CN112752741A - 用于主体材料的蒽化合物、发光器件、发光装置、电子设备及照明装置 - Google Patents

用于主体材料的蒽化合物、发光器件、发光装置、电子设备及照明装置 Download PDF

Info

Publication number
CN112752741A
CN112752741A CN202080005317.8A CN202080005317A CN112752741A CN 112752741 A CN112752741 A CN 112752741A CN 202080005317 A CN202080005317 A CN 202080005317A CN 112752741 A CN112752741 A CN 112752741A
Authority
CN
China
Prior art keywords
light
emitting device
layer
phenyl
bis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202080005317.8A
Other languages
English (en)
Inventor
铃木宏记
濑尾哲史
门间裕史
铃木恒德
桥本直明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to CN202210323194.3A priority Critical patent/CN114907180A/zh
Publication of CN112752741A publication Critical patent/CN112752741A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/20Polycyclic condensed hydrocarbons
    • C07C15/27Polycyclic condensed hydrocarbons containing three rings
    • C07C15/28Anthracenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C13/00Cyclic hydrocarbons containing rings other than, or in addition to, six-membered aromatic rings
    • C07C13/28Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof
    • C07C13/32Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings
    • C07C13/54Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with three condensed rings
    • C07C13/547Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with three condensed rings at least one ring not being six-membered, the other rings being at the most six-membered
    • C07C13/567Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with three condensed rings at least one ring not being six-membered, the other rings being at the most six-membered with a fluorene or hydrogenated fluorene ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C13/00Cyclic hydrocarbons containing rings other than, or in addition to, six-membered aromatic rings
    • C07C13/28Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof
    • C07C13/32Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings
    • C07C13/62Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with more than three condensed rings
    • C07C13/66Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings with more than three condensed rings the condensed ring system contains only four rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C13/00Cyclic hydrocarbons containing rings other than, or in addition to, six-membered aromatic rings
    • C07C13/28Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof
    • C07C13/32Polycyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with condensed rings
    • C07C13/72Spiro hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/624Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing six or more rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/06Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members
    • C07C2603/10Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings
    • C07C2603/12Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings only one five-membered ring
    • C07C2603/18Fluorenes; Hydrogenated fluorenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/22Ortho- or ortho- and peri-condensed systems containing three rings containing only six-membered rings
    • C07C2603/24Anthracenes; Hydrogenated anthracenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/40Ortho- or ortho- and peri-condensed systems containing four condensed rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/93Spiro compounds
    • C07C2603/94Spiro compounds containing "free" spiro atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

提供一种新颖的用于主体材料的化合物。此外,提供一种能够提高发光器件的寿命的用于主体材料的化合物。此外,提供一种寿命良好的发光器件。此外,提供一种玻璃化转变温度等热物理性能优异的材料。提供一种由下述通式(G1)表示的主体用蒽化合物。在下述通式(G1)中,R1至R7分别独立地表示氢或碳原子数为1至25的芳基。
Figure DDA0002990481190000011

