KR20210088145A - 무인비행체 자동 정밀 착륙 시스템 및 방법 - Google Patents
무인비행체 자동 정밀 착륙 시스템 및 방법 Download PDFInfo
- Publication number
- KR20210088145A KR20210088145A KR1020200001300A KR20200001300A KR20210088145A KR 20210088145 A KR20210088145 A KR 20210088145A KR 1020200001300 A KR1020200001300 A KR 1020200001300A KR 20200001300 A KR20200001300 A KR 20200001300A KR 20210088145 A KR20210088145 A KR 20210088145A
- Authority
- KR
- South Korea
- Prior art keywords
- aerial vehicle
- unmanned aerial
- target
- relative distance
- landing
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 27
- 238000001514 detection method Methods 0.000 claims abstract description 82
- RZVHIXYEVGDQDX-UHFFFAOYSA-N 9,10-anthraquinone Chemical group C1=CC=C2C(=O)C3=CC=CC=C3C(=O)C2=C1 RZVHIXYEVGDQDX-UHFFFAOYSA-N 0.000 claims abstract description 46
- 238000010586 diagram Methods 0.000 description 15
- 238000011160 research Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U70/00—Launching, take-off or landing arrangements
- B64U70/90—Launching from or landing on platforms
- B64U70/95—Means for guiding the landing UAV towards the platform, e.g. lighting means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C39/00—Aircraft not otherwise provided for
- B64C39/02—Aircraft not otherwise provided for characterised by special use
- B64C39/024—Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D45/00—Aircraft indicators or protectors not otherwise provided for
- B64D45/04—Landing aids; Safety measures to prevent collision with earth's surface
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U20/00—Constructional aspects of UAVs
- B64U20/80—Arrangement of on-board electronics, e.g. avionics systems or wiring
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U20/00—Constructional aspects of UAVs
- B64U20/80—Arrangement of on-board electronics, e.g. avionics systems or wiring
- B64U20/87—Mounting of imaging devices, e.g. mounting of gimbals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U70/00—Launching, take-off or landing arrangements
- B64U70/80—Vertical take-off or landing, e.g. using rockets
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B11/00—Automatic controllers
- G05B11/01—Automatic controllers electric
- G05B11/36—Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential
- G05B11/42—Automatic controllers electric with provision for obtaining particular characteristics, e.g. proportional, integral, differential for obtaining a characteristic which is both proportional and time-dependent, e.g. P. I., P. I. D.
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/60—Intended control result
- G05D1/654—Landing
-
- B64C2201/141—
-
- B64C2201/18—
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U2201/00—UAVs characterised by their flight controls
- B64U2201/10—UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS]
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Mechanical Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
본 발명의 일 실시예에 따른 무인비행체 자동 정밀 착륙 시스템은 무인비행체에 마련되어 착륙 지점의 표적을 감지하고 추적하는 표적 감지 추적부; 상기 표적 감지 추적부에서 획득한 상기 표적의 영상 위치 정보를 이용하여 상기 상기 무인비행체와 상기 표적의 상대거리를 추정하는 상대거리 추정부; 상기 상대거리 추정부에서 추정된 상기 상대거리를 기준치와 비교하는 상대거리 판단부; 및 상기 상대거리와 상기 기준치의 대소 관계에 따라 상기 무인비행체가 상기 표적에 착륙하도록 제어하거나 상기 무인비행체가 상기 표적 위에 위치하도록 제어하는 비행 제어부;를 포함할 수 있다.
Description
본 발명은 무인비행체 자동 정밀 착륙 시스템 및 방법에 관한 것으로, 보다 상세하게는 무인비행체의 착륙시 착륙 표적과의 상대 거리 오차에 따라 착륙 속도를 제어할 수 있는 무인비행체 자동 정밀 착륙 시스템 및 방법에 관한 것이다.
최근 4차 산업 혁명의 한 부분으로 드론의 자율비행 및 자동화 시스템에 대한 연구가 활발하게 진행되고 있다. 그에 따라 다양한 분야에서 드론을 포함하는 무인비행체의 활용이 고려되고 있다. 특히, 물류배송과 같은 상업분야에서의 활용이 빠르게 확대되고 있으며, 미국의 아마존, UPS, 독일의 DHL, 중국의 알리바바 등 물류 업체에서 멀티콥터형 드론의 자율비행을 이용한 물류배송 서비스를 시범운영하고 있다.
이처럼 자율비행은 드론을 포함하는 무인비행체의 핵심 기술 요소로 자리 잡고 있으며, 그 중 자동 착륙은 자율 비행 중 높은 수준의 기술을 요구하고 있어 국내외로 관련 연구가 활발히 진행되고 있다.
초기의 자동 착륙은 GPS를 사용하여 지정한 착륙 위치와 드론의 현재 위치를 매칭하여 착륙을 수행하였다. 하지만 이러한 방식은 측위 위성의 개수 및 건물, 날씨 등과 같은 환경적인 요인에 영향을 받아 위치 오차가 발생하기도 한다.
GPS 센서를 활용한 자동 착륙 정확도 평가에 따르면 30회 자동 착륙 수행시 1.4m의 평균 오차를 나타내 정밀 착륙을 기대하기 어렵다는 한계가 있다.
최근 멀티콥터형 드론의 자동 정밀 착륙의 연구 동향을 살펴보면 GPS 자동 착륙에 비해 착륙 정밀도가 높은 영상센서에 의한 자동 착륙에 관한 연구가 활발히 진행 되고 있다. 그러나 이러한 연구들은 대부분 영상센서를 활용하여 객체를 검출하는 기법 연구에 대해 치중되어 있다. 실제 외란 요소가 크게 작용하는 실외에서 자동 착륙을 수행할 경우 저고도에서 멀티콥터가 바람에 의해 밀리게 되면서 착륙 지점의 표적을 손실하여 정밀 착륙을 수행하지 못하는 문제점이 있다.
또한, 상업적인 목적 뿐만 아니라 군수 산업에서도 드론의 자율비행 및 자동화가 요구되고 있다. 이를 위해서는 무인 자동 충전이 가능해야 하며 가장 필요한 기술이 바로 정밀한 착륙이다. 일반적으로 자동화된 플랫폼에서 드론은 스테이션에 착륙하게 되는데 이는 매우 협소한 공간이다. 착륙 공간이 협소할 경우 착륙 시 바람이 불거나 외란이 발생하면 정밀한 착륙이 불가능하며 착륙 자체가 불가능하다는 문제점이 있다.
본 출원인은, 상기와 같은 문제점을 해결하기 위하여, 본 발명을 제안하게 되었다.
