KR20210102183A - 레이저 어닐 장치 - Google Patents

레이저 어닐 장치 Download PDF

Info

Publication number
KR20210102183A
KR20210102183A KR1020217008102A KR20217008102A KR20210102183A KR 20210102183 A KR20210102183 A KR 20210102183A KR 1020217008102 A KR1020217008102 A KR 1020217008102A KR 20217008102 A KR20217008102 A KR 20217008102A KR 20210102183 A KR20210102183 A KR 20210102183A
Authority
KR
South Korea
Prior art keywords
laser
light
incident
imaging system
light source
Prior art date
Application number
KR1020217008102A
Other languages
English (en)
Inventor
준 고토
타쿠야 사와이
Original Assignee
브이 테크놀로지 씨오. 엘티디
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 브이 테크놀로지 씨오. 엘티디 filed Critical 브이 테크놀로지 씨오. 엘티디
Publication of KR20210102183A publication Critical patent/KR20210102183A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0239Combinations of electrical or optical elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/067Dividing the beam into multiple beams, e.g. multifocusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Recrystallisation Techniques (AREA)
  • Semiconductor Lasers (AREA)
  • Laser Beam Processing (AREA)

Abstract

레이저 빔을 출사하는 반도체 레이저를 구비하는 광원부와, 광 입사면과, 해당 광 입사면에 대향하는 광 출사면을 가지고, 광 입사면에 반도체 레이저로부터 직접 출사된 레이저 빔이 입사되고, 광 출사면으로부터 균일화된 레이저 빔을 출사하는 균일화 소자와, 이 균일화 소자의 광 출사면을 피처리 기판의 표면에 투영하는 출사측 결상계를 구비한다.

