KR20210080302A - 고순도 AlxGa1-xN (0.5≤x≤1) 압전 박막을 제조하는 방법 및 이 박막을 이용하는 장치 - Google Patents

고순도 AlxGa1-xN (0.5≤x≤1) 압전 박막을 제조하는 방법 및 이 박막을 이용하는 장치 Download PDF

Info

Publication number
KR20210080302A
KR20210080302A KR1020210079899A KR20210079899A KR20210080302A KR 20210080302 A KR20210080302 A KR 20210080302A KR 1020210079899 A KR1020210079899 A KR 1020210079899A KR 20210079899 A KR20210079899 A KR 20210079899A KR 20210080302 A KR20210080302 A KR 20210080302A
Authority
KR
South Korea
Prior art keywords
thin film
piezoelectric thin
film
polarity
aln
Prior art date
Application number
KR1020210079899A
Other languages
English (en)
Other versions
KR102403424B1 (ko
Inventor
안상정
Original Assignee
안상정
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 안상정 filed Critical 안상정
Priority to KR1020210079899A priority Critical patent/KR102403424B1/ko
Publication of KR20210080302A publication Critical patent/KR20210080302A/ko
Priority to KR1020220063893A priority patent/KR20220075296A/ko
Application granted granted Critical
Publication of KR102403424B1 publication Critical patent/KR102403424B1/ko

Links

Images

Classifications

    • H01L41/316
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/074Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing
    • H10N30/076Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing by vapour phase deposition
    • H01L41/047
    • H01L41/0805
    • H01L41/187
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/704Piezoelectric or electrostrictive devices based on piezoelectric or electrostrictive films or coatings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

본 개시는 AlxGa1-xN (0.5≤x≤1) 압전 박막을 제조하는 방법에 있어서, 사파이어 성막 기판에 희생층을 형성하는 단계; 그리고, 희생층 위에 AlxGa1-xN (0.5≤x≤1) 압전 박막을 성장하는 단계;를 포함하며, AlxGa1-xN (0.5≤x≤1) 압전 박막을 성장하는 단계에 앞서 AlyGa1-yN (0.5≤y≤1)로 된 제1 반도체층을 형성하는 단계;를 더 포함하는 것을 특징으로 하는 AlxGa1-xN (0.5≤x≤1) 압전 박막을 제조하는 방법 및 이 AlxGa1-xN (0.5≤x≤1) 압전 박막을 구비하는 구조물에 관한 것이다.