Description

用于主体材料的蒽化合物、发光器件、发光装置、电子设备及 照明装置
技术领域
本发明的一个方式涉及一种用于主体材料的蒽化合物、发光元件、发光器件、显示模块、照明模块、显示装置、发光装置、电子设备及照明装置。注意,本发明的一个方式不局限于上述技术领域。本说明书等所公开的发明的一个方式的技术领域涉及一种物体、方法或制造方法。或者,本发明的一个方式涉及一种程序(process)、机器(machine)、产品(manufacture)或者组合物(composition of matter)。因此,更具体而言,作为本说明书所公开的本发明的一个方式的技术领域的例子,可以举出半导体装置、显示装置、液晶显示装置、发光装置、照明装置、蓄电装置、存储装置、摄像装置、它们的驱动方法或者它们的制造方法。
背景技术
近年来,使用有机化合物且利用电致发光(EL:Electroluminescence)的发光器件(有机EL元件)的实用化非常活跃。在这些发光器件的基本结构中,在一对电极之间夹有包含发光材料的有机化合物层(EL层)。通过对该元件施加电压,注入载流子,利用该载流子的复合能量,可以获得来自发光材料的发光。
因为这种发光器件是自发光型发光器件,所以当用于显示器的像素时比起液晶显示器有可见度更高的优势。此外,使用这种发光器件的显示器因不需要背光源而可以制造得薄而轻,这也是极大的优点。再者,响应速度非常快也是该发光器件的特征之一。
此外,因为这种发光器件的发光层可以在二维上连续地形成,所以可以获得面发光。因为这是在以白炽灯或LED为代表的点光源或者以荧光灯为代表的线光源中难以得到的特征,所以作为可应用于照明等的面光源,上述发光器件的利用价值也高。
如上所述,虽然使用发光器件的显示器或照明装置可应用于各种各样的电子设备,但是为了追求具有更优异的效率及寿命的发光器件的研究开发日益活跃。
发光器件的特性虽然明显得到了提高,但是仍然不能充分满足对效率和耐久性等各种特性的高度要求。尤其是,为了解决作为EL特有的问题仍然存在的烧屏(burn-in)等问题,劣化导致的效率的下降越小越好。
由于劣化大大受到发光中心物质及其周边材料的左右,所以对具有良好特性的主体材料的开发日益活跃。
[先行技术文献]
[专利文献]
[专利文献1]日本专利申请公开第2004-59535号公报
发明内容
发明所要解决的技术问题
鉴于此,本发明的一个方式的目的是提供一种新颖的用于主体材料的化合物。此外,本发明的一个方式的目的是提供一种能够提高发光器件的寿命的用于主体材料的化合物。此外,本发明的一个方式的目的是提供一种寿命良好的发光器件。此外,本发明的一个方式的目的之一是提供一种玻璃化转变温度等热物理性能优异的材料。
此外,本发明的另一个方式的目的是提供一种可靠性高的发光装置、电子设备及显示装置。
本发明的一个方式只要实现上述目的中的任一个即可。
解决技术问题的手段
本发明的一个方式是一种由下述通式(G1)表示的主体用蒽化合物。
[化学式1]
Figure BDA0002990481170000031
在通式(G1)中,R1至R7分别独立地表示氢或碳原子数为1至25的芳基。
此外,本发明的另一个方式是具有上述结构的主体用蒽化合物,其中R1至R7中的一个表示碳原子数为1至25的芳基,其他都表示氢。
此外,本发明的另一个方式是一种由下述通式(G2)表示的主体用蒽化合物。
[化学式2]
Figure BDA0002990481170000041
在通式(G2)中,R4表示氢或碳原子数为1至25的芳基。
此外,本发明的另一个方式是具有上述结构的主体用蒽化合物,其中上述碳原子数为1至25的芳基为苯基。
此外,本发明的另一个方式是一种由下述结构式(100)表示的主体用蒽化合物。
[化学式3]
Figure BDA0002990481170000042
本发明的另一个方式是一种包括阳极、阴极及位于该阳极与该阴极之间的EL层的发光器件,该EL层包含发光中心物质及主体材料,该主体材料为具有上述结构的主体材料用蒽化合物。
此外,本发明的另一个方式是具有上述结构的发光器件,其中上述发光中心物质发蓝色荧光。
此外,本发明的另一个方式是一种发光装置,包括具有上述结构的发光器件、晶体管或衬底。
此外,本发明的另一个方式是一种电子设备,包括具有上述结构的发光装置以及传感器、操作按钮、扬声器或麦克风。
此外,本发明的另一个方式是一种照明装置,包括具有上述结构的发光装置及外壳。
在本说明书中,发光装置包括使用发光器件的图像显示器件。此外,发光装置有时还包括如下模块:发光器件安装有连接器诸如各向异性导电膜或TCP(Tape CarrierPackage:带载封装)的模块;在TCP的端部设置有印刷线路板的模块;或者通过COG(Chip OnGlass:玻璃覆晶封装)方式在发光器件上直接安装有IC(集成电路)的模块。再者,照明装置等有时包括发光装置。
发明效果
根据本发明的一个方式,可以提供一种新颖的有机化合物。此外,可以提供一种具有空穴传输性的新颖的有机化合物。此外,可以提供一种新颖的空穴传输材料。此外,可以提供一种新颖的发光器件。此外,可以提供一种寿命良好的发光器件。此外,可以提供一种发光效率良好的发光器件。此外,可以提供一种驱动电压低的发光器件。此外,可以提供一种起因于驱动时间的积累的电压变化小的元件。
此外,根据本发明的另一个方式,可以提供一种可靠性高的发光器件、电子设备及显示装置。此外,根据本发明的另一个方式,可以提供一种功耗低的发光器件、电子设备及显示装置。
注意,这些效果的记载不妨碍其他效果的存在。此外,本发明的一个方式并不需要具有所有上述效果。此外,这些效果以外的效果从说明书、附图、权利要求书等的记载是显然的,并可以从说明书、附图、权利要求书等的记载中抽出。
附图简要说明
图1A、图1A2、图1B及图1C是发光器件的示意图。
图2A及图2B是有源矩阵型发光装置的示意图。
图3A及图3B是有源矩阵型发光装置的示意图。
图4是有源矩阵型发光装置的示意图。
图5A及图5B是无源矩阵型发光装置的示意图。
图6A及图6B是示出照明装置的图。
图7A、图7B1、图7B2及图7C是示出电子设备的图。
图8A至图8C是示出电子设备的图。
图9是示出照明装置的图。
图10是示出照明装置的图。
图11是示出车载显示装置及照明装置的图。
图12A及图12B是示出电子设备的图。
图13A至图13C是示出电子设备的图。
图14A及图14B是2αN-αNPhA的1H-NMR谱图。
图15示出2αN-αNPhA的甲苯溶液的吸收光谱及发射光谱。
图16示出2αN-αNPhA的薄膜的吸收光谱及发射光谱。
图17A及图17B是2PαN-αNPhA的1H-NMR谱图。
图18示出2PαN-αNPhA的甲苯溶液的吸收光谱及发射光谱。
图19示出2PαN-αNPhA的薄膜的吸收光谱及发射光谱。
图20示出发光器件1、对比发光器件1及对比发光器件2的亮度-电流密度特性。
图21示出发光器件1、对比发光器件1及对比发光器件2的电流效率-亮度特性。
图22示出发光器件1、对比发光器件1及对比发光器件2的亮度-电压特性。
图23示出发光器件1、对比发光器件1及对比发光器件2的电流-电压特性。
图24示出发光器件1、对比发光器件1及对比发光器件2的外量子效率-亮度特性。
图25示出发光器件1、对比发光器件1及对比发光器件2的发射光谱。
图26示出发光器件1、对比发光器件1及对比发光器件2的归一化亮度-时间变化特性。
图27示出发光器件2、对比发光器件3及对比发光器件4的亮度-电流密度特性。
图28示出发光器件2、对比发光器件3及对比发光器件4的电流效率-亮度特性。
图29示出发光器件2、对比发光器件3及对比发光器件4的亮度-电压特性。
图30示出发光器件2、对比发光器件3及对比发光器件4的电流-电压特性。
图31示出发光器件2、对比发光器件3及对比发光器件4的外量子效率-亮度特性。
图32示出发光器件2、对比发光器件3及对比发光器件4的发射光谱。
图33示出发光器件2、对比发光器件3及对比发光器件4的归一化亮度-时间变化特性。
图34示出发光器件3、发光器件4及对比发光器件5至对比发光器件10的亮度-电流密度特性。
图35示出发光器件3、发光器件4及对比发光器件5至对比发光器件10的电流效率-亮度特性。
图36示出发光器件3、发光器件4及对比发光器件5至对比发光器件10的亮度-电压特性。
图37示出发光器件3、发光器件4及对比发光器件5至对比发光器件10的电流-电压特性。
图38示出发光器件3、发光器件4及对比发光器件5至对比发光器件10的外量子效率-亮度特性。
图39示出发光器件3、发光器件4及对比发光器件5至对比发光器件10的发射光谱。
图40示出发光器件5、对比发光器件11及对比发光器件12的亮度-电流密度特性。
图41示出发光器件5、对比发光器件11及对比发光器件12的电流效率-亮度特性。
图42示出发光器件5、对比发光器件11及对比发光器件12的亮度-电压特性。
图43示出发光器件5、对比发光器件11及对比发光器件12的电流-电压特性。
图44示出发光器件5、对比发光器件11及对比发光器件12的外量子效率-亮度特性。
图45示出发光器件5、对比发光器件11及对比发光器件12的发射光谱。
图46示出发光器件5、对比发光器件11及对比发光器件12的归一化亮度-时间变化特性。
实施发明的方式
以下,参照附图详细地说明本发明的实施方式。但是,本发明不局限于以下说明,而所属技术领域的普通技术人员可以很容易地理解一个事实就是其方式及详细内容在不脱离本发明的宗旨及其范围的情况下可以被变换为各种各样的形式。因此,本发明不应该被解释为仅局限在以下所示的实施方式所记载的内容中。
(实施方式1)
本发明的一个方式的用于主体材料的蒽化合物是由下述通式(G1)表示的有机化合物。
[化学式4]
Figure BDA0002990481170000091
在上述通式(G1)中,R1至R7分别独立地表示氢或碳原子数为6至25的芳基。
作为碳原子数为6至25的芳基,可以举出蒽基、菲基、芘基、三亚苯基、荧蒽基、联苯基、三联苯基、四联苯基等。
R1至R7优选都是氢,或者,只有一个是碳原子数为6至25的芳基而其他都是氢。此外,当只有一个是碳原子数为6至25的芳基而其他都是氢时,如下述通式(G2)所示,R4更优选为芳基。
[化学式5]
Figure BDA0002990481170000092
通过将具有上述结构的本发明的一个方式的用于主体材料的蒽化合物用作包含有机化合物的发光器件的发光层中的主体材料,可以提供长寿命发光器件。
将由上述通式(G1)表示的化合物用作主体材料的发光器件,与将在由上述通式(G1)表示的化合物中键合于蒽骨架的9位及10位的萘基及苯基中的任一具有取代基的化合物用作主体材料的发光器件相比,具有优异寿命。
同样,将由上述通式(G1)表示的化合物用作主体材料的发光器件,与将在由上述通式(G1)表示的化合物中键合于蒽骨架的9位及2位的萘基中的任一具有烷基或烷基硅基的化合物用作主体材料的发光器件相比,具有优异寿命。此外,将在由上述通式(G1)表示的化合物中键合于蒽骨架的2位的萘基具有碳原子数为6至25的芳基的化合物用作主体材料的发光器件具有优异寿命。
以下示出具有上述结构的有机化合物的具体例子。
[化学式6]
Figure BDA0002990481170000111
[化学式7]
Figure BDA0002990481170000121
上述有机化合物可以根据下述合成方案等合成。
本发明的一个方式的用于主体材料的蒽化合物(G1)可以根据下述合成方案合成。具体来说,通过铃木-宫浦反应,使蒽衍生物的卤素化合物或具有三氟甲磺酸酯基团的化合物(a1)与萘化合物的硼酸或有机硼化合物(a2)偶联;如此,可获得本发明的一个方式的蒽化合物(G1)。
[化学式8]
Figure BDA0002990481170000131
在上述合成方案中,R1至R7分别独立地表示氢或碳原子数为6至25的芳基中的任一。此外,R8、R9分别独立地表示氢或碳原子数为1至6的烷基中的任一。R8及R9也可以彼此键合形成环。
此外,X表示卤素或三氟甲磺酸酯基团,当X为卤素时,氯、溴或碘是尤其优选的。
作为在由上述合成方案表示的反应中可以使用的钯催化剂,可以举出醋酸钯(Ⅱ)、四(三苯基膦)钯(O)、双(三苯基膦)钯(Ⅱ)二氯化物等。
此外,作为上述钯催化剂的配体,可以举出二(1-金刚烷基)-正丁基膦、三(邻-甲苯基)膦、三苯基膦、三环己基膦等。
作为在由上述合成方案表示的反应中可以使用的碱,可以举出叔丁醇钠等有机碱、碳酸钾、碳酸钠等无机碱等。
作为在由上述合成方案表示的反应中可以使用的溶剂,可以举出如下溶剂:甲苯和水的混合溶剂;甲苯、乙醇等醇和水的混合溶剂;二甲苯和水的混合溶剂;二甲苯、乙醇等醇和水的混合溶剂;苯和水的混合溶剂;苯、乙醇等醇和水的混合溶剂;乙二醇二甲醚等醚类和水的混合溶剂;以及乙二醇二甲醚等醚类和乙醇等醇类的混合溶剂等。但是,可以使用的溶剂不局限于此。此外,更优选的是使用甲苯和水的混合溶剂;甲苯、乙醇和水的混合溶剂;乙二醇二甲醚等醚类和水的混合溶剂;或者乙二醇二甲醚等醚类和乙醇等醇类的混合溶剂。
作为在上述合成方案中可以使用的偶联反应,可以举出使用有机铝化合物、有机锆化合物、有机锌化合物、有机锡化合物等的交叉偶联反应代替使用由化学式(a2)表示的有机硼化合物或硼酸的铃木-宫浦偶联反应。此外,在由上述合成方案表示的反应中,也可以通过铃木-宫浦反应使蒽化合物的有机硼化合物或硼酸与萘化合物的卤化物或三氟甲磺酸酯取代物偶联。
通过上述方案,可以合成本发明的一个方式的用于主体材料的蒽化合物。
(实施方式2)
图1A示出本发明的一个方式的发光器件的图。本发明的一个方式的发光器件包括第一电极101、第二电极102、EL层103,该EL层103包括发光层113,该发光层113包含实施方式1所示的本发明的一个方式的用于主体材料的蒽化合物。
除了发光层113以外,EL层103还可以包括空穴注入层111、空穴传输层112、电子传输层114及电子注入层115,也可以包括其他的载流子阻挡层、激子阻挡层、电荷产生层等各种层。此外,如图1A2所示,空穴传输层112也可以分成第一空穴传输层112-1和第二空穴传输层112-2两层,该两层分别使用不同材料而形成。第二空穴传输层112-2也可以被用作电子阻挡层。
将该用于主体材料的蒽化合物用作包含在发光层113中的主体材料。将该用于主体材料的蒽化合物用作主体材料的本发明的一个方式的发光器件可以为长寿命发光器件。
第一电极101优选使用功函数大(具体为4.0eV以上)的金属、合金、导电化合物以及它们的混合物等形成。具体地,例如可以举出氧化铟-氧化锡(ITO:Indium Tin Oxide,铟锡氧化物)、包含硅或氧化硅的氧化铟-氧化锡、氧化铟-氧化锌、包含氧化钨及氧化锌的氧化铟(IWZO)等。虽然通常通过溅射法形成这些导电金属氧化物膜,但是也可以应用溶胶-凝胶法等来形成。作为形成方法的例子,可以举出使用对氧化铟添加有1wt%至20wt%的氧化锌的靶材通过溅射法形成氧化铟-氧化锌的方法等。此外,可以使用对氧化铟添加有0.5wt%至5wt%的氧化钨和0.1wt%至1wt%的氧化锌的靶材通过溅射法形成包含氧化钨及氧化锌的氧化铟(IWZO)。此外,可以举出金(Au)、铂(Pt)、镍(Ni)、钨(W)、铬(Cr)、钼(Mo)、铁(Fe)、钴(Co)、铜(Cu)、钯(Pd)或金属材料的氮化物(例如,氮化钛)等。此外,也可以使用石墨烯。此外,通过将后面说明的复合材料用于EL层103中的接触于第一电极101的层,可以在选择电极材料时无需顾及功函数。
关于EL层103的叠层结构,在本实施方式中,说明如下两种结构:如图1A1所示,包括空穴注入层111、空穴传输层112、发光层113、电子传输层114及电子注入层115的结构;以及如图1B所示,包括空穴注入层111、空穴传输层112、发光层113、电子传输层114及电荷产生层116的结构。下面具体地示出构成各层的材料。
空穴注入层111是含有具有受主性的物质的层。作为具有受主性的物质,可以使用具有吸电子基团(卤基或氰基)的化合物,可以举出7,7,8,8-四氰基-2,3,5,6-四氟醌二甲烷(简称:F4-TCNQ)、3,6-二氟-2,5,7,7,8,8-六氰基对醌二甲烷、氯醌、2,3,6,7,10,11-六氰-1,4,5,8,9,12-六氮杂三亚苯(简称:HAT-CN)、1,3,4,5,7,8-六氟四氰(hexafluorotetracyano)-萘醌二甲烷(naphthoquinodimethane)(简称:F6-TCNNQ)。作为具有受主性的物质,吸电子基团键合于具有多个杂原子的稠合芳香环的化合物诸如HAT-CN等热稳定,所以是优选的。此外,包括吸电子基团(尤其是如氟基等卤基、氰基)的[3]轴烯衍生物的电子接收性非常高所以特别优选的,具体而言,可以举出:α,α’,α”-1,2,3-环烷三亚基(ylidene)三[4-氰-2,3,5,6-四氟苯乙腈]、α,α’,α”-1,2,3-环丙三亚基三[2,6-二氯-3,5-二氟-4-(三氟甲基)苯乙腈]、α,α’,α”-1,2,3-环烷三亚基三[2,3,4,5,6-五氟苯乙腈]等。作为具有受主性的物质,除了上述有机化合物以外可以使用钼氧化物、钒氧化物、钌氧化物、钨氧化物、锰氧化物等。此外,也可以使用酞菁类配合物化合物如酞菁(简称:H2Pc)、铜酞菁(CuPc)等;芳香胺化合物如4,4’-双[N-(4-二苯基氨基苯基)-N-苯基氨基]联苯(简称:DPAB)、N,N'-双{4-[双(3-甲基苯基)氨基]苯基}-N,N'-二苯基-(1,1'-联苯)-4,4'-二胺(简称:DNTPD)等;或者高分子如聚(3,4-乙烯二氧噻吩)/聚(苯乙烯磺酸)(简称:PEDOT/PSS)等来形成空穴注入层111。具有受主性的物质通过施加电场而能够从邻接的空穴传输层(或空穴传输材料)抽出电子。
此外,作为空穴注入层111,可以使用在具有空穴传输性的物质中含有受主物质的复合材料。注意,通过使用在具有空穴传输性的物质中含有受主物质的复合材料,在选择形成电极的材料时可以无需顾及电极的功函数。换言之,作为第一电极101,不仅可以使用功函数高的材料,还可以使用功函数低的材料。作为该受主物质,可以使用上述具有受主性的物质,特别优选使用氧化钼,因为其在大气中也稳定,吸湿性低,并且容易处理。
作为用于复合材料的具有空穴传输性的物质,可以使用各种有机化合物如芳香胺化合物、咔唑衍生物、芳香烃基团、高分子化合物(低聚物、树枝状聚合物、聚合物等)等。作为用于复合材料的具有空穴传输性的物质,优选使用空穴迁移率为1×10-6cm2/Vs以上的物质。此外,也可以应用本发明的一个方式的有机化合物。以下,具体地列举可以用作复合材料中的具有空穴传输性的物质的有机化合物。
作为可以用于复合材料的芳香胺化合物,可以举出N,N’-二(对甲苯基)-N,N’-二苯基-p-亚苯基二胺(简称:DTDPPA)、4,4’-双[N-(4-二苯基氨基苯基)-N-苯基氨基]联苯(简称:DPAB)、N,N'-双{4-[双(3-甲基苯基)氨基]苯基}-N,N'-二苯基-(1,1'-联苯)-4,4'-二胺(简称:DNTPD)、1,3,5-三[N-(4-二苯基氨基苯基)-N-苯基氨基]苯(简称:DPA3B)等。作为咔唑衍生物,可以具体地举出3-[N-(9-苯基咔唑-3-基)-N-苯基氨基]-9-苯基咔唑(简称:PCzPCA1)、3,6-双[N-(9-苯基咔唑-3-基)-N-苯基氨基]-9-苯基咔唑(简称:PCzPCA2)、3-[N-(1-萘基)-N-(9-苯基咔唑-3-基)氨基]-9-苯基咔唑(简称:PCzPCN1)、4,4’-二(N-咔唑基)联苯(简称:CBP)、1,3,5-三[4-(N-咔唑基)苯基]苯(简称:TCPB)、9-[4-(10-苯基蒽-9-基)苯基]-9H-咔唑(简称:CzPA)、1,4-双[4-(N-咔唑基)苯基]-2,3,5,6-四苯基苯等。作为芳烃,例如可以举出2-叔丁基-9,10-二(2-萘基)蒽(简称:t-BuDNA)、2-叔丁基-9,10-二(1-萘基)蒽、9,10-双(3,5-二苯基苯基)蒽(简称:DPPA)、2-叔丁基-9,10-双(4-苯基苯基)蒽(简称:t-BuDBA)、9,10-二(2-萘基)蒽(简称:DNA)、9,10-二苯基蒽(简称:DPAnth)、2-叔丁基蒽(简称:t-BuAnth)、9,10-双(4-甲基-1-萘基)蒽(简称:DMNA)、2-叔丁基-9,10-双[2-(1-萘基)苯基]蒽、9,10-双[2-(1-萘基)苯基]蒽、2,3,6,7-四甲基-9,10-二(1-萘基)蒽、2,3,6,7-四甲基-9,10-二(2-萘基)蒽、9,9'-联蒽、10,10'-二苯基-9,9'-联蒽、10,10'-双(2-苯基苯基)-9,9'-联蒽、10,10'-双[(2,3,4,5,6-五苯基)苯基]-9,9'-联蒽、蒽、并四苯、红荧烯、苝、2,5,8,11-四(叔丁基)苝等。此外,除此之外,还可以使用并五苯、晕苯等。此外,也可以具有乙烯基骨架。作为具有乙烯基的芳烃,例如可以举出4,4’-双(2,2-二苯基乙烯基)联苯(简称:DPVBi)、9,10-双[4-(2,2-二苯基乙烯基)苯基]蒽(简称:DPVPA)等。
此外,也可以使用聚(N-乙烯基咔唑)(简称:PVK)、聚(4-乙烯基三苯胺)(简称:PVTPA)、聚[N-(4-{N'-[4-(4-二苯基氨基)苯基]苯基-N'-苯基氨基}苯基)甲基丙烯酰胺](简称:PTPDMA)、聚[N,N'-双(4-丁基苯基)-N,N'-双(苯基)联苯胺](简称:Poly-TPD)等高分子化合物。
通过形成空穴注入层111,可以提高空穴注入性,从而可以得到驱动电压低的发光器件。此外,具有受主性的有机化合物可以利用蒸镀容易地形成,所以是易于使用的材料。
空穴传输层112以包含空穴传输材料的方式形成。空穴传输材料优选具有1×10- 6cm2/Vs以上的空穴迁移率。作为该空穴传输材料,可以使用可以用作上述复合材料中的空穴传输材料的有机化合物。
发光层113是包含发光材料及主体材料的层。发光材料可以是荧光发光物质、磷光发光物质、呈现热活化延迟荧光(TADF)的物质或其他发光材料。此外,既可由单层构成又可由包含不同发光材料的多个层构成。本发明的一个方式更优选应用于发光层113为呈现荧光发光的层,尤其是,呈现蓝色荧光发光的层的情况。
在发光层113中,作为可以用作荧光发光物质的材料,例如可以举出如下物质。注意,除此之外,还可以使用其他荧光发光物质。
例如,可以举出5,6-双[4-(10-苯基-9-蒽基)苯基]-2,2'-联吡啶(简称:PAP2BPy)、5,6-双[4'-(10-苯基-9-蒽基)联苯基-4-基]-2,2'-联吡啶(简称:PAPP2BPy)、N,N’-二苯基-N,N’-双[4-(9-苯基-9H-芴-9-基)苯基]芘-1,6-二胺(简称:1,6FLPAPrn)、N,N’-双(3-甲基苯基)-N,N’-双[3-(9-苯基-9H-芴-9-基)苯基]芘-1,6-二胺(简称:1,6mMemFLPAPrn)、N,N'-双[4-(9H-咔唑-9-基)苯基]-N,N'-二苯基二苯乙烯-4,4'-二胺(简称:YGA2S)、4-(9H-咔唑-9-基)-4'-(10-苯基-9-蒽基)三苯胺(简称:YGAPA)、4-(9H-咔唑-9-基)-4'-(9,10-二苯基-2-蒽基)三苯胺(简称:2YGAPPA)、N,9-二苯基-N-[4-(10-苯基-9-蒽基)苯基]-9H-咔唑-3-胺(简称:PCAPA)、二萘嵌苯、2,5,8,11-四(叔丁基)二萘嵌苯(简称:TBP)、4-(10-苯基-9-蒽基)-4'-(9-苯基-9H-咔唑-3-基)三苯胺(简称:PCBAPA)、N,N”-(2-叔丁基蒽-9,10-二基二-4,1-亚苯基)双[N,N',N'-三苯基-1,4-苯二胺](简称:DPABPA)、N,9-二苯基-N-[4-(9,10-二苯基-2-蒽基)苯基]-9H-咔唑-3-胺(简称:2PCAPPA)、N-[4-(9,10-二苯基-2-蒽基)苯基]-N,N',N'-三苯基-1,4-苯二胺(简称:2DPAPPA)、N,N,N',N',N”,N”,N”',N”'-八苯基二苯并[g,p]
Figure BDA0002990481170000191
(chrysene)-2,7,10,15-四胺(简称:DBC1)、香豆素30、N-(9,10-二苯基-2-蒽基)-N,9-二苯基-9H-咔唑-3-胺(简称:2PCAPA)、N-[9,10-双(1,1'-联苯基-2-基)-2-蒽基]-N,9-二苯基-9H-咔唑-3-胺(简称:2PCABPhA)、N-(9,10-二苯基-2-蒽基)-N,N',N'-三苯基-1,4-苯二胺(简称:2DPAPA)、N-[9,10-双(1,1'-联苯-2-基)-2-蒽基]-N,N',N'-三苯基-1,4-苯二胺(简称:2DPABPhA)、9,10-双(1,1'-联苯-2-基)-N-[4-(9H-咔唑-9-基)苯基]-N-苯基蒽-2-胺(简称:2YGABPhA)、N,N,9-三苯基蒽-9-胺(简称:DPhAPhA)、香豆素545T、N,N'-二苯基喹吖酮(简称:DPQd)、红荧烯、5,12-双(1,1'-联苯-4-基)-6,11-二苯基并四苯(简称:BPT)、2-(2-{2-[4-(二甲氨基)苯基]乙烯基}-6-甲基-4H-吡喃-4-亚基)丙二腈(简称:DCM1)、2-{2-甲基-6-[2-(2,3,6,7-四氢-1H,5H-苯并[ij]喹嗪-9-基)乙烯基]-4H-吡喃-4-亚基}丙二腈(简称:DCM2)、N,N,N',N'-四(4-甲基苯基)并四苯-5,11-二胺(简称:p-mPhTD)、7,14-二苯基-N,N,N',N'-四(4-甲基苯基)苊并[1,2-a]荧蒽-3,10-二胺(简称:p-mPhAFD)、2-{2-异丙基-6-[2-(1,1,7,7-四甲基-2,3,6,7-四氢-1H,5H-苯并[ij]喹嗪-9-基)乙烯基]-4H-吡喃-4-亚基}丙二腈(简称:DCJTI)、2-{2-叔丁基-6-[2-(1,1,7,7-四甲基-2,3,6,7-四氢-1H,5H-苯并[ij]喹嗪-9-基)乙烯基]-4H-吡喃-4-亚基}丙二腈(简称:DCJTB)、2-(2,6-双{2-[4-(二甲氨基)苯基]乙烯基}-4H-吡喃-4-亚基)丙二腈(简称:BisDCM)、2-{2,6-双[2-(8-甲氧基-1,1,7,7-四甲基-2,3,6,7-四氢-1H,5H-苯并[ij]喹嗪-9-基)乙烯基]-4H-吡喃-4-亚基}丙二腈(简称:BisDCJTM)、N,N’-(芘-1,6-二基)双[(6,N-二苯基苯并[b]萘并[1,2-d]呋喃)-8-胺](简称:1,6BnfAPrn-03)、3,10-双[N-(9-苯基-9H-咔唑-2-基)-N-苯基氨基]萘并[2,3-b;6,7-b’]双苯并呋喃(简称:3,10PCA2Nbf(IV)-02)、3,10-双[N-(二苯并呋喃-3-基)-N-苯基氨基]萘并[2,3-b;6,7-b’]双苯并呋喃(简称:3,10FrA2Nbf(IV)-02)等。尤其是,以1,6FLPAPrn、1,6mMemFLPAPrn、1,6BnfAPrn-03等芘二胺化合物为代表的稠合芳族二胺化合物具有合适的空穴俘获性且良好的发光效率及可靠性,所以是优选的。
