JP2019128944A - 目標追跡方法、目標追跡装置、目標追跡システム及びプログラム。 - Google Patents

目標追跡方法、目標追跡装置、目標追跡システム及びプログラム。 Download PDF

Info

Publication number
JP2019128944A
JP2019128944A JP2018207019A JP2018207019A JP2019128944A JP 2019128944 A JP2019128944 A JP 2019128944A JP 2018207019 A JP2018207019 A JP 2018207019A JP 2018207019 A JP2018207019 A JP 2018207019A JP 2019128944 A JP2019128944 A JP 2019128944A
Authority
JP
Japan
Prior art keywords
target
movable object
target tracking
velocity
imaging device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018207019A
Other languages
English (en)
Other versions
JP6991122B2 (ja
Inventor
杰 銭
Jie Qian
杰 銭
宏達 王
Hongda Wang
宏達 王
奇峰 ▲う▼
奇峰 ▲う▼
Qifeng Wu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SZ DJI Technology Co Ltd
Original Assignee
SZ DJI Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SZ DJI Technology Co Ltd filed Critical SZ DJI Technology Co Ltd
Publication of JP2019128944A publication Critical patent/JP2019128944A/ja
Application granted granted Critical
Publication of JP6991122B2 publication Critical patent/JP6991122B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D47/00Equipment not otherwise provided for
    • B64D47/08Arrangements of cameras
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S11/00Systems for determining distance or velocity not using reflection or reradiation
    • G01S11/12Systems for determining distance or velocity not using reflection or reradiation using electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/78Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using electromagnetic waves other than radio waves
    • G01S3/782Systems for determining direction or deviation from predetermined direction
    • G01S3/785Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system
    • G01S3/786Systems for determining direction or deviation from predetermined direction using adjustment of orientation of directivity characteristics of a detector or detector system to give a desired condition of signal derived from that detector or detector system the desired condition being maintained automatically
    • G01S3/7864T.V. type tracking systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/16Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using electromagnetic waves other than radio waves
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0094Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots involving pointing a payload, e.g. camera, weapon, sensor, towards a fixed or moving target
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/30UAVs specially adapted for particular uses or applications for imaging, photography or videography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S2205/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S2205/01Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S2205/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S2205/01Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations specially adapted for specific applications
    • G01S2205/07Military

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Electromagnetism (AREA)
  • Automation & Control Theory (AREA)
  • Multimedia (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Image Analysis (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

【課題】複数目標物から目標グループを決定し、該目標グループを正確に追跡することを可能にする方法、装置、システム及びこのような方法をコンピュータに実行させるプログラムを提供する。【解決手段】複数の目標物から狙いとする目標物を一体として把握することで目標グループを決定し、さらに、順次に取得された画像データを処理することにより、可動物体の6自由度の移動方向の少なくとも1つにおける速度成分を取得し、取得した速度成分に基づいて可動物体及び撮像装置の少なくともいずれかの移動を調整する。【選択図】図5