Description

고순도 AlxGa1-xN (0.5≤x≤1) 압전 박막을 제조하는 방법 및 이 박막을 이용하는 장치{Method of manufacturing AlxGa1-xN (0.5≤x≤1) piezoelectric thin films with high crystallinity and their apparatus using the thin film}
본 개시(Disclosure)는 전체적으로 고순도 AlxGa1 - xN (0.5≤x≤1) 압전 박막을 제조하는 방법 및 이 박막을 이용하는 장치에 관한 것으로, 특히 우수한 결정성(crystallinity)과 극성(polarity)을 가지는 고순도 AlxGa1 - xN (0.5≤x<1) 압전 박막, 더욱 바람직하게는 고순도 AlN 압전 박막을 제조하는 방법 및 이 박막을 이용하는 장치에 관한 것이다. 고순도 AlxGa1 - xN (0.5≤x≤1) 압전 박막은 고품질의 고주파 필터(high-frequency filters), 에너지 회수장치(energy harvesters), 초음파 트랜스듀서(ultrasonic transducers), 바이오 및 사물인터넷 용도의 센서(sensors for bio & IoT) 등을 포함한 다양한 공진기(resonaters) 응용 제품 등에 이용된다. 최근에, 이들 박막은 스마트 폰과 같은 포터블 전자 장치(portable electronic devices)에 사용되는 필터에서 음향 공진기(acoustic resonators; 예: SAW 공진기(surface acoustic wave resonator), BAW 공진기(bulk acoustic wave resonator))로서 역할과 바이오 및 사물인터넷 용도의 고감도 센서에서 주목받고 있다. 이상에 AlxGa1 - xN (0.5≤x≤1) 압전 박막의 용도를 예시하였지만, 이 박막의 용도가 여기에 제한되는 것은 아니다.
여기서는, 본 개시에 관한 배경기술이 제공되며, 이들이 반드시 공지기술을 의미하는 것은 아니다(This section provides background information related to the present disclosure which is not necessarily prior art).
문헌 Nano Energy 51 (2018) 146-161, “AlN piezoelectric thin films for energy harvesting and acoustic devices”에 따르면, AlN 압전 박막은 높은 종적 음향파 속도(high longitudinal acoustic wave velocity; 대략 11,000m/s), 높은 열적 안정성(high thermal satbility, 녹는점; 2100℃, 압전 특성 유지 온도; 1150℃), 큰 에너지 밴드갭(wide energy bandgap, 6.2eV), 그리고 우수한 압전능과 유전율(excellent piezoelectric and dielectric properties) 등의 유일무이한 물성을 갖고 있어, 고품질의 고주파 필터(high-frequency filters), 에너지 회수장치(energy harvesters), 초음파 트랜스듀서(ultrasonic transducers), 바이오 및 사물인터넷 용도의 센서(sensors for bio & IoT) 등을 포함한 다양한 공진기(resonaters) 응용 제품으로 현재 폭발적으로 사용되고 있는 동시에, 향후 고품질의 기능성과 다양성(functionality and versatility) 강화를 통한 초소형화 고효율성 제품이 절대 필요한 분야에서는 가장 각광받고 있는 물질이다. 일반적으로 AlN 압전 박막 물질을 성막(thin film synthesis)하는 방법으로는 400℃ 전후의 온도에서 다결정 증착(poly-crystal deposition)하는 PVD(physical vapor deposition; 대표적으로 sputtering)와 1000℃ 전후의 온도에서 단결정 성장(epitaxial single crystal growth)하는 CVD(chemical vapor deposition; 대표적으로 MOCVD, HVPE)으로 알려져 있다. 현재는 AlN 압접 박막의 성막 공정과 이러한 성막 공정을 감안한 소자 설계로 인해서 고저항성 Si 성막 기판 위에 순차적으로 절연층(대표적으로 SiO2) 및/또는 전극 기능을 포함한 금속층의 단층 또는 다층 박막(대표적으로 Mo, Ti, Pt, W, Al)을 형성시킨 다음, 400℃ 전후의 온도에서 다결정 AlN 증착을 통한 소자 설계 제작, 또는 필요시에 후속 열처리 공정을 추가하여 설계된 소자를 제작하고 있는 실정이다. 하지만 400℃ 전후의 온도에서 절연층 및/또는 금속 박막 위에 최적화시킨 공정으로 증착된 AlN 압전 박막은 집합조직화된 다결정(textured poly-crystal) 미세조직(microstucture)으로 1000℃ 전후의 고온에서 성장된 고순도 단결정(epitaxial single crystal) 미세조직의 AlN 압전 박막에 비해서 압전능 관련 물성을 포함한 물리적 특성이 우수하지 않고, 이로 인해서 설계 제작된 각종 AlN 압전 박막 소자들은 성능과 응용 확장 관점에서 한계를 갖고 있다. 다시 말해서, 종래 기술에서 AlN 압전 박막과 이를 이용한 장치에 있어서의 결정 품질(결정성과 극성)은 AlN 성막 전에 형성된 절연층 및/또는 금속층의 단층 또는 다층 박막 위에 성막 가능한 것으로 제한되기 때문에, AlN 압전 박막을 고순도 단결정의 재료로 구성하는 것은 곤란하였다. 이러한 한계을 극복하고 고순도 단결정의 AlN 압전 박막을 얻고 장치를 제작하기 위한 여러 방법들이 제시되고 있는데, 일 예로 1000℃ 전후의 고온에서 AlN 물질과 동일/유사한 결정 구조(crystal structure)를 갖는 단결정 성막 기판(epitaxial synthesis substrate, Sapphire, SiC)에 직접적으로 성장시킨 후, 웨이본 본딩(wafer-bonding)과 성막 기판 분리(lift off)를 통해서 소자 기판(device substrate)으로의 AlN 압전 박막 전사(transfer)를 통해 장치를 완성시키는 방법들이 제시되고 있다.
도 1은 미국 공개특허공보 US2015-0033520호에 제시된 압전 박막을 이용한 소자들을 나타내는 도면으로서, 도 1(a)에는 FBAR(20; Film Bulk Acoustic Resonator)의 일 예가 제시되어 있으며, 도 1(b)에는 SMR(20'; Solidly Mounted Resonator)가 제시되어 있다. FBAR과 SMR은 BAW 공진기에 속한다. FBAR(20)은 한 쌍의 전극(22,24), 한 쌍의 전극(22,24) 사이에 놓이는 압전 박막(26) 그리고 소자 기판(30)을 포함한다. 한 쌍의 전극(22,24)과 압전 박막(26)은 소자 기판(30)에 형성된 캐비티(28) 위에 놓인다(suspended). SMR(20')은 한 쌍의 전극(22',24'), 한 쌍의 전극(22',24') 사이에 놓이는 압전 박막(26') 그리고 소자 기판(30')을 포함한다. FBAR(20)과 달리 캐비티(28) 형태의 반사기(reflectror)를 대신하여 다층 구조의 브래그 리플렉터(27'; Bragg Reflector) 형태의 반사기가 구비된다.