在发光层113中,当作为发光中心材料使用磷光发光物质时,作为可使用的材料,例如可以举出如下物质。
例如可以使用如下材料,三{2-[5-(2-甲基苯基)-4-(2,6-二甲基苯基)-4H-1,2,4-三唑-3-基-κN2]苯基-κC}铱(III)(简称:[Ir(mpptz-dmp)3])、三(5-甲基-3,4-二苯基-4H-1,2,4-三唑)铱(III)(简称:[Ir(Mptz)3])、三[4-(3-联苯)-5-异丙基-3-苯基-4H-1,2,4-三唑]铱(III)(简称:[Ir(iPrptz-3b)3])等具有4H-三唑骨架的有机金属铱配合物;三[3-甲基-1-(2-甲基苯基)-5-苯基-1H-1,2,4-三唑]铱(III)(简称:[Ir(Mptz1-mp)3])、三(1-甲基-5-苯基-3-丙基-1H-1,2,4-三唑)铱(III)(简称:[Ir(Prptz1-Me)3])等具有1H-三唑骨架的有机金属铱配合物;fac-三[1-(2,6-二异丙基苯基)-2-苯基-1H-咪唑]铱(III)(简称:[Ir(iPrpmi)3])、三[3-(2,6-二甲基苯基)-7-甲基咪唑并[1,2-f]菲啶根(phenanthridinato)]铱(III)(简称:[Ir(dmpimpt-Me)3])等具有咪唑骨架的有机金属铱配合物;以及双[2-(4',6'-二氟苯基)吡啶根-N,C2']铱(III)四(1-吡唑基)硼酸盐(简称:FIr6)、双[2-(4',6'-二氟苯基)吡啶根-N,C2']铱(III)吡啶甲酸酯(简称:FIrpic)、双{2-[3',5'-双(三氟甲基)苯基]吡啶根-N,C2'}铱(III)吡啶甲酸酯(简称:[Ir(CF3ppy)2(pic)])、双[2-(4',6'-二氟苯基)吡啶根-N,C2']铱(III)乙酰丙酮(简称:FIr(acac))等以具有拉电子基的苯基吡啶衍生物为配体的有机金属铱配合物。上述物质是发射蓝色磷光的化合物,并且是在440nm至520nm具有发光峰的化合物。
此外,可以举出:三(4-甲基-6-苯基嘧啶根)铱(III)(简称:[Ir(mppm)3])、三(4-叔丁基-6-苯基嘧啶根)铱(III)(简称:[Ir(tBuppm)3])、(乙酰丙酮根)双(6-甲基-4-苯基嘧啶根)铱(III)(简称:[Ir(mppm)2(acac)])、(乙酰丙酮根)双(6-叔丁基-4-苯基嘧啶根)铱(III)(简称:[Ir(tBuppm)2(acac)])、(乙酰丙酮根)双[6-(2-降冰片基)-4-苯基嘧啶根]铱(III)(简称:[Ir(nbppm)2(acac)])、(乙酰丙酮根)双[5-甲基-6-(2-甲基苯基)-4-苯基嘧啶根]铱(III)(简称:Ir(mpmppm)2(acac))、(乙酰丙酮根)双(4,6-二苯基嘧啶根)铱(III)(简称:[Ir(dppm)2(acac)])等具有嘧啶骨架的有机金属铱配合物;(乙酰丙酮根)双(3,5-二甲基-2-苯基吡嗪根)铱(III)(简称:[Ir(mppr-Me)2(acac)])、(乙酰丙酮根)双(5-异丙基-3-甲基-2-苯基吡嗪根)铱(III)(简称:[Ir(mppr-iPr)2(acac)])等具有吡嗪骨架的有机金属铱配合物;三(2-苯基吡啶根-N,C2')铱(III)(简称:[Ir(ppy)3])、双(2-苯基吡啶根-N,C2')铱(III)乙酰丙酮(简称:[Ir(ppy)2(acac)])、双(苯并[h]喹啉)铱(III)乙酰丙酮(简称:[Ir(bzq)2(acac)])、三(苯并[h]喹啉)铱(III)(简称:[Ir(bzq)3])、三(2-苯基喹啉-N,C2']铱(III)(简称:[Ir(pq)3])、双(2-苯基喹啉-N,C2')铱(III)乙酰丙酮(简称:[Ir(pq)2(acac)])等具有吡啶骨架的有机金属铱配合物;以及三(乙酰丙酮根)(单菲咯啉)铽(III)(简称:[Tb(acac)3(Phen)])等稀土金属配合物。上述物质主要是发射绿色磷光的化合物,并且在500nm至600nm具有发光峰。此外,由于具有嘧啶骨架的有机金属铱配合物具有特别优异的可靠性及发光效率,所以是特别优选的。
此外,可以举出:(二异丁酰基甲烷根)双[4,6-双(3-甲基苯基)嘧啶基]铱(III)(简称:[Ir(5mdppm)2(dibm)])、双[4,6-双(3-甲基苯基)嘧啶根)(二新戊酰基甲烷根)铱(III)(简称:[Ir(5mdppm)2(dpm)])、双[4,6-二(萘-1-基)嘧啶根](二新戊酰基甲烷根)铱(III)(简称:[Ir(d1npm)2(dpm)])等具有嘧啶骨架的有机金属铱配合物;(乙酰丙酮根)双(2,3,5-三苯基吡嗪根)铱(III)(简称:[Ir(tppr)2(acac)])、双(2,3,5-三苯基吡嗪根)(二新戊酰基甲烷根)铱(III)(简称:[Ir(tppr)2(dpm)])、(乙酰丙酮根)双[2,3-双(4-氟苯基)喹喔啉合]铱(III)(简称:[Ir(Fdpq)2(acac)])等具有吡嗪骨架的有机金属铱配合物;三(1-苯基异喹啉-N,C2’)铱(III)(简称:[Ir(piq)3])、双(1-苯基异喹啉-N,C2’)铱(III)乙酰丙酮(简称:[Ir(piq)2(acac)])等具有吡啶骨架的有机金属铱配合物;2,3,7,8,12,13,17,18-八乙基-21H,23H-卟啉铂(II)(简称:PtOEP)等的铂配合物;以及三(1,3-二苯基-1,3-丙二酮(propanedionato))(单菲咯啉)铕(III)(简称:[Eu(DBM)3(Phen)])、三[1-(2-噻吩甲酰基)-3,3,3-三氟丙酮](单菲咯啉)铕(III)(简称:[Eu(TTA)3(Phen)])等稀土金属配合物。上述物质是发射红色磷光的化合物,并且在600nm至700nm具有发光峰。此外,具有吡嗪骨架的有机金属铱配合物可以获得色度良好的红色发光。
此外,除了上述磷光化合物以外,还可以选择已知的磷光发光材料而使用。
作为TADF材料可以使用富勒烯及其衍生物、吖啶及其衍生物以及伊红衍生物等。此外,还可以举出包含镁(Mg)、锌(Zn)、镉(Cd)、锡(Sn)、铂(Pt)、铟(In)或钯(Pd)等含金属卟啉。作为该含金属卟啉,例如,也可以举出由下述结构式表示的原卟啉-氟化锡配合物(SnF2(Proto IX))、中卟啉-氟化锡配合物(SnF2(Meso IX))、血卟啉-氟化锡配合物(SnF2(Hemato IX))、粪卟啉四甲酯-氟化锡配合物(SnF2(Copro III-4Me)、八乙基卟啉-氟化锡配合物(SnF2(OEP))、初卟啉-氟化锡配合物(SnF2(Etio I))以及八乙基卟啉-氯化铂配合物(PtCl2OEP)等。
[化学式9]
Figure BDA0002990481170000241
此外,还可以使用由下述结构式表示的2-(联苯-4-基)-4,6-双(12-苯基吲哚[2,3-a]咔唑-11-基)-1,3,5-三嗪(简称:PIC-TRZ)、9-(4,6-二苯基-1,3,5-三嗪-2-基)-9’-苯基-9H,9’H-3,3’-联咔唑(简称:PCCzTzn)、2-{4-[3-(N-苯基-9H-咔唑-3-基)-9H-咔唑-9-基]苯基}-4,6-二苯基-1,3,5-三嗪(简称:PCCzPTzn)、2-[4-(10H-吩恶嗪-10-基)苯基]-4,6-二苯基-1,3,5-三嗪(简称:PXZ-TRZ)、3-[4-(5-苯基-5,10-二氢吩嗪-10-基)苯基]-4,5-二苯基-1,2,4-三唑(简称:PPZ-3TPT)、3-(9,9-二甲基-9H-吖啶-10-基)-9H-氧杂蒽-9-酮(简称:ACRXTN)、双[4-(9,9-二甲基-9,10-二氢吖啶)苯基]硫砜(简称:DMAC-DPS)、10-苯基-10H,10’H-螺[吖啶-9,9’-蒽]-10’-酮(简称:ACRSA)等具有富π电子型杂芳环和缺π电子型杂芳环的一方或双方的杂环化合物。该杂环化合物具有富π电子型杂芳环和缺π电子型杂芳环,电子传输性和空穴传输性都高,所以是优选的。尤其是,在具有缺π电子杂芳环的骨架中,吡啶骨架、二嗪骨架(嘧啶骨架、吡嗪骨架、哒嗪骨架)及三嗪骨架稳定且可靠性良好,所以是优选的。尤其是,苯并呋喃并嘧啶骨架、苯并噻吩并嘧啶骨架、苯并呋喃并吡嗪骨架、苯并噻吩并吡嗪骨架的接受性高且可靠性良好,所以是优选的。此外,在具有富π电子杂芳环的骨架中,吖啶骨架、吩恶嗪骨架、吩噻嗪骨架、呋喃骨架、噻吩骨架及吡咯骨架稳定且可靠性良好,所以优选具有上述骨架中的至少一个。此外,作为呋喃骨架优选使用二苯并呋喃骨架,作为噻吩骨架优选使用二苯并噻吩骨架。作为吡咯骨架,特别优选使用吲哚骨架、咔唑骨架、吲哚咔唑骨架、联咔唑骨架、3-(9-苯基-9H-咔唑-3-基)-9H-咔唑骨架。在富π电子型芳杂环和缺π电子型芳杂环直接键合的物质中,富π电子芳杂环的电子供给性和缺π电子型芳杂环的电子接受性都高而S1能级与T1能级之间的能量差变小,可以高效地获得热活化延迟荧光,所以是特别优选的。注意,也可以使用键合有氰基等吸电子基团的芳环代替缺π电子型芳杂环。此外,作为富π电子骨架,可以使用芳香胺骨架、吩嗪骨架等。此外,作为缺π电子骨架,可以使用氧杂蒽骨架、二氧化噻吨(thioxanthene dioxide)骨架、噁二唑骨架、三唑骨架、咪唑骨架、蒽醌骨架、苯基硼烷或boranthrene等含硼骨架、苯甲腈或氰苯等具有腈基或氰基的芳香环或杂芳环、二苯甲酮等羰骨架、氧化膦骨架、砜骨架等。如此,可以使用缺π电子骨架及富π电子骨架代替缺π电子杂芳环以及富π电子杂芳环中的至少一个。
[化学式10]
Figure BDA0002990481170000261
TADF材料是指S1能级和T1能级之差较小且具有通过反系间窜越将三重激发能转换为单重激发能的功能的材料。因此,能够通过微小的热能量将三重激发能上转换(up-convert)为单重激发能(反系间窜越)并能够高效地产生单重激发态。此外,可以将三重激发能转换为发光。
以两种物质形成激发态的激基复合物(Exciplex)因S1能级和T1能级之差极小而具有将三重激发能转换为单重激发能的TADF材料的功能。
注意,作为T1能级的指标,可以使用在低温(例如,77K至10K)下观察到的磷光光谱。关于TADF材料,优选的是,当以通过在荧光光谱的短波长侧的尾处引切线得到的外推线的波长能量为S1能级并以通过在磷光光谱的短波长侧的尾处引切线得到的外推线的波长能量为T1能级时,S1与T1之差为0.3eV以下,更优选为0.2eV以下。
此外,当使用TADF材料作为发光中心材料时,主体材料的S1能级优选比TADF材料的S1能级高。此外,主体材料的T1能级优选比TADF材料的T1能级高。
作为发光层的主体材料,优选使用实施方式1所示的本发明的一个方式的用于主体材料的蒽化合物。通过使用该用于主体材料的蒽化合物,可以提供寿命良好的发光器件。
此外,当不使用实施方式1所示的用于主体材料的蒽化合物作为主体材料时,可以使用具有电子传输性的材料或空穴传输材料等各种载流子传输材料。
作为具有空穴传输性的材料,可以举出:4,4'-双[N-(1-萘基)-N-苯基氨基]联苯(简称:NPB)、N,N'-双(3-甲基苯基)-N,N'-二苯基-[1,1'-联苯]-4,4'-二胺(简称:TPD)、4,4'-双[N-(螺-9,9’-二芴-2-基)-N-苯基氨基]联苯(简称:BSPB)、4-苯基-4'-(9-苯基芴-9-基)三苯胺(简称:BPAFLP)、4-苯基-3'-(9-苯基芴-9-基)三苯胺(简称:mBPAFLP)、4-苯基-4'-(9-苯基-9H-咔唑-3-基)三苯胺(简称:PCBA1BP)、4,4'-二苯基-4”-(9-苯基-9H-咔唑-3-基)三苯胺(简称:PCBBi1BP)、4-(1-萘基)-4'-(9-苯基-9H-咔唑-3-基)三苯胺(简称:PCBANB)、4,4'-二(1-萘基)-4”-(9-苯基-9H-咔唑-3-基)三苯胺(简称:PCBNBB)、9,9-二甲基-N-苯基-N-[4-(9-苯基-9H-咔唑-3-基)苯基]芴-2-胺(简称:PCBAF)、N-苯基-N-[4-(9-苯基-9H-咔唑-3-基)苯基]-9,9'-螺双[9H-芴]-2-胺(简称:PCBASF)等具有芳香胺骨架的化合物;1,3-双(N-咔唑基)苯(简称:mCP)、4,4'-二(N-咔唑基)联苯(简称:CBP)、3,6-双(3,5-二苯基苯基)-9-苯基咔唑(简称:CzTP)、3,3'-双(9-苯基-9H-咔唑)(简称:PCCP)等具有咔唑骨架的化合物;4,4',4”-(苯-1,3,5-三基)三(二苯并噻吩)(简称:DBT3P-II)、2,8-二苯基-4-[4-(9-苯基-9H-芴-9-基)苯基]二苯并噻吩(简称:DBTFLP-III)、4-[4-(9-苯基-9H-芴-9-基)苯基]-6-苯基二苯并噻吩(简称:DBTFLP-IV)等具有噻吩骨架的化合物;以及4,4’,4”-(苯-1,3,5-三基)三(二苯并呋喃)(简称:DBF3P-II)、4-{3-[3-(9-苯基-9H-芴-9-基)苯基]苯基}二苯并呋喃(简称:mmDBFFLBi-II)等具有呋喃骨架的化合物。其中,具有芳香胺骨架的化合物、具有咔唑骨架的化合物具有良好的可靠性和高空穴传输性并有助于降低驱动电压,所以是优选的。此外,也可以使用上述实施方式1所示的有机化合物。
作为具有电子传输性的材料,例如可以举出:双(10-羟基苯并[h]喹啉)铍(II)(简称:BeBq2)、双(2-甲基-8-羟基喹啉)(4-苯基苯酚)铝(III)(简称:BAlq)、双(8-羟基喹啉)锌(II)(简称:Znq)、双[2-(2-苯并噁唑基)苯酚]锌(II)(简称:ZnPBO)、双[2-(2-苯并噻唑基)苯酚]锌(II)(简称:ZnBTZ)等金属配合物、2-(4-联苯基)-5-(4-叔丁基苯基)-1,3,4-噁二唑(简称:PBD)、3-(4-联苯基)-4-苯基-5-(4-叔丁基苯基)-1,2,4-三唑(简称:TAZ)、2-[3’-(9,9-二甲基-9H-芴-2-基)-1,1’-联苯-3-基]-4,6-二苯基-1,3,5-三嗪(简称:mFBPTzn)、1,3-双[5-(对叔丁基苯基)-1,3,4-噁二唑-2-基]苯(简称:OXD-7)、9-[4-(5-苯基-1,3,4-噁二唑-2-基)苯基]-9H-咔唑(简称:CO11)、2,2',2”-(1,3,5-苯三基)三(1-苯基-1H-苯并咪唑)(简称:TPBI)、2-[3-(二苯并噻吩-4-基)苯基]-1-苯基-1H-苯并咪唑(简称:mDBTBIm-II)、2-{4-[9,10-二(萘-2-基)-2-蒽基]苯基}-1-苯基-1H-苯并咪唑(简称:ZADN)等具有多唑骨架的杂环化合物;2-[3-(二苯并噻吩-4-基)苯基]二苯并[f,h]喹喔啉(简称:2mDBTPDBq-II)、2-[3’-(二苯并噻吩-4-基)联苯-3-基]二苯并[f,h]喹喔啉(简称:2mDBTBPDBq-II)、2-[3’-(9H-咔唑-9-基)联苯-3-基]二苯并[f,h]喹喔啉(简称:2mCzBPDBq)、4,6-双[3-(菲-9-基)苯基]嘧啶(简称:4,6mPnP2Pm)、4,6-双[3-(4-二苯并噻吩基)苯基]嘧啶(简称:4,6mDBTP2Pm-II)等具有二嗪骨架的杂环化合物;3,5-双[3-(9H-咔唑-9-基)苯基]吡啶(简称:35DCzPPy)、1,3,5-三[3-(3-吡啶基)-苯基]苯(简称:TmPyPB)等的具有吡啶骨架的杂环化合物。其中,具有二嗪骨架的杂环化合物或具有吡啶骨架的杂环化合物具有良好的可靠性,所以是优选的。尤其是,具有二嗪(嘧啶或吡嗪)骨架的杂环化合物具有高电子传输性,也有助于降低驱动电压。
在将荧光发光物质用作发光材料的情况下,作为主体材料,优选使用具有蒽骨架的材料。通过将具有蒽骨架的物质用作荧光发光物质的主体材料,可以实现发光效率及耐久性都良好的发光层。因为具有蒽骨架的材料大多具有深的HOMO能级,所以优选使用本发明的一个方式。在用作主体材料的具有蒽骨架的物质中,具有二苯基蒽骨架(尤其是9,10-二苯基蒽骨架)的物质在化学上稳定,所以是优选的。此外,在主体材料具有咔唑骨架的情况下,空穴的注入/传输性得到提高,所以是优选的,尤其是,在包含苯环稠合到咔唑的苯并咔唑骨架的情况下,其HOMO能级比咔唑浅0.1eV左右,空穴容易注入,所以是更优选的。尤其是,在主体材料具有二苯并咔唑骨架的情况下,其HOMO能级比咔唑浅0.1eV左右,不仅空穴容易注入,而且空穴传输性及耐热性也得到提高,所以是优选的。因此,进一步优选用作主体材料的物质是具有9,10-二苯基蒽骨架及咔唑骨架(或者苯并咔唑骨架或二苯并咔唑骨架)的物质。注意,从上述空穴注入/传输性的观点来看,也可以使用苯并芴骨架或二苯并芴骨架代替咔唑骨架。作为这种物质的例子,可以举出9-苯基-3-[4-(10-苯基-9-蒽基)苯基]-9H-咔唑(简称:PCzPA)、3-[4-(1-萘基)-苯基]-9-苯基-9H-咔唑(简称:PCPN)、9-[4-(10-苯基蒽-9-基)苯基]-9H-咔唑(简称:CzPA)、7-[4-(10-苯基-9-蒽基)苯基]-7H-二苯并[c,g]咔唑(简称:cgDBCzPA)、6-[3-(9,10-二苯基-2-蒽基)苯基]-苯并[b]萘并[1,2-d]呋喃(简称:2mBnfPPA)、9-苯基-10-{4-(9-苯基-9H-芴-9-基)-联苯-4’-基}-蒽(简称:FLPPA)等。尤其是,CzPA、cgDBCzPA、2mBnfPPA、PCzPA呈现非常良好的特性,所以是优选的。
本发明的一个方式的发光器件特别优选用于呈现蓝色荧光发光的发光器件。
此外,主体材料也可以是混合多种物质的材料,当使用混合的主体材料时,优选混合具有电子传输性的材料和具有空穴传输性的材料。通过混合具有电子传输性的材料和具有空穴传输性的材料,可以使发光层113的传输性的调整变得更加容易,也可以更简便地进行复合区域的控制。具有空穴传输性的材料和具有电子传输性的材料的含量的比例为1:9至9:1即可。
此外,也可以使用这些混合了的材料形成激基复合物。通过以形成发射与发光材料的最低能量一侧的吸收带的波长重叠的光的激基复合物的方式选择混合材料,可以使能量转移变得顺利,从而高效地得到发光,所以是优选的。此外,通过采用该结构可以降低驱动电压,因此是优选的。
电子传输层114是包含具有电子传输性的物质的层。作为具有电子传输性的物质,可以使用以上所述的能够用于主体材料的具有电子传输性的物质。
可以在电子传输层114和第二电极102之间设置由氟化锂(LiF)、8-羟基喹啉-锂(简称:Liq)、氟化铯(CsF)、氟化钙(CaF2)等的碱金属、碱土金属或它们的化合物形成的电子注入层115。电子注入层115可以使用将碱金属、碱土金属或它们的化合物包含在由具有电子传输性的物质构成的层中的层或电子化合物(electride)。作为电子化合物,例如可以举出对钙和铝的混合氧化物以高浓度添加电子的物质等。
此外,可以设置电荷产生层116,而代替电子注入层115(图1B)。电荷产生层116是通过施加电位,可以对与该层的阴极一侧接触的层注入空穴,并且对与该层的阳极一侧接触的层注入电子的层。电荷产生层116至少包括P型层117。P型层117优选使用上述构成空穴注入层111的复合材料来形成。此外,P型层117也可以将作为构成复合材料的材料包含上述包含接受性材料的膜和包含空穴传输材料的膜层叠来形成。通过对P型层117施加电位,电子和空穴分别注入到电子传输层114和用作阴极的第二电极102,使得发光器件工作。
此外,电荷产生层116除了包括P型层117之外,优选还包括电子中继层118及电子注入缓冲层119中的任一方或双方。
电子中继层118至少包含具有电子传输性的物质,并且能够防止电子注入缓冲层119和P型层117的相互作用,并顺利地传递电子。优选将电子中继层118所包含的具有电子传输性的物质的LUMO能级设定在P型层117中的接受性物质的LUMO能级与电子传输层114中的接触于电荷产生层116的层所包含的物质的LUMO能级之间。具体而言,电子中继层118中的具有电子传输性的物质的LUMO能级优选为-5.0eV以上,更优选为-5.0eV以上且-3.0eV以下。此外,作为电子中继层118中的具有电子传输性的物质,优选使用酞菁类材料或具有金属-氧键合和芳香配体的金属配合物。
电子注入缓冲层119可以使用碱金属、碱土金属、稀土金属以及这些物质的化合物(碱金属化合物(包括氧化锂等氧化物、卤化物、碳酸锂或碳酸铯等碳酸盐)、碱土金属化合物(包括氧化物、卤化物、碳酸盐)或稀土金属的化合物(包括氧化物、卤化物、碳酸盐))等电子注入性高的物质。
此外,在电子注入缓冲层119包含具有电子传输性的物质及供体性物质的情况下,作为供体性物质,除了碱金属、碱土金属、稀土金属和这些物质的化合物(碱金属化合物(包括氧化锂等氧化物、卤化物、碳酸锂或碳酸铯等碳酸盐)、碱土金属化合物(包括氧化物、卤化物、碳酸盐)或稀土金属的化合物(包括氧化物、卤化物、碳酸盐))以外,还可以使用四硫并四苯(tetrathianaphthacene)(简称:TTN)、二茂镍、十甲基二茂镍等有机化合物。此外,作为具有电子传输性的物质,可以使用与上面所说明的用于电子传输层114的材料同样的材料形成。
作为形成第二电极102的物质,可以使用功函数小(具体为3.8eV以下)的金属、合金、导电化合物以及它们的混合物等。作为这种阴极材料的具体例子,可以举出锂(Li)或铯(Cs)等碱金属、镁(Mg)、钙(Ca)或者锶(Sr)等的属于元素周期表中的第1族或第2族的元素、包含它们的合金(MgAg、AlLi)、铕(Eu)、镱(Yb)等稀土金属以及包含它们的合金等。然而,通过在第二电极102和电子传输层之间设置电子注入层,可以不顾及功函数的大小而将各种导电材料诸如Al、Ag、ITO、包含硅或氧化硅的氧化铟-氧化锡等用作第二电极102。这些导电材料可以通过真空蒸镀法、溅射法等干式法、喷墨法、旋涂法等形成。此外,第二电极102可以通过利用溶胶-凝胶法等湿式法或利用金属材料的膏剂的湿式法形成。
此外,作为EL层103的形成方法,不论干式法或湿式法,都可以使用各种方法。例如,也可以使用真空蒸镀法、凹版印刷法、照相凹版印刷法、丝网印刷法、喷墨法或旋涂法等。
此外,也可以通过使用不同成膜方法形成上面所述的各电极或各层。
注意,设置在第一电极101与第二电极102之间的层的结构不局限于上述结构。但是,优选采用在离第一电极101及第二电极102远的部分设置空穴与电子复合的发光区域的结构,以便抑制由于发光区域与用于电极或载流子注入层的金属接近而发生的猝灭。
此外,为了抑制从在发光层中产生的激子的能量转移,接触于发光层113的如空穴传输层和电子传输层,尤其是靠近发光层113中的复合区域的载流子传输层优选使用如下物质构成,即具有比构成发光层的发光材料或者包含在发光层中的发光材料所具有的带隙大的带隙的物质。
接着,参照图1C说明具有层叠有多个发光单元的结构的发光器件(以下也称为叠层型元件或串联元件)的方式。该发光器件是在阳极和阴极之间具有多个发光单元的发光器件。一个发光单元具有与图1A1、图1A2及图1B等所示的EL层103大致相同的结构。就是说,可以说,图1C所示的发光器件是具有多个发光单元的发光器件,而图1A1、图1A2及图1B等所示的发光器件是具有一个发光单元的发光器件。
在图1C中,在阳极501和阴极502之间层叠有第一发光单元511和第二发光单元512,并且在第一发光单元511和第二发光单元512之间设置有电荷产生层513。阳极501和阴极502分别相当于图1A1等中的第一电极101和第二电极102,并且可以应用与图1A的说明同样的材料。此外,第一发光单元511和第二发光单元512可以具有相同结构,也可以具有不同结构。
电荷产生层513具有在对阳极501及阴极502施加电压时,对一个发光单元注入电子并对另一个发光单元注入空穴的功能。就是说,在图1C中,在以阳极的电位比阴极的电位高的方式施加电压的情况下,电荷产生层513只要是对第一发光单元511注入电子并对第二发光单元512注入空穴的层即可。
电荷产生层513优选具有与图1B所示的电荷产生层116同样的结构。因为有机化合物与金属氧化物的复合材料具有良好的载流子注入性及载流子传输性,从而能够实现低电压驱动及低电流驱动。注意,在发光单元的阳极一侧的面接触于电荷产生层513的情况下,电荷产生层513可以具有发光单元的空穴注入层的功能,所以在发光单元中也可以不设置空穴注入层。
此外,当在电荷产生层513中设置电子注入缓冲层119时,因为该电子注入缓冲层119具有阳极一侧的发光单元中的电子注入层的功能,所以在阳极一侧的发光单元中不一定必须设置电子注入层。
虽然在图1C中说明了具有两个发光单元的发光器件,但是可以同样地应用层叠三个以上的发光单元的发光器件。如根据本实施方式的发光器件,通过在一对电极之间将多个发光单元使用电荷产生层513隔开并配置,该元件可以在保持低电流密度的同时实现高亮度发光,并且能够实现寿命长的装置。此外,可以实现能够进行低电压驱动且低功耗的发光器件。
此外,通过使各发光单元的发光颜色不同,可以以整个发光器件得到所希望的颜色的发光。例如,通过在具有两个发光单元的发光器件中获得来自第一发光单元的红色和绿色的发光颜色以及来自第二发光单元的蓝色的发光颜色,可以得到在整个发光器件中进行白色发光的发光器件。此外,在采用三层结构的情况下,通过在第一发光单元中得到蓝色的发光颜色,在第二发光单元中得到红色及绿色的发光颜色并在第三发光单元中得到蓝色的发光颜色,也可以得到白色发光。
此外,上述EL层103、第一发光单元511、第二发光单元512及电荷产生层等各层及电极例如可以利用蒸镀法(包括真空蒸镀法)、液滴喷射法(也称为喷墨法)、涂敷法、凹版印刷法等方法形成。此外,其也可以包含低分子材料、中分子材料(包括低聚物、树枝状聚合物)或者高分子材料。
(实施方式3)
在本实施方式中,对使用实施方式1及实施方式2所示的发光器件的发光装置进行说明。
在本实施方式中,参照图2A和图2B对使用实施方式1及实施方式2所示的发光器件而制造的发光装置进行说明。注意,图2A是示出发光装置的俯视图,并且图2B是沿图2A中的线A-B及线C-D切断的截面图。该发光装置作为用来控制发光器件的发光的单元包括由虚线表示的驱动电路部(源极线驱动电路)601、像素部602、驱动电路部(栅极线驱动电路)603。此外,符号604是密封衬底,符号605是密封剂,由密封剂605围绕的内侧是空间607。
注意,引导布线608是用来传送输入到源极线驱动电路601及栅极线驱动电路603的信号的布线,并且从用作外部输入端子的FPC(柔性印刷电路)609接收视频信号、时钟信号、起始信号、复位信号等。注意,虽然在此只图示出FPC,但是该FPC还可以安装有印刷线路板(PWB)。本说明书中的发光装置不仅包括发光装置主体,而且还包括安装有FPC或PWB的发光装置。
下面,参照图2B说明截面结构。虽然在元件衬底610上形成有驱动电路部及像素部,但是在此示出作为驱动电路部的源极线驱动电路601和像素部602中的一个像素。
除了可以使用由玻璃、石英、有机树脂、金属、合金、半导体等构成的衬底以外,还可以使用由FRP(Fiber Reinforced Plastics:纤维增强塑料)、PVF(聚氟乙烯)、聚酯或丙烯酸树脂等构成的塑料衬底,而制造元件衬底610。