본 발명은 상기와 같은 문제점을 해결하기 위하여 제안된 것으로, 바람과 같은 외란 요소에 의한 무인비행체의 밀림 현상을 고려하여 위치 제어를 원활히 수행하기 위한 시간적 여유를 주기 위해 표적(착륙 표적)과 상대거리에 따른 착륙 속도를 제어함으로써 표적에 정밀하게 자동 착륙할 수 있는 무인비행체 자동 정밀 착륙 시스템 및 방법을 제공한다.
상기한 바와 같은 과제를 달성하기 위한 본 발명의 일 실시예에 따른 무인비행체 자동 정밀 착륙 시스템은 무인비행체에 마련되어 착륙 지점의 표적을 감지하고 추적하는 표적 감지 추적부; 상기 표적 감지 추적부에서 획득한 상기 표적의 영상 위치 정보를 이용하여 상기 상기 무인비행체와 상기 표적의 상대거리를 추정하는 상대거리 추정부; 상기 상대거리 추정부에서 추정된 상기 상대거리를 기준치와 비교하는 상대거리 판단부; 및 상기 상대거리와 상기 기준치의 대소 관계에 따라 상기 무인비행체가 상기 표적에 착륙하도록 제어하거나 상기 무인비행체가 상기 표적 위에 위치하도록 제어하는 비행 제어부;를 포함할 수 있다.
상기 비행 제어부는, 상기 상대거리가 기준치 보다 작은 경우에 상기 무인비행체가 상기 표적에 착륙하도록 제어하는 수직비행 제어부 및 상기 상대거리가 기준치 보다 큰 경우에 상기 무인비행체가 상기 표적 위에 위치하도록 제어하는 수평비행 제어부를 포함할 수 있다.
상기 수직비행 제어부는, 외부 루프를 제외하고 내부 루프만 사용하여 속도 PID 제어를 수행하며, 상기 무인비행체와 상기 표적 사이의 상대거리에 따른 속도 명령을 주어 상기 무인비행체의 착륙 속도 또는 하강 속도를 제어할 수 있다.
상기 수평비행 제어부는, 상기 무인비행체와 상기 표적 사이의 상대거리를 위치 오차로 하여 상기 무인비행체와 상기 표적 사이의 상대거리가 0으로 수렴하도록 제어하며, 상기 무인비행체가 상기 표적 위에 위치하도록 제어할 수 있다.
상기 수직비행 제어부는, 상기 상대거리가 기준치 보다 큰 경우에는 상기 무인비행체의 착륙 속도 또는 하강 속도 명령을 0으로 생성할 수 있다.
상기 수직비행 제어부는, 상기 상대거리가 기준치 보다 작은 경우에는 상기 상대거리에 반비례하도록 상기 무인비행체의 착륙 속도 또는 하강 속도 명령을 생성할 수 있다.
한편, 발명의 다른 분야에 의하면, 본 발명은 상기 무인비행체 자동 정밀 착륙 시스템을 사용한 무인비행체 자동 정밀 착륙 방법에 있어서, 상기 표적 감지 추적부에 의해서 상기 표적을 감지하고 추적하는 단계; 상기 상대거리 추정부에 의해서 상기 표적과 상기 무인비행체 사이의 상대거리를 추정하는 단계; 상기 상대거리 추정부에서 추정된 상기 상대거리와 상기 기준치의 대소 여부를 판단하는 단계; 상기 상대거리가 상기 기준치 보다 작은 경우에 상기 무인비행체가 상기 표적에 착륙하도록 수직 비행을 제어하는 단계; 및 상기 상대거리가 상기 기준치 보다 큰 경우에 상기 무인비행체가 상기 표적 위에 위치하도록 수평 비행을 제어하는 단계;를 포함하는 무인비행체 자동 정밀 착륙 방법을 제공할 수 있다.
상기 수직 비행 제어 단계는, 외부 루프를 제외하고 내부 루프만 사용하여 속도 PID 제어를 수행하며, 상기 무인비행체와 상기 표적 사이의 상대거리에 따른 속도 명령을 주어 상기 무인비행체의 착륙 속도 또는 하강 속도를 제어할 수 있다.
상기 수직 비행 제어 단계는, 상기 상대거리가 기준치 보다 큰 경우에는 상기 무인비행체의 착륙 속도 또는 하강 속도 명령을 0으로 생성하고, 상기 상대거리가 기준치 보다 작은 경우에는 상기 상대거리에 반비례하도록 상기 무인비행체의 착륙 속도 또는 하강 속도 명령을 생성할 수 있다.
본 발명에 따른 무인비행체 자동 정밀 착륙 시스템 및 방법은 바람이나 기타 외란이 무인비행체에 작용하는 경우에도 무인비행체와 표적 사이의 상대 거리 오차에 따라 착륙 속도를 느리게 하거나 빠르게 할 수 있다.
본 발명에 따른 무인비행체 자동 정밀 착륙 시스템 및 방법은 바람이나 기타 외란이 무인비행체에 작용하는 경우에 무인비행체와 표적 사이의 상대 거리 오차가 기준 보다 크면 착륙 속도를 느리게 하여 무인비행체가 표적(착륙지점) 위에 위치할 충분한 시간을 확보할 수 있고, 상대 거리 오차가 기준 보다 작으면 착륙 속도를 빠르게 함으로서 정밀한 착륙이 가능하다.
도 1은 본 발명의 일 실시예에 따른 무인비행체 자동 정밀 착륙 시스템의 개략적인 구성을 설명하기 위한 도면이다.
도 2는 도 1에 따른 시스템의 표적 감지 추적부의 개략적인 구성을 설명하기 위한 도면이다.
도 3은 도 2에 따른 표적 감지 추적부의 짐벌 제어부의 구조를 도시한 도면이다.
도 4는 도 2에 따른 표적 감지 추적부의 표적 감지부의 표적 픽셀 좌표를 설명하기 위한 도면이다.
도 5는 도 2에 따른 표적 감지 추적부에서 표적의 상대 거리를 추정하는 과정을 설명하기 위한 도면이다.
도 6은 도 2에 따른 표적 감지 추적부의 표적 감지부의 영상 화면 거리를 설명하기 위한 도면이다.
도 7은 도 2에 따른 표적 감지 추적부에 적용되는 관성좌표계와 기체좌표계를 설명하기 위한 도면이다.
도 8은 도 1에 따른 시스템의 비행 제어부의 제어 구조를 개략적으로 도시한 도면이다.
도 9는 도 1에 따른 시스템의 자동 정밀 착륙 제어 구조를 도시한 도면이다.
도 10은 도 1에 따른 시스템의 자동 정밀 착륙 속도 제어 구조를 도시한 도면이다.
도 11은 도 1에 따른 시스템을 사용한 경우 표적 상대 거리에 따른 무인비행체의 착륙 속도 그래프를 도시한 도면이다.
도 12는 도 1에 따른 시스템을 사용한 무인비행체 자동 정밀 착륙 방법을 설명하기 위한 순서도이다.