도 2 내지 도 4는 미국 공개특허공보 US2015-0033520호에 제시된 AlN 압전 박막 및 이를 이용한 소자를 제조하는 방법을 나타내는 도면으로서, 먼저 사파이어(Al2O3) 성막 기판에 단결정 AlN 압전 박막을 성장한다(도 2(a)). 이때 종래 Si 성막 기판 위에 SiO2 막과 Mo로 된 전극을 형성한 다음, PVD(Phisical Vapor Deposition)인 스퍼터링을 통해 AlN 압전 박막을 형성하는 것과 달리, HVPE 또는 CVD(Chemical Vapor Depostion)인 MOVCD를 이용하여 양질의 고순도 단결정 AlN 압전 박막을 형성한다. 다음으로, 컨택 전극을 형성한다(도 2(b). SMR을 제조하는 경우에, 먼저 별도로 마련된 반도체 소자 기판에 브래그 리플렉터(SiO2/W) 반사기를 형성한다(도 3(c)). 다음으로 AlN 압전 박막 구조물(40)과 브래그 리플렉터 반사기 구조물(42)을 웨이퍼 본딩한다(도 3(d). 다음으로 본딩된 구조물(44)로부터 레이저 리프트 오프(Laser Lift Off; LLO)를 통해 사파이어 성막 기판을 분리한다(도 3(e)). 마지막으로 사파이어 성막 기판이 분리된 구조물(46)에 상부 전극을 형성한다(도 3(f)). FBAR을 제조하는 경우에, 먼저 별도로 마련된 반도체 소자 기판에 에어 캐비티를 형성한다(도 4(c)). 다음으로 AlN 압전 박막 구조물(40)과 캐비티 구조물(52)을 결합한다(도 4(d). 다음으로 본딩된 구조물(54)로부터 레이저 리프트 오프(LLO)를 통해 사파이어 성막 기판을 분리한다(도 4(e)). 마지막으로 사파이어 성막 기판이 분리된 구조물(56)에 상부 전극을 형성한다(도 4(f)).
종래에 Si 성막 기판 위에 스퍼터링을 통해 형성된 다결정(polycrystalline) AlN 압전 박막과 비교할 때 사파이어 성막 기판 위에 성장된(epitaxially grown) 단결정(single crytalline) AlN 압전 박막은 공진기의 성능을 대폭 향상시킨다 하겠다. 그러나 사파이어 성막 기판 위에 6.2eV 에너지 밴드갭(energy bandgap), 즉 파장으로 변환시에 200nm 단파장의 광학 물성을 갖는 AlN 압전 박막을 직접 성장시킨 다음, 이를 현재 상용되는 ArF(193nm) & KrF(248nm) 등의 엑시머 레이저 광 에너지원를 이용하여 분리하는 것은 결코 쉽지 않은 일이다. 이러한 이유는 레이저 광 에너지원을 이용하여 두 물질층을 분리하기 위해서는 경계면(interface)에서 레이저 광 에너지원의 강한 흡수와 열에너지로의 변환을 거친 열화학분해 반응(thermo-chemical decomposition reaction) 과정을 통해 이루어지는데, 이러한 반응을 일으키는데 메카니즘의 시발점은 레이저 광 에너지원을 흡수하여 열에너지원으로 변환시킬 수 있는 적정한 물질로 구성된 희생층(sacrificial ayer)이 존재되어야 한다. 이 희생층(sacrificial ayer) 물질의 적정 조건은 사파이어 성막 기판 후면을 통해 조사 입사된 레이저의 파장(wavalength)보다 충분히 큰 파장의 에너지 밴드갭을 갖는 광학적으로 투명한 반도체인 동시에, 광 에너지원을 최대한 많이 흡수할 수 있는 비정질, 다결정(amorphous or polycrystalline), 또는 다층(multi layer)의 미세구조(microstructure)를 갖는 물질 영역이 절대적으로 필요로 한데, 상기 미국 공개특허공보 US2015-0033520호에 제시된 방법에서는 이러한 점을 간과하고 기술한 것이다.
도 5는 미국 공개특허공보 US2006-0145785호에 제시된 AlN 압전 박막을 제조하는 방법의 일 예를 나타내는 도면으로서, 사파이어 성막 기판(200), 사파이어 성막 기판(200)에 성장된 버퍼층(210; 예: GaN), 버퍼층(210) 위에 형성된 AlN 압전 박막(220) 그리고 AlN 압전 박막(220) 위에 형성된 접합용 금속(230; 예: Au)이 제시되어 있다.
버퍼층(210)을 구성하고 있는 갈륨 나이트라이드(GaN)와 같이 3.4eV(파장 변환시 364nm) 에너지 밴드갭과 비정질 미세구조(amorphous microstucture)를 갖고 AlN에 비해 충분히 작은 버퍼층(210)을 희생층으로 구비하여 사파이어 성막 기판(200)과 AlN 압전 박막(220)의 분리를 용이하게 하는 이점을 가지지만, GaN과 AlN 압전 박막(220) 간에는 상당한 격자상수 및 열팽창계수의 차이가 있으므로, 압전 박막으로 사용할 수 있는 일정한 두께(대략 100nm) 이상으로 MOCVD 성장된 고순도 단결정 AlN 압전 박막(220)의 결정성을 보장하기가 현재까지 공지된 공정 및 기술로는 쉽지 않다.
이외에도 SiC 성막 기판 위에 고순도 AlN 압전 박막을 성장하는 방법이 있으나, SiC 성막 기판이 고비용인데다가, SiC 성막 기판 위에 고순도 AlN 박막 성장 후에 이미 공지된 AlN 압전 박막 공진기 제조공정에서 화학적 습식에칭을 통해 SiC 성막 기판이 제거되기 때문에 재사용이 가능하지 않으므로 원천적으로 AlN 압전 박막 공진기 고비용 원가문제를 해결할 수 없어 고려하지 않는다.
이에 대하여 '발명의 실시를 위한 구체적인 내용'의 후단에 기술한다.
여기서는, 본 개시의 전체적인 요약(Summary)이 제공되며, 이것이 본 개시의 외연을 제한하는 것으로 이해되어서는 아니된다(This section provides a general summary of the disclosure and is not a comprehensive disclosure of its full scope or all of its features).
본 개시에 따른 일 측면에 의하면(According to one aspect of the present disclosure), 고순도 AlxGa1-xN (0.5≤x≤1) 압전 박막을 제조하는 방법에 있어서, 사파이어 성막 기판에 희생층을 형성하는 단계; 그리고, 희생층 위에 단결정 AlxGa1-xN (0.5≤x≤1) 압전 박막을 성장하는 단계;를 포함하며, AlxGa1-xN (0.5≤x≤1) 압전 박막을 성장하는 단계에 앞서 AlyGa1-yN (0.5≤y≤1)로 된 제1 반도체층을 형성하는 단계;를 더 포함하는 것을 특징으로 하는 고순도 AlxGa1-xN (0.5≤x≤1) 압전 박막을 제조하는 방법이 제공된다.
본 개시에 따른 또 다른 측면에 의하면(According to another aspect of the present disclosure), AlxGa1-xN (0.5≤x≤1) 압전 박막을 구비하는 구조물에 있어서, AlxGa1-xN (0.5≤x≤1) 압전 박막; AlxGa1-xN (0.5≤x≤1) 압전 박막의 일측에 구비되는 제1 전극; AlxGa1-xN (0.5≤x≤1) 압전 박막을 기준으로 제1 전극의 반대측에 구비되는 제2 전극과 반사기;를 포함하며, 제1 전극이 구비되는 AlxGa1-xN (0.5≤x≤1) 압전 박막의 면은 메탈릭 극성(Al-polarity 또는 Al-polarity & Ga-polarity mixed) 표면(face)인 것을 특징으로 하는 AlxGa1-xN (0.5≤x≤1) 압전 박막을 구비하는 구조물이 제공된다.
이에 대하여 '발명의 실시를 위한 구체적인 내용'의 후단에 기술한다.
도 1은 미국 공개특허공보 US2015-0033520호에 제시된 압전 박막을 이용한 소자들을 나타내는 도면,
도 2 내지 도 4는 미국 공개특허공보 US2015-0033520호에 제시된 AlN 압전 박막 및 이를 이용한 소자를 제조하는 방법을 나타내는 도면,
도 5는 미국 공개특허공보 US2006-0145785호에 제시된 AlN 압전 박막을 제조하는 방법의 일 예를 나타내는 도면,
도 6은 본 개시에 따른 AlxGa1 - xN (0.5≤x≤1) 압전 박막을 제조하는 방법 및, AlxGa1 - xN (0.5≤x≤1) 압전 박막 구조물(structure)의 일 예를 나타내는 도면,
도 7은 본 개시에 따른 AlxGa1 - xN (0.5≤x≤1) 압전 박막을 제조하는 방법 및, AlxGa1 - xN (0.5≤x≤1) 압전 박막 구조물(structure)의 또 다른 예를 나타내는 도면,
도 8은 본 개시에 따른 AlxGa1 - xN (0.5≤x≤1) 압전 박막을 제조하는 방법 및, AlxGa1 - xN (0.5≤x≤1) 압전 박막 구조물(structure)의 또 다른 예를 나타내는 도면,
도 9는 본 개시에 따른 AlxGa1 - xN (0.5≤x≤1) 압전 박막을 제조하는 방법 및, AlxGa1 - xN (0.5≤x≤1) 압전 박막 구조물(structure)의 또 다른 예를 나타내는 도면,
도 10 내지 도 12는 본 개시에 제시된 AlxGa1 - xN (0.5≤x≤1) 압전 박막을 이용하여 공진기(resonator)를 제조하는 방법의 일 예를 나타내는 도면,