Description

本出願は、2018年1月22日に出願されたPCT/CN2018/073664の国際特許出願に基づき提出されるとともに、当該国際特許出願の優先権を主張し、当該国際特許出願の全体が参照により、ここに組み込まれる。
本発明は、目標物追跡の技術分野に関し、より具体的には、撮像画像を用いて複数の目標物を追跡する方法、装置、システム及びプログラムに関するものである。
例えば無人航空機(Unmanned Aerial Vehicle; 以下、単に「UAV」と称する。)のような、撮像装置を搭載した可動物体の開発・利用の進展に伴い、監視、偵察、探査などを目的として目標物を追跡する需要が高まっている。
例えば特許文献1には、UAVに搭載された撮像装置により取得された画像中で目標物を識別し、目標物を取り囲む境界ボックス(bounding box)などの追跡インジケータを画像に付与し、該インジケータの情報に基づいて目標物の位置、目標物と可動物体との相対距離、及び目標物の速度などの少なくともいずれかを判定する技術が開示されている。
また、引用文献2には、撮像デバイスにより取り込まれる1又は複数の画像中の予め定められた位置及び目標のサイズの少なくともいずれかを維持するように目標を自動的に追跡する技術が開示されている。
国際公開第2017/143589号パンフレット 国際公開第2016/015251号パンフレット
しかしながら、目標物が複数存在する場合、そのうちの一部の目標物を選択的かつ継続的に追跡することは容易でなかった。
本発明は、複数目標物から目標グループを決定し、該目標グループを正確に追跡することを可能にする方法、装置、システム及びこのような方法をコンピュータに実行させるプログラムを提供することを主な目的とする。
本発明の第1の態様によれば、目標識別モジュールと、目標グループ決定モジュールと、制御モジュールとを備える目標追跡システムが提供され、
前記目標識別モジュールは、可動物体に搭載される撮像装置から取得された複数の画像に基づいて複数の目標を識別し、
前記目標グループ決定モジュールは、前記複数の目標からの1つ以上の目標を含む目標グループを決定し、
制御モジュールは、前記目標グループを追跡するように前記可動物体及び前記撮像装置の少なくともいずれかを制御し、かつ、順次に取得された画像データを処理することにより、互いに交わる3つの直線移動方向並びに該3方向の各々を中心とする3つの回転方向でなる6自由度の移動方向の少なくとも1つにおける速度成分を取得し、取得した速度成分に基づいて前記可動物体及び前記撮像装置の少なくともいずれかの移動を調整する。
本発明の第2の態様によれば、可動物体と、撮像装置と、プロセッサと、駆動装置とを備える目標追跡装置が提供され、
前記撮像装置は、前記可動物体に搭載され、複数の目標物を撮像して画像データを出力し、
前記プロセッサは、前記画像データを処理して前記複数の目標物を識別し、識別した目標物から目標グループを決定し、前記目標グループを追跡するように前記可動物体を制御する指令信号を出力し、
前記駆動装置は、前記指令信号に基づいて前記可動物体を移動させ、さらに、
前記プロセッサは、順次に取得された画像データを処理することにより、互いに交わる3つの直線移動方向並びに該3方向の各々を中心とする3つの回転方向でなる6自由度の移動方向の少なくとも1つにおける速度成分を取得して前記駆動装置に供給し、
前記駆動装置は、前記速度成分に基づいて前記可動物体の移動を調整する。
本発明の第3の態様によれば、目標追跡方法が提供され、該目標追跡方法は、
可動物体に搭載される撮像装置から取得された複数の画像に基づいて複数の目標を識別するステップと、
前記複数の目標からの1つ以上の目標を含む目標グループを決定するステップと、
前記目標グループを追跡するように前記可動物体及び前記撮像装置の少なくともいずれかを制御するステップと、
を備え、
前記可動物体及び前記撮像装置の少なくともいずれかを制御するステップは、
順次に取得された画像データを処理することにより、互いに交わる3つの直線移動方向並びに該3方向の各々を中心とする3つの回転方向でなる6自由度の移動方向の少なくとも1つにおける速度成分を取得し、取得した速度成分に基づいて前記可動物体及び前記撮像装置の少なくともいずれかの移動を調整するステップを含む。
さらに、本発明の第4の態様によれば、上記目標追跡方法をコンピュータに実行させるプログラムが提供される。
本発明の実施形態による目標追跡システム、目標追跡装置、目標追跡方法及びプログラムは、複数の目標から狙いとする目標を一体として把握することにより目標グループを決定し、さらに、異なる時刻で取得された画像データを処理することにより、可動物体の(3自由度の直進及び3自由度の回転からなる)6自由度の移動方向の少なくとも1つにおける速度成分を取得し、取得した速度成分に基づいて可動物体及び撮像装置の少なくともいずれかの移動を調整することにより、複数の画像フレームに跨って実質的に同一の位置及びサイズで追跡インジケータを維持することができる。これにより、目標グループを正確に追跡することができる。
本発明の一実施形態による目標追跡システムの概略構成を示すブロック図の一例である。 図1に示す目標追跡システムのより具体的な構成を示すブロック図の一例である。 本発明の一実施形態による目標追跡装置の概略構成を示す模式図の一例である。 図3に示す目標追跡装置のより具体的な構成を示すブロック図の一例である。 本発明のいくつかの実施形態による目標追跡方法の概略手順を示すフローチャートの一例である。 第1乃至第3の実施形態による目標追跡方法における、目標グループの選択のための例示的なプロセスを示す図である。 目標グループの選択のための他の例示的なプロセスを示す図である。 目標グループに目標物を追加する一例を示す図である。 目標グループから目標物を除去する一例を示す図である。 主目標に基づいて目標グループを更新する一例を示す図である。 第1実施形態による目標追跡方法を説明するための模式図の一例である。 第1実施形態による目標追跡方法において、目標追跡装置から離れて移動するときの、X―Y平面に沿った目標グループの直進運動を示す模式図の一例である。 フィードバック制御システムの一例を示すブロック図の一例である。 第2実施形態による目標追跡方法を説明するためのX―Y平面に沿った目標グループの直進運動を示す模式図の一例である。 フィードバック制御システムの他の例を示すブロック図の一例である。 第3実施形態による目標追跡方法を説明するための模式図の一例である。 第3実施形態による目標追跡方法において、目標追跡装置から離れて移動するときの、X―Y平面に沿った目標グループの直進運動を示す模式図の一例である。 ヨー方向(Z軸)及びピッチ方向(Y軸)の両方での回転を含む目標追跡装置の向きの変化を説明する模式図の一例である。
以下、本発明の実施の形態のいくつかについて図面を参照しながら説明する。図面において同一の要素・部材には同一の参照符号を付し、その重複説明は適宜省略する。また、図中の各部材の形状・サイズは、説明を容易にするため、適宜拡大・縮小・省略されており、現実の縮尺・比率とは合致していない場合がある。また、「実質的に」の用語は、測定誤差をも含む趣旨で使用される。
(A)目標追跡システム
図1に、本発明の一実施形態による目標追跡システムの概略構成を示すブロック図の一例を示す。本実施形態の目標追跡システム200は、目標識別モジュール202と、目標グループ決定モジュール210と、追跡制御モジュール216と、を備える。
目標識別モジュール202は、可動物体(図3の符号102参照)に搭載される撮像装置(図3の符号106参照)から取得された複数の画像を処理して複数の目標を識別する。画像処理により目標を識別する具体的な方法については、上述した特許文献1などの公開された技術を参照されたい。
目標グループ決定モジュール210は、上記複数の目標からの1つ以上の目標を含む目標グループを決定する。
追跡制御モジュール216は、上記目標グループを追跡するように上記可動物体及び上記撮像装置の少なくともいずれかを制御するための制御信号を生成する。
目標追跡システム200は、状態推定モジュール204をさらに備える。状態推定モジュール204は、現実世界における目標物の状態を判定するように構成することができる。目標物の状態は、その位置、速度、加速度、及び方位の少なくともいずれかなどの運動学的状態の他、そのサイズ、形状、テクスチャー、色などの外観的状態を含むことができる。目標物の状態は、UAVナビゲーションと同じ座標系で示しても、異なる座標系で示してもよい。一例では、目標物の位置は、ナビゲーション座標系の座標を用いて示される。ナビゲーション座標系は、地上の所定の位置(例えば、UAV離陸位置、地上局又は遠隔端末の位置、ホーム位置)を原点とする北−東−下(NED)座標系を含んでもよい。
状態推定モジュール204は、目標物状態推定モジュール206及びグループ状態推定モジュール208を含む。目標物状態推定モジュール206は、例えば、(例えば、目標識別モジュール202によって取得された)目標物に関連する境界ボックス(bounding box)の情報に基づいて、目標物の状態(例えば、目標物と追跡システムとの間の相対距離又は相対角度)を判定するように構成される。グループ状態推定モジュール208は、目標グループに含まれる目標物の状態に基づいて、目標グループの状態を判定するように構成することができる。
目標グループ決定モジュール210は、1つ以上の目標物を含む目標グループを決定するように構成される。例えば、目標グループ決定モジュール210は、相互の近接度又は基準点に対する近接度などの目標物の状態に基づいて(例えば、目標識別モジュール202によって)識別された複数の目標物から1つ以上の目標物を選択するように構成されてもよい。目標グループ決定モジュール210はまた、目標グループを初期化するように構成されたグループ初期化モジュール212と、目標グループを更新するように構成されたグループ更新モジュール214とを含んでもよい。
追跡制御モジュール216は、異なる時刻で順次に取得された画像データを処理することにより、互いに交わる3つの直線移動方向並びに該3方向の各々を中心とする3つの回転方向でなる6自由度の移動方向の少なくとも1つにおける速度成分を取得し、取得した速度成分に基づいて上記可動物体及び上記撮像装置の少なくともいずれかの移動を調整する。
本明細書において、関連する目標物の対応する属性(例えば、画像内の目標のサイズ及び位置の少なくともいずれか)については、追跡インジケータの属性(例えば、画像内の境界ボックスのサイズ及び位置の少なくともいずれか)を使用して概略的に表す。以下では、追跡インジケータとして画像中で(一つ以上の)目標を取り囲む境界ボックスの態様を採用する。境界ボックスの情報は、後述するように、現実世界(例えば、ナビゲーション座標系)における目標物の状態を推定するために使用することができる。
図2は、本実施形態による目標追跡システムのより具体的な構成を示すブロック図の一例である。同図に示す目標追跡システム2200は、感知モジュール2202と、処理ユニット2204と、非一時的コンピュータ可読媒体2206、制御モジュール2208及び通信モジュール2210とを備える。
感知モジュール2202は、図3に示す目標識別モジュール202の一部を構成し、可動物体(図4の符号2150参照)自身に関する情報を異なる態様で収集する異なるタイプのセンサを使用する。異なるタイプのセンサは、異なる情報源からの様々なタイプの信号を感知する。これらのセンサは、例えば、慣性センサ、GPSセンサ、(例えばライダーなどの)近接センサ、又は(例えばカメラなどの)視覚センサ若しくは撮像センサを含む。感知モジュール2202は、処理ユニット2204に接続されて動作する。本実施形態において、感知モジュール2202はまた、送信モジュール2212(例えばWi-Fi画像送信モジュール)にも接続され、これにより、感知データが外部の好適な装置又はシステムに直接送信される。例えば、送信モジュール2212は、感知モジュール2202のカメラにより取り込まれた画像を遠隔の端末に送信するために使用できる。
処理ユニット2204は、プログラマブル可能又は不能のプロセッサ(例えば、中央処理装置(CPU)、マイクロプロセッサ、FPGA、特定用途向け集積回路(ASIC)等の1又は複数のプロセッサを有してよい。処理ユニット2204は、非一時的コンピュータ可読媒体2206に動作可能に接続可能である。非一時的コンピュータ可読媒体2206は、1又は複数のステップを実行するための処理ユニット2204により実行可能な、ロジック、コード及びプログラム命令の少なくともいずれかを格納できる。非一時的コンピュータ可読媒体2206には、1又は複数のメモリユニット(例えば、SDカード又はランダムアクセスメモリ(RAM)等の取り外し可能な媒体又は外部ストレージ)が含まれる。非一時的コンピュータ可読媒体2206のメモリユニットは、後述する複数の目標追跡方法の任意の実施形態における一連の手順を処理ユニット2204に実行させるためのロジック、コード、及びプログラム命令の少なくともいずれかを格納できる。格納される。非一時的コンピュータ可読媒体2206のメモリユニットは、処理ユニット2204により処理される、感知モジュール2202からの感知データを格納することもできる。
処理ユニット2204は、可動物体の状態を制御するよう構成される制御モジュール2208に動作可能に接続可能である。制御モジュール2208は、例えば、図3に示す追跡制御モジュール216に対応し、可動物体の推進機構を制御して6自由度に関連した、可動物体の空間位置、速度及び加速度の少なくともいずれかを制御するよう構成可能である。制御モジュール2208はまた、支持機構(carrier)、搭載物(payload)又は感知モジュールの状態を制御することもできる。
処理ユニット2204は、外部装置(例えば端末、表示装置、又は他の遠隔コントローラ)からのデータを送信又は受信するよう構成された通信モジュール2210に動作可能に接続できる。通信手段としては有線/無線の好適な手段を利用できる。例えば、通信モジュール2210は、ローカルエリアネットワーク(LAN)、ワイドエリアネットワーク(「WAN)、赤外線、無線、WiFi、ポイントツーポイント(P2P)ネットワーク、通信ネットワーク、クラウド通信等のうち1又は複数を利用できる。タワー、衛星、又は移動局等の中継局も任意に用いることができる。通信モジュール2210は、感知モジュール2202からの感知データ、処理ユニット2204により生成された処理結果、端末もしくは遠隔制御器からの予め定められた制御データもしくはユーザコマンド等の送信及び受信の少なくともいずれかを行うことができる。
処理ユニット2204は、非一時的コンピュータ可読媒体2206のメモリユニットからロジック、コード、及びプログラム命令の少なくともいずれかを読み出して後述する一連の手順により複数目標の追跡を行うよう各コンポーネントを制御する。
処理ユニット2204は、図3に示す状態推定モジュール204及び目標グループ決定モジュール210に対応し、異なる時刻で順次に取得された画像データを処理することにより、6自由度の移動方向の少なくとも1つにおける速度成分を取得して制御モジュール2208に供給する。制御モジュール2208は、送られた速度成分の情報に基づいて可動物体の移動を調整する。処理ユニット2204及び制御モジュール2208による可動物体の移動制御・調整の具体的な方法は後に詳述する。
目標追跡システム2200の各コンポーネントは、任意の好適な構成で配置可能である。例えば、目標追跡システム2200のコンポーネントのうち1又は複数は、可動物体本体、支持機構、搭載物、遠隔端末、感知システム、又は上記のうち1又は複数と通信する追加の外部デバイス上に配置可能である。
図2を参照しながら、処理ユニット2204として、単体のハードウェアから構成可能な、目標追跡システム2200に内蔵される装置として説明したが、単体の構成に限る必要は全くなく、必要な処理機能が実行されるものであれば、例えばクラウドコンピューティングとして外部の様々なハードウェアに分散して利用することも可能である。
目標追跡システム2200による目標の追跡のための具体的動作については、後述する目標追跡方法の実施形態にて詳細に説明する。
(B)目標追跡装置
図3は、本発明の一実施形態による目標追跡装置の概略構成を示す模式図の一例である。本実施形態の目標追跡装置100は、撮像装置106、又は、支持機構104を介して撮像装置106を搭載する可動物体102を備える。図3に示すように、目標追跡装置100は、オプションとして、遠隔端末112を含むことができる。目標追跡装置100は、1つ以上の目標物110を含む目標グループ108を追跡するように構成される。本実施形態において、可動物は、無人航空機(UAV)である。
撮像装置106は、支持機構104により運搬される搭載物を構成し、電磁放射(例えば、可視光、赤外線及び紫外光の少なくともいずれか)を検出し、検出された電磁放射に基づいて画像データを生成するように構成される。撮像装置106によって生成される画像データは、静止画像(例えば、写真)、動的画像(例えば、ビデオ)、又はそれらの適切な組み合わせである1つ又は複数の画像を含むことができる。
撮像装置106は、動的画像データ(例えば、ビデオ)を取り込むビデオカメラであっても、静止画像(例えば、写真)を取り込むスチルカメラでも、その両方を取り込むものでもよく、また、3Dシーン(例えば、環境、1つ以上の物など)の2D画像を生成するできるものでもよい。カメラによって生成された画像は、3Dシーンの2D画像平面への投影を表すことができる。従って、2D画像内の各点は、シーン内の3D空間座標に対応する。
撮像装置106はまた、調整可能なパラメータを有してもよい。調整可能なパラメータには、露光(例えば、露光時間、シャッタースピード、絞り、フィルムスピード)、ゲイン、ガンマ、関心領域、ビニング/サブサンプリング、ピクセルクロック、オフセット、トリガリング、ISOなどが含まれる。
搭載物は、撮像装置106の他、環境内に信号を発信できる装置を含むことができる。例えば、搭載物は、電磁スペクトルに沿ったエミッタ(例えば、可視光エミッタ、紫外線エミッタ、赤外線エミッタ)を含むことができる。搭載物は、レーザ又は任意の他のタイプの電磁エミッタを含むことができる。搭載物は、(例えば、スピーカから)可聴音を発することができる。搭載物は、無線信号又は他のタイプの信号などの無線信号を発することもできる。搭載物はまた、支持機構104の支援で可動物体102に対して移動してもよい。
可動物体102及び撮像装置106の少なくともいずれかは、複数の目標物110(目標とも称する)を追跡するように制御されてもよい。目標物は、静止目標又は移動目標であってもよい。場合によっては、ユーザは、画像フレームから目標物を識別し、目標物が静止目標であるか又は移動目標であるかをさらに明確にしてもよい。
目標物は、その動き状態に応じて静止目標又は移動目標として分類することができる。静止目標は、環境内で実質的に静止したままであり得る。静止目標の例は、景観特徴(例えば、樹木、植物、山、丘、川、小川、入江、谷、丸石、岩石など)、又は人工物(例えば、構造物、建築物、道路、橋、電柱、フェンス、止まっている車、標識、ライトなど)を含んでもよい。
移動目標は、環境内で移動することができる。移動目標は、常に移動中であってもよいし、又はある時間の部分の移動があってもよい。移動目標は、空気中、陸上、地下、水上、及び宇宙の少なくともいずれかで移動してもよい。移動目標は、生きている移動目標(例えば、人間、動物)、又は生命のない移動目標(例えば、移動車、移動機械、風に吹かれたり水に乗ったりする物、生きている目標が運んでいる物)であってもよい。移動目標は、単一の移動物又は移動物のグループを含んでもよい。
移動目標は、6自由度に関して環境内で自由に移動することができる。場合によっては、移動目標は、遠隔制御される車のような車でも、航空ビークルでもよい。移動目標はまた、可動物体、例えば、UAVであってもよい。
目標物及び追跡装置は、1つ以上のバックグラウンド物に対して3次元空間内を移動することができる。バックグラウンド物は、静止物のような動きができないものであっても、移動可能であってもよい。
オプションとして目標追跡装置100に含まれ得る、遠隔端末112は、目標を追跡するように、目標を識別し、1つ以上の目標又は目標グループの状態の推定、及び可動物体及びキャリアの少なくともいずれかの制御の少なくともいずれかを行うための制御信号を生成するために、撮像装置106によって生成された画像を処理するように構成されたプロセッサを含んでもよい。遠隔端末112はまた、撮像装置106によって取得された1つ以上の画像を表示するように構成されたディスプレイを含んでもよい。画像は、識別された各目標と共に追跡インジケータ(例えば、境界ボックス)を示してもよい。遠隔端末112は、ユーザが追跡する1つ以上の目標を指定又は選択するためのユーザインタフェース(例えば、タッチスクリーン)を含んでもよい。
図4は、図3に示す目標追跡装置のより具体的な構成を示すブロック図の一例である。同図に示す目標追跡装置2100は、上述した実施形態の目標追跡システム2200の各コンポーネントが可動物体上に組み込まれたものである。すなわち、目標追跡装置2100は、可動物体本体2150と、推進機構2106と、支持機構2102と、搭載物2104とを備える。可動物体本体2150は、感知システム2108と通信システム2110とプロセッサ2154と非一時的コンピュータ可読媒体2156とを含む。搭載物2104は、図4に示す例では支持機構2102により支持されるが、これに限ることなく可動物体本体2150に直接取り付けられたものでもよい。
可動物体本体2150は、環境内で6自由度に対して自由に移動可能である。または、可動物体本体2150の移動は、予め定められた経路、航路、又は向き等により、1又は複数の自由度に対して制限され得る。移動は、エンジン又はモータ等の任意の好適な作動メカニズムにより作動し得る。可動物体の作動メカニズムは、電気エネルギー、磁気エネルギー、太陽エネルギー、風カエネルギー、重力エネルギー、化学エネルギー、原子力エネルギー、又はこれらの任意の好適な組み合わせ等、任意の好適なエネルギー源により電源供給され得る。本実施形態において、可動物体本体2150は、後に詳述される推進機構2106による、自己推進型であるが、推進機構としては、これに限ることなく、電気エネルギー、磁気エネルギー、太陽エネルギー、風カエネルギー、重力エネルギー、化学エネルギー、原子力エネルギー、又はこれらの任意の好適な組み合わせ等のエネルギー源により作動するものでもよい。あるいは、可動物体本体2150は、生物により搬送されてもよい。
可動物体本体2150の具体的態様として、乗り物、例えば航空機を挙げることができる。航空機は固定翼機(例えば、飛行機、グライダー)、回転翼航空機(例えば、ヘリコプタ、ロータクラフト)、固定翼部及び回転翼部の双方を有する航空機、又はそのいずれも有しない航空機(例えば、小型飛行船、熱気球)であってもよい。乗り物は、例えば空気を通る自己推進型等であり得る。自己推進型の乗り物は、1又は複数のエンジン、モータ、車輪、車軸、磁石、ロータ、プロペラ、ブレード、ノズル、又はこれらの任意の好適な組み合わせを含む、推進システム等を使用し得る。推進システムは、可動物体が面から離陸し、面に着陸し、現在位置及び向きの少なくともいずれかの維持(例えば、ホバリング)、向きの変更、及び位置の変更の少なくともいずれかを可能にすべく、使用可能である。本実施形態において、目標追跡装置2100の可動物体本体2150はUAVである。