对用于像素或驱动电路的晶体管的结构没有特别的限制。例如,可以采用反交错型晶体管或交错型晶体管。此外,顶栅型晶体管或底栅型晶体管都可以被使用。对用于晶体管的半导体材料没有特别的限制,例如可以使用硅、锗、碳化硅、氮化镓等。或者可以使用In-Ga-Zn类金属氧化物等的包含铟、镓、锌中的至少一个的氧化物半导体。
对用于晶体管的半导体材料的结晶性也没有特别的限制,可以使用非晶半导体或结晶半导体(微晶半导体、多晶半导体、单晶半导体或其一部分具有结晶区域的半导体)。当使用结晶半导体时可以抑制晶体管的特性劣化,所以是优选的。
在此,氧化物半导体优选用于设置在上述像素或驱动电路中的晶体管和用于在后面说明的触摸传感器等的晶体管等半导体装置。尤其优选使用其带隙比硅宽的氧化物半导体。通过使用带隙比硅宽的氧化物半导体,可以降低晶体管的关态电流(off-statecurrent)。
上述氧化物半导体优选至少包含铟(In)或锌(Zn)。此外,上述氧化物半导体更优选为包含以In-M-Zn类氧化物(M为Al、Ti、Ga、Ge、Y、Zr、Sn、La、Ce或Hf等金属)表示的氧化物的氧化物半导体。
在此,以下对能够用于本发明的一个方式的氧化物半导体进行说明。
氧化物半导体被分为单晶氧化物半导体和非单晶氧化物半导体。作为非单晶氧化物半导体,例如可以举出CAAC-OS(c-axis aligned crystalline oxide semiconductor)、多晶氧化物半导体、nc-OS(nano crystalline oxide semiconductor)、a-like OS(amorphous-like oxide semiconductor)及非晶氧化物半导体等。
CAAC-OS具有c轴取向性,其多个纳米晶在a-b面方向上连结而结晶结构具有畸变。畸变是指在多个纳米晶连结的区域中晶格排列一致的区域与其他晶格排列一致的区域之间的晶格排列的方向变化的部分。
纳米晶基本上为六角形,但是不局限于正六角形,有时为非正六角形。此外,纳米晶有时在畸变中具有五角形或七角形等晶格排列。此外,在CAAC-OS中,即使在畸变附近也很难观察到明确的晶界(也称为grain boundary)。即,可知由于晶格排列畸变,可抑制晶界的形成。这是由于CAAC-OS因为a-b面方向上的氧原子排列的低密度或因金属元素被取代而使原子间的键合距离产生变化等而能够包容畸变。
CAAC-OS有具有层状结晶结构(也称为层状结构)的倾向,在该层状结晶结构中层叠有包含铟及氧的层(下面称为In层)和包含元素M、锌及氧的层(下面称为(M,Zn)层)。此外,铟和元素M彼此可以取代,在用铟取代(M,Zn)层中的元素M的情况下,也可以将该层表示为(In,M,Zn)层。此外,在用元素M取代In层中的铟的情况下,也可以将该层表示为(In,M)层。
CAAC-OS是结晶性高的氧化物半导体。另一方面,在CAAC-OS中不容易观察明确的晶界,因此不容易发生起因于晶界的电子迁移率的下降。此外,氧化物半导体的结晶性有时因杂质的进入或缺陷的生成等而降低,因此可以说CAAC-OS是杂质或缺陷(氧空位(也称为VO(oxygen vacancy))等)少的氧化物半导体。因此,具有CAAC-OS的氧化物半导体的物理性质稳定。因此,包含CAAC-OS的氧化物半导体具有高耐热性及高可靠性。
在nc-OS中,微小的区域(例如1nm以上且10nm以下的区域,特别是1nm以上且3nm以下的区域)中的原子排列具有周期性。此外,nc-OS在不同的纳米晶之间观察不到结晶取向的规律性。因此,在膜整体中观察不到取向性。所以,有时nc-OS在某些分析方法中与a-likeOS或非晶氧化物半导体没有差别。
此外,在包含铟、镓和锌的氧化物半导体的一种的铟-镓-锌氧化物(以下,IGZO)有时在由上述纳米晶构成时具有稳定的结构。尤其是,IGZO有在大气中不容易进行晶体生长的倾向,所以有时与由大结晶(在此,几mm的结晶或者几cm的结晶)形成时相比由小结晶(例如,上述纳米结晶)形成时在结构上稳定。
a-like OS是具有介于nc-OS与非晶氧化物半导体之间的结构的氧化物半导体。a-like OS包含空洞或低密度区域。也就是说,a-like OS的结晶性比nc-OS及CAAC-OS的结晶性低。
氧化物半导体具有各种结构及各种特性。本发明的一个方式的氧化物半导体也可以包括非晶氧化物半导体、多晶氧化物半导体、a-like OS、nc-OS、CAAC-OS中的两种以上。
此外,除了上述氧化物半导体之外还可以使用CAC(Cloud-Aligned Composite)-OS。
此外,CAC-OS在材料的一部分中具有导电性的功能,在材料的另一部分中具有绝缘性的功能,作为材料的整体具有半导体的功能。此外,在将CAC-OS用于晶体管的半导体层的情况下,导电性的功能是使被用作载流子的电子(或空穴)流过的功能,绝缘性的功能是不使被用作载流子的电子流过的功能。通过导电性的功能和绝缘性的功能的互补作用,可以使CAC-OS具有开关功能(开启/关闭的功能)。通过在CAC-OS中使各功能分离,可以最大限度地提高各功能。
此外,CAC-OS具有导电性区域及绝缘性区域。导电性区域具有上述导电性的功能,绝缘性区域具有上述绝缘性的功能。此外,在材料中,导电性区域和绝缘性区域有时以纳米粒子级分离。此外,导电性区域和绝缘性区域有时在材料中不均匀地分布。此外,有时观察到其边缘模糊而以云状连接的导电性区域。
此外,在CAC-OS中,导电性区域和绝缘性区域有时以0.5nm以上且10nm以下,优选为0.5nm以上且3nm以下的尺寸分散在材料中。
此外,CAC-OS由具有不同带隙的成分构成。例如,CAC-OS由具有起因于绝缘性区域的宽隙的成分及具有起因于导电性区域的窄隙的成分构成。在该结构中,当使载流子流过时,载流子主要在具有窄隙的成分中流过。此外,具有窄隙的成分与具有宽隙的成分互补作用,与具有窄隙的成分联动地在具有宽隙的成分中载流子流过。因此,在将上述CAC-OS用于晶体管的沟道形成区域时,在晶体管的导通状态中可以得到高电流驱动力,即大通态电流及高场效应迁移率。
也就是说,也可以将CAC-OS称为基质复合材料(matrix composite)或金属基质复合材料(metal matrix composite)。
通过作为半导体层使用上述氧化物半导体材料,可以实现电特性的变动被抑制的可靠性高的晶体管。
此外,由于具有上述半导体层的晶体管的关态电流较低,因此能够长期间保持经过晶体管而储存于电容器中的电荷。通过将这种晶体管用于像素,能够在保持各显示区域所显示的图像的灰度的状态下,停止驱动电路。其结果是,可以实现功耗极低的电子设备。
为了实现晶体管的特性稳定化等,优选设置基底膜。作为基底膜,可以使用氧化硅膜、氮化硅膜、氧氮化硅膜、氮氧化硅膜等无机绝缘膜并以单层或叠层制造。基底膜可以通过溅射法、CVD(Chemical Vapor Deposition:化学气相沉积)法(等离子体CVD法、热CVD法、MOCVD(Metal Organic Chemical Vapor Deposition:有机金属化学气相沉积)法等)或ALD(Atomic Layer Deposition:原子层沉积)法、涂敷法、印刷法等形成。注意,基底膜若不需要则也可以不设置。
注意,FET623示出形成在驱动电路部601中的晶体管的一个。此外,驱动电路也可以利用各种CMOS电路、PMOS电路或NMOS电路形成。此外,虽然在本实施方式中示出在衬底上形成有驱动电路的驱动器一体型,但是不一定必须采用该结构,驱动电路也可以形成在外部,而不形成在衬底上。
此外,像素部602由多个像素形成,该多个像素都包括开关FET611、电流控制用FET612以及与该电流控制用FET612的漏极电连接的第一电极613,但是并不局限于此,也可以采用组合三个以上的FET和电容器的像素部。
注意,形成绝缘物614来覆盖第一电极613的端部。在此,可以使用正型感光丙烯酸形成绝缘物614。
此外,将绝缘物614的上端部或下端部形成为具有曲率的曲面,以获得后面形成的EL层等的良好的覆盖性。例如,在使用正型感光丙烯酸树脂作为绝缘物614的材料的情况下,优选只使绝缘物614的上端部包括具有曲率半径(0.2μm至3μm)的曲面。此外,作为绝缘物614,可以使用负型感光树脂或者正型感光树脂。
在第一电极613上形成有EL层616及第二电极617。在此,优选使用具有高功函数的材料作为用于第一电极613的材料。例如,除了可以使用诸如ITO膜、包含硅的铟锡氧化物膜、包含2wt%至20wt%的氧化锌的氧化铟膜、氮化钛膜、铬膜、钨膜、Zn膜、Pt膜等的单层膜以外,还可以使用由氮化钛膜和以铝为主要成分的膜构成的叠层膜以及由氮化钛膜、以铝为主要成分的膜和氮化钛膜构成的三层结构等。注意,如果这里采用叠层结构,由于布线的电阻值较低,因此可以得到良好的欧姆接触,此外,其可用作阳极。
此外,EL层616通过使用蒸镀掩模的蒸镀法、喷墨法、旋涂法等各种方法形成。EL层616包括实施方式1及实施方式2所示的结构。此外,作为构成EL层616的其他材料,也可以使用低分子化合物或高分子化合物(包含低聚物、树枝状聚合物)。
此外,作为用于形成在EL层616上的第二电极617的材料,优选使用具有功函数小的材料(Al、Mg、Li、Ca、或它们的合金或化合物(MgAg、MgIn、AlLi等)等)。注意,当使产生在EL层616中的光透过第二电极617时,优选使用由膜厚度减薄了的金属薄膜和透明导电膜(ITO、包含2wt%至20wt%的氧化锌的氧化铟、包含硅的铟锡氧化物、氧化锌(ZnO)等)构成的叠层作为第二电极617。
此外,发光器件由第一电极613、EL层616、第二电极617形成。该发光器件是实施方式1及实施方式2所示的发光器件。此外,像素部由多个发光器件构成,本实施方式的发光装置也可以包括实施方式1及实施方式2所示的发光器件和具有其他结构的发光器件的双方。
此外,通过使用密封剂605将密封衬底604贴合到元件衬底610,将发光器件618设置在由元件衬底610、密封衬底604以及密封剂605围绕的空间607中。注意,空间607中填充有填料,作为该填料,可以使用惰性气体(氮或氩等),还可以使用密封剂。通过在密封衬底中形成凹部且在其中设置干燥剂,可以抑制水分所导致的劣化,所以是优选的。
此外,优选使用环氧类树脂或玻璃粉作为密封剂605。此外,这些材料优选为尽可能地不使水或氧透过的材料。此外,作为用于密封衬底604的材料,除了可以使用玻璃衬底或石英衬底以外,还可以使用由FRP(Fiber Reinforced Plastics:玻璃纤维增强塑料)、PVF(聚氟乙烯)、聚酯、丙烯酸树脂等构成的塑料衬底。
虽然在图2A和图2B中没有示出,但是也可以在阴极上设置保护膜。保护膜可以由有机树脂膜或无机绝缘膜形成。此外,也可以以覆盖密封剂605的露出部分的方式形成保护膜。此外,保护膜可以覆盖一对衬底的表面及侧面、密封层、绝缘层等的露出侧面而设置。
作为保护膜可以使用不容易透过水等杂质的材料。因此,可以能够高效地抑制水等杂质从外部扩散到内部。
作为构成保护膜的材料,可以使用氧化物、氮化物、氟化物、硫化物、三元化合物、金属或聚合物等。例如,该材料可以含有氧化铝、氧化铪、硅酸铪、氧化镧、氧化硅、钛酸锶、氧化钽、氧化钛、氧化锌、氧化铌、氧化锆、氧化锡、氧化钇、氧化铈、氧化钪、氧化铒、氧化钒、氧化铟、氮化铝、氮化铪、氮化硅、氮化钽、氮化钛、氮化铌、氮化钼、氮化锆、氮化镓、含有钛及铝的氮化物、含有钛及铝的氧化物、含有铝及锌的氧化物、含有锰及锌的硫化物、含有铈及锶的硫化物、含有铒及铝的氧化物、含有钇及锆的氧化物等。
保护膜优选通过台阶覆盖性(step coverage)良好的成膜方法来形成。这种方法之一是原子层沉积(ALD:Atomic Layer Deposition)法。优选将可以通过ALD法形成的材料用于保护膜。通过ALD法可以形成致密且裂缝或针孔等缺陷被减少或具备均匀的厚度的保护膜。此外,可以减少当形成保护膜时加工部材受到的损伤。
例如,通过ALD法可以将均匀且缺陷少的保护膜形成在具有复杂的凹凸形状的表面或触摸面板的顶面、侧面以及背面上。
如上所述,可以得到使用实施方式1及实施方式2所示的发光器件制造的发光装置。
因为本实施方式中的发光装置使用实施方式1及实施方式2所示的发光器件,所以可以得到具有优良特性的发光装置。具体而言,实施方式1及实施方式2所示的发光器件是寿命长的发光器件,从而可以实现可靠性良好的发光装置。此外,使用实施方式1及实施方式2所示的发光器件的发光装置的发光效率良好,由此可以实现低功耗的发光装置。
图3A和图3B示出通过形成呈现白色发光的发光器件设置着色层(滤色片)等来实现全彩色化的发光装置的例子。图3A示出衬底1001、基底绝缘膜1002、栅极绝缘膜1003、栅电极1006、1007、1008、第一层间绝缘膜1020、第二层间绝缘膜1021、周边部1042、像素部1040、驱动电路部1041、发光器件的阳极1024W、1024R、1024G、1024B、分隔壁1025、EL层1028、发光器件的第二电极1029、密封衬底1031、密封剂1032等。
此外,在图3A中,将着色层(红色着色层1034R、绿色着色层1034G、蓝色着色层1034B)设置在透明基材1033上。此外,还可以设置黑矩阵1035。对设置有着色层及黑矩阵的透明基材1033进行对准而将其固定到衬底1001上。此外,着色层及黑矩阵1035被保护层1036覆盖。此外,图3A示出具有光不透过着色层而透射到外部的发光层及光透过各颜色的着色层而透射到外部的发光层,不透过着色层的光成为白色光且透过着色层的光成为红光、绿光、蓝光,因此能够以四个颜色的像素呈现图像。
图3B示出将着色层(红色着色层1034R、绿色着色层1034G、蓝色着色层1034B)形成在栅极绝缘膜1003和第一层间绝缘膜1020之间的例子。如上述那样,也可以将着色层设置在衬底1001和密封衬底1031之间。
此外,在以上说明的发光装置中,虽然说明了具有从形成有FET的衬底1001一侧取出光的结构(底部发射型)的发光装置,但是也可以采用具有从密封衬底1031一侧取出发光的结构(顶部发射型)的发光装置。图4示出顶部发射型发光装置的截面图。在此情况下,衬底1001可以使用不使光透过的衬底。到制造用来使FET与发光器件的阳极连接的连接电极为止的工序与底部发射型发光装置同样地进行。然后,以覆盖电极1022的方式形成第三层间绝缘膜1037。该绝缘膜也可以具有平坦化的功能。第三层间绝缘膜1037可以使用与第二层间绝缘膜相同的材料或其他公知材料形成。
虽然在此发光器件的阳极1024W、1024R、1024G、1024B都是阳极,但是也可以形成为阴极。此外,在采用如图4所示那样的顶部发射型发光装置的情况下,阳极优选为反射电极。EL层1028的结构采用实施方式1及实施方式2所示的EL层103的结构,并且采用能够获得白色发光的元件结构。
在采用图4所示的顶部发射结构的情况下,可以使用设置有着色层(红色着色层1034R、绿色着色层1034G、蓝色着色层1034B)的密封衬底1031进行密封。密封衬底1031也可以设置有位于像素和像素之间的黑矩阵1035。着色层(红色着色层1034R、绿色着色层1034G、蓝色着色层1034B)、黑矩阵也可以被保护层覆盖。此外,作为密封衬底1031,使用具有透光性的衬底。此外,虽然在此示出了以红色、绿色、蓝色、白色的四个颜色进行全彩色显示的例子,但是并不局限于此,也可以以红色、黄色、绿色、蓝色的四个颜色或红色、绿色、蓝色的三个颜色进行全彩色显示。
在顶部发射型的发光装置中,可以优选地应用微腔结构。将反射电极用作阳极且将透反式电极用作阴极,由此可以得到具有微腔结构的发光器件。在反射电极与透反式电极之间至少含有EL层,并且至少含有成为发光区域的发光层。
注意,反射电极是其可见光反射率为40%至100%,优选为70%至100%,并且其电阻率为1×10-2Ωcm以下的膜。此外,透反式电极是其可见光反射率为20%至80%,优选为40%至70%,并且其电阻率为1×10-2Ωcm以下的膜。
从EL层所包含的发光层射出的光被反射电极和透反式电极反射,并且谐振。
在该发光器件中,通过改变透明导电膜、上述复合材料或载流子传输材料等的厚度而可以改变反射电极与透反式电极之间的光程。由此,可以在反射电极与透反式电极之间加强谐振的波长的光且使不谐振的波长的光衰减。
注意,被反射电极反射回来的光(第一反射光)会给从发光层直接入射到透反式电极的光(第一入射光)带来很大的干涉,因此优选将反射电极与发光层的光程调节为(2n-1)λ/4(注意,n为1以上的自然数,λ为要放大的光的波长)。通过调节该光程,可以使第一反射光与第一入射光的相位一致,由此可以进一步放大从发光层发射的光。
此外,在上述结构中,EL层可以含有多个发光层,也可以只含有一个发光层。例如,也可以采用如下结构:组合上述串联型发光器件的结构,在一个发光器件中夹着电荷产生层设置多个EL层,在每个EL层中形成一个或多个发光层。
通过采用微腔结构,可以加强指定波长的正面方向上的发光强度,由此可以实现低功耗化。注意,在为使用红色、黄色、绿色以及蓝色的四个颜色的子像素显示图像的发光装置的情况下,因为可以获得由于黄色发光的亮度提高效果,而且可以在所有的子像素中采用适合各颜色的波长的微腔结构,所以能够实现具有良好的特性的发光装置。
因为本实施方式中的发光装置使用实施方式1及实施方式2所示的发光器件,所以可以得到具有优良特性的发光装置。具体而言,实施方式1及实施方式2所示的发光器件是寿命长的发光器件,从而可以实现可靠性良好的发光装置。此外,使用实施方式1及实施方式2所示的发光器件的发光装置的发光效率良好,由此可以实现低功耗的发光装置。
虽然到这里说明了有源矩阵型发光装置,但是下面说明无源矩阵型发光装置。图5A和图5B示出通过使用本发明制造的无源矩阵型发光装置。注意,图5A是示出发光装置的立体图,并且图5B是沿图5A的线X-Y切断而获得的截面图。在图5A和图5B中,在衬底951上的电极952与电极956之间设置有EL层955。电极952的端部被绝缘层953覆盖。在绝缘层953上设置有隔离层954。隔离层954的侧壁具有如下倾斜,即越接近衬底表面,两个侧壁之间的间隔越窄。换句话说,隔离层954的短边方向的截面是梯形,底边(朝向与绝缘层953的面方向相同的方向并与绝缘层953接触的边)比上边(朝向与绝缘层953的面方向相同的方向并与绝缘层953不接触的边)短。如此,通过设置隔离层954,可以防止起因于静电等的发光器件的不良。此外,在无源矩阵型发光装置中,通过使用实施方式1及实施方式2所示的发光器件,也可以得到可靠性良好的发光装置或者低功耗的发光装置。
以上说明的发光装置能够控制配置为矩阵状的微小的多个发光器件中的每一个,所以该发光装置适用于进行图像显示的显示装置。
此外,本实施方式可以与其他实施方式自由地组合。
(实施方式4)
在本实施方式中,参照图6A和图6B对将实施方式1及实施方式2所示的发光器件用于照明装置的例子进行说明。图6B是照明装置的俯视图,图6A是沿着图6B的线e-f切断的截面图。
在本实施方式的照明装置中,在用作支撑体的具有透光性的衬底400上形成有第一电极401。第一电极401相当于实施方式2中的第一电极101。当从第一电极401一侧取出光时,第一电极401使用具有透光性的材料形成。
在衬底400上形成用来对第二电极404供应电压的焊盘412。
在第一电极401上形成有EL层403。EL层403相当于实施方式1及实施方式2中的EL层103的结构或组合发光单元511、发光单元512以及电荷产生层513的结构等。注意,作为它们的结构,参照各记载。
以覆盖EL层403的方式形成第二电极404。第二电极404相当于实施方式2中的第二电极102。当从第一电极401一侧取出光时,第二电极404使用反射率高的材料形成。通过使第二电极404与焊盘412连接,将电压供应到第二电极404。
如上所述,本实施方式所示的照明装置具备包括第一电极401、EL层403以及第二电极404的发光器件。由于该发光器件是发光效率高的发光器件,所以本实施方式的照明装置可以提供低功耗的照明装置。
使用密封材料405、406将形成有具有上述结构的发光器件的衬底400和密封衬底407固定来进行密封,由此制造照明装置。可以仅使用密封材料405和406中的一个。此外,也可以使内侧的密封材料406(在图6B中未图示)与干燥剂混合,由此可以吸收水分而提高可靠性。
此外,通过以延伸到密封材料405、406的外部的方式设置焊盘412和第一电极401的一部分,可以将其用作外部输入端子。此外,也可以在外部输入端子上设置安装有转换器等的IC芯片420等。
以上,本实施方式所记载的照明装置在EL元件中使用实施方式1及实施方式2所示的发光器件,可以实现可靠性良好的发光装置。此外,可以实现低功耗的发光装置。
(实施方式5)
在本实施方式中,对在其一部分包括实施方式1及实施方式2所示的发光器件的电子设备的例子进行说明。实施方式1及实施方式2所示的发光器件是寿命良好且可靠性良好的发光器件。其结果是,本实施方式所记载的电子设备可以实现包括可靠性良好的发光部的电子设备。
作为采用上述发光器件的电子设备,例如可以举出电视装置(也称为电视机或电视接收机)、用于计算机等的显示器、数码相机、数码摄像机、数码相框、移动电话机(也称为移动电话、移动电话装置)、便携式游戏机、便携式信息终端、声音再现装置、弹珠机等大型游戏机等。以下,示出这些电子设备的具体例子。
图7A示出电视装置的一个例子。在电视装置中,外壳7101中组装有显示部7103。此外,在此示出利用支架7105支撑外壳7101的结构。可以利用显示部7103显示图像,并且将实施方式1及实施方式2所示的发光器件排列为矩阵状而构成显示部7103。
可以通过利用外壳7101所具备的操作开关或另行提供的遥控操作机7110进行电视装置的操作。通过利用遥控操作机7110所具备的操作键7109,可以控制频道及音量,由此可以控制显示在显示部7103中的图像。此外,也可以采用在遥控操作机7110中设置用来显示从该遥控操作机7110输出的信息的显示部7107的结构。
此外,电视装置采用具备接收机、调制解调器等的结构。可以通过接收机接收一般的电视广播。再者,通过调制解调器连接到有线或无线方式的通信网络,能够进行单向(从发送者到接收者)或双向(发送者和接收者之间或接收者之间等)的信息通信。
图7B1示出计算机,该计算机包括主体7201、外壳7202、显示部7203、键盘7204、外部连接端口7205、指向装置7206等。此外,该计算机通过将实施方式1及实施方式2所示的发光器件排列为矩阵状并用于显示部7203而制造。图7B1中的计算机也可以为如图7B2所示的方式。图7B2所示的计算机设置有第二显示部7210代替键盘7204及指向装置7206。第二显示部7210是触摸面板,通过利用指头或专用笔操作显示在第二显示部7210上的输入用显示,能够进行输入。此外,第二显示部7210不仅能够显示输入用显示,而且可以显示其他图像。此外,显示部7203也可以是触摸面板。因为两个屏面通过铰链部连接,所以可以防止当收纳或搬运时发生问题如屏面受伤、破坏等。
图7C示出便携式终端的一个例子。便携式终端具备组装在外壳7401中的显示部7402、操作按钮7403、外部连接端口7404、扬声器7405、麦克风7406等。此外,便携式终端包括将实施方式1及实施方式2所示的发光器件排列为矩阵状而制造的显示部7402。
图7C所示的便携式终端也可以具有用指头等触摸显示部7402来输入信息的结构。在此情况下,能够用指头等触摸显示部7402来进行打电话或编写电子邮件等的操作。
显示部7402主要有三种屏面模式。第一是以图像的显示为主的显示模式,第二是以文字等的信息的输入为主的输入模式,第三是混合显示模式和输入模式的两个模式的显示输入模式。
例如,在打电话或编写电子邮件的情况下,可以采用将显示部7402主要用于输入文字的文字输入模式而输入在屏面上显示的文字。在此情况下,优选在显示部7402的屏面的大多部分中显示键盘或号码按钮。
此外,通过在便携式终端内部设置具有陀螺仪和加速度传感器等检测倾斜度的传感器的检测装置,可以判断便携式终端的方向(纵或横)而自动进行显示部7402的屏面显示的切换。
此外,通过触摸显示部7402或对外壳7401的操作按钮7403进行操作,来进行屏面模式的切换。此外,也可以根据显示在显示部7402上的图像的种类切换屏面模式。例如,当显示在显示部上的图像信号为动态图像的数据时,将屏面模式切换成显示模式,而当该图像信号为文字数据时,将屏面模式切换成输入模式。
此外,当在输入模式下通过检测出显示部7402的光传感器所检测的信号而得知在一定期间内没有显示部7402的触摸操作输入时,也可以进行控制以将屏面模式从输入模式切换成显示模式。
也可以将显示部7402用作图像传感器。例如,通过用手掌或指头触摸显示部7402,来拍摄掌纹、指纹等,能够进行个人识别。此外,通过在显示部中使用发射近红外光的背光源或发射近红外光的感测用光源,也能够拍摄指静脉、手掌静脉等。
此外,本实施方式所示的结构可以与实施方式1至实施方式4所示的结构适当地组合来使用。
如上所述,具备实施方式1及实施方式2所示的发光器件的发光器件的应用范围极为广泛,而能够将该发光器件用于各种领域的电子设备。通过使用实施方式1及实施方式2所示的发光器件,可以得到可靠性高的电子设备。
图8A为示出扫地机器人的一个例子的示意图。
扫地机器人5100包括顶面上的显示器5101及侧面上的多个照相机5102、刷子5103及操作按钮5104。虽然未图示,但是扫地机器人5100的底面设置有轮胎和吸入口等。此外,扫地机器人5100还包括红外线传感器、超音波传感器、加速度传感器、压电传感器、光传感器、陀螺仪传感器等各种传感器。此外,扫地机器人5100包括无线通信单元。
扫地机器人5100可以自动行走,检测垃圾5120,可以从底面的吸入口吸引垃圾。
此外,扫地机器人5100对照相机5102所拍摄的图像进行分析,可以判断墙壁、家具或台阶等障碍物的有无。此外,在通过图像分析检测布线等可能会绕在刷子5103上的物体的情况下,可以停止刷子5103的旋转。
可以在显示器5101上显示电池的剩余电量和所吸引的垃圾的量等。可以在显示器5101上显示扫地机器人5100的行走路径。此外,显示器5101可以是触摸面板,可以将操作按钮5104显示在显示器5101上。
扫地机器人5100可以与智能手机等便携式电子设备5140互相通信。照相机5102所拍摄的图像可以显示在便携式电子设备5140上。因此,扫地机器人5100的拥有者在出门时也可以知道房间的情况。此外,可以使用智能手机等便携式电子设备5140确认显示器5101的显示内容。
可以将本发明的一个方式的发光器件用于显示器5101。
图8B所示的机器人2100包括运算装置2110、照度传感器2101、麦克风2102、上部照相机2103、扬声器2104、显示器2105、下部照相机2106、障碍物传感器2107及移动机构2108。
麦克风2102具有检测使用者的声音及周围的声音等的功能。此外,扬声器2104具有发出声音的功能。机器人2100可以使用麦克风2102及扬声器2104与使用者交流。