도 13 및 도 14는 본 개시에 제시된 AlxGa1 - xN (0.5≤x≤1) 압전 박막을 이용하여 공진기(resonator)를 제조하는 방법의 또 다른 예를 나타내는 도면.
이하, 본 개시를 첨부된 도면을 참고로 하여 자세하게 설명한다(The present disclosure will now be described in detail with reference to the accompanying drawing(s)).
도 6은 본 개시에 따른 AlxGa1 - xN (0.5≤x≤1) 압전 박막을 제조하는 방법 및, AlxGa1 - xN (0.5≤x≤1) 압전 박막 구조물(structure)의 일 예를 나타내는 도면으로서, 구조물은 사파이어 성막 기판(1), 제1 반도체층(2), 희생층(3) 그리고 AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)을 포함한다.
도 7은 본 개시에 따른 AlxGa1 - xN (0.5≤x≤1) 압전 박막을 제조하는 방법 및, AlxGa1 - xN (0.5≤x≤1) 압전 박막 구조물(structure)의 또 다른 예를 나타내는 도면으로서, 구조물은 사파이어 성막 기판(1), 제1 반도체층(2), 희생층(3) 그리고 AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)을 포함하며, 추가적으로 희생층(3)과 AlxGa1-xN (0.5≤x≤1) 압전 박막(4) 사이에 제2 반도체층(5)을 포함한다.
도 8은 본 개시에 따른 AlxGa1 - xN (0.5≤x≤1) 압전 박막을 제조하는 방법 및, AlxGa1 - xN (0.5≤x≤1) 압전 박막 구조물(structure)의 또 다른 예를 나타내는 도면으로서, 구조물은 사파이어 성막 기판(1), 제1 반도체층(2), 희생층(3) 그리고 AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)을 포함하지만, 제1 반도체층(2)과 희생층(3)의 형성 순서가 도 6에 제시된 구조물과 바뀌어 있다.
도 9는 본 개시에 따른 AlxGa1 - xN (0.5≤x≤1) 압전 박막을 제조하는 방법 및, AlxGa1 - xN (0.5≤x≤1) 압전 박막 구조물(structure)의 또 다른 예를 나타내는 도면으로서, 구조물은 사파이어 성막 기판(1), 제1 반도체층(2), 희생층(3), AlxGa1 - xN (0.5≤x≤1) 압전 박막(4) 그리고 제2 반도체층(5)을 포함하지만, 제1 반도체층(2)과 희생층(3)의 형성 순서가 도 7에 제시된 구조물과 바뀌어 있다.
예를 들어 C면(0002) 사파이어 성막 기판을 사용할 수 있으며, 그 위에 형성되는 3족 질화물이 성장 전처리 조건에 따라 극성(polarity; 메탈릭 또는 개스) 표면(face) 또는 반극성(semi-polarity; 메탈릭 극성과 질소 개스 극성이 혼합된) 표면을 가질 수 있다면, C면을 벗어나거나 C면이 아닌 사파이어 성막 기판의 사용을 고려할 수 있다. 평탄한 성막 기판 이외에도 나노 사이즈의 PSS(Patterned Sapphire Substrate)의 사용을 고려할 수 있다.
도 6 및 도 7에 제시된 예에서, 제1 반도체층(2)은 저온이 아닌 고온(1000℃ 이상) 성장된 AlyGa1 - yN (0.5≤y≤1)로 이루어지며, 후속하여 성장되는 AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)의 결정 품질(결정성과 극성)을 보장하는 역할을 한다. 따라서 적정 성장온도보다 낮은 온도에서 성장되는 종래의 버퍼층이라 일컫어지는 층과 구분된다. 제1 반도체층(2)은 CVD(예: MOCVD, HVPE, ALD)로 성장될 수 있다. AlyGa1 - yN (0.5≤y≤1)로 된 제1 반도체층(2) 두께의 상한과 하한은 특별히 한정되지 않지만, 바람직하게는 AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)의 두께 균일도(thickness uniformity)를 유지하기 위한 스트레스 조절(stress control) 기능을 하는데 유리하도록 100nm-20㎛로 한다. 예를 들어, 1000-1400℃의 온도와, 100-200torr의 압력에서 성장될 수 있으며, 다량의 수소(H2)를 포함한 암모니아(NH3)와 질소(N2)로 구성된 분위기(상대적으로 N2보다는 NH3 함량이 더 크다) 또는 암모니아(NH3)와 질소(N2)로 구성된 분위기에서, AlN의 경우, 100% Al 구성, Al-rich AlGaN의 경우, Al/(Al+Ga) 값이 50% 이상으로 하여 성장할 수 있다. 바람직하게는 전처리로서, 상기 적정 성장온도에서 AlyGa1 - yN (0.5≤y≤1)로 된 제1 반도체층(2) 성장 전에, 900-1000℃에서 10sec 동안 Al MOCVD 소스 개스(예: TMAl)로 챔버(chamber) 내부 전처리와 20nm 이하 두께로 AlN 버퍼층을 형성한 다음, 이어서 적정 성장조건 1000-1400℃ 및 100-200torr에서 성장하는데, 고품질 결정성 확보, 전위밀도 저감(reduction in dislocation density), 크랙 생성 및 전파 억제(suppression of generation & propagation)를 위해서 의도적으로 사파이어 성막 기판(1)의 인접 영역과 AlyGa1 - yN (0.5≤y≤1)로 된 제1 반도체층(2) 내부에 다수의 에어 공극(air-voids)을 형성하는 것이 유리하다.
도 8 및 도 9에 제시된 예에서, 제1 반도체층(2)은 100nm 이하의 AlyGa1 - yN (0.5≤y≤1)로 이루어지는 것이 바람직하며, 후속하여 성장되는 AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)의 결정성과 극성을 보장하는 역할을 한다. 제1 반도체층(2)은 PVD(예: 스퍼터링)로 증착될 수 있고, 이때 일정량(예: O2/(N2+O2) 값이 3% 이하)의 산소 공급이 중요하며, 나노 스케일의 AlN 또는 Al-rich AlGaN 씨앗(seed)으로 역할한다. 소량의 O2를 포함한 분위기에서 AlyGa1 - yN (0.5≤y≤1)의 스퍼터링 증착은 상대적으로 작은 아일랜드(smaller islands) 형상의 AlyGa1 - yN (0.5≤y≤1) 결정체를 형성하여 상기 적정 성장온도에서 CVD(예: MOCVD, HVPE, ALD) 성막된 AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)의 표면 평탄도 개선과 박막 내부의 전위밀도 저감를 통해 고품질의 결정성과 극성을 확보하는데 중대한 씨드(seed) 역할을 담당한다. 제1 반도체층(2) 두께는 100nm 이하인 것이 바람직하며, 더욱 바람직하게는 AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)의 크랙 생성 및 전파 억제를 하는데 한층 유리한 1nm-30nm로 한다. 예를 들어, 300-500℃의 온도와 압력은 5*10- 3mbar의 압력에서 증착될 수 있으며, 다량의 아르곤(Ar)를 포함한 질소(N2)와 산소(O2)로 구성된 분위기(상대적으로 O2보다는 N2 함량이 휠씬 더 크다; Ar 40sccm, N2 110sccm, O2 4sccm)가 사용될 수 있다. 성장된 AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)의 품질을, 품질을 나타내는 측정 지표 중의 하나인 X-ray (0002) rocking curve를 통해 살펴 보았으며, 0.04-0.06°의 값을 보였다. 이는 현재 상용 구조(Si 성막 기판/SiO2/금속 전극/AlN)의 값인 1.2-2.5°와 비교할 때, 엄청나게 박막의 질이 향상되었음을 보여준다.
도 6 및 도 7에 제시된 제1 반도체층(2)과 도 8 및 도 9에 제시된 제1 반도체층(2)은 AlyGa1 - yN (0.5≤y≤1)로 이루어져서, 후속하여 성장되는 AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)의 결정성과 극성을 보장하는 역할을 한다는 점에서 공통된다.