Description

레이저 어닐 장치
본 발명은, 레이저 어닐 장치에 관한 것이다.
박막 트랜지스터(TFT: Thin Film Transistor)는, 액정 디스플레이(LCD: Liquid Crystal Display), 유기 EL 디스플레이(OLED: Organic Electroluminescence Display) 등의 박형 디스플레이(FPD: Flat Panel Display)를 액티브 구동하기 위한 스위칭 소자로서 이용되고 있다. 박막 트랜지스터(이하, TFT라고 한다)의 반도체층의 재료로서는, 비정질 실리콘(a-Si: amorphous Silicon)이나, 다결정 실리콘(P-Si: Polycrystalline Silicon) 등이 이용되고 있다.
비정질 실리콘은, 전자의 움직임 용이함의 지표인 이동도가 낮다. 이 때문에, 비정질 실리콘에서는, 더욱더 고밀도·고선명도화가 진행되는 FPD에서 요구되는 고이동도의 요구에는 다 대응할 수 없다. 그래서, FPD에 있어서의 스위칭 소자로서는, 비정질 실리콘보다도 이동도가 대폭 높은 다결정 실리콘으로 채널층을 형성하는 것이 바람직하다. 다결정 실리콘막을 형성하는 방법으로서는, 엑시머 레이저를 사용한 엑시머 레이저 어닐(ELA: Excimer Laser Annealing) 장치로, 비정질 실리콘막에 레이저광을 조사하고, 비정질 실리콘을 재결정화시켜서 다결정 실리콘을 형성하는 방법이 있다.
엑시머 레이저 어닐(이하, ELA라고 한다) 장치는 특수한 가스를 사용한 가스 레이저이고, 설비 비용(가격) 및 유지 비용이 비싸다고 하는 문제가 있다. 또, ELA 장치는, 발생 출력이 강하고, 레이저광의 위상의 정합 정도(코히어런스)나 출력을 일정한 상태로 유지하는 것이 어렵다고 하는 문제가 있다. 유리 기판(왜곡점(歪点):약 600℃)을 이용한 FPD의 제조에서는, 유리 기판에 영향을 미치는 바와 같은 고온의 처리를 행할 수가 없다. 그래서, FPD의 제조에 있어서 ELA 장치를 이용하는 경우는, 펄스 레이저를 이용하고 있다.
근래, 반도체 여기 고체 레이저(DPSS: Diode Pumped Solid State)를 이용한 레이저 조명 장치가 제안되어 있다(특허문헌 1 참조). 이 레이저 조명 장치에서는, 광원 모듈과, 제1의 광섬유와, 제2의 전송계로서의 광섬유 어레이와, 제2의 광학계와, 균일화 요소가 순차 배치되어 있다. 상기 광원 모듈은, 다수의 이미터를 가지는 광원 유닛과, 제1의 커플링 광학계를 구비한다. 이 광원 모듈은, 광원 유닛으로부터의 레이저 발진광을 제1의 커플링 광학계를 거쳐서 제1의 광섬유에 인도하는 구성으로 되어 있다.
상기 광원 유닛은, 반도체 레이저와 레이저 매질(레이저 결정)과 비선형 재료(비선형 결정)로 이루어지는 반도체 여기 고체 레이저를 다수 구비하고 있다. 이 광원 유닛에서는, 반도체 레이저에서 출력된 여기광으로 레이저 매질을 여기해서 기본파를 형성하고, 이 기본파를 비선형 재료로 파장 변환한 광을, 제1의 커플링 광학계에 출사하는 구성으로 되어 있다. 제1의 커플링 광학계로부터 제1의 광섬유에 인도된 레이저광은, 제2의 광섬유 어레이에 인도된다. 제2의 광섬유 어레이로부터 출사된 복수의 빔의 레이저광은, 제2의 광학계에 의해서 균일화 소자에 인도되어 균일화된다. 균일화 소자로부터 출사한 빔모양의 레이저광은, 제3의 광학계에서 성형되어 피처리물의 표면에 조사되는 구성으로 되어 있다.
일본등록특허공보 특허 제4948650호
그렇지만, 상술한 반도체 여기 고체 레이저를 이용한 레이저 조명 장치에서는, 많은 광섬유 등의 광 전파(傳搬, propagation) 경로 및 광 전파 부재를 구비하기 때문에, 구성이 복잡해지고, 제조 비용이 비싸진다고 하는 문제가 있다. 또, 상술한 레이저 조명 장치에서는, 광원 모듈로부터 각각의 제2의 광섬유 어레이까지를 잇는(연결하는) 제1의 광섬유의 길이가, 제2의 광섬유 어레이마다 다른 길이로 된다. 이 때문에, 제2의 광섬유 어레이로부터 출사되는 레이저광의 출력에 영향이 있어, 제2의 광섬유 어레이마다 레이저광의 출력이 다르다고 하는 문제가 있다.
특히, 반도체 레이저에서는, 레이저광을 출사하는 활성층의 단면에서의 개구수(NA)가 크고, 그 단면으로부터 출사되는 레이저광은 크게 확산한다. 이 때문에, 상술한 레이저 조명 장치에서는, 반도체 레이저로부터 출사된 여기광을 레이저 매질의 좁은 도파로 구조 내로 도입할 때에, 큰 도입 손실(입사 효율의 저하)가 발생하기 쉬워진다고 하는 과제가 있다. 더불어, 상술한 레이저 조명 장치에서는, 레이저 매질, 비선형 재료, 제1의 광섬유, 광섬유 어레이 등의 많은 광 전파 부재 속을 레이저광이 전파하기 때문에, 광 전파 손실(결합 손실도 포함한다)이 커진다고 하는 과제가 있다. 또, 상술한 레이저 조명 장치에서는, 광섬유 어레이에 있어서의 광섬유의 수가 많아지면 더욱더 광 전파 손실이 커진다고 하는 과제가 있다. 특히, 상술한 레이저 조명 장치에서는, 반도체 레이저의 단체(單體)로서의 출력이 작기 때문에, 광 전파 손실 등에 의해, 원하는 조명 출력이 얻어지지 않게 된다고 하는 과제가 있다. 상술한 레이저 조명 장치에서는, 광원 모듈에 레이저 매질과 비선형 재료를 배치하는 스페이스를 필요로 한다. 이 때문에, 이 레이저 조명 장치에서는, 광원 모듈이 대형화하기 쉽고, 광원 모듈을 높은 밀도로 집적시킬 수 없다고 하는 과제가 있다. 그래서, 광원 모듈을 복수의 파이버 레이저를 구비하는 구성으로 해서, 이들 복수의 파이버 레이저를 펌프 컴바이너로 결합시키는 구성이 생각된다. 그러나, 펌프 컴바이너를 이용하면, 발열이 현저해지는 경우가 많아지고, 발열에 의해 출력 레이저의 안정성이 흐트러진다고 하는 과제가 있다.
본 발명은, 상기의 과제를 감안해서 이루어진 것으로서, 레이저광의 광 전파 손실이 작고, 원하는 레이저 출력을 균일화할 수 있고, 피처리 기판에의 레이저 조사 조건의 제어성이 좋고, 대폭적인 저비용화(저가격화)를 달성할 수 있는 레이저 어닐 장치를 제공하는 것을 목적으로 한다.
상술한 과제를 해결하고, 목적을 달성하기 위해서, 본 발명의 양태는, 레이저 빔을 피처리 기판의 표면에 조사해서 피처리 기판에 대해서 어닐 처리를 행하는 레이저 어닐 장치로서, 레이저광을 출사하는 반도체 레이저를 구비하는 광원부와, 광 입사면과 해당(當該) 광 입사면에 대향하는 광 출사면을 가지고, 상기 광 입사면에 상기 반도체 레이저로부터 직접 출사된 레이저광이 입사되고, 상기 광 출사면으로부터 균일화된 레이저 빔을 출사하는 균일화 소자와, 상기 광 출사면으로부터 출사된 레이저 빔을, 피처리 기판의 표면에 투영하는 출사측 결상계를 구비하는 것을 특징으로 한다.
상기 양태로서는, 상기 광원부와 상기 균일화 소자 사이에, 상기 반도체 레이저로부터 직접 출사된 레이저광의 빔 전체를 상기 광 입사면의 영역 내에만 입사시키는 입사측 결상계를 구비하는 것이 바람직하다.
상기 양태로서는, 상기 광원부는, 복수의 상기 반도체 레이저를 구비하는 것이 바람직하다.
상기 양태로서는, 상기 광원부는, 단일의 상기 반도체 레이저를 구비하고, 상기 광원부와 상기 입사측 결상계 사이에, 상기 반도체 레이저로부터 직접 출사된 레이저광의 빔을 복수의 빔으로 분산시키는 분산 소자를 구비하는 것이 바람직하다.
상기 양태로서는, 상기 출사측 결상계로부터 출사되는 레이저 빔은, 상기 피처리 기판의 표면에 직사각형 모양(矩形狀)의 빔 스폿으로 투영되는 것이 바람직하다.
상기 양태로서는, 상기 균일화 소자는, 상기 광 출사면으로부터 평행광으로 이루어지는 레이저 빔을 출사하는 것이 바람직하다.
상기 양태로서는, 상기 균일화 소자는, 로드 인티그레이터(rod integrator), 로드 어레이, 플라이아이 렌즈로부터 선택되는 것이 바람직하다.
상기 양태로서는, 상기 입사측 결상계는, 상기 반도체 레이저의 활성층의 레이저광 출사 단면에 배치된 온칩(on-chip) 렌즈인 것이 바람직하다.
상기 양태로서는, 상기 광원은, 레이저광을 연속 발진하는 것이 바람직하다.
본 발명에 관계된 레이저 어닐 장치에 의하면, 레이저광의 광 전파 손실이 작고, 원하는 레이저 출력을 안정되게 유지할 수 있고, 피처리 기판에의 레이저 조사 조건의 제어성이 좋고, 대폭적인 저비용화(저가격화)를 달성할 수 있는, 반도체 레이저를 광원으로 하는 레이저 어닐 장치를 실현할 수가 있다.
도 1은, 본 발명의 제1의 실시 형태에 관계된 레이저 어닐 장치의 개략 구성도이다.
도 2는, 본 발명의 제1의 실시 형태에 관계된 레이저 어닐 장치를 이용하여 라인 빔을 비정질 실리콘막의 표면에 조사한 상태를 설명하는 사시도이다.
도 3은, 본 발명의 제2의 실시 형태에 관계된 레이저 어닐 장치의 주요부를 도시하는 개략 구성도이다.
도 4는, 본 발명의 제3의 실시 형태에 관계된 레이저 어닐 장치의 주요부를 도시하는 개략 구성도이다.
도 5는, 본 발명의 제4의 실시 형태에 관계된 레이저 어닐 장치의 주요부를 도시하는 개략 구성도이다.
도 6은, 본 발명의 제5의 실시 형태에 관계된 레이저 어닐 장치의 주요부를 도시하는 사시이다.
도 7은, 본 발명의 제6의 실시 형태에 관계된 레이저 어닐 장치의 주요부를 도시하는 개략 구성도이다.
도 8은, 본 발명의 제6의 실시 형태에 관계된 레이저 어닐 장치의 광원부에 이용하는 반도체 레이저를 도시하는 단면 설명도이다.
이하에, 본 발명의 실시 형태에 관계된 레이저 어닐 장치의 상세를 도면에 기초하여 설명한다. 다만, 도면은 모식적인 것이고, 각 부재의 치수나 치수의 비율이나 형상 등은 현실의 것과 다른 점에 유의해야 한다. 또, 도면 상호간에 있어서도 서로의 치수 관계나 비율이나 형상이 다른 부분이 포함되어 있다.
[제1의 실시 형태]
여기서, 레이저 어닐 장치의 구성의 설명에 앞서, 레이저 어닐 장치로 어닐 처리를 행하는 피처리 기판의 1예에 대해서 설명한다. 도 1 및 도 2에 도시하는 바와 같이, 피처리 기판(10)은, 유리 기판(11)과, 이 유리 기판(11)의 표면에 대략 전면(全面)에 형성된 피처리막으로서의 비정질 실리콘막(12A)으로 이루어지고, 최종적으로는 TFT 기판으로 된다. 또한, 비정질 실리콘막(12A)과 유리 기판(11) 사이에는, 제작하는 TFT의 구조에 따라서는 게이트선 등의 배선 패턴이 형성되어 있어도 좋다.
도 2에 도시하는 바와 같이, 비정질 실리콘막(12A)에는, 띠모양(帶狀)의 처리 예정 영역(13)이 주사 방향(T)으로 연장하도록(길게 뻗도록) 설정되어 있다. 이 처리 예정 영역(13)은, 주사 방향(T)을 따라, 도시하지 않는 복수의 TFT 형성 예정부를 잇도록(연결하도록) 형성되어 있다. 이 처리 예정 영역(13)의 폭치수(W)는, 제작하는 TFT의 채널층의 폭치수와 대략 동일한 치수로 설정되어 있다.
(레이저 어닐 장치의 개략 구성)
이하, 도 1을 이용하여, 본 실시 형태에 관계된 레이저 어닐 장치(1)의 개략 구성을 설명한다. 레이저 어닐 장치(1)는, 기대(基台)(2)와, 레이저 조사부(3)를 구비한다. 레이저 조사부(3)는, 광원부(4)와, 입사측 결상계(5)와, 균일화 소자로서의 로드 인티그레이터(6)와, 출사측 결상계(7)를 구비한다.
본 실시 형태에서는, 도 1에 도시하는 바와 같이, 레이저 조사부(3)를 주사 방향(T)으로 주사가능하게 마련되어 있다. 즉, 기대(2) 위의 피처리 기판(10)은 이동하지 않고, 레이저 조사부(3)가 이동해서 피처리 기판(10)의 비정질 실리콘막(12A)에 어닐 처리를 실시하도록 되어 있다. 또한, 본 실시 형태에서는, 피처리 기판(10)을 고정하는 구성으로 했지만, 레이저 조사부(3)를 고정해서, 피처리 기판(10)을 주사하는 구성으로 해도 물론 좋다.
도 1에 도시하는 바와 같이, 광원부(4)는, 복수의(본 실시 형태에서는 4개의) 반도체 레이저(20)를 구비한다. 본 실시 형태에서는, 반도체 레이저(20)로서, 파장 대역이 400∼500㎚인 GaN(질화 갈륨)계의 청색 레이저를 이용한다. 이들 반도체 레이저(20)는, 레이저광을 출사하는 광 출사면이, 동일 평면 위에 위치하도록 배치되어 있다. 이들 반도체 레이저(20)는, 일직선 상에 등간격으로 집적된 상태로 늘어서도록 배치되어 있다. 본 실시 형태에서는, 반도체 레이저(20)는, 연속 발진(또는 연속파 발진, CW: Continuous Wave) 동작을 행하는 CW 레이저이다.
본 실시 형태에서는, 입사측 결상계(5)로서 결상 렌즈를 이용한다. 이 입사측 결상계(5)는, 4개의 반도체 레이저(20)로부터 각각 출사된 레이저광의 빔 전체를 로드 인티그레이터(6)의 후술하는 광 입사면(61)에 입사시키도록 설정되어 있다.
로드 인티그레이터(6)는, 직방체(直方體) 형상의 유리 로드로 구성되고, 상하 방향(긴쪽(長手) 방향)의 상단면(일단면)인 광 입사면(61)과, 상하 방향(긴쪽 방향)의 하단면(타단면)인 광 출사면(62)과, 서로 평행한 한쌍의 측면(63)과, 서로 평행한 한쌍의 측면(64)을 가진다. 또, 로드 인티그레이터(6)에서는, 상하 방향(긴쪽 방향)의 길이가, 광의 균일화를 얻기 위해서 필요한 치수로 설정되어 있다. 본 실시 형태에 있어서는, 로드 인티그레이터(6)의 한쌍의 측면(64)끼리의 거리가 짧고, 다른 한쌍의 측면(63)끼리의 거리가 길게 설정되어 있다. 또한, 본 실시 형태에 있어서는, 균일화 소자로서 로드 인티그레이터(6)를 이용하지만, 로드 인티그레이터의 집합체로 이루어지는 로드 어레이나 플라이아이 렌즈 등을 이용해도 좋다.
또한, 반도체 레이저(20)에서는, 레이저광을 출사하는 활성층의 단면에서의 개구수(NA)가 크고, 그 단면으로부터 출사되는 레이저광은 크게 확산한다. 그러나, 본 실시 형태에서는, 입사측 결상계(5)가 반도체 레이저(20)로부터 퍼져서 출사되는 레이저광을 포착할 수 있도록, 반도체 레이저(20)와 입사측 결상계(5)의 거리, 및 입사측 결상계(5)를 구성하는 결상 렌즈의 지름 치수 및 초점 거리 등을 적당히 설정하고 있다. 더불어, 본 실시 형태에서는, 복수의 반도체 레이저(20)의 광 출사면을 동일 평면 위에 위치시키고, 게다가 반도체 레이저(20)를 집적한 상태로 늘어서도록 배치하고 있다. 이와 같은 설정이나 광원부(4)의 구성에 의해, 반도체 레이저(20)로부터 출사된 레이저광의 빔 전체를, 로드 인티그레이터(6)의 광 입사면(61)에 빠짐없이 입사시키는 것이 가능해진다.
출사측 결상계(7)는, 로드 인티그레이터(6)의 광 출사면(62)을 피처리 기판(10)의 비정질 실리콘막(12A)의 표면에 투영하도록 설정되어 있다. 또한, 도 2에 도시하는 바와 같이, 본 실시 형태에서는, 출사측 결상계(7)로부터 출사되는 레이저 빔(LB)의 비정질 실리콘막(12A)의 표면에 투영되는 빔 스폿(BS)이 가늘고 긴 직사각형 모양으로 되도록 설정되어 있다. 도 2에 도시하는 바와 같이, 빔 스폿(BS)의 폭치수는, 피처리 기판(10)에 있어서의 처리 예정 영역(13)의 폭치수(W)와 동일해지도록 설정되어 있다.
(레이저 어닐 장치의 작용 및 동작)
본 실시 형태에 관계된 레이저 어닐 장치(1)에 있어서는, 복수의 반도체 레이저(20)로부터 파장 대역이 400∼500㎚인 청색의 레이저광을 연속 조사한다. 구체적으로는, 피처리 기판(10)에 있어서의 처리 예정 영역(13)의 주사 방향 전체에 걸쳐서 연속적으로 레이저광을 발진하도록 구동한다. 그리고, 처리 예정 영역(13)이 섬모양(島狀)으로 점재하는 경우는, 그 처리 예정 영역(13)을 주사하는 동안에 연속적으로 레이저광을 발진하는 구동을 행한다. 여기서, 연속 조사란, 목적 영역에 대해서 연속해서 레이저광을 조사하는 소위 의사(疑似) 연속 조사도 포함하는 개념이다. 다시 말해, 레이저광이 펄스 레이저이더라도, 펄스폭이 넓으면 이 의사 연속 조사에 포함되는 경우가 있다.
본 실시 형태에서는, 개개의 반도체 레이저(20)의 출력으로서는, 예를 들면, 출력이 낮은 수 W의 것을 이용할 수가 있다. 복수의 반도체 레이저(20)를 어레이로서 묶는 것에 의해 어닐 처리에 필요한, 예를 들면, 수 W∼수십 W, 나아가서는 그 이상의 출력을 안정되게 얻을 수가 있다.
레이저 어닐 장치(1)에 있어서는, 복수의 반도체 레이저(20)로부터 각각 출사된 레이저광이, 입사측 결상계(5)를 거쳐서 로드 인티그레이터(6)에 직접적으로 입사된다. 이 때문에, 종래와 같이 광섬유를 이용하는 경우에 비해 결합 손실이 발생하지 않는다. 더불어, 레이저 어닐 장치(1)에 있어서는, 입사측 결상계(5)의 결상 렌즈가, 반도체 레이저(20)로부터 직접 출사된 레이저광의 빔 전체를, 로드 인티그레이터(6)의 광 입사면(61)의 영역 내에만 빠짐없이 입사시킨다.
본 실시 형태에 있어서는, 로드 인티그레이터(6)의 한쌍의 측면(64)끼리의 거리가 짧고, 다른 한쌍의 측면(63)끼리의 거리가 길게 설정되어 있다. 따라서, 본 실시 형태에 있어서는, 거리가 짧은 한쌍의 측면(64)끼리의 사이에서는, 광 입사면(61)으로부터 입사한 레이저광이 광 출사면(62)을 향해, 전반사(全反射)가 반복되는 횟수가 많아지기 쉽고, 레이저광의 광량은 충분히 균일화된다.
로드 인티그레이터(6)의 광 입사면(61)에 입사한 레이저광의 빔의 일부는, 광 출사면(62)을 향해 직진해서 광 출사면(62)으로부터 그대로 출사되지만, 소정 이상의 입사각을 가진 레이저광은, 로드 인티그레이터(6)의 한쌍의 측면(63)의 어느 하나에 도달한다. 로드 인티그레이터(6)의 한쌍의 측면(63)의 어느 하나에서는, 입사한 레이저광은 전반사해서 되접어꺾인다(방향전환된다). 본 실시 형태에서는, 한쌍의 측면(63)끼리는 평행하기 때문에, 입사한 레이저광은 로드 인티그레이터(6)의 광 출사면(62)에 도달할 때까지 전반사를 반복해서, 광 출사면(62)으로부터 출사한다. 이 때문에, 로드 인티그레이터(6)에 입사한 레이저광의 빔은, 로드 인티그레이터(6)의 한쌍의 측면(63)에서 되접어꺾이고(방향전환되고) 적산되어 광 출사면(62)으로부터 출사한다. 이 적산에 의해, 로드 인티그레이터(6)의 광 출사면(62)에서는, 레이저광의 빔 내에서 광강도가 평균화되어 균일한 광강도 분포로 된다.
출사측 결상계(7)에서는, 로드 인티그레이터(6)의 광 출사면(62)을 피처리 기판(10)의 표면에 투영한다. 즉, 도 2에 도시하는 바와 같이, 출사측 결상계(7)는, 로드 인티그레이터(6)의 광 출사면(62)으로부터 출사된 레이저광의 빔을 피처리 기판(10)의 표면에 직사각형 모양의 빔 스폿(BS)으로서 투영한다.
어닐 처리의 순서로서는, 도 1에 도시하는 바와 같이, 기대(2) 위에는 피처리 기판(10)을 배치하고, 레이저 조사부(3)를 주사 방향(T)으로 이동시키는 것에의해, 피처리 기판(10)의 표면에 마련된 비정질 실리콘막(12A)의 처리 예정 영역(13)에 어닐 처리가 가능하게 된다. 도 2에 도시하는 바와 같이, 레이저 빔(LB)이 주사 방향(T)으로 이동하는 것에 의해, 비정질 실리콘막(12A)은 다결정 실리콘막(12P)으로 개질된다.
이하, 본 실시 형태에 관계된 레이저 어닐 장치(1)의 효과에 대해서 설명한다. 본 실시 형태에 의하면, 반도체 레이저(20)에서 출사되는 레이저광을 직접적으로 균일화 소자로서의 로드 인티그레이터(6)에 입사시킬 수 있기 때문에, 개구수(NA)가 큰 반도체 레이저(20)를 이용해도 레이저광의 광 전파 손실을 작게 할 수가 있다.
또, 본 실시 형태에 의하면, 안정한 출력 특성을 갖는 반도체 레이저(20)를 직접 이용하는 것에 의해, 원하는 레이저 출력을 안정되게 유지할 수 있어, 피처리 기판(10)에의 레이저 조사 조건의 제어성을 높일 수가 있다. 또, 본 실시 형태에서는, 종래의 ELA 장치나 고체 레이저 어닐 장치와 비교해서, 저렴한 반도체 레이저(20)를 그대로 사용할 수 있게 되기 때문에, 대폭적인 저비용화(저가격화)를 달성할 수 있다. 본 실시 형태에 의하면, 어닐 출력의 설정을 바꾸고 싶은 경우는, 반도체 레이저(20)의 배치 개수나 점등 개수를 증감하면 좋다.
또, 본 실시 형태와 같이, 레이저광을 연속 발진(CW) 구동하는 것에 의해, 비정질 실리콘막(12A)에 대해서 변동이 없는 어닐 처리를 행하는 것이 가능해진다. 이 때문에, 다결정 실리콘막(12P)의 결정 구조를 최적화해서 질좋은(양질의) 다결정 실리콘막으로 하는 것이 가능해지고, 높은 이동도를 갖는 채널층을 가지는 TFT 기판의 제조가 가능해진다.
또, 본 실시 형태에 의하면, 본래 소형의 반도체 레이저(20)와 균일화 소자 등을 조합한 것에 의해, 레이저 조사부(3)의 경량화를 달성할 수 있다. 이 때문에, 본 실시 형태에 의하면, 피처리 기판(10)에 대해서 레이저 조사부(3)가 이동하는 구성으로 할 수가 있다.
근래, FPD의 대형화가 진행되고 있지만, 종래와 같은 대형의 레이저 조사부를 구비한 레이저 어닐 장치에서는, 레이저 조사부측의 이동이 곤란했다. 종래의 레이저 어닐 장치에서는, 대형의 피처리 기판(10)을 이동함으로써 장치의 풋프린트(footprint)가 커진다고 하는 과제를 안고 있다. 또한, 본 실시 형태에서는, 피처리 기판(10)을 고정해서 레이저 조사부(3)를 이동가능하게 했지만, 거꾸로(반대로) 레이저 조사부(3)를 고정해서 피처리 기판(10)을 이동가능하게 하는 구성으로 해도 물론 좋다.
또, 본 실시 형태에 의하면, 수명이 5000시간 이상인 반도체 레이저(20)를 이용할 수 있기 때문에, 반도체 레이저(20)의 교환 주기도 길게 설정할 수 있고, 광원부(4)의 교환 비용(가격)이나 유지 비용도 종래의 레이저 어닐 장치와 비교해서 대폭 내릴(삭감할) 수가 있다.
[제2의 실시 형태]
도 3은, 본 발명의 제2의 실시 형태에 관계된 레이저 어닐 장치(1A)를 도시하는 개략 구성도이다. 본 실시 형태에 관계된 레이저 어닐 장치(1A)는, 1개의 반도체 레이저(20)와, 분산 소자(8)와, 균일화 소자로서의 로드 인티그레이터(6)와, 출사측 결상계(7)를 구비한다. 본 실시 형태에서는, 반도체 레이저(20)와, 분산 소자(8)와, 입사측 결상계(5)와, 로드 인티그레이터(6)와, 출사측 결상계(7)로 레이저 조사부(3A)를 구성하고 있다. 분산 소자(8)로서는, 확산판, 회절 광학 소자, 프리즘 어레이 등을 이용할 수가 있다.
본 실시 형태에서는, 1개의 반도체 레이저(20)로부터 직접 출사된 레이저광을 분산 소자(8)로 분산시켜서, 입사측 결상계(5)측으로부터 분산 소자(8)측을 보았을 때에, 외관상, 복수의 반도체 레이저(20)로부터 레이저광이 조사된(레이저광을 조사받은) 것처럼 분산시킴으로써, 레이저광의 균일화를 도모할 수가 있다. 본 실시 형태에 있어서의 다른 구성은, 상기 제1의 실시 형태에 관계된 레이저 어닐 장치(1)의 구성과 마찬가지이기 때문에 설명을 생략한다.
본 실시 형태에 의하면, 단일의 반도체 레이저(20)를 이용하여 균일화된 레이저 빔(LB)을 형성할 수가 있다. 이 때문에, 본 실시 형태에 의하면, 더욱더 레이저 조사부(3A)의 경량화와 저가격화를 달성할 수가 있다. 본 실시 형태에 있어서의 다른 효과는, 상기 제1의 실시 형태에 관계된 레이저 어닐 장치(1)의 효과와 마찬가지이다.
[제3의 실시 형태]
도 4는, 본 발명의 제3의 실시 형태에 관계된 레이저 어닐 장치(1B)를 도시하는 개략 구성도이다. 본 실시 형태에 관계된 레이저 어닐 장치(1B)는, 4개의 반도체 레이저(20)와, 균일화 소자로서의 로드 인티그레이터(6)와, 출사측 결상계(7)를 구비한다. 본 실시 형태에서는, 반도체 레이저(20)와, 로드 인티그레이터(6)와, 출사측 결상계(7)로 레이저 조사부(3B)를 구성하고 있다.
본 실시 형태에서는, 4개의 반도체 레이저(20)로부터 출사된 레이저광이 직접 로드 인티그레이터(6)에 입사하도록 설정되어 있다. 본 실시 형태에서는, 4개의 반도체 레이저(20)로부터 출사된 레이저광을 빠짐없이 광 입사면(61)에 입사시키기 위해서, 비교적 면적이 큰 광 입사면(61)을 가지는 로드 인티그레이터(6)를 이용하고 있다. 본 실시 형태에 있어서의 다른 구성은, 상기 제1의 실시 형태에 관계된 레이저 어닐 장치(1)의 구성과 마찬가지이기 때문에 설명을 생략한다.
본 실시 형태에서는, 상기 제1의 실시 형태에 관계된 레이저 어닐 장치(1)를 구성하는 입사측 결상계(5)를 이용하지 않기 때문에, 장치 구성을 더욱더 간소화할 수 있다. 본 실시 형태의 효과는, 상기 제1의 실시 형태의 효과와 마찬가지이다.
[제4의 실시 형태]
도 5는, 본 발명의 제4의 실시 형태에 관계된 레이저 어닐 장치(1C)를 도시하는 개략 구성도이다. 본 실시 형태에 관계된 레이저 어닐 장치(1C)는, 한쌍의 반도체 레이저(20)와, 각각의 반도체 레이저(20)에 대응하는 한쌍의 입사측 결상계(5A)와, 균일화 소자로서의 로드 인티그레이터(6)와, 출사측 결상계(7)를 구비한다. 본 실시 형태에서는, 한쌍의 반도체 레이저(20)와, 한쌍의 입사측 결상계(5A)와, 로드 인티그레이터(6)와, 출사측 결상계(7)로 레이저 조사부(3C)를 구성하고 있다.
본 실시 형태에서는, 2개의 반도체 레이저(20)로부터 출사된 레이저광이 각각 입사측 결상계(5A)를 거쳐서 로드 인티그레이터(6)로의 광 입사면(61)에 빠짐없이 입사하도록 설정되어 있다. 본 실시 형태에 있어서의 다른 구성은, 상기 제1의 실시 형태에 관계된 레이저 어닐 장치(1)의 구성과 마찬가지이기 때문에 설명을 생략한다. 본 실시 형태의 효과는, 상기 제1의 실시 형태의 효과와 마찬가지이다.
[제5의 실시 형태]
도 6은, 본 발명의 제5의 실시 형태에 관계된 레이저 어닐 장치(1D)를 도시하는 개략 구성도이다. 본 실시 형태에 관계된 레이저 어닐 장치(1D)는, 4개의 반도체 레이저(20)를 구비하는 광원부(4)와, 각각의 반도체 레이저(20)에 대응하는 입사측 결상계(5B)와, 균일화 소자로서의 로드 인티그레이터(6)와, 출사측 결상계(7)를 구비한다. 본 실시 형태에서는, 광원부(4)와, 입사측 결상계(5B)와, 로드 인티그레이터(6)와, 출사측 결상계(7)로 레이저 조사부(3D)를 구성하고 있다.
본 실시 형태에서는, 4개의 반도체 레이저(20)로부터 출사된 레이저광이 각각 입사측 결상계(5B)를 거쳐서 로드 인티그레이터(6)의 광 입사면(61)에 빠짐없이 입사하도록 설정되어 있다. 도 6에 도시하는 바와 같이, 4개의 반도체 레이저(20)는 어레이 기판(41)의 하면에 일렬로 배치, 고정되어 있다. 입사측 결상계(5B)는, 각각의 반도체 레이저(20)에 대응하도록 배치되어 있다. 본 실시 형태에 있어서의 다른 구성은, 상기 제1의 실시 형태에 관계된 레이저 어닐 장치(1)의 구성과 마찬가지이기 때문에 설명을 생략한다. 본 실시 형태의 효과는, 상기 제1의 실시 형태의 효과와 마찬가지이다.
[제6의 실시 형태]
도 7은, 본 발명의 제6의 실시 형태에 관계된 레이저 어닐 장치(1E)를 도시하는 개략 구성도이다. 본 실시 형태에 관계된 레이저 어닐 장치(1E)는, 4개의 반도체 레이저(20A)를 구비하는 광원부(4)와, 균일화 소자로서의 로드 인티그레이터(6)와, 출사측 결상계(7)를 구비한다. 본 실시 형태에서는, 광원부(4)와, 로드 인티그레이터(6)와, 출사측 결상계(7)로 레이저 조사부(3E)를 구성하고 있다.
도 7 및 도 8에 도시하는 바와 같이, 본 실시 형태에서는, 반도체 레이저(20A)가, 입사측 결상계로서의 온칩 렌즈(5C)를 구비하고 있다. 도 8에 도시하는 바와 같이, 반도체 레이저(20A)는, 순차 적층된 n측 전극(21), n형 기판(22), n형 클래드층(23), 활성층(24), p형 클래드층(25), p측 전극(26)을 구비하고 있다. 활성층(24)의 일단(一端)측에는 완전 반사막(27)이 형성되어 있다. 한편, 활성층(24)의 타단(他端)측의 반사면(24A)에 온칩 렌즈(5C)가 일체로 형성되어 있다.
본 실시 형태에서는, 반도체 레이저(20A)에 온칩 렌즈(5C)가 일체로 마련되어 있기 때문에, 입사측 결상계를 별도로 마련할 필요가 없어, 레이저 조사부(3E)를 컴팩트한 구조로 할 수 있다.
또, 본 실시 형태에서는, 4개의 반도체 레이저(20A)로부터 출사된 레이저광이 각각 온칩 렌즈(5C)를 거쳐서 로드 인티그레이터(6)의 광 입사면(61)에 빠짐없이 입사하도록 설정하는 것이 용이하다. 본 실시 형태에 있어서의 다른 구성은, 상기 제1의 실시 형태에 관계된 레이저 어닐 장치(1)의 구성과 마찬가지이기 때문에 설명을 생략한다. 본 실시 형태의 효과는, 상기 제1의 실시 형태의 효과와 마찬가지이다.
[그밖의 실시 형태]
이상, 실시 형태에 대해서 설명했지만, 이 실시 형태의 개시(開示)의 일부를 이루는 논술 및 도면은 본 발명을 한정하는 것이라고 이해해서는 안된다. 이 개시로부터 당업자에게는 여러가지(다양한) 대체 실시 형태, 실시예 및 운용 기술이 명확해질 것이다.
예를 들면, 상기 제1∼제6의 실시 형태에 있어서는, 균일화 소자로서 직방체(直方體) 형상의 로드 인티그레이터(6)를 이용한 예를 나타냈지만, 이것 대신에 로드 어레이나 플라이아이 렌즈 등의 광의 균일화를 행하는 광학 소자를 이용해도 좋다. 또, 로드 인티그레이터(6)로서는, 광 입사면(61)으로부터 광 출사면(62)으로 향함에 따라서 단면적이 점차 작아지는 바와 같은 구조의 것을 이용하는 것도 가능하다.
상기의 제1∼제6의 실시 형태에서는, 반도체 레이저(20, 20A)의 수가, 1, 2, 4인 경우에 대해서 설명했지만, 반도체 레이저(20)의 수는, 이것에 한정되는 것은 아니고, 더욱더 다수의 반도체 레이저(20, 20A)를 이용하여 레이저 빔(LB)의 출력을 높인 구성으로 해도 좋다.
상기 제1∼제6의 실시 형태에서는, 레이저 조사부(3, 3A, 3B, 3C, 3D, 3E)를 이동시켜서, 피처리 기판(10)을 위치 고정하는 구성으로 했지만, 피처리 기판(10)이 이동해서, 레이저 조사부(3, 3A, 3B, 3C, 3D, 3E)가 위치 고정된 구성으로 해도 좋다.
상기 제1∼제6의 실시 형태에서는, 반도체 레이저(20, 20A)를 청색 레이저로 했지만, 이것에 한정되는 것은 아니고, 다른 파장 대역의 반도체 레이저를 적용해도 물론 좋다.
1, 1A, 1B, 1C, 1D, 1E: 레이저 어닐 장치
2: 기대
3, 3A, 3B, 3C, 3D, 3E: 레이저 조사부
4: 광원부
5, 5A, 5B: 입사측 결상계
5C: 온칩 렌즈
6: 로드 인티그레이터(균일화 소자)
7: 출사측 결상계
8: 분산 소자
10: 피처리 기판
12A: 비정질 실리콘막
12P: 다결정 실리콘막
13: 처리 예정 영역
20, 20A: 반도체 레이저
24: 활성층
24A: 반사면
27: 완전 반사막
41: 어레이 기판
61: 광 입사면
62: 광 출사면
63: 측면
64: 측면
BS: 빔 스폿
LB: 레이저 빔
T: 주사 방향

Claims (9)

  1. 레이저 빔을 피처리 기판의 표면에 조사해서 피처리 기판에 대해서 어닐 처리를 행하는 레이저 어닐 장치로서,
    레이저광을 출사하는 반도체 레이저를 구비하는 광원부와,
    광 입사면과 해당 광 입사면에 대향하는 광 출사면을 가지고, 상기 광 입사면에 상기 반도체 레이저로부터 직접 출사된 레이저광이 입사되고, 상기 광 출사면으로부터 균일화된 레이저 빔을 출사하는 균일화 소자와,
    상기 광 출사면으로부터 출사된 레이저 빔을, 피처리 기판의 표면에 투영하는 출사측 결상계
    를 구비하는, 레이저 어닐 장치.
  2. 제 1 항에 있어서,
    상기 광원부와 상기 균일화 소자 사이에, 상기 반도체 레이저로부터 직접 출사된 레이저광의 빔 전체를 상기 광 입사면의 영역 내에만 입사시키는 입사측 결상계를 구비하는, 레이저 어닐 장치.
  3. 제 1 항 또는 제 2 항에 있어서,
    상기 광원부는, 복수의 상기 반도체 레이저를 구비하는, 레이저 어닐 장치.
  4. 제 2 항에 있어서,
    상기 광원부는, 단일의 상기 반도체 레이저를 구비하고,
    상기 광원부와 상기 입사측 결상계 사이에, 상기 반도체 레이저로부터 직접 출사된 레이저광의 빔을 복수의 빔으로 분산시키는 분산 소자를 구비하는, 레이저 어닐 장치.
  5. 제 1 항 내지 제 4 항 중 어느 한 항에 있어서,
    상기 출사측 결상계로부터 출사되는 레이저 빔은, 상기 피처리 기판의 표면에 직사각형 모양의 빔 스폿으로 투영되는, 레이저 어닐 장치.
  6. 제 1 항 내지 제 5 항 중 어느 한 항에 있어서,
    상기 균일화 소자는, 상기 광 출사면으로부터 평행광으로 이루어지는 레이저 빔을 출사하는, 레이저 어닐 장치.
  7. 제 1 항 내지 제 5 항 중 어느 한 항에 있어서,
    상기 균일화 소자는, 로드 인티그레이터(rod integrator), 로드 어레이, 플라이아이 렌즈로부터 선택되는, 레이저 어닐 장치.
  8. 제 2 항 또는 제 4 항에 있어서,
    상기 입사측 결상계는, 상기 반도체 레이저의 활성층의 레이저광 출사 단면에 배치된 온칩 렌즈인, 레이저 어닐 장치.
  9. 제 1 항 내지 제 8 항 중 어느 한 항에 있어서,
    상기 광원은, 레이저광을 연속 발진하는, 레이저 어닐 장치.
KR1020217008102A 2018-12-17 2019-11-27 레이저 어닐 장치 KR20210102183A (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2018-235432 2018-12-17
JP2018235432A JP7140384B2 (ja) 2018-12-17 2018-12-17 レーザアニール装置
PCT/JP2019/046421 WO2020129561A1 (ja) 2018-12-17 2019-11-27 レーザアニール装置

Publications (1)

Publication Number Publication Date
KR20210102183A true KR20210102183A (ko) 2021-08-19

Family

ID=71101685

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020217008102A KR20210102183A (ko) 2018-12-17 2019-11-27 레이저 어닐 장치

Country Status (5)

Country Link
JP (1) JP7140384B2 (ko)
KR (1) KR20210102183A (ko)
CN (1) CN113169054A (ko)
TW (1) TW202032669A (ko)
WO (1) WO2020129561A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113618660A (zh) * 2021-09-09 2021-11-09 北京闻亭泰科技术发展有限公司 一种积分棒夹持装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4948650B1 (ko) 1968-11-25 1974-12-23

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004200497A (ja) * 2002-12-19 2004-07-15 Sony Corp 光照射装置及びレーザアニール装置
JP5171074B2 (ja) * 2007-03-13 2013-03-27 住友重機械工業株式会社 レーザアニール方法
JP5803222B2 (ja) * 2011-04-05 2015-11-04 株式会社ブイ・テクノロジー レーザ照明装置
JP5447445B2 (ja) * 2011-07-11 2014-03-19 株式会社リコー 照明光学系、露光装置及び投射装置
WO2017029729A1 (ja) * 2015-08-19 2017-02-23 ギガフォトン株式会社 レーザ装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4948650B1 (ko) 1968-11-25 1974-12-23

Also Published As

Publication number Publication date
WO2020129561A1 (ja) 2020-06-25
JP2020098824A (ja) 2020-06-25
JP7140384B2 (ja) 2022-09-21
TW202032669A (zh) 2020-09-01
CN113169054A (zh) 2021-07-23

Similar Documents

Publication Publication Date Title
JP4698460B2 (ja) レーザアニーリング装置
US7615722B2 (en) Amorphous silicon crystallization using combined beams from optically pumped semiconductor lasers
US8125703B2 (en) Wavelength converter and image display with wavelength converter
US7365285B2 (en) Laser annealing method and apparatus
US20090317961A1 (en) Beam homogenizer and laser irradiation apparatus and method of manufacturing semiconductor device
US20090016400A1 (en) Multi-beam laser apparatus
JP2009540567A (ja) 高エネルギー・パルスレーザ用途のためのビーム形状及び対称性を安定化させるための装置及び方法
JP4727135B2 (ja) レーザアニール装置
KR20210102183A (ko) 레이저 어닐 장치
US10444522B2 (en) Customized pupil stop shape for control of edge profile in laser annealing systems
JP2004342875A (ja) レーザアニール装置
US7586971B2 (en) External-cavity laser light source apparatus and laser light emission module
KR101188417B1 (ko) 반도체 제조장치
US8517542B2 (en) Laser illumination device, illumination method, semiconductor element manufacturing method, projection display device, and image display method using the projection display device
JP2004064064A (ja) レーザアニール装置
US7851724B2 (en) Laser exposure apparatus and laser annealing apparatus
JP2008053317A (ja) 照射光学系
WO2023171170A1 (ja) レーザアニール装置およびレーザアニール方法
WO2021039920A1 (ja) レーザアニール装置およびレーザアニール方法
CN117148645A (zh) 光束匀化装置及激光设备
Tanino et al. CO 2 laser device and CO 2 laser processing device