도 2는 도 1에 따른 시스템의 표적 감지 추적부의 개략적인 구성을 설명하기 위한 도면이다.
도 3은 도 2에 따른 표적 감지 추적부의 짐벌 제어부의 구조를 도시한 도면이다.
도 4는 도 2에 따른 표적 감지 추적부의 표적 감지부의 표적 픽셀 좌표를 설명하기 위한 도면이다.
도 5는 도 2에 따른 표적 감지 추적부에서 표적의 상대 거리를 추정하는 과정을 설명하기 위한 도면이다.
도 6은 도 2에 따른 표적 감지 추적부의 표적 감지부의 영상 화면 거리를 설명하기 위한 도면이다.
도 7은 도 2에 따른 표적 감지 추적부에 적용되는 관성좌표계와 기체좌표계를 설명하기 위한 도면이다.
도 8은 도 1에 따른 시스템의 비행 제어부의 제어 구조를 개략적으로 도시한 도면이다.
도 9는 도 1에 따른 시스템의 자동 정밀 착륙 제어 구조를 도시한 도면이다.
도 10은 도 1에 따른 시스템의 자동 정밀 착륙 속도 제어 구조를 도시한 도면이다.
도 11은 도 1에 따른 시스템을 사용한 경우 표적 상대 거리에 따른 무인비행체의 착륙 속도 그래프를 도시한 도면이다.
도 12는 도 1에 따른 시스템을 사용한 무인비행체 자동 정밀 착륙 방법을 설명하기 위한 순서도이다.
이하에서, 첨부된 도면을 참조하여 본 발명에 따른 실시예들을 상세하게 설명한다. 그러나, 본 발명이 실시예들에 의해 제한되거나 한정되는 것은 아니다. 각 도면에 제시된 동일한 참조 부호는 동일한 부재를 나타낸다.
도 1은 본 발명의 일 실시예에 따른 무인비행체 자동 정밀 착륙 시스템의 개략적인 구성을 설명하기 위한 도면, 도 2는 도 1에 따른 시스템의 표적 감지 추적부의 개략적인 구성을 설명하기 위한 도면, 도 3은 도 2에 따른 표적 감지 추적부의 짐벌 제어부의 구조를 도시한 도면, 도 4는 도 2에 따른 표적 감지 추적부의 표적 감지부의 표적 픽셀 좌표를 설명하기 위한 도면, 도 5는 도 2에 따른 표적 감지 추적부에서 표적의 상대 거리를 추정하는 과정을 설명하기 위한 도면, 도 6은 도 2에 따른 표적 감지 추적부의 표적 감지부의 영상 화면 거리를 설명하기 위한 도면, 도 7은 도 2에 따른 표적 감지 추적부에 적용되는 관성좌표계와 기체좌표계를 설명하기 위한 도면, 도 8은 도 1에 따른 시스템의 비행 제어부의 제어 구조를 개략적으로 도시한 도면, 도 9는 도 1에 따른 시스템의 자동 정밀 착륙 제어 구조를 도시한 도면, 도 10은 도 1에 따른 시스템의 자동 정밀 착륙 속도 제어 구조를 도시한 도면, 도 11은 도 1에 따른 시스템을 사용한 경우 표적 상대 거리에 따른 무인비행체의 착륙 속도 그래프를 도시한 도면, 도 12는 도 1에 따른 시스템을 사용한 무인비행체 자동 정밀 착륙 방법을 설명하기 위한 순서도이다.
도 1을 참조하면, 본 발명의 일 실시예에 따른 무인비행체 자동 정밀 착륙 시스템(100)은 무인비행체(10)에 마련되어 착륙 지점의 표적을 감지하고 추적하는 표적 감지 추적부(110); 상기 표적 감지 추적부(110)에서 획득한 상기 표적의 영상 위치 정보를 이용하여 상기 상기 무인비행체(10)와 상기 표적의 상대거리를 추정하는 상대거리 추정부(120); 상기 상대거리 추정부(120)에서 추정된 상기 상대거리를 기준치와 비교하는 상대거리 판단부(130); 및 상기 상대거리와 상기 기준치의 대소 관계에 따라 상기 무인비행체(10)가 상기 표적에 착륙하도록 제어하거나 상기 무인비행체(10)가 상기 표적 위에 위치하도록 제어하는 비행 제어부(140);를 포함할 수 있다.
본 발명의 일 실시예에 따른 무인비행체 자동 정밀 착륙 시스템(100)은 드론(drone), 쿼드콥터(quadcopter), 멀티콥터(multicopter) 등의 무인비행체에 적용되는 시스템이다. 이하에서 "무인비행체"는 드론 또는 멀티콥터 등을 포함하는 개념이다.
본 발명의 일 실시예에 따른 무인비행체 자동 정밀 착륙 시스템(100, 이하 '자동 정밀 착륙 시스템'이라 함)은 바람 등 외란이 무인비행체(10)에 작용하여 무인비행체(10)가 밀리는 경우에도 착륙 지점의 표적(이하 '표적'이라 함)에 무인비행체(10)가 정확하게 착륙하게 할 수 있다. 이를 위해서, 본 발명의 일 실시예에 따른 자동 정밀 착륙 시스템(100)은 표적을 감지하고 추적할 수 있는데, 상기 표적 감지 추적부(110)에서 이러한 기능을 할 수 있다.
이하에서는 도 2 내지 도 7을 참조하여, 표적 감지 추적부(110)에 대해서 설명한다.
본 발명의 일 실시예에 따른 자동 정밀 착륙 시스템(100)의 표적 감지 추적부(110)는 무인비행체(10)의 자동 정밀 착륙 수행 동안 착륙완료 시점까지 표적(target)을 감지하고 추적할 수 있다.
상기 표적 감지 추적부(110)는, 무인비행체(10)에 마련되어 착륙 지점의 표적을 감지하는 표적 감지부(111); 상기 표적을 추적하도록 상기 표적 감지부(111)가 장착되며, 2축을 기준으로 회전 가능하도록 상기 무인비행체(10)에 마련되는 표적 추적부(112); 및 상기 표적 추적부(112)를 2축 기준으로 회전 구동시키는 짐벌 제어부(113);를 포함할 수 있다.
여기서, 상기 상대거리 추정부(120)는 표적 감지부(111)에서 감지된 상기 표적의 영상으로부터 상기 무인비행체(10)와 상기 표적 사이의 상대 거리를 추정할 수 있다.
또한, 상기 비행 제어부(140)는 무인비행체(10)의 자율비행을 제어할 뿐만 아니라 짐벌 제어부(113), 표적 감지부(111) 및 상대거리 추정부(120)의 작동 상태를 제어할 수도 있다.