희생층(3)은 레이저 리프트 오프(LLO) 시에 사파이어 성막 기판(1)의 분리가 용이하도록 AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)을 형성하기에 앞서 사파이어 성막 기판(1) 후면을 통해 조사 입사된 레이저의 파장(wavalength)보다 충분히 큰 파장의 에너지 밴드갭을 갖는 광학적으로 투명한 반도체인 동시에, 광 에너지원을 최대한 많이 흡수할 수 있는 비정질, 다결정(amorphous or polycrystalline), 또는 다층(multi layer)의 미세구조(microstructure)를 갖는 물질 영역이 바람직하며, 예를 들어, 다층의 Alx1Ga1 - x1N/Alx2Ga1 -x2N (x2<x1≤1, 0≤x2<0.5), 단층의 Ga-rich AlGaN (Ga/(Ga+Al) 값이 50% 이상) 및 GaN으로 이루어질 수 있다. 희생층(3)은 CVD(예: MOCVD, HVPE, ALD)로 성장될 수 있으며, 레이저 리프트 오프 시에 레이저의 에너지를 흡수하여 사파이어 성막 기판(1) 측과 AlxGa1 - xN (0.5≤x≤1) 압전 박막(4) 측을 분리하는 역할을 한다. 일반적으로 이론과 실험으로부터 도출 확인된 AlzGa1 - zN 에너지 밴드갭, E(z)=3.43+1.44z+1.33z2 (eV), 만일 50% Al 조성을 갖는 Al0 . 5Ga0 .5N 경우는 4.48eV의 에너지 밴드갭을 갖는다. 반도체(절연체 포함)의 에너지 밴드갭(eV) 값을 광학적 특성인 파장으로 변환하는 식, λ(nm) = 1240/E(z)로서, 이 식을 통해 파장 변환하면 277nm 값을 얻을 수 있다. 따라서 상대적으로 범용화되어 있는 고출력 단파장 레이저 광원(248nm 이상)을 통해서 50% 미만의 Al 조성을 갖는 AlzGa1 - zN 및 GaN 물질 단층, 또는 이들로 구성된 다층 미세구조로 된 희생층(3)을 제거하는데 용이하다. 희생층(3) 두께는 예를 들어 100nm 이하일 수 있으며, 바람직하게는 AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)의 크랙 생성 및 전파 억제를 하는데 한층 유리한 1nm-30nm로 한다. 50% 미만의 Al 조성을 갖는 AlzGa1 - zN 경우 900-1200℃ 및 100-200torr 조건에서 성장하는 것이 가능하고, GaN 경우 600-1100℃ 및 100-200torr 조건에서 성장하는 것이 가능하다. 사파이어 성막 기판(1)에 희생층(3) 성장 후에 AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)을 성장하기에 앞서 씨앗(seed) 역할을 하는 스퍼터링 AlN 박막을 형성해야 하는데, 스퍼터링 전처리로서 챔버내에서 소량의 Ar(표면 에칭을 통한 평탄화 및 클리닝), 미량의 산소(O2) 포함한 질소(N2) 개스 다량을 통해서 희생층(3) 표면을 안정화시키는 단계를 포함한다. AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)은 CVD(예: MOCVD, HVPE, ALD)로 성장될 수 있으며, 단결정 박막으로 성장된다. 그 두께는 최종 소자에 따라 달라질 수 있으며, 예를 들어, 도 1(b)에 제시된 FBAR에 이용되는 경우에, 양 측에 형성되는 전극(22'24')의 두께와 함께 공진 주파수에 의해 그 두께가 결정된다. AlxGa1-xN (0.5≤x≤1) 압전 박막(4)이 Ga을 포함하는 경우를 고려할 수 있으며, 이에 맞추어 제1 반도체층(2), 희생층(3) 및 제2 반도체층(5)의 Ga 조성이 달라질 수 있다.
도 7에 제시된 제2 반도체층(5)은 예를 들어, CVD(예: MOCVD, HVPE, ALD)로 AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)을 형성하기 전 단계 공정으로 성장될 수 있으며, AlaGa1 - aN(0.5<a≤1)로 된 단층 또는 Alb1Ga1 -b1N/Alb2Ga1-b2N (b1≠b2)로 다층 구조(다층 구조 전체로서 Al이 함량이 50% 이상이 바람직함)로 이루어지되, 전체적으로 희생층(3)보다 Al의 함량이 높아서 AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)과 Ga의 함량이 높은 희생층(3) 사이의 응력(stress) 차를 해소하는 역할을 한다. 제2 반도체층(5)은 희생층(3)으로부터 AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)을 향해 Al 함량이 증가하는 상향 그라데이션(gradation)되는 구조를 가질 수 있음은 물론이다. 도 9에 제시된 예의 경우에 제2 반도체층(5)과 희생층(3) 사이에 제1 반도체층(2)이 위치하지만, 제1 반도체층(2)의 두께가 두껍지 않으므로, 도 7에 제시된 예에서와 마찬가지로 제2 반도체층(5)을 구비함으로써, AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)과 Ga의 함량이 높은 희생층(3) 사이의 응력(stress) 차를 해소하는 역할을 한다. 또한 제2 반도체층(5)은 AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)을 성장할 때 웨이퍼 전체 두께 균일도(thickness uniformity)를 결정짓는 중요한 역할을 수행하기 때문에 Si 또는/및 Mg 도판트를 첨가시키는 공정을 추가하여 웨이퍼 변형(Strain)을 조절하는데 사용할 수 있다. 제2 반도체층(5) 두께는 예를 들어, 100nm 이하일 수 있으며, 바람직하게는 AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)의 크랙 생성 및 전파 억제를 하는데 한층 유리한 1nm-30nm로 한다.
도 10 내지 도 12는 본 개시에 제시된 AlxGa1 - xN (0.5≤x≤1) 압전 박막(을 이용하여 공진기(resonator)를 제조하는 방법의 일예를 나타내는 도면이다. 여기서 본 개시에 제시된 AlxGa1 - xN (0.5≤x≤1) 압전 박막이 공진기(resonator)에 적용되었지만, AlxGa1 - xN (0.5≤x≤1) 압전 박막으로부터 사파이어 성막 기판을 제거한 후 이 AlxGa1 - xN (0.5≤x≤1) 압전 박막을 이용할 수 있는 소자 또는 장치라면 제한없이 확장, 적용될 수 있음은 물론이다. 도 3 및 도 4에 제시된 방법이 사용될 수 있음은 물론이며, BAW 공진기 이외에 SAW 공진기에도 적용될 수 있음도 물론이다. 이하에서, 도 6에 제시된 구조물을 가지고 설명한다. 도 10에 도시된 바와 같이, 먼저, 메탈릭 극성(Al-polarity 또는 Al-polarity & Ga-polarity mixed) 표면(face)을 갖는AlxGa1 - xN (0.5≤x≤1) 압전 박막(4) 위에 제1 전극(6; 예: Mo, W, Ta, Pt, Ir, Ru, Rh, Re, Au, Cu, Al, Invar, 또는 이들의 합금)을 형성한다. 다음으로, 제1 전극(6) 위에 제1 보호막(7; 예: Mo, W, Ta, Pt, Ti, TiW, TaN, TiN, SiO2, Al2O3, SiC, SiCN, SiNx, AlN, Polyimide, BCB, SU-8, SOG 등)을 형성한다. 다음으로, 제1 보호막(7) 위에 제1 본딩 레이어(8; 예: SnIn, AuSn, AgIn, PdIn, NiSn, CuSn, Cu to Cu, Au to Au, Epoxy, SU-8, BCB)를 형성한다. 제1 본딩 레이어(8)에 임시 기판(9; 예: 사파이어, AlN, Glass)을 웨이퍼 본딩한다. 다음으로, 레이저 리프트 오프(LLO)를 통해 사파이어 성막 기판(1)을 분리한다. 이 과정에서 메탈 드랍릿(metallic droplet) 제거 공정, 정확한 두께 조정을 위한 트리밍(trimming) 공정 등이 수반될 수 있다. 