推進機構2106は、ロータ、プロペラ、ブレード、エンジン、モータ、車輪、車軸、磁石、又はノズルのうち1又は複数を含み得る。図4では、目標追跡装置2100が2つの推進機構2106を有する場合を取り上げたが、これに限ることなく推進機構2106の数量は単一でも3つ以上でもよい。推進機構2106は、全てが同一のタイプでも、異なるタイプで構成されてもよい。推進機構2106は、任意の支持要素(例えば、駆動シャフト)を用い、上部の他、底部、前面、背面、側面、又はこれらの好適な組み合わせで、可動物体本体2150の任意の好適な部分に装着可能である。
可動物体本体2150のサイズや寸法については特に限定は無く、例えば乗務員が内部又はその上に搭乗可能なものでも、登場不能なものでもよく、人によって持ち上げたり運搬したりできるものでもよい。
可動物体本体2150は、搭載物2104を支持するように構成することができる。搭載物2104としては、乗客、貨物、機器、器具等を挙げることができる。搭載物2104は、筐体内に設けてもよいし、筐体無しでも受けてもよい。搭載物2104の筐体は、可動物体本体2150の筐体と別個でも、その一部であってもよい。搭載物2104は、可動物体本体2150に対して堅固に固定されてもよいし、可動物体本体2150に対して(例えば直進又は回転など)移動可能であってもよい。本実施形態において搭載物2104は、カメラなどの撮像装置106を含む搭載物である。
推進機構2106は、可動物体本体2150の(例えば、滑走路の進行などの)いずれの水平移動も必要とせずに、可動物体本体2150が任意の面から鉛直に離陸又は着陸することを可能にする。また、推進機構2106は、指定された位置及び向きの少なくともいずれかにおいて、空中で可動物体本体2150がホバリングできるように動作することもできる。推進機構2106は、そのうちの1又は複数が他の複数の推進機構から独立して制御されるように、または、全て同時に制御されるようにも構成できる。例えば、目標追跡装置2100は、可動物体本体2150に揚力及び推力の少なくともいずれかを提供し得る複数の水平に方向付けられたロータを備えることができる。これらのロータは、時計回り方向にも反時計回り方向にも回転可能である。ロータの回転方向や回転率は、揚力及び推力の少なくともいずれかの制御のため、独立して変化可能で、それにより、目標追跡装置2100の空間的配置、速度、及び加速度の少なくともいずれかを調整できる。
可動物体本体2150、支持機構2102及び搭載物2104は、(例えば周囲の環境などの)固定された参照フレームに対し、もしくはこれと相互に、又は端末2112により制御可能である。端末2112は、可動物体本体2150、支持機構2102及び搭載物2104の少なくともいずれかから遠隔の位置にある遠隔制御装置であり得る。端末2112は、ハンドヘルドデバイス又はウェアラブルデバイスでもよい。端末2112はまた、スマートフォン、タブレット、ラップトップ、コンピュータ、眼鏡、グローブ、ヘルメット、マイク、又はこれらの好適な組み合わせを含むことができる。端末2112は、例えばキーボード、マウス、ジョイスティック、タッチスクリーン又はディスプレイなどのユーザインタフェースを含むことができる。端末2112との交信には、好適なユーザ入力、例えば、マニュアル入力のコマンド、ボイスコントロール、ジェスチャーコントロール、又は(端末2112の移動、設置又は傾きなどを介した)位置コントロールを利用することができる。
端末2112はまた、可動物体本体2150、支持機構2102及び搭載物2104の好適な状態を制御するためにも使用可能である。例えば、端末2112は、可動物体本体2150、支持機構2102及び搭載物2104の少なくともいずれかの位置及び向きの少なくともいずれかを、固定された参照フレーム又は相互に対して制御するために使用できる。端末2112はまた、可動物体本体2150、支持機構2102及び搭載物2104の少なくともいずれかの個別要素、例えば支持機構2102のアクチュエーションアセンブリ、搭載物2104のセンサ又は搭載物2104のエミッタなどを制御するために使用可能である。端末2112は、可動物体本体2150、支持機構2102又は搭載物2104の一つ以上と通信するように適合された無線通信デバイスを含むことができる。
端末2112は、可動物体本体2150、支持機構2102及び搭載物2104の少なくともいずれかの情報を表示するための好適な表示ユニットを含むことができる。例えば、端末2112は、位置、直進速度、直進加速度、向き、角速度、角加速度又はこれらの任意の組み合わせに関する、可動物体本体2150、支持機構2102及び搭載物2104の少なくともいずれかの情報を表示するように構成可能である。また、端末2112は、搭載物2104により提供される情報、例えば機能的な搭載物2104により提供されるデータ(例えばカメラや他の画像取込デバイスにより記録された画像)を表示することができる。
なお、同一の端末2112が可動物体本体2150、支持機構2102及び搭載物2104の少なくともいずれかの状態を制御すると共に、可動物体本体2150、支持機構2102及び搭載物2104の少なくともいずれかからの情報の受け取りおよび表示の少なくともいずれかを行うこととしてもよい。例えば、端末2112は、搭載物2104により取り込まれた画像又は搭載物2104の位置に関する情報を表示する一方で、環境に対する搭載物2104の配置を制御することとしてもよい。また、環境に対する搭載物2104の配置の制御に第1端末が使用される一方で、搭載物2104により取り込まれた画像データを第2端末が表示することとしてもよい。
目標追跡装置2100は、ユーザにより遠隔で制御され、または可動物体本体2150内又は可動物体本体2150上の占有者によりローカルに制御され得る。可動物体本体2150は、UAV等の無人可動物体でもよい。可動物体本体2150は、人間による、又は自律制御システム(例えば、コンピュータ制御システム)、又はこれらの任意の好適な組み合わせにより制御可能である。可動物体本体2150は、人工知能を用いて構成されたロボット等、自律型又は半自律型ロボットであり得る。
目標追跡装置100,2100は、以下に記載する一連の手順により、複数目標の追跡を実行する。以下、その具体的手順について、本発明の実施の一形態による目標追跡方法としてより具体的に説明する。以下では、目標追跡装置として、主として図4に示した目標追跡装置2100を取り上げるが、追跡方法の各手順は、図3に示す目標追跡装置100についても同様に適用される。
なお、目標追跡装置2100のプロセッサ2154及び非一時的コンピュータ可読媒体2156は、図1を参照して上述した目標追跡システム2200が備える制御モジュール2208及び非一時的コンピュータ可読媒体2206が発揮する機能の全てを実行可能なものである必要はなく、推進機構2106、支持機構2102及び搭載物2104の操作に必須の機能を除き、その他の機能、特に高負荷の機能を、例えばクラウドコンピューティングなどを利用して外部の装置に実行させてもよい。
(C)目標追跡方法
以下、本発明に係る目標追跡方法の実施形態のいくつかについて説明する。以下では、速度成分の取得態様に応じて第1乃至第3の実施形態を取り上げるが、以下の(i)目標の識別及び(ii)目標グループの決定の各手順は第1乃至第3の実施形態に共通である。
これら第1乃至第3の実施形態による目標追跡方法の概略手順の一例を図5のフローチャートに示す。
(i)目標の識別
まず、ブロック302において、複数の目標が識別される。例えば、図3に示す目標追跡装置100によれば、撮像装置106により取得された画像に基づいて識別することができる。
(ii)目標グループの決定
次いで、ブロック304において、複数の目標に基づいて目標グループが決定される。特に、目標グループは、複数の識別された目標から選択できる1つ以上の目標を含む。1つ以上の目標は、1つ以上の目標のそれぞれに関連する目標状態に基づいて選択されてもよい。例えば、目標グループのための目標は、相互の近接度又は所定の基準点(例えば、画像中心)に対する近接度に基づいて選択されてもよい。代替的に、1つ以上の目標は、主目標に基づいて選択されてもよい。主目標に近い目標は、目標グループに選択されてもよい。
幾つかの実施形態では、目標の状態は、少なくとも部分的には、境界ボックス情報に基づいて判定することができる。例えば、追跡システムと目標との間の相対距離ベクトルは、境界ボックス情報、撮像装置の視野(FOV)、UAV状態(例えば、高度)、及び又はカメラ方位に少なくとも部分的に基づいて判定されてもよい。追跡システムの位置(GPSセンサのような任意の適切な位置センサを使用して判定され得る)が与えられると、追跡システムの位置及び相対距離ベクトルに基づいて標的の位置を判定することができる。
図6は、第1乃至第3の実施形態による目標グループの選択のための幾つかの例示的なプロセスを示す。符号700aに示されるように、画像720において目標物701、702、703、704及び705が識別された。目標物は、画像内の他の非目標物(図示せず)と区別するために境界ボックス710によって示してもよい。
符号700bに示されるように、1つ以上の物を含む目標グループは、少なくとも部分的には、画像座標系における目標物の状態に基づいて判定することができる。目標物の状態の一つとして、目標物の位置を取り挙げることができる。例えば、画像座標系における基準点と各目標物との間の距離は、基準点の位置座標(u0、v0)と、目標物のピクセル座標(例えば、目標物701、702、703、704及び705のそれぞれに対して、(u1、v1)、(u2、v2)、(u3、v3)、(u4、v4)、(u5、v5))とに基づいて判定できる。各目標物の各距離は、所定の閾距離”d”と比較することができる。閾距離”d”以下の距離を有する目標物を目標グループ内で選択してもよい。一方、“d”以上の距離を有する目標物のみを選択してもよい。
基準点としては、画像、基準物の位置(例えば、ランドマークビルディング)、又は画像座標系における任意の他の所定の点とすることができる。基準点は、システムによってデフォルトで設定してもユーザ又はシステム管理者によって構成可能であってもよい。例えば、ユーザは、遠隔端末を使用して基準点を指定させてもよい。
また、目標グループの選択は、目標物の位置的変化に基づいてもよい。例えば、目標物の位置は、隣接する画像間でシフトしてもよい。位置的シフトは、画像座標系における動きベクトルによって表されてもよい。
符号700cに示されるように、1つ以上の目標を含む目標グループは、少なくとも部分的には、ナビゲーション座標系などの3D座標系における目標物の状態で決定することができる。目標物の状態として、例えば前述した通りに目標物の位置に基づいて決定することができる。
目標物を含む目標グループは、本明細書で説明されるような因子、例えば、(位置、速度、加速度、方位、タイプ、外観、重み値など)に基づいて決定することができる。例えば、符号700dに示されるように、目標物701、702及び703は、上記の因子の幾つか又はすべてに基づいて、目標グループ708の一部として選択されてもよい。目標グループ708の境界ボックスは、目標グループを示すために画像720上に示されても示されなくてもよい。
目標物の1つ以上につき、主目標物(主目標とも称する)と決定してもよい。主目標は常に追跡されるため、常に目標グループ内にある。残りの目標物(副目標物)は、主目標物との関係に基づいて、目標グループに含まれるか目標グループから除外されてもよい。
図7は、一実施形態による目標グループの選択のための他の例示的なプロセスを示す。図示されているように、目標グループは、主目標の状態に少なくとも部分的に基づいて決定されてもよい。符号800aに示されるように、画像820において目標物801、802、803、804及び805が識別された。目標物は、画像内の他の非目標物(図示せず)と区別するために境界ボックス810によって示されてもよい。
符号800bに示されるように、目標801は、目標グループに含まれる主目標であってもよく、残りの目標物(例えば、目標802)は、目標グループ内に含まれても含まれなくてもよい非主目標物又は副目標物であってもよい。幾つかの実施形態では、主目標と副目標との間の空間的関係に基づいてグループを選択してもよい。例えば、主目標と副目標との間の距離を、それらの位置座標に基づいて計算してもよい。主目標から所定の閾距離内にある(例えば、所定の距離閾以下の距離を有する)それらの目標のみを、目標グループ808に含めてもよい。主目標の位置の他に、主目標の他の状態情報を、目標グループのメンバーを選択するために使用してもよい。例えば、副目標の移動方向が、主目標の移動方向と比較されてもよい。2つの方向の間の差が所定の閾値以下である場合、副目標は目標グループで選択されてもよく、副目標のスピードが、主目標のスピードと比較されてもよい。2つのスピードの間の差が所定の閾値以下である場合、副目標は目標グループで選択される。例えば、符号800cに示されるように、副目標物802及び803は、主目標物801との関係に基づいて、同じ目標グループ808内にあるように選択される。
幾つかの実施形態では、目標グループを決定することは、既存の目標グループを更新することを含む。目標グループを更新することは、例えば図8乃至図10に示すように、目標物を追加又は除去することを含んでもよい。図8は目標グループに目標物を追加する一例を示し、図9は目標グループから目標物を除去する一例を示す。図10はさらに、主目標に基づいて目標グループを更新する一例を示す。
(iii)目標グループの追跡
最後に、ブロック306において、可動物体本体及び又は支持機構の制御により目標グループを追跡する。以下の実施形態では、目標グループを単一の目標物として扱うことにより、例えば特許文献1及び2にも開示されるような様々な追跡方法が、目標グループの追跡するために適用可能となる。
以下では、目標グループのより正確な追跡に寄与できる、3つの実施形態による制御・追跡方法についてより具体的に説明する。
(a)第1実施形態
図11(パートA及びパートB)は、本実施形態により、追跡装置に対して目標グループが移動した場合に、該目標グループの追跡を示す模式図の一例である。図11のパートAに示す例において、目標グループは、時刻t1において、目標追跡装置2100から、水平距離Dx_1、垂直距離Dzの位置にあるものとする。目標グループの高さはHとする。目標グループの高さは、画像フレーム内のスケールに基づいて決定してもよい。また、目標グループの高さは、可動物体のタイプ(例えば人、乗り物など)に依存して推測してもよい。
撮像装置106は、時刻t1において、目標グループ1308の第1画像平面上で第1画像1314−1(図12参照)を取り込むように構成されてよい。第1画像面1310−1でのポイントは、画像座標(u,v)の組で表わされてよい。目標グループの第1画像1314−1を実質的に囲むように第1境界ボックス1316−1が構成されるとよい。この境界ボックスは、目標追跡装置2100に対して目標グループが移動する場合に、サイズ及び又は位置を変更するように構成してもよい。
第1境界ボックスのサイズと位置は、光線1318−1及び1320−1によって定義してもよい。光線1318−1は、撮像装置のミラー中心、第1画像面1310−1上の第1画像点、及び目標グループ1308上の第1目標ポイントを通過する。光線1320−1は撮像装置のミラー中心、第1画像面1310−1上の第2画像点、及び目標グループ1308上の第2目標ポイントを通過する。本実施形態において第1境界ボックスの中心座標(x1,y1)は、例えば第1画像面の中心Cに一致している。ただし、これに限ることなく、他の代替実施形態においては、第1境界ボックスが第1画像面1310−1の中心部分から実質的に離隔してその中心座標(x1,y1)が第1画像面の中心Cに一致していなくともよい。図11のパートAに示すように、第1境界ボックス1316-1のサイズは、第1高さh1で特徴づけられてよい。
時刻t2において、目標グループ1308は目標追跡装置2100に対して異なる位置に移動したものとする。例えば、目標グループ1308は、X軸及びY軸に沿って目標追跡装置2100から離隔するように移動し、これにより、目標グループ1308が目標追跡装置2100から距離Dx_2(図12参照)だけ離れて配置される。図12は、上方から見た場合の目標追跡装置2100及び目標グループ1308を表し、目標追跡装置2100から離れて移動するときの、X―Y平面に沿った目標グループ1308の直進運動を示す。本実施形態においては、目標グループ1308と目標追跡装置2100との間の垂直距離Dzは、不変のままである。時刻t2において、図11のパートAに示すように、光軸1312はもはや目標追跡装置2100のミラー中心から目標グループ1308の中心部分へ延在しない。目標グループが目標追跡装置2100から更に離隔して移動すると、境界ボックスのサイズは低減する。例えば、図11のパートBに示すように、第2画像フレーム中の第2境界ボックスのサイズは、第2高さh2で特徴づけられ、ここで、h2<h1である。
撮像装置は、時刻t2において、第2画像面1410−2上に目標グループの第2画像1314−2を取り込むように構成される。第2画像面1410−2上の点もまた、画像座標(u,v)で表すことができる。第2境界ボックス1316−2は、目標グループの第2画像1314−2を実質的に囲むように構成される。第2境界ボックスのサイズと位置は、光線1318−2,1320−2で規定することができる。光線1318−2は、撮像装置のミラー中心、第2画像面1310−2上の第1画像点、及び目標グループ1308上の第1目標ポイントを通過する。光線1320−2は、撮像装置のミラー中心、第2画像面1310−2上の第2画像点、及び目標グループ1308上の第2目標ポイントを通過する。第1境界ボックスとは異なり、第2境界ボックスは、第2画像面1310−2の中心部分に配置されない。例えば、第2境界ボックスの中心座標(x2,y2)は、第2画像面の中心Cとは一致しない。例えば、図11及び図12に示すように、第2境界ボックスは、第2画像面の中心Cからオフセット距離δだけシフトされる。
図13は、本実施形態に従い、図11及び図12内の境界ボックスにおけるサイズ及び位置の変化に基づいて目標追跡装置2100の移動を調整するフィードバック制御システムの一例を示すブロック図の一例を示す。図13に示すように、フィードバック制御システム1500は、撮像装置1506、画像解析装置1507、モーションコントローラ1550及び駆動装置1554を備える。モーションコントローラ1550は、フィードバックコントローラ1552を含む。フィードバック制御システム1500において、画像解析装置1507は、撮像装置1506に接続されて画像データを送られて所定の解析処理を行い、解析結果(δ、h1,h2)を、加算減算器を介してモーションコントローラ1550のフィードバックコントローラ1552へ送る。フィードバックコントローラ1552は、入力Inputと加算又は減算された解析結果(δ、h1,h2)の入力を受けてこれらに所定の演算を行って、第1及び第2速度成分Vt,Vcを生成して駆動装置1554へ送る。駆動装置1554は、目標追跡装置2100の移動を調整する信号を生成し、モーション出力として推進機構2106(図4参照)へ送る。このモーション出力は撮像装置1506へも送られる。モーションコントローラ1550、駆動装置1554及び画像解析装置1507は、図4に示すプロセッサ2154または図2に示す制御モジュール2208内に組み込まれた具体的なコンポーネントの一部を構成する。この点は、後述する第2実施形態のフィードバック制御システム1700(図15パートA),2000(図15パートB)についても同様である。
フィードバックコントローラ1552は、画像フレーム間における境界ボックスの位置の変化を最小化することにより、第1速度成分を取得し、画像フレーム間における境界ボックスのサイズの変化を最小化することにより、第2速度成分を取得するように構成される。フィードバック制御システム1500はさらに、第1及び第2速度成分に基づいて目標追跡装置2100の移動を調整することにより、目標グループを追跡するように構成される。
第1速度成分は、図13(並びに図15)に示すフィードバック制御システム1500(並びに1700および2000)のフィードバック制御ループを使用して位置エラーを最小化することによって取得してもよい。位置エラーは、図11及び図12にそれぞれ示す第1画像フレーム及び第2画像フレーム間での境界ボックスの位置の変化に基づいて算出することができる。境界ボックスの位置の変化は、第1画像フレーム及び第2画像フレーム内の参照点に関連して決定することができる。第1速度成分は、フィードバック制御ループを使用して時刻t1とt2における境界ボックスの位置の相違を最小化することにより取得可能である。前述の通り、境界ボックスの位置の変化は、オフセット距離δに関連し得る。
第2速度成分は、画像フレーム間における境界ボックスのサイズの変化を最小化することにより取得可能である。第2速度成分は、フィードバック制御ループを使用して距離エラーを最小化することによって取得してもよい。距離エラーは、第1時刻(t1)における目標追跡装置2100と目標グループとの間の第1距離と、第2時刻(t2)における目標追跡装置2100と目標グループとの間の第2距離とに基づいて算出することができる。第1距離と第2距離は、第1画像フレームと第2画像フレームにおける境界ボックスのサイズ(例えば高さなど)に基づいて計算してもよい。
フィードバック制御システム1500への入力は、閾位置オフセット及び閾距離を含むとよい。ある場合に、閾位置オフセット及び閾距離は、オフセット距離δ及び距離エラーを最小化するため、0又は実質的に0である。閾位置オフセット及び閾距離が実質的に0であるとき、フィードバック制御システム1500は、境界ボックスが画像フレームを跨いで実質的に同一の位置及びサイズを維持するように目標追跡装置2100の移動を調整する。閾位置オフセット及び閾距離は、本実施形態において例えば第1及び第2閾値にそれぞれ対応する。
撮像装置は、(例えば図11における第1及び第2画像のような)画像データを取り込むように構成される。画像データは、画像解析装置1507へ供給される。画像解析装置1507は、画像データを分析して画像フレーム間での境界ボックスの位置の変化(オフセット距離δ)を決定するよう構成される。画像フレーム間での境界ボックスの位置の変化は、入力と比較され、フィードバックコントローラへ供給される。図11では、目標グループの移動は光軸に垂直ではないので(図12参照)、位置エラーd_error1は、撮像装置の向き(傾き)を説明するように修正されなければならない。フィードバックコントローラは、以下の式(1)を用いて、時刻t2での境界ボックスにおける位置エラーd_error3を計算することにより位置エラーd_error1を修正する。

ここで、δはオフセット距離であり、pは第2画像フレームにおける各画素で表される角度であり、Dzは目標追跡装置2100と目標グループ1308との間のZ軸に沿った垂直距離に対応し、τは撮像装置の向きである。撮像装置の向きは、目標追跡装置2100及び可動物体102の少なくともいずれかに関して定義された、撮像装置のロール角、ヨー角及びピッチ角の少なくともいずれかを含んでよい。図11に示す例において、撮像装置の向きτは、撮像装置のピッチ角θに対応する。
本実施形態において、画像解析装置1507もまた、画像データを解析して第1及び第2画像フレーム中の境界ボックスの高さを決定するように構成される。境界ボックスの高さは、加算減算器を介してフィードバックコントローラ1552に供給される。目標追跡装置2100と目標グループ1308との距離は、各画像フレーム中の境界ボックスのサイズ(高さ)に基づいて取得することができる。
例えば、フィードバックコントローラ1552は、以下の式(2),(3)をそれぞれ用いて、時刻t1,t2のそれぞれにおける目標追跡装置2100と目標グループ1308との第1及び第2距離Dx_1,Dx_2を計算するように構成される。

ここで、pは第1及び第2画像フレームにおける各ピクセルにより表される角度であり、Hは目標グループの高さであり、h1は第1境界ボックスの高さであり、h2は第2境界ボックスの高さである。
フィードバックコントローラ1552はさらに、以下の式(4)を用いて、時刻t1,t2における目標グループの位置の間の距離エラーd_error2を計算するよう構成される。
d_error2 = Dx_1 - Dx_2 ・・・式(4)
次に、フィードバックコントローラ1552は、比例―積分―微分(PID)法(又は、比例―微分(PD)法)を用いてd_error3及びd_error2を最小化し、これにより第1及び第2速度成分Vt,Vcを取得する。第1及び第2速度成分Vt,Vcは、駆動装置1554に供給される。駆動装置1554は、目標グループを追跡できるよう、第1及び第2速度成分に基づいて所定の軸X’に沿って目標追跡装置2100の移動を調整するよう構成される。所定の軸X’は、目標追跡装置2100の自然な移動方向(図11及び図14参照)に対応する。所定の軸X’は、(例えば水平グラウンドプレーンなどの)参照面に平行なものでもよい。光軸は、所定の軸X’に対して角度θをなすように所定の軸X’に対して斜めに向いたものでもよい。光軸は、水平グラウンドプレーンに対して斜めの面の上にあるものでもよい。図11において、第1速度成分Vtは、光軸1312に対して斜めに向いたものでもよく、第2速度成分Vcは、光軸に平行でも光軸に沿ったものでもよい。従って、第1及び第2速度成分Vt,Vcは単に交わるものでも、互いに直交するものでもよい。
第1及び第2速度成分Vt,Vcに基づいて目標追跡装置2100の移動を調整することにより、境界ボックスは、画像フレームに跨って実質的に同一の位置及びサイズを維持することができる。目標追跡装置2100の調整された移動は、フィードバック制御システム1500の動作出力に対応する。上述の手順は、位置エラーd_error3が所定の閾位置オフセット以下になるまで、かつ、距離エラーd_error2が所定の閾距離オフセット以下になるまで閉ループ内で反復されるとよい。上述の手順の反復より、第1速度成分Vt及び第2速度成分Vcの少なくともいずれかは、動的に変動し得る。これらの第1実施形態の作用・効果は、後述する第2及び第3の実施形態においても実質的に同様である。
図11乃至図17に示す実施形態において、目標グループ1308が目標追跡装置2100に対して直進運動で移動するとき、駆動装置1554は、目標グループ1308を追跡するために、予想速度ベクトルVeを用い、所定の軸X’に沿って目標追跡装置2100の移動を調整するように構成される。図14の例にも示されるように、本実施形態において、予想速度ベクトルVeは、所定の軸X’の方向に沿って延在する。駆動装置1554は、第1及び第2速度成分Vt,Vc並びに撮像装置の向きτに基づいて予想速度ベクトルVeを取得(算出)するように肯定される。予想速度ベクトルVeとは、第1及び第2速度成分Vt,Vcの融合(合成)である。融合要素λは、撮像装置の向きの関数であり得る。融合要素λは、sinτで与えられる場合もあれば、cosτで与えられる場合もある。いくつかの実施形態において、予想速度ベクトルは、(1)Vtをλで乗算し、(2)Vcを(1−λ)で乗算し、さらに、(1)と(2)との積の合計の平方根をとることにより得られる。また、いくつかの実施形態では、予想速度ベクトルは、第1速度成分Vt及び第2速度成分Vcに異なる重み付けを行うことにより得られる。異なる重み付けは、向きτ及び融合要素λの少なくともいずれかに基づくものでもよい。例えば、目標追跡装置2100が、目標グループ1308よりも実質的に上方に位置する場合、すなわち、目標グループ1308が目標追跡装置2100よりも(地面や水面などの)基準面の側に位置する場合、第1速度成分には第2速度成分よりも大きな重み付けがなされるとよい。これとは逆に、目標追跡装置2100が、上記基準面に水平な軸(図11に示す例では水平軸)上で目標グループ1308と実質的に並ぶ場合、第2速度成分には第1速度成分よりも大きな重み付けがなされるとよい。
(b)第2実施形態
撮像装置の向きは、撮像装置のロール角、ヨー角及びピッチ角の少なくともいずれかを含んでよい。図11乃至図14に示す第1及び第2の実施形態において、撮像装置の向きτは、撮像装置のピッチ角θに対応する。図15は、第2及び第3の各実施形態の目標追跡方法により、図11及び図12中の境界ボックスのサイズ及び位置の変化に基づいて目標追跡装置2100の移動を調整するためのフィードバック制御システム1700(パートA),2000(パートB)をそれぞれ模式的に示すブロック図の例である。
図13との対比により明らかなように、フィードバック制御システム1700は、モーションコントローラ1750の構成としてフィードバックコントローラ1752に加えて、位置算出器1751をさらに含む。位置算出器1751は、図11及び図13における第1及び第2画像フレーム間の境界ボックスの位置の変化に基づいて目標追跡装置2100及び目標グループ1308間の第1相対位置を算出するように構成される。位置算出器1751はまた、図11及び図13における第1及び第2画像フレーム間の境界ボックスのサイズの変化に基づいて目標追跡装置2100及び目標グループ1308間の第2相対位置を算出するように構成される。
フィードバックコントローラ1752は、位置算出器1751からの第1及び第2相対位置を表す信号を受け取るように構成される。次いで、フィードバックコントローラ1752は、比例―積分―微分(PID)法(又は、比例―微分(PD)法)を用いて第1及び第2相対位置を最小化し、これにより第1及び第2速度成分Vt,Vcを取得する。その後は、第1実施形態と同様に、駆動装置1554が、第1及び第2速度成分Vt,Vcの供給を受け、これに基づいて所定の軸X’に沿って目標追跡装置2100の移動を調整することにより目標グループ1308を追跡する。
目標追跡装置2100の調整された移動は、フィードバック制御システム1500のモーション出力に対応する。従って、第1及び第2速度成分Vt,Vcに基づいて目標追跡装置2100の移動を調整することにより、境界ボックスは、画像フレームに跨って実質的に同一の位置及びサイズを維持することができる。上述の手順は、第1及び第2相対位置がそれぞれ第1及び第2閾位置オフセット以下になるまで閉ループ内で反復されるとよい。第1及び第2相対位置は同じでも異なるものでもよい。いくつかの場合において、第1及び第2相対位置は、実質的に0に等しい。上述の手順の反復より、第1速度成分Vt及び第2速度成分Vcの少なくともいずれかは、動的に変動し得る。
図15パートBは、第2実施形態の一変形例におけるフィードバック制御システムの一例を示す。同図に示すフィードバック制御システム2000は、以下の相違点を除いて図15パートAに示すモーションコントローラ1750に類似するモーションコントローラ2050を備える。すなわち、モーションコントローラ2050は、位置算出器1751が第1相対位置と第2相対位置とを算出し、これらの第1相対位置および第2相対位置とをフィードバックコントローラ1752が融合又は合成することにより、合成位置をさらに算出するように構成される。次いで、フィードバックコントローラ1552は、比例―積分―微分(PID)法(又は、比例―微分(PD)法)を用いて合成位置を最小化し、これにより予想速度成分Veを取得する。前述したとおり、予想速度ベクトルVeは、第1及び第2速度成分Vt,Vcの融合(合成)である。しかしながら、図15パートBにおいては、予想速度成分Veは、(例えば合成位置の時間関数としての導関数としての)合成された位置から直接算出することができるので、第1及び第2速度成分Vt,Vcの相互融合を行う必要が無い。予想速度成分Veは、駆動装置1754に供給される。駆動装置1754は、予想速度成分に基づいて所定の軸X’に沿って目標追跡装置2100の移動を調整し、これにより、目標グループを追跡するように構成される。
目標追跡装置2100の調整された移動は、フィードバック制御システム1700,2000のモーション出力に対応する。従って、予想速度成分に基づいて目標追跡装置2100の移動を調整することにより、境界ボックスは、画像フレームに跨って実質的に同一の位置及びサイズを維持することができる。上述の手順は、合成位置が閾合成位置以下になるまで閉ループ内で反復されるとよい。いくつかの場合において、閾合成位置は、実質的に0に等しい。上述の手順の反復より、予想速度成分は、動的に変動し得る。
(c)第3実施形態
本実施形態において、可動物体本体用の予想回転角速度は、図16及び図17を参照して以下に説明するように、一つ又は複数の特徴に関連する一つ又は複数の特性の変化に基づいて取得可能である。
図16に示すように、目標追跡装置2100の撮像装置は、時刻t1において第1画像平面1810−1上に目標グループの第1画像1814−1を取り込むよう構成可能である。第1境界ボックス1816−1は、目標グループ1808の第1画像1814−1を実質的に取り囲むよう構成される。境界ボックスは、目標追跡装置2100の向きが目標グループ1808に対して変化するときに、そのサイズと位置が変化するように構成可能である。例えば、目標追跡装置2100は、これを運搬する可動物体本体に関して規定されるヨー、ロール及びピッチの少なくともいずれかの軸の周りを回転してもよい。第1境界ボックスは、時刻t1において、第1画像平面1810−1の中央部分に実質的に配置されるとよい。例えば、第1境界ボックスの中央座標(x1,y1)は、第1画像平面の中心Cと一致するとよい。この一方、第1境界ボックスは、第1画像平面1810−1の中央部分から実質的に離隔して配置されてその中心座標(x1,y1)が第1画像平面の中心Cと一致しなくともよい。
本実施形態によれば、時刻t2において、目標グループ1808がX方向及びY方向のいずれにも異なる方向へ移動した場合、撮像装置106(又は目標追跡装置2100)は、目標グループ1808の追跡を継続するため、図17に示すように、目標グループ1808に対して(例えばZ方向を周回する)ヨー方向で回転する。撮像装置106は、時刻t2で目標グループの第2画像1814−2を第2画像平面1810−2上に取り込むように構成される。第2境界ボックスは、目標グループ1808の第2画像1814−2を実質的に取り囲むように構成される。撮像装置106がヨー軸の周りで回転するために、第1境界ボックスと同様、第2境界ボックスは、第2画像平面1810−2の中央部分に配置される。例えば、第2境界ボックスの中央座標(x2,y2)は、第2画像平面の中心Cと一致する。y2座標は、第1画像平面の中心Cからオフセット距離Δだけシフトする。
目標追跡装置2100の向きの変化は、ヨー方向(Z軸)及びピッチ方向(Y軸)の両方での回転を含んでよい。例えば図18に示すように、y2座標が第2画像平面の中心Cからオフセット距離Δyだけシフトし、x2座標が第2画像平面の中心Cからオフセット距離Δxだけシフトしてもよい。オフセット距離Δyは、目標追跡装置2100のピッチ軸回りの回転に起因する場合があり、オフセット距離Δxは、目標追跡装置2100のヨー軸回りの回転に起因する場合がある。
本明細書に記載されるフィードバック制御システムは、一つ又は複数の特徴に関連する一つ又は複数の特性の変化に基づいて予想回転角速度を取得するように構成することができる。例えば、予想回転角速度は、画像フレーム又は画像平面のu軸及びv軸の少なくともいずれかに沿ったオフセット距離Δに基づいて取得可能である。フィードバック制御システムは、画像フレーム間の境界ボックスの位置の変化(位置オフセット)を最小化することにより予想回転角速度を取得するよう構成可能である。フィードバック制御システムはさらに、目標グループを追跡するために予想回転角速度に基づいて目標追跡装置2100の移動を調整するよう構成可能である。例えば、フィードバック制御システムは、目標グループを追跡するため、予想回転角速度に従って目標追跡装置2100の(例えば、ヨー軸、ロール軸及びピッチ軸の少なくともいずれかの周りにおける)向きの変化に影響を及ぼすことができる。
予想回転角速度は、フィードバック制御ループを用いて位置エラーを最小化することにより取得できる。位置エラーは、図16乃至図18における第1及び第2画像フレーム間での境界ボックスの位置の変化に基づいて算出できる。予想回転角速度は、フィードバック制御ループを用いて境界ボックスの時刻t1及びt2間での位置の差異を最小化することにより取得できる。図16乃至図18で既に示したように、境界ボックスの位置の変化は、オフセット距離Δに関連付けることができる。オフセット距離Δは、画像フレーム又は画像平面のu軸及びv軸の少なくともいずれかに沿ったものでよい。フィードバック制御システムへの入力には閾位置オフセットを含めてもよい。閾位置オフセットは、オフセット距離Δを最小にするため、0であっても、実質的に0であってもよい。閾位置オフセットが0の場合、フィードバック制御システムは、境界ボックスが画像フレームに跨って実質的に同一の位置を維持するように目標追跡装置2100の(例えば、ヨー軸、ロール軸及びピッチ軸の少なくともいずれかの周りにおける)移動を調整することができる。
撮像装置106は、(例えば図16乃至図18に示す第1及び第2画像フレームなどの)画像データを取り込むように構成される。画像データは、画像解析装置に供給される。画像解析装置は、画像データを解析して画像フレーム間での境界ボックスの位置の変化(オフセット距離Δ)を決定するように構成される。境界ボックスの位置の変化は、入力と比較されてフィードバックコントローラ1752に供給される。
次いで、フィードバックコントローラ1752は、比例―積分―微分(PID)法(又は、比例―微分(PD)法)を用いてオフセット距離Δを最小化し、これにより予想回転角速度を取得する。予想回転角速度は、駆動装置1754へ供給される。駆動装置1754は、予想回転角速度に基づいて(例えば、ヨー、ロール及びピッチの少なくともいずれかの)軸の周りでの目標追跡装置2100の移動を調整して目標グループを追跡するように構成される。予想回転角速度に基づいて目標追跡装置2100の移動を調整することにより、境界ボックスは、画像フレームに跨って実質的に同一の位置及びサイズを維持することができる。目標追跡装置2100の調整された移動は、フィードバック制御システム2000の動作出力に対応する。上述の手順は、オフセット距離Δが閾位置オフセット以下になるまで閉ループ内で反復されるとよい。いくつかの場合において、閾合成位置は、実質的に0に等しい。上述の手順の反復より、予想回転角速度は、動的に変動し得る。
本実施形態において、オフセット距離Δは、目標グループの追跡のために目標追跡装置2100の予想回転角速度を決定することに利用された。しかしながら、本願発明はこれに限定されるものではない。当業者であれば理解できるように、オフセット距離Δはまた、第3速度成分Vt’の算出にも利用することができる。X方向に沿った第1速度成分Vtとは異なり、第3速度成分Vt’はY方向に沿ったものでもよい。従って、目標追跡装置2100の移動もまた、Y方向に沿って調整されて目標グループを追跡してもよい。例えば、フィードバックコントローラは、以下の式(5)を用いて時刻t2における境界ボックス内の位置エラーd_error4を算出するように構成することができる。
d_error4 = tan (Δy * p) * Dz・・・式(5)
ここで、Δyは第2画像フレームにおけるv軸に沿ったオフセット距離であり、pは第2画像フレーム内の各ピクセルによって表される角度であり、Dz は目標追跡装置2100と目標グループとの間のZ軸に沿った垂直距離に対応する。
次に、フィードバックコントローラは、比例―積分―微分(PID)法(又は、比例―微分(PD)法)を用いてd_error4を最小化し、これにより第3速度成分Vt’を取得する。第3速度成分Vt’は、駆動装置1754へ供給される。駆動装置1754は、第3速度成分Vt’に基づいて(例えばY軸などの)所定の軸に沿って目標追跡装置2100の移動を調整して目標グループを追跡するように構成される。第3速度成分Vt’に基づいて目標追跡装置2100の移動を調整することにより、境界ボックスは、画像フレームに跨って実質的に同一の位置及びサイズを維持することができる。目標追跡装置2100の調整された移動は、フィードバック制御システム2000の動作出力に対応する。上述の手順は、位置エラーd_error4が閾位置オフセット以下になるまで閉ループ内で反復されるとよい。いくつかの場合において、閾合成位置は、実質的に0に等しい。上述の手順の反復より、第3速度成分Vt’は、動的に変動し得る。
前述した通り、オフセット距離δは、第1速度成分Vtを決定するために利用可能である。いくつかの実施形態において、オフセット距離δは、予想ジンバル(gimbal)ピッチ角θ’を算出するためにも利用でき、これにより目標追跡装置2100のピッチ角が制御される。これらの実施形態においては、現在のジンバルピッチ角と初期のジンバルピッチ角との相違をエラー量とみなすことにより、(例えばX軸などの)所定の軸に沿った予想速度ベクトルを取得することができ、これにより、目標グループの追跡を実行することができる。
(D)プログラム及び記録媒体
上述した目標追跡方法の一連の手順は、プログラムに組み込んでコンピュータに読込ませて実行させてもい。これにより、本発明にかかる目標追跡方法を汎用のコンピュータを用いて実現することができる。また、上述した目標追跡方法の一連の手順をコンピュータに実行させるプログラムとしてフレキシブルディスクやCD−ROM等の記録媒体に収納し、コンピュータに読込ませて実行させても良い。
記録媒体は、磁気ディスクや光ディスク等の携帯可能なものに限定されず、ハードディスク装置やメモリなどの固定型の記録媒体でも良い。また、上述したパターン計測方法の一連の手順を組込んだプログラムをインターネット等の通信回線(無線通信を含む)を介して頒布しても良い。さらに、上述したパターン計測方法の一連の手順を組込んだプログラムを暗号化したり、変調をかけたり、圧縮した状態で、インターネット等の有線回線や無線回線を介して、又は記録媒体に収納して頒布しても良い。
(E)その他
本明細書に記載されたシステム、装置、方法及びプログラムは、幅広い種類の可動物体に適用することができる。本願明細書の各実施形態における可動物体は、任意の適切な環境内又は複数の環境の任意の組み合わせ内で移動するように構成することができる。これらの環境には、例えば、空中(例えば、固定翼機、回転翼航空機、又は複数の固定翼部もしくは回転翼部を有しない航空機)、水中(例えば、船舶又は潜水艦)、地上(例えば、車、トラック、バス、バン型車、自動二輪車等の自動車、ステッキ(stick)、釣竿等の可動構造体もしくはフレーム、又は電車)、地下(例えば、地下鉄)の他、宇宙(例えば、宇宙船、衛星、又は宇宙探査用ロケット(probe))も含まれる。可動物体は、人間又は動物等の生体にも装着可能であり、好適な動物の例としては、霊長類、アビネス(avines)、イヌ、ネコ、ウマ、ウシ、ヒツジ、ブタ、イルカ、齧歯動物又は昆虫も挙げられる。
可動物体は、ユーザにより遠隔で制御され、または可動物体内又は可動物体上の占有者によりローカルに制御され得る。いくつかの実施形態において、可動物体は、UAV等の無人可動物体である。UAV等の無人可動物体は、可動物体上に占有者を有しなくともよい。可動物体は、人間による、又は自律制御システム(例えば、コンピュータ制御システム)、又はこれらの任意の好適な組み合わせにより制御され得る。可動物体は、人工知能を用いて構成されたロボット等、自律型又は半自律型ロボットであり得る。
可動物体は、任意の好適なサイズ及び寸法の少なくともいずれかを有し得る。いくつかの実施形態において、可動物体は、乗り物内又は乗り物上に人間の占有者を有するサイズ及び寸法の少なくともいずれかであってもよい。
本発明の好ましい複数の実施形態を本明細書において示し、説明したが、そのような実施形態は、専ら例として提供されたことが当業者には明らかであろう。当業者は、本発明の範囲を逸脱することなく、多くの改変形態、変更形態、及び代替形態に直ちに想到するであろう。以下の特許請求の範囲は、本発明の範囲を規定し、これらの特許請求の範囲の方法及び構造、ならびにその均等物は、それにより包含される。
102:可動物体
104:支持機構
106:撮像装置
110:目標物
112:遠隔端末
200,2200:目標追跡システム
202:目標識別モジュール
210:目標グループ決定モジュール
216:追跡制御モジュール
701〜705,801〜805,901〜905,1001〜1005,1101〜1105:目標
708,808,908,910,1008,1010,1108,1110:目標グループ
710,720,810:境界ボックス(追跡インジケータ)
1552,1752:フィードバックコントローラ
1554,1754:駆動装置
1500:フィードバック制御システム
1750,2050:モーションコントローラ
2112:端末
2102:支持機構
2104:搭載物
2106:推進機構
2150:可動物体本体
2154:プロセッサ
t1,t2:(異なる)時刻
Vt:第1速度成分
Vc:第2速度成分
δ:オフセット距離

Claims (15)

  1. 可動物体に搭載される撮像装置から取得された複数の画像に基づいて複数の目標を識別する目標識別モジュールと、
    前記複数の目標からの1つ以上の目標を含む目標グループを決定する目標グループ決定モジュールと、
    前記目標グループを追跡するように前記可動物体及び前記撮像装置の少なくともいずれかを制御する制御モジュールと、を備え、
    前記制御モジュールは、順次に取得された画像データを処理することにより、互いに交わる3つの直線移動方向並びに該3方向の各々を中心とする3つの回転方向でなる6自由度の移動方向の少なくとも1つにおける速度成分を取得し、取得した速度成分に基づいて前記可動物体及び前記撮像装置の少なくともいずれかの移動を調整することを特徴とする目標追跡システム。
  2. 前記速度成分は、第1及び第2速度成分を含み、
    目標識別モジュールは、決定された目標グループを特定するための追跡インジケータを前記画像データに付与し、
    前記制御モジュールは、前記複数の画像のフレーム間における前記追跡インジケータの位置及びサイズの変化にそれぞれ基づいて前記第1及び第2速度成分をそれぞれ算出する、ことを特徴とする請求項1に記載の目標追跡システム。
  3. 前記可動物体は、無人航空機(UAV)であることを特徴とする請求項1または2に記載の目標追跡システム。
  4. 可動物体と、
    前記可動物体に搭載され、複数の目標物を撮像して画像データを出力する撮像装置と、
    前記画像データを処理して前記複数の目標物を識別し、識別した目標物から目標グループを決定し、前記目標グループを追跡するように前記可動物体を制御する指令信号を出力するプロセッサと、
    前記指令信号に基づいて前記可動物体を移動させる駆動装置と、
    を備え、
    前記プロセッサは、順次に取得された画像データを処理することにより、互いに交わる3つの直線移動方向並びに該3方向の各々を中心とする3つの回転方向でなる6自由度の移動方向の少なくとも1つにおける速度成分を取得して前記駆動装置に供給し、
    前記駆動装置は、前記速度成分に基づいて前記可動物体の移動を調整することを特徴とする目標追跡装置。
  5. 前記速度成分は、第1及び第2速度成分を含み、
    前記プロセッサは、
    決定された目標グループを特定するための追跡インジケータを前記画像データに付与し、
    前記複数の画像のフレーム間における前記追跡インジケータの位置及びサイズの変化にそれぞれ基づいて前記第1及び第2速度成分をそれぞれ算出する、ことを特徴とする請求項4に記載の目標追跡装置。
  6. 可動物体に搭載される撮像装置から取得された複数の画像に基づいて複数の目標を識別するステップと、
    前記複数の目標からの1つ以上の目標を含む目標グループを決定するステップと、
    前記目標グループを追跡するように前記可動物体及び前記撮像装置の少なくともいずれかを制御するステップと、を備え、
    前記可動物体及び前記撮像装置の少なくともいずれかを制御するステップは、
    順次に取得された画像データを処理することにより、互いに交わる3つの直線移動方向並びに該3方向の各々を中心とする3つの回転方向でなる6自由度の移動方向の少なくとも1つにおける速度成分を取得し、取得した速度成分に基づいて前記可動物体及び前記撮像装置の少なくともいずれかの移動を調整するステップを含む、
    ことを特徴とする目標追跡方法。
  7. 前記速度成分は、第1及び第2速度成分を含み、
    前記第1及び第2速度成分は、順次に取得された複数画像のフレーム間における追跡インジケータの位置及びサイズの変化にそれぞれ基づいて取得される、
    ことを特徴とする請求項6に記載の目標追跡方法。
  8. 前記第1及び第2速度成分は、前記フレーム間における前記追跡インジケータの位置及びサイズの変化をそれぞれ最小化することにより算出される、
    ことを特徴とする請求項7に記載の目標追跡方法。
  9. 前記第1及び第2速度成分は、前記フレーム間における前記追跡インジケータの位置及びサイズの変化にそれぞれ基づいて位置エラー及び距離エラーをそれぞれ最小化することにより算出される、
    ことを特徴とする請求項7に記載の目標追跡方法。
  10. 前記第1及び第2速度成分は、前記フレーム間における前記追跡インジケータの位置及びサイズの変化にそれぞれ基づいて得られる、前記可動物体及び前記撮像装置の少なくともいずれかと前記目標グループとの間の第1及び第2相対位置をそれぞれ最小化することにより算出される、
    ことを特徴とする請求項7に記載の目標追跡方法。
  11. 前記位置エラー及び距離エラー又は前記第1及び第2相対位置に対応して第1及び第2閾値を設定するステップをさらに備え、
    前記位置エラー及び距離エラーの最小化又は第1及び第2相対位置の最小化は、それぞれ前記第1及び第2閾値以下になるまで反復して実行される、
    ことを特徴とする請求項9または10に記載の目標追跡方法。
  12. 前記可動物体及び前記撮像装置の少なくともいずれかの移動を調整するステップは、
    前記第1及び第2速度成分の少なくともいずれかに対して重み付けを行い、重み付けられた前記第1及び第2速度成分の少なくともいずれかを合成して予想速度ベクトルを取得するステップを含むことを特徴とする請求項7に記載の目標追跡方法。
  13. 前記目標グループが前記可動物体よりも基準面の側に位置する場合、第1速度成分には第2速度成分よりも大きな重み付けが行われ、
    前記目標グループと前記可動物体とが前記基準面に水平な軸上で実質的に並ぶ場合、第2速度成分には第1速度成分よりも大きな重み付けが行われる、
    ことを特徴とする請求項12に記載の目標追跡方法。
  14. 前記速度成分は前記3つの回転方向のいずれかにおける回転角速度を含み、
    前記回転角速度は、順次に取得された複数画像のフレーム間における追跡インジケータの位置の変化に基づいて取得される、
    ことを特徴とする請求項6に記載の目標追跡方法。
  15. 請求項6乃至14のいずれか一項に記載の目標追跡方法をコンピュータに実行させるプログラム。
JP2018207019A 2018-01-22 2018-11-02 目標追跡方法、目標追跡装置、目標追跡システム及びプログラム。 Active JP6991122B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/073664 WO2019140699A1 (en) 2018-01-22 2018-01-22 Methods and system for multi-target tracking
CNPCT/CN2018/073664 2018-01-22

Publications (2)

Publication Number Publication Date
JP2019128944A true JP2019128944A (ja) 2019-08-01
JP6991122B2 JP6991122B2 (ja) 2022-01-12

Family

ID=67301238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018207019A Active JP6991122B2 (ja) 2018-01-22 2018-11-02 目標追跡方法、目標追跡装置、目標追跡システム及びプログラム。

Country Status (4)

Country Link
US (2) US11704812B2 (ja)
JP (1) JP6991122B2 (ja)
CN (1) CN111527463B (ja)
WO (1) WO2019140699A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210088145A (ko) * 2020-01-06 2021-07-14 세종대학교산학협력단 무인비행체 자동 정밀 착륙 시스템 및 방법
KR20210088142A (ko) * 2020-01-06 2021-07-14 세종대학교산학협력단 무인비행체의 표적 감지 추적 시스템
WO2021199286A1 (ja) * 2020-03-31 2021-10-07 日本電気株式会社 オブジェクト追跡装置、オブジェクト追跡方法、および記録媒体
KR20220080907A (ko) * 2020-12-08 2022-06-15 주식회사 엘지유플러스 픽셀좌표에 기반하여 객체를 추적하는 무인 비행체의 비행방법
WO2024128389A1 (ko) * 2022-12-13 2024-06-20 (주)이오시스템 드론 전투체계를 위한 표적추적시스템 및 그 제어방법

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3349184A1 (en) * 2017-01-16 2018-07-18 Keygene N.V. Monitoring plants
US11119507B2 (en) * 2018-06-27 2021-09-14 Intel Corporation Hardware accelerator for online estimation
US11282225B2 (en) 2018-09-10 2022-03-22 Mapbox, Inc. Calibration for vision in navigation systems
US10956719B2 (en) * 2018-11-30 2021-03-23 Qualcomm Incorporated Depth image based face anti-spoofing
US11643115B2 (en) * 2019-05-31 2023-05-09 Waymo Llc Tracking vanished objects for autonomous vehicles
CN110827325B (zh) * 2019-11-13 2022-08-09 阿波罗智联(北京)科技有限公司 目标跟踪方法、装置、电子设备及存储介质
CN112837527A (zh) * 2019-11-22 2021-05-25 罗伯特·博世有限公司 目标识别系统及其方法
JP7371907B2 (ja) * 2019-12-25 2023-10-31 知洋 下川部 船舶の航行支援システムにおける管理サーバ、船舶の航行支援方法、及び船舶の航行支援プログラム
TWI768327B (zh) * 2020-04-21 2022-06-21 宏碁股份有限公司 電子裝置與其資料傳輸方法
CN111553634B (zh) * 2020-04-27 2023-11-21 新石器慧通(北京)科技有限公司 无人购物车的追踪方法、装置及系统
CN111983550B (zh) * 2020-08-27 2024-04-12 航天科工微电子系统研究院有限公司 基于gps的无线电测向精度测试方法
WO2022061615A1 (zh) * 2020-09-23 2022-03-31 深圳市大疆创新科技有限公司 待跟随目标的确定方法、装置、系统、设备及存储介质
JP2022068498A (ja) * 2020-10-22 2022-05-10 ヤマハ発動機株式会社 水上オブジェクトの追跡システムおよび方法、並びに水上オブジェクトの追跡システムを備える船舶
CN112180405B (zh) * 2020-11-27 2021-02-23 北京建筑大学 一种基于gps的高山雪原地区运动人员定位及姿态确定方法
CN112489089B (zh) * 2020-12-15 2022-06-07 中国人民解放军国防科技大学 一种微型固定翼无人机机载地面运动目标识别与跟踪方法
CN112595338B (zh) * 2020-12-24 2023-04-07 中国联合网络通信集团有限公司 导航方法以及导航系统
CN113048884B (zh) * 2021-03-17 2022-12-27 西安工业大学 一种扩展目标跟踪实验平台及其试验方法
US20230058405A1 (en) * 2021-08-20 2023-02-23 Sony Group Corporation Unmanned aerial vehicle (uav) swarm control
CN113766418B (zh) * 2021-08-31 2022-07-15 中国矿业大学 一种基于uwb技术的姿态自校正井下运输设备及其控制方法
CN114114985B (zh) * 2021-10-21 2023-12-12 浙江大立科技股份有限公司 一种综合控制系统
CN114049382B (zh) * 2022-01-12 2023-04-18 华砺智行(武汉)科技有限公司 一种智能网联环境下目标融合跟踪方法、系统和介质
CN115205327B (zh) * 2022-05-18 2023-04-11 哈尔滨工业大学 一种融合历史库信息的红外小目标跟踪方法
WO2023230169A2 (en) * 2022-05-25 2023-11-30 University Of Washington Systems and methods for navigation
CN114821194B (zh) * 2022-05-30 2023-07-25 深圳市科荣软件股份有限公司 一种设备运行状态识别方法及装置
CN115144879A (zh) * 2022-07-01 2022-10-04 燕山大学 一种多机多目标动态定位系统及方法
CN115147723B (zh) * 2022-07-11 2023-05-09 武汉理工大学 一种内河船舶识别与测距方法、系统、介质、设备及终端
CN115290069B (zh) * 2022-07-22 2024-06-18 清华大学 多源异构传感器数据融合与协同感知手持移动平台
WO2024049513A1 (en) * 2022-09-01 2024-03-07 Innopeak Technology, Inc. Methods and apparatus for forecasting collisions using egocentric video data

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005214914A (ja) * 2004-02-02 2005-08-11 Fuji Heavy Ind Ltd 移動速度検出装置および移動速度検出方法
CN106161953A (zh) * 2016-08-12 2016-11-23 零度智控(北京)智能科技有限公司 一种跟踪拍摄方法和装置
JP2017503226A (ja) * 2014-07-30 2017-01-26 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd 目標追跡システム、デバイスおよび方法
WO2017143589A1 (en) * 2016-02-26 2017-08-31 SZ DJI Technology Co., Ltd. Systems and methods for visual target tracking
JP2017163511A (ja) * 2016-03-11 2017-09-14 株式会社プロドローン 生体探索システム

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8186589B2 (en) * 2006-01-11 2012-05-29 Carmel-Haifa University Economic Corporation Ltd. UAV decision and control system
US20070183783A1 (en) * 2006-02-07 2007-08-09 Raytheon Company Netted communication and weapons system for littoral warfare
US9643722B1 (en) * 2014-02-28 2017-05-09 Lucas J. Myslinski Drone device security system
US10387794B2 (en) * 2015-01-22 2019-08-20 Preferred Networks, Inc. Machine learning with model filtering and model mixing for edge devices in a heterogeneous environment
WO2016154995A1 (en) * 2015-04-02 2016-10-06 Abb Technology Ltd Method for industrial robot commissioning, industrial robot system and control system using the same
EP3276374A4 (en) * 2015-06-29 2018-03-28 Yuneec Technology Co., Limited Aircraft and obstacle avoidance method and system thereof
US9798329B2 (en) * 2015-07-27 2017-10-24 Genghiscomm Holdings, LLC Airborne relays in cooperative-MIMO systems
JP6496323B2 (ja) * 2015-09-11 2019-04-03 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd 可動物体を検出し、追跡するシステム及び方法
US10312993B2 (en) * 2015-10-30 2019-06-04 The Florida International University Board Of Trustees Cooperative clustering for enhancing MU-massive-MISO-based UAV communication
CN105847684A (zh) * 2016-03-31 2016-08-10 深圳奥比中光科技有限公司 无人机
US10005555B2 (en) * 2016-05-02 2018-06-26 Qualcomm Incorporated Imaging using multiple unmanned aerial vehicles
US9977434B2 (en) * 2016-06-23 2018-05-22 Qualcomm Incorporated Automatic tracking mode for controlling an unmanned aerial vehicle
KR101769718B1 (ko) * 2016-09-21 2017-08-18 한국전력공사 송전선로 전자계 및 순시 점검 영상 취득 장치 및 방법
US10110814B1 (en) * 2016-10-27 2018-10-23 Ambarella, Inc. Reducing bandwidth for video streaming using de-warping and video analytics
KR20180052002A (ko) * 2016-11-09 2018-05-17 삼성전자주식회사 이미지 처리 방법 및 이를 지원하는 전자 장치
JP6985074B2 (ja) * 2017-01-24 2021-12-22 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 自律型移動ロボット、移動制御方法、移動制御プログラム及びシステム
CN107505951B (zh) * 2017-08-29 2020-08-21 深圳市道通智能航空技术有限公司 一种目标跟踪方法、无人机和计算机可读存储介质
JP6725587B2 (ja) * 2018-05-18 2020-07-22 ファナック株式会社 バラ積みされたワークを取り出すロボットシステムおよびロボットシステムの制御方法
JP2021144260A (ja) * 2018-06-15 2021-09-24 ソニーグループ株式会社 情報処理装置、情報処理方法、プログラム、および情報処理システム
JP6856583B2 (ja) * 2018-07-25 2021-04-07 ファナック株式会社 センシングシステム、作業システム、拡張現実画像の表示方法、拡張現実画像の記憶方法、およびプログラム
JP6748797B1 (ja) * 2018-12-25 2020-09-02 楽天株式会社 無人航空機制御システム、無人航空機制御方法、及びプログラム
JP2021132352A (ja) * 2020-02-21 2021-09-09 キヤノン株式会社 撮像装置、撮影システム、およびその制御方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005214914A (ja) * 2004-02-02 2005-08-11 Fuji Heavy Ind Ltd 移動速度検出装置および移動速度検出方法
JP2017503226A (ja) * 2014-07-30 2017-01-26 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd 目標追跡システム、デバイスおよび方法
WO2017143589A1 (en) * 2016-02-26 2017-08-31 SZ DJI Technology Co., Ltd. Systems and methods for visual target tracking
JP2017163511A (ja) * 2016-03-11 2017-09-14 株式会社プロドローン 生体探索システム
CN106161953A (zh) * 2016-08-12 2016-11-23 零度智控(北京)智能科技有限公司 一种跟踪拍摄方法和装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210088145A (ko) * 2020-01-06 2021-07-14 세종대학교산학협력단 무인비행체 자동 정밀 착륙 시스템 및 방법
KR20210088142A (ko) * 2020-01-06 2021-07-14 세종대학교산학협력단 무인비행체의 표적 감지 추적 시스템
KR102288346B1 (ko) * 2020-01-06 2021-08-09 세종대학교산학협력단 무인비행체 자동 정밀 착륙 시스템 및 방법
KR102307079B1 (ko) * 2020-01-06 2021-09-30 세종대학교산학협력단 무인비행체의 표적 감지 추적 시스템
WO2021199286A1 (ja) * 2020-03-31 2021-10-07 日本電気株式会社 オブジェクト追跡装置、オブジェクト追跡方法、および記録媒体
JPWO2021199286A1 (ja) * 2020-03-31 2021-10-07
JP7355227B2 (ja) 2020-03-31 2023-10-03 日本電気株式会社 オブジェクト追跡装置、オブジェクト追跡方法、およびプログラム
KR20220080907A (ko) * 2020-12-08 2022-06-15 주식회사 엘지유플러스 픽셀좌표에 기반하여 객체를 추적하는 무인 비행체의 비행방법
KR102467485B1 (ko) * 2020-12-08 2022-11-14 주식회사 엘지유플러스 픽셀좌표에 기반하여 객체를 추적하는 무인 비행체의 비행방법
WO2024128389A1 (ko) * 2022-12-13 2024-06-20 (주)이오시스템 드론 전투체계를 위한 표적추적시스템 및 그 제어방법

Also Published As

Publication number Publication date
CN111527463B (zh) 2024-02-23
US20230360230A1 (en) 2023-11-09
WO2019140699A1 (en) 2019-07-25
CN111527463A (zh) 2020-08-11
US11704812B2 (en) 2023-07-18
JP6991122B2 (ja) 2022-01-12
US20200126239A1 (en) 2020-04-23

Similar Documents

Publication Publication Date Title
JP6991122B2 (ja) 目標追跡方法、目標追跡装置、目標追跡システム及びプログラム。
US20210065400A1 (en) Selective processing of sensor data
US11283986B2 (en) Systems and methods for multi-target tracking and autofocusing based on deep machine learning and laser radar
US10645300B2 (en) Methods and apparatus for image processing
US10860040B2 (en) Systems and methods for UAV path planning and control
US10447912B2 (en) Systems, methods, and devices for setting camera parameters
US11263761B2 (en) Systems and methods for visual target tracking
US20210072745A1 (en) Systems and methods for uav flight control
US10599149B2 (en) Salient feature based vehicle positioning
CN108351649B (zh) 用于控制可移动物体的方法和设备
US20200003357A1 (en) Method and system for adaptive gimbal
CN109219785B (zh) 一种多传感器校准方法与系统
CN107850899B (zh) 使用惯性传感器和图像传感器的传感器融合
Helble et al. OATS: Oxford aerial tracking system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200421

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200716

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201221

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20201221

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210104

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210105

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20210122

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20210126

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210831

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20211019

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20211124

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20211124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211207

R150 Certificate of patent or registration of utility model

Ref document number: 6991122

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150