KR20210083579A - 폐 리튬이온전지의 양극재에서 유가금속 회수 방법 - Google Patents

폐 리튬이온전지의 양극재에서 유가금속 회수 방법 Download PDF

Info

Publication number
KR20210083579A
KR20210083579A KR1020190175999A KR20190175999A KR20210083579A KR 20210083579 A KR20210083579 A KR 20210083579A KR 1020190175999 A KR1020190175999 A KR 1020190175999A KR 20190175999 A KR20190175999 A KR 20190175999A KR 20210083579 A KR20210083579 A KR 20210083579A
Authority
KR
South Korea
Prior art keywords
powder
lithium ion
ion battery
temperature
ncm
Prior art date
Application number
KR1020190175999A
Other languages
English (en)
Other versions
KR102332465B1 (ko
Inventor
차태민
홍순곤
Original Assignee
재단법인 포항금속소재산업진흥원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 포항금속소재산업진흥원 filed Critical 재단법인 포항금속소재산업진흥원
Priority to KR1020190175999A priority Critical patent/KR102332465B1/ko
Publication of KR20210083579A publication Critical patent/KR20210083579A/ko
Application granted granted Critical
Publication of KR102332465B1 publication Critical patent/KR102332465B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/08Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/02Carbonyls
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geology (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

본 발명은 강산성의 용매를 사용하지 않고 열분해와 수침출을 이용하는 건식회수법을 통해 폐 리튬이온전지의 양극재인 NCM(NixMnxCox)계 분말로부터 순도 높은 Li2CO3 (탄산리튬) 와 Ni(니켈)의 유가금속을 회수할 수 있는 기술에 관한 것이다.
본 발명에 따른 폐 리튬이온전지의 양극재에서 유가금속 회수 방법은 폐 리튬이온전지의 양극재로부터 수집한 Li 과 Ni, Mn, Co 를 포함하는NCM(NixMnxCox)계 분말을 열처리로 내에 장입한 상태에서, 열처리로로 CO2 를 주입하면서 800℃ 이상의 온도로 열반응처리를 수행하여 NiO, CoO, MnO을 포함하는 유가금속 산화물상과 Li2CO3 으로 상분리하는 제1 단계와, 상분리된 NCM계 분말을 증류수를 이용한 수침출처리를 수행하여 액체상태의 Li2CO3 를 회수하되, 증류수는 NCM계 분말의 10배 이상의 중량비로 혼합하는 제2 단계를 포함하여 구성되는 것을 포함하여 구성되는 것을 특징으로 한다.

