KR20210091443A - Aluminum alloy extrudate having excellent formability and its production method - Google Patents

Aluminum alloy extrudate having excellent formability and its production method Download PDF

Info

Publication number
KR20210091443A
KR20210091443A KR1020200004611A KR20200004611A KR20210091443A KR 20210091443 A KR20210091443 A KR 20210091443A KR 1020200004611 A KR1020200004611 A KR 1020200004611A KR 20200004611 A KR20200004611 A KR 20200004611A KR 20210091443 A KR20210091443 A KR 20210091443A
Authority
KR
South Korea
Prior art keywords
mass
aluminum alloy
strength
extrusion
content
Prior art date
Application number
KR1020200004611A
Other languages
Korean (ko)
Inventor
지종민
성효숙
Original Assignee
(주)제이에스솔텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)제이에스솔텍 filed Critical (주)제이에스솔텍
Priority to KR1020200004611A priority Critical patent/KR20210091443A/en
Publication of KR20210091443A publication Critical patent/KR20210091443A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/053Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F3/00Changing the physical structure of non-ferrous metals or alloys by special physical methods, e.g. treatment with neutrons

Abstract

The present invention relates to an aluminum alloy extrusion material having strength and excellent formability, which is suitable for a member requiring strength after welding and is capable of forming members of various shapes such as a frame of an LED lighting, and a manufacturing method thereof. According to the present invention, in an Al-Zn-Mg-based aluminum alloy, by adjusting contents of other elements, particularly Cu, Si, and Fe, without containing Mn and Cr, which are the structure-strengthening elements, and adjusting a homogenization condition or an extrusion condition, the Al-Zn-Mg-based aluminum alloy can easily extrude and process a tubular body having thickness of 2mm or less. Moreover, the present invention can manufacture the aluminum alloy extrusion material which can demonstrate preferrable mechanical strength while maintaining weldability.

Description

양호한 성형성을 갖는 알루미늄합금 압출재 및 그 제조 방법{Aluminum alloy extrudate having excellent formability and its production method}Aluminum alloy extrudate having excellent formability and its production method

본 발명은 엘이디조명의 프레임과 같은 다양한 형상의 부재의 성형이 가능하고, 한편, 용접 후 강도가 요구되는 부재에 적절한, 강도 및 양호한 성형성을 갖는 알루미늄합금 압출재 및 그 제조방법에 관한 것이다.The present invention relates to an aluminum alloy extruded material having strength and good formability, suitable for a member requiring strength after welding, which is capable of forming members of various shapes, such as a frame of an LED lighting, and a method for manufacturing the same.

성형성이 좋은 알루미늄 합금으로서는, Al-Mg-Si계의, 이른바 6000계 알루미늄 합금이 알려져 있다.이 계의 합금은 강도, 내식성이 양호하기 때문에, 각종 구조재료로서 광범위하게 사용되고 있다. 그러나 6000계 알루미늄 합금은 용접 후 강도에 문제가 있기 때문에 용접을 사용하는 대상에서는 부적당하다.As an aluminum alloy with good formability, an Al-Mg-Si-based, so-called 6000-series aluminum alloy is known. Since this alloy has good strength and corrosion resistance, it is widely used as various structural materials. However, the 6000 series aluminum alloy is not suitable for welding because it has a problem in strength after welding.

그렇지만, Zn함유량이 많고 게다가 Mg, Mn, Cr 및 Cu를 함유시킨 7000계 알루미늄 합금은 알루미늄 합금 중에서는 가장 강도가 높은 부류의 합금이지만, Mg를 함유하고 있기때문에, 압출 가공성이 비교적 나쁘다.However, the 7000 series aluminum alloy having a large Zn content and containing Mg, Mn, Cr and Cu is the highest-strength alloy among aluminum alloys, but since it contains Mg, extrusion workability is relatively poor.