표적 감지부(111)는 IR 표적을 감지하기 위한 IR 감지 센서로 마련될 수 있다. 표적 추적부(112)는 IR 표적을 표적 감지부(111)가 추적할 수 있도록 롤/틸트 구동이 가능한 2축 짐벌(gimbal)로 마련될 수 있다. 짐벌 제어부(113)는 표적 감지부(111)에서 제공되는 표적의 픽셀 좌표를 이용하여 표적 추적부(112)를 제어하고 표적 추적부(112)의 자세를 측정할 수 있다.
상기 표적 감지 추적부(110)는 자동 정밀 착륙 지점의 표적을 감지하여 무인비행체와 표적 간의 상대적 거리를 측정하기 위해 시각 기반의 IR 위치 인식 시스템으로 구성될 수 있다. 예를 들면, 표적은 IR을 방사하는 MarkOne Beacon으로 마련되고 표적 감지부(111)는 IR lock sensor로 마련될 수 있다.
표적 감지부(111)는 화면 영상에서 감지한 IR 표적의 x,y 픽셀 위치와 표적이 화면 내에서 차지하는 면적 등의 정보를 통신 인터페이스를 통해 확인할 수 있다.
한편, 표적 추적부(112)는 표적 감지부(111)가 장착되는 구조물로서 표적 감지부(111)가 표적을 감지하고 추적할 수 있도록 롤(roll)/틸트(tilt) 구동이 가능한 2축 서보 모터 짐벌로 마련될 수 있다. 짐벌 제어부(113)는 IR 감지 센서로 마련되는 표적 감지부(111)로부터 표적의 영상 위치 정보 확인 및 서보 짐벌에 PWM 명령 인가, 표적의 추적을 통해 변화하는 짐벌의 자세를 측정할 수 있다.
짐벌 제어부(113)는 표적 감지부(111)에서 감지된 표적의 픽셀 좌표를 제공 받아 표적이 항상 표적 감지부(111)의 영상화면 중심에 맞춰지도록 짐벌의 PWM을 제어할 수 있다.
도 4(a)에는 표적 감지부(111)의 영상화면이 예시적으로 도시되어 있다. 표적 감지부(111)의 영상화면은 x축이 320 픽셀(pixel), y축이 200 픽셀로 되어 있다. 도 4(a)에서 표적 감지부(111)의 영상화면 중심 픽셀 좌표는 이고, 감지된 표적의 픽셀 좌표는 이다. 이와 같이, 표적 감지부(111)는 상기 표적의 영상 위치 정보를 픽셀 좌표로 생성할 수 있다.
표적 감지부(111)는 상기 표적의 영상 위치 정보 즉, 표적의 픽셀 좌표를 짐벌 제어부(113) 또는 상대거리 추정부(120)에 전달할 수 있다.
한편, 짐벌 제어부(113)는, 표적 감지부(111)에서 감지된 상기 표적의 픽셀 좌표를 전달 받아 상기 표적이 표적 감지부(111)의 영상화면 중심에 위치하도록 표적 추적부(112)의 구동을 제어할 수 있다.
여기서, 짐벌 제어부(113)는 도 3에 도시된 바와 같이 PD(Proportional-Derivative, 비례미분)제어로 구성될 수 있다. 도 3을 참조하면, 짐벌 제어부(113)는 IR 감지 센서로 마련되는 표적 감지부(111)의 중심 픽셀 좌표 를 제어기 명령(Center position)으로 입력 받고, 표적 감지부(111)에서 감지한 표적의 픽셀 좌표 를 피드백 받아(Target position) 중심 픽셀 좌표와 상기 표적의 픽셀 좌표 사이의 오차(Position Error)를 계산하여 PD제어를 수행할 수 있다. 사용된 표적 추적부(112) 즉, 짐벌 구동부는 PWM신호 1ms ~ 2ms 구간에서 작동되는 서보 모터로 구성되어 있어 PWM 신호 1.5ms를 기준으로 롤/틸트 구동이 가능하다.
이와 같이, 짐벌 제어부(113)는, 표적 감지부(111)의 영상화면의 중심 픽셀 좌표를 기준으로 표적 감지부(111)에서 감지된 상기 표적의 픽셀 좌표와의 오차를 이용하여 표적 추적부(112)의 구동을 제어할 수 있다.
상기에서 설명한 바와 같이, 본 발명의 일 실시예에 따른 자동 정밀 착륙 시스템(100)의 표적 감지 추적부(110)는, 무인비행체(10)의 정밀 착륙을 위한 표적 위치 인식을 위해 IR 감지 센서(표적 감지부, 111)로부터 제공되는 표적의 영상 위치 정보를 이용한다. 표적 감지부(111)는 감지한 IR 표적의 중심점이 영상화면 내에서 어느 픽셀에 위치하고 있는지를 알려준다. 도 4(b)~(d)는 IR 표적을 감지하였을 경우 표적 감지부(111)의 영상화면의 예를 보여준다. 도 4(b)는 표적 감지부(111)의 한 예인 IR lock sensor이고, 도 4(c)는 표적 감지부(111)의 영상화면 내에 나타난 IR 표적을 보여주며, 도 4(d)는 IR 표적 중심점이 영상화면 내 어느 픽셀에 위치하는지 보여준다.
상기 표적 감지 추적부(110)는 IR 감지 센서로 마련되는 표적 감지부(111)를 사용하여 IR 표적의 상대 거리를 추정하기 위해서 표적 감지부(111)의 영상화면 상 표적의 중심 픽셀 위치를 기반으로 표적의 실제 상대 거리를 추정한 다음, 짐벌을 통한 IR 표적 추적에 따른 짐벌의 자세 또는 각도를 보정해 줌으로써 최종적으로 무인비행체(10)와 표적 간의 상대 거리를 추정할 수 있다.
도 5는 무인비행체(10)와 표적(IR Target)의 상대 거리를 추정하는 과정을 설명하기 위한 도면이다. 도 5에서 θ는 표적 감지부(111)의 시야각(field of view)을 의미하고, d는 x축/y축 방향 거리를 의미하며, H는 무인비행체(10) 또는 표적 감지부(111)의 고도(Altitude)를 의미한다.
삼각함수에서 두 점 사이의 거리를 구하는 하기 [수학식 1]을 이용하여 표적 감지부(111)가 하방을 바라볼 때 표적의 상대 거리를 추정할 수 있다. 도 6에서 표적 감지부(111)와 지상과의 거리(H)를 1m로 가정할 때 고도(H)에 따른 영상 화면의 x, y의 거리비 dx, dy를 구한다.
표적 감지부(111)의 시야각(field of view)은 θx=60°, θy=35°이므로 고도(H) 1m에서 영상 화면의 거리비 dx, dy는 다음 [수학식 2]와 같다.
[수학식 2]에서 구한 영상 화면의 x, y 거리비 dx, dy에 각각 x, y 화면의 픽셀 값을 나누어 주면 단위 1픽셀 당 거리비를 구할 수 있다. 표적 감지부(111)의 x 픽셀 개수는 320, y 픽셀 개수는 200이므로 단위 1픽셀 당 거리비 px, py는 다음 [수학식 3]과 같다.