显示器2105具有显示各种信息的功能。机器人2100可以将使用者所希望的信息显示在显示器2105上。显示器2105可以安装有触摸面板。显示器2105可以是可拆卸的信息终端,通过将该信息终端设置在机器人2100的所定位置,可以进行充电及数据的收发。
上部照相机2103及下部照相机2106具有对机器人2100的周围环境进行摄像的功能。此外,障碍物传感器2107可以检测机器人2100使用移动机构2108移动时的前方的障碍物的有无。机器人2100可以使用上部照相机2103、下部照相机2106及障碍物传感器2107认知周囲环境而安全地移动。可以将本发明的一个方式的发光器件用于显示器2105。
图8C是示出护目镜型显示器的一个例子的图。护目镜型显示器例如包括外壳5000、显示部5001、扬声器5003、LED灯5004、连接端子5006、传感器5007(它具有测量如下因素的功能:力、位移、位置、速度、加速度、角速度、转速、距离、光、液、磁、温度、化学物质、声音、时间、硬度、电场、电流、电压、电力、辐射线、流量、湿度、倾斜度、振动、气味或红外线)、麦克风5008、显示部5002、支撑部5012、耳机5013等。
可以将本发明的一个方式的发光器件用于显示部5001及显示部5002。
图9示出将实施方式1及实施方式2所示的发光器件用于作为照明装置的台灯的例子。图9所示的台灯包括外壳2001和光源2002,并且作为光源2002使用实施方式3所记载的照明装置。
图10示出将实施方式1及实施方式2所示的发光器件用于室内的照明装置3001的例子。实施方式1及实施方式2所示的发光器件是可靠性高的发光器件,从而可以实现可靠性良好的照明装置。此外,因为实施方式1及实施方式2所示的发光器件能够实现大面积化,所以能够用于大面积的照明装置。此外,因为实施方式1及实施方式2所示的发光器件的厚度薄,所以能够制造实现薄型化的照明装置。
还可以将实施方式1及实施方式2所示的发光器件安装在汽车的挡风玻璃或仪表盘上。图11示出将实施方式1及实施方式2所示的发光器件用于汽车的挡风玻璃或仪表盘的一个方式。显示区域5200至显示区域5203是使用实施方式1及实施方式2所示的发光器件设置的显示区域。
显示区域5200和显示区域5201是设置在汽车的挡风玻璃上的安装有实施方式1及实施方式2所示的发光器件的显示装置。通过在实施方式1及实施方式2所示的发光器件中使用具有透光性的电极制造阳极和阴极,可以得到能看到对面的景色的所谓的透视式显示装置。若采用透视式显示,即使设置在汽车的挡风玻璃上,也不妨碍视界。此外,在设置用来驱动的晶体管等的情况下,优选使用具有透光性的晶体管,诸如使用有机半导体材料的有机晶体管或使用氧化物半导体的晶体管等。
显示区域5202是设置在立柱部分的安装有实施方式1及实施方式2所示的发光器件的显示装置。通过在显示区域5202上显示来自设置在车厢上的成像单元的图像,可以补充被立柱遮挡的视界。此外,同样地,设置在仪表盘部分上的显示区域5203通过显示来自设置在汽车外侧的成像单元的图像,能够补充被车厢遮挡的视界的死角,而提高安全性。通过显示图像以补充不看到的部分,更自然且简单地确认安全。
显示区域5203还可以通过显示导航信息、速度表、转速表、行车距离、加油量、排档状态、空调的设定等提供各种信息。使用者可以适当地改变显示内容及布置。此外,这些信息也可以显示在显示区域5200至显示区域5203上。此外,也可以将显示区域5200至显示区域5203用作照明装置。
图12A和图12B示出可折叠的便携式信息终端5150。可折叠的便携式信息终端5150包括外壳5151、显示区域5152及弯曲部5153。图12A示出展开状态的便携式信息终端5150。图12B示出折叠状态的便携式信息终端5150。虽然便携式信息终端5150具有较大的显示区域5152,但是通过将便携式信息终端5150折叠,便携式信息终端5150变小而可便携性好。
可以由弯曲部5153将显示区域5152折叠成一半。弯曲部5153由可伸缩的构件和多个支撑构件构成,在折叠时,可伸缩的构件被拉伸,以弯曲部5153具有2mm以上,优选为3mm以上的曲率半径的方式进行折叠。
此外,显示区域5152也可以为安装有触摸传感器(输入装置)的触摸面板(输入/输出装置)。可以将本发明的一个方式的发光器件用于显示区域5152。
此外,图13A至图13C示出能够折叠的便携式信息终端9310。图13A示出展开状态的便携式信息终端9310。图13B示出从展开状态和折叠状态中的一个状态变为另一个状态的中途的状态的便携式信息终端9310。图13C示出折叠状态的便携式信息终端9310。便携式信息终端9310在折叠状态下可携带性好,在展开状态下因为具有无缝拼接的较大的显示区域所以显示一览性强。
显示面板9311由铰链部9313所连接的三个外壳9315支撑。注意,显示面板9311也可以为安装有触摸传感器(输入装置)的触控面板(输入输出装置)。此外,通过在两个外壳9315之间的铰链部9313处弯折显示面板9311,可以使便携式信息终端9310从展开状态可逆性地变为折叠状态。可以将本发明的一个方式的发光装置用于显示面板9311。
[实施例1]
在本实施例中,详细说明本发明的一个方式的用于主体材料的蒽化合物,即2,9-二(1-萘基)-10-苯基蒽(简称:2αN-αNPhA)的合成方法。以下示出2αN-αNPhA的结构式。
[化学式11]
Figure BDA0002990481170000561
将1.1g(2.7mmol)的2-氯-9-(1-萘基)-10-苯基蒽、0.93g(5.4mmol)的1-萘基硼酸、0.11g(0.30mmol)的二(1-金刚烷基)-正丁基膦、1.9g(9.0mmol)的磷酸三钾、0.67g(9.0mmol)的叔丁醇加入200mL三口烧瓶中,用氮气置换烧瓶内的空气。对该混合物加入14mL的二乙二醇二甲醚,在减压下搅拌以进行脱气。对该混合物加入34mg(0.15mmol)的醋酸钯(Ⅱ),在氮气流下以130℃搅拌12小时。
在搅拌后,对该混合物加入水,通过抽滤得到固体。将该固体溶解于甲苯并通过硅藻土(日本和光纯药工业公司,目录号码:531-16855同下)、矾土及硅酸镁(日本和光纯药工业公司,目录号码:540-00135同下)抽滤。浓缩所得到的滤液来得到固体,利用高效液相色谱法(HPLC)提纯该固体,并且使用甲苯使其重结晶,由此以73%的收率及1.0g的产量获得目标淡黄色固体。以下示出本合成方法的合成方案。
[化学式12]
Figure BDA0002990481170000571
利用梯度升华法对所得到的1.0g的淡黄色固体进行升华提纯。在升华提纯中,在压力为3.8Pa且氩流量为5.0mL/min的条件下,以220℃对淡黄色固体进行加热。在升华提纯之后,以92%的回收率获得0.92g的淡黄色固体。
以下示出所得到的淡黄色固体的核磁共振波谱法(1H-NMR)的分析结果。此外,图14A及图14B示出1H-NMR谱。注意,图14B是放大了图14A中的7.0ppm至8.2ppm的范围的谱图。由其结果可知,在本实施例中得到了由上述结构式(100)表示的本发明的一个方式的有机化合物2αN-αNPhA。
1H NMR(DMSO-d6,300MHz):δ=7.10(d,J=8.7Hz,1H)、7.21(t,J=7.5Hz,1H)、7.30-7.91(m,22H)、8.05-8.10(m,2H)。
图15示出2αN-αNPhA的甲苯溶液的吸收光谱和发射光谱的测量结果。此外,图16示出薄膜的吸收光谱及发射光谱。固体薄膜通过真空蒸镀法形成在石英衬底上。甲苯溶液的吸收光谱通过紫外可见分光光度计(日本分光株式会社制造的V550型)测得,并是减去通过仅将甲苯放入石英皿中测得的光谱来计算出的。薄膜的吸收光谱通过使用分光光度计(日立高新技术制造的分光光度计U4100)测得,并是根据以包括衬底在内的透过率及反射率得到的吸光度(-log10[%T/(100-%R)]来计算出的。此外,发射光谱通过荧光光度计(日本滨松光子学株式会社制造的FS920)测得。
由此可知,2αN-αNPhA的甲苯溶液在403nm、382nm、363nm、310nm、283nm附近具有吸收峰,并在443nm、420nm(激发波长382nm)具有发光波长的峰。此外,2αN-αNPhA的固体薄膜在409nm、387nm、367nm、291nm、266nm附近具有吸收峰,在536nm、498nm、466nm、440nm附近(激发波长370nm)具有发光波长的峰。
此外,确认了2αN-αNPhA发射蓝光。2αN-αNPhA可以被用作发光物质或可见区域的荧光发光物质的主体。此外,可知2αN-αNPhA的薄膜具有在大气下也不容易凝聚且形态变化小的良好的膜质。
接着,利用循环伏安法(CV)测量计算出2αN-αNPhA的HOMO能级及LUMO能级。以下示出计算方法。作为测量装置,使用电化学分析仪(BAS株式会社(BAS Inc.)制造,型号:ALS型号600A或600C)。在CV测量时的溶液中,作为溶剂,使用脱水二甲基甲酰胺(DMF)(株式会社Aldrich制造,99.8%,目录号码:22705-6),使作为支持电解质的高氯酸四正丁基铵(n-Bu4NClO4)(东京化成工业株式会社(Tokyo Chemical Industry Co.,Ltd.)制造,目录号码:T0836)以100mmol/L的浓度溶解,并且使测量对象以2mmol/L的浓度溶解而调制。
此外,作为工作电极使用铂电极(BAS株式会社制造,PTE铂电极),作为辅助电极使用铂电极(BAS株式会社制造,VC-3用Pt对电极(5cm)),作为参考电极使用Ag/Ag+电极(BAS株式会社制造,RE7非水参比电极)。此外,测量在室温(20℃至25℃)下进行。
此外,将CV测量时的扫描速度统一为0.1V/秒,测量相对于参考电极的氧化电位Ea[V]及还原电位Ec[V]。Ea是氧化-还原波的中间电位,Ec是还原-氧化波的中间电位。在此,因为已知在本实施例中使用的参考电极的相对于真空能级的势能为-4.94[eV],所以根据HOMO能级[eV]=-4.94-Ea,LUMO能级[eV]=-4.94-Ec的算式可以算出HOMO能级及LUMO能级。
由其结果可知,在2αN-αNPhA的氧化电位Ea[V]的测量中,HOMO能级为-5.81eV。另一方面,可知在还原电位Ec[V]的测量中LUMO能级为-2.79eV。
[实施例2]
在本实施例中,详细说明本发明的一个方式的用于主体材料的蒽化合物,即9-(1-萘基)-10-苯基-2-(5-苯基-1-萘基)蒽(简称:2PαN-αNPhA)的合成方法。以下示出2PαN-αNPhA的结构式。
[化学式13]
Figure BDA0002990481170000601
将1.3g(3.0mmol)的2-氯-9-(1-萘基)-10-苯基蒽、1.2g(3.7mmol)的2-(5-苯基-1-萘基)-4,4,5,5-四甲基-1,3,2-二氧硼戊环、0.13g(0.36mmol)的二(1-金刚烷基)-正丁基膦、2.0g(9.2mmol)的磷酸三钾、0.68g(9.1mmol)的叔丁醇、15mL的二乙二醇二甲醚加入200mL三口烧瓶中,在减压下搅拌以进行脱气。对该混合物加入37mg(0.17mmol)的醋酸钯(Ⅱ),在氮气流下以130℃搅拌8小时。在搅拌后,对该混合物加入水,通过抽滤回收所析出的固体。利用硅胶柱色谱法(甲苯:己烷=1:4)提纯所得到的固体,还利用高效液相色谱法(HPLC)提纯,由此得到固体。使用甲苯使该固体重结晶,由此以54%的收率及0.95g的产量获得目标白色粉末。以下示出本合成方法的合成方案。
[化学式14]
Figure BDA0002990481170000611
利用梯度升华法对所得到的0.95g的白色粉末进行升华提纯。在升华提纯中,在压力为3.4Pa且氩流量为10mL/min的条件下,以275℃对白色粉末进行18小时的加热。在升华提纯之后,以76%的回收率获得0.72g的淡黄色粉末。
以下示出所得到的淡黄色粉末的核磁共振波谱法(1H-NMR)的分析结果。此外,图17A及图17B示出1H-NMR谱。注意,图17B是放大了图17A中的7.0ppm至8.5ppm的范围的谱图。由其结果可知,在本实施例中得到了由上述结构式(101)表示的2PαN-αNPhA。
1H NMR(CD2Cl2,300MHz):δ=7.23-7.80(m、27H)、7.88(dd、J=9.0Hz、0.9Hz、1H)、7.97-8.02(m、2H)。
图18及图19示出2PαN-αNPhA的甲苯溶液的吸收光谱和发射光谱的测量结果。测量方法与实施例1同样。
由图18可知,2PαN-αNPhA的甲苯溶液在403nm、382nm、363nm、316nm附近具有吸收峰,并在421nm、433nm附近(激发波长382nm)具有发光波长的峰。此外,由图19可知,2PαN-αNPhA的固体薄膜在405nm、386nm、367nm、333nm、321nm附近具有吸收峰,在430nm、453nm附近(激发波长370nm)具有发光波长的峰。
此外,确认了2PαN-αNPhA发射蓝光。本发明的一个方式的有机化合物2PαN-αNPhA可以被用作发光物质或可见区域的荧光发光物质的主体。此外,可知2PαN-αNPhA的薄膜具有在大气下也不容易凝聚且形态变化小的良好的膜质。
接着,示出利用循环伏安法(CV)测量计算出2PαN-αNPhA的HOMO能级及LUMO能级的结果。计算方法与实施例1相同。
由其结果可知,在2PαN-αNPhA的氧化电位Ea[V]的测量中,HOMO能级为-5.86eV。另一方面,可知在还原电位Ec[V]的测量中LUMO能级为-2.80eV。
[实施例3]
在本实施例中,说明将实施方式1所示的本发明的一个方式的用于主体材料的蒽化合物用作主体材料的发光器件1。同时,还示出将具有与本发明的一个方式的用于主体材料的蒽化合物类似的结构的有机化合物用作主体材料的对比发光器件1及对比发光器件2。以下示出发光器件1、对比发光器件1及对比发光器件2所使用的有机化合物的结构式。
[化学式15]
Figure BDA0002990481170000631
(发光器件1的制造方法)
首先,在玻璃衬底上通过溅射法形成含氧化硅的氧化锡铟(ITSO)来形成第一电极101。注意,其厚度为70nm,电极面积为2mm×2mm。
接着,作为用来在衬底上形成发光器件的预处理,用水洗涤衬底表面,以200℃烘烤1小时,然后进行370秒的UV臭氧处理。
然后,将衬底放入其内部被减压到10-4Pa左右的真空蒸镀装置中,并在真空蒸镀装置内的加热室中,在170℃的温度下进行真空烘烤30分钟,然后对衬底进行冷却30分钟左右。
接着,以使形成有第一电极101的面朝下的方式将形成有第一电极101的衬底固定在设置于真空蒸镀装置内的衬底支架上,并且在第一电极101上通过利用电阻加热的蒸镀法以上述结构式(i)所表示的N-(1,1’-联苯-4-基)-N-[4-(9-苯基-9H-咔唑-3-基)苯基]-9,9-二甲基-9H-芴-2-胺(简称:PCBBiF)、ALD-MP001Q(分析工房株式会社(AnalysisAtelier Corporation),材料序列号:1S20170124)的重量比为1:0.1(=PCBBiF:ALD-MP001Q)且厚度为10nm的方式进行共蒸镀,由此形成空穴注入层111。
接着,在空穴注入层111上作为第一空穴传输层112-1以厚度为20nm的方式蒸镀PCBBiF,然后作为第二空穴传输层112-2以厚度为10nm的方式蒸镀上述结构式(ii)所表示的N,N-双[4-(二苯并呋喃-4-基)苯基]-4-氨-p-三联苯(简称:DBfBB1TP),由此形成空穴传输层112。注意,第二空穴传输层112-2也被用作电子阻挡层。
接着,以上述结构式(100)所表示的2,9-二(1-萘基)-10-苯基蒽(简称:2αN-αNPhA)与上述结构式(iii)所表示的3,10-双[N-(9-苯基-9H-咔唑-2-基)-N-苯基氨基]萘并[2,3-b;6,7-b’]双苯并呋喃(简称:3,10PCA2Nbf(IV)-02)的重量比为1:0.015(=2αN-αNPhA:3,10PCA2Nbf(IV)-02)且厚度为25nm的方式进行共蒸镀,由此形成发光层113。
然后,在发光层113上以厚度为15nm的方式蒸镀上述结构式(iv)所表示的2-[3’-(二苯并噻吩-4-基)联苯-3-基]二苯并[f,h]喹喔啉(简称:2mDBTBPDBq-II),然后以厚度为10nm的方式蒸镀上述结构式(v)所表示的2,9-二(2-萘基)-4,7-二苯基-1,10-菲罗啉(简称:NBPhen),来形成电子传输层114。
在形成电子传输层114之后,以厚度为1nm的方式蒸镀氟化锂(LiF)来形成电子注入层115,接着,以厚度为200nm的方式蒸镀铝来形成第二电极102,由此制造本实施例的发光器件1。
(对比发光器件1的制造方法)
除了使用上述结构式(vi)所表示的2-(1-萘基)-9-(2-萘基)-10-苯基蒽(简称:2αN-βNPhA)代替发光器件1中的2αN-αNPhA之外,与发光器件1同样地制造对比发光器件1。
(对比发光器件2的制造方法)
除了使用上述结构式(vii)所表示的2,10-二(1-萘基)-9-苯基蒽(简称:3αN-αNPhA)代替发光器件1中的2αN-αNPhA之外,与发光器件1同样地制造对比发光器件2。
发光器件1、对比发光器件1及对比发光器件2的元件结构如下表所示。
[表1]
Figure BDA0002990481170000661
*1 2αN-αNPhA:3,10PCA2Nbf(IV)-02(1:0.015)
*2 2αN-βNPhA:3,10PCA2Nbf(IV)-02(1:0.015)
*1 3αN-αNPhA:3,10PCA2Nbf(IV)-02(1:0.015)
在氮气氛的手套箱中,以不使这些发光器件暴露于大气的方式使用玻璃衬底进行密封处理(将密封剂涂敷在元件的周围,在密封时进行UV处理并在80℃的温度下进行1小时的热处理),然后对这些发光器件的初始特性及可靠性进行测量。注意,测量在室温下进行。
图20示出发光器件1、对比发光器件1及对比发光器件2的亮度-电流密度特性,图21示出电流效率-亮度特性,图22示出亮度-电压特性,图23示出电流-电压特性,图24示出外量子效率-亮度特性,图25示出发射光谱。此外,表2示出发光器件1、对比发光器件1及对比发光器件2的1000cd/m2附近的主要特性。
[表2]
Figure BDA0002990481170000662
由图20至图25及表2可知,本发明的一个方式的发光器件1、对比发光器件1及对比发光器件2是特性良好的蓝色发光器件。
此外,图26是示出电流密度为50mA/cm2的条件下的相对于驱动时间的亮度变化的图表。本发明的一个方式的发光器件1,与将萘基在β位取代的蒽化合物用作主体材料的对比发光器件1及将α-萘基键合于蒽的2位及10位且苯基键合于蒽的9位的蒽化合物用作主体材料的对比发光器件2相比,具有优异寿命。
[实施例4]
在本实施例中,说明使用实施方式1所示的本发明的一个方式的用于主体材料的蒽化合物的发光器件2。同时,还示出将具有与本发明的一个方式的蒽化合物类似的结构的有机化合物用作主体材料的对比发光器件3及对比发光器件4。以下示出发光器件2、对比发光器件3及对比发光器件4所使用的有机化合物的结构式。
[化学式16]
Figure BDA0002990481170000681
(发光器件2的制造方法)
首先,在玻璃衬底上通过溅射法形成含氧化硅的氧化锡铟(ITSO)来形成第一电极101。注意,其厚度为70nm,电极面积为2mm×2mm。
接着,作为用来在衬底上形成发光器件的预处理,用水洗涤衬底表面,以200℃烘烤1小时,然后进行370秒的UV臭氧处理。
然后,将衬底放入其内部被减压到10-4Pa左右的真空蒸镀装置中,并在真空蒸镀装置内的加热室中,在170℃的温度下进行真空烘烤30分钟,然后对衬底进行冷却30分钟左右。
接着,以使形成有第一电极101的面朝下的方式将形成有第一电极101的衬底固定在设置于真空蒸镀装置内的衬底支架上,并且在第一电极101上通过利用电阻加热的蒸镀法以上述结构式(viii)所表示的N,N-双(4-联苯)-6-苯基苯并[b]萘并[1,2-d]呋喃-8-胺(简称:BBABnf)、ALD-MP001Q(分析工房株式会社(Analysis Atelier Corporation),材料序列号:1S20170124)的重量比为1:0.1(=BBABnf:ALD-MP001Q)且厚度为10nm的方式进行共蒸镀,由此形成空穴注入层111。
接着,在空穴注入层111上作为第一空穴传输层112-1以厚度为20nm的方式蒸镀BBABnf,然后作为第二空穴传输层112-2以厚度为10nm的方式蒸镀上述结构式(ix)所表示的3,3’-(萘-1,4-二基)双(9-苯基-9H-咔唑)(简称:PCzN2),由此形成空穴传输层112。注意,第二空穴传输层112-2也被用作电子阻挡层。
接着,以上述结构式(100)所表示的2,9-二(1-萘基)-10-苯基蒽(简称:2αN-αNPhA)与上述结构式(iii)所表示的3,10-双[N-(9-苯基-9H-咔唑-2-基)-N-苯基氨基]萘并[2,3-b;6,7-b’]双苯并呋喃(简称:3,10PCA2Nbf(IV)-02)的重量比为1:0.015(=2αN-αNPhA:3,10PCA2Nbf(IV)-02)且厚度为25nm的方式进行共蒸镀,由此形成发光层113。
然后,在发光层113上以厚度为15nm的方式蒸镀上述结构式(iv)所表示的2-[3’-(二苯并噻吩-4-基)联苯-3-基]二苯并[f,h]喹喔啉(简称:2mDBTBPDBq-II),然后以厚度为10nm的方式蒸镀上述结构式(vi)所表示的2,9-二(2-萘基)-4,7-二苯基-1,10-菲罗啉(简称:NBPhen),来形成电子传输层114。
在形成电子传输层114之后,以厚度为1nm的方式蒸镀氟化锂(LiF)来形成电子注入层115,接着,以厚度为200nm的方式蒸镀铝来形成第二电极102,由此制造本实施例的发光器件2。
(对比发光器件3的制造方法)
除了使用上述结构式(vi)所表示的2-(1-萘基)-9-(2-萘基)-10-苯基蒽(简称:2αN-βNPhA)代替发光器件2中的2αN-αNPhA之外,与发光器件2同样地制造对比发光器件3。
(对比发光器件4的制造方法)
除了使用上述结构式(x)所表示的9-(1-萘基)-2-(2-萘基)-10-苯基蒽(简称:2βN-αNPhA)代替发光器件2中的2αN-αNPhA之外,与发光器件2同样地制造对比发光器件4。
发光器件2、对比发光器件3及对比发光器件4的元件结构如下表所示。
[表3]
Figure BDA0002990481170000701
*4 2αN-αNPhA:3,10PCA2Nbf(IV)-02(1:0.015)
*5 2αN-βNPhA:3,10PCA2Nbf(IV)-02(1:0.015)
*6 2βN-αNPhA:3,10PCA2Nbf(IV)-02(1:0.015)
在氮气氛的手套箱中,以不使这些发光器件暴露于大气的方式使用玻璃衬底进行密封处理(将密封剂涂敷在元件的周围,在密封时进行UV处理并在80℃的温度下进行1小时的热处理),然后对这些发光器件的初始特性及可靠性进行测量。注意,测量在室温下进行。
图27示出发光器件2、对比发光器件3及对比发光器件4的亮度-电流密度特性,图28示出电流效率-亮度特性,图29示出亮度-电压特性,图30示出电流-电压特性,图31示出外量子效率-亮度特性,图32示出发射光谱。此外,表4示出发光器件2、对比发光器件3及对比发光器件4的1000cd/m2附近的主要特性。
[表4]
Figure BDA0002990481170000711
由图27至图32及表4可知,本发明的一个方式的发光器件2、对比发光器件3及对比发光器件4是特性良好的蓝色发光器件。
此外,图33是示出电流密度为50mA/cm2的条件下的相对于驱动时间的亮度变化的图表。将本发明的一个方式的用于主体材料的蒽化合物用作主体材料的发光器件2,与将萘基在β位取代的蒽化合物用作主体材料的对比发光器件3及对比发光器件4相比,具有优异特性。
[实施例5]
在本实施例中,说明使用实施方式1所示的本发明的一个方式的用于主体材料的蒽化合物的发光器件3及发光器件4。同时,还示出将具有与本发明的一个方式的蒽化合物类似的结构的有机化合物用作主体材料的对比发光器件5至对比发光器件10。以下示出发光器件3、发光器件4、对比发光器件5至对比发光器件10所使用的有机化合物的结构式。
[化学式17]
Figure BDA0002990481170000721
[化学式18]
Figure BDA0002990481170000731
(发光器件3的制造方法)
首先,在玻璃衬底上通过溅射法形成含氧化硅的氧化锡铟(ITSO)来形成第一电极101。注意,其厚度为70nm,电极面积为2mm×2mm。
接着,作为用来在衬底上形成发光器件的预处理,用水洗涤衬底表面,以200℃烘烤1小时,然后进行370秒的UV臭氧处理。
然后,将衬底放入其内部被减压到10-4Pa左右的真空蒸镀装置中,并在真空蒸镀装置内的加热室中,在170℃的温度下进行真空烘烤30分钟,然后对衬底进行冷却30分钟左右。
接着,以使形成有第一电极101的面朝下的方式将形成有第一电极101的衬底固定在设置于真空蒸镀装置内的衬底支架上,并且在第一电极101上通过利用电阻加热的蒸镀法以上述结构式(viii)所表示的N,N-双(4-联苯)-6-苯基苯并[b]萘并[1,2-d]呋喃-8-胺(简称:BBABnf)、ALD-MP001Q(分析工房株式会社(Analysis Atelier Corporation),材料序列号:1S20170124)的重量比为1:0.1(=BBABnf:ALD-MP001Q)且厚度为10nm的方式进行共蒸镀,由此形成空穴注入层111。
接着,在空穴注入层111上作为第一空穴传输层112-1以厚度为20nm的方式蒸镀BBABnf,然后作为第二空穴传输层112-2以厚度为10nm的方式蒸镀上述结构式(ix)所表示的3,3’-(萘-1,4-二基)双(9-苯基-9H-咔唑)(简称:PCzN2),由此形成空穴传输层112。注意,第二空穴传输层112-2也被用作电子阻挡层。
接着,以上述结构式(100)所表示的2,9-二(1-萘基)-10-苯基蒽(简称:2αN-αNPhA)与上述结构式(iii)所表示的3,10-双[N-(9-苯基-9H-咔唑-2-基)-N-苯基氨基]萘并[2,3-b;6,7-b’]双苯并呋喃(简称:3,10PCA2Nbf(IV)-02)的重量比为1:0.015(=2αN-αNPhA:3,10PCA2Nbf(IV)-02)且厚度为25nm的方式进行共蒸镀,由此形成发光层113。
然后,在发光层113上以厚度为15nm的方式蒸镀上述结构式(iv)所表示的2-[3’-(二苯并噻吩-4-基)联苯-3-基]二苯并[f,h]喹喔啉(简称:2mDBTBPDBq-II),然后以厚度为10nm的方式蒸镀上述结构式(v)所表示的2,9-二(2-萘基)-4,7-二苯基-1,10-菲罗啉(简称:NBPhen),来形成电子传输层114。