예를 들면, Mg 및 Cu를 다량으로 함유하고 있는 소재는 시효 처리 후에 600MPa를 넘을 정도의 고강도를 가지지만, 열간에서의 변형 저항이 높고, 두께 2 mm이하의 관상체를 공업적으로 압출해 성형하는 것은 매우 어렵다.For example, a material containing a large amount of Mg and Cu has a high strength exceeding 600 MPa after aging treatment, but has a high deformation resistance in hot and is industrially extruded and molded into a tubular body with a thickness of 2 mm or less. It is very difficult to do.

한편 Cu함유량을 억제한 소재는 강도가 낮아지기 때문에 큰 하중을 부담하는 부품재로서 이용하려고 할 경우에는 의도한 기계적 특성을 얻을 수 없다.On the other hand, since the material with the Cu content suppressed has lower strength, the intended mechanical properties cannot be obtained when used as a component material bearing a large load.

이와 같이, 기존의 기술을 용접 후 기계적 특성이 요구되는 구조재(엘이디조명 프레미), 차량 부품 등에 적용하기 위한 압출재의 제조하려고 하면, 제품 생산성이 나쁘고, 생산 단가가 높아져 버린다.In this way, when an existing technique is attempted to manufacture an extruded material for application to structural materials (LED lighting premi), vehicle parts, etc. requiring mechanical properties after welding, product productivity is poor and production cost is high.

본 발명은 이러한 문제를 해소하기 위해 고안된 것으로서, 특히 용접 후 강도가 높고, 게다가 양호한 성형성을 갖는 알루미늄합금 압출재를 제공하는 것이다.The present invention has been devised to solve this problem, and in particular, provides an aluminum alloy extruded material having high strength after welding and good formability.

본 발명에 따른 양호한 성형성을 갖는 알루미늄합금 압출재는 그 목적을 달성하기 위해, Zn: 4.5~7질량%, Mg: 0.2~0.38질량%, Cu: 0.25~0.4질량%, Zr: 0.1~0.3질량%를 포함하며, 더 나이가서는 Si: 0.05~0.3질량% 및 Fe: 0.05~0.3질량%를 포함하여 Al와 불가피적 불순물로 이루어지는 것을 특징으로 한다.The aluminum alloy extruded material having good formability according to the present invention, in order to achieve its purpose, Zn: 4.5-7 mass%, Mg: 0.2-0.38 mass%, Cu: 0.25-0.4 mass%, Zr: 0.1-0.3 mass% %, and older Si: 0.05-0.3 mass% and Fe: 0.05-0.3 mass%, including Al and unavoidable impurities.

여기서 Ti:0.001~0.2 질량%, B:0.0001~0.01 질량% 중의 1종 또는 2종을 함유시킬 수도 있다.Here, you may make it contain 1 type or 2 types among Ti:0.001-0.2 mass %, and B:0.0001-0.01 mass %.

또한 상기의 성분 조성을 가지는 알루미늄 합금 소재를 , 소정 조건으로 균질화 처리한 후 소정의 조건으로 압출 가공하는 것에 의해 양호한 성형성을 갖는 알루미늄합금 압출재를 얻을 수 있다.In addition, an aluminum alloy extruded material having good moldability can be obtained by subjecting an aluminum alloy material having the above component composition to homogenization under predetermined conditions and then extruding under predetermined conditions.

본 발명에 의하면, Al-Zn-Mg계 알루미늄 합금에 있어서, 조직 강화 원소인 Mn, Cr를 함유시키지 않고, 다른 원소, 특히 Cu, Si, Fe의 함유량을 조정하는 것으로써, 또한 균질화 조건이나 압출 조건 등을 조정하는 것으로써, Al-Zn-Mg계 알루미늄 합금으로서 두께 2 mm이하의 관상체를 용이하게 압출 가공할 수 있다. 게다가 용접성을 유지하면서 바람직한 기계적 강도를 발휘할 수 있는 알루미늄합금 압출재를 제조할 수 있다.According to the present invention, in the Al-Zn-Mg-based aluminum alloy, by adjusting the content of other elements, particularly Cu, Si and Fe, without containing Mn and Cr, which are the structure-strengthening elements, further homogenization conditions and extrusion By adjusting the conditions and the like, it is possible to easily extrude a tubular body having a thickness of 2 mm or less as an Al-Zn-Mg-based aluminum alloy. Moreover, it is possible to manufacture an aluminum alloy extruded material capable of exhibiting desirable mechanical strength while maintaining weldability.

따라서 용접 후 기계적 특성이 요구되는 구조재 등에 적용하기 위한 압출재를 작은 비용으로 제조할 수 있다.Therefore, an extruded material for application to structural materials requiring mechanical properties after welding can be manufactured at a low cost.

이하 본 발명을 구체적으로 설명한다.Hereinafter, the present invention will be described in detail.

우선 본 발명의 Al-Zn-Mg계 알루미늄 합금을 구성하는 성분의 작용 및 함유량에 대해서 설명한다.First, the action and content of the components constituting the Al-Zn-Mg-based aluminum alloy of the present invention will be described.

통상의 7000계 합금에 포함되어 있는 망간(Mn)이나 크롬(Cr)은 석출물을 형성하여 재결정화를 억제함으로써 기계적 성질의 향상 및 용접시의 균열 방지에 기여한다.Manganese (Mn) or chromium (Cr) contained in a typical 7000 series alloy forms precipitates and inhibits recrystallization, thereby contributing to improvement of mechanical properties and prevention of cracking during welding.

그러나 열간 변형 저항값이 높아져 압출 가공성을 악화시키기 때문에 본 발명 합금에서는 Mn 및 Cr은 함유시키지 않는다. However, Mn and Cr are not contained in the alloy of the present invention in order to increase the hot deformation resistance and deteriorate the extrusion workability.

단 원료인 알루미늄 합금 스크랩으로부터 불가피하게 불순물로서 혼입하는 Mn, Cr는 고려하지 않았다. 양자 모두 0.05 질량% 미만이면 압출 성형성에는 거의 영향을 주지 않는다.However, Mn and Cr, which are unavoidably mixed as impurities from aluminum alloy scrap, which are raw materials, were not considered. If both are less than 0.05 mass %, extrusion moldability is hardly affected.

Zn는 Mg-Zn계의 석출물을 형성해, 알루미늄 합금의 강도를 향상시키기 위한 가장 중요한 성분이며, 그 바람직한 함유 범위는 4.5~7질량%이다. Zn함유량이 4.5 질량% 미만에서는 강도 향상의 효과가 충분하지 않다. 7질량%를 넘더라도 더 이상의 강도 향상은 기대할 수 없으며 반대로 내식성이 저하된다.Zn forms Mg-Zn type precipitates and is the most important component for improving the strength of an aluminum alloy, and its preferable content range is 4.5-7 mass %. If the Zn content is less than 4.5 mass%, the effect of improving the strength is not sufficient. Even if it exceeds 7% by mass, further improvement in strength cannot be expected and, conversely, corrosion resistance is lowered.

Mg의 바람직한 함유범위는 0.2~0.38 질량%이다. Mg는 Mg-Zn계의 석출물을 형성해, 모상(parent phase) 중 분산해 압출재의 기계적 강도를 향상시킨다. 이 효과는 Mg를 0.2질량% 이상 함유시켰을 때 효과적이다. 반대로 0.38질량%를 넘게 첨가하면 열간 변형 저항이 높아져 성형성 및 압출 가공성이 악화되어 생산성이 저하된다. 따라서 Mg의 함유량은 0.2~0.38 질량%이 적합하며, 바람직하게는 0.30~0.35 질량%가 더욱 좋다.The preferable content range of Mg is 0.2-0.38 mass %. Mg forms Mg-Zn-based precipitates and disperses them in the parent phase to improve the mechanical strength of the extruded material. This effect is effective when 0.2 mass % or more of Mg is contained. Conversely, when it is added in an amount exceeding 0.38% by mass, hot deformation resistance increases, moldability and extrusion processability deteriorate, and productivity decreases. Therefore, 0.2-0.38 mass % is suitable for content of Mg, Preferably 0.30-0.35 mass % is more preferable.

Cu는 모상(parent phase) 중 고용해서 기계적 강도를 향상시킨다. 이 효과는 Cu함유량이 0.25 질량%이상일 때에 현저해진다. 반대로 0.4질량%를 넘어 함유시키면 내식성이 저하된다. 따라서 Cu함유량은 0.25~0.4 질량%가 바람직하며, 0.25~0.35 질량%로 하는 것이 더욱 바람직하다.Cu is dissolved in the parent phase to improve mechanical strength. This effect becomes remarkable when Cu content is 0.25 mass % or more. Conversely, when it contains exceeding 0.4 mass %, corrosion resistance will fall. Therefore, as for Cu content, 0.25-0.4 mass % is preferable, and it is more preferable to set it as 0.25-0.35 mass %.

Zr의 바람직한 함유범위는 0.1~0.3질량%이다. Zr는 Al-Zr계 화합물을 형성해 모상(parent phase) 중 분산해, 핀 고정 효과에 의해서 재결정알갱이의 조대화를 억제하고 강도를 높이고 또한 용접시의 균열 발생도 방지한다. 이 효과는 Zr함유량이 0.1 질량%이상일 때에 현저해진다. 그러나 0.3질량%를 넘어 함유시키면 엉성한 Al-Zr계 화합물이 생성되어 열간 가공성을 저하시킨다. 또한 석출물이 지나치게 생성되면 열간 변형 저항성이 증대하여 압출 가공성을 저해한다.The preferable content range of Zr is 0.1-0.3 mass %. Zr forms an Al-Zr-based compound and disperses it in the parent phase, suppresses coarsening of recrystallized grains by pin fixing effect, increases strength, and prevents cracking during welding. This effect becomes remarkable when the Zr content is 0.1 mass% or more. However, when it contains more than 0.3 mass %, a coarse Al-Zr type compound is produced|generated, and hot workability is reduced. In addition, when the precipitates are excessively generated, the hot deformation resistance increases and the extrusion processability is impaired.

Si의 바람직한 함유 범위는 0.05~0.3질량%이다. Si는 Al-Si-Fe계의 화합물을 형성해 매트릭스 중 미세 분산되어 결정립의 조대화를 억제하는 것으로써, 기계적 강도를 향상시킨다. 이 효과는 Si함유량을 0.05 질량% 이상으로 했을 때에 현저하다. 그러나 0.3 질량%를 넘어 함유시키면 Mg-Si계 화합물이 형성되기 위해서 Mg-Zn계 화합물의 형성이 저해된다. 이 때문에 자연 시효 경화성이 저하되어 용접 후에 충분한 강도를 얻을 수 없다. 바람직하게는 0.05~0.15 질량%의 범위에서 함유시킨다.The preferable content range of Si is 0.05-0.3 mass %. Si forms an Al-Si-Fe-based compound and is finely dispersed in the matrix to suppress coarsening of crystal grains, thereby improving mechanical strength. This effect is remarkable when Si content is made into 0.05 mass % or more. However, when the content exceeds 0.3% by mass, the formation of the Mg-Zn-based compound is inhibited in order to form the Mg-Si-based compound. For this reason, natural aging hardenability deteriorates and sufficient strength cannot be obtained after welding. Preferably, it is made to contain in 0.05-0.15 mass %.

Fe의 바람직한 함유범위는 0.05~0.3 질량%이다. Fe는 Al-Si-Fe계의 화합물을 형성해서 매트릭스 중 미세 분산해 결정립의 조대화를 억제하는 것으로써, 기계적 강도를 향상시킨다. 이 효과는 Fe함유량을 0.05 질량% 이상으로 했을 때에 현저해진다. 그러나 0.3 질량%를 넘어 함유시키면 Al-Si-Fe계 화합물이 다량으로 분산하기 때문에, 압출재의 표면 성질과 상태가 손상된다. 바람직하게는 0.10~0.20 질량%의 범위에서 함유시킨다.The preferable content range of Fe is 0.05-0.3 mass %. Fe improves mechanical strength by forming an Al-Si-Fe compound and finely dispersed in the matrix to suppress coarsening of crystal grains. This effect becomes remarkable when Fe content is made into 0.05 mass % or more. However, when the content exceeds 0.3% by mass, the Al-Si-Fe-based compound is dispersed in a large amount, so that the surface properties and state of the extruded material are impaired. Preferably, it is made to contain in 0.10-0.20 mass %.