상기 상대거리 추정부(120)는, 표적 감지부(111)의 영상화면의 중심 픽셀 좌표를 기준으로 표적 감지부(111)에서 감지된 상기 표적의 실제 상대 거리를 추정할 수 있다. 즉, 표적 감지부(111)의 영상화면 중심 좌표와 표적의 중심 좌표를 통해 영상 화면상 표적의 상대 거리를 추정할 수 있다. 도 5에서 우측 그림은 표적 감지부(111)에서 표적을 감지하였을 때의 예를 보여주며, x0, y0는 표적 감지부(111)의 중심 좌표를 의미하고, xt, yt는 표적의 중심 좌표를 의미한다.
하기 [수학식 4]를 통해 고도(H)에 따른 영상 화면상 표적의 상대 거리를 추정할 수 있다.
[수학식 4]에서 알 수 있듯이, 상대거리 추정부(120)는, 표적 감지부(111)의 영상화면의 x 픽셀 수와 y 픽셀 수를 이용하여 단위 픽셀당 거리비(px, py)를 구하고, 표적 감지부(111)의 영상화면의 중심 픽셀 좌표와 표적 감지부(111)에서 감지된 상기 표적의 픽셀 좌표 사이의 오차, 상기 단위 픽셀당 거리비 및 표적 감지부(111)와 지상 사이의 거리(H)를 이용하여 영상화면상 표적의 상대 거리(xreal. yreal)를 추정할 수 있다.
한편, 상기 상대거리 추정부(120)는 상기 표적의 추적에 따른 표적 추적부(112) 즉, 짐벌의 자세 또는 각도를 보정하여 무인비행체(10)와 상기 표적의 상대 거리를 추정할 수 있다.
표적 감지부(111)로 표적을 감지하여 영상 화면상 표적의 상대 거리를 추정 한 뒤, 표적 추적에 의해 틀어진 표적 추적부(112) 즉, 짐벌의 각도에 대하여 보상해 주어야 한다. 짐벌과 같은 표적 추적부(112)를 무인비행체에 장착할 때 무인비행체(10)의 자세 축과 표적 추적부(112)의 자세 축을 동일하게 부착하여 짐벌좌표계를 기체좌표계로 가정한다.
또한, 상기 표적 감지 추적부(110)에서 사용된 표적 추적부(112)는 롤/틸트 구동이 가능한 2축 짐벌이기 때문에, 짐벌의 방위각(heading angle)은 무인비행체(10)의 방위각과 같다고 가정한다. 따라서 도 7과 같이 관성좌표계와 기체좌표계(짐벌좌표계)를 나타낼 수 있다.
기체좌표계(짐벌좌표계)에서 추정한 영상 화면상 표적의 상대 거리를 표적 추적부(112)인 짐벌의 틀어진 각도에 따라 기체좌표계에서 표적의 상대 거리 을 관성좌표계로 변환해주는 [수학식 5]를 통해 관성좌표계에서의 상대 거리 로 변환한다. 이때 c, s는 각각 cos, sin을 뜻하고 Φ, θ, ψ는 각각 표적 추적부(112)의 roll, pitch, yaw 각을 의미한다.
이와 같이, 상기 짐벌 제어부(113)는, [수학식 5]를 사용하여 상기 표적을 추적하면서 틀어진 표적 추적부(112)의 자세 또는 각도를 보상할 수 있다.
또한, 상기 짐벌 제어부(113)는, 표적 추적부(112)에 적용되는 좌표계에서 추정한 영상화면상 표적의 상대 거리를 표적 추적부(112)가 틀어진 각도에 따라 관성좌표계에서의 상대 거리로 변환할 수 있다.
본 발명의 일 실시예에 따른 자동 정밀 착륙 시스템(100)은 표적 감지 추적부(110) 및 상대거리 추정부(120)에 의해서 무인비행체(10)와 표적의 상대 거리 즉, 수평 상대 거리를 추정함으로써 무인비행체(10)와 표적 사이의 수평 상대 거리 오차가 얼마인지 추정할 수 있다.
본 발명의 실 실시예에 따른 자동 정밀 착륙 시스템(100)은 표적을 감지하고 추적하여 무인비행체(10)와 표적 간의 상대 거리를 추정하고 상대 거리에 따라 무인비행체(10)의 착륙 속도를 조절함으로써 자동 착륙을 수행하게 된다.
본 발명의 일 실시예에 따른 자동 정밀 착륙 시스템(100)은 바람과 같은 외란이 존재하는 실외 환경에서 무인비행체(10)의 자동 착륙 수행시 착륙 오차를 줄이기 위해 무인비행체(10)와 표적 간의 상대 거리가 기준치(예를 들면, 30cm) 이상 차이가 나면, 착륙 속도를 0m/s로 설정하여 하강을 멈춘 후 무인비행체(10)를 표적 위로 이동시킨 후에 착륙을 다시 수행하게 된다.
상기 상대거리 판단부(130)는 상대거리 추정부(120)에서 추정한 무인비행체(10)와 표적 사이의 상대 거리가 기준치 보다 큰지 작은지 여부를 판단하게 된다. 상대거리 판단부(130)에서 판단한 결과는 비행 제어부(140)로 전달되는데, 상대거리 판단부(130)의 판단 결과에 따라, 비행 제어부(140)는 무인비행체(10)를 착륙시키거나 착륙을 일시 멈추고 수평 비행을 하게 하여 무인비행체(10)가 표적 위에 위치하도록 제어할 수 있다.
이를 위해, 상기 비행 제어부(140)는, 무인비행체(10)와 표적 사이의 상대거리가 기준치 보다 작은 경우에 무인비행체(10)가 상기 표적에 착륙하도록 제어하는 수직비행 제어부(150) 및 상기 상대거리가 기준치 보다 큰 경우에 무인비행체(10)가 상기 표적 위에 위치하도록 제어하는 수평비행 제어부(160)를 포함할 수 있다.
도 8에는 본 발명의 일 실시예에 따른 자동 정밀 착륙 시스템(100)의 비행 제어부(140)의 제어 구조가 개략적으로 도시되어 있다.
도 8을 참조하면, 비행 제어부(140)의 구조는 무인비행체(10)의 임무 및 경로 비행(Waypoint Navigation & Mission), 위치/고도 제어(Position Controller), 자세 및 방위 제어(Attitude & Heading Controller), 무인비행체의 형태에 따른 구동기에 대한 제어 할당(Control Allocation)으로 나눌 수 있다. 위치/고도, 자세 및 방위 제어기 구조는 다중 루프 형태의 PID(Proportional-Integral-Derivative) 제어 구조를 가지고 있다. 각각 제어기의 외부 루프는 위치/고도, 자세/방위 제어로 P(Proportional) 제어 구조를 가지고 있고, 내부 루프는 속도, 각속도 제어로 PID(Proportional-Integral-Derivative) 제어 구조로 되어있다. 위치 제어시 GPS 센서로부터 무인비행체의 위치와 속도(Position, Velocity)를 피드백 받아 위치 명령과의 차이로 제어를 수행한다.