Description

폐 리튬이온전지의 양극재에서 유가금속 회수 방법{Method for Collecting Valuable Metal from Cathode Materials of Waste Lithium Ion Battery}
본 발명은 강산성의 용매를 사용하지 않고 열분해와 수침출을 이용하는 건식회수법을 통해 폐 리튬이온전지의 양극재인 NCM(NixMnxCox)계 분말로부터 순도 높은 Li2CO3 (탄산리튬) 와 Ni(니켈)의 유가금속을 회수할 수 있는 기술에 관한 것이다.
리튬 이차전지는 높은 에너지 밀도와 경량의 특성을 지니고 있기 때문에 소형 휴대장비의 동력원으로 사용되고 있는 등, 최근 들어 리튬 이차전지의 사용량이 급증하고 있다. 특히, 최근에는 소형가전기기, 모바일용 제품뿐만 아니라 하이브리드 전기자동차(HEV/EV) 등의 동력원으로도 널리 이용되고 있다.
이러한 리튬 이차전지는 양극과 음극, 유기전해질(organic electrolyte) 및 유기분리막(organic separator)으로 구성되어 있으며, 특히, 전기자동차용 리튬이차전지를 구성하는 주요 소재인 양극재는 전체 원가의 36%를 차지하고 있다.
양극재로는 가역성(reversibility)이 우수하고, 낮은 자가방전율, 고용량, 고에너지 밀도를 가지며, 합성이 용이한 특성을 갖는 것으로서, Li, Ni, Mn, Co등이 포함된 LiCoNiMnOx와 같은 리튬 복합금속 산화물이 이용되고 있다.
그러나, 양극재의 핵심소재인 리튬, 코발트, 망간 니켈 등은 대부분 수입에 의존하고 있는 실정인 바, 리튬이차전지 폐 모듈에서 희유금속을 회수 및 고순도화하여 소재화하기 위한 노력이 시도되고 있다.
널리 알려진 리튬 화합물 회수 방법으로는 질산, 황산, 염산 등의 강산을 사용하여 폐 리튬이차전지의 양극재를 용해한 뒤 중화반응을 행하여 리튬과 기타 금속화합물을 분리 회수하는 방법이 있다.
하지만, 상기와 같은 회수 방법은 비싼 약품을 사용하여야 하고, 산을 사용함으로써 발생되는 환경적인 문제를 해결하기 위해 추가로 산 처리 공정을 추가해야 함은 물론, 중간생성물이 다량 발생하여 불순물로 작용하기 때문에 다수의 수세공정이 요구되어, 비경제적이라는 문제점이 지적되고 있다.
특히 리튬의 경우 2020년 이후 수요가 공급을 넘어설 것으로 전망되기 때문에, 폐 리튬이차전지의 양극재로부터 리튬을 포함하는 유가금속의 회수는 더욱 절실히 요구되는 실정이다.
1. 국내등록특허 제10-1109031호 (명칭 : 리튬이온전지 및 3원계 양극활물질로부터 CMB 촉매 제조방법) 2. 국내등록특허 제10-1066166호 (명칭 : 폐리튬이온전지로부터의 코발트 회수방법)
이에, 본 발명은 상기한 사정을 감안하여 창출된 것으로, NCM 계 폐 리튬 전지 전지분말을 CO 분위기에서 열처리하여 Li과 Ni, Mn, Co를 포함하는 유가금속 산화물과 Li을 상분리한 후, Li과 Ni, Co, Mn의 용해도 차이를 이용한 수침출을 통해 NCM계 폐 리튬이온전지의 양극재에 함유된 Li 을 용이하게 회수할 수 있도록 해 주는 폐 리튬이온전지의 양극재에서 유가금속 회수 방법을 제공함에 그 기술적 목적이 있다.
또한, 본 발명은 Li 이 회수된 잔여 분말에 대해 H2 환원 반응을 수행하여 Ni 분말을 획득하고, 이 Ni 분말을 CO 분위기에서 열처리함으로써, 잔여 분말에 함유된 Ni를 Mn, Co을 포함하는 유가금속과 분리하여 순도높은 Ni를 회수할 수 있도록 해 주는 폐 리튬이온전지의 양극재에서 유가금속 회수 방법을 제공함에 또 다른 기술적 목적이 있다.
상기 목적을 달성하기 위한 본 발명의 일측면에 따르면, 폐 리튬이온전지의 양극재로부터 수집한 Li, Ni, Mn, Co 를 포함하는 NCM(NixMnxCox)계 분말을 열처리로 내에 장입한 상태에서, 열처리로로 CO2 를 주입하면서 800℃ 이상의 온도로 열반응처리를 수행하여 NiO, CoO, MnO을 포함하는 유가금속 산화물상과 Li2CO3 으로 상분리하는 제1 단계와, 상분리된 NCM계 분말을 증류수를 이용한 수침출처리를 수행하여 액체상태의 Li2CO3 를 회수하되, 증류수는 NCM계 분말의 10배 이상의 중량비로 혼합하는 제2 단계를 포함하여 구성되는 것을 포함하여 구성되는 것을 특징으로 하는 폐 리튬이온전지의 양극재에서 유가금속 회수 방법이 제공된다.
또한, 상기 제1 단계는 열처리로로 CO2 가스를 분당 300cc로 주입하고 승온 속도 5℃/min 의 조건으로 800℃ 이상의 온도에서 일정 시간 유지하는 열반응처리를 수행하는 것을 특징으로 하는 폐 리튬이온전지의 양극재에서 유가금속 회수 방법이 제공된다.
또한, 상기 제2 단계는 증류수와 NCM계 분말는 30:1의 중량비로 혼합되어 5시간 동안 수침출처리를 수행하는 것을 특징으로 하는 폐 리튬이온전지의 양극재에서 유가금속 회수 방법이 제공된다.
또한, 상기 제2 단계는 수 침출이 완료된 혼합물을 감압여과기를 통해 감압여과시켜 액체상태의 Li2CO3 과 고체상태의 유가금속 산화물 분말을 분리하는 것을 특징으로 하는 폐 리튬이온전지의 양극재에서 유가금속 회수 방법이 제공된다.
또한, 상기 제2 단계에서 Li2CO3 를 회수하고 남은 유가금속 산화물 분말을 열처리로에 장입한 후 H2 환원반응처리를 수행하여 NiO를 생성하는 제3 단계와, 유가금속 산화물 분말을 수평로에 장입한 후, 제1 온도에서 CO와 반응시켜 유가금속 산화물 분말에 함유된 NiO 분말을 가스 상태의 Ni(CO4)로 변화시키는 제4 단계 및, 전기로로 유입되는 가스 상태의 Ni(CO4)를 제2 온도에서 열반응처리하여 Ni 와 CO 가스로 분해함으로써, 고체상태의 Ni 분말을 획득하는 제5 단계를 추가로 포함하여 구성되는 것을 특징으로 하는 폐 리튬이온전지의 양극재에서 유가금속 회수 방법이 제공된다.
또한, 상기 제4 단계를 수행하는 수평로와 제5 단계를 수행하는 전기로는 파이프를 통해 연결되어, 제4 단계에서 생성된 가스 상태의 Ni(CO4)가 파이프를 통해 전기로로 유입됨으로써, 제4 단계와 제5 단계가 연속적으로 이루어지도록 구성되고, 상기 제5 단계에서 전기로 내부의 상측에는 컨덴서를 구비하여 열반응처리에 의해 분해된 Ni 분말을 컨덴서에 증착시켜 Ni 분말을 회수하는 것을 특징으로 하는 폐 리튬이온전지의 양극재에서 유가금속 회수 방법이 제공된다.
또한, 상기 제4 단계에서의 제1 온도는 100℃ 이하로 설정되고, 상기 제5 단계에서의 제2 온도는 300℃ 이상으로 설정되는 것을 특징으로 하는 폐 리튬이온전지의 양극재에서 유가금속 회수 방법이 제공된다.
본 발명에 의하면, 강산성의 용매를 사용하지 않고 열분해와 수침출을 이용한 건식회수법을 통해 폐 리튬이온전지의 양극재인 NCM(NixMnxCox)계 분말로부터 순도 높은 Li2CO3 (탄산리튬) 와 Ni(니켈)의 유가금속을 용이하게 회수할 수 있다.
도1은 본 발명의 제1 실시예에 따른 폐 리튬이온전지의 양극재에서 유가 금속 회수 방법을 설명하기 위한 도면.
도2는 도1에서 기화처리 과정(ST500)와 열반응처리 과정(ST600)을 수행하는 장치의 모식도.
도3은 상변화 조건을 확인하기 위해 NCM계 분말의 무게변화 실험 결과를 나타낸 도면.
도4는 원시료와 서로 다른 온도별 열반응 실험결과를 나타낸 도면.
도5는 원시료에 대한 XRD 분석 결과와 수침출 후의 XRD 분석 결과를 나타낸 도면.
도6은 증류수에 침출된 용액을 건조하여 회수된 분말을 XRD 분석한 결과를 나타낸 도면.
도7은 XRD 분석법을 통한 온도별 H2 환원 실험 결과를 나타낸 도면.
도8은 XRD 분석법을 통한 온도별 CO 가스 열반응 실험 결과를 나타낸 도면.
도9는 혼합된 분말에서의 Ni의 선택적 회수를 위해 분해 열처리를 실시한 결과를 나타낸 도면.
본 발명에 기재된 실시예 및 도면에 도시된 구성은 본 발명의 바람직한 실시예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 표현하는 것은 아니므로, 본 발명의 권리범위는 본문에 설명된 실시예 및 도면에 의하여 제한되는 것으로 해석되어서는 아니 된다. 즉, 실시예는 다양한 변경이 가능하고 여러 가지 형태를 가질 수 있으므로 본 발명의 권리범위는 기술적 사상을 실현할 수 있는 균등물들을 포함하는 것으로 이해되어야 한다. 또한, 본 발명에서 제시된 목적 또는 효과는 특정 실시예가 이를 전부 포함하여야 한다거나 그러한 효과만을 포함하여야 한다는 의미는 아니므로, 본 발명의 권리범위는 이에 의하여 제한되는 것으로 이해되어서는 아니 될 것이다.
여기서 사용되는 모든 용어들은 다르게 정의되지 않는 한, 본 발명이 속하는 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가진다. 일반적으로 사용되는 사전에 정의되어 있는 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 것으로 해석되어야 하며, 본 발명에서 명백하게 정의하지 않는 이상적이거나 과도하게 형식적인 의미를 지니는 것으로 해석될 수 없다.
도1은 본 발명의 제1 실시예에 따른 폐 리튬이온전지의 양극재에서 유가 금속 회수 방법을 설명하기 위한 도면이다.
도1을 참조하면, 본 발명의 제1 실시예에 따른 폐 리튬이온전지의 양극재에서 유가 금속 회수 방법은, 폐 리튬이온전지의 양극재로부터 Li(리튬), Ni(니켈), Mn(망간), Co(코발트)를 포함하는 NCM(NixMnxCox)계 분말을 준비한다(ST100). NCM계 분말은 폐 리튬이온전지를 적절한 크기로 절단하고 1차 분급 및 소성함으로써 전극활물질과 집전체를 분리시키고 기타 유기물 및 분리막은 휘발시키며, 소성된 양극활물질에 의해 얻어진 고형물을 2차 분급하고 비중선별, 자력선별 등을 통해 선별함으로써 해당 NCM계 분말을 얻을 수 있다.
이어, 열반응을 이용하여 NCM계 분말을 Li2CO3과 유가금속의 산화물상인 NixMnyCozOxide상으로 분리하는 상분리 공정을 수행한다(ST200).
즉, NCM계 분말을 도가니에 수납하여 열처리로 내에 장입한 후, 열처리로 내부로 CO2가스를 주입하여 CO2 분위기를 형성한 상태에서 열처리로의 온도를 승온시키는 열반응처리를 수행한다.
이때, 열처리로는 외부와의 분위기가 완전히 차단되며 1000℃까지 승온 가능한 전기로를 사용한다. 그리고, 열처리로 내부는 CO2분위기로, CO2가스유량은 분당 300cc로 설정되고, 온도조건은 승온 및 감온을 10℃/min 단위로 수행하되, 기 설정된 상분리 온도에서 2시간 동안 유지한다. 바람직하게, 상분리 온도는 800℃ 이상으로 설정될 수 있다.
열처리로에서의 CO2 반응 메커니즘은 하기 화학식1과 같다.
Figure pat00001
여기서, (S)는 고체상태, (G)는 기체상태를 의미한다.
즉, 화학식 1과 같이 NCM계 분말을 CO2 분위기의 열반응을 통해 상분리를 진행함으로써, Li2CO3 과 NiO, CoO, MnO의 유가금속 산화물상을 획득한다.
이어, 상기 ST200 단계에서 열반응을 통해 상분리된 NCM계 분말을 증류수를 이용한 수침출처리를 수행하여 액체상태의 Li2CO3 와 고체상태의 유가금속 산화물로 분리한다(ST300). 수침출은 Magnetic bar를 이용할 수 있고, 용매는 불순물이 들어있지 않는 증류수를 사용하며, 수침출 시간 및 분말과 증류수의 비율은 Li2CO3과 증류수와의 반응을 고려하여 최적 조건으로 설정될 수 있다. 이때, 분말에 대한 증류수의 비율이 높을수록, 수침출 시간이 길수록 Li2CO3의 반응률이 높아진다.
본 발명에서 수침출은 Li2CO3과 유가금속 산화물인 NiO, CoO, MnO의 물에 대한 용해도 차이로 인해 분리되는 원리를 이용한다. 일반적으로 Li2CO3의 경우 온도가 낮아질수록 물에 대한 용해도가 증가하는 특성을 가지며, 수침출 온도는 적절하게 유지되도록 설정할 수 있다.
Li2CO3이 물(증류수)에 녹을 때의 반응식은 하기 화학식2와 같다.
Figure pat00002
여기서, (S)는 고체상태, (aq)는 액체상태를 의미한다.
그리고, 유가금속 산화물인 NiO, CoO, MnO의 경우 물에 대한 용해도가 없다.
즉, 수침출을 수행하게 되면, Li2CO3은 물에 녹아 수용액상태로 변화되는 반면, Ni0, Co0, Mn0 은 고체상태(분말) 그대로 남아있게 된다.
그리고, Li2CO3과 Ni0, Co0, Mn0 의 유가금속 산화물이 교반된 용액은 감압여과기를 통해 감압여과킴으로써, 액체상태의 Li2CO3과 고체상태의 Ni0, Co0, Mn0 의 유가금속 산화물을 분리시켜 회수할 수 있다. 일반여과를 실시하는 경우, 여과가 거의 진행되지 않으며 예컨대, Fe, Cu, Al 등의 Ni, Co, Mn 이외의 다른 유가금속 분말이 거름종이와 여과기 사이의 틈을 통과하여 들어가 여과되는 Li2CO3의 순도를 낮추는 현상이 발생할 수 있다. 이를 고려하여 본 발명에서는 Li2CO3의 순도를 높이기 위해 다른 유가금속 분말이 여과되지 않도록 감압 여과기의 적절한 감압 압력조건을 설정하여 감압여과를 수행할 수 있다.
즉, 본 발명에서는 상기한 ST100 내지 ST300 과정을 통해 액체상태로 변화된 Li2CO3을 회수할 수 있다.
이때, Li2CO3을 회수한 후 남은 유가금속 산화물 NiO, CoO, MnO는 분말상태로 서로 섞여있는 상태가 된다.
이에, 본 발명에서는 유가금속 산화물 NiO, CoO, MnO을 포함하는 유가금속 산화물 분말에서 Ni 만을 선택적으로 회수하는 공정을 추가적으로 실시할 수 있다.
도1의 ST300 과정을 통해 Li2CO3 이 회수된 후 남은 유가금속 산화물 분말을 H2 가스를 이용하여 환원반응처리를 수행함으로써, NiO를 생성한다(ST400).
즉, 유가금속 산화물 분말을 도가니에 수납하여 열처리로 내에 장입한 후, 열처리로 내부로 H2가스를 주입하여 H2 분위기를 형성한 상태에서 열처리로의 온도를 승온시킨다.
이때, 열처리로는 외부와의 분위기가 완전히 차단되는 전기로를 사용하고, 열처리로 내부는 H2분위기로, H2가스유량은 분당 300cc로 설정되고, 온도조건은 승온 속도 10℃/min 로 설정될 수 있다.
LiO 의 환원반응은 하기 화학식3과 같다.
Figure pat00003
여기서, (S)는 고체상태, (G)는 기체상태를 의미한다.
즉, Li2CO3을 회수한 후 남은 유가금속 산화물 분말에서 NiO는 H2와의 환원반응으로 인해 Ni 상태가 된다.
상기한 상태에서, 유가금속 산화물 분말로부터 Ni 만을 분리하기 위해 유가금속 산화물 분말을 제1 기준 온도 이하의 조건에서 CO와 반응시켜 Ni(CO4) 가스상태로 변화시키는 기화처리를 수행함과 더불어(ST500), 기화된 Ni(CO4) 가스를 제2 기준 온도 이상의 조건에서 Ni와 CO 가스로 분해하는 열반응처리를 수행한다(ST600). 이때, 상기한 기화처리 과정(ST600)와 열반응처리 과정(ST700)은 연속적으로 수행하고, 제1 기준 온도는 100℃ 이하로 설정되며, 제2 기준 온도는 300℃ 이상으로 설정된다.
도2은 도1에서 기화처리 과정(ST500)와 열반응처리 과정(ST600)을 수행하는 장치의 모식도이다.
도2를 참조하면, 기화처리 과정(ST500)은 수평로(10) 내로 CO 가스를 주입하여 유가금속 산화물 분말(Power)과 반응시킴으로써, Ni(CO4) 가스가 발생된다. 이때, 수평로(10)는 100℃ 이하, 예컨대 50℃, 70℃, 90℃ 조건에서 수평로 내부 CO 가스는 300cc/min 분위기로 설정될 수 있다.
상기한 수평로(10)에서 이루어지는 유가금속 산화물 분말에 포함된 Ni 분말의 기화 반응식은 하기 화학식4와 같다.
Figure pat00004
여기서, (s)는 고체상태, (g)는 기체상태를 의미하는 것으로, 유가금속 산화물 분말에 포함된 Ni 분말은 기체상태의 Ni(CO4) 가스로 상변화됨을 알 수 있다.
한편, 열반응처리 과정(ST600)은 일정 이상의 승온이 가능한 전기로에서 이루어지고, 상기 수평로(10)와 전기로(20)는 파이프(1)을 통해 연결되는 바, 수평로(10)에서 생성된 Ni(CO4) 가스는 파이프(1)를 통해 전기로(20)로 유입된다.
전기로(20)는 Ni(CO4) 가스의 열분해 조건을 만족하도록 대기(Air) 분위기에서 200℃ 이상의 온도로 가열되는 바, 파이프(1)를 통해 유입된 Ni(CO4) 가스는 열분해 반응에 의해 Ni와 CO 가스로 분해되고, Ni는 전기로(20)에 구비된 컨덴서(Condenser)에 증착된다. 따라서, 컨덴서를 이용하여 분말 형태의 Ni를 쉽게 회수할 수 있다.
상기한 전기로(20)에서 이루어지는 Ni 분말의 열반응식은 하기 화학식5와 같다.
Figure pat00005
여기서, (s)는 고체상태, (g)는 기체상태를 의미하는 것으로, 열반응에 의해 Ni가 고체가 분해되어 분말형태로 회수됨을 알 수 있다.
이어, 본 발명에 따른 폐 리튬이온전지의 양극재에서 리튬 및 유가금속을 회수하기 위한 방법을 실험을 통해 보다 구체적으로 설명한다. 그러나, 본 발명의 범위가 실험에 의하여 국한되는 것은 아니다.
1) 시료 분석
NCM 계 폐 리튬이온전지의 양극활물질 공정부산물로서, 시료의 화학조성은 XRD(X-Ray Diffraction), EDS(Energy-Dispersive X-ray spectroscopy)분석법으로 분석하였으며, ICP(Inductively coupled plasma) 분석법을 통해 원시료 내 함유된 Li의 wt.%를 분석하였다.
분석결과 폐 리튬이온전지의 양극재 분말은 LiNiO, LiCoO, Li2MnO의 형태의 세 가지 상으로 이루어져 있는 것을 확인하였으며, XRD 분석결과 원시료의 상은 LiNiO, LiCoO, Li2MnO3로 Li과 Ni, Co, Mn의 금속산화물과 화합물을 이루고 있고, EDS 분석결과 Mn 8.21wt.%, Co 27.56wt.%, Ni 16.67wt.%로 함유되어 있었다.
또한, 시료의 ICP 분석결과 6.5wt.%의 리튬함량을 확인 할 수 있었고 그 결과는 표1과 같다.
Figure pat00006
2) 상변화 조건 분석
먼저, 열중량측정장치(TGA : Thermogravimetric apparatus)를 통해 NCM계 폐전지분말의 무게변화를 관찰함으로써, 상변화 조건을 분석하였다.
도3은 TGA 측정 결과로서, 650~800℃ 사이에서 NCM계 폐 리튬이온전지의 양극재 분말의 무게변화가 관찰되었는 바, 본 발명자는 600 ~ 900℃ 를 상변화 조건으로 설정하였다. 즉, 무게의 증가는 상분리로 인해 CoO, MnO, NiO의 생성됨을 예상할 수 있으며, 이로 인해 시료의 무게가 증가한 것으로 판단할 수 있다.
3) CO2 열반응 실험 결과
열처리로에 시료를 장입한 후 열반응(Carbonation) 실험을 진행하였다. 이때, 시료는 30g으로 마련되고, 열처리로는 외부와 완전히 차단된 상태에서 온도범위 상온 ~ 995℃/min, 승온 속도 5℃/min 의 조건에서 CO2 가스를 분당 300cc로 주입함으로써, 온도별 CO2 분위기에서의 열적거동을 측정하였다.
도4는 원시료와 온도 600℃, 700℃, 800℃, 900℃에서 2 시간동안 유지한 열반응 실험결과로서, (a)는 원시료의 XRD 분석결과이며, (b) 내지 (e)는 각각 600℃, 700℃, 800℃, 900℃ 에서의 열반응 후 XRD 분석결과이다.
도4를 참조하면, 600℃ 조건의 (b)는 원시료의 상과 대동소이한 LiNiO, LiCoO, LiMnO의 peak을 나타내므로 상변화가 일어나지 않은 것을 확인할 수 있다. 그리고, 700℃ 조건의 (c)의 경우 Li2CO3상으로 일부가 상변화가 일어났으나 아직 LiCoO상이 남아있고 NiO, CoO상이 관찰되지 않는 것으로 보아 완전한 분리가 일어나지 않음을 알 수 있다. 이에 반해, 800℃, 900℃조건의 (d)와 (e)의 경우 Li2CO3와 NiO, CoO상이 관찰되므로 양극활물질의 출발물질인 Li2CO3과 나머지 산화물의 상으로 완전히 분리가 일어났음을 알 수 있다.
4) 수침출 실험 결과
열반응 이후 분말과 증류수의 비율을 1:10, 1:20, 1:30 의 중량비로 설정하여 각각 수침출 하였으며, 수침출 시간은 1시간, 2시간, 3시간을 진행하였다.
표2는 분말과 증류수 비율에 따른 수침출 후 용액 내 리튬 함량을 실험한 결과이고, 표3은 시간에 따른 수침출 후 용액 내 리튬 함량을 실험한 결과로서, 이는 ICP 분석법을 통해 분석하였다.
Figure pat00007
Figure pat00008
표2는 수세시간을 1시간으로 고정하여 실험한 결과로서, 열반응 후 분말과 증류수의 비율을 1:10 으로 했을 때의 증류수 내 리튬 함유량은 2333ppm, 1:20의 경우 증류수내 리튬 함유량은 2340ppm, 1:30의 경우 증류수내 리튬 함량은 2349ppm으로 증류수의 양이 증가할수록 리튬이 더 많이 침출 되는 것을 알 수 있다.
또한, 표3은 열반응 후 분말과 증류수의 비율을 1:30로 고정을 했을때의 실험결과로서, 1hr 수침출 시 증류수 내 리튬 함량은 2321ppm, 3hr 수침술시 증류수내 리튬 함량은 2348ppm, 5hr 수침출시 증류수내 리튬 함량은 2366ppm으로 수 침출시간이 증가할 수 있는 리튬함량은 증가하나, 처리시간에 비해 수침출 효율은 그다지 높지 않다는 것을 알 수 있다.
또한, 도5는 원시료에 대한 XRD 분석 결과(a)와 열반응 후 분말과 증류수의 1:30 비율에서 1시간동안 수 침출하였을 때의 XRD 분석 결과(b)로서, XRD pick에서 Li2CO3상이 모두 침출되어 분말에는 금속 산화물상만 남은 것을 알 수 있다.
5) 증류수에 함유된 Li 2 CO 3 분석
증류수에 침출된 Li2CO3을 분말상으로 회수하기 위하여, 침출된 용액을 건조 공정을 진행하였으며, 건조 공정을 통해 회수된 분말을 XRD 분석을 진행하였다.
도6은 증류수에 침출된 용액을 건조하여 회수된 분말을 XRD 분석한 결과로서, XRD분석 결과 대부분의 상이 Li2CO3상으로 나타난 바, Li2CO3 이 분말상으로 회수된 것을 확인할 수 있다.
6) 리튬 회수율 분석
표4는 시료의 무게 변화 및 ICP분석결과와 그 결과를 통해 단계별 Li 함량을 산출한 결과이다.
Figure pat00009
표4는 수침출 후 분말과 수침출 후 용액내의 리튬함유량을 산출하였고, 증류수와 열반응 후 분말을 30:1의 비율로 5시간 수 침출 하였을 때 열반응후의 NMC분말에서 Li이 1.7g 용해되었고 분말에 남은 Li2CO3이 "0"으로 완전히 물에 녹아 용액에 농축된 것을 확인 할 수 있었다.
즉, ICP 분석결과 Li이 1.7g 농축됨을 확인하였으며, 원시료와 비교하였을 때, Li 회수율은 89%로 확인되었다.
7) Ni 분말 회수 실험
CO2 열반응 후 수침출하여 감압여과를 실시하여 선택적으로 Li2CO3을 회수한 후 남은 NiO, CoO, MnO가 분말상태로 서로 섞여있는 유가금속 산화물 분말을 니켈 정제법의 일종인 Mond Process를 사용하여 진행하였다.
먼저, 유가금속 산화물 분말의 H2 환원 실험을 진행하였다. 이때, H2 환원 실험의 실험조건은 위의 열역학적 데이터를 기반으로 200℃, 300℃, 400℃ 세 가지 조건으로 실험을 진행하였으며, 승온 속도 10℃/min, H2 gas 300cc/min 분위기에서 진행하였다.
도7은 XRD 분석법을 통한 온도별 H2 환원 실험 결과로서, (a)는 수침출 및 여과 후 남은 유가금속 산화물 분말이고 (b)는 200℃에서 H2 환원 열반응을 후 시료이다. 두시료를 비교해 보았을 때, NiO상은 Ni상으로 환원되지 않았다. (c)는 300℃에서 환원 열반응을 진행하였으며, NiO상의 일부가 Ni상으로 환원되었으며, (d)는 400℃ 3시간 진행하였을 때 NiO상이 Ni로 완전히 환원됨을 알 수 있다.
이어, 환원된 유가금속 산화물 분말을 CO gas 분위기에서 기화시켜 Air 분위기에서 열반응을 통하여 전기로 컨덴서에 부착하여 분말상의 Ni을 회수하는 실험을 진행하였다.
도8은 XRD 분석법을 통한 온도별 CO 가스 열반응 실험 결과로서, (a)는 H2 가스 환원 열반응 후 시료이며, 90℃ 3시간 CO 가스 분위기에서 열반응 한 (b)시료와 비교하였을 때, Ni상이 계속 남아있는 것을 알 수 있었다. 또한, 70℃ 3시간 COgas 분위기에서 열반응한 (c)시료의 경우에도 Ni상이 남아 있었으며, 50℃ 3시간 COgas 분위기에서 열반응을 진행한 (d)시료의 경우에는 XRD 분석결과 Ni 상이 모두 없어지고 CoO상과 MnO상만이 남은 것을 확인할 수 있다.
이에, 50℃ 온도에서 3시간 동안 CO 가스와 열반응 시켰을 때, Ni이 Ni(CO)4로 상변화 되었으며 수평로와 전기로를 연결하여 Ni 회수 실험을 진행하였다.
실험 조건으로 전기로의 온도를 300℃, 400℃, 500℃ 으로 분위기는 Air분위기에서 진행하였다.
그리고, 이를 통해 회수된 분말의 순도를 분석하기 위하여 XRD 및 EDS 분석을 실시하였으며, 도10에 실험 결과가 나타나있다.
즉, 도9에 의하면, 혼합된 분말에서의 Ni의 선택적 회수를 위해 분해 열처리를 실시한 결과 300℃ 및 400℃에서는 컨덴서에 Ni분말의 증착이 거의 일어나지 않았으며, 500℃에서 열반응 시켰을 때 컨덴서에 Ni분말이 증착되어 있는 것을 확인하였으며, EDS 분석결과 97.99% 순도의 Ni을 회수하였음을 알 수 있다.
본 발명에 의하면, 표4에서 알 수 있듯이 원시료로부터 89%의 회수율로 Li를 회수할 수 있고, 도9에서 알 수 있듯이 Li가 회수되고 남은 잔여 분말로부터 97.00% 순도의 Ni를 회수할 수 있다.
10 : 수평로, 20 : 전기로,
1 : 파이프.

Claims (7)

  1. 폐 리튬이온전지의 양극재로부터 수집한 Li, Ni, Mn, Co 를 포함하는 NCM(NixMnxCox)계 분말을 열처리로 내에 장입한 상태에서, 열처리로로 CO2 를 주입하면서 800℃ 이상의 온도로 열반응처리를 수행하여 NiO, CoO, MnO을 포함하는 유가금속 산화물상과 Li2CO3 으로 상분리하는 제1 단계와,
    상분리된 NCM계 분말을 증류수를 이용한 수침출처리를 수행하여 액체상태의 Li2CO3 를 회수하되, 증류수는 NCM계 분말의 10배 이상의 중량비로 혼합하는 제2 단계를 포함하여 구성되는 것을 포함하여 구성되는 것을 특징으로 하는 폐 리튬이온전지의 양극재에서 유가금속 회수 방법.
  2. 제1항에 있어서,
    상기 제1 단계는 열처리로로 CO2 가스를 분당 300cc로 주입하고 승온 속도 5℃/min 의 조건으로 800℃ 이상의 온도에서 일정 시간 유지하는 열반응처리를 수행하는 것을 특징으로 하는 폐 리튬이온전지의 양극재에서 유가금속 회수 방법.
  3. 제1항에 있어서,
    상기 제2 단계는 증류수와 NCM계 분말는 30:1의 중량비로 혼합되어 5시간 동안 수침출처리를 수행하는 것을 특징으로 하는 폐 리튬이온전지의 양극재에서 유가금속 회수 방법.
  4. 제1항에 있어서,
    상기 제2 단계는 수 침출이 완료된 혼합물을 감압여과기를 통해 감압여과시켜 액체상태의 Li2CO3 과 고체상태의 유가금속 산화물 분말을 분리하는 것을 특징으로 하는 폐 리튬이온전지의 양극재에서 유가금속 회수 방법.
  5. 제1항에 있어서,
    상기 제2 단계에서 Li2CO3 를 회수하고 남은 유가금속 산화물 분말을 열처리로에 장입한 후 H2 환원반응처리를 수행하여 NiO를 생성하는 제3 단계와,
    유가금속 산화물 분말을 수평로에 장입한 후, 제1 온도에서 CO와 반응시켜 유가금속 산화물 분말에 함유된 NiO 분말을 가스 상태의 Ni(CO4)로 변화시키는 제4 단계 및,
    전기로로 유입되는 가스 상태의 Ni(CO4)를 제2 온도에서 열반응처리하여 Ni 와 CO 가스로 분해함으로써, 고체상태의 Ni 분말을 획득하는 제5 단계를 추가로 포함하여 구성되는 것을 특징으로 하는 폐 리튬이온전지의 양극재에서 유가금속 회수 방법.
  6. 제5항에 있어서,
    상기 제4 단계를 수행하는 수평로와 제5 단계를 수행하는 전기로는 파이프를 통해 연결되어, 제4 단계에서 생성된 가스 상태의 Ni(CO4)가 파이프를 통해 전기로로 유입됨으로써, 제4 단계와 제5 단계가 연속적으로 이루어지도록 구성되고,
    상기 제5 단계에서 전기로로 내부의 상측에는 컨덴서를 구비하여 열반응처리에 의해 분해된 Ni 분말을 컨덴서에 증착시켜 Ni 분말을 회수하는 것을 특징으로 하는 폐 리튬이온전지의 양극재에서 유가금속 회수 방법.
  7. 제5항 또는 제6항에 있어서,
    상기 제4 단계에서의 제1 온도는 100℃ 이하로 설정되고,
    상기 제5 단계에서의 제2 온도는 300℃ 이상으로 설정되는 것을 특징으로 하는 폐 리튬이온전지의 양극재에서 유가금속 회수 방법.


KR1020190175999A 2019-12-27 2019-12-27 폐 리튬이온전지의 양극재에서 유가금속 회수 방법 KR102332465B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190175999A KR102332465B1 (ko) 2019-12-27 2019-12-27 폐 리튬이온전지의 양극재에서 유가금속 회수 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190175999A KR102332465B1 (ko) 2019-12-27 2019-12-27 폐 리튬이온전지의 양극재에서 유가금속 회수 방법

Publications (2)

Publication Number Publication Date
KR20210083579A true KR20210083579A (ko) 2021-07-07
KR102332465B1 KR102332465B1 (ko) 2021-11-30

Family

ID=76861995

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190175999A KR102332465B1 (ko) 2019-12-27 2019-12-27 폐 리튬이온전지의 양극재에서 유가금속 회수 방법

Country Status (1)

Country Link
KR (1) KR102332465B1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113921931A (zh) * 2021-10-11 2022-01-11 南昌航空大学 一种通过碳热还原从退役锂离子电池黑粉中回收碳酸锂的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011094228A (ja) * 2009-09-30 2011-05-12 Dowa Eco-System Co Ltd リチウムの回収方法
KR101066166B1 (ko) 2009-11-20 2011-09-20 한국지질자원연구원 폐리튬이온전지로부터의 코발트 회수방법
KR101109031B1 (ko) 2011-09-16 2012-02-07 한국지질자원연구원 리튬이온전지 및 3원계 양극활물질로부터 cmb 촉매 제조방법
JP2012229481A (ja) * 2011-04-27 2012-11-22 Japan Metals & Chem Co Ltd 使用済みリチウムイオン電池類の有価物の分別回収方法
KR20170106004A (ko) * 2016-03-11 2017-09-20 부경대학교 산학협력단 니켈 분말 제조 방법
KR102043711B1 (ko) * 2018-04-12 2019-11-12 주식회사 에코프로이노베이션 리튬이온 2차전지의 폐 양극재를 이용한 수산화리튬 일수화물의 제조방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011094228A (ja) * 2009-09-30 2011-05-12 Dowa Eco-System Co Ltd リチウムの回収方法
KR101066166B1 (ko) 2009-11-20 2011-09-20 한국지질자원연구원 폐리튬이온전지로부터의 코발트 회수방법
JP2012229481A (ja) * 2011-04-27 2012-11-22 Japan Metals & Chem Co Ltd 使用済みリチウムイオン電池類の有価物の分別回収方法
KR101109031B1 (ko) 2011-09-16 2012-02-07 한국지질자원연구원 리튬이온전지 및 3원계 양극활물질로부터 cmb 촉매 제조방법
KR20170106004A (ko) * 2016-03-11 2017-09-20 부경대학교 산학협력단 니켈 분말 제조 방법
KR102043711B1 (ko) * 2018-04-12 2019-11-12 주식회사 에코프로이노베이션 리튬이온 2차전지의 폐 양극재를 이용한 수산화리튬 일수화물의 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Timothy W. Ellis 외 1명, Battery Recycling: defining the market and identifying the technology required to keep high value materials in the economy and out of the waste dump, research gate, 2015.02.13.* *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113921931A (zh) * 2021-10-11 2022-01-11 南昌航空大学 一种通过碳热还原从退役锂离子电池黑粉中回收碳酸锂的方法

Also Published As

Publication number Publication date
KR102332465B1 (ko) 2021-11-30

Similar Documents

Publication Publication Date Title
Xiao et al. Recycling metals from lithium ion battery by mechanical separation and vacuum metallurgy
Zheng et al. Leaching procedure and kinetic studies of cobalt in cathode materials from spent lithium ion batteries using organic citric acid as leachant
US20220274841A1 (en) Process for the recovery of lithium from waste lithium ion batteries
US20220251681A1 (en) Process for the recovery of lithium and other metals from waste lithium ion batteries
Yao et al. A new method for the synthesis of LiNi 1/3 Co 1/3 Mn 1/3 O 2 from waste lithium ion batteries
Xu et al. A review of processes and technologies for the recycling of lithium-ion secondary batteries
CN101831548B (zh) 一种自废旧锰酸锂电池中回收有价金属的方法
Hu et al. Preparation and electrochemical performance of nano-Co3O4 anode materials from spent Li-ion batteries for lithium-ion batteries
JP6314814B2 (ja) 廃リチウムイオン電池からの有価金属の回収方法
CN109449523A (zh) 一种废旧锂离子电池的综合回收方法
US20210324495A1 (en) Process for the recycling of spent lithium ion cells
JP2021521580A (ja) リチウム二次電池の活性金属の回収方法
CN111790728B (zh) 一种利用水蒸气高效还原回收废旧锂电池的处置方法
EP4372112A2 (en) Process for the recovery of cathode materials in the recycling of batteries
JP2000173677A (ja) 構成材料のリサイクルを目的としたリチウムバッテリの処理方法
KR20170061206A (ko) 폐 리튬 이온 전지를 이용한 전구체 원료의 회수 방법
KR100358528B1 (ko) 폐리튬이차전지의 재활용방법
Sarkar et al. Sustainable recovery and resynthesis of electroactive materials from spent Li-ion batteries to ensure material sustainability
CN113784922B (zh) 从废正极材料分离过渡金属的方法
KR102332465B1 (ko) 폐 리튬이온전지의 양극재에서 유가금속 회수 방법
Li et al. Spray pyrolysis technology-based closed-loop for regenerating single-crystal cathodes from spent lithium-ion batteries
US20210242514A1 (en) Systems and methods for recycling electrodes
Bankole et al. Recovery of LiMn1/3Ni1/3Co1/3O2 from spent lithium-ion battery using a specially designed device
CN115161483A (zh) 一种全回收废旧锂离子电池并实现金属分离的方法
CN114514199A (zh) 锂前体的回收方法

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
N231 Notification of change of applicant
GRNT Written decision to grant