Fe질량%/Si질량%의 비율은 1~3이 바람직하다. 압출 후 결정립 조대화 방지 효과를 얻기 위해서 Fe, Si를 함유시키고 있다. 그 외에 주조 분열을 억제하는 효과도 있지만, 상기대로 양자의 함유량이 너무 많으면 기계적 성질을 저하시키며 또한 압출 가공성을 저해하게 된다. 그래서 Al-Si-Fe계 화합물을 효율적으로 형성시키기 위해서 Fe/Si비를 1~3으로 규제한다. Fe/Si비가 1에 못 미치면 과잉이 된 Si가 Mg와 화합물을 형성해 Mg-Zn계 화합물의 형성을 저해하여 기계적 성질이 저하된다. 그러나 Fe/Si비가 3을 넘으면 과잉이 된 Fe가 Al-Fe계 화합물을 형성하여 압출 가공성을 저하시킨다.As for the ratio of Fe mass %/Si mass %, 1-3 are preferable. In order to obtain the effect of preventing grain coarsening after extrusion, Fe and Si are contained. In addition, although there is an effect of suppressing casting breakage, as described above, when the content of both is too large, mechanical properties are reduced and extrusion processability is impaired. Therefore, in order to efficiently form an Al-Si-Fe-based compound, the Fe/Si ratio is regulated to 1-3. If the Fe/Si ratio is less than 1, the excess Si forms a compound with Mg and inhibits the formation of the Mg-Zn-based compound, and the mechanical properties deteriorate. However, when the Fe/Si ratio exceeds 3, the excess Fe forms an Al-Fe-based compound to deteriorate the extrusion processability.

Ti의 바람직한 함유범위는 0.001~0.2 질량% 및 B의 바람직한 함유범위 0.0001~0.01 질량%이며 이들 중의 1종 또는 2종을 사용한다. Ti, B는 주조재의 결정립을 미세화시켜 주조시의 균열 방지와 압출 가공성을 향상시키는 작용을 한다. 이 때문에 Ti:0.001~0.2 질량%, B:0.0001~0.01 질량%의 범위에서, 이들 중의 1종 또는 2종을 합금 중 함유시킬 수 있다. Ti, B의 함유량이 각각 상한을 넘으면 엉성한 화합물이 형성되어 압출재의 표면 성질과 상태를 악화시키게 된다.The preferred content range of Ti is 0.001 to 0.2 mass% and the preferred content range for B is 0.0001 to 0.01 mass%, and one or two of these are used. Ti and B work to refine the crystal grains of the cast material to prevent cracking during casting and improve extrusion processability. For this reason, within the range of Ti:0.001-0.2 mass % and B:0.0001-0.01 mass %, 1 type or 2 types of these can be contained in an alloy. When the content of Ti and B exceeds the upper limit, respectively, a coarse compound is formed, which deteriorates the surface properties and state of the extruded material.

그런데 Al-Zn-Mg계 알루미늄 합금의 압출재는 일반적으로 균질화 열처리한 주조 덩어리를 열간 압출 가공하여 프레스 담금질 또는 별도 용체화 처리하는 방법으로 제조된다.However, the extruded material of the Al-Zn-Mg-based aluminum alloy is generally manufactured by hot extrusion processing of a cast mass subjected to homogenization heat treatment and press quenching or separate solution treatment.

본발명의 알루미늄합금 압출재도 각 단계에서의 온도 조건이나 처리 시간 조건을 한정하는 것으로써, 소기의 목적을 달성할 수 있는데, 이하 그 제조 조건을 설명한다.The aluminum alloy extruded material of the present invention can also achieve the intended purpose by limiting the temperature conditions and processing time conditions in each step, and the manufacturing conditions thereof will be described below.

(1) 균질화 처리 (1) Homogenization treatment

- 가열 속도 200℃/h이하 - Heating rate 200℃/h or less

가열 속도가 빠르면 Al-Zr계 석출물이 조대화해 재결정화 억제 효과를 감소시켜서 기계적 성질이 저하된다. 또한 용접시의 균열 감수성도 높아진다. 그러나 너무 늦으면 경제적이지 않으므로 바람직하게는 약 100℃/h정도로 한다.If the heating rate is high, the Al-Zr-based precipitates are coarsened, reducing the recrystallization inhibitory effect, and thus mechanical properties are deteriorated. Also, the crack susceptibility during welding is increased. However, if it is too late, it is not economical, so it is preferably about 100°C/h.

- 균질화 온도ㅧ시간;450~520℃/1~24 h- Homogenization temperature Ⅷ hours; 450~520℃/1~24 h

주조시에 생긴 Mg, Zn 등의 편석을 균질화해, 압출 중 충분한 고용상태를 얻는 것과 압출재의 재결정화 억제에 적절한 Al-Zr계 화합물을 형성시키기 위해서 실시한다. 450℃에 못 미친 온도에서는 24시간 처리해도 충분한 조직은 얻을 수 없다. 한편 520℃을 넘거나 24시간을 넘어 처리하면, Mg 및 Zn은 균질화되지만 Al-Zr계 화합물이 조대화해 압출재의 재결정 억제 효과를 충분히 얻을 수 없다. 1 시간 미만의 처리에서는 균질화가 불충분하다. 따라서 균질화 처리는 450~520℃/1~24 h의 조건으로 실시한다.This is carried out to homogenize segregation of Mg, Zn, etc. generated during casting, to obtain a sufficient solid solution during extrusion, and to form an Al-Zr-based compound suitable for suppressing recrystallization of the extruded material. At a temperature lower than 450°C, even if treated for 24 hours, a sufficient tissue cannot be obtained. On the other hand, if the treatment exceeds 520°C or exceeds 24 hours, Mg and Zn are homogenized, but the Al-Zr-based compound coarsens, and the effect of inhibiting recrystallization of the extruded material cannot be sufficiently obtained. In a treatment of less than 1 hour, homogenization is insufficient. Therefore, the homogenization treatment is performed under the conditions of 450 to 520° C./1 to 24 h.

- 냉각 속도: 150℃/h이상 - Cooling rate: 150℃/h or more

상기의 고온 유지에 따라 Mg 및 Zn는 균질화되지만 냉각 속도가 늦은 경우에는 엉성한 석출물을 형성해 압출 중 충분한 용체화를 할 수 없다. 따라서 균질화 후 냉각 속도는 150℃/h이상으로 한다.Mg and Zn are homogenized by maintaining the above high temperature, but if the cooling rate is slow, coarse precipitates are formed and sufficient solutionization cannot be achieved during extrusion. Therefore, the cooling rate after homogenization is set to 150°C/h or more.

(2) 압출 가공(2) Extrusion processing

- 압출 가공 온도: 450~560℃ - Extrusion processing temperature: 450~560℃

압출 직후의 형재 온도가 450~560℃이 되도록 빌릿 가열 온도, 압출 속도를 조정한다. 이것에 의해 Mg, Zn를 충분히 고용시키는 것이 가능해진다.4 50℃에 못 미치면 고용 상태가 불충분하여, 그 후 시효 처리에 의해도 충분한 강도를 얻을 수 없다. 한편 560℃을 넘은 온도로 밀어내면 재결정화하기 쉽고 강도가 저하될 뿐만 아니라 용접시의 균열 감수성이 높아진다. 이 때문에 중공재의 제조에 있어서는 빌릿 온도를 450~540℃로 다이스 온도를 400~500℃로 하고, 3~20 m/min의 압출 속도로 밀어내는 것이 바람직하다.The billet heating temperature and the extrusion rate are adjusted so that the profile material temperature immediately after extrusion is 450 to 560°C. This makes it possible to sufficiently dissolve Mg and Zn in solid solution. 4 When the temperature is less than 50°C, the solid solution state is insufficient, and sufficient strength cannot be obtained even by subsequent aging treatment. On the other hand, when it is extruded to a temperature exceeding 560°C, it is easy to recrystallize and the strength is lowered, and the crack susceptibility during welding is increased. For this reason, in manufacture of a hollow material, it is preferable to set the billet temperature to 450 to 540°C, and to set the die temperature to 400 to 500°C, and to extrude at an extrusion rate of 3 to 20 m/min.

- 냉각 온도: 100℃/min 이상 - Cooling temperature: 100℃/min or more

두께 2 mm이상의 표준적인 관상체는 단면의 강성이 높기 때문에 압출 직후의 고온시라도 변형하기 어렵지만, 본 발명에서 목표로 하는 두께 2 mm이하의 얇은 압출재에서는 고온시 및 냉각 과정으로 변형하기 쉽기 때문에, 변형 방지를 목적으로 압출 직후부터 적극적으로 형재를 냉각한다. 평균 냉각 속도 100℃/min 이상으로 150℃이하까지 냉각하는 것이 변형 억제에 바람직하다. 냉각 속도는 200℃/min 이상으로 하는 것이 바람직하다.A standard tubular body with a thickness of 2 mm or more is difficult to deform even at high temperatures immediately after extrusion because of its high cross-sectional rigidity. For the purpose of preventing deformation, the shape member is actively cooled immediately after extrusion. Cooling to 150°C or less at an average cooling rate of 100°C/min or more is preferable to suppress deformation. It is preferable that a cooling rate shall be 200 degreeC/min or more.

냉각 방법으로서는 공냉이나 액체 질소 분무 냉각이 바람직하다. 수냉의 경우 냉각이 너무 강해서 냉각의 불균형이 일어나기 쉽고, 냉각의 불균형에 의한 변형이 생기기 쉽다. 따라서 수냉은 바람직하지 않다.As a cooling method, air cooling or liquid nitrogen spray cooling is preferable. In the case of water cooling, cooling is so strong that an imbalance in cooling is likely to occur, and deformation due to imbalance in cooling is likely to occur. Therefore, water cooling is not preferable.

본 발명의 결과물은 압출 가공성이 뛰어나고 또한 강도도 높다. 다만 압출 가공 후 냉각 속도가 늦은 경우에는 냉각시에 변형이 커서 치수 정밀도가 저하되는 것을 확인하였다.The result of the present invention has excellent extrusion processability and high strength. However, it was confirmed that, when the cooling rate is slow after extrusion processing, the deformation during cooling is large and the dimensional accuracy is lowered.

또한 Cu함유량을 적게한 경우 압출 가공은 가능하지만 내력이 낮아지는 결과를 보였다. 또한 Mn함유량이 많은 경우 및 Mg함유량이 많은 경우에는 열간 변형 저항이 높아져, 압출 가공을 실시하려고 했을 때 압출력이 2200t를 넘어서 압출 가공을 하는 것이 곤란하였다.In addition, when the Cu content is reduced, extrusion processing is possible, but the yield strength is lowered. In addition, when the Mn content is large and the Mg content is large, the hot deformation resistance is high, and when the extrusion processing is attempted, the extrusion force exceeds 2200t, and it is difficult to perform the extrusion processing.

Claims (3)

Zn: 4.5~7질량%, Mg: 0.2~0.38질량%, Cu: 0.25~0.4질량%, Zr: 0.1~0.3질량%를 포함하며, Si:0.05~0.3질량% 및 Fe:0.05~0.3질량%를(Fe질량%/Si질량%)=1~3의 범위에서 포함하며, 잔량부가 Al와 불가피적 불순물로 이루어지는 것을 특징으로 하는 양호한 성형성을 갖는 알루미늄합금 압출재.Zn: 4.5 to 7 mass%, Mg: 0.2 to 0.38 mass%, Cu: 0.25 to 0.4 mass%, Zr: 0.1 to 0.3 mass%, Si: 0.05 to 0.3 mass% and Fe: 0.05 to 0.3 mass% (Fe mass %/Si mass %) = 1 to 3, and the remaining part is an aluminum alloy extruded material having good formability, characterized in that it consists of Al and unavoidable impurities. 제1항에 있어서,
Ti:0.001~0.2 질량%, B:0.0001~0.01 질량% 중의 1종 또는 2종을 추가로 함유하는 것을 특징으로 하는 양호한 성형성을 갖는 알루미늄합금 압출재.
According to claim 1,
An aluminum alloy extruded material having good moldability, characterized in that it further contains one or two of Ti: 0.001 to 0.2 mass% and B: 0.0001 to 0.01 mass%.
제1항 또는 제2항의 성분을 가지는 상기 알루미늄 합금 소재를 소정의 조건으로 균질화 처리한 후 소정의 조건으로 압출 성형하는 것을 특징으로 하는 양호한 성형성을 갖는 알루미늄합금 압출재의 제조방법.
A method for producing an aluminum alloy extruded material having good formability, characterized in that the aluminum alloy material having the component of claim 1 or 2 is subjected to a homogenization treatment under a predetermined condition and then extrusion-molded under a predetermined condition.
KR1020200004611A 2020-01-14 2020-01-14 Aluminum alloy extrudate having excellent formability and its production method KR20210091443A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200004611A KR20210091443A (en) 2020-01-14 2020-01-14 Aluminum alloy extrudate having excellent formability and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200004611A KR20210091443A (en) 2020-01-14 2020-01-14 Aluminum alloy extrudate having excellent formability and its production method

Publications (1)

Publication Number Publication Date
KR20210091443A true KR20210091443A (en) 2021-07-22

Family

ID=77158009

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200004611A KR20210091443A (en) 2020-01-14 2020-01-14 Aluminum alloy extrudate having excellent formability and its production method

Country Status (1)

Country Link
KR (1) KR20210091443A (en)

Similar Documents

Publication Publication Date Title
EP2049696B1 (en) High strength, heat treatable al-zn-mg aluminum alloy
US7713363B2 (en) Method of manufacturing high-strength aluminum alloy extruded product excelling in corrosion resistance and stress corrosion cracking resistance
EP0546103B1 (en) Improved lithium aluminum alloy system
US9970090B2 (en) Aluminum alloy combining high strength, elongation and extrudability
US20070074791A1 (en) High-strength aluminum alloy extruded product with excellent impact absorption and stress corrosion cracking resistance and method of manufacturing the same
US20140123719A1 (en) Recrystallized 6XXX Aluminum Alloy with Improved Strength and Formability
EP0936278B1 (en) Aluminium alloy and method of its manufacture
CN111118419A (en) 7000 series aluminum alloy section and preparation process thereof
JPH08144031A (en) Production of aluminum-zinc-magnesium alloy hollow shape excellent in strength and formability
US20070062618A1 (en) Aluminum alloy plate excellent in press formability and continuous resistance spot weldability and method for production thereof
JP3681822B2 (en) Al-Zn-Mg alloy extruded material and method for producing the same
JPH04341546A (en) Production of high strength aluminum alloy-extruded shape material
JPS6050864B2 (en) Aluminum alloy material for forming with excellent bending workability and its manufacturing method
JP2663078B2 (en) Aluminum alloy for T6 treatment with stable artificial aging
KR20210091443A (en) Aluminum alloy extrudate having excellent formability and its production method
JPH08232035A (en) High strength aluminum alloy material for bumper, excellent in bendability, and its production
JPH08269608A (en) High strength aluminum alloy excellent in formability and corrosion resistance
JP4281609B2 (en) Aluminum alloy extruded material excellent in formability and method for producing the same
EP4299780A1 (en) 6xxx alloy with high recycled material content
KR102393020B1 (en) Aluminum alloy sheet and method of manufacturing the same
JPS63230844A (en) Aluminum alloy for rim for motorcycle or the like
JPH0920950A (en) Al-mg-si alloy excellent in strength and extrudability and production of extruded material therefrom
JPH05295478A (en) Aluminum alloy extruded material excellent in bendability and its manufacture
CN117144163A (en) Preparation method of 6-series aluminum alloy for automobile anti-collision beam
KR20010017742A (en) Method of manufacture the and aluminum alloy for intensity excellence extrude