在形成电子传输层114之后,以厚度为1nm的方式蒸镀氟化锂(LiF)来形成电子注入层115,接着,以厚度为200nm的方式蒸镀铝来形成第二电极102,由此制造本实施例的发光器件3。
(发光器件4的制造方法)
除了使用上述结构式(101)所表示的9-(1-萘基)-10-苯基-2-(5-苯基-1-萘基)蒽(简称:2PαN-αNPhA)代替发光器件3中的2αN-αNPhA之外,与发光器件3同样地制造对比发光器件4。
(对比发光器件5的制造方法)
除了使用上述结构式(xi)所表示的2-(1-萘基)-10-苯基-9-(5-苯基-1-萘基)蒽(简称:2αN-PαNPhA)代替发光器件3中的2αN-αNPhA之外,与发光器件3同样地制造对比发光器件5。
(对比发光器件6的制造方法)
除了使用上述结构式(xii)所表示的2-(4-甲基-1-萘基)-9-(1-萘基)-10-苯基蒽(简称:2MeαN-αNPhA)代替发光器件3中的2αN-αNPhA之外,与发光器件3同样地制造对比发光器件6。
(对比发光器件7的制造方法)
除了使用上述结构式(xiii)所表示的9-(4-甲基-1-萘基)-2-(1-萘基)-10-苯基蒽(简称:2αN-MeαNPhA)代替发光器件3中的2αN-αNPhA之外,与发光器件3同样地制造对比发光器件7。
(对比发光器件8的制造方法)
除了使用上述结构式(xiv)所表示的10-(4-联苯基)-2,9-二(1-萘基)蒽(简称:2αN-αNBPhA)代替发光器件3中的2αN-αNPhA之外,与发光器件3同样地制造对比发光器件8。
(对比发光器件9的制造方法)
除了使用上述结构式(xv)所表示的2-(1-萘基)-10-苯基-9-(5-三甲基硅基-1-萘基)蒽(简称:2αN-TMSαNPhA)代替发光器件3中的2αN-αNPhA之外,与发光器件3同样地制造对比发光器件9。
(对比发光器件10的制造方法)
除了使用上述结构式(xvi)所表示的9-(1-萘基)-10-苯基-2-(5-三甲基硅基-1-萘基)蒽(简称:2TMSαN-αNPhA)代替发光器件3中的2αN-αNPhA之外,与发光器件3同样地制造对比发光器件10。
发光器件3、发光器件4、对比发光器件5至对比发光器件10的元件结构如下表所示。
[表5]
Figure BDA0002990481170000771
*7 2αN-αNPhA:3,10PCA2Nbf(IV)-02(1:0.015)
*8 2PαN-αNPhA:3,10PCA2Nbf(IV)-02(1:0.015)
*9 2αN-PαNPhA:3,10PCA2Nbf(IV)-02(1:0.015)
*10 2MeαN-αNPhA:3,10PCA2Nbf(IV)-02(1:0.015)
*11 2αN-MeαNPhA:3,10PCA2Nbf(IV)-02(1:0.015)
*12 2αN-αNBPhA:3,10PCA2Nbf(IV)-02(1:0.015)
*13 2αN-TMSαNPhA:3,10PCA2Nbf(IV)-02(1:0.015)
*14 2TMSαN-αNPhA:3,10PCA2Nbf(IV)-02(1:0.015)
在氮气氛的手套箱中,以不使这些发光器件暴露于大气的方式使用玻璃衬底进行密封处理(将密封剂涂敷在元件的周围,在密封时进行UV处理并在80℃的温度下进行1小时的热处理),然后对这些发光器件的初始特性及可靠性进行测量。注意,测量在室温下进行。
图34示出发光器件3、发光器件4、对比发光器件5至对比发光器件10的亮度-电流密度特性,图35示出电流效率-亮度特性,图36示出亮度-电压特性,图37示出电流-电压特性,图38示出外量子效率-亮度特性,图39示出发射光谱。此外,表6示出发光器件3、发光器件4、对比发光器件5至对比发光器件10的1000cd/m2附近的主要特性。
[表6]
Figure BDA0002990481170000781
由图34至图39及表6可知,本发明的一个方式的发光器件3、发光器件4、对比发光器件5至对比发光器件10是特性良好的蓝色发光器件。
此外,表7示出各发光器件在电流密度为50mA/cm2情况下的LT97(劣化到初始亮度的97%所需的时间)及LT95(劣化到初始亮度的95%所需的时间)。
[表7]
Figure BDA0002990481170000791
由表7可知,将本发明的一个方式的用于主体材料的蒽化合物用作主体材料的发光器件具有良好特性。
根据发光器件3、对比发光器件6、对比发光器件7、对比发光器件9及对比发光器件10可知,键合于本发明的一个方式的用于主体材料的蒽化合物的烷基及烷基硅基影响到可靠性。尤其是,烷基硅基造成了很大的影响。另一方面,甲基虽然小但造成了较大的影响。
[实施例6]
在本实施例中,说明使用实施方式1所示的本发明的一个方式的用于主体材料的蒽化合物的发光器件5。同时,还示出将具有与本发明的一个方式的蒽化合物类似的结构的有机化合物用作主体材料的对比发光器件11及对比发光器件12。以下示出发光器件5、对比发光器件11及对比发光器件12所使用的有机化合物的结构式。
[化学式19]
Figure BDA0002990481170000801
(发光器件5的制造方法)
首先,在玻璃衬底上通过溅射法形成含氧化硅的氧化锡铟(ITSO)来形成第一电极101。注意,其厚度为70nm,电极面积为2mm×2mm。
接着,作为用来在衬底上形成发光器件的预处理,用水洗涤衬底表面,以200℃烘烤1小时,然后进行370秒的UV臭氧处理。
然后,将衬底放入其内部被减压到10-4Pa左右的真空蒸镀装置中,并在真空蒸镀装置内的加热室中,在170℃的温度下进行真空烘烤30分钟,然后对衬底进行冷却30分钟左右。
接着,以使形成有第一电极101的面朝下的方式将形成有第一电极101的衬底固定在设置于真空蒸镀装置内的衬底支架上,并且在第一电极101上通过利用电阻加热的蒸镀法以上述结构式(viii)所表示的N,N-双(4-联苯)-6-苯基苯并[b]萘并[1,2-d]呋喃-8-胺(简称:BBABnf)、ALD-MP001Q(分析工房株式会社(Analysis Atelier Corporation),材料序列号:1S20170124)的重量比为1:0.1(=BBABnf:ALD-MP001Q)且厚度为10nm的方式进行共蒸镀,由此形成空穴注入层111。
接着,在空穴注入层111上作为第一空穴传输层112-1以厚度为20nm的方式蒸镀BBABnf,然后作为第二空穴传输层112-2以厚度为10nm的方式蒸镀上述结构式(ix)所表示的3,3’-(萘-1,4-二基)双(9-苯基-9H-咔唑)(简称:PCzN2),由此形成空穴传输层112。注意,第二空穴传输层112-2也被用作电子阻挡层。
接着,以上述结构式(100)所表示的2,9-二(1-萘基)-10-苯基蒽(简称:2αN-αNPhA)与上述结构式(iii)所表示的3,10-双[N-(9-苯基-9H-咔唑-2-基)-N-苯基氨基]萘并[2,3-b;6,7-b’]双苯并呋喃(简称:3,10PCA2Nbf(IV)-02)的重量比为1:0.015(=2αN-αNPhA:3,10PCA2Nbf(IV)-02)且厚度为25nm的方式进行共蒸镀,由此形成发光层113。
然后,在发光层113上以厚度为15nm的方式蒸镀上述结构式(iv)所表示的2-[3’-(二苯并噻吩-4-基)联苯-3-基]二苯并[f,h]喹喔啉(简称:2mDBTBPDBq-II),然后以厚度为10nm的方式蒸镀上述结构式(v)所表示的2,9-二(2-萘基)-4,7-二苯基-1,10-菲罗啉(简称:NBPhen),来形成电子传输层114。
在形成电子传输层114之后,以厚度为1nm的方式蒸镀氟化锂(LiF)来形成电子注入层115,接着,以厚度为200nm的方式蒸镀铝来形成第二电极102,由此制造本实施例的发光器件5。
(对比发光器件11的制造方法)
除了使用上述结构式(xi)所表示的2-(1-萘基)-10-苯基-9-(5-苯基-1-萘基)蒽(简称:2αN-PαNPhA)代替发光器件5中的2αN-αNPhA之外,与发光器件5同样地制造对比发光器件11。
(对比发光器件12的制造方法)
除了使用上述结构式(xvii)所表示的2,9,10-三(1-萘基)蒽(简称:αTNA)代替发光器件5中的2αN-αNPhA之外,与发光器件5同样地制造对比发光器件12。
发光器件5、对比发光器件11及对比发光器件12的元件结构如下表所示。
[表8]
Figure BDA0002990481170000831
*15 2αN-αNPhA:3,10PCA2Nbf(IV)-02(1:0.015)
*16 2αN-PαNPhA:3,10PCA2Nbf(IV)-02(1:0.015)
*17 αTNA:3,10PCA2Nbf(IV)-02(1:0.015)
在氮气氛的手套箱中,以不使这些发光器件暴露于大气的方式使用玻璃衬底进行密封处理(将密封剂涂敷在元件的周围,在密封时进行UV处理并在80℃的温度下进行1小时的热处理),然后对这些发光器件的初始特性及可靠性进行测量。注意,测量在室温下进行。
图40示出发光器件5、对比发光器件11及对比发光器件12的亮度-电流密度特性,图41示出电流效率-亮度特性,图42示出亮度-电压特性,图43示出电流-电压特性,图44示出外量子效率-亮度特性,图45示出发射光谱。此外,表9示出发光器件5、对比发光器件11及对比发光器件12的1000cd/m2附近的主要特性。
[表9]
Figure BDA0002990481170000832
由图40至图45及表9可知,本发明的一个方式的发光器件5、对比发光器件11及对比发光器件12是特性良好的蓝色发光器件。
此外,图46是示出电流密度为50mA/cm2的条件下的相对于驱动时间的亮度变化的图表。将本发明的一个方式的用于主体材料的蒽化合物用作主体材料的发光器件5,与将键合于苯基的萘基在9位取代的蒽化合物用作主体材料的对比发光器件11及将三个萘基取代的蒽化合物用作主体材料的对比发光器件12相比,具有优异特性。
<参考例1>
在本参考例中,详细说明在实施例中用作对比例子的有机化合物,即2-(4-甲基-1-萘基)-9-(1-萘基)-10-苯基蒽(简称:2MeαN-αNPhA)的合成方法。以下示出2MeαN-αNPhA的结构式。
[化学式20]
Figure BDA0002990481170000841
将1.4g(3.4mmol)的2-氯-9-(1-萘基)-10-苯基蒽、0.77g(4.1mmol)的4-甲基-1-萘基硼酸、0.13g(0.36mmol)的二(1-金刚烷基)-正丁基膦、2.2g(10mmol)的磷酸三钾、0.79g(11mmol)的叔丁醇、17mL的二乙二醇二甲醚加入200mL三口烧瓶中,在减压下搅拌以进行脱气。对该混合物加入41mg(0.18mmol)的醋酸钯(Ⅱ),在氮气流下以130℃搅拌6小时。在搅拌后,对所得到的混合物加入水,利用甲苯萃取水层。使用饱和食盐水对所得到的有机层进行洗涤,然后使用硫酸镁使有机层干燥。过滤该混合物,浓缩滤液。利用硅胶柱色谱法(甲苯:己烷=1:9)提纯该溶液,并使用乙酸乙酯使该溶液重结晶,由此以64%的收率及1.1g的产量获得目标白色粉末。以下示出本参考例的合成方案。
[化学式21]
Figure BDA0002990481170000851
利用梯度升华法对所得到的1.1g的白色粉末进行升华提纯。升华提纯在压力为3.4Pa,氩流量为5.0mL/min且加热温度为240℃的条件下进行16小时。在升华提纯之后,以88%的回收率获得1.0g的黄色粉末。
以下示出所得到的黄色粉末的核磁共振波谱法(1H-NMR)的分析结果。由其结果可知,得到了2MeαN-αNPhA。
1H NMR(CD2Cl2,300MHz):δ=2.64(s、3H)、7.17-7.52(m、12H)、7.57-7.70(m、7H)、8.85(d、J=8.7Hz、2H)、7.84(dd、J=7.8Hz、1.5Hz、1H)、7.96-8.01(m、3H)。
<参考例2>
在本参考例中,详细说明在实施例中用作对比例子的有机化合物,即9-(4-甲基-1-萘基)-2-(1-萘基)-10-苯基蒽(简称:2αN-MeαNPhA)的合成方法。以下示出2αN-MeαNPhA的结构式。
[化学式22]
Figure BDA0002990481170000861
将2.4g(5.6mmol)的2-氯-9-(4-甲基-1-萘基)-10-苯基蒽、1.7g(10mmol)的1-萘硼酸、0.20g(0.56mmol)的二(1-金刚烷基)-正丁基膦、3.6g(17mmol)的磷酸三钾、1.2g(17mmol)的叔丁醇加入200mL三口烧瓶中,用氮气置换烧瓶内的空气。对该混合物加入28mL的二乙二醇二甲醚,在减压下搅拌以进行脱气。对该混合物加入63mg(0.28mmol)的醋酸钯(Ⅱ),在氮气流下以130℃搅拌3小时。
搅拌后,对该混合物加入水,将对其进行抽滤来得到的固体溶解于甲苯,通过硅藻土、矾土、硅酸镁进行抽滤。对所得到的滤液进行浓缩得到固体,对该固体利用高效液相色谱法(HPLC)进行提纯,使用甲苯进行重结晶,由此以74%的收率及2.2g的产量获得目标淡黄色粉末。以下示出本参考例的合成方案。
[化学式23]
Figure BDA0002990481170000871
利用梯度升华法对所得到的0.95g的淡黄色粉末进行升华提纯。升华提纯在压力为3.6Pa,氩流量为5.0mL/min且加热温度为230℃的条件下进行。在升华提纯之后,以89%的回收率获得0.85g的白色粉末。
以下示出所得到的黄色粉末的核磁共振波谱法(1H-NMR)的分析结果。由其结果可知,得到了2αN-MeαNPhA。
1H NMR(DMSO-d6,300MHz):δ=2.76(s,3H),7.12(d,J=7.5Hz,1H)、7.23(t,J=6.9Hz,1H)、7.29-7.76(m,19H)、7.80(d,J=8.7Hz,1H)、7.86(d,J=8.1Hz,1H)、7.91(d,J=8.1Hz,1H)、8.15(d,J=8.1Hz,1H)。
<参考例3>
在本参考例中,详细说明在实施例中用作对比例子的有机化合物,即2-(1-萘基)-10-苯基-9-(5-苯基-1-萘基)蒽(简称:2αN-PαNPhA)的合成方法。以下示出2αN-PαNPhA的结构式。
[化学式24]
Figure BDA0002990481170000881
将0.69g(1.4mmol)的2-氯-10-苯基-9-(5-苯基-1-萘基)蒽、0.48g(2.8mmol)的1-萘硼酸、50mg(0.14mmol)的二(1-金刚烷基)-正丁基膦、0.89g(4.2mmol)的磷酸三钾、0.31g(4.2mmol)的叔丁醇加入50mL三口烧瓶中,用氮气置换烧瓶内的空气。对该混合物加入7.0mL的二乙二醇二甲醚,在减压下搅拌以进行脱气。对该混合物加入16mg(0.070mmol)的醋酸钯(Ⅱ),在氮气流下以130℃搅拌4小时。
搅拌后,对该混合物加入水,将对该混合物进行抽滤来得到的固体溶解于甲苯,通过硅藻土、矾土、硅酸镁进行抽滤。对所得到的滤液进行浓缩得到固体,对该固体利用高效液相色谱法(HPLC)进行提纯,使用甲苯进行重结晶,由此以79%的收率及0.65g的产量获得目标淡黄色固体。以下示出本参考例的合成方案。
[化学式25]
Figure BDA0002990481170000891
利用梯度升华法对所得到的0.65g的淡黄色固体进行升华提纯。升华提纯在压力为3.6Pa,氩流量为5.0mL/min且加热温度为250℃的条件下进行。在升华提纯之后,以86%的回收率获得0.56g的淡黄色固体。
以下示出所得到的淡黄色固体的核磁共振波谱法(1H-NMR)的分析结果。由其结果可知,得到了2αN-PαNPhA。
1H NMR(DMSO-d6,300MHz):δ=7.10(d,J=7.5Hz,1H)、7.25(t,J=7.5Hz,1H)、7.34-7.97(m,28H)。
<参考例4>
在本实施例中,详细说明在本实施例中用作对比例子的有机化合物,即9-(1-萘基)-10-苯基-2-(5-三甲基硅基-1-萘基)蒽(简称:2TMSαN-αNPhA)的合成方法。以下示出2TMSαN-αNPhA的结构式。
[化学式26]
Figure BDA0002990481170000901
将1.2g(3.0mmol)的2-氯-9-(1-萘基)-10-苯基蒽、1.2g(3.6mmol)的2-(5-三甲基硅基-1-萘基)-4,4,5,5-四甲基-1,3,2-二氧硼戊环、0.11g(0.30mmol)的二(1-金刚烷基)-正丁基膦、1.9g(9.1mmol)的磷酸三钾、0.71g(9.5mmol)的叔丁醇、15mL的二乙二醇二甲醚加入200mL三口烧瓶中,在减压下搅拌以进行脱气。对该混合物加入38mg(0.18mmol)的醋酸钯(Ⅱ),在氮气流下以130℃搅拌4小时。在搅拌后,对所得到的混合物加入水,利用甲苯萃取水层。使用饱和食盐水对所得到的有机层进行洗涤,然后使用硫酸镁使有机层干燥。过滤该混合物,浓缩滤液。利用硅胶柱色谱法(甲苯:己烷=1:4)提纯该溶液得到油状物。利用高效液相色谱法(HPLC)提纯所得到的油状物,由此得到油状物。对所得到的油状物添加甲醇,收集所析出的固体,由此以62%的收率及1.1g的产量获得目标白色粉末。以下示出本合成方法的合成方案。
[化学式27]
Figure BDA0002990481170000911
利用梯度升华法对所得到的0.73g的白色粉末进行升华提纯。升华提纯在压力为3.5Pa,氩流量为5.0mL/min且加热温度为230℃的条件下进行18小时。在升华提纯之后,以82%的回收率获得0.60g的淡黄色粉末。
以下示出所得到的黄色粉末的核磁共振波谱法(1H-NMR)的分析结果。由其结果可知,在本参考例中得到了2TMSαN-αNPhA。
1H NMR(CD2Cl2,300MHz):δ=0.42(s、9H)、7.14-7.52(m、11H)、7.57-7.72(m、8H)、7.78(d、J=8.7Hz、2H)、7.85(dd、J=8.7Hz、1.2Hz、1H)、7.95-8.03(m、3H)。
<参考例5>
在本实施例中,详细说明在本实施例中用作对比例子的有机化合物,即2-(1-萘基)-10-苯基-9-(5-三甲基硅基-1-萘基)蒽(简称:2αN-TMSαNPhA)的合成方法。以下示出2αN-TMSαNPhA的结构式。
[化学式28]
Figure BDA0002990481170000921
将1.2g(2.5mmol)的2-氯-9-(1-萘基)-10-苯基蒽、0.86g(5.0mmol)的萘-1-硼酸、90mg(0.25mmol)的二(1-金刚烷基)-正丁基膦、1.6g(7.5mmol)的磷酸三钾、0.56g(7.5mmol)的叔丁醇加入300mL茄形烧瓶中,用氮气置换烧瓶内的空气。对该混合物加入12mL的二乙二醇二甲醚,在减压下搅拌以进行脱气。对该混合物加入28mg(0.13mmol)的醋酸钯(Ⅱ),在氮气流下以130℃搅拌6小时。
在搅拌后,对该混合物加入水,对该混合物的水层利用甲苯萃取,将萃取溶液和有机层合并,用饱和食盐水洗涤。用硫酸镁对有机层进行干燥,对该混合物进行重力过滤。浓缩所得到的滤液而得到固体,利用硅胶柱色谱法(展开溶剂己烷:甲苯=5:1)提纯该固体来得到固体。对所得到的固体利用高效液相色谱法(HPLC)进行提纯,使用己烷/甲苯进行重结晶,由此以81%的收率及1.2g的产量获得目标淡黄色固体。以下示出本参考例的合成方案。
[化学式29]
Figure BDA0002990481170000931
利用梯度升华法对所得到的1.2g的淡黄色固体进行升华提纯。升华提纯在压力为3.6Pa,氩流量为5.0mL/min且加热温度为240℃的条件下进行。在升华提纯之后,以93%的回收率获得1.1g的白色固体。
以下示出所得到的淡黄色固体的核磁共振波谱法(1H-NMR)的分析结果。由其结果可知,在本参考例中得到了2αN-TMSαNPhA。
1H NMR(DMSO-d6,300MHz):δ=0.48(s,9H)、7.12-7.19(m,2H)、7.26-7.46(m,8H)、7.53-7.87(m,14H)、8.23(d,J=8.1Hz,1H)。
<参考例6>
在本实施例中,详细说明在本实施例中用作对比例子的有机化合物,即2-(1-萘基)-9-(2-萘基)-10-苯基蒽(简称:2αN-βNPhA)的合成方法。以下示出2αN-βNPhA的结构式。
[化学式30]
Figure BDA0002990481170000941
将2.1g(5.0mmol)的2-氯-9-(2-萘基)-10-苯基蒽、1.3g(7.3mmol)的1-萘基硼酸、0.36g(1.0mmol)的二(1-金刚烷基)-正丁基膦、3.2g(15mmol)的磷酸三钾、1.1g(15mmol)的叔丁醇加入200mL茄形烧瓶中,用氮气置换烧瓶内的空气。对该混合物加入25mL的二乙二醇二甲醚,在减压下搅拌以进行脱气。对该混合物加入0.11g(0.50mmol)的醋酸钯(Ⅱ),在氮气流下以130℃搅拌10小时。
在搅拌后,对该混合物加入甲苯并抽滤,浓缩所得到的滤液。利用硅胶柱色谱法(展开溶剂己烷:甲苯=4:1)提纯该溶液得到油状物。利用高效液相色谱法(HPLC)提纯所得到的油状物,并使用乙酸乙酯和己烷的混合溶剂进行重结晶,由此以40%的收率及1.0g的产量获得目标淡黄色固体。
[化学式31]
Figure BDA0002990481170000951
利用梯度升华法对所得到的1.0g的淡黄色固体进行升华提纯。在升华提纯中,在压力为3.6Pa且氩流量为5.0mL/min的条件下,以230℃对淡黄色固体进行加热。在升华提纯之后,以84%的回收率获得0.84g的白色固体。
以下示出所得到的白色固体的核磁共振波谱法(1H-NMR)的分析结果。由其结果可知,在本参考例中得到了2αN-βNPhA。
1H NMR(DMSO-d6,300MHz):δ=7.39-7.78(m,19H)、7.86-7.96(m,3H)、8.00-8.05(m,2H)、8.12-8.15(m,2H)。
<参考例7>
在本实施例中,详细说明在本实施例中用作对比例子的有机化合物,即9-(1-萘基)-2-(2-萘基)-10-苯基蒽(简称:2βN-αNPhA)的合成方法。以下示出2βN-αNPhA的结构式。
[化学式32]
Figure BDA0002990481170000961
将1.4g(3.3mmol)的2-氯-9-(1-萘基)-10-苯基蒽、1.1g(6.6mmol)的2-萘基硼酸、0.12g(0.34mmol)的二(1-金刚烷基)-正丁基膦、2.1g(10mmol)的磷酸三钾、0.74g(10mmol)的叔丁醇加入200mL茄形烧瓶中,用氮气置换烧瓶内的空气。对该混合物加入17mL的二乙二醇二甲醚,在减压下搅拌以进行脱气。对该混合物加入37mg(0.17mmol)的醋酸钯(Ⅱ),在氮气流下以130℃搅拌5小时。
在搅拌后,对该混合物加入甲苯并抽滤,浓缩所得到的滤液。利用硅胶柱色谱法(展开溶剂己烷:甲苯=2:1)提纯所得到的溶液,并使用乙酸乙酯/己烷进行重结晶,由此以77%的收率及1.3g的产量获得目标淡黄色固体。
[化学式33]
Figure BDA0002990481170000962
利用梯度升华法对所得到的1.3g的淡黄色固体进行升华提纯。在升华提纯中,在压力为3.6Pa且氩流量为5.0mL/min的条件下,以210℃对淡黄色固体进行加热。在升华提纯之后,以93%的回收率获得1.2g的淡黄色固体。
以下示出所得到的淡黄色固体的核磁共振波谱法(1H-NMR)的分析结果。由其结果可知,在本参考例中得到了2βN-αNPhA。
1H NMR(DMSO-d6,300MHz):δ=7.04(d,J=8.4Hz,1H)、7.29-7.94(m,22H)、7.97(s,1H)、8.15(d,J=8.1Hz,1H)、8.23(d,J=8.1Hz,1H)。
[符号说明]
101:第一电极、102:第二电极、103:EL层、111:空穴注入层、112:空穴传输层、112-1:第一空穴传输层、112-2:第二空穴传输层、113:发光层、114:电子传输层、115:电子注入层、116:电荷产生层、117:P型层、118:电子中继层、119:电子注入缓冲层、400:衬底、401:第一电极、403:EL层、404:第二电极、405:密封材料、406:密封材料、407:密封衬底、412:焊盘、420:IC芯片、501:阳极、502:阴极、511:第一发光单元、512:第二发光单元、513:电荷产生层、601:驱动电路部(源极线驱动电路)、602:像素部、603:驱动电路部(栅极线驱动电路)、604:密封衬底、605:密封材料、607:空间、608:布线、609:FPC(柔性印刷电路)、610:元件衬底、611:开关FET、612:电流控制FET、613:第一电极、614:绝缘物、616:EL层、617:第二电极、618:发光器件、951:衬底、952:电极、953:绝缘层、954:隔离层、955:EL层、956:电极、1001:衬底、1002:基底绝缘膜、1003:栅极绝缘膜、1006:栅电极、1007:栅电极、1008:栅电极、1020:第一层间绝缘膜、1021:第二层间绝缘膜、1022:电极、1024W:阳极、1024R:阳极、1024G:阳极、1024B:阳极、1025:分隔壁、1028:EL层、1029:第二电极、1031:密封衬底、1032:密封材料、1033:透明基材、1034R:红色着色层、1034G:绿色着色层、1034B:蓝色着色层、1035:黑矩阵、1037:第三层间绝缘膜、1040:像素部、1041:驱动电路部、1042:周边部、2001:外壳、2002:光源、2100:机器人、2110:运算装置、2101:照度传感器、2102:麦克风、2103:上部照相机、2104:扬声器、2105:显示器、2106:下部照相机、2107:障碍物传感器、2108:移动机构、3001:照明装置、5000:外壳、5001:显示部、5002:显示部、5003:扬声器、5004:LED灯、5006:连接端子、5007:传感器、5008:麦克风、5012:支撑部、5013:耳机、5100:扫地机器人、5101:显示器、5102:照相机、5103:刷子、5104:操作按钮、5150:便携式信息终端、5151:外壳、5152:显示区域、5153:弯曲部、5120:垃圾、5200:显示区域、5201:显示区域、5202:显示区域、5203:显示区域、7101:外壳、7103:显示部、7105:支架、7107:显示部、7109:操作键、7110:遥控操作机、7201:主体、7202:外壳、7203:显示部、7204:键盘、7205:外部连接端口、7206:指向装置、7210:第二显示部、7401:外壳、7402:显示部、7403:操作按钮、7404:外部连接端口、7405:扬声器、7406:麦克风、9310:便携式信息终端、9311:显示面板、9313:铰链部、9315:外壳

Claims (10)

1.一种由下述通式(G1)表示的用于主体材料的蒽化合物:
Figure FDA0002990481160000011
在所述通式(G1)中,R1至R7分别独立地表示氢或碳原子数为6至25的芳基。
2.根据权利要求1所述的用于主体材料的蒽化合物,
其中R1至R7中的一个表示碳原子数为6至25的芳基,其他都表示氢。
3.一种由下述通式(G2)表示的用于主体材料的蒽化合物:
Figure FDA0002990481160000012
在上述通式(G2)中,R4表示氢或碳原子数为6至25的芳基。
4.根据权利要求1至3中任一项所述的用于主体材料的蒽化合物,
其中所述碳原子数为6至25的芳基为苯基。
5.一种由下述结构式(100)表示的用于主体材料的蒽化合物:
Figure FDA0002990481160000021
6.一种发光器件,包括:
阳极;
阴极;以及
位于所述阳极与所述阴极之间的EL层,
其中所述EL层包括发光层,
所述EL层包含发光中心物质及主体材料,
并且所述主体材料是权利要求1至5中任一项所述的用于主体材料的蒽衍生物。
7.根据权利要求6所述的发光器件,
其中所述发光中心物质发蓝色荧光。
8.一种发光装置,包括:
权利要求6或7所述的发光器件;以及
晶体管或衬底。
9.一种电子设备,包括:
权利要求8所述的发光装置;以及
传感器、操作按钮、扬声器或麦克风。
10.一种照明装置,包括:
权利要求8所述的发光装置;以及
外壳。
CN202080005317.8A 2019-02-14 2020-02-05 用于主体材料的蒽化合物、发光器件、发光装置、电子设备及照明装置 Pending CN112752741A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210323194.3A CN114907180A (zh) 2019-02-14 2020-02-05 用于主体材料的蒽化合物、发光器件、发光装置、电子设备及照明装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019-024416 2019-02-14
JP2019024416 2019-02-14
PCT/IB2020/050890 WO2020165694A1 (ja) 2019-02-14 2020-02-05 ホスト材料用アントラセン化合物、発光デバイス、発光装置、電子機器および照明装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202210323194.3A Division CN114907180A (zh) 2019-02-14 2020-02-05 用于主体材料的蒽化合物、发光器件、发光装置、电子设备及照明装置

Publications (1)

Publication Number Publication Date
CN112752741A true CN112752741A (zh) 2021-05-04

Family

ID=72044710

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202210323194.3A Pending CN114907180A (zh) 2019-02-14 2020-02-05 用于主体材料的蒽化合物、发光器件、发光装置、电子设备及照明装置
CN202080005317.8A Pending CN112752741A (zh) 2019-02-14 2020-02-05 用于主体材料的蒽化合物、发光器件、发光装置、电子设备及照明装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202210323194.3A Pending CN114907180A (zh) 2019-02-14 2020-02-05 用于主体材料的蒽化合物、发光器件、发光装置、电子设备及照明装置

Country Status (6)

Country Link
US (1) US20210284590A1 (zh)
JP (2) JP6918249B2 (zh)
KR (2) KR102656004B1 (zh)
CN (2) CN114907180A (zh)
DE (1) DE112020000101T5 (zh)
WO (1) WO2020165694A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022118197A1 (de) 2021-07-30 2023-02-02 Semiconductor Energy Laboratory Co., Ltd. Organische Verbindung, Licht emittierende Vorrichtung, Anzeigeeinrichtung, elektronisches Gerät, Licht emittierende Einrichtung und Beleuchtungsvorrichtung

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4025136B2 (ja) * 2002-07-31 2007-12-19 出光興産株式会社 アントラセン誘導体、有機エレクトロルミネッセンス素子用発光材料及び有機エレクトロルミネッセンス素子
KR100893044B1 (ko) * 2006-07-26 2009-04-15 주식회사 엘지화학 안트라센 유도체, 이를 이용한 유기 전자 소자 및 이 유기전자 소자를 포함하는 전자 장치
US8795855B2 (en) * 2007-01-30 2014-08-05 Global Oled Technology Llc OLEDs having high efficiency and excellent lifetime
WO2009131199A1 (en) * 2008-04-24 2009-10-29 Semiconductor Energy Laboratory Co., Ltd. Anthracene derivative, light-emitting element, light-emitting device, and electronic appliance
JP5786578B2 (ja) * 2010-10-15 2015-09-30 Jnc株式会社 発光層用材料およびこれを用いた有機電界発光素子
KR101367182B1 (ko) * 2011-03-29 2014-02-28 대주전자재료 주식회사 나프탈렌 유도체, 이를 이용한 유기 재료, 및 이를 이용한 유기 전기발광 소자
KR20150093440A (ko) * 2014-02-07 2015-08-18 롬엔드하스전자재료코리아유한회사 유기 전계 발광 소자
KR20150144710A (ko) * 2014-06-17 2015-12-28 롬엔드하스전자재료코리아유한회사 전자 버퍼 재료 및 유기 전계 발광 소자
US20170222159A1 (en) * 2014-07-29 2017-08-03 Rohm And Haas Electronic Materials Korea Ltd. Electron buffering material and organic electroluminescent device

Also Published As

Publication number Publication date
JP2021170666A (ja) 2021-10-28
JP6918249B2 (ja) 2021-08-11
JP7482087B2 (ja) 2024-05-13
KR20230028812A (ko) 2023-03-02
CN114907180A (zh) 2022-08-16
DE112020000101T5 (de) 2021-06-02
US20210284590A1 (en) 2021-09-16
KR102656004B1 (ko) 2024-04-11
JPWO2020165694A1 (ja) 2021-09-09
KR20210125891A (ko) 2021-10-19
WO2020165694A1 (ja) 2020-08-20

Similar Documents

Publication Publication Date Title
CN113517409A (zh) 发光元件、发光装置、电子设备及照明装置
CN112186112A (zh) 空穴传输层用材料、空穴注入层用材料以及有机化合物
CN113493389A (zh) 芳基胺化合物、空穴传输层和空穴注入层用材料、发光器件和装置、电子设备及照明装置
JP2023116600A (ja) 発光装置
KR102648001B1 (ko) 다이벤조[c,g]카바졸 유도체, 발광 소자, 발광 장치, 전자 기기, 및 조명 장치
CN112513034A (zh) 有机化合物、发光元件、发光装置、电子设备及照明装置
CN114300628A (zh) 发光器件、发光装置、电子设备及照明装置
JP7482087B2 (ja) 発光デバイス用ホスト材料、発光デバイス、発光装置、電子機器、及び照明装置
CN114975808A (zh) 发光器件、显示装置、发光装置、电子设备以及照明装置
CN114141972A (zh) 发光器件、发光装置、电子设备及照明装置
CN112979669A (zh) 有机化合物、光学器件、发光器件、发光装置、电子设备及照明装置
CN114514226A (zh) 有机化合物、光器件、发光器件、发光装置、电子设备及照明装置
JP7282737B2 (ja) 正孔輸送層用材料、発光素子、発光装置、電子機器および照明装置
CN111372917B (zh) 二苯并[c,g]咔唑衍生物、发光元件、发光装置、电子设备及照明装置
WO2021234491A1 (ja) 有機化合物、発光デバイス、発光装置、電子機器、表示装置、照明装置
KR20230098192A (ko) 유기 화합물, 캐리어 수송용 재료, 호스트용 재료, 발광 디바이스, 발광 장치, 전자 기기, 및 조명 장치
CN112979670A (zh) 有机化合物、发光器件、光学光器件、发光装置、电子设备及照明装置
CN115103845A (zh) 有机化合物、发光器件、电子器件、电子设备、发光装置及照明装置
CN112341443A (zh) 有机化合物、发光器件、发光装置、电子设备及照明装置
CN113571652A (zh) 发光器件、金属配合物、发光装置、电子设备及照明装置
CN112645966A (zh) 有机化合物、发光器件、发光装置、电子设备及照明装置
CN115804260A (zh) 发光器件、发光装置、电子设备及照明装置
CN114447248A (zh) 发光器件、发光装置、电子设备、显示装置及照明装置
CN113228328A (zh) 发光器件、发光装置、电子设备及照明装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination