1 반사광과 제 1 입사광의 위상을 맞추어 발광층으로부터의 발광을 더 증폭시킬 수 있다.
또한 상기 구성에서, EL층은 복수의 발광층을 갖는 구조이어도 좋고, 하나의 발광층을 갖는 구조이어도 좋고, 예를 들어, 상술한 탠덤형 발광 디바이스의 구성과 조합하여, 하나의 발광 디바이스에 전하 발생층을 끼우는 복수의 EL층을 제공하고, 각 EL층이 하나 또는 복수의 발광층으로 형성되는 구성으로 하여도 좋다.
마이크로캐비티 구조를 가짐으로써 정면 방향에서의 특정 파장의 발광 강도를 높일 수 있기 때문에, 저소비전력화를 도모할 수 있다. 또한 적색, 황색, 녹색, 청색의 4색의 부화소로 영상을 표시하는 발광 장치의 경우, 황색 발광에 의하여 휘도를 높이고, 모든 부화소에서 각 색의 파장에 맞춘 마이크로캐비티 구조를 적용할 수 있기 때문에, 특성이 양호한 발광 장치로 할 수 있다.
본 실시형태에서의 발광 장치에는 실시형태 1 및 실시형태 2에 기재된 발광 디바이스를 사용하기 때문에, 특성이 양호한 발광 장치를 얻을 수 있다. 구체적으로는, 실시형태 1 및 실시형태 2에 기재된 발광 디바이스는 수명이 긴 발광 디바이스이기 때문에, 신뢰성이 높은 발광 장치로 할 수 있다. 또한 실시형태 1 및 실시형태 2에 기재된 발광 디바이스를 사용한 발광 장치는 발광 효율이 양호하기 때문에, 소비전력이 작은 발광 장치로 할 수 있다.
여기까지는, 액티브 매트릭스형 발광 장치에 대하여 설명하였지만, 아래에서는 패시브 매트릭스형 발광 장치에 대하여 설명한다. 도 5에는 본 발명을 적용하여 제작한 패시브 매트릭스형 발광 장치를 도시하였다. 또한 도 5의 (A)는 발광 장치를 도시한 사시도이고, 도 5의 (B)는 도 5의 (A)를 선 X-Y를 따라 절단한 단면도이다. 도 5에서, 기판(951) 위에는, 전극(952)과 전극(956) 사이에 EL층(955)이 제공된다. 전극(952)의 단부는 절연층(953)으로 덮여 있다. 그리고 절연층(953) 위에는 격벽층(954)이 제공되어 있다. 격벽층(954)의 측벽은, 기판면에 가까워짐에 따라, 한쪽 측벽과 다른 쪽의 측벽 사이의 간격이 좁아지는 경사를 갖는다. 즉, 격벽층(954)의 짧은 변 방향의 단면은 사다리꼴 형상이고, 저변(절연층(953)의 면 방향과 같은 방향을 향하고 절연층(953)과 접하는 변)이 상변(절연층(953)의 면 방향과 같은 방향을 향하고 절연층(953)과 접하지 않는 변)보다 짧다. 이와 같이 격벽층(954)을 제공함으로써, 정전기 등에 기인한 발광 디바이스의 불량을 방지할 수 있다. 또한 패시브 매트릭스형 발광 장치에서도 실시형태 1 및 실시형태 2에 기재된 발광 디바이스를 사용하기 때문에, 신뢰성이 양호한 발광 장치 또는 소비전력이 작은 발광 장치로 할 수 있다.
상술한 발광 장치는 매트릭스로 배치된 다수의 미소한 발광 디바이스를 각각 제어할 수 있기 때문에, 화상을 표현하는 표시 장치로서 적합하게 이용할 수 있다.
또한 본 실시형태는 다른 실시형태와 자유로이 조합될 수 있다.
(실시형태 4)
본 실시형태에서는 실시형태 1 및 실시형태 2에 기재된 발광 디바이스를 조명 장치로서 사용하는 예에 대하여 도 6을 참조하면서 설명한다. 도 6의 (B)는 조명 장치의 상면도이고, 도 6의 (A)는 도 6의 (B)에서의 e-f 단면도이다.
본 실시형태의 조명 장치는, 지지체인 투광성을 갖는 기판(400) 위에 제 1 전극(401)이 형성되어 있다. 제 1 전극(401)은 실시형태 2의 제 1 전극(101)에 상당한다. 제 1 전극(401) 측으로부터 발광을 추출하는 경우, 제 1 전극(401)을 투광성을 갖는 재료로 형성한다.
제 2 전극(404)에 전압을 공급하기 위한 패드(412)가 기판(400) 위에 형성된다.
제 1 전극(401) 위에는 EL층(403)이 형성되어 있다. EL층(403)은 실시형태 1 및 실시형태 2에서의 EL층(103)의 구성, 또는 발광 유닛(511, 512) 및 전하 발생층(513)을 합친 구성 등에 상당한다. 또한 이들 구성에 대해서는 상기 기재를 참조하기 바란다.
EL층(403)을 덮도록 제 2 전극(404)을 형성한다. 제 2 전극(404)은 실시형태 2에서의 제 2 전극(102)에 상당한다. 발광을 제 1 전극(401) 측으로부터 추출하는 경우, 제 2 전극(404)은 반사율이 높은 재료로 형성된다. 제 2 전극(404)은 패드(412)와 접속됨으로써 전압이 공급된다.
상술한 바와 같이, 제 1 전극(401), EL층(403), 및 제 2 전극(404)을 갖는 발광 디바이스를 본 실시형태에 기재된 조명 장치는 갖는다. 상기 발광 디바이스는 발광 효율이 높은 발광 디바이스이므로, 본 실시형태의 조명 장치를 소비전력이 작은 조명 장치로 할 수 있다.
상기 구성을 갖는 발광 디바이스가 형성된 기판(400)과, 밀봉 기판(407)을, 실재(405, 406)를 사용하여 고착하여 밀봉함으로써 조명 장치가 완성된다. 실재(405, 406)는 어느 한쪽이라도 된다. 또한 안쪽의 실재(406)(도 6의 (B)에는 도시되지 않았음)에는 건조제를 섞을 수도 있고, 이로써 수분을 흡착할 수 있어 신뢰성 향상으로 이어진다.
또한 패드(412)와 제 1 전극(401)의 일부를 실재(405, 406) 밖으로 연장시켜 제공함으로써 외부 입력 단자로 할 수 있다. 또한 그 위에 컨버터 등을 탑재한 IC칩(420) 등을 제공하여도 좋다.
본 실시형태에 기재된 조명 장치는 EL 소자에 실시형태 1 및 실시형태 2에 기재된 발광 디바이스가 사용되기 때문에, 고온하에서의 신뢰성이 양호한 발광 장치로 할 수 있다. 또한 소비전력이 낮은 발광 장치로 할 수 있다.
(실시형태 5)
본 실시형태에서는, 실시형태 1 및 실시형태 2에 기재된 발광 디바이스를 그 일부에 포함하는 전자 기기의 예에 대하여 설명한다. 실시형태 1 및 실시형태 2에 기재된 발광 디바이스는 수명이 양호하고 고온하에서의 신뢰성이 양호한 발광 디바이스이다. 따라서 본 실시형태에 기재되는 전자 기기를 고온하에서의 신뢰성이 양호한 발광부를 갖는 전자 기기로 할 수 있다.
상기 발광 디바이스를 적용한 전자 기기로서는, 예를 들어 텔레비전 장치(텔레비전 또는 텔레비전 수신기라고도 함), 컴퓨터용 등의 모니터, 디지털 카메라, 디지털 비디오 카메라, 디지털 액자, 휴대 전화기(휴대 전화, 휴대 전화 장치라고도 함), 휴대용 게임기, 휴대 정보 단말기, 음향 재생 장치, 파친코기 등의 대형 게임기 등을 들 수 있다. 이들 전자 기기의 구체적인 예를 아래에 기재한다.
도 7의 (A)는 텔레비전 장치의 일례를 나타낸 것이다. 텔레비전 장치는 하우징(7101)에 표시부(7103)가 제공되어 있다. 또한 여기서는 스탠드(7105)에 의하여 하우징(7101)을 지지한 구성을 나타내었다. 표시부(7103)에 영상을 표시할 수 있고, 표시부(7103)는 실시형태 1 및 실시형태 2에 기재된 발광 디바이스를 매트릭스로 배열하여 구성되어 있다.
텔레비전 장치는 하우징(7101)이 갖는 조작 스위치나 별체의 리모트 컨트롤러(7110)로 조작할 수 있다. 리모트 컨트롤러(7110)의 조작 키(7109)에 의하여, 채널이나 음량을 조작할 수 있고, 표시부(7103)에 표시되는 영상을 조작할 수 있다. 또한 상기 리모트 컨트롤러(7110)로부터 출력되는 정보를 표시하는 표시부(7107)를 리모트 컨트롤러(7110)에 제공하는 구성으로 하여도 좋다.
또한 텔레비전 장치는 수신기나 모뎀 등을 갖는 구성으로 한다. 수신기에 의하여 일반 텔레비전 방송을 수신할 수 있고, 모뎀을 통하여 유선 또는 무선 통신 네트워크에 접속함으로써, 단방향(송신자로부터 수신자로) 또는 쌍방향(송신자와 수신자 간, 또는 수신자들끼리 등)의 정보 통신을 할 수도 있다.
도 7의 (B1)에 도시된 컴퓨터는 본체(7201), 하우징(7202), 표시부(7203), 키보드(7204), 외부 접속 포트(7205), 포인팅 디바이스(7206) 등을 포함한다. 또한 이 컴퓨터는 실시형태 1 및 실시형태 2에 기재된 발광 디바이스를 매트릭스로 배열하여 표시부(7203)에 사용함으로써 제작된다. 도 7의 (B1)의 컴퓨터는 도 7의 (B2)에 도시된 구조를 가져도 좋다. 도 7의 (B2)의 컴퓨터에는 키보드(7204) 및 포인팅 디바이스(7206) 대신에 제 2 표시부(7210)가 제공되어 있다. 제 2 표시부(7210)는 터치 패널식이므로, 제 2 표시부(7210)에 표시된 입력용 표시를 손가락이나 전용 펜으로 조작함으로써 입력을 할 수 있다. 또한 제 2 표시부(7210)는 입력용 표시뿐만 아니라 기타 화상을 표시할 수도 있다. 또한 표시부(7203)도 터치 패널이어도 좋다. 2개의 화면이 힌지로 연결되어 있으면, 수납하거나 운반할 때에 화면을 손상시키거나 파손시키는 등의 문제 발생도 방지할 수 있다.
도 7의 (C)는 휴대 단말기의 일례를 나타낸 것이다. 휴대 전화기는 하우징(7401)에 제공된 표시부(7402) 외에 조작 버튼(7403), 외부 접속 포트(7404), 스피커(7405), 마이크로폰(7406) 등을 갖는다. 또한 휴대 전화기는 실시형태 1 및 실시형태 2에 기재된 발광 디바이스를 매트릭스로 배열하여 제작한 표시부(7402)를 갖는다.
도 7의 (C)에 도시된 휴대 단말기는, 표시부(7402)를 손가락 등으로 터치함으로써 정보를 입력할 수 있는 구성으로 할 수도 있다. 이 경우, 표시부(7402)를 손가락 등으로 터치함으로써, 전화를 걸거나 메일을 작성하는 등의 조작을 할 수 있다.
표시부(7402)의 화면에는 주로 3가지 모드가 있다. 첫 번째 모드는 화상의 표시를 주로 하는 표시 모드이고, 두 번째 모드는 문자 등의 정보의 입력을 주로 하는 입력 모드이다. 세 번째 모드는 표시 모드와 입력 모드의 2가지 모드가 혼합된 표시+입력 모드이다.
예를 들어, 전화를 걸거나 메일을 작성하는 경우에는, 표시부(7402)의 모드를 문자의 입력을 주로 하는 문자 입력 모드로 하여, 화면에 표시된 문자를 입력하면 좋다. 이 경우, 표시부(7402)의 화면의 대부분에 키보드 또는 번호 버튼이 표시되는 것이 바람직하다.
또한 자이로스코프, 가속도 센서 등 기울기를 검출하는 센서를 갖는 검출 장치를 휴대 단말기 내부에 제공함으로써, 휴대 단말기의 방향(세로인지 가로인지)을 판단하여, 표시부(7402)의 화면 표시가 자동적으로 전환되도록 할 수 있다.
또한 화면 모드는 표시부(7402)를 터치하거나 하우징(7401)의 조작 버튼(7403)을 조작함으로써 전환된다. 또한 표시부(7402)에 표시되는 화상의 종류에 따라 전환되도록 할 수도 있다. 예를 들어, 표시부에 표시되는 화상 신호가 동영상의 데이터이면 표시 모드로, 텍스트 데이터이면 입력 모드로 전환된다.
또한 입력 모드에서 표시부(7402)의 광 센서로 검출되는 신호를 검지하고, 표시부(7402)의 터치 조작에 의한 입력이 일정 기간 없는 경우에는, 화면의 모드를 입력 모드로부터 표시 모드로 전환하도록 제어하여도 좋다.
표시부(7402)는 이미지 센서로서 기능할 수도 있다. 예를 들어, 표시부(7402)를 손바닥이나 손가락으로 터치하여 장문, 지문 등을 촬상함으로써, 본인 인증을 할 수 있다. 또한 표시부에 근적외광을 발하는 백라이트 또는 근적외광을 발하는 센싱용 광원을 사용하면, 손가락 정맥, 손바닥 정맥 등을 촬상할 수도 있다.
또한 본 실시형태에 기재되는 구성은, 실시형태 1 내지 실시형태 4에 기재된 구성을 적절히 조합하여 사용할 수 있다.
상술한 바와 같이 실시형태 1 및 실시형태 2에 기재된 발광 디바이스를 갖는 발광 장치의 적용 범위는 매우 넓고, 이 발광 장치는 다양한 분야의 전자 기기에 적용될 수 있다. 실시형태 1 및 실시형태 2에 기재된 발광 디바이스를 사용함으로써, 고온하에서의 신뢰성이 높은 전자 기기를 얻을 수 있다.
도 8의 (A)는 로봇 청소기의 일례를 나타낸 모식도이다.
로봇 청소기(5100)는 상면에 배치된 디스플레이(5101), 측면에 배치된 복수의 카메라(5102), 브러시(5103), 조작 버튼(5104)을 갖는다. 또한 도시되지 않았지만, 로봇 청소기(5100)의 하면에는 바퀴, 흡입구 등이 제공되어 있다. 로봇 청소기(5100)는 그 외에 적외선 센서, 초음파 센서, 가속도 센서, 피에조 센서, 광 센서, 자이로 센서 등의 각종 센서를 갖는다. 또한 로봇 청소기(5100)는 무선 통신 수단을 갖는다.
로봇 청소기(5100)는 자력으로 움직이고, 쓰레기(5120)를 검지하고, 하면에 제공된 흡입구로부터 쓰레기를 흡인할 수 있다.
또한 로봇 청소기(5100)는 카메라(5102)가 촬영한 화상을 해석하여 벽, 가구, 또는 단차 등의 장애물의 유무를 판단할 수 있다. 또한 화상을 해석함으로써 배선 등 브러시(5103)에 얽히기 쉬운 물체를 검지한 경우에는, 브러시(5103)의 회전을 멈출 수 있다.
디스플레이(5101)에는 배터리 잔량이나 흡인한 쓰레기의 양 등을 표시할 수 있다. 로봇 청소기(5100)가 주행한 경로를 디스플레이(5101)에 표시하여도 좋다. 또한 디스플레이(5101)를 터치 패널로 하고, 조작 버튼(5104)을 디스플레이(5101)에 제공하여도 좋다.
로봇 청소기(5100)는 스마트폰 등의 휴대 전자 기기(5140)와 통신할 수 있다. 카메라(5102)가 촬영한 화상을 휴대 전자 기기(5140)에 표시할 수 있다. 그러므로 로봇 청소기(5100)의 소유자는 밖에 있어도 방의 상황을 알 수 있다. 또한 디스플레이(5101)의 표시를 스마트폰 등의 휴대 전자 기기로 확인할 수도 있다.
본 발명의 일 형태의 발광 장치는 디스플레이(5101)에 사용할 수 있다.
도 8의 (B)에 도시된 로봇(2100)은 연산 장치(2110), 조도 센서(2101), 마이크로폰(2102), 상부 카메라(2103), 스피커(2104), 디스플레이(2105), 하부 카메라(2106), 장애물 센서(2107), 및 이동 기구(2108)를 갖는다.
마이크로폰(2102)은 사용자의 목소리 및 환경음 등을 검지하는 기능을 갖는다. 또한 스피커(2104)는 음성을 출력하는 기능을 갖는다. 로봇(2100)은 마이크로폰(2102) 및 스피커(2104)를 사용하여 사용자와 의사소통을 할 수 있다.
디스플레이(2105)는 각종 정보를 표시하는 기능을 갖는다. 로봇(2100)은 사용자가 원하는 정보를 디스플레이(2105)에 표시할 수 있다. 디스플레이(2105)에는 터치 패널을 탑재하여도 좋다. 또한 디스플레이(2105)는 탈착 가능한 정보 단말기이어도 좋고, 로봇(2100)의 정위치에 설치되면 충전 및 데이터 통신을 할 수 있다.
상부 카메라(2103) 및 하부 카메라(2106)는 로봇(2100)의 주위를 촬상하는 기능을 갖는다. 또한 장애물 센서(2107)는, 이동 기구(2108)를 사용하여 로봇(2100)이 앞으로 가는 진행 방향에서의 장애물의 유무를 감지할 수 있다. 로봇(2100)은 상부 카메라(2103), 하부 카메라(2106), 및 장애물 센서(2107)를 사용하여 주위의 환경을 인식함으로써 안전하게 이동할 수 있다. 본 발명의 일 형태의 발광 장치는 디스플레이(2105)에 사용할 수 있다.
도 8의 (C)는 고글형 디스플레이의 일례를 나타낸 도면이다. 고글형 디스플레이는 예를 들어 하우징(5000), 표시부(5001), 스피커(5003), LED 램프(5004), 접속 단자(5006), 센서(5007)(힘, 변위, 위치, 속도, 가속도, 각속도, 회전수, 거리, 광, 액체, 자기, 온도, 화학 물질, 음성, 시간, 경도, 전기장, 전류, 전압, 전력, 방사선, 유량, 습도, 경사도, 진동, 냄새, 또는 적외선을 측정하는 기능을 갖는 것), 마이크로폰(5008), 표시부(5002), 지지부(5012), 이어폰(5013) 등을 갖는다.
본 발명의 일 형태의 발광 장치는 표시부(5001) 및 표시부(5002)에 사용할 수 있다.
도 9는 실시형태 1 및 실시형태 2에 기재된 발광 디바이스를 조명 장치인 전기 스탠드에 사용한 예를 나타낸 것이다. 도 9에 나타낸 전기 스탠드는 하우징(2001)과 광원(2002)을 갖고, 광원(2002)에는 실시형태 3에 기재된 조명 장치를 사용하여도 좋다.
도 10은 실시형태 1 및 실시형태 2에 기재된 발광 디바이스를 실내의 조명 장치(3001)로서 사용한 예를 나타낸 것이다. 실시형태 1 및 실시형태 2에 기재된 발광 디바이스는 고온하에서의 신뢰성이 높은 발광 디바이스이기 때문에, 고온하에서의 신뢰성이 좋은 조명 장치로 할 수 있다. 또한 실시형태 1 및 실시형태 2에 기재된 발광 디바이스는 대면적화가 가능하므로, 대면적의 조명 장치로서 사용할 수 있다. 또한 실시형태 1 및 실시형태 2에 기재된 발광 디바이스는 얇기 때문에, 박형화된 조명 장치로서 사용할 수 있다.
실시형태 1 및 실시형태 2에 기재된 발광 디바이스는 자동차의 앞유리나 대시보드(dashboard)에도 탑재될 수 있다. 실시형태 1 및 실시형태 2에 기재된 발광 디바이스를 자동차의 앞유리나 대시보드에 사용하는 일 형태를 도 11에 도시하였다. 표시 영역(5200) 내지 표시 영역(5203)은 실시형태 1 및 실시형태 2에 기재된 발광 디바이스를 사용하여 제공된 표시 영역이다.
표시 영역(5200)과 표시 영역(5201)은 자동차의 앞유리에 제공되고, 실시형태 1 및 실시형태 2에 기재된 발광 디바이스가 탑재된 표시 장치이다. 실시형태 1 및 실시형태 2에 기재된 발광 디바이스는 양극과 음극을 투광성을 갖는 전극으로 제작함으로써, 반대편이 비쳐 보이는 소위 시스루 상태의 표시 장치로 할 수 있다. 시스루 상태의 표시 장치이면, 자동차의 앞유리에 설치하여도 시야를 가리지 않고 설치할 수 있다. 또한 구동을 위한 트랜지스터 등을 제공하는 경우에는, 유기 반도체 재료를 사용한 유기 트랜지스터나, 산화물 반도체를 사용한 트랜지스터 등 투광성을 갖는 트랜지스터를 사용하면 좋다.
표시 영역(5202)은 필러 부분에 제공되고, 실시형태 1 및 실시형태 2에 기재된 발광 디바이스가 탑재된 표시 장치이다. 표시 영역(5202)은, 차체에 제공된 촬상 수단으로부터의 영상을 표시함으로써, 필러로 가려진 시야를 보완할 수 있다. 또한 마찬가지로 대시보드 부분에 제공된 표시 영역(5203)은 차체로 가려진 시야를, 자동차의 외측에 제공된 촬상 수단으로부터의 영상을 표시함으로써, 사각을 보완하여 안전성을 높일 수 있다. 보이지 않는 부분을 보완하도록 영상을 표시함으로써, 더 자연스럽고 위화감 없이 안전을 확인할 수 있다.
표시 영역(5203)은 내비게이션 정보, 속도계나 회전수, 주행 거리, 연료계, 기어 상태, 에어컨디셔너의 설정 등을 표시함으로써, 다양한 정보를 제공할 수 있다. 표시 항목이나 레이아웃은 사용자의 취향에 맞추어 적절히 변경할 수 있다. 또한 이들 정보는 표시 영역(5200) 내지 표시 영역(5202)에도 표시할 수 있다. 또한 표시 영역(5200) 내지 표시 영역(5203)을 조명 장치로서 사용할 수도 있다.
또한 도 12의 (A), (B)에 접을 수 있는 휴대 정보 단말기(5150)를 도시하였다. 접을 수 있는 휴대 정보 단말기(5150)는 하우징(5151), 표시 영역(5152), 및 굴곡부(5153)를 갖는다. 도 12의 (A)는 펼친 상태의 휴대 정보 단말기(5150)를 도시한 것이다. 도 12의 (B)는 접은 상태의 휴대 정보 단말기를 도시한 것이다. 휴대 정보 단말기(5150)는 큰 표시 영역(5152)을 가짐에도 불구하고, 접으면 작고 가반성(可搬性)이 우수하다.
표시 영역(5152)은 굴곡부(5153)에 의하여 반으로 접을 수 있다. 굴곡부(5153)는 신축 가능한 부재와 복수의 지지 부재로 구성되어 있고, 접을 때는 신축 가능한 부재가 신장하고, 굴곡부(5153)는 2mm 이상, 바람직하게는 3mm 이상의 곡률 반경을 가지도록 접힌다.
또한 표시 영역(5152)은 터치 센서(입력 장치)가 탑재된 터치 패널(입출력 장치)이어도 좋다. 본 발명의 일 형태의 발광 장치를 표시 영역(5152)에 사용할 수 있다.
또한 도 13의 (A) 내지 (C)에 접을 수 있는 휴대 정보 단말기(9310)를 도시하였다. 도 13의 (A)는 펼친 상태의 휴대 정보 단말기(9310)를 도시한 것이다. 도 13의 (B)는 펼친 상태에서 접은 상태로, 또는 접은 상태에서 펼친 상태로 변화하는 도중의 휴대 정보 단말기(9310)를 도시한 것이다. 도 13의 (C)는 접은 상태의 휴대 정보 단말기(9310)를 도시한 것이다. 접은 상태의 휴대 정보 단말기(9310)는 가반성이 우수하고, 펼친 상태의 휴대 정보 단말기(9310)는 이음매가 없는 넓은 표시 영역을 가지므로 표시의 일람성(一覽性)이 높다.
표시 패널(9311)은 힌지(9313)로 연결된 3개의 하우징(9315)에 의하여 지지되어 있다. 또한 표시 패널(9311)은 터치 센서(입력 장치)가 탑재된 터치 패널(입출력 장치)이어도 좋다. 또한 표시 패널(9311)은, 힌지(9313)를 이용하여 2개의 하우징(9315) 사이를 굴곡시킴으로써, 휴대 정보 단말기(9310)를 펼친 상태로부터 접은 상태로 가역적으로 변형시킬 수 있다. 본 발명의 일 형태의 발광 장치를 표시 패널(9311)에 사용할 수 있다.
(실시예 1)
본 실시예에서는, 본 발명의 일 형태의 호스트 재료용 안트라센 화합물인 2,9-다이(1-나프틸)-10-페닐안트라센(약칭: 2αN-αNPhA)의 합성 방법에 대하여 자세히 설명한다. 2αN-αNPhA의 구조식을 아래에 나타낸다.
[화학식 11]
Figure pct00011
200mL 3구 플라스크에 2-클로로-9-(1-나프틸)-10-페닐안트라센 1.1g(2.7mmol), 1-나프틸보론산 0.93g(5.4mmol), 다이(1-아다만틸)-n-뷰틸포스핀 0.11g(0.30mmol), 인산 삼포타슘 1.9g(9.0mmol), tert-뷰틸알코올 0.67g(9.0mmol)을 넣고, 플라스크 내를 질소 치환하였다. 이 혼합물에 다이에틸렌글라이콜다이메틸에터 14mL를 첨가하고, 감압하에서 교반함으로써 탈기하였다. 이 혼합물에 아세트산 팔라듐(II) 34mg(0.15mmol)을 첨가하고, 질소 기류하, 130℃에서 12시간 교반하였다.
교반 후, 이 혼합물에 물을 첨가하고, 흡인 여과하고, 얻어진 고체를 톨루엔에 용해시키고, 셀라이트(Wako Pure Chemical Industries, Ltd. 제조, 카탈로그 번호: 531-16855(이하 동일함))·알루미나·플로리실(Wako Pure Chemical Industries, Ltd. 제조, 카탈로그 번호: 540-00135(이하 동일함))을 통하여 흡인 여과하였다. 얻어진 여과액을 농축하여 얻은 고체를 고속 액체 크로마토그래피(HPLC)에 의하여 정제하고, 또한 톨루엔을 사용하여 재결정한 결과, 목적 물질인 담황색 고체를 수량 1.0g, 수율 73%로 얻었다. 본 합성 방법의 합성 스킴을 아래에 나타낸다.
[화학식 12]
Figure pct00012
얻어진 담황색 고체 1.0g을 트레인 서블리메이션법으로 승화 정제하였다. 승화 정제는 압력 3.8Pa, 아르곤 유량 5.0mL/min의 조건으로, 담황색 고체를 220℃에서 가열하여 수행하였다. 승화 정제 후, 담황색 고체를 0.92g, 회수율 92%로 얻었다.
얻어진 담황색 고체의 핵자기 공명 분광법(1H-NMR)에 의한 분석 결과를 아래에 나타낸다. 또한 1H-NMR 차트를 도 14의 (A), (B)에 나타내었다. 또한 도 14의 (B)는 도 14의 (A)에서의 7.0ppm 내지 8.2ppm의 범위를 확대하여 나타낸 차트이다. 이 결과로부터, 본 실시예에서 상술한 구조식(100)으로 나타내어지는 본 발명의 일 형태인 유기 화합물, 2αN-αNPhA가 얻어진 것을 알 수 있었다.
1H NMR(DMSO-d6, 300MHz):δ=7.10(d, J=8.7Hz, 1H), 7.21(t, J=7.5Hz, 1H), 7.30-7.91(m, 22H), 8.05-8.10(m, 2H).
다음으로, 2αN-αNPhA의 톨루엔 용액의 흡수 스펙트럼 및 발광 스펙트럼을 측정한 결과를 도 15에 나타내었다. 또한 박막의 흡수 스펙트럼 및 발광 스펙트럼을 도 16에 나타내었다. 고체 박막은 석영 기판 위에 진공 증착법으로 제작하였다. 톨루엔 용액의 흡수 스펙트럼은, 자외 가시 분광 광도계(JASCO Corporation 제조, V550형)를 사용하여 측정하고, 톨루엔만을 석영 셀에 넣고 측정한 스펙트럼을 뺌으로써 산출하였다. 또한 박막의 흡수 스펙트럼은 분광 광도계(Hitachi High-Technologies Corporation 제조, 분광 광도계 U4100)를 사용하여 측정하고, 기판을 포함한 투과율과 반사율로부터 구한 흡광도(-log10 [%T/(100-%R)])를 사용하여 산출하였다. 또한 발광 스펙트럼의 측정에는 형광 광도계(Hamamatsu Photonics K.K. 제조, FS920)를 사용하였다.
2αN-αNPhA의 톨루엔 용액에서는 403nm, 382nm, 363nm, 310nm, 283nm 부근에 흡수 피크가 관찰되고, 443nm, 420nm 부근(여기 파장 382nm)에 발광 파장의 피크가 관찰되었다. 또한 2αN-αNPhA의 고체 박막에서는 409nm, 387nm, 367nm, 291nm, 266nm 부근에 흡수 피크가 관찰되고, 536nm, 498nm, 466nm, 440nm 부근(여기 파장 370nm)에 발광 파장의 피크가 관찰되었다.
또한 2αN-αNPhA가 청색 발광하는 것을 확인하였다. 2αN-αNPhA는 발광 물질이나 가시 영역의 형광 발광 물질의 호스트로서도 이용 가능한 것을 알 수 있었다. 또한 2αN-αNPhA의 박막은 대기하에서도 쉽게 응집하지 않으므로 형태의 변화가 작은 양호한 막질인 것을 알 수 있었다.
다음으로, 사이클릭 볼타메트리(CV) 측정에 의하여 2αN-αNPhA의 HOMO 준위 및 LUMO 준위를 산출하였다. 산출 방법은 아래와 같다. 측정 장치로서는 전기 화학 애널라이저(BAS Inc. 제조, 형식 번호: ALS 모델 600A 또는 600C)를 사용하였다. CV 측정에서의 용액은 용매로서 탈수 다이메틸폼아마이드(DMF)(Sigma-Aldrich Inc. 제조, 99.8%, 카탈로그 번호; 22705-6)를 사용하고, 지지 전해질인 과염소산 테트라-n-뷰틸암모늄(n-Bu4NClO4)(Tokyo Chemical Industry Co., Ltd. 제조, 카탈로그 번호; T0836)을 100mmol/L의 농도가 되도록 용해시키고, 또한 측정 대상을 2mmol/L의 농도가 되도록 용해시켜 조제하였다.
또한 작용 전극으로서는 백금 전극(BAS Inc. 제조, PTE 백금 전극)을 사용하고, 보조 전극으로서는 백금 전극(BAS Inc. 제조, VC-3용 Pt 카운터 전극(5cm))을 사용하고, 참조 전극으로서는 Ag/Ag+ 전극(BAS Inc. 제조, RE7 비수용매계 참조 전극)을 사용하였다. 또한 측정은 실온(20℃ 이상 25℃ 이하)에서 수행하였다.
또한 CV 측정 시의 스캔 속도는 0.1V/sec로 통일하고, 참조 전극에 대한 산화 전위 Ea[V] 및 환원 전위 Ec[V]를 측정하였다. Ea는 산화-환원파의 중간 전위로 하고, Ec는 환원-산화파의 중간 전위로 하였다. 여기서 본 실시예에서 사용하는 참조 전극의 진공 준위에 대한 퍼텐셜 에너지는 -4.94[eV]인 것이 알려져 있기 때문에, HOMO 준위[eV]=-4.94-Ea, LUMO 준위[eV]=-4.94-Ec라는 수학식으로 HOMO 준위 및 LUMO 준위를 각각 구할 수 있다.
그 결과로서, 2αN-αNPhA의 산화 전위 Ea[V]의 측정에서 HOMO 준위는 -5.81eV인 것을 알 수 있었다. 한편, 환원 전위 Ec[V]의 측정에서 LUMO 준위는 -2.79eV인 것을 알 수 있었다.
(실시예 2)
본 실시예에서는, 본 발명의 일 형태의 호스트 재료용 안트라센 화합물인 9-(1-나프틸)-10-페닐-2-(5-페닐-1-나프틸)안트라센(약칭: 2PαN-αNPhA)의 합성 방법에 대하여 자세히 설명한다. 2PαN-αNPhA의 구조식을 아래에 나타낸다.
[화학식 13]
Figure pct00013
200mL 3구 플라스크에 2-클로로-9-(1-나프틸)-10-페닐안트라센 1.3g(3.0mmol), 2-(5-페닐-1-나프틸)-4,4,5,5-테트라메틸-1,3,2-다이옥사보롤레인 1.2g(3.7mmol), 다이(1-아다만틸)-n-뷰틸포스핀 0.13g(0.36mmol), 인산 삼포타슘 2.0g(9.2mmol), tert-뷰틸알코올 0.68g(9.1mmol), 다이에틸렌글라이콜다이메틸에터 15mL를 넣고, 감압하에서 교반함으로써 탈기하였다. 이 혼합물에 아세트산 팔라듐(II) 37mg(0.17mmol)을 첨가하고, 질소 기류하, 130℃에서 8시간 교반하였다. 교반 후, 이 혼합물에 물을 첨가하고, 석출한 고체를 흡인 여과에 의하여 회수하였다. 얻어진 고체를 실리카 겔 칼럼 크로마토그래피(톨루엔:헥세인=1:4)에 의하여 정제하고, 또한 고속 액체 크로마토그래피(HPLC)에 의하여 정제함으로써, 고체를 얻었다. 얻어진 고체를 톨루엔을 사용하여 재결정한 결과, 목적 물질인 백색 분말을 수량 0.95g, 수율 54%로 얻었다. 본 합성 방법의 합성 스킴을 아래에 나타낸다.
[화학식 14]
Figure pct00014
얻어진 백색 분말 0.95g을 트레인 서블리메이션법으로 승화 정제하였다. 승화 정제는 압력 3.4Pa, 아르곤 유량 10mL/min의 조건으로, 백색 분말을 275℃에서 18시간 가열하여 수행하였다. 승화 정제 후, 담황색 분말을 0.72g, 회수율 76%로 얻었다.
얻어진 담황색 분말의 핵자기 공명 분광법(1H-NMR)에 의한 분석 결과를 아래에 나타낸다. 또한 1H-NMR 차트를 도 17의 (A), (B)에 나타내었다. 또한 도 17의 (B)는 도 17의 (A)에서의 7.0ppm 내지 8.5ppm의 범위를 확대하여 나타낸 차트이다. 이 결과로부터, 본 실시예에서 상술한 구조식(101)으로 나타내어지는 2PαN-αNPhA가 얻어진 것을 알 수 있었다.
1H NMR(CD2Cl2, 300MHz):δ=7.23-7.80(m, 27H), 7.88(dd, J=9.0Hz, 0.9Hz, 1H), 7.97-8.02(m, 2H).
다음으로, 2PαN-αNPhA의 톨루엔 용액의 흡수 스펙트럼 및 발광 스펙트럼을 측정한 결과를 도 18, 도 19에 나타내었다. 측정은 실시예 1과 같은 식으로 수행하였다.
도 18에서, 403nm, 382nm, 363nm, 316nm 부근에 흡수 피크가 관찰되고, 421nm, 443nm 부근(여기 파장 382nm)에 발광 파장의 피크가 관찰되었다. 또한 도 19의 결과에서, 2PαN-αNPhA의 고체 박막에서는 405nm, 386nm, 367nm, 333nm, 321nm 부근에 흡수 피크가 관찰되고, 430nm, 453nm 부근(여기 파장 370nm)에 발광 파장의 피크가 관찰되었다.
또한 2PαN-αNPhA가 청색 발광하는 것을 확인하였다. 본 발명의 일 형태인 유기 화합물, 2PαN-αNPhA는 발광 물질이나 가시 영역의 형광 발광 물질의 호스트로서도 이용 가능하다. 또한 2PαN-αNPhA의 박막은 대기하에서도 쉽게 응집하지 않으므로 형태의 변화가 작은 양호한 막질인 것을 알 수 있었다.
다음으로, 사이클릭 볼타메트리(CV) 측정에 의하여 2PαN-αNPhA의 HOMO 준위 및 LUMO 준위를 산출한 결과를 나타낸다. 산출 방법은 실시예 1과 같다.
이 결과로부터, 2PαN-αNPhA의 산화 전위 Ea[V]의 측정에 의하여 HOMO 준위는 -5.86eV인 것을 알 수 있었다. 한편, 환원 전위 Ec[V]의 측정에 의하여 LUMO 준위는 -2.80eV인 것을 알 수 있었다.
(실시예 3)
본 실시예에서는 실시형태 1에서 설명한 본 발명의 일 형태의 호스트 재료용 안트라센 화합물을 호스트 재료로서 사용한 발광 디바이스 1에 대하여 설명한다. 또한 본 발명의 일 형태의 호스트 재료용 안트라센 화합물과 유사한 구조를 갖는 유기 화합물을 호스트 재료에 사용한 비교 발광 디바이스 1 및 비교 발광 디바이스 2에 대해서도 함께 나타내었다. 발광 디바이스 1, 비교 발광 디바이스 1, 및 비교 발광 디바이스 2에 사용한 유기 화합물의 구조식을 아래에 나타낸다.
[화학식 15]
Figure pct00015
(발광 디바이스 1의 제작 방법)
먼저, 유리 기판 위에 산화 실리콘을 포함한 인듐 주석 산화물(ITSO)을 스퍼터링법으로 성막하여 제 1 전극(101)을 형성하였다. 또한 그 막 두께는 70nm로 하고, 전극 면적은 2mmХ2mm로 하였다.
다음으로 기판 위에 발광 디바이스를 형성하기 위한 전(前) 처리로서, 기판 표면을 물로 세정하고, 200℃에서 1시간 소성한 후, UV 오존 처리를 370초 수행하였다.
그 후, 10-4Pa 정도까지 내부가 감압된 진공 증착 장치에 기판을 도입하고, 진공 증착 장치 내의 가열실에서, 170℃에서 30분간의 진공 소성을 수행한 후, 기판을 30분 정도 방랭하였다.
다음으로 제 1 전극(101)이 형성된 면이 아래쪽이 되도록, 제 1 전극(101)이 형성된 기판을 진공 증착 장치 내에 제공된 기판 홀더에 고정하고, 제 1 전극(101) 위에 저항 가열을 사용한 증착법에 의하여 상기 구조식(i)으로 나타내어지는 N-(1,1'-바이페닐-4-일)-N-[4-(9-페닐-9H-카바졸-3-일)페닐]-9,9-다이메틸-9H-플루오렌-2-아민(약칭: PCBBiF)과, ALD-MP001Q(Analysis Atelier Corporation 제조, 재료 일련번호: 1S20170124)를 중량비 1:0.1(=PCBBiF:ALD-MP001Q)이 되도록 10nm 동시 증착하여 정공 주입층(111)을 형성하였다.
다음으로 정공 주입층(111) 위에 제 1 정공 수송층(112-1)으로서 PCBBiF를 20nm가 되도록 증착한 후, 제 2 정공 수송층(112-2)으로서 상기 구조식(ii)으로 나타내어지는 N,N-비스[4-(다이벤조퓨란-4-일)페닐]-4-아미노-p-터페닐(약칭: DBfBB1TP)을 10nm가 되도록 증착하여 정공 수송층(112)을 형성하였다. 또한 제 2 정공 수송층(112-2)은 전자 블로킹층으로서도 기능한다.
이어서, 상기 구조식(100)으로 나타내어지는 2,9-다이(1-나프틸)-10-페닐안트라센(약칭: 2αN-αNPhA)과, 상기 구조식(iii)으로 나타내어지는 3,10-비스[N-(9-페닐-9H-카바졸-2-일)-N-페닐아미노]나프토[2,3-b;6,7-b']비스벤조퓨란(약칭: 3,10PCA2Nbf(IV)-02)을 중량비 1:0.015(=2αN-αNPhA:3,10PCA2Nbf(IV)-02)가 되도록 25nm 동시 증착하여 발광층(113)을 형성하였다.
그 후, 발광층(113) 위에 상기 구조식(iv)으로 나타내어지는 2-[3'-(다이벤조싸이오펜-4-일)바이페닐-3-일]다이벤조[f,h]퀴녹살린(약칭: 2mDBTBPDBq-II)을 15nm가 되도록 증착한 후, 상기 구조식(v)으로 나타내어지는 2,9-다이(2-나프틸)-4,7-다이페닐-1,10-페난트롤린(약칭: NBPhen)을 10nm가 되도록 증착하여 전자 수송층(114)을 형성하였다.
전자 수송층(114)을 형성한 후, 플루오린화 리튬(LiF)을 막 두께 1nm가 되도록 증착하여 전자 주입층(115)을 형성하고, 이어서 알루미늄을 200nm의 막 두께가 되도록 증착하여 제 2 전극(102)을 형성함으로써, 본 실시예의 발광 디바이스 1을 제작하였다.
(비교 발광 디바이스 1의 제작 방법)
비교 발광 디바이스 1은 발광 디바이스 1에서의 2αN-αNPhA를 상기 구조식(vi)으로 나타내어지는 2-(1-나프틸)-9-(2-나프틸)-10-페닐안트라센(약칭: 2αN-βNPhA)으로 바꾼 점 이외는 발광 디바이스 1과 같은 식으로 제작하였다.
(비교 발광 디바이스 2의 제작 방법)
비교 발광 디바이스 2는 발광 디바이스 1에서의 2αN-αNPhA를 상기 구조식(vii)으로 나타내어지는 2,10-다이(1-나프틸)-9-페닐안트라센(약칭: 3αN-αNPhA)으로 바꾼 점 이외는 발광 디바이스 1과 같은 식으로 제작하였다.
발광 디바이스 1, 비교 발광 디바이스 1, 및 비교 발광 디바이스 2의 소자 구조를 아래의 표에 정리하였다.
[표 1]
Figure pct00016
이들 발광 디바이스를 질소 분위기의 글로브 박스 내에서, 발광 다비아스가 대기에 노출되지 않도록 유리 기판으로 밀봉하는 작업(실재를 소자의 주위에 도포하고, 밀봉 시에 UV 처리 및 80℃에서 1시간 동안의 열처리)을 수행한 후, 이들 발광 디바이스의 초기 특성 및 신뢰성을 측정하였다. 또한 측정은 실온에서 수행하였다.
발광 디바이스 1, 비교 발광 디바이스 1, 및 비교 발광 디바이스 2의 휘도-전류 밀도 특성을 도 20에, 전류 효율-휘도 특성을 도 21에, 휘도-전압 특성을 도 22에, 전류-전압 특성을 도 23에, 외부 양자 효율-휘도 특성을 도 24에, 발광 스펙트럼을 도 25에 나타내었다. 또한 발광 디바이스 1, 비교 발광 디바이스 1, 및 비교 발광 디바이스 2의 1000cd/m2 부근에서의 주요 특성을 표 2에 나타내었다.
[표 2]
Figure pct00017
도 20 내지 도 25 및 표 2로부터, 발광 디바이스 1, 비교 발광 디바이스 1, 및 비교 발광 디바이스 2는 특성이 양호한 청색 발광 디바이스인 것을 알 수 있었다.
또한 전류 밀도를 50mA/cm2로 한 경우의 구동 시간에 대한 휘도의 변화를 나타내는 그래프를 도 26에 나타내었다. 본 발명의 일 형태의 발광 디바이스 1은 β위치에서 나프틸기가 치환된 안트라센 화합물을 호스트 재료로서 사용한 비교 발광 디바이스 1, 및 안트라센의 2위치와 10위치에 α-나프틸기가 결합되고, 9위치에 페닐기가 결합된 안트라센 화합물을 호스트 재료로서 사용한 비교 발광 디바이스 2보다 수명이 양호한 발광 디바이스인 것을 알 수 있었다.
(실시예 4)
본 실시예에서는 실시형태 1에서 설명한 본 발명의 일 형태의 호스트 재료용 안트라센 화합물을 사용한 발광 디바이스 2에 대하여 설명한다. 또한 마찬가지로 본 발명의 일 형태의 안트라센 화합물과 유사한 구조를 갖는 유기 화합물을 호스트 재료로서 사용한 비교 발광 디바이스 3 및 비교 발광 디바이스 4에 대해서도 나타내었다. 발광 디바이스 2, 비교 발광 디바이스 3, 및 비교 발광 디바이스 4에 사용한 유기 화합물의 구조식을 아래에 나타낸다.
[화학식 16]
Figure pct00018
(발광 디바이스 2의 제작 방법)
먼저, 유리 기판 위에 산화 실리콘을 포함한 인듐 주석 산화물(ITSO)을 스퍼터링법으로 성막하여 제 1 전극(101)을 형성하였다. 또한 그 막 두께는 70nm로 하고, 전극 면적은 2mmХ2mm로 하였다.
다음으로 기판 위에 발광 디바이스를 형성하기 위한 전 처리로서, 기판 표면을 물로 세정하고, 200℃에서 1시간 소성한 후, UV 오존 처리를 370초 수행하였다.
그 후, 10-4Pa 정도까지 내부가 감압된 진공 증착 장치에 기판을 도입하고, 진공 증착 장치 내의 가열실에서, 170℃에서 30분간의 진공 소성을 수행한 후, 기판을 30분 정도 방랭하였다.
다음으로 제 1 전극(101)이 형성된 면이 아래쪽이 되도록, 제 1 전극(101)이 형성된 기판을 진공 증착 장치 내에 제공된 기판 홀더에 고정하고, 제 1 전극(101) 위에 저항 가열을 사용한 증착법에 의하여 상기 구조식(viii)으로 나타내어지는 N,N-비스(4-바이페닐)-6-페닐벤조[b]나프토[1,2-d]퓨란-8-아민(약칭: BBABnf)과, ALD-MP001Q(Analysis Atelier Corporation 제조, 재료 일련번호: 1S20170124)를 중량비 1:0.1(=BBABnf:ALD-MP001Q)이 되도록 10nm 동시 증착하여 정공 주입층(111)을 형성하였다.
다음으로 정공 주입층(111) 위에 제 1 정공 수송층(112-1)으로서 BBABnf를 20nm가 되도록 증착한 후, 제 2 정공 수송층(112-2)으로서 상기 구조식(ix)으로 나타내어지는 3,3'-(나프탈렌-1,4-다이일)비스(9-페닐-9H-카바졸)(약칭: PCzN2)을 10nm가 되도록 증착하여 정공 수송층(112)을 형성하였다. 또한 제 2 정공 수송층(112-2)은 전자 블로킹층으로서도 기능한다.
이어서, 상기 구조식(100)으로 나타내어지는 2,9-다이(1-나프틸)-10-페닐안트라센(약칭: 2αN-αNPhA)과, 상기 구조식(iii)으로 나타내어지는 3,10-비스[N-(9-페닐-9H-카바졸-2-일)-N-페닐아미노]나프토[2,3-b;6,7-b']비스벤조퓨란(약칭: 3,10PCA2Nbf(IV)-02)을 중량비 1:0.015(=2αN-αNPhA:3,10PCA2Nbf(IV)-02)가 되도록 25nm 동시 증착하여 발광층(113)을 형성하였다.
그 후, 발광층(113) 위에 상기 구조식(iv)으로 나타내어지는 2-[3'-(다이벤조싸이오펜-4-일)바이페닐-3-일]다이벤조[f,h]퀴녹살린(약칭: 2mDBTBPDBq-II)을 15nm가 되도록 증착한 후, 상기 구조식(v)으로 나타내어지는 2,9-다이(2-나프틸)-4,7-다이페닐-1,10-페난트롤린(약칭: NBPhen)을 10nm가 되도록 증착하여 전자 수송층(114)을 형성하였다.
전자 수송층(114)을 형성한 후, 플루오린화 리튬(LiF)을 막 두께 1nm가 되도록 증착하여 전자 주입층(115)을 형성하고, 이어서 알루미늄을 200nm의 막 두께가 되도록 증착하여 제 2 전극(102)을 형성함으로써, 본 실시예의 발광 디바이스 2를 제작하였다.
(비교 발광 디바이스 3의 제작 방법)
비교 발광 디바이스 3은 발광 디바이스 2에서의 2αN-αNPhA를 상기 구조식(vii)으로 나타내어지는 2-(1-나프틸)-9-(2-나프틸)-10-페닐안트라센(약칭: 2αN-βNPhA)으로 바꾼 점 이외는 발광 디바이스 2와 같은 식으로 제작하였다.
(비교 발광 디바이스 4의 제작 방법)
비교 발광 디바이스 4는 발광 디바이스 2에서의 2αN-αNPhA를 상기 구조식(x)으로 나타내어지는 9-(1-나프틸)-2-(2-나프틸)-10-페닐안트라센(약칭: 2βN-αNPhA)으로 바꾼 점 이외는 발광 디바이스 2와 같은 식으로 제작하였다.
발광 디바이스 2, 비교 발광 디바이스 3, 및 비교 발광 디바이스 4의 소자 구조를 아래의 표에 정리하였다.
[표 3]
Figure pct00019
이들 발광 디바이스를 질소 분위기의 글로브 박스 내에서, 발광 다비아스가 대기에 노출되지 않도록 유리 기판으로 밀봉하는 작업(실재를 소자의 주위에 도포하고, 밀봉 시에 UV 처리 및 80℃에서 1시간 동안의 열처리)을 수행한 후, 이들 발광 디바이스의 초기 특성 및 신뢰성을 측정하였다. 또한 측정은 실온에서 수행하였다.
발광 디바이스 2, 비교 발광 디바이스 3, 및 비교 발광 디바이스 4의 휘도-전류 밀도 특성을 도 27에, 전류 효율-휘도 특성을 도 28에, 휘도-전압 특성을 도 29에, 전류-전압 특성을 도 30에, 외부 양자 효율-휘도 특성을 도 31에, 발광 스펙트럼을 도 32에 나타내었다. 또한 발광 디바이스 2, 비교 발광 디바이스 3, 및 비교 발광 디바이스 4의 1000cd/m2 부근에서의 주요 특성을 표 4에 나타내었다.
[표 4]
Figure pct00020
도 27 내지 도 32 및 표 4로부터, 본 발명의 일 형태인 발광 디바이스 2, 비교 발광 디바이스 3, 및 비교 발광 디바이스 4는 특성이 양호한 청색 발광 디바이스인 것을 알 수 있었다.
또한 전류 밀도를 50mA/cm2로 한 경우의 구동 시간에 대한 휘도의 변화를 나타내는 그래프를 도 33에 나타내었다. 본 발명의 일 형태의 호스트 재료용 안트라센 화합물을 호스트 재료로서 사용한 발광 디바이스 2는 β위치에 나프틸기가 결합된 안트라센 화합물을 호스트 재료로서 사용한 비교 발광 디바이스 3 및 비교 발광 디바이스 4보다 양호한 특성을 나타내었다.
(실시예 5)
본 실시예에서는 실시형태 1에서 설명한 본 발명의 일 형태의 호스트 재료용 안트라센 화합물을 사용한 발광 디바이스 3 및 발광 디바이스 4에 대하여 설명한다. 또한 마찬가지로 본 발명의 일 형태의 안트라센 화합물과 유사한 구조를 갖는 유기 화합물을 호스트 재료로서 사용한 비교 발광 디바이스 5 내지 비교 발광 디바이스 10에 대해서도 나타내었다. 발광 디바이스 3, 발광 디바이스 4, 및 비교 발광 디바이스 5 내지 비교 발광 디바이스 10에 사용한 유기 화합물의 구조식을 아래에 나타낸다.
[화학식 17]
Figure pct00021
[화학식 18]
Figure pct00022
(발광 디바이스 3의 제작 방법)
먼저, 유리 기판 위에 산화 실리콘을 포함한 인듐 주석 산화물(ITSO)을 스퍼터링법으로 성막하여 제 1 전극(101)을 형성하였다. 또한 그 막 두께는 70nm로 하고, 전극 면적은 2mmХ2mm로 하였다.
다음으로 기판 위에 발광 디바이스를 형성하기 위한 전 처리로서, 기판 표면을 물로 세정하고, 200℃에서 1시간 소성한 후, UV 오존 처리를 370초 수행하였다.
그 후, 10-4Pa 정도까지 내부가 감압된 진공 증착 장치에 기판을 도입하고, 진공 증착 장치 내의 가열실에서, 170℃에서 30분간의 진공 소성을 수행한 후, 기판을 30분 정도 방랭하였다.
다음으로 제 1 전극(101)이 형성된 면이 아래쪽이 되도록, 제 1 전극(101)이 형성된 기판을 진공 증착 장치 내에 제공된 기판 홀더에 고정하고, 제 1 전극(101) 위에 저항 가열을 사용한 증착법에 의하여 상기 구조식(viii)으로 나타내어지는 N,N-비스(4-바이페닐)-6-페닐벤조[b]나프토[1,2-d]퓨란-8-아민(약칭: BBABnf)과, ALD-MP001Q(Analysis Atelier Corporation 제조, 재료 일련번호: 1S20170124)를 중량비 1:0.1(=BBABnf:ALD-MP001Q)이 되도록 10nm 동시 증착하여 정공 주입층(111)을 형성하였다.
다음으로 정공 주입층(111) 위에 제 1 정공 수송층(112-1)으로서 BBABnf를 20nm가 되도록 증착한 후, 제 2 정공 수송층(112-2)으로서 상기 구조식(ix)으로 나타내어지는 3,3'-(나프탈렌-1,4-다이일)비스(9-페닐-9H-카바졸)(약칭: PCzN2)을 10nm가 되도록 증착하여 정공 수송층(112)을 형성하였다. 또한 제 2 정공 수송층(112-2)은 전자 블로킹층으로서도 기능한다.
이어서, 상기 구조식(100)으로 나타내어지는 2,9-다이(1-나프틸)-10-페닐안트라센(약칭: 2αN-αNPhA)과, 상기 구조식(iii)으로 나타내어지는 3,10-비스[N-(9-페닐-9H-카바졸-2-일)-N-페닐아미노]나프토[2,3-b;6,7-b']비스벤조퓨란(약칭: 3,10PCA2Nbf(IV)-02)을 중량비 1:0.015(=2αN-αNPhA:3,10PCA2Nbf(IV)-02)가 되도록 25nm 동시 증착하여 발광층(113)을 형성하였다.
그 후, 발광층(113) 위에 상기 구조식(iv)으로 나타내어지는 2-[3'-(다이벤조싸이오펜-4-일)바이페닐-3-일]다이벤조[f,h]퀴녹살린(약칭: 2mDBTBPDBq-II)을 15nm가 되도록 증착한 후, 상기 구조식(v)으로 나타내어지는 2,9-다이(2-나프틸)-4,7-다이페닐-1,10-페난트롤린(약칭: NBPhen)을 10nm가 되도록 증착하여 전자 수송층(114)을 형성하였다.
전자 수송층(114)을 형성한 후, 플루오린화 리튬(LiF)을 막 두께 1nm가 되도록 증착하여 전자 주입층(115)을 형성하고, 이어서 알루미늄을 200nm의 막 두께가 되도록 증착하여 제 2 전극(102)을 형성함으로써, 본 실시예의 발광 디바이스 3을 제작하였다.
(발광 디바이스 4의 제작 방법)
발광 디바이스 4는 발광 디바이스 3에서의 2αN-αNPhA를 상기 구조식(101)으로 나타내어지는 9-(1-나프틸)-10-페닐-2-(5-페닐-1-나프틸)안트라센(약칭: 2PαN-αNPhA)으로 바꾼 점 이외는 발광 디바이스 3과 같은 식으로 제작하였다.
(비교 발광 디바이스 5의 제작 방법)
비교 발광 디바이스 5는 발광 디바이스 3에서의 2αN-αNPhA를 상기 구조식(xi)으로 나타내어지는 2-(1-나프틸)-10-페닐-9-(5-페닐-1-나프틸)안트라센(약칭: 2αN-PαNPhA)으로 바꾼 점 이외는 발광 디바이스 3과 같은 식으로 제작하였다.
(비교 발광 디바이스 6의 제작 방법)
비교 발광 디바이스 6은 발광 디바이스 3에서의 2αN-αNPhA를 상기 구조식(xii)으로 나타내어지는 2-(4-메틸-1-나프틸)-9-(1-나프틸)-10-페닐안트라센(약칭: 2MeαN-αNPhA)으로 바꾼 점 이외는 발광 디바이스 3과 같은 식으로 제작하였다.
(비교 발광 디바이스 7의 제작 방법)
비교 발광 디바이스 7은 발광 디바이스 3에서의 2αN-αNPhA를 상기 구조식(xiii)으로 나타내어지는 9-(4-메틸-1-나프틸)-2-(1-나프틸)-10-페닐안트라센(약칭: 2αN-MeαNPhA)으로 바꾼 점 이외는 발광 디바이스 3과 같은 식으로 제작하였다.
(비교 발광 디바이스 8의 제작 방법)
비교 발광 디바이스 8은 발광 디바이스 3에서의 2αN-αNPhA를 상기 구조식(xiv)으로 나타내어지는 10-(4-바이페닐)-2,9-다이(1-나프틸)안트라센(약칭: 2αN-αNBPhA)으로 바꾼 점 이외는 발광 디바이스 3과 같은 식으로 제작하였다.
(비교 발광 디바이스 9의 제작 방법)
비교 발광 디바이스 9는 발광 디바이스 3에서의 2αN-αNPhA를 상기 구조식(xv)으로 나타내어지는 2-(1-나프틸)-10-페닐-9-(5-트라이메틸실릴-1-나프틸)안트라센(약칭: 2αN-TMSαNPhA)으로 바꾼 점 이외는 발광 디바이스 3과 같은 식으로 제작하였다.
(비교 발광 디바이스 10의 제작 방법)
비교 발광 디바이스 10은 발광 디바이스 3에서의 2αN-αNPhA를 상기 구조식(xvi)으로 나타내어지는 9-(1-나프틸)-10-페닐-2-(5-트라이메틸실릴-1-나프틸)안트라센(약칭: 2TMSαN-αNPhA)으로 바꾼 점 이외는 발광 디바이스 3과 같은 식으로 제작하였다.
발광 디바이스 3, 발광 디바이스 4, 및 비교 발광 디바이스 5 내지 비교 발광 디바이스 10의 소자 구조를 아래의 표에 정리하였다.
[표 5]
Figure pct00023
이들 발광 디바이스를 질소 분위기의 글로브 박스 내에서, 발광 다비아스가 대기에 노출되지 않도록 유리 기판으로 밀봉하는 작업(실재를 소자의 주위에 도포하고, 밀봉 시에 UV 처리 및 80℃에서 1시간 동안의 열처리)을 수행한 후, 이들 발광 디바이스의 초기 특성 및 신뢰성을 측정하였다. 또한 측정은 실온에서 수행하였다.
발광 디바이스 3, 발광 디바이스 4, 및 비교 발광 디바이스 5 내지 비교 발광 디바이스 10의 휘도-전류 밀도 특성을 도 34에, 전류 효율-휘도 특성을 도 35에, 휘도-전압 특성을 도 36에, 전류-전압 특성을 도 37에, 외부 양자 효율-휘도 특성을 도 38에, 발광 스펙트럼을 도 39에 나타내었다. 또한 발광 디바이스 3, 발광 디바이스 4, 및 비교 발광 디바이스 5 내지 비교 발광 디바이스 10의 1000cd/m2 부근에서의 주요 특성을 표 6에 나타내었다.
[표 6]
Figure pct00024
도 34 내지 도 39 및 표 6으로부터, 발광 디바이스 3, 발광 디바이스 4, 및 비교 발광 디바이스 5 내지 비교 발광 디바이스 10은 특성이 양호한 청색 발광 디바이스인 것을 알 수 있었다.
또한 전류 밀도를 50mA/cm2로 한 경우의 각 발광 디바이스에서의 LT97(초기 휘도의 97%까지 열화하는 데 걸리는 시간) 및 LT95(초기 휘도의 95%까지 열화하는 데 걸리는 시간)를 아래의 표에 정리하였다.
[표 7]
Figure pct00025
표에서, 본 발명의 일 형태의 호스트 재료용 안트라센 화합물을 호스트 재료로서 사용한 발광 디바이스는 양호한 특성을 나타내었다.
발광 디바이스 3, 비교 발광 디바이스 6, 비교 발광 디바이스 7, 비교 발광 디바이스 9, 및 비교 발광 디바이스 10으로부터, 본 발명의 일 형태의 호스트 재료용 안트라센 화합물로의 알킬기 및 알킬실릴기의 결합은 신뢰성에 영향을 미치는 것을 알 수 있었다. 특히, 알킬실릴기의 영향이 크지만, 한편으로 메틸기는 작음에도 불구하고 비교적 큰 영향을 미치는 것을 알 수 있었다.
(실시예 6)
본 실시예에서는 실시형태 1에서 설명한 본 발명의 일 형태의 호스트 재료용 안트라센 화합물을 사용한 발광 디바이스 5에 대하여 설명한다. 또한 마찬가지로 본 발명의 일 형태의 안트라센 화합물과 유사한 구조를 갖는 유기 화합물을 호스트 재료로서 사용한 비교 발광 디바이스 11 및 비교 발광 디바이스 12에 대해서도 나타내었다. 발광 디바이스 5, 비교 발광 디바이스 11, 및 비교 발광 디바이스 12에 사용한 유기 화합물의 구조식을 아래에 나타낸다.
[화학식 19]
Figure pct00026
(발광 디바이스 5의 제작 방법)
먼저, 유리 기판 위에 산화 실리콘을 포함한 인듐 주석 산화물(ITSO)을 스퍼터링법으로 성막하여 제 1 전극(101)을 형성하였다. 또한 그 막 두께는 70nm로 하고, 전극 면적은 2mmХ2mm로 하였다.
다음으로 기판 위에 발광 디바이스를 형성하기 위한 전 처리로서, 기판 표면을 물로 세정하고, 200℃에서 1시간 소성한 후, UV 오존 처리를 370초 수행하였다.
그 후, 10-4Pa 정도까지 내부가 감압된 진공 증착 장치에 기판을 도입하고, 진공 증착 장치 내의 가열실에서, 170℃에서 30분간의 진공 소성을 수행한 후, 기판을 30분 정도 방랭하였다.
다음으로 제 1 전극(101)이 형성된 면이 아래쪽이 되도록, 제 1 전극(101)이 형성된 기판을 진공 증착 장치 내에 제공된 기판 홀더에 고정하고, 제 1 전극(101) 위에 저항 가열을 사용한 증착법에 의하여 상기 구조식(viii)으로 나타내어지는 N,N-비스(4-바이페닐)-6-페닐벤조[b]나프토[1,2-d]퓨란-8-아민(약칭: BBABnf)과, ALD-MP001Q(Analysis Atelier Corporation 제조, 재료 일련번호: 1S20170124)를 중량비 1:0.1(=BBABnf:ALD-MP001Q)이 되도록 10nm 동시 증착하여 정공 주입층(111)을 형성하였다.
다음으로 정공 주입층(111) 위에 제 1 정공 수송층(112-1)으로서 BBABnf를 20nm가 되도록 증착한 후, 제 2 정공 수송층(112-2)으로서 상기 구조식(ix)으로 나타내어지는 3,3'-(나프탈렌-1,4-다이일)비스(9-페닐-9H-카바졸)(약칭: PCzN2)을 10nm가 되도록 증착하여 정공 수송층(112)을 형성하였다. 또한 제 2 정공 수송층(112-2)은 전자 블로킹층으로서도 기능한다.
이어서, 상기 구조식(100)으로 나타내어지는 2,9-다이(1-나프틸)-10-페닐안트라센(약칭: 2αN-αNPhA)과, 상기 구조식(iii)으로 나타내어지는 3,10-비스[N-(9-페닐-9H-카바졸-2-일)-N-페닐아미노]나프토[2,3-b;6,7-b']비스벤조퓨란(약칭: 3,10PCA2Nbf(IV)-02)을 중량비 1:0.015(=2αN-αNPhA:3,10PCA2Nbf(IV)-02)가 되도록 25nm 동시 증착하여 발광층(113)을 형성하였다.
그 후, 발광층(113) 위에 상기 구조식(iv)으로 나타내어지는 2-[3'-(다이벤조싸이오펜-4-일)바이페닐-3-일]다이벤조[f,h]퀴녹살린(약칭: 2mDBTBPDBq-II)을 15nm가 되도록 증착한 후, 상기 구조식(v)으로 나타내어지는 2,9-다이(2-나프틸)-4,7-다이페닐-1,10-페난트롤린(약칭: NBPhen)을 10nm가 되도록 증착하여 전자 수송층(114)을 형성하였다.
전자 수송층(114)을 형성한 후, 플루오린화 리튬(LiF)을 막 두께 1nm가 되도록 증착하여 전자 주입층(115)을 형성하고, 이어서 알루미늄을 200nm의 막 두께가 되도록 증착하여 제 2 전극(102)을 형성함으로써, 본 실시예의 발광 디바이스 5를 제작하였다.
(비교 발광 디바이스 11의 제작 방법)
비교 발광 디바이스 11은 발광 디바이스 5에서의 2αN-αNPhA를 상기 구조식(xi)으로 나타내어지는 2-(1-나프틸)-10-페닐-9-(5-페닐-1-나프틸)안트라센(약칭: 2αN-PαNPhA)으로 바꾼 점 이외는 발광 디바이스 5와 같은 식으로 제작하였다.
(비교 발광 디바이스 12의 제작 방법)
비교 발광 디바이스 12는 발광 디바이스 5에서의 2αN-αNPhA를 상기 구조식(xvii)으로 나타내어지는 2,9,10-트라이(1-나프틸)안트라센(약칭: αTNA)으로 바꾼 점 이외는 발광 디바이스 5와 같은 식으로 제작하였다.
발광 디바이스 5, 비교 발광 디바이스 11, 및 비교 발광 디바이스 12의 소자 구조를 아래의 표에 정리하였다.
[표 8]
Figure pct00027
이들 발광 디바이스를 질소 분위기의 글로브 박스 내에서, 발광 다비아스가 대기에 노출되지 않도록 유리 기판으로 밀봉하는 작업(실재를 소자의 주위에 도포하고, 밀봉 시에 UV 처리 및 80℃에서 1시간 동안의 열처리)을 수행한 후, 이들 발광 디바이스의 초기 특성 및 신뢰성을 측정하였다. 또한 측정은 실온에서 수행하였다.
발광 디바이스 5, 비교 발광 디바이스 11, 및 비교 발광 디바이스 12의 휘도-전류 밀도 특성을 도 40에, 전류 효율-휘도 특성을 도 41에, 휘도-전압 특성을 도 42에, 전류-전압 특성을 도 43에, 외부 양자 효율-휘도 특성을 도 44에, 발광 스펙트럼을 도 45에 나타내었다. 또한 발광 디바이스 5, 비교 발광 디바이스 11, 및 비교 발광 디바이스 12의 1000cd/m2 부근에서의 주요 특성을 표 9에 나타내었다.
[표 9]
Figure pct00028
도 40 내지 도 45 및 표 9로부터, 본 발명의 일 형태인 발광 디바이스 5, 비교 발광 디바이스 11, 및 비교 발광 디바이스 12는 특성이 양호한 청색 발광 디바이스인 것을 알 수 있었다.
또한 전류 밀도를 50mA/cm2로 한 경우의 구동 시간에 대한 휘도의 변화를 나타내는 그래프를 도 46에 나타내었다. 본 발명의 일 형태의 호스트 재료용 안트라센 화합물을 호스트 재료로서 사용한 발광 디바이스 5는 페닐기가 결합된 나프틸기가 9위치에 결합된 안트라센 화합물을 호스트 재료로서 사용한 비교 발광 디바이스 11, 및 3개의 나프틸기가 결합된 안트라센 화합물을 호스트 재료로서 사용한 비교 발광 디바이스 12보다 양호한 특성을 나타내었다.
<참고예 1>
본 참고예에서는, 실시예에서 비교예로서 사용한 유기 화합물인 2-(4-메틸-1-나프틸)-9-(1-나프틸)-10-페닐안트라센(약칭: 2MeαN-αNPhA)의 합성 방법에 대하여 자세히 설명한다. 2MeαN-αNPhA의 구조식을 아래에 나타낸다.
[화학식 20]
Figure pct00029
200mL 3구 플라스크에 2-클로로-9-(1-나프틸)-10-페닐안트라센 1.4g(3.4mmol), 4-메틸-1-나프틸보론산 0.77g(4.1mmol), 다이(1-아다만틸)-n-뷰틸포스핀 0.13g(0.36mmol), 인산 삼포타슘 2.2g(10mmol), tert-뷰틸알코올 0.79g(11mmol), 다이에틸렌글라이콜다이메틸에터 17mL를 넣고, 감압하에서 교반함으로써 탈기하였다. 이 혼합물에 아세트산 팔라듐(II) 41mg(0.18mmol)을 첨가하고, 질소 기류하, 130℃에서 6시간 교반하였다. 교반 후, 얻어진 혼합물에 물을 첨가하고, 수성층에 대하여 톨루엔을 사용하여 추출을 수행하였다. 얻어진 유기층을 포화 식염수로 세정한 후, 유기층을 황산 마그네슘으로 건조시켰다. 이 혼합물을 여과하고, 여과액을 농축하였다. 이 용액을 실리카 겔 칼럼 크로마토그래피(톨루엔:헥세인=1:9)에 의하여 정제하고, 또한 아세트산 에틸을 사용하여 재결정한 결과, 목적 물질인 백색 분말을 수량 1.1g, 수율 64%로 얻었다. 본 참고예의 합성 스킴을 아래에 나타낸다.
[화학식 21]
Figure pct00030
얻어진 백색 분말 1.1g을 트레인 서블리메이션법으로 승화 정제하였다. 승화 정제는 압력 3.4Pa, 아르곤 유량 5.0mL/min, 가열 온도 240℃에서 16시간 수행하였다. 승화 정제 후, 황색 분말을 1.0g, 회수율 88%로 얻었다.
얻어진 황색 분말의 핵자기 공명 분광법(1H-NMR)에 의한 분석 결과를 아래에 나타낸다. 이 결과로부터, 2MeαN-αNPhA가 얻어진 것을 알 수 있었다.
1H NMR(CD2Cl2, 300MHz):δ=2.64(s, 3H), 7.17-7.52(m, 12H), 7.57-7.70(m, 7H), 8.85(d, J=8.7Hz, 2H), 7.84(dd, J=7.8Hz, 1.5Hz, 1H), 7.96-8.01(m, 3H).
<참고예 2>
본 참고예에서는, 실시예에서 비교예로서 사용한 유기 화합물인 9-(4-메틸-1-나프틸)-2-(1-나프틸)-10-페닐안트라센(약칭: 2αN-MeαNPhA)의 합성 방법에 대하여 자세히 설명한다. 2αN-MeαNPhA의 구조식을 아래에 나타낸다.
[화학식 22]
Figure pct00031
200mL 3구 플라스크에 2-클로로-9-(4-메틸-1-나프틸)-10-페닐안트라센 2.4g(5.6mmol), 1-나프탈렌보론산 1.7g(10mmol), 다이(1-아다만틸)-n-뷰틸포스핀 0.20g(0.56mmol), 인산 삼포타슘 3.6g(17mmol), tert-뷰틸알코올 1.2g(17mmol)을 넣고, 플라스크 내를 질소 치환하였다. 이 혼합물에 다이에틸렌글라이콜다이메틸에터 28mL를 첨가하고, 감압하에서 교반함으로써 탈기하였다. 이 혼합물에 아세트산 팔라듐(II) 63mg(0.28mmol)을 첨가하고, 질소 기류하, 130℃에서 3시간 교반하였다.
교반 후, 이 혼합물에 물을 첨가하고, 흡인 여과하고, 얻어진 고체를 톨루엔에 용해시키고, 셀라이트·알루미나·플로리실을 통하여 흡인 여과하였다. 얻어진 여과액을 농축하여 얻은 고체를 고속 액체 크로마토그래피(HPLC)에 의하여 정제하고, 또한 톨루엔을 사용하여 재결정한 결과, 목적 물질인 담황색 고체를 수량 2.2g, 수율 74%로 얻었다. 본 참고예의 합성 스킴을 아래에 나타낸다.
[화학식 23]
Figure pct00032
얻어진 담황색 고체 0.95g을 트레인 서블리메이션법으로 승화 정제하였다. 승화 정제는 압력 3.6Pa, 아르곤 유량 5.0mL/min, 가열 온도 230℃에서 수행하였다. 승화 정제 후, 백색 분말을 0.85g, 회수율 89%로 얻었다.
얻어진 황색 분말의 핵자기 공명 분광법(1H-NMR)에 의한 분석 결과를 아래에 나타낸다. 이 결과로부터, 2αN-MeαNPhA가 얻어진 것을 알 수 있었다.
1H NMR(DMSO-d6, 300MHz):δ=2.76(s, 3H), 7.12(d, J=7.5Hz, 1H), 7.23(t, J=6.9Hz, 1H), 7.29-7.76(m, 19H), 7.80(d, J=8.7Hz, 1H), 7.86(d, J=8.1Hz, 1H), 7.91(d, J=8.1Hz, 1H), 8.15(d, J=8.1Hz, 1H).
<참고예 3>
본 참고예에서는, 실시예에서 비교예로서 사용한 유기 화합물인 2-(1-나프틸)-10-페닐-9-(5-페닐-1-나프틸)안트라센(약칭: 2αN-PαNPhA)의 합성 방법에 대하여 자세히 설명한다. 2αN-PαNPhA의 구조식을 아래에 나타낸다.
[화학식 24]
Figure pct00033
50mL 3구 플라스크에 2-클로로-10-페닐-9-(5-페닐-1-나프틸)안트라센 0.69g(1.4mmol), 1-나프탈렌보론산 0.48g(2.8mmol), 다이(1-아다만틸)-n-뷰틸포스핀 50mg(0.14mmol), 인산 삼포타슘 0.89g(4.2mmol), tert-뷰틸알코올 0.31g(4.2mmol)을 넣고, 플라스크 내를 질소 치환하였다. 이 혼합물에 다이에틸렌글라이콜다이메틸에터 7.0mL를 첨가하고, 감압하에서 교반함으로써 탈기하였다. 이 혼합물에 아세트산 팔라듐(II) 16mg(0.070mmol)을 첨가하고, 질소 기류하, 130℃에서 4시간 교반하였다.
교반 후, 이 혼합물에 물을 첨가하고, 흡인 여과하고, 얻어진 고체를 톨루엔에 용해시키고, 셀라이트·알루미나·플로리실을 통하여 흡인 여과하였다. 얻어진 여과액을 농축하여 얻은 고체를 고속 액체 크로마토그래피(HPLC)에 의하여 정제하고, 또한 톨루엔을 사용하여 재결정한 결과, 목적 물질인 담황색 고체를 수량 0.65g, 수율 79%로 얻었다. 본 참고예의 합성 스킴을 아래에 나타낸다.
[화학식 25]
Figure pct00034
얻어진 담황색 고체 0.65g을 트레인 서블리메이션법으로 승화 정제하였다. 승화 정제는 압력 3.6Pa, 아르곤 유량 5.0mL/min, 가열 온도 250℃에서 수행하였다. 승화 정제 후, 담황색 고체를 0.56g, 회수율 86%로 얻었다.
얻어진 담황색 고체의 핵자기 공명 분광법(1H-NMR)에 의한 분석 결과를 아래에 나타낸다. 이 결과로부터, 2αN-PαNPhA가 얻어진 것을 알 수 있었다.
1H NMR(DMSO-d6, 300MHz):δ=7.10(d, J=7.5Hz, 1H), 7.25(t, J=7.5Hz, 1H), 7.34-7.97(m, 28H).
<참고예 4>
본 참고예에서는, 실시예에서 비교예로서 사용한 유기 화합물인 9-(1-나프틸)-10-페닐-2-(5-트라이메틸실릴-1-나프틸)안트라센(약칭: 2TMSαN-αNPhA)의 합성 방법에 대하여 자세히 설명한다. 2TMSαN-αNPhA의 구조식을 아래에 나타낸다.
[화학식 26]
Figure pct00035
200mL 3구 플라스크에 2-클로로-9-(1-나프틸)-10-페닐안트라센 1.2g(3.0mmol), 2-(5-트라이메틸실릴-1-나프틸)-4,4,5,5-테트라메틸-1,3,2-다이옥사보롤레인 1.2g(3.6mmol), 다이(1-아다만틸)-n-뷰틸포스핀 0.11g(0.30mmol), 인산 삼포타슘 1.9g(9.1mmol), tert-뷰틸알코올 0.71g(9.5mmol), 다이에틸렌글라이콜다이메틸에터 15mL를 넣고, 감압하에서 교반함으로써 탈기하였다. 이 혼합물에 아세트산 팔라듐(II) 38mg(0.18mmol)을 첨가하고, 질소 기류하, 130℃에서 4시간 교반하였다. 교반 후, 얻어진 혼합물에 물을 첨가하고, 수성층에 대하여 톨루엔을 사용하여 추출을 수행하였다. 얻어진 유기층을 포화 식염수로 세정한 후, 유기층을 황산 마그네슘으로 건조시켰다. 이 혼합물을 여과하고, 여과액을 농축하였다. 이 용액을 실리카 겔 칼럼 크로마토그래피(톨루엔:헥세인=1:4)에 의하여 정제하여 유상 물질을 얻었다. 얻어진 유상 물질을 고속 액체 크로마토그래피(HPLC)에 의하여 정제하여 유상 물질을 얻었다. 얻어진 유상 물질에 메탄올을 첨가하고, 석출된 고체를 회수한 결과, 목적 물질인 백색 분말을 수량 1.1g, 수율 62%로 얻었다. 본 참고예의 합성 스킴을 아래에 나타낸다.
[화학식 27]
Figure pct00036
얻어진 백색 분말 0.73g을 트레인 서블리메이션법으로 승화 정제하였다. 승화 정제는 압력 3.5Pa, 아르곤 유량 5.0mL/min, 가열 온도 230℃에서 18시간 수행하였다. 승화 정제 후, 담황색 분말을 0.60g, 회수율 82%로 얻었다.
얻어진 황색 분말의 핵자기 공명 분광법(1H-NMR)에 의한 분석 결과를 아래에 나타낸다. 이 결과로부터, 2TMSαN-αNPhA가 얻어진 것을 알 수 있었다.
1H NMR(CD2Cl2, 300MHz):δ=0.42(s, 9H), 7.14-7.52(m, 11H), 7.57-7.72(m, 8H), 7.78(d, J=8.7Hz, 2H), 7.85(dd, J=8.7Hz, 1.2Hz, 1H), 7.95-8.03(m, 3H).
<참고예 5>
본 참고예에서는, 실시예에서 비교예로서 사용한 유기 화합물인 2-(1-나프틸)-10-페닐-9-(5-트라이메틸실릴-1-나프틸)안트라센(약칭: 2αN-TMSαNPhA)의 합성 방법에 대하여 자세히 설명한다. 2αN-TMSαNPhA의 구조식을 아래에 나타낸다.
[화학식 28]
Figure pct00037
300mL 나스 플라스크에 2-클로로-9-(1-나프틸)-10-페닐안트라센 1.2g(2.5mmol), 나프탈렌-1-보론산 0.86g(5.0mmol), 다이(1-아다만틸)-n-뷰틸포스핀 90mg(0.25mmol), 인산 삼포타슘 1.6g(7.5mmol), tert-뷰틸알코올 0.56g(7.5mmol)을 넣고, 플라스크 내를 질소 치환하였다. 이 혼합물에 다이에틸렌글라이콜다이메틸에터 12mL를 첨가하고, 감압하에서 교반함으로써 탈기하였다. 이 혼합물에 아세트산 팔라듐(II) 28mg(0.13mmol)을 첨가하고, 질소 기류하, 130℃에서 6시간 교반하였다.
교반 후, 이 혼합물에 물을 첨가하고, 이 혼합물의 수성층에 대하여 톨루엔을 사용하여 추출을 수행하고, 추출 용액과 유기층을 합치고, 포화 식염수로 세정하였다. 유기층을 황산 마그네슘에 의하여 건조시키고, 이 혼합물을 자연 여과하였다. 얻어진 여과액을 농축하여 얻은 고체를 실리카 겔 칼럼 크로마토그래피(전개 용매 헥세인:톨루엔=5:1)에 의하여 정제한 결과, 고체를 얻었다. 얻어진 고체를 고속 액체 크로마토그래피(HPLC)에 의하여 정제하고, 또한 헥세인/톨루엔을 사용하여 재결정한 결과, 목적 물질인 담황색 고체를 수량 1.2g, 수율 81%로 얻었다. 본 참고예의 합성 스킴을 아래에 나타낸다.
[화학식 29]
Figure pct00038
얻어진 담황색 고체 1.2g을 트레인 서블리메이션법으로 승화 정제하였다. 승화 정제는 압력 3.6Pa, 아르곤 유량 5.0mL/min, 가열 온도 240℃에서 수행하였다. 승화 정제 후, 백색 고체를 1.1g, 회수율 93%로 얻었다.
얻어진 담황색 고체의 핵자기 공명 분광법(1H-NMR)에 의한 분석 결과를 아래에 나타낸다. 이 결과로부터, 2αN-TMSαNPhA가 얻어진 것을 알 수 있었다.
1H NMR(DMSO-d6, 300MHz):δ=0.48(s, 9H), 7.12-7.19(m, 2H), 7.26-7.46(m, 8H), 7.53-7.87(m, 14H), 8.23(d, J=8.1Hz, 1H).
<참고예 6>
본 참고예에서는, 실시예에서 비교예로서 사용한 유기 화합물인 2-(1-나프틸)-9-(2-나프틸)-10-페닐안트라센(약칭: 2αN-βNPhA)의 합성 방법에 대하여 자세히 설명한다. 2αN-βNPhA의 구조식을 아래에 나타낸다.
[화학식 30]
Figure pct00039
200mL 나스 플라스크에 2-클로로-9-(2-나프틸)-10-페닐안트라센 2.1g(5.0mmol), 1-나프틸보론산 1.3g(7.3mmol), 다이(1-아다만틸)-n-뷰틸포스핀 0.36g(1.0mmol), 인산 삼포타슘 3.2g(15mmol), tert-뷰틸알코올 1.1g(15mmol)을 넣고, 플라스크 내를 질소 치환하였다. 이 혼합물에 다이에틸렌글라이콜다이메틸에터 25mL를 첨가하고, 감압하에서 교반함으로써 탈기하였다. 이 혼합물에 아세트산 팔라듐(II) 0.11g(0.50mmol)을 첨가하고, 질소 기류하, 130℃에서 10시간 교반하였다.
교반 후, 이 혼합물에 톨루엔을 첨가하고, 흡인 여과하고, 얻어진 여과액을 농축하였다. 얻어진 용액을 실리카 겔 칼럼 크로마토그래피(전개 용매 헥세인:톨루엔=4:1)에 의하여 정제한 결과, 유상 물질을 얻었다. 얻어진 유성 물질을 고속 액체 크로마토그래피(HPLC)에 의하여 정제하고, 또한 아세트산 에틸과 헥세인의 혼합 용매를 사용하여 재결정한 결과, 목적 물질인 담황색 고체를 수량 1.0g, 수율 40%로 얻었다.
[화학식 31]
Figure pct00040
얻어진 담황색 고체 1.0g을 트레인 서블리메이션법으로 승화 정제하였다. 승화 정제는 압력 3.6Pa, 아르곤 유량 5.0mL/min의 조건으로, 담황색 고체를 230℃에서 가열하여 수행하였다. 승화 정제 후, 백색 고체를 0.84g, 회수율 84%로 얻었다.
얻어진 백색 고체의 핵자기 공명 분광법(1H-NMR)에 의한 분석 결과를 아래에 나타낸다. 이 결과로부터, 2αN-βNPhA가 얻어진 것을 알 수 있었다.
1H NMR(DMSO-d6, 300MHz):δ=7.39-7.78(m, 19H), 7.86-7.96(m, 3H), 8.00-8.05(m, 2H), 8.12-8.15(m, 2H).
<참고예 7>
본 참고예에서는, 실시예에서 비교예로서 사용한 유기 화합물인 9-(1-나프틸)-2-(2-나프틸)-10-페닐안트라센(약칭: 2βN-αNPhA)의 합성 방법에 대하여 자세히 설명한다. 2βN-αNPhA의 구조식을 아래에 나타낸다.
[화학식 32]
Figure pct00041
200mL 나스 플라스크에 2-클로로-9-(1-나프틸)-10-페닐안트라센 1.4g(3.3mmol), 2-나프틸보론산 1.1g(6.6mmol), 다이(1-아다만틸)-n-뷰틸포스핀 0.12g(0.34mmol), 인산 삼포타슘 2.1g(10mmol), tert-뷰틸알코올 0.74g(10mmol)을 넣고, 플라스크 내를 질소 치환하였다. 이 혼합물에 다이에틸렌글라이콜다이메틸에터 17mL를 첨가하고, 감압하에서 교반함으로써 탈기하였다. 이 혼합물에 아세트산 팔라듐(II) 37mg(0.17mmol)을 첨가하고, 질소 기류하, 130℃에서 5시간 교반하였다.
교반 후, 이 혼합물에 톨루엔을 첨가하고, 흡인 여과하고, 얻어진 여과액을 농축하였다. 얻어진 용액을 실리카 겔 칼럼 크로마토그래피(전개 용매 헥세인:톨루엔=2:1)에 의하여 정제하고, 또한 아세트산 에틸/헥세인을 사용하여 재결정한 결과, 목적 물질인 담황색 고체를 수량 1.3g, 수율 77%로 얻었다.
[화학식 33]
Figure pct00042
얻어진 담황색 고체 1.3g을 트레인 서블리메이션법으로 승화 정제하였다. 승화 정제는 압력 3.6Pa, 아르곤 유량 5.0mL/min의 조건으로, 담황색 고체를 210℃에서 가열하여 수행하였다. 승화 정제 후, 담황색 고체를 1.2g, 회수율 93%로 얻었다.
얻어진 담황색 고체의 핵자기 공명 분광법(1H-NMR)에 의한 분석 결과를 아래에 나타낸다. 이 결과로부터, 2βN-αNPhA가 얻어진 것을 알 수 있었다.
1H NMR(DMSO-d6, 300MHz):δ=7.04(d, J=8.4Hz, 1H), 7.29-7.94(m, 22H), 7.97(s, 1H), 8.15(d, J=8.1Hz, 1H), 8.23(d, J=8.1Hz, 1H).
101: 제 1 전극, 102: 제 2 전극, 103: EL층, 111: 정공 주입층, 112: 정공 수송층, 112-1: 제 1 정공 수송층, 112-2: 제 2 정공 수송층, 113: 발광층, 114: 전자 수송층, 115: 전자 주입층, 116: 전하 발생층, 117: P형층, 118: 전자 릴레이층, 119: 전자 주입 버퍼층, 400: 기판, 401: 제 1 전극, 403: EL층, 404: 제 2 전극, 405: 실재, 406: 실재, 407: 밀봉 기판, 412: 패드, 420: IC칩, 501: 제 1 전극, 502: 제 2 전극, 511: 제 1 발광 유닛, 512: 제 2 발광 유닛, 513: 전하 발생층, 601: 구동 회로부(소스선 구동 회로), 602: 화소부, 603: 구동 회로부(게이트선 구동 회로), 604: 밀봉 기판, 605: 실재, 607: 공간, 608: 배선, 609: FPC(flexible printed circuit), 610: 소자 기판, 611: 스위칭용 FET, 612: 전류 제어용 FET, 613: 제 1 전극, 614: 절연물, 616: EL층, 617: 제 2 전극, 618: 발광 디바이스, 951: 기판, 952: 전극, 953: 절연층, 954: 격벽층, 955: EL층, 956: 전극, 1001: 기판, 1002: 하지 절연막, 1003: 게이트 절연막, 1006: 게이트 전극, 1007: 게이트 전극, 1008: 게이트 전극, 1020: 제 1 층간 절연막, 1021: 제 2 층간 절연막, 1022: 전극, 1024W: 양극, 1024R: 양극, 1024G: 양극, 1024B: 양극, 1025: 격벽, 1028: EL층, 1029: 제 2 전극, 1031: 밀봉 기판, 1032: 실재, 1033: 투명한 기재, 1034R: 적색의 착색층, 1034G: 녹색의 착색층, 1034B: 청색의 착색층, 1035: 블랙 매트릭스, 1037: 제 3 층간 절연막, 1040: 화소부, 1041: 구동 회로부, 1042: 주변부, 2001: 하우징, 2002: 광원, 2100: 로봇, 2110: 연산 장치, 2101: 조도 센서, 2102: 마이크로폰, 2103: 상부 카메라, 2104: 스피커, 2105: 디스플레이, 2106: 하부 카메라, 2107: 장애물 센서, 2108: 이동 기구, 3001: 조명 장치, 5000: 하우징, 5001: 표시부, 5002: 표시부, 5003: 스피커, 5004: LED 램프, 5006: 접속 단자, 5007: 센서, 5008: 마이크로폰, 5012: 지지부, 5013: 이어폰, 5100: 로봇 청소기, 5101: 디스플레이, 5102: 카메라, 5103: 브러시, 5104: 조작 버튼, 5150: 휴대 정보 단말기, 5151: 하우징, 5152: 표시 영역, 5153: 굴곡부, 5120: 쓰레기, 5200: 표시 영역, 5201: 표시 영역, 5202: 표시 영역, 5203: 표시 영역, 7101: 하우징, 7103: 표시부, 7105: 스탠드, 7107: 표시부, 7109: 조작 키, 7110: 리모트 컨트롤러, 7201: 본체, 7202: 하우징, 7203: 표시부, 7204: 키보드, 7205: 외부 접속 포트, 7206: 포인팅 디바이스, 7210: 제 2 표시부, 7401: 하우징, 7402: 표시부, 7403: 조작 버튼, 7404: 외부 접속 포트, 7405: 스피커, 7406: 마이크로폰, 9310: 휴대 정보 단말기, 9311: 표시 패널, 9313: 힌지, 9315: 하우징

Claims (10)

  1. 하기 일반식(G1)으로 나타내어지는, 호스트 재료용 안트라센 화합물:
    [화학식 1]
    Figure pct00043

    상기 일반식(G1)에서 R1 내지 R7은 각각 독립적으로 수소 또는 탄소수 1 내지 25의 아릴기를 나타낸다.
  2. 제 1 항에 있어서,
    R1 내지 R7 중 하나는 탄소수 6 내지 25의 아릴기이고, 나머지는 수소인, 호스트 재료용 안트라센 화합물.
  3. 하기 일반식(G2)으로 나타내어지는, 호스트 재료용 안트라센 화합물:
    [화학식 2]
    Figure pct00044

    상기 일반식(G2)에서 R4는 수소 또는 탄소수 6 내지 25의 아릴기를 나타낸다.
  4. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서,
    상기 탄소수 6 내지 25의 아릴기는 페닐기인, 호스트 재료용 안트라센 화합물.
  5. 하기 구조식(100)으로 나타내어지는, 호스트 재료용 안트라센 화합물.
    [화학식 3]
    Figure pct00045
  6. 발광 디바이스로서,
    양극과,
    음극과,
    상기 양극과 상기 음극 사이에 위치하는 EL층을 갖고,
    상기 EL층은 발광층을 갖고,
    상기 EL층은 발광 중심 물질과 호스트 재료를 갖고,
    상기 호스트 재료는 제 1 항 내지 제 5 항 중 어느 한 항에 따른 호스트 재료용 안트라센 유도체인, 발광 디바이스.
  7. 제 6 항에 있어서,
    상기 발광 중심 물질은 청색 형광을 발하는, 발광 디바이스.
  8. 발광 장치로서,
    제 6 항 또는 제 7 항에 따른 발광 디바이스와, 트랜지스터 또는 기판을 갖는, 발광 장치.
  9. 전자 기기로서,
    제 8 항에 따른 발광 장치와, 센서, 조작 버튼, 스피커, 또는 마이크로폰을 갖는, 전자 기기.
  10. 조명 장치로서,
    제 8 항에 따른 발광 장치와, 하우징을 갖는, 조명 장치.
KR1020207037157A 2019-02-14 2020-02-05 호스트 재료용 안트라센 화합물, 발광 디바이스, 발광 장치, 전자 기기, 및 조명 장치 KR20210125891A (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020237005703A KR102656004B1 (ko) 2019-02-14 2020-02-05 호스트 재료용 안트라센 화합물, 발광 디바이스, 발광 장치, 전자 기기, 및 조명 장치

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2019-024416 2019-02-14
JP2019024416 2019-02-14
PCT/IB2020/050890 WO2020165694A1 (ja) 2019-02-14 2020-02-05 ホスト材料用アントラセン化合物、発光デバイス、発光装置、電子機器および照明装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020237005703A Division KR102656004B1 (ko) 2019-02-14 2020-02-05 호스트 재료용 안트라센 화합물, 발광 디바이스, 발광 장치, 전자 기기, 및 조명 장치

Publications (1)

Publication Number Publication Date
KR20210125891A true KR20210125891A (ko) 2021-10-19

Family

ID=72044710

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020237005703A KR102656004B1 (ko) 2019-02-14 2020-02-05 호스트 재료용 안트라센 화합물, 발광 디바이스, 발광 장치, 전자 기기, 및 조명 장치
KR1020207037157A KR20210125891A (ko) 2019-02-14 2020-02-05 호스트 재료용 안트라센 화합물, 발광 디바이스, 발광 장치, 전자 기기, 및 조명 장치

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020237005703A KR102656004B1 (ko) 2019-02-14 2020-02-05 호스트 재료용 안트라센 화합물, 발광 디바이스, 발광 장치, 전자 기기, 및 조명 장치

Country Status (6)

Country Link
US (1) US20210284590A1 (ko)
JP (2) JP6918249B2 (ko)
KR (2) KR102656004B1 (ko)
CN (2) CN112752741A (ko)
DE (1) DE112020000101T5 (ko)
WO (1) WO2020165694A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022118197A1 (de) 2021-07-30 2023-02-02 Semiconductor Energy Laboratory Co., Ltd. Organische Verbindung, Licht emittierende Vorrichtung, Anzeigeeinrichtung, elektronisches Gerät, Licht emittierende Einrichtung und Beleuchtungsvorrichtung

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004059535A (ja) 2002-07-31 2004-02-26 Idemitsu Kosan Co Ltd アントラセン誘導体、有機エレクトロルミネッセンス素子用発光材料及び有機エレクトロルミネッセンス素子

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100893044B1 (ko) * 2006-07-26 2009-04-15 주식회사 엘지화학 안트라센 유도체, 이를 이용한 유기 전자 소자 및 이 유기전자 소자를 포함하는 전자 장치
US8795855B2 (en) * 2007-01-30 2014-08-05 Global Oled Technology Llc OLEDs having high efficiency and excellent lifetime
CN104910064A (zh) * 2008-04-24 2015-09-16 株式会社半导体能源研究所 蒽衍生物、发光元件、发光器件及电子设备
JP5786578B2 (ja) * 2010-10-15 2015-09-30 Jnc株式会社 発光層用材料およびこれを用いた有機電界発光素子
KR101367182B1 (ko) * 2011-03-29 2014-02-28 대주전자재료 주식회사 나프탈렌 유도체, 이를 이용한 유기 재료, 및 이를 이용한 유기 전기발광 소자
KR20150093440A (ko) * 2014-02-07 2015-08-18 롬엔드하스전자재료코리아유한회사 유기 전계 발광 소자
KR20150144710A (ko) * 2014-06-17 2015-12-28 롬엔드하스전자재료코리아유한회사 전자 버퍼 재료 및 유기 전계 발광 소자
EP3174887A4 (en) * 2014-07-29 2018-04-04 Rohm And Haas Electronic Materials Korea Ltd. Electron buffering material and organic electroluminescent device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004059535A (ja) 2002-07-31 2004-02-26 Idemitsu Kosan Co Ltd アントラセン誘導体、有機エレクトロルミネッセンス素子用発光材料及び有機エレクトロルミネッセンス素子

Also Published As

Publication number Publication date
JPWO2020165694A1 (ja) 2021-09-09
JP6918249B2 (ja) 2021-08-11
US20210284590A1 (en) 2021-09-16
CN112752741A (zh) 2021-05-04
KR20230028812A (ko) 2023-03-02
WO2020165694A1 (ja) 2020-08-20
JP2021170666A (ja) 2021-10-28
KR102656004B1 (ko) 2024-04-11
JP7482087B2 (ja) 2024-05-13
CN114907180A (zh) 2022-08-16
DE112020000101T5 (de) 2021-06-02

Similar Documents

Publication Publication Date Title
KR20210004874A (ko) 정공 수송층용 재료, 정공 주입층용 재료, 유기 화합물, 발광 디바이스, 발광 장치, 전자 기기, 및 조명 장치
KR20210124051A (ko) 아릴아민 화합물, 정공 수송층용 재료, 정공 주입층용 재료, 발광 디바이스, 발광 장치, 전자 기기, 및 조명 장치
JP2023116600A (ja) 発光装置
KR102648001B1 (ko) 다이벤조[c,g]카바졸 유도체, 발광 소자, 발광 장치, 전자 기기, 및 조명 장치
KR20210038534A (ko) 유기 화합물, 발광 소자, 발광 장치, 전자 기기, 및 조명 장치
JP7482087B2 (ja) 発光デバイス用ホスト材料、発光デバイス、発光装置、電子機器、及び照明装置
KR20220031517A (ko) 발광 디바이스, 발광 장치, 전자 기기, 및 조명 장치
KR20210075887A (ko) 유기 화합물, 광 디바이스, 발광 디바이스, 발광 장치, 전자 기기, 및 조명 장치
KR20220070248A (ko) 유기 화합물, 광 디바이스, 발광 디바이스, 발광 장치, 전자 기기, 및 조명 장치
WO2021234491A1 (ja) 有機化合物、発光デバイス、発光装置、電子機器、表示装置、照明装置
WO2022003481A1 (ja) 発光デバイス、発光装置、電子機器および照明装置
WO2022003491A1 (ja) 有機化合物、発光デバイス、発光装置、電子機器および照明装置
JP7282737B2 (ja) 正孔輸送層用材料、発光素子、発光装置、電子機器および照明装置
KR20210075866A (ko) 유기 화합물, 발광 디바이스, 광 디바이스, 발광 장치, 전자 기기, 및 조명 장치
KR20210133878A (ko) 발광 디바이스, 금속 착체, 발광 장치, 전자 기기, 및 조명 장치
KR20230098192A (ko) 유기 화합물, 캐리어 수송용 재료, 호스트용 재료, 발광 디바이스, 발광 장치, 전자 기기, 및 조명 장치
JP2022066170A (ja) 有機化合物、発光デバイス、発光装置、電子機器、表示装置、照明装置
KR20220140774A (ko) 유기 화합물, 발광 디바이스, 전자 디바이스, 전자 기기, 발광 장치, 및 조명 장치
KR20210093284A (ko) 유기 화합물, el 디바이스, 발광 장치, 전자 기기, 조명 장치, 및 전자 디바이스