사파이어 성막 기판(1) 분리, 메탈 드랍릿 제거, 트리밍 공정 등을 마친 AlxGa1 - xN (0.5≤x≤1) 압전 박막(4) 표면은 질소 개스 극성(N-polarity)을 갖는 표면(face)이다. 이어서, 도 11에 도시된 바와 같이, AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)에 제2 전극(14; 예: Mo, W, Ta, Pt, Ir, Ru, Rh, Re, Au, Cu, Al, Invar, 이들 합금)과 다층 구조의 브래그 리플렉터(10; 예: SiO2/W) 반사기를 형성한다. 바람직하게는 제2 전극(14)과 브래그 리플렉터(10) 반사기 증착 공정 후, 이어서 브래그 리플렉터(10) 반사기 위에 제2 보호막(11; 예: Mo, W, Ta, Pt, Ti, TiW, TaN, TiN, SiO2, Al2O3, SiC, SiCN, SiNx, AlN, Polyimide, BCB, SU-8, SOG 등)을 형성한다. 다음으로 제2 보호막(11) 위에 제2 본딩 레이어(12; 예: SnIn, AuSn, AgIn, PdIn, NiSn, CuSn, Cu to Cu, Au to Au, Epoxy, SU-8, BCB 등)를 형성한다. 이어서, 도 12에 도시된 바와 같이, 소자 기판(13; 예: Si, GaAs, AlN, Mo, Cu, W, MoCu, CuW, Invar, Laminate)을 제2 본딩 레이어(12)와 유테틱 본딩, 브레이징 등의 방법으로 웨이퍼 본딩한다. 도시 생략되었지만, 웨이퍼 본딩에 앞서 소자 기판(13)에 순차적으로 전기 절연체 물질층(보호층)과 웨이퍼 본딩층을 형성한다. 마지막으로, 열 가공, 레이저 조사, 화학적 및 물리적 에너지원 공급을 통해 임시 기판(9)을 분리 제거하고, 이어서 제1 본딩 레이어(8)와 제1 보호막(7)을 제거한다. 도 7 내지 도 9에 제시된 예에도 마찬가지로 적용될 수 있다. 이때, 제2 반도체층(5) 또한 제거된다. 두 번의 웨이퍼 본딩 공정을 이용함으로써, AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)의 메탈릭 극성(Al-polarity 또는 Al-polarity & Ga-polarity mixed) 표면(face)을 소자의 상면으로 이용할 수 있으며, 이를 통해 내부식성 등의 표면 화학적 및 구조적 안정한 표면을 가짐으로써 후공정 및 최종 소자의 품질관점에서 이점을 가진다.
도 13 및 도 14는 본 개시에 제시된 AlxGa1 - xN (0.5≤x≤1) 압전 박막을 이용하여 공진기(resonator)를 제조하는 방법의 또 다른 예를 나타내는 도면으로서, 도 10 내지 도 12에 제시된 방법과 달리, 임시 기판(9)을 이용하지 않는다. 먼저, 도 13에 도시된 바와 같이, 제2 전극(14; 예: Mo, W, Ta, Pt, Ir, Ru, Rh, Re, Au, Cu, Al, Invar, 또는 이들의 합금)과 다층 구조의 브래그 리플렉터(10) 반사기, 제2 보호막(11), 제2 본딩 레이어(12)를 형성한 다음, 소자 기판(13)을 웨이퍼 본딩하고, 이어서 사파이어 성막 기판(1)을 제거한다. 마지막으로, 도 14에 도시된 바와 같이, 제1 전극(6)을 형성한다.
상기 10 내지 도 12에 제시된 방법과 도 13 및 도 14에 제시된 방법으로 제작된 공진기 소자 차이는 브래그 리플렉터(10) 반사기를 포함한 제2 전극(14)이 형성되어 놓이는 위치가 웨이퍼 본딩 횟수에 따라 AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)의 표면 극성이 결정된다. 상기 10 내지 도 12에 제시된 방법은 두 번의 웨이퍼 본딩 공정을 통해 제작되는 것으로서, 브래그 리플렉터(10) 반사기를 포함한 제2 전극(14)이 AlxGa1-xN (0.5≤x≤1) 압전 박막(4)의 질소 개스 극성 표면(N-polarity face)에 놓인 반면, 한번의 웨이퍼 본딩 공정을 거치는 상기 13 내지 도 14에 제시된 방법 경우는 브래그 리플렉터(10) 반사기를 포함한 제2 전극(14)이 AlxGa1 - xN (0.5≤x≤1) 압전 박막(4)의 메탈릭 극성 표면(Al-polarity 또는 Al-polarity & Ga-polarity mixed face)에 위치한다. 참고로 종래의 Si 성막 기판 위에 스퍼터링을 통해 형성된 다결정(polycrystalline) AlN 압전 박막으로 제작된 공진기 소자의 경우는 표면 극성과 극성 비율(ratio)을 조절하는데 한계가 있기에 브래그 리플렉터(10) 반사기를 포함한 제2 전극(14)의 극성 위치를 정의할 수 없다.
이하 본 개시의 다양한 실시 형태에 대하여 설명한다.
(1) AlxGa1 - xN (0.5≤x≤1) 압전 박막을 제조하는 방법에 있어서, 사파이어 성막 기판에 희생층을 형성하는 단계; 그리고, 희생층 위에 AlxGa1 - xN (0.5≤x≤1) 압전 박막을 성장하는 단계;를 포함하며, AlxGa1 - xN (0.5≤x≤1) 압전 박막을 성장하는 단계에 앞서 AlyGa1 - yN (0.5≤y≤1)로 된 제1 반도체층을 형성하는 단계;를 더 포함하는 것을 특징으로 하는 AlxGa1 - xN (0.5≤x≤1) 압전 박막을 제조하는 방법.
(2) 제1 반도체층은 희생층의 형성에 앞서 1000℃ 이상의 온도에서 형성되는 것을 특징으로 하는 AlxGa1-xN (0.5≤x≤1) 압전 박막을 제조하는 방법.
(3) 제1 반도체층은 희생층의 형성 후에 산소가 공급되는 상태에서 PVD로 형성되는 것을 특징으로 하는 AlxGa1 - xN (0.5≤x≤1) 압전 박막을 제조하는 방법.
(4) 희생층과 AlxGa1 - xN (0.5≤x≤1) 압전 박막 사이에 희생층보다 Al 함량이 많고, AlxGa1 - xN (0.5≤x≤1) 압전 박막보다 Al 함량이 적은 제2 반도체층을 형성하는 단계;를 더 포함하는 것을 특징으로 하는 AlxGa1-xN (0.5≤x≤1) 압전 박막을 제조하는 방법.
(5) AlxGa1 - xN (0.5≤x≤1) 압전 박막을 구비하는 구조물에 있어서, AlxGa1 - xN (0.5≤x≤1) 압전 박막; AlxGa1 - xN (0.5≤x≤1) 압전 박막의 일측에 구비되는 제1 전극; AlxGa1 - xN (0.5≤x≤1) 압전 박막을 기준으로 제1 전극의 반대측에 구비되는 제2 전극과 반사기;를 포함하며, 제1 전극이 구비되는 AlxGa1 - xN (0.5≤x≤1) 압전 박막의 면은 메탈릭 극성(Al-polarity 또는 Al-polarity & Ga-polarity mixed) 표면(face)인 것을 특징으로 하는 AlxGa1 - xN (0.5≤x≤1) 압전 박막을 구비하는 구조물.
(6) 반사기는 에어 캐비티 및 브래그 리플렉터 중의 하나인 것을 특징으로 하는 AlxGa1 - xN (0.5≤x≤1) 압전 박막을 구비하는 구조물.
(7) 제1 반도체층(2)은 MOCVD로 고온 성장 시, 스트레스 완화를 위해 다수의 에어 공극(air-voids) 삽입하는 것이 바람직하며, PVD로 성막 시, 소량의 산소 성분 이외에 Sc, Mg, Zr 도핑 또는 합금 성분으로 첨가하는 것이 가능하다. Sc, Mg, Zr 도핑 또는 합금 성분으로 삽입하는 이유는 압전 박막을 활용한 소자 구조물의 전기-기계 에너지 변환효율(electro-mechanical coupling efficiency)을 극대화하기 위함이다.
(8) 제2 반도체층(5) AlxGa1 - xN (0.5≤x≤1) 압전 박막 성장 전에 웨이퍼 스트레스를 완화시켜 수평을 유지하게 하여 AlxGa1 - xN (0.5≤x≤1) 압전 박막의 두께를 균일하게 하는 역할을 하기에 제2 반도체층(5) 내에 Si 또는/및 Mg 첨가하는 것이 가능하다.
본 개시에 의하면, 고순도 AlxGa1 - xN (0.5≤x≤1) 압전 박막을 제조하고, 이를 공진기를 제조하고, 이 공진기를 다양한 장치에 적용할 수 있게 된다.
사파이어 성막 기판(1), 제1 반도체층(2), 희생층(3), AlxGa1 - xN (0.5≤x≤1) 압전 박막(4), 제2 반도체층(5), 제1 전극(6), 제2 전극(14)

Claims (2)

  1. AlxGa1-xN (0.5≤x≤1) 압전 박막을 구비하는 구조물에 있어서,
    AlxGa1-xN (0.5≤x≤1) 압전 박막; AlxGa1-xN (0.5≤x≤1) 압전 박막의 일측에 구비되는 제1 전극;
    AlxGa1 - xN (0.5≤x≤1) 압전 박막을 기준으로 제1 전극의 반대측에 구비되는 제2 전극과 반사기;를 포함하며,
    제1 전극이 구비되는 AlxGa1 - xN (0.5≤x≤1) 압전 박막의 면은 메탈릭 극성(Al-polarity 또는 Al-polarity & Ga-polarity mixed) 표면(face)인 것을 특징으로 하는 AlxGa1 - xN (0.5≤x≤1) 압전 박막을 구비하는 구조물.
  2. 청구항 1에 있어서,
    반사기는 에어 캐비티 및 브래그 리플렉터 중의 하나인 것을 특징으로 하는 AlxGa1 - xN (0.5≤x≤1) 압전 박막을 구비하는 구조물.
KR1020210079899A 2019-02-28 2021-06-21 고순도 AlxGa1-xN (0.5≤x≤1) 압전 박막을 제조하는 방법 및 이 박막을 이용하는 장치 KR102403424B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020210079899A KR102403424B1 (ko) 2019-02-28 2021-06-21 고순도 AlxGa1-xN (0.5≤x≤1) 압전 박막을 제조하는 방법 및 이 박막을 이용하는 장치
KR1020220063893A KR20220075296A (ko) 2019-02-28 2022-05-25 고순도 AlxGa1-xN (0.5≤x≤1) 압전 박막을 제조하는 방법 및 이 박막을 이용하는 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190023998A KR102301861B1 (ko) 2019-02-28 2019-02-28 고순도 AlxGa1-xN (0.5≤x≤1) 압전 박막을 제조하는 방법 및 이 박막을 이용하는 장치
KR1020210079899A KR102403424B1 (ko) 2019-02-28 2021-06-21 고순도 AlxGa1-xN (0.5≤x≤1) 압전 박막을 제조하는 방법 및 이 박막을 이용하는 장치

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020190023998A Division KR102301861B1 (ko) 2019-02-28 2019-02-28 고순도 AlxGa1-xN (0.5≤x≤1) 압전 박막을 제조하는 방법 및 이 박막을 이용하는 장치

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020220063893A Division KR20220075296A (ko) 2019-02-28 2022-05-25 고순도 AlxGa1-xN (0.5≤x≤1) 압전 박막을 제조하는 방법 및 이 박막을 이용하는 장치

Publications (2)

Publication Number Publication Date
KR20210080302A true KR20210080302A (ko) 2021-06-30
KR102403424B1 KR102403424B1 (ko) 2022-05-31

Family

ID=72472285

Family Applications (3)

Application Number Title Priority Date Filing Date
KR1020190023998A KR102301861B1 (ko) 2019-02-28 2019-02-28 고순도 AlxGa1-xN (0.5≤x≤1) 압전 박막을 제조하는 방법 및 이 박막을 이용하는 장치
KR1020210079899A KR102403424B1 (ko) 2019-02-28 2021-06-21 고순도 AlxGa1-xN (0.5≤x≤1) 압전 박막을 제조하는 방법 및 이 박막을 이용하는 장치
KR1020220063893A KR20220075296A (ko) 2019-02-28 2022-05-25 고순도 AlxGa1-xN (0.5≤x≤1) 압전 박막을 제조하는 방법 및 이 박막을 이용하는 장치

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020190023998A KR102301861B1 (ko) 2019-02-28 2019-02-28 고순도 AlxGa1-xN (0.5≤x≤1) 압전 박막을 제조하는 방법 및 이 박막을 이용하는 장치

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020220063893A KR20220075296A (ko) 2019-02-28 2022-05-25 고순도 AlxGa1-xN (0.5≤x≤1) 압전 박막을 제조하는 방법 및 이 박막을 이용하는 장치

Country Status (1)

Country Link
KR (3) KR102301861B1 (ko)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002299253A (ja) * 2001-03-30 2002-10-11 Toyoda Gosei Co Ltd 半導体基板の製造方法及び半導体素子
KR20090115826A (ko) * 2008-05-04 2009-11-09 송준오 그룹 3족 질화물계 반도체 소자용 버퍼층 및 그 제조 방법
KR20140058012A (ko) * 2012-11-05 2014-05-14 삼성전자주식회사 나노구조 발광 소자

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002299253A (ja) * 2001-03-30 2002-10-11 Toyoda Gosei Co Ltd 半導体基板の製造方法及び半導体素子
KR20090115826A (ko) * 2008-05-04 2009-11-09 송준오 그룹 3족 질화물계 반도체 소자용 버퍼층 및 그 제조 방법
KR20140058012A (ko) * 2012-11-05 2014-05-14 삼성전자주식회사 나노구조 발광 소자

Also Published As

Publication number Publication date
KR102403424B1 (ko) 2022-05-31
KR102301861B1 (ko) 2021-09-14
KR20200105186A (ko) 2020-09-07
KR20220075296A (ko) 2022-06-08

Similar Documents

Publication Publication Date Title
TWI390587B (zh) GaN single crystal growth method, GaN substrate manufacturing method, GaN-based element manufacturing method, and GaN-based element
US7674699B2 (en) III group nitride semiconductor substrate, substrate for group III nitride semiconductor device, and fabrication methods thereof
JP5317398B2 (ja) 格子パラメータを変化させる元素を含有する窒化ガリウムデバイス基板
JP5393158B2 (ja) 窒化物半導体素子ならびにその製法
TWI494973B (zh) 使用氨預流在矽基板上的氮化鋁成核方法
KR102457270B1 (ko) 압전 박막을 제조하는 방법 및 이 박막을 이용하는 소자
KR101147705B1 (ko) GaN계 반도체 발광소자 및 그것의 제조방법
JP4493646B2 (ja) 後続のターゲット材堆積のためのシリコン基板を改質するバッファ構造および該バッファ構造を形成する方法
JP2009527913A5 (ko)
JP2023510554A (ja) 高品質iii族金属窒化物種結晶およびその製造方法
JP2005056940A (ja) 電子デバイス用基板、電子デバイスおよびそれらの製造方法
KR102556712B1 (ko) 고순도 AlxGa1-xN (0.5≤x≤1) 압전 박막 및 이 박막을 이용하는 소자를 제조하는 방법
KR102480141B1 (ko) 압전 박막을 제조하는 방법 및 이 박막을 이용하는 소자
CN113491020B (zh) 高纯度压电薄膜以及制造利用该薄膜的元件的方法
KR102403424B1 (ko) 고순도 AlxGa1-xN (0.5≤x≤1) 압전 박막을 제조하는 방법 및 이 박막을 이용하는 장치
KR102315908B1 (ko) 고순도 AlxGa1-xN (0.5≤x≤1) 압전 박막을 제조하는 방법 및 이 박막을 이용하는 장치
KR102227213B1 (ko) 고순도 AlxGa1-xN (0.5≤x≤1) 압전 박막 및 이 박막을 이용하는 소자를 제조하는 방법
KR100784383B1 (ko) 반도체 장치 및 그 제조 방법
WO2021225426A1 (ko) 압전 박막을 제조하는 방법 및 이 박막을 이용하는 소자
KR102688499B1 (ko) 압전 박막을 제조하는 방법 및 이 박막을 이용하는 소자
KR102712440B1 (ko) 압전 박막을 제조하는 방법 및 이 박막을 이용하는 소자
KR20230162414A (ko) 압전 박막을 제조하는 방법 및 이 박막을 이용하는 소자
JP4206609B2 (ja) 半導体装置およびその製造方法ならびに半導体基板の製造方法
FR3143837A1 (fr) Procédé de fabrication d’un dispositif électronique

Legal Events

Date Code Title Description
A107 Divisional application of patent
E902 Notification of reason for refusal
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
GRNT Written decision to grant