도 9를 참조하면, 자동 정밀 착륙 수행시, 비행 제어부(140)는 무인비행체(10)와 표적과의 상대 거리를 위치 오차로 정의하고 무인비행체(10)와 표적 사이의 거리를 0으로 만드는 제어를 수행하여 무인비행체(10)가 표적 위에 위치하도록 제어한다(도 9의 X,Y-Position Controller 참조). 비행 제어부(140)는 고도 제어의 경우에는 외부루프를 제외한 속도 PID 제어만을 수행하여 무인비행체(10)와 표적 사이의 상대 거리에 따른 속도 명령(착륙 속도 또는 하강 속도 명령)을 주어 착륙 속도를 제어할 수 있다(도 9의 Z-Position Controller 참조).
도 9에 도시된 바와 같이, 수직비행 제어부(150)는, 외부 루프를 제외하고 내부 루프만 사용하여 속도 PID 제어를 수행하며, 무인비행체(10)와 상기 표적 사이의 상대거리에 따른 속도 명령을 주어 무인비행체(10)의 착륙 속도 또는 하강 속도를 제어할 수 있다.
한편, 도 9에 도시된 바와 같이, 수평비행 제어부(160)는, 무인비행체(10)와 상기 표적 사이의 상대거리를 위치 오차로 하여 무인비행체(10)와 상기 표적 사이의 상대거리가 0으로 수렴하도록 제어하며, 무인비행체(10)가 상기 표적 위에 위치하도록 제어할 수 있다.
짐벌을 통하여 자동 정밀 착륙 동안 착륙 시점까지 표적을 추적하는데 기존의 자동 정밀 착륙과 같이 일정한 착륙 속도로 정밀 착륙을 수행하면 실외 외란 환경에 따라 무인비행체가 표적에 접근할 만큼 충분한 착륙 시간이 주어지지 않기 때문에 정밀한 착륙을 기대하기 어렵다. 따라서, 본 발명의 일 실시예에 따른 자동 정밀 착륙 시스템(100)의 비행 제어부(140)는 자동 정밀 착륙의 착륙 정밀도를 높이기 위하여 무인비행체와 표적 사이의 상대 거리에 따라 무인비행체(10)의 착륙 속도를 제어할 수 있다.
무인비행체의 비행 모드를 자동 정밀 착륙 모드로 전환하게 되면 위치/고도제어기의 고도 제어 루프에서 외부 루프를 제외한 내부 루프만을 사용하여 고도 제어가 아닌 속도 제어로 전환하게 된다. 여기서, 착륙 속도 명령은 무인비행체(10)와 표적 사이의 상대 거리를 추정하여 결정할 수 있다. 자동 정밀 착륙 모드에서 착륙 속도 제어 구조는 도 10과 같다.
도 10을 참조하면, 착륙 속도 제어 구조 즉, 수직비행 제어부(150)는 무인비행체(10)와 표적 사이의 수평 상대 거리(Target Distance)에 따라 착륙 속도(Velocity)를 제어하는 PID 제어를 수행하게 된다.
상기 수직비행 제어부(150)는, 상기 상대거리가 기준치 보다 큰 경우에는 무인비행체(10)의 착륙 속도 또는 하강 속도 명령을 0으로 생성할 수 있다. 이와 같이, 무인비행체(10)와 표적 사이의 상대 거리가 기준치 보다 큰 경우에는 무인비행체(10)의 착륙 속도를 O으로 만들어 무인비행체(10)의 착륙을 일시 중단함으로써 무인비행체(10)가 잘못된 위치에 착륙하는 것을 방지할 수 있다.
반면에, 상기 수직비행 제어부(150)는, 상기 상대거리가 기준치 보다 작은 경우에는 상기 상대거리에 반비례하도록 무인비행체(10)의 착륙 속도 또는 하강 속도 명령을 생성할 수 있다. 즉, 상기 상대거리가 기준치 보다 작은 경우에는 상기 상대거리에 반비례하도록 무인비행체(10)의 착륙 속도 또는 하강 속도를 제어할 수 있다.
예를 들어, 수직비행 제어부(150)의 입력은 표적과 무인비행체(10)의 상대 거리이며 30cm를 기준치로 설정하고, 상대거리가 기준치(30cm) 이상인 구간에서는 무인비행체(10)의 착륙 속도명령을 0으로 생성하고, 상대거리가 기준치 보다 작은 0~30cm 구간에서의 착륙 속도명령은 도 11과 같이 제어할 수 있다. 도 11을 참조하면, 상대거리가 기준치 보다 작을수록 무인비행체(10)의 착륙 속도를 빠르게 함으로써 자동 정밀 착륙의 정확성을 높이면서 착륙 소요 시간을 줄일 수 있다.
한편, 도 12를 참조하면, 본 발명은 상기 무인비행체 자동 정밀 착륙 시스템(100)을 사용한 무인비행체 자동 정밀 착륙 방법에 있어서, 상기 표적 감지 추적부(110)에 의해서 상기 표적을 감지하고 추적하는 단계(1100); 상기 상대거리 추정부(120)에 의해서 상기 표적과 상기 무인비행체(10) 사이의 상대거리를 추정하는 단계(1200); 상기 상대거리 추정부(120)에서 추정된 상기 상대거리와 상기 기준치의 대소 여부를 판단하는 단계(1300); 상기 상대거리가 상기 기준치 보다 작은 경우에 상기 무인비행체(10)가 상기 표적에 착륙하도록 수직 비행을 제어하는 단계(1400); 및 상기 상대거리가 상기 기준치 보다 큰 경우에 상기 무인비행체(10)가 상기 표적 위에 위치하도록 수평 비행을 제어하는 단계(1600);를 포함하는 무인비행체 자동 정밀 착륙 방법을 제공할 수 있다.
상기 표적 감지 추적 단계(1100)는 표적 감지 추적부(110)에 의해서 수행된다.
상기 표적과 무인비행체 간 상대거리 추정 단계(1200)는 상대거리 추정부(120)에 의해서 수행되며, 무인비행체(10)와 표적 사이의 수평 상대 거리를 추정하는 것이 바람직하다.
추정된 상대거리와 기준치의 대소 여부를 판단하는 단계(1300)는 상대거리 판단부(130)에 의해서 수행될 수 있다.
상대거리 판단부(130)에서 판단한 결과, 상대거리가 기준치 보다 큰 경우에는 무인비행체(10)의 하강 속도 또는 착륙 속도를 0으로 만들어 착륙을 일시 중단하고 무인비행체(10)가 표적 위에 위치하도록 수평 비행 제어 단계(1600)가 수행된다. 상기 수평 비행 제어 단계(1600)는 수평비행 제어부(160)에 의해서 수행될 수 있다.
상대거리 판단부(130)에서 판단한 결과, 상대거리가 기준치 보다 작은 경우에는 무인비행체(10)를 표적에 착륙시키는 수직 비행 제어 단계(1400)가 수행된다. 상기 수직 비행 제어 단계(1400)는 수직비행 제어부(150)에 의해서 수행될 수 있다.
상기 수직 비행 제어 단계(1400)는, 수직비행 제어부(150)에 의해서 외부 루프를 제외하고 내부 루프만 사용하여 속도 PID 제어를 수행하며, 무인비행체(10)와 상기 표적 사이의 상대거리에 따른 속도 명령을 주어 무인비행체(10)의 착륙 속도 또는 하강 속도를 제어할 수 있다.
또한, 상기 수직 비행 제어 단계(1400)는, 수직비행 제어부(150)에 의해서 상기 상대거리가 기준치 보다 작은 경우에는 상기 상대거리에 반비례하도록 무인비행체(10)의 착륙 속도 또는 하강 속도 명령을 생성할 수 있다. 상기 수직 비행 제어 단계(1400)는 상대거리가 기준치 보다 작을수록 무인비행체(10)의 착륙 속도가 빨라지도록 제어할 수 있다.
최종적으로 표적에 무인비행체(10)가 착륙하는 단계(1500)가 수행됨으로써 무인비행체(10)의 자동 정밀 착륙이 완료된다.
상기에서 설명한 바와 같이 본 발명의 일 실시예에 따른 무인비행체 자동 정밀 착륙 시스템 및 방법은 바람과 같은 외란 요소에 의한 무인비행체의 밀림 현상을 고려하여 위치 제어를 원활히 수행하기 위한 시간적 여유를 주기 위해 무인비행체와 표적 사이의 상대거리에 따라 무인비행체의 착륙 속도를 제어함으로써 정밀한 자동 착륙을 구현할 수 있다.
이상과 같이 본 발명의 일 실시예에서는 구체적인 구성 요소 등과 같은 특정 사항들과 한정된 실시예 및 도면에 의해 설명되었으나 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상적인 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다. 따라서, 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니 되며, 후술하는 청구범위뿐 아니라 이 청구범위와 균등하거나 등가적 변형이 있는 모든 것들은 본 발명 사상의 범주에 속한다고 할 것이다.
10: 무인비행체
100: 무인비행체 자동 정밀 착륙 시스템
110: 표적 감지 추적부 111: 표적 감지부
112: 표적 추적부 113: 짐벌 제어부
120: 상대거리 추정부 130: 상대거리 판단부
140: 비행 제어부 150: 수직비행 제어부
160: 수평비행 제어부
100: 무인비행체 자동 정밀 착륙 시스템
110: 표적 감지 추적부 111: 표적 감지부
112: 표적 추적부 113: 짐벌 제어부
120: 상대거리 추정부 130: 상대거리 판단부
140: 비행 제어부 150: 수직비행 제어부
160: 수평비행 제어부
Claims (9)
- 무인비행체에 마련되어 착륙 지점의 표적을 감지하고 추적하는 표적 감지 추적부;
상기 표적 감지 추적부에서 획득한 상기 표적의 영상 위치 정보를 이용하여 상기 상기 무인비행체와 상기 표적의 상대거리를 추정하는 상대거리 추정부;
상기 상대거리 추정부에서 추정된 상기 상대거리를 기준치와 비교하는 상대거리 판단부; 및
상기 상대거리와 상기 기준치의 대소 관계에 따라 상기 무인비행체가 상기 표적에 착륙하도록 제어하거나 상기 무인비행체가 상기 표적 위에 위치하도록 제어하는 비행 제어부;
를 포함하는 것을 특징으로 하는 무인비행체 자동 정밀 착륙 시스템.
- 제1항에 있어서,
상기 비행 제어부는,
상기 상대거리가 기준치 보다 작은 경우에 상기 무인비행체가 상기 표적에 착륙하도록 제어하는 수직비행 제어부 및 상기 상대거리가 기준치 보다 큰 경우에 상기 무인비행체가 상기 표적 위에 위치하도록 제어하는 수평비행 제어부를 포함하는 것을 특징으로 하는 무인비행체 자동 정밀 착륙 시스템.
- 제2항에 있어서,
상기 수직비행 제어부는,
외부 루프를 제외하고 내부 루프만 사용하여 속도 PID 제어를 수행하며, 상기 무인비행체와 상기 표적 사이의 상대거리에 따른 속도 명령을 주어 상기 무인비행체의 착륙 속도 또는 하강 속도를 제어하는 것을 특징으로 하는 무인비행체 자동 정밀 착륙 시스템.
- 제3항에 있어서,
상기 수평비행 제어부는,
상기 무인비행체와 상기 표적 사이의 상대거리를 위치 오차로 하여 상기 무인비행체와 상기 표적 사이의 상대거리가 0으로 수렴하도록 제어하며, 상기 무인비행체가 상기 표적 위에 위치하도록 제어하는 것을 특징으로 하는 무인비행체 자동 정밀 착륙 시스템.
- 제4항에 있어서,
상기 수직비행 제어부는,
상기 상대거리가 기준치 보다 큰 경우에는 상기 무인비행체의 착륙 속도 또는 하강 속도 명령을 0으로 생성하는 것을 특징으로 하는 무인비행체 자동 정밀 착륙 시스템.
- 제5항에 있어서,
상기 수직비행 제어부는,
상기 상대거리가 기준치 보다 작은 경우에는 상기 상대거리에 반비례하도록 상기 무인비행체의 착륙 속도 또는 하강 속도 명령을 생성하는 것을 특징으로 하는 무인비행체 자동 정밀 착륙 시스템.
- 제2항 내지 제6항 중 어느 한 항에 따른 무인비행체 자동 정밀 착륙 시스템을 사용한 무인비행체 자동 정밀 착륙 방법에 있어서,
상기 표적 감지 추적부에 의해서 상기 표적을 감지하고 추적하는 단계;
상기 상대거리 추정부에 의해서 상기 표적과 상기 무인비행체 사이의 상대거리를 추정하는 단계;
상기 상대거리 추정부에서 추정된 상기 상대거리와 상기 기준치의 대소 여부를 판단하는 단계;
상기 상대거리가 상기 기준치 보다 작은 경우에 상기 무인비행체가 상기 표적에 착륙하도록 수직 비행을 제어하는 단계; 및
상기 상대거리가 상기 기준치 보다 큰 경우에 상기 무인비행체가 상기 표적 위에 위치하도록 수평 비행을 제어하는 단계;
를 포함하는 것을 특징으로 하는 무인비행체 자동 정밀 착륙 방법.
- 제7항에 있어서,
상기 수직 비행 제어 단계는,
외부 루프를 제외하고 내부 루프만 사용하여 속도 PID 제어를 수행하며, 상기 무인비행체와 상기 표적 사이의 상대거리에 따른 속도 명령을 주어 상기 무인비행체의 착륙 속도 또는 하강 속도를 제어하는 것을 특징으로 하는 무인비행체 자동 정밀 착륙 방법.
- 제8항에 있어서,
상기 수직 비행 제어 단계는,
상기 상대거리가 기준치 보다 큰 경우에는 상기 무인비행체의 착륙 속도 또는 하강 속도 명령을 0으로 생성하고,
상기 상대거리가 기준치 보다 작은 경우에는 상기 상대거리에 반비례하도록 상기 무인비행체의 착륙 속도 또는 하강 속도 명령을 생성하는 것을 특징으로 하는 무인비행체 자동 정밀 착륙 방법.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020200001300A KR102288346B1 (ko) | 2020-01-06 | 2020-01-06 | 무인비행체 자동 정밀 착륙 시스템 및 방법 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020200001300A KR102288346B1 (ko) | 2020-01-06 | 2020-01-06 | 무인비행체 자동 정밀 착륙 시스템 및 방법 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20210088145A true KR20210088145A (ko) | 2021-07-14 |
KR102288346B1 KR102288346B1 (ko) | 2021-08-09 |
Family
ID=76863002
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020200001300A KR102288346B1 (ko) | 2020-01-06 | 2020-01-06 | 무인비행체 자동 정밀 착륙 시스템 및 방법 |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102288346B1 (ko) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114527800A (zh) * | 2022-02-25 | 2022-05-24 | 广州极飞科技股份有限公司 | 一种无人机降落场选取方法、装置、系统及可读存储介质 |
KR20230024705A (ko) * | 2021-08-12 | 2023-02-21 | 광주과학기술원 | 무인비행체, 무인비행체의 착륙방법, 및 무인비행체의 착륙시스템 |
WO2023119298A1 (en) * | 2021-12-23 | 2023-06-29 | Ariel Scientific Innovations Ltd. | Unmanned aerial vehicle and a method of landing same |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012083318A (ja) * | 2010-10-14 | 2012-04-26 | Institute Of National Colleges Of Technology Japan | 気象観測装置 |
KR101640199B1 (ko) | 2015-06-16 | 2016-07-15 | 드림스페이스월드주식회사 | 드론의 안전착륙 유도장치 |
KR20170123801A (ko) * | 2016-04-29 | 2017-11-09 | 주식회사 아이디프라임 | 무인비행체의 이착륙용 수평위치 정확도 유지방법 및 그 장치 |
JP2019128944A (ja) * | 2018-01-22 | 2019-08-01 | エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd | 目標追跡方法、目標追跡装置、目標追跡システム及びプログラム。 |
-
2020
- 2020-01-06 KR KR1020200001300A patent/KR102288346B1/ko active IP Right Grant
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012083318A (ja) * | 2010-10-14 | 2012-04-26 | Institute Of National Colleges Of Technology Japan | 気象観測装置 |
KR101640199B1 (ko) | 2015-06-16 | 2016-07-15 | 드림스페이스월드주식회사 | 드론의 안전착륙 유도장치 |
KR20170123801A (ko) * | 2016-04-29 | 2017-11-09 | 주식회사 아이디프라임 | 무인비행체의 이착륙용 수평위치 정확도 유지방법 및 그 장치 |
JP2019128944A (ja) * | 2018-01-22 | 2019-08-01 | エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd | 目標追跡方法、目標追跡装置、目標追跡システム及びプログラム。 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20230024705A (ko) * | 2021-08-12 | 2023-02-21 | 광주과학기술원 | 무인비행체, 무인비행체의 착륙방법, 및 무인비행체의 착륙시스템 |
WO2023119298A1 (en) * | 2021-12-23 | 2023-06-29 | Ariel Scientific Innovations Ltd. | Unmanned aerial vehicle and a method of landing same |
CN114527800A (zh) * | 2022-02-25 | 2022-05-24 | 广州极飞科技股份有限公司 | 一种无人机降落场选取方法、装置、系统及可读存储介质 |
Also Published As
Publication number | Publication date |
---|---|
KR102288346B1 (ko) | 2021-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12099370B2 (en) | Geo-fiducials for UAV navigation | |
Mirallès et al. | LineDrone Technology: Landing an unmanned aerial vehicle on a power line | |
Ahrens et al. | Vision-based guidance and control of a hovering vehicle in unknown, GPS-denied environments | |
Blösch et al. | Vision based MAV navigation in unknown and unstructured environments | |
KR102288346B1 (ko) | 무인비행체 자동 정밀 착륙 시스템 및 방법 | |
Wenzel et al. | Automatic take off, tracking and landing of a miniature UAV on a moving carrier vehicle | |
EP3759561B1 (en) | Drone control system | |
Ludington et al. | Augmenting UAV autonomy | |
WO2008100337A2 (en) | Precision approach control | |
Dougherty et al. | Laser-based guidance of a quadrotor uav for precise landing on an inclined surface | |
CN105352495A (zh) | 加速度与光流传感器数据融合无人机水平速度控制方法 | |
KR102307079B1 (ko) | 무인비행체의 표적 감지 추적 시스템 | |
Richardson et al. | Automated vision‐based recovery of a rotary wing unmanned aerial vehicle onto a moving platform | |
Lasmadi et al. | Inertial navigation for quadrotor using kalman filter with drift compensation | |
EP3868652B1 (en) | Information processing system, information processing method, and program | |
CN111273679A (zh) | 一种视觉引导的小型固定翼无人机撞网回收纵向制导方法 | |
Wang et al. | Guidance, navigation and control of an unmanned helicopter for automatic cargo transportation | |
Springer et al. | Autonomous drone landing with fiducial markers and a gimbal-mounted camera for active tracking | |
Mebarki et al. | Autonomous landing of rotary-wing aerial vehicles by image-based visual servoing in GPS-denied environments | |
Mercado et al. | Quadrotor's trajectory tracking control using monocular vision navigation | |
Lee et al. | Autonomous target following with monocular camera on uas using recursive-ransac tracker | |
Olivares-Mendez et al. | Autonomous landing of an unmanned aerial vehicle using image-based fuzzy control | |
JP2020135327A (ja) | 飛行体システム、飛行体、位置測定方法、プログラム | |
Rondon et al. | Optical flow-based controller for reactive and relative navigation dedicated to a four rotor rotorcraft | |
Ho et al. | Automatic landing system of a quadrotor UAV using visual servoing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |